fair.c 158 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/slab.h>
  26. #include <linux/profile.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/mempolicy.h>
  29. #include <linux/migrate.h>
  30. #include <linux/task_work.h>
  31. #include <trace/events/sched.h>
  32. #include "sched.h"
  33. /*
  34. * Targeted preemption latency for CPU-bound tasks:
  35. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  36. *
  37. * NOTE: this latency value is not the same as the concept of
  38. * 'timeslice length' - timeslices in CFS are of variable length
  39. * and have no persistent notion like in traditional, time-slice
  40. * based scheduling concepts.
  41. *
  42. * (to see the precise effective timeslice length of your workload,
  43. * run vmstat and monitor the context-switches (cs) field)
  44. */
  45. unsigned int sysctl_sched_latency = 6000000ULL;
  46. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  47. /*
  48. * The initial- and re-scaling of tunables is configurable
  49. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  50. *
  51. * Options are:
  52. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  53. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  54. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  55. */
  56. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  57. = SCHED_TUNABLESCALING_LOG;
  58. /*
  59. * Minimal preemption granularity for CPU-bound tasks:
  60. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  61. */
  62. unsigned int sysctl_sched_min_granularity = 750000ULL;
  63. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  64. /*
  65. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  66. */
  67. static unsigned int sched_nr_latency = 8;
  68. /*
  69. * After fork, child runs first. If set to 0 (default) then
  70. * parent will (try to) run first.
  71. */
  72. unsigned int sysctl_sched_child_runs_first __read_mostly;
  73. /*
  74. * SCHED_OTHER wake-up granularity.
  75. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  76. *
  77. * This option delays the preemption effects of decoupled workloads
  78. * and reduces their over-scheduling. Synchronous workloads will still
  79. * have immediate wakeup/sleep latencies.
  80. */
  81. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  82. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  83. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  84. /*
  85. * The exponential sliding window over which load is averaged for shares
  86. * distribution.
  87. * (default: 10msec)
  88. */
  89. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  90. #ifdef CONFIG_CFS_BANDWIDTH
  91. /*
  92. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  93. * each time a cfs_rq requests quota.
  94. *
  95. * Note: in the case that the slice exceeds the runtime remaining (either due
  96. * to consumption or the quota being specified to be smaller than the slice)
  97. * we will always only issue the remaining available time.
  98. *
  99. * default: 5 msec, units: microseconds
  100. */
  101. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  102. #endif
  103. /*
  104. * Increase the granularity value when there are more CPUs,
  105. * because with more CPUs the 'effective latency' as visible
  106. * to users decreases. But the relationship is not linear,
  107. * so pick a second-best guess by going with the log2 of the
  108. * number of CPUs.
  109. *
  110. * This idea comes from the SD scheduler of Con Kolivas:
  111. */
  112. static int get_update_sysctl_factor(void)
  113. {
  114. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  115. unsigned int factor;
  116. switch (sysctl_sched_tunable_scaling) {
  117. case SCHED_TUNABLESCALING_NONE:
  118. factor = 1;
  119. break;
  120. case SCHED_TUNABLESCALING_LINEAR:
  121. factor = cpus;
  122. break;
  123. case SCHED_TUNABLESCALING_LOG:
  124. default:
  125. factor = 1 + ilog2(cpus);
  126. break;
  127. }
  128. return factor;
  129. }
  130. static void update_sysctl(void)
  131. {
  132. unsigned int factor = get_update_sysctl_factor();
  133. #define SET_SYSCTL(name) \
  134. (sysctl_##name = (factor) * normalized_sysctl_##name)
  135. SET_SYSCTL(sched_min_granularity);
  136. SET_SYSCTL(sched_latency);
  137. SET_SYSCTL(sched_wakeup_granularity);
  138. #undef SET_SYSCTL
  139. }
  140. void sched_init_granularity(void)
  141. {
  142. update_sysctl();
  143. }
  144. #if BITS_PER_LONG == 32
  145. # define WMULT_CONST (~0UL)
  146. #else
  147. # define WMULT_CONST (1UL << 32)
  148. #endif
  149. #define WMULT_SHIFT 32
  150. /*
  151. * Shift right and round:
  152. */
  153. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  154. /*
  155. * delta *= weight / lw
  156. */
  157. static unsigned long
  158. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  159. struct load_weight *lw)
  160. {
  161. u64 tmp;
  162. /*
  163. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  164. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  165. * 2^SCHED_LOAD_RESOLUTION.
  166. */
  167. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  168. tmp = (u64)delta_exec * scale_load_down(weight);
  169. else
  170. tmp = (u64)delta_exec;
  171. if (!lw->inv_weight) {
  172. unsigned long w = scale_load_down(lw->weight);
  173. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  174. lw->inv_weight = 1;
  175. else if (unlikely(!w))
  176. lw->inv_weight = WMULT_CONST;
  177. else
  178. lw->inv_weight = WMULT_CONST / w;
  179. }
  180. /*
  181. * Check whether we'd overflow the 64-bit multiplication:
  182. */
  183. if (unlikely(tmp > WMULT_CONST))
  184. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  185. WMULT_SHIFT/2);
  186. else
  187. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  188. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  189. }
  190. const struct sched_class fair_sched_class;
  191. /**************************************************************
  192. * CFS operations on generic schedulable entities:
  193. */
  194. #ifdef CONFIG_FAIR_GROUP_SCHED
  195. /* cpu runqueue to which this cfs_rq is attached */
  196. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  197. {
  198. return cfs_rq->rq;
  199. }
  200. /* An entity is a task if it doesn't "own" a runqueue */
  201. #define entity_is_task(se) (!se->my_q)
  202. static inline struct task_struct *task_of(struct sched_entity *se)
  203. {
  204. #ifdef CONFIG_SCHED_DEBUG
  205. WARN_ON_ONCE(!entity_is_task(se));
  206. #endif
  207. return container_of(se, struct task_struct, se);
  208. }
  209. /* Walk up scheduling entities hierarchy */
  210. #define for_each_sched_entity(se) \
  211. for (; se; se = se->parent)
  212. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  213. {
  214. return p->se.cfs_rq;
  215. }
  216. /* runqueue on which this entity is (to be) queued */
  217. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  218. {
  219. return se->cfs_rq;
  220. }
  221. /* runqueue "owned" by this group */
  222. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  223. {
  224. return grp->my_q;
  225. }
  226. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
  227. int force_update);
  228. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  229. {
  230. if (!cfs_rq->on_list) {
  231. /*
  232. * Ensure we either appear before our parent (if already
  233. * enqueued) or force our parent to appear after us when it is
  234. * enqueued. The fact that we always enqueue bottom-up
  235. * reduces this to two cases.
  236. */
  237. if (cfs_rq->tg->parent &&
  238. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  239. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  240. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  241. } else {
  242. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  243. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  244. }
  245. cfs_rq->on_list = 1;
  246. /* We should have no load, but we need to update last_decay. */
  247. update_cfs_rq_blocked_load(cfs_rq, 0);
  248. }
  249. }
  250. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  251. {
  252. if (cfs_rq->on_list) {
  253. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  254. cfs_rq->on_list = 0;
  255. }
  256. }
  257. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  258. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  259. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  260. /* Do the two (enqueued) entities belong to the same group ? */
  261. static inline int
  262. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  263. {
  264. if (se->cfs_rq == pse->cfs_rq)
  265. return 1;
  266. return 0;
  267. }
  268. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  269. {
  270. return se->parent;
  271. }
  272. /* return depth at which a sched entity is present in the hierarchy */
  273. static inline int depth_se(struct sched_entity *se)
  274. {
  275. int depth = 0;
  276. for_each_sched_entity(se)
  277. depth++;
  278. return depth;
  279. }
  280. static void
  281. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  282. {
  283. int se_depth, pse_depth;
  284. /*
  285. * preemption test can be made between sibling entities who are in the
  286. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  287. * both tasks until we find their ancestors who are siblings of common
  288. * parent.
  289. */
  290. /* First walk up until both entities are at same depth */
  291. se_depth = depth_se(*se);
  292. pse_depth = depth_se(*pse);
  293. while (se_depth > pse_depth) {
  294. se_depth--;
  295. *se = parent_entity(*se);
  296. }
  297. while (pse_depth > se_depth) {
  298. pse_depth--;
  299. *pse = parent_entity(*pse);
  300. }
  301. while (!is_same_group(*se, *pse)) {
  302. *se = parent_entity(*se);
  303. *pse = parent_entity(*pse);
  304. }
  305. }
  306. #else /* !CONFIG_FAIR_GROUP_SCHED */
  307. static inline struct task_struct *task_of(struct sched_entity *se)
  308. {
  309. return container_of(se, struct task_struct, se);
  310. }
  311. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  312. {
  313. return container_of(cfs_rq, struct rq, cfs);
  314. }
  315. #define entity_is_task(se) 1
  316. #define for_each_sched_entity(se) \
  317. for (; se; se = NULL)
  318. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  319. {
  320. return &task_rq(p)->cfs;
  321. }
  322. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  323. {
  324. struct task_struct *p = task_of(se);
  325. struct rq *rq = task_rq(p);
  326. return &rq->cfs;
  327. }
  328. /* runqueue "owned" by this group */
  329. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  330. {
  331. return NULL;
  332. }
  333. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  334. {
  335. }
  336. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  337. {
  338. }
  339. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  340. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  341. static inline int
  342. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  343. {
  344. return 1;
  345. }
  346. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  347. {
  348. return NULL;
  349. }
  350. static inline void
  351. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  352. {
  353. }
  354. #endif /* CONFIG_FAIR_GROUP_SCHED */
  355. static __always_inline
  356. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
  357. /**************************************************************
  358. * Scheduling class tree data structure manipulation methods:
  359. */
  360. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  361. {
  362. s64 delta = (s64)(vruntime - min_vruntime);
  363. if (delta > 0)
  364. min_vruntime = vruntime;
  365. return min_vruntime;
  366. }
  367. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  368. {
  369. s64 delta = (s64)(vruntime - min_vruntime);
  370. if (delta < 0)
  371. min_vruntime = vruntime;
  372. return min_vruntime;
  373. }
  374. static inline int entity_before(struct sched_entity *a,
  375. struct sched_entity *b)
  376. {
  377. return (s64)(a->vruntime - b->vruntime) < 0;
  378. }
  379. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  380. {
  381. u64 vruntime = cfs_rq->min_vruntime;
  382. if (cfs_rq->curr)
  383. vruntime = cfs_rq->curr->vruntime;
  384. if (cfs_rq->rb_leftmost) {
  385. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  386. struct sched_entity,
  387. run_node);
  388. if (!cfs_rq->curr)
  389. vruntime = se->vruntime;
  390. else
  391. vruntime = min_vruntime(vruntime, se->vruntime);
  392. }
  393. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  394. #ifndef CONFIG_64BIT
  395. smp_wmb();
  396. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  397. #endif
  398. }
  399. /*
  400. * Enqueue an entity into the rb-tree:
  401. */
  402. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  403. {
  404. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  405. struct rb_node *parent = NULL;
  406. struct sched_entity *entry;
  407. int leftmost = 1;
  408. /*
  409. * Find the right place in the rbtree:
  410. */
  411. while (*link) {
  412. parent = *link;
  413. entry = rb_entry(parent, struct sched_entity, run_node);
  414. /*
  415. * We dont care about collisions. Nodes with
  416. * the same key stay together.
