memory-failure.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11. * failure.
  12. *
  13. * In addition there is a "soft offline" entry point that allows stop using
  14. * not-yet-corrupted-by-suspicious pages without killing anything.
  15. *
  16. * Handles page cache pages in various states. The tricky part
  17. * here is that we can access any page asynchronously in respect to
  18. * other VM users, because memory failures could happen anytime and
  19. * anywhere. This could violate some of their assumptions. This is why
  20. * this code has to be extremely careful. Generally it tries to use
  21. * normal locking rules, as in get the standard locks, even if that means
  22. * the error handling takes potentially a long time.
  23. *
  24. * There are several operations here with exponential complexity because
  25. * of unsuitable VM data structures. For example the operation to map back
  26. * from RMAP chains to processes has to walk the complete process list and
  27. * has non linear complexity with the number. But since memory corruptions
  28. * are rare we hope to get away with this. This avoids impacting the core
  29. * VM.
  30. */
  31. /*
  32. * Notebook:
  33. * - hugetlb needs more code
  34. * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  35. * - pass bad pages to kdump next kernel
  36. */
  37. #include <linux/kernel.h>
  38. #include <linux/mm.h>
  39. #include <linux/page-flags.h>
  40. #include <linux/kernel-page-flags.h>
  41. #include <linux/sched.h>
  42. #include <linux/ksm.h>
  43. #include <linux/rmap.h>
  44. #include <linux/export.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/migrate.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/suspend.h>
  51. #include <linux/slab.h>
  52. #include <linux/swapops.h>
  53. #include <linux/hugetlb.h>
  54. #include <linux/memory_hotplug.h>
  55. #include <linux/mm_inline.h>
  56. #include <linux/kfifo.h>
  57. #include "internal.h"
  58. int sysctl_memory_failure_early_kill __read_mostly = 0;
  59. int sysctl_memory_failure_recovery __read_mostly = 1;
  60. atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
  61. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  62. u32 hwpoison_filter_enable = 0;
  63. u32 hwpoison_filter_dev_major = ~0U;
  64. u32 hwpoison_filter_dev_minor = ~0U;
  65. u64 hwpoison_filter_flags_mask;
  66. u64 hwpoison_filter_flags_value;
  67. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  68. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  69. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  70. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  71. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  72. static int hwpoison_filter_dev(struct page *p)
  73. {
  74. struct address_space *mapping;
  75. dev_t dev;
  76. if (hwpoison_filter_dev_major == ~0U &&
  77. hwpoison_filter_dev_minor == ~0U)
  78. return 0;
  79. /*
  80. * page_mapping() does not accept slab pages.
  81. */
  82. if (PageSlab(p))
  83. return -EINVAL;
  84. mapping = page_mapping(p);
  85. if (mapping == NULL || mapping->host == NULL)
  86. return -EINVAL;
  87. dev = mapping->host->i_sb->s_dev;
  88. if (hwpoison_filter_dev_major != ~0U &&
  89. hwpoison_filter_dev_major != MAJOR(dev))
  90. return -EINVAL;
  91. if (hwpoison_filter_dev_minor != ~0U &&
  92. hwpoison_filter_dev_minor != MINOR(dev))
  93. return -EINVAL;
  94. return 0;
  95. }
  96. static int hwpoison_filter_flags(struct page *p)
  97. {
  98. if (!hwpoison_filter_flags_mask)
  99. return 0;
  100. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  101. hwpoison_filter_flags_value)
  102. return 0;
  103. else
  104. return -EINVAL;
  105. }
  106. /*
  107. * This allows stress tests to limit test scope to a collection of tasks
  108. * by putting them under some memcg. This prevents killing unrelated/important
  109. * processes such as /sbin/init. Note that the target task may share clean
  110. * pages with init (eg. libc text), which is harmless. If the target task
  111. * share _dirty_ pages with another task B, the test scheme must make sure B
  112. * is also included in the memcg. At last, due to race conditions this filter
  113. * can only guarantee that the page either belongs to the memcg tasks, or is
  114. * a freed page.
  115. */
  116. #ifdef CONFIG_MEMCG_SWAP
  117. u64 hwpoison_filter_memcg;
  118. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  119. static int hwpoison_filter_task(struct page *p)
  120. {
  121. struct mem_cgroup *mem;
  122. struct cgroup_subsys_state *css;
  123. unsigned long ino;
  124. if (!hwpoison_filter_memcg)
  125. return 0;
  126. mem = try_get_mem_cgroup_from_page(p);
  127. if (!mem)
  128. return -EINVAL;
  129. css = mem_cgroup_css(mem);
  130. /* root_mem_cgroup has NULL dentries */
  131. if (!css->cgroup->dentry)
  132. return -EINVAL;
  133. ino = css->cgroup->dentry->d_inode->i_ino;
  134. css_put(css);
  135. if (ino != hwpoison_filter_memcg)
  136. return -EINVAL;
  137. return 0;
  138. }
  139. #else
  140. static int hwpoison_filter_task(struct page *p) { return 0; }
  141. #endif
  142. int hwpoison_filter(struct page *p)
  143. {
  144. if (!hwpoison_filter_enable)
  145. return 0;
  146. if (hwpoison_filter_dev(p))
  147. return -EINVAL;
  148. if (hwpoison_filter_flags(p))
  149. return -EINVAL;
  150. if (hwpoison_filter_task(p))
  151. return -EINVAL;
  152. return 0;
  153. }
  154. #else
  155. int hwpoison_filter(struct page *p)
  156. {
  157. return 0;
  158. }
  159. #endif
  160. EXPORT_SYMBOL_GPL(hwpoison_filter);
  161. /*
  162. * Send all the processes who have the page mapped a signal.
  163. * ``action optional'' if they are not immediately affected by the error
  164. * ``action required'' if error happened in current execution context
  165. */
  166. static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
  167. unsigned long pfn, struct page *page, int flags)
  168. {
  169. struct siginfo si;
  170. int ret;
  171. printk(KERN_ERR
  172. "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
  173. pfn, t->comm, t->pid);
  174. si.si_signo = SIGBUS;
  175. si.si_errno = 0;
  176. si.si_addr = (void *)addr;
  177. #ifdef __ARCH_SI_TRAPNO
  178. si.si_trapno = trapno;
  179. #endif
  180. si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
  181. if ((flags & MF_ACTION_REQUIRED) && t == current) {
  182. si.si_code = BUS_MCEERR_AR;
  183. ret = force_sig_info(SIGBUS, &si, t);
  184. } else {
  185. /*
  186. * Don't use force here, it's convenient if the signal
  187. * can be temporarily blocked.