  417. */
  418. if (entity_before(se, entry)) {
  419. link = &parent->rb_left;
  420. } else {
  421. link = &parent->rb_right;
  422. leftmost = 0;
  423. }
  424. }
  425. /*
  426. * Maintain a cache of leftmost tree entries (it is frequently
  427. * used):
  428. */
  429. if (leftmost)
  430. cfs_rq->rb_leftmost = &se->run_node;
  431. rb_link_node(&se->run_node, parent, link);
  432. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  433. }
  434. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  435. {
  436. if (cfs_rq->rb_leftmost == &se->run_node) {
  437. struct rb_node *next_node;
  438. next_node = rb_next(&se->run_node);
  439. cfs_rq->rb_leftmost = next_node;
  440. }
  441. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  442. }
  443. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  444. {
  445. struct rb_node *left = cfs_rq->rb_leftmost;
  446. if (!left)
  447. return NULL;
  448. return rb_entry(left, struct sched_entity, run_node);
  449. }
  450. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  451. {
  452. struct rb_node *next = rb_next(&se->run_node);
  453. if (!next)
  454. return NULL;
  455. return rb_entry(next, struct sched_entity, run_node);
  456. }
  457. #ifdef CONFIG_SCHED_DEBUG
  458. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  459. {
  460. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  461. if (!last)
  462. return NULL;
  463. return rb_entry(last, struct sched_entity, run_node);
  464. }
  465. /**************************************************************
  466. * Scheduling class statistics methods:
  467. */
  468. int sched_proc_update_handler(struct ctl_table *table, int write,
  469. void __user *buffer, size_t *lenp,
  470. loff_t *ppos)
  471. {
  472. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  473. int factor = get_update_sysctl_factor();
  474. if (ret || !write)
  475. return ret;
  476. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  477. sysctl_sched_min_granularity);
  478. #define WRT_SYSCTL(name) \
  479. (normalized_sysctl_##name = sysctl_##name / (factor))
  480. WRT_SYSCTL(sched_min_granularity);
  481. WRT_SYSCTL(sched_latency);
  482. WRT_SYSCTL(sched_wakeup_granularity);
  483. #undef WRT_SYSCTL
  484. return 0;
  485. }
  486. #endif
  487. /*
  488. * delta /= w
  489. */
  490. static inline unsigned long
  491. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  492. {
  493. if (unlikely(se->load.weight != NICE_0_LOAD))
  494. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  495. return delta;
  496. }
  497. /*
  498. * The idea is to set a period in which each task runs once.
  499. *
  500. * When there are too many tasks (sched_nr_latency) we have to stretch
  501. * this period because otherwise the slices get too small.
  502. *
  503. * p = (nr <= nl) ? l : l*nr/nl
  504. */
  505. static u64 __sched_period(unsigned long nr_running)
  506. {
  507. u64 period = sysctl_sched_latency;
  508. unsigned long nr_latency = sched_nr_latency;
  509. if (unlikely(nr_running > nr_latency)) {
  510. period = sysctl_sched_min_granularity;
  511. period *= nr_running;
  512. }
  513. return period;
  514. }
  515. /*
  516. * We calculate the wall-time slice from the period by taking a part
  517. * proportional to the weight.
  518. *
  519. * s = p*P[w/rw]
  520. */
  521. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  522. {
  523. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  524. for_each_sched_entity(se) {
  525. struct load_weight *load;
  526. struct load_weight lw;
  527. cfs_rq = cfs_rq_of(se);
  528. load = &cfs_rq->load;
  529. if (unlikely(!se->on_rq)) {
  530. lw = cfs_rq->load;
  531. update_load_add(&lw, se->load.weight);
  532. load = &lw;
  533. }
  534. slice = calc_delta_mine(slice, se->load.weight, load);
  535. }
  536. return slice;
  537. }
  538. /*
  539. * We calculate the vruntime slice of a to be inserted task
  540. *
  541. * vs = s/w
  542. */
  543. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  544. {
  545. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  546. }
  547. /*
  548. * Update the current task's runtime statistics. Skip current tasks that
  549. * are not in our scheduling class.
  550. */
  551. static inline void
  552. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  553. unsigned long delta_exec)
  554. {
  555. unsigned long delta_exec_weighted;
  556. schedstat_set(curr->statistics.exec_max,
  557. max((u64)delta_exec, curr->statistics.exec_max));
  558. curr->sum_exec_runtime += delta_exec;
  559. schedstat_add(cfs_rq, exec_clock, delta_exec);
  560. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  561. curr->vruntime += delta_exec_weighted;
  562. update_min_vruntime(cfs_rq);
  563. }
  564. static void update_curr(struct cfs_rq *cfs_rq)
  565. {
  566. struct sched_entity *curr = cfs_rq->curr;
  567. u64 now = rq_of(cfs_rq)->clock_task;
  568. unsigned long delta_exec;
  569. if (unlikely(!curr))
  570. return;
  571. /*
  572. * Get the amount of time the current task was running
  573. * since the last time we changed load (this cannot
  574. * overflow on 32 bits):
  575. */
  576. delta_exec = (unsigned long)(now - curr->exec_start);
  577. if (!delta_exec)
  578. return;
  579. __update_curr(cfs_rq, curr, delta_exec);
  580. curr->exec_start = now;
  581. if (entity_is_task(curr)) {
  582. struct task_struct *curtask = task_of(curr);
  583. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  584. cpuacct_charge(curtask, delta_exec);
  585. account_group_exec_runtime(curtask, delta_exec);
  586. }
  587. account_cfs_rq_runtime(cfs_rq, delta_exec);
  588. }
  589. static inline void
  590. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  591. {
  592. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  593. }
  594. /*
  595. * Task is being enqueued - update stats:
  596. */
  597. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  598. {
  599. /*
  600. * Are we enqueueing a waiting task? (for current tasks
  601. * a dequeue/enqueue event is a NOP)
  602. */
  603. if (se != cfs_rq->curr)
  604. update_stats_wait_start(cfs_rq, se);
  605. }
  606. static void
  607. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  608. {
  609. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  610. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  611. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  612. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  613. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  614. #ifdef CONFIG_SCHEDSTATS
  615. if (entity_is_task(se)) {
  616. trace_sched_stat_wait(task_of(se),
  617. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  618. }
  619. #endif
  620. schedstat_set(se->statistics.wait_start, 0);
  621. }
  622. static inline void
  623. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  624. {
  625. /*
  626. * Mark the end of the wait period if dequeueing a
  627. * waiting task:
  628. */
  629. if (se != cfs_rq->curr)
  630. update_stats_wait_end(cfs_rq, se);
  631. }
  632. /*
  633. * We are picking a new current task - update its stats:
  634. */
  635. static inline void
  636. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  637. {
  638. /*
  639. * We are starting a new run period:
  640. */
  641. se->exec_start = rq_of(cfs_rq)->clock_task;
  642. }
  643. /**************************************************
  644. * Scheduling class queueing methods:
  645. */
  646. #ifdef CONFIG_NUMA_BALANCING
  647. /*
  648. * numa task sample period in ms
  649. */
  650. unsigned int sysctl_numa_balancing_scan_period_min = 100;
  651. unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
  652. unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
  653. /* Portion of address space to scan in MB */
  654. unsigned int sysctl_numa_balancing_scan_size = 256;
  655. /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
  656. unsigned int sysctl_numa_balancing_scan_delay = 1000;
  657. static void task_numa_placement(struct task_struct *p)
  658. {
  659. int seq = ACCESS_ONCE(p->mm->numa_scan_seq);
  660. if (p->numa_scan_seq == seq)
  661. return;
  662. p->numa_scan_seq = seq;
  663. /* FIXME: Scheduling placement policy hints go here */
  664. }
  665. /*
  666. * Got a PROT_NONE fault for a page on @node.
  667. */
  668. void task_numa_fault(int node, int pages, bool migrated)
  669. {
  670. struct task_struct *p = current;
  671. if (!sched_feat_numa(NUMA))
  672. return;
  673. /* FIXME: Allocate task-specific structure for placement policy here */
  674. /*
  675. * If pages are properly placed (did not migrate) then scan slower.
  676. * This is reset periodically in case of phase changes
  677. */
  678. if (!migrated)
  679. p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
  680. p->numa_scan_period + jiffies_to_msecs(10));
  681. task_numa_placement(p);
  682. }
  683. static void reset_ptenuma_scan(struct task_struct *p)
  684. {
  685. ACCESS_ONCE(p->mm->numa_scan_seq)++;
  686. p->mm->numa_scan_offset = 0;
  687. }
  688. /*
  689. * The expensive part of numa migration is done from task_work context.
  690. * Triggered from task_tick_numa().
  691. */
  692. void task_numa_work(struct callback_head *work)
  693. {
  694. unsigned long migrate, next_scan, now = jiffies;
  695. struct task_struct *p = current;
  696. struct mm_struct *mm = p->mm;
  697. struct vm_area_struct *vma;
  698. unsigned long start, end;
  699. long pages;
  700. WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
  701. work->next = work; /* protect against double add */
  702. /*
  703. * Who cares about NUMA placement when they're dying.
  704. *
  705. * NOTE: make sure not to dereference p->mm before this check,
  706. * exit_task_work() happens _after_ exit_mm() so we could be called
  707. * without p->mm even though we still had it when we enqueued this
  708. * work.
  709. */
  710. if (p->flags & PF_EXITING)
  711. return;
  712. /*
  713. * We do not care about task placement until a task runs on a node
  714. * other than the first one used by the address space. This is
  715. * largely because migrations are driven by what CPU the task
  716. * is running on. If it's never scheduled on another node, it'll
  717. * not migrate so why bother trapping the fault.