  188. * This could cause a loop when the user sets SIGBUS
  189. * to SIG_IGN, but hopefully no one will do that?
  190. */
  191. si.si_code = BUS_MCEERR_AO;
  192. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  193. }
  194. if (ret < 0)
  195. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  196. t->comm, t->pid, ret);
  197. return ret;
  198. }
  199. /*
  200. * When a unknown page type is encountered drain as many buffers as possible
  201. * in the hope to turn the page into a LRU or free page, which we can handle.
  202. */
  203. void shake_page(struct page *p, int access)
  204. {
  205. if (!PageSlab(p)) {
  206. lru_add_drain_all();
  207. if (PageLRU(p))
  208. return;
  209. drain_all_pages();
  210. if (PageLRU(p) || is_free_buddy_page(p))
  211. return;
  212. }
  213. /*
  214. * Only call shrink_slab here (which would also shrink other caches) if
  215. * access is not potentially fatal.
  216. */
  217. if (access) {
  218. int nr;
  219. do {
  220. struct shrink_control shrink = {
  221. .gfp_mask = GFP_KERNEL,
  222. };
  223. nr = shrink_slab(&shrink, 1000, 1000);
  224. if (page_count(p) == 1)
  225. break;
  226. } while (nr > 10);
  227. }
  228. }
  229. EXPORT_SYMBOL_GPL(shake_page);
  230. /*
  231. * Kill all processes that have a poisoned page mapped and then isolate
  232. * the page.
  233. *
  234. * General strategy:
  235. * Find all processes having the page mapped and kill them.
  236. * But we keep a page reference around so that the page is not
  237. * actually freed yet.
  238. * Then stash the page away
  239. *
  240. * There's no convenient way to get back to mapped processes
  241. * from the VMAs. So do a brute-force search over all
  242. * running processes.
  243. *
  244. * Remember that machine checks are not common (or rather
  245. * if they are common you have other problems), so this shouldn't
  246. * be a performance issue.
  247. *
  248. * Also there are some races possible while we get from the
  249. * error detection to actually handle it.
  250. */
  251. struct to_kill {
  252. struct list_head nd;
  253. struct task_struct *tsk;
  254. unsigned long addr;
  255. char addr_valid;
  256. };
  257. /*
  258. * Failure handling: if we can't find or can't kill a process there's
  259. * not much we can do. We just print a message and ignore otherwise.
  260. */
  261. /*
  262. * Schedule a process for later kill.
  263. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  264. * TBD would GFP_NOIO be enough?
  265. */
  266. static void add_to_kill(struct task_struct *tsk, struct page *p,
  267. struct vm_area_struct *vma,
  268. struct list_head *to_kill,
  269. struct to_kill **tkc)
  270. {
  271. struct to_kill *tk;
  272. if (*tkc) {
  273. tk = *tkc;
  274. *tkc = NULL;
  275. } else {
  276. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  277. if (!tk) {
  278. printk(KERN_ERR
  279. "MCE: Out of memory while machine check handling\n");
  280. return;
  281. }
  282. }
  283. tk->addr = page_address_in_vma(p, vma);
  284. tk->addr_valid = 1;
  285. /*
  286. * In theory we don't have to kill when the page was
  287. * munmaped. But it could be also a mremap. Since that's
  288. * likely very rare kill anyways just out of paranoia, but use
  289. * a SIGKILL because the error is not contained anymore.
  290. */
  291. if (tk->addr == -EFAULT) {
  292. pr_info("MCE: Unable to find user space address %lx in %s\n",
  293. page_to_pfn(p), tsk->comm);
  294. tk->addr_valid = 0;
  295. }
  296. get_task_struct(tsk);
  297. tk->tsk = tsk;
  298. list_add_tail(&tk->nd, to_kill);
  299. }
  300. /*
  301. * Kill the processes that have been collected earlier.
  302. *
  303. * Only do anything when DOIT is set, otherwise just free the list
  304. * (this is used for clean pages which do not need killing)
  305. * Also when FAIL is set do a force kill because something went
  306. * wrong earlier.
  307. */
  308. static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
  309. int fail, struct page *page, unsigned long pfn,
  310. int flags)
  311. {
  312. struct to_kill *tk, *next;
  313. list_for_each_entry_safe (tk, next, to_kill, nd) {
  314. if (forcekill) {
  315. /*
  316. * In case something went wrong with munmapping
  317. * make sure the process doesn't catch the
  318. * signal and then access the memory. Just kill it.
  319. */
  320. if (fail || tk->addr_valid == 0) {
  321. printk(KERN_ERR
  322. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  323. pfn, tk->tsk->comm, tk->tsk->pid);
  324. force_sig(SIGKILL, tk->tsk);
  325. }
  326. /*
  327. * In theory the process could have mapped
  328. * something else on the address in-between. We could
  329. * check for that, but we need to tell the
  330. * process anyways.
  331. */
  332. else if (kill_proc(tk->tsk, tk->addr, trapno,
  333. pfn, page, flags) < 0)
  334. printk(KERN_ERR
  335. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  336. pfn, tk->tsk->comm, tk->tsk->pid);
  337. }
  338. put_task_struct(tk->tsk);
  339. kfree(tk);
  340. }
  341. }
  342. static int task_early_kill(struct task_struct *tsk)
  343. {
  344. if (!tsk->mm)
  345. return 0;
  346. if (tsk->flags & PF_MCE_PROCESS)
  347. return !!(tsk->flags & PF_MCE_EARLY);
  348. return sysctl_memory_failure_early_kill;
  349. }
  350. /*
  351. * Collect processes when the error hit an anonymous page.
  352. */
  353. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  354. struct to_kill **tkc)
  355. {
  356. struct vm_area_struct *vma;
  357. struct task_struct *tsk;
  358. struct anon_vma *av;
  359. pgoff_t pgoff;
  360. av = page_lock_anon_vma_read(page);
  361. if (av == NULL) /* Not actually mapped anymore */
  362. return;
  363. pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  364. read_lock(&tasklist_lock);
  365. for_each_process (tsk) {
  366. struct anon_vma_chain *vmac;
  367. if (!task_early_kill(tsk))
  368. continue;
  369. anon_vma_interval_tree_foreach(vmac, &av->rb_root,
  370. pgoff, pgoff) {
  371. vma = vmac->vma;
  372. if (!page_mapped_in_vma(page, vma))
  373. continue;
  374. if (vma->vm_mm == tsk->mm)
  375. add_to_kill(tsk, page, vma, to_kill, tkc);
  376. }
  377. }
  378. read_unlock(&tasklist_lock);
  379. page_unlock_anon_vma_read(av);
  380. }
  381. /*
  382. * Collect processes when the error hit a file mapped page.
  383. */
  384. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  385. struct to_kill **tkc)
  386. {
  387. struct vm_area_struct *vma;
  388. struct task_struct *tsk;
  389. struct address_space *mapping = page->mapping;
  390. mutex_lock(&mapping->i_mmap_mutex);
  391. read_lock(&tasklist_lock);
  392. for_each_process(tsk) {
  393. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  394. if (!task_early_kill(tsk))
  395. continue;
  396. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
  397. pgoff) {
  398. /*
  399. * Send early kill signal to tasks where a vma covers
  400. * the page but the corrupted page is not necessarily
  401. * mapped it in its pte.
  402. * Assume applications who requested early kill want
  403. * to be informed of all such data corruptions.
  404. */
  405. if (vma->vm_mm == tsk->mm)
  406. add_to_kill(tsk, page, vma, to_kill, tkc);
  407. }
  408. }
  409. read_unlock(&tasklist_lock);
  410. mutex_unlock(&mapping->i_mmap_mutex);
  411. }
  412. /*
  413. * Collect the processes who have the corrupted page mapped to kill.
  414. * This is done in two steps for locking reasons.
  415. * First preallocate one tokill structure outside the spin locks,
  416. * so that we can kill at least one process reasonably reliable.
  417. */
  418. static void collect_procs(struct page *page, struct list_head *tokill)
  419. {
  420. struct to_kill *tk;
  421. if (!page->mapping)
  422. return;
  423. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  424. if (!tk)
  425. return;
  426. if (PageAnon(page))
  427. collect_procs_anon(page, tokill, &tk);
  428. else
  429. collect_procs_file(page, tokill, &tk);
  430. kfree(tk);
  431. }
  432. /*
  433. * Error handlers for various types of pages.
  434. */
  435. enum outcome {
  436. IGNORED, /* Error: cannot be handled */
  437. FAILED, /* Error: handling failed */
  438. DELAYED, /* Will be handled later */
  439. RECOVERED, /* Successfully recovered */
  440. };
  441. static const char *action_name[] = {
  442. [IGNORED] = "Ignored",
  443. [FAILED] = "Failed",
  444. [DELAYED] = "Delayed",
  445. [RECOVERED] = "Recovered",
  446. };
  447. /*
  448. * XXX: It is possible that a page is isolated from LRU cache,
  449. * and then kept in swap cache or failed to remove from page cache.
  450. * The page count will stop it from being freed by unpoison.
  451. * Stress tests should be aware of this memory leak problem.
  452. */
  453. static int delete_from_lru_cache(struct page *p)
  454. {
  455. if (!isolate_lru_page(p)) {
  456. /*
  457. * Clear sensible page flags, so that the buddy system won't
  458. * complain when the page is unpoison-and-freed.
  459. */
  460. ClearPageActive(p);
  461. ClearPageUnevictable(p);
  462. /*
  463. * drop the page count elevated by isolate_lru_page()
  464. */
  465. page_cache_release(p);
  466. return 0;
  467. }
  468. return -EIO;
  469. }
  470. /*
  471. * Error hit kernel page.
  472. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  473. * could be more sophisticated.
  474. */
  475. static int me_kernel(struct page *p, unsigned long pfn)
  476. {
  477. return IGNORED;
  478. }
  479. /*
  480. * Page in unknown state. Do nothing.
  481. */
  482. static int me_unknown(struct page *p, unsigned long pfn)
  483. {
  484. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  485. return FAILED;
  486. }
  487. /*
  488. * Clean (or cleaned) page cache page.
  489. */
  490. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  491. {
  492. int err;
  493. int ret = FAILED;
  494. struct address_space *mapping;
  495. delete_from_lru_cache(p);
  496. /*
  497. * For anonymous pages we're done the only reference left
  498. * should be the one m_f() holds.
  499. */
  500. if (PageAnon(p))
  501. return RECOVERED;
  502. /*
  503. * Now truncate the page in the page cache. This is really
  504. * more like a "temporary hole punch"
  505. * Don't do this for block devices when someone else
  506. * has a reference, because it could be file system metadata
  507. * and that's not safe to truncate.
  508. */
  509. mapping = page_mapping(p);
  510. if (!mapping) {
  511. /*
  512. * Page has been teared down in the meanwhile
  513. */
  514. return FAILED;
  515. }
  516. /*
  517. * Truncation is a bit tricky. Enable it per file system for now.
  518. *
  519. * Open: to take i_mutex or not for this? Right now we don't.
  520. */
  521. if (mapping->a_ops->error_remove_page) {
  522. err = mapping->a_ops->error_remove_page(mapping, p);
  523. if (err != 0) {
  524. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  525. pfn, err);
  526. } else if (page_has_private(p) &&
  527. !try_to_release_page(p, GFP_NOIO)) {
  528. pr_info("MCE %#lx: failed to release buffers\n", pfn);
  529. } else {
  530. ret = RECOVERED;
  531. }
  532. } else {
  533. /*
  534. * If the file system doesn't support it just invalidate
  535. * This fails on dirty or anything with private pages
  536. */
  537. if (invalidate_inode_page(p))
  538. ret = RECOVERED;
  539. else
  540. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  541. pfn);
  542. }
  543. return ret;
  544. }
  545. /*
  546. * Dirty cache page page
  547. * Issues: when the error hit a hole page the error is not properly
  548. * propagated.
  549. */
  550. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  551. {
  552. struct address_space *mapping = page_mapping(p);
  553. SetPageError(p);
  554. /* TBD: print more information about the file. */
  555. if (mapping) {
  556. /*
  557. * IO error will be reported by write(), fsync(), etc.
  558. * who check the mapping.
  559. * This way the application knows that something went
  560. * wrong with its dirty file data.
  561. *
  562. * There's one open issue:
  563. *
  564. * The EIO will be only reported on the next IO
  565. * operation and then cleared through the IO map.
  566. * Normally Linux has two mechanisms to pass IO error
  567. * first through the AS_EIO flag in the address space
  568. * and then through the PageError flag in the page.