  718. */
  719. if (mm->first_nid == NUMA_PTE_SCAN_INIT)
  720. mm->first_nid = numa_node_id();
  721. if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
  722. /* Are we running on a new node yet? */
  723. if (numa_node_id() == mm->first_nid &&
  724. !sched_feat_numa(NUMA_FORCE))
  725. return;
  726. mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
  727. }
  728. /*
  729. * Reset the scan period if enough time has gone by. Objective is that
  730. * scanning will be reduced if pages are properly placed. As tasks
  731. * can enter different phases this needs to be re-examined. Lacking
  732. * proper tracking of reference behaviour, this blunt hammer is used.
  733. */
  734. migrate = mm->numa_next_reset;
  735. if (time_after(now, migrate)) {
  736. p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
  737. next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
  738. xchg(&mm->numa_next_reset, next_scan);
  739. }
  740. /*
  741. * Enforce maximal scan/migration frequency..
  742. */
  743. migrate = mm->numa_next_scan;
  744. if (time_before(now, migrate))
  745. return;
  746. if (p->numa_scan_period == 0)
  747. p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
  748. next_scan = now + msecs_to_jiffies(p->numa_scan_period);
  749. if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
  750. return;
  751. /*
  752. * Do not set pte_numa if the current running node is rate-limited.
  753. * This loses statistics on the fault but if we are unwilling to
  754. * migrate to this node, it is less likely we can do useful work
  755. */
  756. if (migrate_ratelimited(numa_node_id()))
  757. return;
  758. start = mm->numa_scan_offset;
  759. pages = sysctl_numa_balancing_scan_size;
  760. pages <<= 20 - PAGE_SHIFT; /* MB in pages */
  761. if (!pages)
  762. return;
  763. down_read(&mm->mmap_sem);
  764. vma = find_vma(mm, start);
  765. if (!vma) {
  766. reset_ptenuma_scan(p);
  767. start = 0;
  768. vma = mm->mmap;
  769. }
  770. for (; vma; vma = vma->vm_next) {
  771. if (!vma_migratable(vma))
  772. continue;
  773. /* Skip small VMAs. They are not likely to be of relevance */
  774. if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
  775. continue;
  776. do {
  777. start = max(start, vma->vm_start);
  778. end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
  779. end = min(end, vma->vm_end);
  780. pages -= change_prot_numa(vma, start, end);
  781. start = end;
  782. if (pages <= 0)
  783. goto out;
  784. } while (end != vma->vm_end);
  785. }
  786. out:
  787. /*
  788. * It is possible to reach the end of the VMA list but the last few VMAs are
  789. * not guaranteed to the vma_migratable. If they are not, we would find the
  790. * !migratable VMA on the next scan but not reset the scanner to the start
  791. * so check it now.
  792. */
  793. if (vma)
  794. mm->numa_scan_offset = start;
  795. else
  796. reset_ptenuma_scan(p);
  797. up_read(&mm->mmap_sem);
  798. }
  799. /*
  800. * Drive the periodic memory faults..
  801. */
  802. void task_tick_numa(struct rq *rq, struct task_struct *curr)
  803. {
  804. struct callback_head *work = &curr->numa_work;
  805. u64 period, now;
  806. /*
  807. * We don't care about NUMA placement if we don't have memory.
  808. */
  809. if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
  810. return;
  811. /*
  812. * Using runtime rather than walltime has the dual advantage that
  813. * we (mostly) drive the selection from busy threads and that the
  814. * task needs to have done some actual work before we bother with
  815. * NUMA placement.
  816. */
  817. now = curr->se.sum_exec_runtime;
  818. period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
  819. if (now - curr->node_stamp > period) {
  820. if (!curr->node_stamp)
  821. curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
  822. curr->node_stamp = now;
  823. if (!time_before(jiffies, curr->mm->numa_next_scan)) {
  824. init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
  825. task_work_add(curr, work, true);
  826. }
  827. }
  828. }
  829. #else
  830. static void task_tick_numa(struct rq *rq, struct task_struct *curr)
  831. {
  832. }
  833. #endif /* CONFIG_NUMA_BALANCING */
  834. static void
  835. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  836. {
  837. update_load_add(&cfs_rq->load, se->load.weight);
  838. if (!parent_entity(se))
  839. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  840. #ifdef CONFIG_SMP
  841. if (entity_is_task(se))
  842. list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
  843. #endif
  844. cfs_rq->nr_running++;
  845. }
  846. static void
  847. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  848. {
  849. update_load_sub(&cfs_rq->load, se->load.weight);
  850. if (!parent_entity(se))
  851. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  852. if (entity_is_task(se))
  853. list_del_init(&se->group_node);
  854. cfs_rq->nr_running--;
  855. }
  856. #ifdef CONFIG_FAIR_GROUP_SCHED
  857. # ifdef CONFIG_SMP
  858. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  859. {
  860. long tg_weight;
  861. /*
  862. * Use this CPU's actual weight instead of the last load_contribution
  863. * to gain a more accurate current total weight. See
  864. * update_cfs_rq_load_contribution().
  865. */
  866. tg_weight = atomic64_read(&tg->load_avg);
  867. tg_weight -= cfs_rq->tg_load_contrib;
  868. tg_weight += cfs_rq->load.weight;
  869. return tg_weight;
  870. }
  871. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  872. {
  873. long tg_weight, load, shares;
  874. tg_weight = calc_tg_weight(tg, cfs_rq);
  875. load = cfs_rq->load.weight;
  876. shares = (tg->shares * load);
  877. if (tg_weight)
  878. shares /= tg_weight;
  879. if (shares < MIN_SHARES)
  880. shares = MIN_SHARES;
  881. if (shares > tg->shares)
  882. shares = tg->shares;
  883. return shares;
  884. }
  885. # else /* CONFIG_SMP */
  886. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  887. {
  888. return tg->shares;
  889. }
  890. # endif /* CONFIG_SMP */
  891. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  892. unsigned long weight)
  893. {
  894. if (se->on_rq) {
  895. /* commit outstanding execution time */
  896. if (cfs_rq->curr == se)
  897. update_curr(cfs_rq);
  898. account_entity_dequeue(cfs_rq, se);
  899. }
  900. update_load_set(&se->load, weight);
  901. if (se->on_rq)
  902. account_entity_enqueue(cfs_rq, se);
  903. }
  904. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  905. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  906. {
  907. struct task_group *tg;
  908. struct sched_entity *se;
  909. long shares;
  910. tg = cfs_rq->tg;
  911. se = tg->se[cpu_of(rq_of(cfs_rq))];
  912. if (!se || throttled_hierarchy(cfs_rq))
  913. return;
  914. #ifndef CONFIG_SMP
  915. if (likely(se->load.weight == tg->shares))
  916. return;
  917. #endif
  918. shares = calc_cfs_shares(cfs_rq, tg);
  919. reweight_entity(cfs_rq_of(se), se, shares);
  920. }
  921. #else /* CONFIG_FAIR_GROUP_SCHED */
  922. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  923. {
  924. }
  925. #endif /* CONFIG_FAIR_GROUP_SCHED */
  926. /* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
  927. #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
  928. /*
  929. * We choose a half-life close to 1 scheduling period.
  930. * Note: The tables below are dependent on this value.
  931. */
  932. #define LOAD_AVG_PERIOD 32
  933. #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
  934. #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
  935. /* Precomputed fixed inverse multiplies for multiplication by y^n */
  936. static const u32 runnable_avg_yN_inv[] = {
  937. 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
  938. 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
  939. 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
  940. 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
  941. 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
  942. 0x85aac367, 0x82cd8698,
  943. };
  944. /*
  945. * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
  946. * over-estimates when re-combining.
  947. */
  948. static const u32 runnable_avg_yN_sum[] = {
  949. 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
  950. 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
  951. 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
  952. };
  953. /*
  954. * Approximate:
  955. * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
  956. */
  957. static __always_inline u64 decay_load(u64 val, u64 n)
  958. {
  959. unsigned int local_n;
  960. if (!n)
  961. return val;
  962. else if (unlikely(n > LOAD_AVG_PERIOD * 63))
  963. return 0;
  964. /* after bounds checking we can collapse to 32-bit */
  965. local_n = n;
  966. /*
  967. * As y^PERIOD = 1/2, we can combine
  968. * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
  969. * With a look-up table which covers k^n (n<PERIOD)
  970. *
  971. * To achieve constant time decay_load.
  972. */
  973. if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
  974. val >>= local_n / LOAD_AVG_PERIOD;
  975. local_n %= LOAD_AVG_PERIOD;
  976. }
  977. val *= runnable_avg_yN_inv[local_n];
  978. /* We don't use SRR here since we always want to round down. */
  979. return val >> 32;
  980. }
  981. /*
  982. * For updates fully spanning n periods, the contribution to runnable
  983. * average will be: \Sum 1024*y^n
  984. *
  985. * We can compute this reasonably efficiently by combining:
  986. * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
  987. */
  988. static u32 __compute_runnable_contrib(u64 n)
  989. {
  990. u32 contrib = 0;
  991. if (likely(n <= LOAD_AVG_PERIOD))
  992. return runnable_avg_yN_sum[n];
  993. else if (unlikely(n >= LOAD_AVG_MAX_N))
  994. return LOAD_AVG_MAX;
  995. /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
  996. do {
  997. contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
  998. contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
  999. n -= LOAD_AVG_PERIOD;
  1000. } while (n > LOAD_AVG_PERIOD);
  1001. contrib = decay_load(contrib, n);
  1002. return contrib + runnable_avg_yN_sum[n];
  1003. }
  1004. /*
  1005. * We can represent the historical contribution to runnable average as the
  1006. * coefficients of a geometric series. To do this we sub-divide our runnable
  1007. * history into segments of approximately 1ms (1024us); label the segment that
  1008. * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
  1009. *
  1010. * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
  1011. * p0 p1 p2
  1012. * (now) (~1ms ago) (~2ms ago)
  1013. *
  1014. * Let u_i denote the fraction of p_i that the entity was runnable.
  1015. *
  1016. * We then designate the fractions u_i as our co-efficients, yielding the
  1017. * following representation of historical load:
  1018. * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
  1019. *
  1020. * We choose y based on the with of a reasonably scheduling period, fixing:
  1021. * y^32 = 0.5
  1022. *
  1023. * This means that the contribution to load ~32ms ago (u_32) will be weighted
  1024. * approximately half as much as the contribution to load within the last ms
  1025. * (u_0).
  1026. *
  1027. * When a period "rolls over" and we have new u_0`, multiplying the previous
  1028. * sum again by y is sufficient to update:
  1029. * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
  1030. * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
  1031. */
  1032. static __always_inline int __update_entity_runnable_avg(u64 now,
  1033. struct sched_avg *sa,
  1034. int runnable)
  1035. {
  1036. u64 delta, periods;
  1037. u32 runnable_contrib;
  1038. int delta_w, decayed = 0;
  1039. delta = now - sa->last_runnable_update;
  1040. /*
  1041. * This should only happen when time goes backwards, which it
  1042. * unfortunately does during sched clock init when we swap over to TSC.