  569. * Since we drop pages on memory failure handling the
  570. * only mechanism open to use is through AS_AIO.
  571. *
  572. * This has the disadvantage that it gets cleared on
  573. * the first operation that returns an error, while
  574. * the PageError bit is more sticky and only cleared
  575. * when the page is reread or dropped. If an
  576. * application assumes it will always get error on
  577. * fsync, but does other operations on the fd before
  578. * and the page is dropped between then the error
  579. * will not be properly reported.
  580. *
  581. * This can already happen even without hwpoisoned
  582. * pages: first on metadata IO errors (which only
  583. * report through AS_EIO) or when the page is dropped
  584. * at the wrong time.
  585. *
  586. * So right now we assume that the application DTRT on
  587. * the first EIO, but we're not worse than other parts
  588. * of the kernel.
  589. */
  590. mapping_set_error(mapping, EIO);
  591. }
  592. return me_pagecache_clean(p, pfn);
  593. }
  594. /*
  595. * Clean and dirty swap cache.
  596. *
  597. * Dirty swap cache page is tricky to handle. The page could live both in page
  598. * cache and swap cache(ie. page is freshly swapped in). So it could be
  599. * referenced concurrently by 2 types of PTEs:
  600. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  601. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  602. * and then
  603. * - clear dirty bit to prevent IO
  604. * - remove from LRU
  605. * - but keep in the swap cache, so that when we return to it on
  606. * a later page fault, we know the application is accessing
  607. * corrupted data and shall be killed (we installed simple
  608. * interception code in do_swap_page to catch it).
  609. *
  610. * Clean swap cache pages can be directly isolated. A later page fault will
  611. * bring in the known good data from disk.
  612. */
  613. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  614. {
  615. ClearPageDirty(p);
  616. /* Trigger EIO in shmem: */
  617. ClearPageUptodate(p);
  618. if (!delete_from_lru_cache(p))
  619. return DELAYED;
  620. else
  621. return FAILED;
  622. }
  623. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  624. {
  625. delete_from_swap_cache(p);
  626. if (!delete_from_lru_cache(p))
  627. return RECOVERED;
  628. else
  629. return FAILED;
  630. }
  631. /*
  632. * Huge pages. Needs work.
  633. * Issues:
  634. * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
  635. * To narrow down kill region to one page, we need to break up pmd.
  636. */
  637. static int me_huge_page(struct page *p, unsigned long pfn)
  638. {
  639. int res = 0;
  640. struct page *hpage = compound_head(p);
  641. /*
  642. * We can safely recover from error on free or reserved (i.e.
  643. * not in-use) hugepage by dequeuing it from freelist.
  644. * To check whether a hugepage is in-use or not, we can't use
  645. * page->lru because it can be used in other hugepage operations,
  646. * such as __unmap_hugepage_range() and gather_surplus_pages().
  647. * So instead we use page_mapping() and PageAnon().
  648. * We assume that this function is called with page lock held,
  649. * so there is no race between isolation and mapping/unmapping.
  650. */
  651. if (!(page_mapping(hpage) || PageAnon(hpage))) {
  652. res = dequeue_hwpoisoned_huge_page(hpage);
  653. if (!res)
  654. return RECOVERED;
  655. }
  656. return DELAYED;
  657. }
  658. /*
  659. * Various page states we can handle.
  660. *
  661. * A page state is defined by its current page->flags bits.
  662. * The table matches them in order and calls the right handler.
  663. *
  664. * This is quite tricky because we can access page at any time
  665. * in its live cycle, so all accesses have to be extremely careful.
  666. *
  667. * This is not complete. More states could be added.
  668. * For any missing state don't attempt recovery.
  669. */
  670. #define dirty (1UL << PG_dirty)
  671. #define sc (1UL << PG_swapcache)
  672. #define unevict (1UL << PG_unevictable)
  673. #define mlock (1UL << PG_mlocked)
  674. #define writeback (1UL << PG_writeback)
  675. #define lru (1UL << PG_lru)
  676. #define swapbacked (1UL << PG_swapbacked)
  677. #define head (1UL << PG_head)
  678. #define tail (1UL << PG_tail)
  679. #define compound (1UL << PG_compound)
  680. #define slab (1UL << PG_slab)
  681. #define reserved (1UL << PG_reserved)
  682. static struct page_state {
  683. unsigned long mask;
  684. unsigned long res;
  685. char *msg;
  686. int (*action)(struct page *p, unsigned long pfn);
  687. } error_states[] = {
  688. { reserved, reserved, "reserved kernel", me_kernel },
  689. /*
  690. * free pages are specially detected outside this table:
  691. * PG_buddy pages only make a small fraction of all free pages.
  692. */
  693. /*
  694. * Could in theory check if slab page is free or if we can drop
  695. * currently unused objects without touching them. But just
  696. * treat it as standard kernel for now.
  697. */
  698. { slab, slab, "kernel slab", me_kernel },
  699. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  700. { head, head, "huge", me_huge_page },
  701. { tail, tail, "huge", me_huge_page },
  702. #else
  703. { compound, compound, "huge", me_huge_page },
  704. #endif
  705. { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
  706. { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
  707. { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
  708. { unevict, unevict, "clean unevictable LRU", me_pagecache_clean },
  709. { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
  710. { mlock, mlock, "clean mlocked LRU", me_pagecache_clean },
  711. { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
  712. { lru|dirty, lru, "clean LRU", me_pagecache_clean },
  713. /*
  714. * Catchall entry: must be at end.
  715. */
  716. { 0, 0, "unknown page state", me_unknown },
  717. };
  718. #undef dirty
  719. #undef sc
  720. #undef unevict
  721. #undef mlock
  722. #undef writeback
  723. #undef lru
  724. #undef swapbacked
  725. #undef head
  726. #undef tail
  727. #undef compound
  728. #undef slab
  729. #undef reserved
  730. /*
  731. * "Dirty/Clean" indication is not 100% accurate due to the possibility of
  732. * setting PG_dirty outside page lock. See also comment above set_page_dirty().