  1043. */
  1044. if ((s64)delta < 0) {
  1045. sa->last_runnable_update = now;
  1046. return 0;
  1047. }
  1048. /*
  1049. * Use 1024ns as the unit of measurement since it's a reasonable
  1050. * approximation of 1us and fast to compute.
  1051. */
  1052. delta >>= 10;
  1053. if (!delta)
  1054. return 0;
  1055. sa->last_runnable_update = now;
  1056. /* delta_w is the amount already accumulated against our next period */
  1057. delta_w = sa->runnable_avg_period % 1024;
  1058. if (delta + delta_w >= 1024) {
  1059. /* period roll-over */
  1060. decayed = 1;
  1061. /*
  1062. * Now that we know we're crossing a period boundary, figure
  1063. * out how much from delta we need to complete the current
  1064. * period and accrue it.
  1065. */
  1066. delta_w = 1024 - delta_w;
  1067. if (runnable)
  1068. sa->runnable_avg_sum += delta_w;
  1069. sa->runnable_avg_period += delta_w;
  1070. delta -= delta_w;
  1071. /* Figure out how many additional periods this update spans */
  1072. periods = delta / 1024;
  1073. delta %= 1024;
  1074. sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
  1075. periods + 1);
  1076. sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
  1077. periods + 1);
  1078. /* Efficiently calculate \sum (1..n_period) 1024*y^i */
  1079. runnable_contrib = __compute_runnable_contrib(periods);
  1080. if (runnable)
  1081. sa->runnable_avg_sum += runnable_contrib;
  1082. sa->runnable_avg_period += runnable_contrib;
  1083. }
  1084. /* Remainder of delta accrued against u_0` */
  1085. if (runnable)
  1086. sa->runnable_avg_sum += delta;
  1087. sa->runnable_avg_period += delta;
  1088. return decayed;
  1089. }
  1090. /* Synchronize an entity's decay with its parenting cfs_rq.*/
  1091. static inline u64 __synchronize_entity_decay(struct sched_entity *se)
  1092. {
  1093. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1094. u64 decays = atomic64_read(&cfs_rq->decay_counter);
  1095. decays -= se->avg.decay_count;
  1096. if (!decays)
  1097. return 0;
  1098. se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
  1099. se->avg.decay_count = 0;
  1100. return decays;
  1101. }
  1102. #ifdef CONFIG_FAIR_GROUP_SCHED
  1103. static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
  1104. int force_update)
  1105. {
  1106. struct task_group *tg = cfs_rq->tg;
  1107. s64 tg_contrib;
  1108. tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
  1109. tg_contrib -= cfs_rq->tg_load_contrib;
  1110. if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
  1111. atomic64_add(tg_contrib, &tg->load_avg);
  1112. cfs_rq->tg_load_contrib += tg_contrib;
  1113. }
  1114. }
  1115. /*
  1116. * Aggregate cfs_rq runnable averages into an equivalent task_group
  1117. * representation for computing load contributions.
  1118. */
  1119. static inline void __update_tg_runnable_avg(struct sched_avg *sa,
  1120. struct cfs_rq *cfs_rq)
  1121. {
  1122. struct task_group *tg = cfs_rq->tg;
  1123. long contrib;
  1124. /* The fraction of a cpu used by this cfs_rq */
  1125. contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
  1126. sa->runnable_avg_period + 1);
  1127. contrib -= cfs_rq->tg_runnable_contrib;
  1128. if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
  1129. atomic_add(contrib, &tg->runnable_avg);
  1130. cfs_rq->tg_runnable_contrib += contrib;
  1131. }
  1132. }
  1133. static inline void __update_group_entity_contrib(struct sched_entity *se)
  1134. {
  1135. struct cfs_rq *cfs_rq = group_cfs_rq(se);
  1136. struct task_group *tg = cfs_rq->tg;
  1137. int runnable_avg;
  1138. u64 contrib;
  1139. contrib = cfs_rq->tg_load_contrib * tg->shares;
  1140. se->avg.load_avg_contrib = div64_u64(contrib,
  1141. atomic64_read(&tg->load_avg) + 1);
  1142. /*
  1143. * For group entities we need to compute a correction term in the case
  1144. * that they are consuming <1 cpu so that we would contribute the same
  1145. * load as a task of equal weight.
  1146. *
  1147. * Explicitly co-ordinating this measurement would be expensive, but
  1148. * fortunately the sum of each cpus contribution forms a usable
  1149. * lower-bound on the true value.
  1150. *
  1151. * Consider the aggregate of 2 contributions. Either they are disjoint
  1152. * (and the sum represents true value) or they are disjoint and we are
  1153. * understating by the aggregate of their overlap.
  1154. *
  1155. * Extending this to N cpus, for a given overlap, the maximum amount we
  1156. * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
  1157. * cpus that overlap for this interval and w_i is the interval width.
  1158. *
  1159. * On a small machine; the first term is well-bounded which bounds the
  1160. * total error since w_i is a subset of the period. Whereas on a
  1161. * larger machine, while this first term can be larger, if w_i is the
  1162. * of consequential size guaranteed to see n_i*w_i quickly converge to
  1163. * our upper bound of 1-cpu.
  1164. */
  1165. runnable_avg = atomic_read(&tg->runnable_avg);
  1166. if (runnable_avg < NICE_0_LOAD) {
  1167. se->avg.load_avg_contrib *= runnable_avg;
  1168. se->avg.load_avg_contrib >>= NICE_0_SHIFT;
  1169. }
  1170. }
  1171. #else
  1172. static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
  1173. int force_update) {}
  1174. static inline void __update_tg_runnable_avg(struct sched_avg *sa,
  1175. struct cfs_rq *cfs_rq) {}
  1176. static inline void __update_group_entity_contrib(struct sched_entity *se) {}
  1177. #endif
  1178. static inline void __update_task_entity_contrib(struct sched_entity *se)
  1179. {
  1180. u32 contrib;
  1181. /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
  1182. contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
  1183. contrib /= (se->avg.runnable_avg_period + 1);
  1184. se->avg.load_avg_contrib = scale_load(contrib);
  1185. }
  1186. /* Compute the current contribution to load_avg by se, return any delta */
  1187. static long __update_entity_load_avg_contrib(struct sched_entity *se)
  1188. {
  1189. long old_contrib = se->avg.load_avg_contrib;
  1190. if (entity_is_task(se)) {
  1191. __update_task_entity_contrib(se);
  1192. } else {
  1193. __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
  1194. __update_group_entity_contrib(se);
  1195. }
  1196. return se->avg.load_avg_contrib - old_contrib;
  1197. }
  1198. static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
  1199. long load_contrib)
  1200. {
  1201. if (likely(load_contrib < cfs_rq->blocked_load_avg))
  1202. cfs_rq->blocked_load_avg -= load_contrib;
  1203. else
  1204. cfs_rq->blocked_load_avg = 0;
  1205. }
  1206. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
  1207. /* Update a sched_entity's runnable average */
  1208. static inline void update_entity_load_avg(struct sched_entity *se,
  1209. int update_cfs_rq)
  1210. {
  1211. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1212. long contrib_delta;
  1213. u64 now;
  1214. /*
  1215. * For a group entity we need to use their owned cfs_rq_clock_task() in
  1216. * case they are the parent of a throttled hierarchy.
  1217. */
  1218. if (entity_is_task(se))
  1219. now = cfs_rq_clock_task(cfs_rq);
  1220. else
  1221. now = cfs_rq_clock_task(group_cfs_rq(se));
  1222. if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
  1223. return;
  1224. contrib_delta = __update_entity_load_avg_contrib(se);
  1225. if (!update_cfs_rq)
  1226. return;
  1227. if (se->on_rq)
  1228. cfs_rq->runnable_load_avg += contrib_delta;
  1229. else
  1230. subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
  1231. }
  1232. /*
  1233. * Decay the load contributed by all blocked children and account this so that
  1234. * their contribution may appropriately discounted when they wake up.
  1235. */
  1236. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
  1237. {
  1238. u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
  1239. u64 decays;
  1240. decays = now - cfs_rq->last_decay;
  1241. if (!decays && !force_update)
  1242. return;
  1243. if (atomic64_read(&cfs_rq->removed_load)) {
  1244. u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
  1245. subtract_blocked_load_contrib(cfs_rq, removed_load);
  1246. }
  1247. if (decays) {
  1248. cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
  1249. decays);
  1250. atomic64_add(decays, &cfs_rq->decay_counter);
  1251. cfs_rq->last_decay = now;
  1252. }
  1253. __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
  1254. }
  1255. static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
  1256. {
  1257. __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
  1258. __update_tg_runnable_avg(&rq->avg, &rq->cfs);
  1259. }
  1260. /* Add the load generated by se into cfs_rq's child load-average */
  1261. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  1262. struct sched_entity *se,
  1263. int wakeup)
  1264. {
  1265. /*
  1266. * We track migrations using entity decay_count <= 0, on a wake-up
  1267. * migration we use a negative decay count to track the remote decays
  1268. * accumulated while sleeping.
  1269. */
  1270. if (unlikely(se->avg.decay_count <= 0)) {
  1271. se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
  1272. if (se->avg.decay_count) {
  1273. /*
  1274. * In a wake-up migration we have to approximate the
  1275. * time sleeping. This is because we can't synchronize
  1276. * clock_task between the two cpus, and it is not
  1277. * guaranteed to be read-safe. Instead, we can
  1278. * approximate this using our carried decays, which are
  1279. * explicitly atomically readable.
  1280. */
  1281. se->avg.last_runnable_update -= (-se->avg.decay_count)
  1282. << 20;
  1283. update_entity_load_avg(se, 0);
  1284. /* Indicate that we're now synchronized and on-rq */
  1285. se->avg.decay_count = 0;
  1286. }
  1287. wakeup = 0;
  1288. } else {
  1289. __synchronize_entity_decay(se);
  1290. }
  1291. /* migrated tasks did not contribute to our blocked load */
  1292. if (wakeup) {
  1293. subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
  1294. update_entity_load_avg(se, 0);
  1295. }
  1296. cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
  1297. /* we force update consideration on load-balancer moves */
  1298. update_cfs_rq_blocked_load(cfs_rq, !wakeup);
  1299. }
  1300. /*
  1301. * Remove se's load from this cfs_rq child load-average, if the entity is
  1302. * transitioning to a blocked state we track its projected decay using
  1303. * blocked_load_avg.
  1304. */
  1305. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  1306. struct sched_entity *se,
  1307. int sleep)
  1308. {
  1309. update_entity_load_avg(se, 1);
  1310. /* we force update consideration on load-balancer moves */
  1311. update_cfs_rq_blocked_load(cfs_rq, !sleep);
  1312. cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
  1313. if (sleep) {
  1314. cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
  1315. se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
  1316. } /* migrations, e.g. sleep=0 leave decay_count == 0 */
  1317. }
  1318. #else
  1319. static inline void update_entity_load_avg(struct sched_entity *se,
  1320. int update_cfs_rq) {}
  1321. static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
  1322. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  1323. struct sched_entity *se,
  1324. int wakeup) {}
  1325. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  1326. struct sched_entity *se,
  1327. int sleep) {}
  1328. static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
  1329. int force_update) {}
  1330. #endif
  1331. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1332. {
  1333. #ifdef CONFIG_SCHEDSTATS
  1334. struct task_struct *tsk = NULL;
  1335. if (entity_is_task(se))
  1336. tsk = task_of(se);
  1337. if (se->statistics.sleep_start) {
  1338. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  1339. if ((s64)delta < 0)
  1340. delta = 0;
  1341. if (unlikely(delta > se->statistics.sleep_max))
  1342. se->statistics.sleep_max = delta;
  1343. se->statistics.sleep_start = 0;
  1344. se->statistics.sum_sleep_runtime += delta;
  1345. if (tsk) {
  1346. account_scheduler_latency(tsk, delta >> 10, 1);
  1347. trace_sched_stat_sleep(tsk, delta);
  1348. }
  1349. }
  1350. if (se->statistics.block_start) {
  1351. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  1352. if ((s64)delta < 0)
  1353. delta = 0;
  1354. if (unlikely(delta > se->statistics.block_max))
  1355. se->statistics.block_max = delta;
  1356. se->statistics.block_start = 0;
  1357. se->statistics.sum_sleep_runtime += delta;
  1358. if (tsk) {
  1359. if (tsk->in_iowait) {
  1360. se->statistics.iowait_sum += delta;
  1361. se->statistics.iowait_count++;
  1362. trace_sched_stat_iowait(tsk, delta);
  1363. }
  1364. trace_sched_stat_blocked(tsk, delta);
  1365. /*
  1366. * Blocking time is in units of nanosecs, so shift by
  1367. * 20 to get a milliseconds-range estimation of the
  1368. * amount of time that the task spent sleeping:
  1369. */
  1370. if (unlikely(prof_on == SLEEP_PROFILING)) {
  1371. profile_hits(SLEEP_PROFILING,
  1372. (void *)get_wchan(tsk),
  1373. delta >> 20);
  1374. }
  1375. account_scheduler_latency(tsk, delta >> 10, 0);
  1376. }
  1377. }
  1378. #endif
  1379. }
  1380. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1381. {
  1382. #ifdef CONFIG_SCHED_DEBUG
  1383. s64 d = se->vruntime - cfs_rq->min_vruntime;
  1384. if (d < 0)
  1385. d = -d;
  1386. if (d > 3*sysctl_sched_latency)
  1387. schedstat_inc(cfs_rq, nr_spread_over);
  1388. #endif
  1389. }
  1390. static void
  1391. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  1392. {
  1393. u64 vruntime = cfs_rq->min_vruntime;
  1394. /*
  1395. * The 'current' period is already promised to the current tasks,
  1396. * however the extra weight of the new task will slow them down a
  1397. * little, place the new task so that it fits in the slot that
  1398. * stays open at the end.
  1399. */
  1400. if (initial && sched_feat(START_DEBIT))
  1401. vruntime += sched_vslice(cfs_rq, se);
  1402. /* sleeps up to a single latency don't count. */
  1403. if (!initial) {
  1404. unsigned long thresh = sysctl_sched_latency;
  1405. /*
  1406. * Halve their sleep time's effect, to allow
  1407. * for a gentler effect of sleepers:
  1408. */
  1409. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  1410. thresh >>= 1;
  1411. vruntime -= thresh;
  1412. }
  1413. /* ensure we never gain time by being placed backwards. */
  1414. vruntime = max_vruntime(se->vruntime, vruntime);
  1415. se->vruntime = vruntime;
  1416. }
  1417. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  1418. static void
  1419. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  1420. {
  1421. /*
  1422. * Update the normalized vruntime before updating min_vruntime
  1423. * through callig update_curr().
  1424. */
  1425. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  1426. se->vruntime += cfs_rq->min_vruntime;
  1427. /*
  1428. * Update run-time statistics of the 'current'.
  1429. */
  1430. update_curr(cfs_rq);
  1431. enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
  1432. account_entity_enqueue(cfs_rq, se);
  1433. update_cfs_shares(cfs_rq);
  1434. if (flags & ENQUEUE_WAKEUP) {
  1435. place_entity(cfs_rq, se, 0);
  1436. enqueue_sleeper(cfs_rq, se);
  1437. }
  1438. update_stats_enqueue(cfs_rq, se);
  1439. check_spread(cfs_rq, se);
  1440. if (se != cfs_rq->curr)
  1441. __enqueue_entity(cfs_rq, se);
  1442. se->on_rq = 1;
  1443. if (cfs_rq->nr_running == 1) {
  1444. list_add_leaf_cfs_rq(cfs_rq);
  1445. check_enqueue_throttle(cfs_rq);
  1446. }
  1447. }
  1448. static void __clear_buddies_last(struct sched_entity *se)
  1449. {
  1450. for_each_sched_entity(se) {
  1451. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1452. if (cfs_rq->last == se)
  1453. cfs_rq->last = NULL;
  1454. else
  1455. break;
  1456. }
  1457. }
  1458. static void __clear_buddies_next(struct sched_entity *se)
  1459. {
  1460. for_each_sched_entity(se) {
  1461. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1462. if (cfs_rq->next == se)
  1463. cfs_rq->next = NULL;
  1464. else
  1465. break;
  1466. }
  1467. }
  1468. static void __clear_buddies_skip(struct sched_entity *se)
  1469. {
  1470. for_each_sched_entity(se) {
  1471. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1472. if (cfs_rq->skip == se)
  1473. cfs_rq->skip = NULL;
  1474. else
  1475. break;
  1476. }
  1477. }
  1478. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1479. {
  1480. if (cfs_rq->last == se)
  1481. __clear_buddies_last(se);
  1482. if (cfs_rq->next == se)
  1483. __clear_buddies_next(se);
  1484. if (cfs_rq->skip == se)
  1485. __clear_buddies_skip(se);
  1486. }
  1487. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1488. static void
  1489. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  1490. {
  1491. /*
  1492. * Update run-time statistics of the 'current'.
  1493. */
  1494. update_curr(cfs_rq);
  1495. dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
  1496. update_stats_dequeue(cfs_rq, se);
  1497. if (flags & DEQUEUE_SLEEP) {
  1498. #ifdef CONFIG_SCHEDSTATS
  1499. if (entity_is_task(se)) {
  1500. struct task_struct *tsk = task_of(se);
  1501. if (tsk->state & TASK_INTERRUPTIBLE)
  1502. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  1503. if (tsk->state & TASK_UNINTERRUPTIBLE)
  1504. se->statistics.block_start = rq_of(cfs_rq)->clock;
  1505. }
  1506. #endif
  1507. }
  1508. clear_buddies(cfs_rq, se);
  1509. if (se != cfs_rq->curr)
  1510. __dequeue_entity(cfs_rq, se);
  1511. se->on_rq = 0;
  1512. account_entity_dequeue(cfs_rq, se);
  1513. /*
  1514. * Normalize the entity after updating the min_vruntime because the
  1515. * update can refer to the ->curr item and we need to reflect this
  1516. * movement in our normalized position.
  1517. */
  1518. if (!(flags & DEQUEUE_SLEEP))
  1519. se->vruntime -= cfs_rq->min_vruntime;
  1520. /* return excess runtime on last dequeue */
  1521. return_cfs_rq_runtime(cfs_rq);
  1522. update_min_vruntime(cfs_rq);
  1523. update_cfs_shares(cfs_rq);
  1524. }
  1525. /*
  1526. * Preempt the current task with a newly woken task if needed:
  1527. */
  1528. static void
  1529. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  1530. {
  1531. unsigned long ideal_runtime, delta_exec;
  1532. struct sched_entity *se;
  1533. s64 delta;
  1534. ideal_runtime = sched_slice(cfs_rq, curr);
  1535. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1536. if (delta_exec > ideal_runtime) {
  1537. resched_task(rq_of(cfs_rq)->curr);
  1538. /*
  1539. * The current task ran long enough, ensure it doesn't get
  1540. * re-elected due to buddy favours.
  1541. */
  1542. clear_buddies(cfs_rq, curr);
  1543. return;
  1544. }
  1545. /*
  1546. * Ensure that a task that missed wakeup preemption by a
  1547. * narrow margin doesn't have to wait for a full slice.
  1548. * This also mitigates buddy induced latencies under load.
  1549. */
  1550. if (delta_exec < sysctl_sched_min_granularity)
  1551. return;
  1552. se = __pick_first_entity(cfs_rq);
  1553. delta = curr->vruntime - se->vruntime;
  1554. if (delta < 0)
  1555. return;
  1556. if (delta > ideal_runtime)
  1557. resched_task(rq_of(cfs_rq)->curr);
  1558. }
  1559. static void
  1560. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1561. {
  1562. /* 'current' is not kept within the tree. */
  1563. if (se->on_rq) {
  1564. /*
  1565. * Any task has to be enqueued before it get to execute on
  1566. * a CPU. So account for the time it spent waiting on the
  1567. * runqueue.
  1568. */
  1569. update_stats_wait_end(cfs_rq, se);
  1570. __dequeue_entity(cfs_rq, se);
  1571. }
  1572. update_stats_curr_start(cfs_rq, se);
  1573. cfs_rq->curr = se;
  1574. #ifdef CONFIG_SCHEDSTATS
  1575. /*
  1576. * Track our maximum slice length, if the CPU's load is at
  1577. * least twice that of our own weight (i.e. dont track it
  1578. * when there are only lesser-weight tasks around):
  1579. */
  1580. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  1581. se->statistics.slice_max = max(se->statistics.slice_max,
  1582. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  1583. }
  1584. #endif
  1585. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  1586. }
  1587. static int
  1588. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  1589. /*
  1590. * Pick the next process, keeping these things in mind, in this order:
  1591. * 1) keep things fair between processes/task groups
  1592. * 2) pick the "next" process, since someone really wants that to run
  1593. * 3) pick the "last" process, for cache locality
  1594. * 4) do not run the "skip" process, if something else is available
  1595. */
  1596. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  1597. {
  1598. struct sched_entity *se = __pick_first_entity(cfs_rq);
  1599. struct sched_entity *left = se;
  1600. /*
  1601. * Avoid running the skip buddy, if running something else can
  1602. * be done without getting too unfair.