  733. */
  734. static void action_result(unsigned long pfn, char *msg, int result)
  735. {
  736. pr_err("MCE %#lx: %s page recovery: %s\n",
  737. pfn, msg, action_name[result]);
  738. }
  739. static int page_action(struct page_state *ps, struct page *p,
  740. unsigned long pfn)
  741. {
  742. int result;
  743. int count;
  744. result = ps->action(p, pfn);
  745. action_result(pfn, ps->msg, result);
  746. count = page_count(p) - 1;
  747. if (ps->action == me_swapcache_dirty && result == DELAYED)
  748. count--;
  749. if (count != 0) {
  750. printk(KERN_ERR
  751. "MCE %#lx: %s page still referenced by %d users\n",
  752. pfn, ps->msg, count);
  753. result = FAILED;
  754. }
  755. /* Could do more checks here if page looks ok */
  756. /*
  757. * Could adjust zone counters here to correct for the missing page.
  758. */
  759. return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
  760. }
  761. /*
  762. * Do all that is necessary to remove user space mappings. Unmap
  763. * the pages and send SIGBUS to the processes if the data was dirty.
  764. */
  765. static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  766. int trapno, int flags)
  767. {
  768. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  769. struct address_space *mapping;
  770. LIST_HEAD(tokill);
  771. int ret;
  772. int kill = 1, forcekill;
  773. struct page *hpage = compound_head(p);
  774. struct page *ppage;
  775. if (PageReserved(p) || PageSlab(p))
  776. return SWAP_SUCCESS;
  777. /*
  778. * This check implies we don't kill processes if their pages
  779. * are in the swap cache early. Those are always late kills.
  780. */
  781. if (!page_mapped(hpage))
  782. return SWAP_SUCCESS;
  783. if (PageKsm(p))
  784. return SWAP_FAIL;
  785. if (PageSwapCache(p)) {
  786. printk(KERN_ERR
  787. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  788. ttu |= TTU_IGNORE_HWPOISON;
  789. }
  790. /*
  791. * Propagate the dirty bit from PTEs to struct page first, because we
  792. * need this to decide if we should kill or just drop the page.
  793. * XXX: the dirty test could be racy: set_page_dirty() may not always
  794. * be called inside page lock (it's recommended but not enforced).
  795. */
  796. mapping = page_mapping(hpage);
  797. if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
  798. mapping_cap_writeback_dirty(mapping)) {
  799. if (page_mkclean(hpage)) {
  800. SetPageDirty(hpage);
  801. } else {
  802. kill = 0;
  803. ttu |= TTU_IGNORE_HWPOISON;
  804. printk(KERN_INFO
  805. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  806. pfn);
  807. }
  808. }
  809. /*
  810. * ppage: poisoned page
  811. * if p is regular page(4k page)
  812. * ppage == real poisoned page;
  813. * else p is hugetlb or THP, ppage == head page.
  814. */
  815. ppage = hpage;
  816. if (PageTransHuge(hpage)) {
  817. /*
  818. * Verify that this isn't a hugetlbfs head page, the check for
  819. * PageAnon is just for avoid tripping a split_huge_page
  820. * internal debug check, as split_huge_page refuses to deal with
  821. * anything that isn't an anon page. PageAnon can't go away fro
  822. * under us because we hold a refcount on the hpage, without a
  823. * refcount on the hpage. split_huge_page can't be safely called
  824. * in the first place, having a refcount on the tail isn't
  825. * enough * to be safe.
  826. */
  827. if (!PageHuge(hpage) && PageAnon(hpage)) {
  828. if (unlikely(split_huge_page(hpage))) {
  829. /*
  830. * FIXME: if splitting THP is failed, it is
  831. * better to stop the following operation rather
  832. * than causing panic by unmapping. System might
  833. * survive if the page is freed later.
  834. */
  835. printk(KERN_INFO
  836. "MCE %#lx: failed to split THP\n", pfn);
  837. BUG_ON(!PageHWPoison(p));
  838. return SWAP_FAIL;
  839. }
  840. /* THP is split, so ppage should be the real poisoned page. */
  841. ppage = p;
  842. }
  843. }
  844. /*
  845. * First collect all the processes that have the page
  846. * mapped in dirty form. This has to be done before try_to_unmap,
  847. * because ttu takes the rmap data structures down.
  848. *
  849. * Error handling: We ignore errors here because
  850. * there's nothing that can be done.
  851. */
  852. if (kill)
  853. collect_procs(ppage, &tokill);
  854. if (hpage != ppage)
  855. lock_page(ppage);
  856. ret = try_to_unmap(ppage, ttu);
  857. if (ret != SWAP_SUCCESS)
  858. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  859. pfn, page_mapcount(ppage));
  860. if (hpage != ppage)
  861. unlock_page(ppage);
  862. /*
  863. * Now that the dirty bit has been propagated to the
  864. * struct page and all unmaps done we can decide if
  865. * killing is needed or not. Only kill when the page
  866. * was dirty or the process is not restartable,
  867. * otherwise the tokill list is merely
  868. * freed. When there was a problem unmapping earlier
  869. * use a more force-full uncatchable kill to prevent
  870. * any accesses to the poisoned memory.
  871. */
  872. forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
  873. kill_procs(&tokill, forcekill, trapno,
  874. ret != SWAP_SUCCESS, p, pfn, flags);
  875. return ret;
  876. }
  877. static void set_page_hwpoison_huge_page(struct page *hpage)
  878. {
  879. int i;
  880. int nr_pages = 1 << compound_trans_order(hpage);
  881. for (i = 0; i < nr_pages; i++)
  882. SetPageHWPoison(hpage + i);
  883. }
  884. static void clear_page_hwpoison_huge_page(struct page *hpage)
  885. {
  886. int i;
  887. int nr_pages = 1 << compound_trans_order(hpage);
  888. for (i = 0; i < nr_pages; i++)
  889. ClearPageHWPoison(hpage + i);
  890. }
  891. /**
  892. * memory_failure - Handle memory failure of a page.
  893. * @pfn: Page Number of the corrupted page
  894. * @trapno: Trap number reported in the signal to user space.
  895. * @flags: fine tune action taken
  896. *
  897. * This function is called by the low level machine check code
  898. * of an architecture when it detects hardware memory corruption
  899. * of a page. It tries its best to recover, which includes
  900. * dropping pages, killing processes etc.
  901. *
  902. * The function is primarily of use for corruptions that
  903. * happen outside the current execution context (e.g. when
  904. * detected by a background scrubber)
  905. *
  906. * Must run in process context (e.g. a work queue) with interrupts
  907. * enabled and no spinlocks hold.