  1603. */
  1604. if (cfs_rq->skip == se) {
  1605. struct sched_entity *second = __pick_next_entity(se);
  1606. if (second && wakeup_preempt_entity(second, left) < 1)
  1607. se = second;
  1608. }
  1609. /*
  1610. * Prefer last buddy, try to return the CPU to a preempted task.
  1611. */
  1612. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  1613. se = cfs_rq->last;
  1614. /*
  1615. * Someone really wants this to run. If it's not unfair, run it.
  1616. */
  1617. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  1618. se = cfs_rq->next;
  1619. clear_buddies(cfs_rq, se);
  1620. return se;
  1621. }
  1622. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1623. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1624. {
  1625. /*
  1626. * If still on the runqueue then deactivate_task()
  1627. * was not called and update_curr() has to be done:
  1628. */
  1629. if (prev->on_rq)
  1630. update_curr(cfs_rq);
  1631. /* throttle cfs_rqs exceeding runtime */
  1632. check_cfs_rq_runtime(cfs_rq);
  1633. check_spread(cfs_rq, prev);
  1634. if (prev->on_rq) {
  1635. update_stats_wait_start(cfs_rq, prev);
  1636. /* Put 'current' back into the tree. */
  1637. __enqueue_entity(cfs_rq, prev);
  1638. /* in !on_rq case, update occurred at dequeue */
  1639. update_entity_load_avg(prev, 1);
  1640. }
  1641. cfs_rq->curr = NULL;
  1642. }
  1643. static void
  1644. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1645. {
  1646. /*
  1647. * Update run-time statistics of the 'current'.
  1648. */
  1649. update_curr(cfs_rq);
  1650. /*
  1651. * Ensure that runnable average is periodically updated.
  1652. */
  1653. update_entity_load_avg(curr, 1);
  1654. update_cfs_rq_blocked_load(cfs_rq, 1);
  1655. #ifdef CONFIG_SCHED_HRTICK
  1656. /*
  1657. * queued ticks are scheduled to match the slice, so don't bother
  1658. * validating it and just reschedule.
  1659. */
  1660. if (queued) {
  1661. resched_task(rq_of(cfs_rq)->curr);
  1662. return;
  1663. }
  1664. /*
  1665. * don't let the period tick interfere with the hrtick preemption
  1666. */
  1667. if (!sched_feat(DOUBLE_TICK) &&
  1668. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1669. return;
  1670. #endif
  1671. if (cfs_rq->nr_running > 1)
  1672. check_preempt_tick(cfs_rq, curr);
  1673. }
  1674. /**************************************************
  1675. * CFS bandwidth control machinery
  1676. */
  1677. #ifdef CONFIG_CFS_BANDWIDTH
  1678. #ifdef HAVE_JUMP_LABEL
  1679. static struct static_key __cfs_bandwidth_used;
  1680. static inline bool cfs_bandwidth_used(void)
  1681. {
  1682. return static_key_false(&__cfs_bandwidth_used);
  1683. }
  1684. void account_cfs_bandwidth_used(int enabled, int was_enabled)
  1685. {
  1686. /* only need to count groups transitioning between enabled/!enabled */
  1687. if (enabled && !was_enabled)
  1688. static_key_slow_inc(&__cfs_bandwidth_used);
  1689. else if (!enabled && was_enabled)
  1690. static_key_slow_dec(&__cfs_bandwidth_used);
  1691. }
  1692. #else /* HAVE_JUMP_LABEL */
  1693. static bool cfs_bandwidth_used(void)
  1694. {
  1695. return true;
  1696. }
  1697. void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
  1698. #endif /* HAVE_JUMP_LABEL */
  1699. /*
  1700. * default period for cfs group bandwidth.
  1701. * default: 0.1s, units: nanoseconds
  1702. */
  1703. static inline u64 default_cfs_period(void)
  1704. {
  1705. return 100000000ULL;
  1706. }
  1707. static inline u64 sched_cfs_bandwidth_slice(void)
  1708. {
  1709. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1710. }
  1711. /*
  1712. * Replenish runtime according to assigned quota and update expiration time.
  1713. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  1714. * additional synchronization around rq->lock.
  1715. *
  1716. * requires cfs_b->lock
  1717. */
  1718. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  1719. {
  1720. u64 now;
  1721. if (cfs_b->quota == RUNTIME_INF)
  1722. return;
  1723. now = sched_clock_cpu(smp_processor_id());
  1724. cfs_b->runtime = cfs_b->quota;
  1725. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  1726. }
  1727. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1728. {
  1729. return &tg->cfs_bandwidth;
  1730. }
  1731. /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
  1732. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  1733. {
  1734. if (unlikely(cfs_rq->throttle_count))
  1735. return cfs_rq->throttled_clock_task;
  1736. return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
  1737. }
  1738. /* returns 0 on failure to allocate runtime */
  1739. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1740. {
  1741. struct task_group *tg = cfs_rq->tg;
  1742. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1743. u64 amount = 0, min_amount, expires;
  1744. /* note: this is a positive sum as runtime_remaining <= 0 */
  1745. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1746. raw_spin_lock(&cfs_b->lock);
  1747. if (cfs_b->quota == RUNTIME_INF)
  1748. amount = min_amount;
  1749. else {
  1750. /*
  1751. * If the bandwidth pool has become inactive, then at least one
  1752. * period must have elapsed since the last consumption.
  1753. * Refresh the global state and ensure bandwidth timer becomes
  1754. * active.
  1755. */
  1756. if (!cfs_b->timer_active) {
  1757. __refill_cfs_bandwidth_runtime(cfs_b);
  1758. __start_cfs_bandwidth(cfs_b);
  1759. }
  1760. if (cfs_b->runtime > 0) {
  1761. amount = min(cfs_b->runtime, min_amount);
  1762. cfs_b->runtime -= amount;
  1763. cfs_b->idle = 0;
  1764. }
  1765. }
  1766. expires = cfs_b->runtime_expires;
  1767. raw_spin_unlock(&cfs_b->lock);
  1768. cfs_rq->runtime_remaining += amount;
  1769. /*
  1770. * we may have advanced our local expiration to account for allowed
  1771. * spread between our sched_clock and the one on which runtime was
  1772. * issued.
  1773. */
  1774. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  1775. cfs_rq->runtime_expires = expires;
  1776. return cfs_rq->runtime_remaining > 0;
  1777. }
  1778. /*
  1779. * Note: This depends on the synchronization provided by sched_clock and the
  1780. * fact that rq->clock snapshots this value.
  1781. */
  1782. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1783. {
  1784. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1785. struct rq *rq = rq_of(cfs_rq);
  1786. /* if the deadline is ahead of our clock, nothing to do */
  1787. if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
  1788. return;
  1789. if (cfs_rq->runtime_remaining < 0)
  1790. return;
  1791. /*
  1792. * If the local deadline has passed we have to consider the
  1793. * possibility that our sched_clock is 'fast' and the global deadline
  1794. * has not truly expired.
  1795. *
  1796. * Fortunately we can check determine whether this the case by checking
  1797. * whether the global deadline has advanced.
  1798. */
  1799. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  1800. /* extend local deadline, drift is bounded above by 2 ticks */
  1801. cfs_rq->runtime_expires += TICK_NSEC;
  1802. } else {
  1803. /* global deadline is ahead, expiration has passed */
  1804. cfs_rq->runtime_remaining = 0;
  1805. }
  1806. }
  1807. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1808. unsigned long delta_exec)
  1809. {
  1810. /* dock delta_exec before expiring quota (as it could span periods) */
  1811. cfs_rq->runtime_remaining -= delta_exec;
  1812. expire_cfs_rq_runtime(cfs_rq);
  1813. if (likely(cfs_rq->runtime_remaining > 0))
  1814. return;
  1815. /*
  1816. * if we're unable to extend our runtime we resched so that the active
  1817. * hierarchy can be throttled
  1818. */
  1819. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  1820. resched_task(rq_of(cfs_rq)->curr);
  1821. }
  1822. static __always_inline
  1823. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
  1824. {
  1825. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  1826. return;
  1827. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1828. }
  1829. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1830. {
  1831. return cfs_bandwidth_used() && cfs_rq->throttled;
  1832. }
  1833. /* check whether cfs_rq, or any parent, is throttled */
  1834. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1835. {
  1836. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  1837. }
  1838. /*
  1839. * Ensure that neither of the group entities corresponding to src_cpu or
  1840. * dest_cpu are members of a throttled hierarchy when performing group
  1841. * load-balance operations.