  908. */
  909. int memory_failure(unsigned long pfn, int trapno, int flags)
  910. {
  911. struct page_state *ps;
  912. struct page *p;
  913. struct page *hpage;
  914. int res;
  915. unsigned int nr_pages;
  916. if (!sysctl_memory_failure_recovery)
  917. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  918. if (!pfn_valid(pfn)) {
  919. printk(KERN_ERR
  920. "MCE %#lx: memory outside kernel control\n",
  921. pfn);
  922. return -ENXIO;
  923. }
  924. p = pfn_to_page(pfn);
  925. hpage = compound_head(p);
  926. if (TestSetPageHWPoison(p)) {
  927. printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
  928. return 0;
  929. }
  930. nr_pages = 1 << compound_trans_order(hpage);
  931. atomic_long_add(nr_pages, &mce_bad_pages);
  932. /*
  933. * We need/can do nothing about count=0 pages.
  934. * 1) it's a free page, and therefore in safe hand:
  935. * prep_new_page() will be the gate keeper.
  936. * 2) it's a free hugepage, which is also safe:
  937. * an affected hugepage will be dequeued from hugepage freelist,
  938. * so there's no concern about reusing it ever after.
  939. * 3) it's part of a non-compound high order page.
  940. * Implies some kernel user: cannot stop them from
  941. * R/W the page; let's pray that the page has been
  942. * used and will be freed some time later.
  943. * In fact it's dangerous to directly bump up page count from 0,
  944. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  945. */
  946. if (!(flags & MF_COUNT_INCREASED) &&
  947. !get_page_unless_zero(hpage)) {
  948. if (is_free_buddy_page(p)) {
  949. action_result(pfn, "free buddy", DELAYED);
  950. return 0;
  951. } else if (PageHuge(hpage)) {
  952. /*
  953. * Check "just unpoisoned", "filter hit", and
  954. * "race with other subpage."
  955. */
  956. lock_page(hpage);
  957. if (!PageHWPoison(hpage)
  958. || (hwpoison_filter(p) && TestClearPageHWPoison(p))
  959. || (p != hpage && TestSetPageHWPoison(hpage))) {
  960. atomic_long_sub(nr_pages, &mce_bad_pages);
  961. return 0;
  962. }
  963. set_page_hwpoison_huge_page(hpage);
  964. res = dequeue_hwpoisoned_huge_page(hpage);
  965. action_result(pfn, "free huge",
  966. res ? IGNORED : DELAYED);
  967. unlock_page(hpage);
  968. return res;
  969. } else {
  970. action_result(pfn, "high order kernel", IGNORED);
  971. return -EBUSY;
  972. }
  973. }
  974. /*
  975. * We ignore non-LRU pages for good reasons.
  976. * - PG_locked is only well defined for LRU pages and a few others
  977. * - to avoid races with __set_page_locked()
  978. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  979. * The check (unnecessarily) ignores LRU pages being isolated and
  980. * walked by the page reclaim code, however that's not a big loss.
  981. */
  982. if (!PageHuge(p) && !PageTransTail(p)) {
  983. if (!PageLRU(p))
  984. shake_page(p, 0);
  985. if (!PageLRU(p)) {
  986. /*
  987. * shake_page could have turned it free.
  988. */
  989. if (is_free_buddy_page(p)) {
  990. action_result(pfn, "free buddy, 2nd try",
  991. DELAYED);
  992. return 0;
  993. }
  994. action_result(pfn, "non LRU", IGNORED);
  995. put_page(p);
  996. return -EBUSY;
  997. }
  998. }
  999. /*
  1000. * Lock the page and wait for writeback to finish.
  1001. * It's very difficult to mess with pages currently under IO
  1002. * and in many cases impossible, so we just avoid it here.
  1003. */
  1004. lock_page(hpage);
  1005. /*
  1006. * unpoison always clear PG_hwpoison inside page lock
  1007. */
  1008. if (!PageHWPoison(p)) {
  1009. printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
  1010. res = 0;
  1011. goto out;
  1012. }
  1013. if (hwpoison_filter(p)) {
  1014. if (TestClearPageHWPoison(p))
  1015. atomic_long_sub(nr_pages, &mce_bad_pages);
  1016. unlock_page(hpage);
  1017. put_page(hpage);
  1018. return 0;
  1019. }
  1020. /*
  1021. * For error on the tail page, we should set PG_hwpoison
  1022. * on the head page to show that the hugepage is hwpoisoned
  1023. */
  1024. if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
  1025. action_result(pfn, "hugepage already hardware poisoned",
  1026. IGNORED);
  1027. unlock_page(hpage);
  1028. put_page(hpage);
  1029. return 0;
  1030. }
  1031. /*
  1032. * Set PG_hwpoison on all pages in an error hugepage,
  1033. * because containment is done in hugepage unit for now.
  1034. * Since we have done TestSetPageHWPoison() for the head page with
  1035. * page lock held, we can safely set PG_hwpoison bits on tail pages.
  1036. */
  1037. if (PageHuge(p))
  1038. set_page_hwpoison_huge_page(hpage);
  1039. wait_on_page_writeback(p);
  1040. /*
  1041. * Now take care of user space mappings.
  1042. * Abort on fail: __delete_from_page_cache() assumes unmapped page.
  1043. */
  1044. if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
  1045. printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
  1046. res = -EBUSY;
  1047. goto out;
  1048. }
  1049. /*
  1050. * Torn down by someone else?
  1051. */
  1052. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  1053. action_result(pfn, "already truncated LRU", IGNORED);
  1054. res = -EBUSY;
  1055. goto out;
  1056. }
  1057. res = -EBUSY;
  1058. for (ps = error_states;; ps++) {
  1059. if ((p->flags & ps->mask) == ps->res) {
  1060. res = page_action(ps, p, pfn);
  1061. break;
  1062. }
  1063. }
  1064. out:
  1065. unlock_page(hpage);
  1066. return res;
  1067. }
  1068. EXPORT_SYMBOL_GPL(memory_failure);
  1069. #define MEMORY_FAILURE_FIFO_ORDER 4
  1070. #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
  1071. struct memory_failure_entry {
  1072. unsigned long pfn;
  1073. int trapno;
  1074. int flags;
  1075. };
  1076. struct memory_failure_cpu {
  1077. DECLARE_KFIFO(fifo, struct memory_failure_entry,
  1078. MEMORY_FAILURE_FIFO_SIZE);
  1079. spinlock_t lock;
  1080. struct work_struct work;
  1081. };
  1082. static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
  1083. /**
  1084. * memory_failure_queue - Schedule handling memory failure of a page.
  1085. * @pfn: Page Number of the corrupted page
  1086. * @trapno: Trap number reported in the signal to user space.
  1087. * @flags: Flags for memory failure handling
  1088. *
  1089. * This function is called by the low level hardware error handler
  1090. * when it detects hardware memory corruption of a page. It schedules
  1091. * the recovering of error page, including dropping pages, killing
  1092. * processes etc.
  1093. *
  1094. * The function is primarily of use for corruptions that
  1095. * happen outside the current execution context (e.g. when
  1096. * detected by a background scrubber)
  1097. *
  1098. * Can run in IRQ context.
  1099. */
  1100. void memory_failure_queue(unsigned long pfn, int trapno, int flags)
  1101. {
  1102. struct memory_failure_cpu *mf_cpu;
  1103. unsigned long proc_flags;
  1104. struct memory_failure_entry entry = {
  1105. .pfn = pfn,
  1106. .trapno = trapno,
  1107. .flags = flags,
  1108. };
  1109. mf_cpu = &get_cpu_var(memory_failure_cpu);
  1110. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1111. if (kfifo_put(&mf_cpu->fifo, &entry))
  1112. schedule_work_on(smp_processor_id(), &mf_cpu->work);
  1113. else
  1114. pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
  1115. pfn);
  1116. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1117. put_cpu_var(memory_failure_cpu);
  1118. }
  1119. EXPORT_SYMBOL_GPL(memory_failure_queue);
  1120. static void memory_failure_work_func(struct work_struct *work)
  1121. {
  1122. struct memory_failure_cpu *mf_cpu;
  1123. struct memory_failure_entry entry = { 0, };
  1124. unsigned long proc_flags;
  1125. int gotten;
  1126. mf_cpu = &__get_cpu_var(memory_failure_cpu);
  1127. for (;;) {
  1128. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1129. gotten = kfifo_get(&mf_cpu->fifo, &entry);
  1130. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1131. if (!gotten)
  1132. break;
  1133. memory_failure(entry.pfn, entry.trapno, entry.flags);
  1134. }
  1135. }
  1136. static int __init memory_failure_init(void)
  1137. {
  1138. struct memory_failure_cpu *mf_cpu;
  1139. int cpu;
  1140. for_each_possible_cpu(cpu) {
  1141. mf_cpu = &per_cpu(memory_failure_cpu, cpu);
  1142. spin_lock_init(&mf_cpu->lock);
  1143. INIT_KFIFO(mf_cpu->fifo);
  1144. INIT_WORK(&mf_cpu->work, memory_failure_work_func);
  1145. }
  1146. return 0;
  1147. }
  1148. core_initcall(memory_failure_init);
  1149. /**
  1150. * unpoison_memory - Unpoison a previously poisoned page
  1151. * @pfn: Page number of the to be unpoisoned page
  1152. *
  1153. * Software-unpoison a page that has been poisoned by
  1154. * memory_failure() earlier.
  1155. *
  1156. * This is only done on the software-level, so it only works
  1157. * for linux injected failures, not real hardware failures
  1158. *
  1159. * Returns 0 for success, otherwise -errno.
  1160. */
  1161. int unpoison_memory(unsigned long pfn)
  1162. {
  1163. struct page *page;
  1164. struct page *p;
  1165. int freeit = 0;
  1166. unsigned int nr_pages;
  1167. if (!pfn_valid(pfn))
  1168. return -ENXIO;
  1169. p = pfn_to_page(pfn);
  1170. page = compound_head(p);
  1171. if (!PageHWPoison(p)) {
  1172. pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
  1173. return 0;
  1174. }
  1175. nr_pages = 1 << compound_trans_order(page);
  1176. if (!get_page_unless_zero(page)) {
  1177. /*
  1178. * Since HWPoisoned hugepage should have non-zero refcount,
  1179. * race between memory failure and unpoison seems to happen.
  1180. * In such case unpoison fails and memory failure runs
  1181. * to the end.
  1182. */
  1183. if (PageHuge(page)) {
  1184. pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
  1185. return 0;
  1186. }
  1187. if (TestClearPageHWPoison(p))
  1188. atomic_long_sub(nr_pages, &mce_bad_pages);
  1189. pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
  1190. return 0;
  1191. }
  1192. lock_page(page);
  1193. /*
  1194. * This test is racy because PG_hwpoison is set outside of page lock.
  1195. * That's acceptable because that won't trigger kernel panic. Instead,
  1196. * the PG_hwpoison page will be caught and isolated on the entrance to
  1197. * the free buddy page pool.
  1198. */
  1199. if (TestClearPageHWPoison(page)) {
  1200. pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
  1201. atomic_long_sub(nr_pages, &mce_bad_pages);
  1202. freeit = 1;
  1203. if (PageHuge(page))
  1204. clear_page_hwpoison_huge_page(page);
  1205. }
  1206. unlock_page(page);
  1207. put_page(page);
  1208. if (freeit)
  1209. put_page(page);
  1210. return 0;
  1211. }
  1212. EXPORT_SYMBOL(unpoison_memory);
  1213. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1214. {
  1215. int nid = page_to_nid(p);
  1216. if (PageHuge(p))
  1217. return alloc_huge_page_node(page_hstate(compound_head(p)),
  1218. nid);
  1219. else
  1220. return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
  1221. }
  1222. /*
  1223. * Safely get reference count of an arbitrary page.
  1224. * Returns 0 for a free page, -EIO for a zero refcount page
  1225. * that is not free, and 1 for any other page type.
  1226. * For 1 the page is returned with increased page count, otherwise not.
  1227. */
  1228. static int get_any_page(struct page *p, unsigned long pfn, int flags)
  1229. {
  1230. int ret;
  1231. if (flags & MF_COUNT_INCREASED)
  1232. return 1;
  1233. /*
  1234. * The lock_memory_hotplug prevents a race with memory hotplug.
  1235. * This is a big hammer, a better would be nicer.
  1236. */
  1237. lock_memory_hotplug();
  1238. /*
  1239. * Isolate the page, so that it doesn't get reallocated if it
  1240. * was free.
  1241. */
  1242. set_migratetype_isolate(p, true);
  1243. /*
  1244. * When the target page is a free hugepage, just remove it
  1245. * from free hugepage list.