  1842. */
  1843. static inline int throttled_lb_pair(struct task_group *tg,
  1844. int src_cpu, int dest_cpu)
  1845. {
  1846. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  1847. src_cfs_rq = tg->cfs_rq[src_cpu];
  1848. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  1849. return throttled_hierarchy(src_cfs_rq) ||
  1850. throttled_hierarchy(dest_cfs_rq);
  1851. }
  1852. /* updated child weight may affect parent so we have to do this bottom up */
  1853. static int tg_unthrottle_up(struct task_group *tg, void *data)
  1854. {
  1855. struct rq *rq = data;
  1856. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1857. cfs_rq->throttle_count--;
  1858. #ifdef CONFIG_SMP
  1859. if (!cfs_rq->throttle_count) {
  1860. /* adjust cfs_rq_clock_task() */
  1861. cfs_rq->throttled_clock_task_time += rq->clock_task -
  1862. cfs_rq->throttled_clock_task;
  1863. }
  1864. #endif
  1865. return 0;
  1866. }
  1867. static int tg_throttle_down(struct task_group *tg, void *data)
  1868. {
  1869. struct rq *rq = data;
  1870. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1871. /* group is entering throttled state, stop time */
  1872. if (!cfs_rq->throttle_count)
  1873. cfs_rq->throttled_clock_task = rq->clock_task;
  1874. cfs_rq->throttle_count++;
  1875. return 0;
  1876. }
  1877. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  1878. {
  1879. struct rq *rq = rq_of(cfs_rq);
  1880. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1881. struct sched_entity *se;
  1882. long task_delta, dequeue = 1;
  1883. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1884. /* freeze hierarchy runnable averages while throttled */
  1885. rcu_read_lock();
  1886. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  1887. rcu_read_unlock();
  1888. task_delta = cfs_rq->h_nr_running;
  1889. for_each_sched_entity(se) {
  1890. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  1891. /* throttled entity or throttle-on-deactivate */
  1892. if (!se->on_rq)
  1893. break;
  1894. if (dequeue)
  1895. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  1896. qcfs_rq->h_nr_running -= task_delta;
  1897. if (qcfs_rq->load.weight)
  1898. dequeue = 0;
  1899. }
  1900. if (!se)
  1901. rq->nr_running -= task_delta;
  1902. cfs_rq->throttled = 1;
  1903. cfs_rq->throttled_clock = rq->clock;
  1904. raw_spin_lock(&cfs_b->lock);
  1905. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  1906. raw_spin_unlock(&cfs_b->lock);
  1907. }
  1908. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  1909. {
  1910. struct rq *rq = rq_of(cfs_rq);
  1911. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1912. struct sched_entity *se;
  1913. int enqueue = 1;
  1914. long task_delta;
  1915. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1916. cfs_rq->throttled = 0;
  1917. raw_spin_lock(&cfs_b->lock);
  1918. cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
  1919. list_del_rcu(&cfs_rq->throttled_list);
  1920. raw_spin_unlock(&cfs_b->lock);
  1921. update_rq_clock(rq);
  1922. /* update hierarchical throttle state */
  1923. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  1924. if (!cfs_rq->load.weight)
  1925. return;
  1926. task_delta = cfs_rq->h_nr_running;
  1927. for_each_sched_entity(se) {
  1928. if (se->on_rq)
  1929. enqueue = 0;
  1930. cfs_rq = cfs_rq_of(se);
  1931. if (enqueue)
  1932. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  1933. cfs_rq->h_nr_running += task_delta;
  1934. if (cfs_rq_throttled(cfs_rq))
  1935. break;
  1936. }
  1937. if (!se)
  1938. rq->nr_running += task_delta;
  1939. /* determine whether we need to wake up potentially idle cpu */
  1940. if (rq->curr == rq->idle && rq->cfs.nr_running)
  1941. resched_task(rq->curr);
  1942. }
  1943. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  1944. u64 remaining, u64 expires)
  1945. {
  1946. struct cfs_rq *cfs_rq;
  1947. u64 runtime = remaining;
  1948. rcu_read_lock();
  1949. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  1950. throttled_list) {
  1951. struct rq *rq = rq_of(cfs_rq);
  1952. raw_spin_lock(&rq->lock);
  1953. if (!cfs_rq_throttled(cfs_rq))
  1954. goto next;
  1955. runtime = -cfs_rq->runtime_remaining + 1;
  1956. if (runtime > remaining)
  1957. runtime = remaining;
  1958. remaining -= runtime;
  1959. cfs_rq->runtime_remaining += runtime;
  1960. cfs_rq->runtime_expires = expires;
  1961. /* we check whether we're throttled above */
  1962. if (cfs_rq->runtime_remaining > 0)
  1963. unthrottle_cfs_rq(cfs_rq);
  1964. next:
  1965. raw_spin_unlock(&rq->lock);
  1966. if (!remaining)
  1967. break;
  1968. }
  1969. rcu_read_unlock();
  1970. return remaining;
  1971. }
  1972. /*
  1973. * Responsible for refilling a task_group's bandwidth and unthrottling its
  1974. * cfs_rqs as appropriate. If there has been no activity within the last
  1975. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  1976. * used to track this state.
  1977. */
  1978. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  1979. {
  1980. u64 runtime, runtime_expires;
  1981. int idle = 1, throttled;
  1982. raw_spin_lock(&cfs_b->lock);
  1983. /* no need to continue the timer with no bandwidth constraint */
  1984. if (cfs_b->quota == RUNTIME_INF)
  1985. goto out_unlock;
  1986. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1987. /* idle depends on !throttled (for the case of a large deficit) */
  1988. idle = cfs_b->idle && !throttled;
  1989. cfs_b->nr_periods += overrun;
  1990. /* if we're going inactive then everything else can be deferred */
  1991. if (idle)
  1992. goto out_unlock;
  1993. __refill_cfs_bandwidth_runtime(cfs_b);
  1994. if (!throttled) {
  1995. /* mark as potentially idle for the upcoming period */
  1996. cfs_b->idle = 1;
  1997. goto out_unlock;
  1998. }
  1999. /* account preceding periods in which throttling occurred */
  2000. cfs_b->nr_throttled += overrun;
  2001. /*
  2002. * There are throttled entities so we must first use the new bandwidth
  2003. * to unthrottle them before making it generally available. This
  2004. * ensures that all existing debts will be paid before a new cfs_rq is
  2005. * allowed to run.
  2006. */
  2007. runtime = cfs_b->runtime;
  2008. runtime_expires = cfs_b->runtime_expires;
  2009. cfs_b->runtime = 0;
  2010. /*
  2011. * This check is repeated as we are holding onto the new bandwidth
  2012. * while we unthrottle. This can potentially race with an unthrottled
  2013. * group trying to acquire new bandwidth from the global pool.
  2014. */
  2015. while (throttled && runtime > 0) {
  2016. raw_spin_unlock(&cfs_b->lock);
  2017. /* we can't nest cfs_b->lock while distributing bandwidth */
  2018. runtime = distribute_cfs_runtime(cfs_b, runtime,
  2019. runtime_expires);
  2020. raw_spin_lock(&cfs_b->lock);
  2021. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  2022. }
  2023. /* return (any) remaining runtime */
  2024. cfs_b->runtime = runtime;
  2025. /*
  2026. * While we are ensured activity in the period following an
  2027. * unthrottle, this also covers the case in which the new bandwidth is
  2028. * insufficient to cover the existing bandwidth deficit. (Forcing the
  2029. * timer to remain active while there are any throttled entities.)
  2030. */
  2031. cfs_b->idle = 0;
  2032. out_unlock:
  2033. if (idle)
  2034. cfs_b->timer_active = 0;
  2035. raw_spin_unlock(&cfs_b->lock);
  2036. return idle;
  2037. }
  2038. /* a cfs_rq won't donate quota below this amount */
  2039. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  2040. /* minimum remaining period time to redistribute slack quota */
  2041. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  2042. /* how long we wait to gather additional slack before distributing */
  2043. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  2044. /* are we near the end of the current quota period? */
  2045. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  2046. {
  2047. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  2048. u64 remaining;
  2049. /* if the call-back is running a quota refresh is already occurring */
  2050. if (hrtimer_callback_running(refresh_timer))
  2051. return 1;
  2052. /* is a quota refresh about to occur? */
  2053. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  2054. if (remaining < min_expire)
  2055. return 1;
  2056. return 0;
  2057. }
  2058. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  2059. {
  2060. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  2061. /* if there's a quota refresh soon don't bother with slack */
  2062. if (runtime_refresh_within(cfs_b, min_left))
  2063. return;
  2064. start_bandwidth_timer(&cfs_b->slack_timer,
  2065. ns_to_ktime(cfs_bandwidth_slack_period));
  2066. }
  2067. /* we know any runtime found here is valid as update_curr() precedes return */
  2068. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2069. {
  2070. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2071. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  2072. if (slack_runtime <= 0)
  2073. return;
  2074. raw_spin_lock(&cfs_b->lock);
  2075. if (cfs_b->quota != RUNTIME_INF &&
  2076. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  2077. cfs_b->runtime += slack_runtime;
  2078. /* we are under rq->lock, defer unthrottling using a timer */
  2079. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  2080. !list_empty(&cfs_b->throttled_cfs_rq))
  2081. start_cfs_slack_bandwidth(cfs_b);
  2082. }
  2083. raw_spin_unlock(&cfs_b->lock);
  2084. /* even if it's not valid for return we don't want to try again */
  2085. cfs_rq->runtime_remaining -= slack_runtime;
  2086. }
  2087. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2088. {
  2089. if (!cfs_bandwidth_used())
  2090. return;
  2091. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  2092. return;
  2093. __return_cfs_rq_runtime(cfs_rq);
  2094. }
  2095. /*
  2096. * This is done with a timer (instead of inline with bandwidth return) since
  2097. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  2098. */
  2099. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  2100. {
  2101. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  2102. u64 expires;
  2103. /* confirm we're still not at a refresh boundary */
  2104. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
  2105. return;
  2106. raw_spin_lock(&cfs_b->lock);
  2107. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  2108. runtime = cfs_b->runtime;
  2109. cfs_b->runtime = 0;
  2110. }
  2111. expires = cfs_b->runtime_expires;
  2112. raw_spin_unlock(&cfs_b->lock);
  2113. if (!runtime)
  2114. return;
  2115. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  2116. raw_spin_lock(&cfs_b->lock);
  2117. if (expires == cfs_b->runtime_expires)
  2118. cfs_b->runtime = runtime;
  2119. raw_spin_unlock(&cfs_b->lock);
  2120. }
  2121. /*
  2122. * When a group wakes up we want to make sure that its quota is not already
  2123. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  2124. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  2125. */
  2126. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  2127. {
  2128. if (!cfs_bandwidth_used())
  2129. return;
  2130. /* an active group must be handled by the update_curr()->put() path */
  2131. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  2132. return;
  2133. /* ensure the group is not already throttled */
  2134. if (cfs_rq_throttled(cfs_rq))
  2135. return;
  2136. /* update runtime allocation */
  2137. account_cfs_rq_runtime(cfs_rq, 0);
  2138. if (cfs_rq->runtime_remaining <= 0)
  2139. throttle_cfs_rq(cfs_rq);
  2140. }
  2141. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  2142. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2143. {
  2144. if (!cfs_bandwidth_used())
  2145. return;
  2146. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  2147. return;
  2148. /*
  2149. * it's possible for a throttled entity to be forced into a running
  2150. * state (e.g. set_curr_task), in this case we're finished.