  1246. */
  1247. if (!get_page_unless_zero(compound_head(p))) {
  1248. if (PageHuge(p)) {
  1249. pr_info("%s: %#lx free huge page\n", __func__, pfn);
  1250. ret = dequeue_hwpoisoned_huge_page(compound_head(p));
  1251. } else if (is_free_buddy_page(p)) {
  1252. pr_info("%s: %#lx free buddy page\n", __func__, pfn);
  1253. /* Set hwpoison bit while page is still isolated */
  1254. SetPageHWPoison(p);
  1255. ret = 0;
  1256. } else {
  1257. pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
  1258. __func__, pfn, p->flags);
  1259. ret = -EIO;
  1260. }
  1261. } else {
  1262. /* Not a free page */
  1263. ret = 1;
  1264. }
  1265. unset_migratetype_isolate(p, MIGRATE_MOVABLE);
  1266. unlock_memory_hotplug();
  1267. return ret;
  1268. }
  1269. static int soft_offline_huge_page(struct page *page, int flags)
  1270. {
  1271. int ret;
  1272. unsigned long pfn = page_to_pfn(page);
  1273. struct page *hpage = compound_head(page);
  1274. ret = get_any_page(page, pfn, flags);
  1275. if (ret < 0)
  1276. return ret;
  1277. if (ret == 0)
  1278. goto done;
  1279. if (PageHWPoison(hpage)) {
  1280. put_page(hpage);
  1281. pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
  1282. return -EBUSY;
  1283. }
  1284. /* Keep page count to indicate a given hugepage is isolated. */
  1285. ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL, false,
  1286. MIGRATE_SYNC);
  1287. put_page(hpage);
  1288. if (ret) {
  1289. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1290. pfn, ret, page->flags);
  1291. return ret;
  1292. }
  1293. done:
  1294. if (!PageHWPoison(hpage))
  1295. atomic_long_add(1 << compound_trans_order(hpage),
  1296. &mce_bad_pages);
  1297. set_page_hwpoison_huge_page(hpage);
  1298. dequeue_hwpoisoned_huge_page(hpage);
  1299. /* keep elevated page count for bad page */
  1300. return ret;
  1301. }
  1302. /**
  1303. * soft_offline_page - Soft offline a page.
  1304. * @page: page to offline
  1305. * @flags: flags. Same as memory_failure().
  1306. *
  1307. * Returns 0 on success, otherwise negated errno.
  1308. *
  1309. * Soft offline a page, by migration or invalidation,
  1310. * without killing anything. This is for the case when
  1311. * a page is not corrupted yet (so it's still valid to access),
  1312. * but has had a number of corrected errors and is better taken
  1313. * out.
  1314. *
  1315. * The actual policy on when to do that is maintained by
  1316. * user space.
  1317. *
  1318. * This should never impact any application or cause data loss,
  1319. * however it might take some time.
  1320. *
  1321. * This is not a 100% solution for all memory, but tries to be
  1322. * ``good enough'' for the majority of memory.
  1323. */
  1324. int soft_offline_page(struct page *page, int flags)
  1325. {
  1326. int ret;
  1327. unsigned long pfn = page_to_pfn(page);
  1328. struct page *hpage = compound_trans_head(page);
  1329. if (PageHuge(page))
  1330. return soft_offline_huge_page(page, flags);
  1331. if (PageTransHuge(hpage)) {
  1332. if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
  1333. pr_info("soft offline: %#lx: failed to split THP\n",
  1334. pfn);
  1335. return -EBUSY;
  1336. }
  1337. }
  1338. ret = get_any_page(page, pfn, flags);
  1339. if (ret < 0)
  1340. return ret;
  1341. if (ret == 0)
  1342. goto done;
  1343. /*
  1344. * Page cache page we can handle?
  1345. */
  1346. if (!PageLRU(page)) {
  1347. /*
  1348. * Try to free it.
  1349. */
  1350. put_page(page);
  1351. shake_page(page, 1);
  1352. /*
  1353. * Did it turn free?
  1354. */
  1355. ret = get_any_page(page, pfn, 0);
  1356. if (ret < 0)
  1357. return ret;
  1358. if (ret == 0)
  1359. goto done;
  1360. }
  1361. if (!PageLRU(page)) {
  1362. pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
  1363. pfn, page->flags);
  1364. return -EIO;
  1365. }
  1366. lock_page(page);
  1367. wait_on_page_writeback(page);
  1368. /*
  1369. * Synchronized using the page lock with memory_failure()
  1370. */
  1371. if (PageHWPoison(page)) {
  1372. unlock_page(page);
  1373. put_page(page);
  1374. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1375. return -EBUSY;
  1376. }
  1377. /*
  1378. * Try to invalidate first. This should work for
  1379. * non dirty unmapped page cache pages.
  1380. */
  1381. ret = invalidate_inode_page(page);
  1382. unlock_page(page);
  1383. /*
  1384. * RED-PEN would be better to keep it isolated here, but we
  1385. * would need to fix isolation locking first.
  1386. */
  1387. if (ret == 1) {
  1388. put_page(page);
  1389. ret = 0;
  1390. pr_info("soft_offline: %#lx: invalidated\n", pfn);
  1391. goto done;
  1392. }
  1393. /*
  1394. * Simple invalidation didn't work.
  1395. * Try to migrate to a new page instead. migrate.c
  1396. * handles a large number of cases for us.
  1397. */
  1398. ret = isolate_lru_page(page);
  1399. /*
  1400. * Drop page reference which is came from get_any_page()
  1401. * successful isolate_lru_page() already took another one.
  1402. */
  1403. put_page(page);
  1404. if (!ret) {
  1405. LIST_HEAD(pagelist);
  1406. inc_zone_page_state(page, NR_ISOLATED_ANON +
  1407. page_is_file_cache(page));
  1408. list_add(&page->lru, &pagelist);
  1409. ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
  1410. false, MIGRATE_SYNC,
  1411. MR_MEMORY_FAILURE);
  1412. if (ret) {
  1413. putback_lru_pages(&pagelist);
  1414. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1415. pfn, ret, page->flags);
  1416. if (ret > 0)
  1417. ret = -EIO;
  1418. }
  1419. } else {
  1420. pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
  1421. pfn, ret, page_count(page), page->flags);
  1422. }
  1423. if (ret)
  1424. return ret;
  1425. done:
  1426. atomic_long_add(1, &mce_bad_pages);
  1427. SetPageHWPoison(page);
  1428. /* keep elevated page count for bad page */
  1429. return ret;
  1430. }