  2151. */
  2152. if (cfs_rq_throttled(cfs_rq))
  2153. return;
  2154. throttle_cfs_rq(cfs_rq);
  2155. }
  2156. static inline u64 default_cfs_period(void);
  2157. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
  2158. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
  2159. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  2160. {
  2161. struct cfs_bandwidth *cfs_b =
  2162. container_of(timer, struct cfs_bandwidth, slack_timer);
  2163. do_sched_cfs_slack_timer(cfs_b);
  2164. return HRTIMER_NORESTART;
  2165. }
  2166. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  2167. {
  2168. struct cfs_bandwidth *cfs_b =
  2169. container_of(timer, struct cfs_bandwidth, period_timer);
  2170. ktime_t now;
  2171. int overrun;
  2172. int idle = 0;
  2173. for (;;) {
  2174. now = hrtimer_cb_get_time(timer);
  2175. overrun = hrtimer_forward(timer, now, cfs_b->period);
  2176. if (!overrun)
  2177. break;
  2178. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  2179. }
  2180. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  2181. }
  2182. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  2183. {
  2184. raw_spin_lock_init(&cfs_b->lock);
  2185. cfs_b->runtime = 0;
  2186. cfs_b->quota = RUNTIME_INF;
  2187. cfs_b->period = ns_to_ktime(default_cfs_period());
  2188. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  2189. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  2190. cfs_b->period_timer.function = sched_cfs_period_timer;
  2191. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  2192. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  2193. }
  2194. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2195. {
  2196. cfs_rq->runtime_enabled = 0;
  2197. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  2198. }
  2199. /* requires cfs_b->lock, may release to reprogram timer */
  2200. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  2201. {
  2202. /*
  2203. * The timer may be active because we're trying to set a new bandwidth
  2204. * period or because we're racing with the tear-down path
  2205. * (timer_active==0 becomes visible before the hrtimer call-back
  2206. * terminates). In either case we ensure that it's re-programmed
  2207. */
  2208. while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
  2209. raw_spin_unlock(&cfs_b->lock);
  2210. /* ensure cfs_b->lock is available while we wait */
  2211. hrtimer_cancel(&cfs_b->period_timer);
  2212. raw_spin_lock(&cfs_b->lock);
  2213. /* if someone else restarted the timer then we're done */
  2214. if (cfs_b->timer_active)
  2215. return;
  2216. }
  2217. cfs_b->timer_active = 1;
  2218. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  2219. }
  2220. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  2221. {
  2222. hrtimer_cancel(&cfs_b->period_timer);
  2223. hrtimer_cancel(&cfs_b->slack_timer);
  2224. }
  2225. static void unthrottle_offline_cfs_rqs(struct rq *rq)
  2226. {
  2227. struct cfs_rq *cfs_rq;
  2228. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2229. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2230. if (!cfs_rq->runtime_enabled)
  2231. continue;
  2232. /*
  2233. * clock_task is not advancing so we just need to make sure
  2234. * there's some valid quota amount
  2235. */
  2236. cfs_rq->runtime_remaining = cfs_b->quota;
  2237. if (cfs_rq_throttled(cfs_rq))
  2238. unthrottle_cfs_rq(cfs_rq);
  2239. }
  2240. }
  2241. #else /* CONFIG_CFS_BANDWIDTH */
  2242. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  2243. {
  2244. return rq_of(cfs_rq)->clock_task;
  2245. }
  2246. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  2247. unsigned long delta_exec) {}
  2248. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  2249. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  2250. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  2251. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  2252. {
  2253. return 0;
  2254. }
  2255. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  2256. {
  2257. return 0;
  2258. }
  2259. static inline int throttled_lb_pair(struct task_group *tg,
  2260. int src_cpu, int dest_cpu)
  2261. {
  2262. return 0;
  2263. }
  2264. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  2265. #ifdef CONFIG_FAIR_GROUP_SCHED
  2266. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  2267. #endif
  2268. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  2269. {
  2270. return NULL;
  2271. }
  2272. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  2273. static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  2274. #endif /* CONFIG_CFS_BANDWIDTH */
  2275. /**************************************************
  2276. * CFS operations on tasks:
  2277. */
  2278. #ifdef CONFIG_SCHED_HRTICK
  2279. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  2280. {
  2281. struct sched_entity *se = &p->se;
  2282. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2283. WARN_ON(task_rq(p) != rq);
  2284. if (cfs_rq->nr_running > 1) {
  2285. u64 slice = sched_slice(cfs_rq, se);
  2286. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  2287. s64 delta = slice - ran;
  2288. if (delta < 0) {
  2289. if (rq->curr == p)
  2290. resched_task(p);
  2291. return;
  2292. }
  2293. /*
  2294. * Don't schedule slices shorter than 10000ns, that just
  2295. * doesn't make sense. Rely on vruntime for fairness.
  2296. */
  2297. if (rq->curr != p)
  2298. delta = max_t(s64, 10000LL, delta);
  2299. hrtick_start(rq, delta);
  2300. }
  2301. }
  2302. /*
  2303. * called from enqueue/dequeue and updates the hrtick when the
  2304. * current task is from our class and nr_running is low enough
  2305. * to matter.
  2306. */
  2307. static void hrtick_update(struct rq *rq)
  2308. {
  2309. struct task_struct *curr = rq->curr;
  2310. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  2311. return;
  2312. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  2313. hrtick_start_fair(rq, curr);
  2314. }
  2315. #else /* !CONFIG_SCHED_HRTICK */
  2316. static inline void
  2317. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  2318. {
  2319. }
  2320. static inline void hrtick_update(struct rq *rq)
  2321. {
  2322. }
  2323. #endif
  2324. /*
  2325. * The enqueue_task method is called before nr_running is
  2326. * increased. Here we update the fair scheduling stats and
  2327. * then put the task into the rbtree:
  2328. */
  2329. static void
  2330. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  2331. {
  2332. struct cfs_rq *cfs_rq;
  2333. struct sched_entity *se = &p->se;
  2334. for_each_sched_entity(se) {
  2335. if (se->on_rq)
  2336. break;
  2337. cfs_rq = cfs_rq_of(se);
  2338. enqueue_entity(cfs_rq, se, flags);
  2339. /*
  2340. * end evaluation on encountering a throttled cfs_rq
  2341. *
  2342. * note: in the case of encountering a throttled cfs_rq we will
  2343. * post the final h_nr_running increment below.
  2344. */
  2345. if (cfs_rq_throttled(cfs_rq))
  2346. break;
  2347. cfs_rq->h_nr_running++;
  2348. flags = ENQUEUE_WAKEUP;
  2349. }
  2350. for_each_sched_entity(se) {
  2351. cfs_rq = cfs_rq_of(se);
  2352. cfs_rq->h_nr_running++;
  2353. if (cfs_rq_throttled(cfs_rq))
  2354. break;
  2355. update_cfs_shares(cfs_rq);
  2356. update_entity_load_avg(se, 1);
  2357. }
  2358. if (!se) {
  2359. update_rq_runnable_avg(rq, rq->nr_running);
  2360. inc_nr_running(rq);
  2361. }
  2362. hrtick_update(rq);
  2363. }
  2364. static void set_next_buddy(struct sched_entity *se);
  2365. /*
  2366. * The dequeue_task method is called before nr_running is
  2367. * decreased. We remove the task from the rbtree and
  2368. * update the fair scheduling stats:
  2369. */
  2370. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  2371. {
  2372. struct cfs_rq *cfs_rq;
  2373. struct sched_entity *se = &p->se;
  2374. int task_sleep = flags & DEQUEUE_SLEEP;
  2375. for_each_sched_entity(se) {
  2376. cfs_rq = cfs_rq_of(se);
  2377. dequeue_entity(cfs_rq, se, flags);
  2378. /*
  2379. * end evaluation on encountering a throttled cfs_rq
  2380. *
  2381. * note: in the case of encountering a throttled cfs_rq we will
  2382. * post the final h_nr_running decrement below.
  2383. */
  2384. if (cfs_rq_throttled(cfs_rq))
  2385. break;
  2386. cfs_rq->h_nr_running--;
  2387. /* Don't dequeue parent if it has other entities besides us */
  2388. if (cfs_rq->load.weight) {
  2389. /*
  2390. * Bias pick_next to pick a task from this cfs_rq, as
  2391. * p is sleeping when it is within its sched_slice.
  2392. */
  2393. if (task_sleep && parent_entity(se))
  2394. set_next_buddy(parent_entity(se));
  2395. /* avoid re-evaluating load for this entity */
  2396. se = parent_entity(se);
  2397. break;
  2398. }
  2399. flags |= DEQUEUE_SLEEP;
  2400. }
  2401. for_each_sched_entity(se) {
  2402. cfs_rq = cfs_rq_of(se);
  2403. cfs_rq->h_nr_running--;
  2404. if (cfs_rq_throttled(cfs_rq))
  2405. break;
  2406. update_cfs_shares(cfs_rq);
  2407. update_entity_load_avg(se, 1);
  2408. }
  2409. if (!se) {
  2410. dec_nr_running(rq);
  2411. update_rq_runnable_avg(rq, 1);
  2412. }
  2413. hrtick_update(rq);
  2414. }
  2415. #ifdef CONFIG_SMP
  2416. /* Used instead of source_load when we know the type == 0 */
  2417. static unsigned long weighted_cpuload(const int cpu)
  2418. {
  2419. return cpu_rq(cpu)->load.weight;
  2420. }
  2421. /*
  2422. * Return a low guess at the load of a migration-source cpu weighted
  2423. * according to the scheduling class and "nice" value.
  2424. *
  2425. * We want to under-estimate the load of migration sources, to
  2426. * balance conservatively.
  2427. */
  2428. static unsigned long source_load(int cpu, int type)
  2429. {
  2430. struct rq *rq = cpu_rq(cpu);
  2431. unsigned long total = weighted_cpuload(cpu);
  2432. if (type == 0 || !sched_feat(LB_BIAS))
  2433. return total;
  2434. return min(rq->cpu_load[type-1], total);
  2435. }
  2436. /*
  2437. * Return a high guess at the load of a migration-target cpu weighted
  2438. * according to the scheduling class and "nice" value.
  2439. */
  2440. static unsigned long target_load(int cpu, int type)
  2441. {
  2442. struct rq *rq = cpu_rq(cpu);
  2443. unsigned long total = weighted_cpuload(cpu);
  2444. if (type == 0 || !sched_feat(LB_BIAS))
  2445. return total;
  2446. return max(rq->cpu_load[type-1], total);
  2447. }
  2448. static unsigned long power_of(int cpu)
  2449. {
  2450. return cpu_rq(cpu)->cpu_power;
  2451. }
  2452. static unsigned long cpu_avg_load_per_task(int cpu)
  2453. {
  2454. struct rq *rq = cpu_rq(cpu);
  2455. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  2456. if (nr_running)
  2457. return rq->load.weight / nr_running;
  2458. return 0;
  2459. }
  2460. static void task_waking_fair(struct task_struct *p)
  2461. {
  2462. struct sched_entity *se = &p->se;
  2463. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2464. u64 min_vruntime;
  2465. #ifndef CONFIG_64BIT
  2466. u64 min_vruntime_copy;
  2467. do {
  2468. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  2469. smp_rmb();
  2470. min_vruntime = cfs_rq->min_vruntime;
  2471. } while (min_vruntime != min_vruntime_copy);
  2472. #else
  2473. min_vruntime = cfs_rq->min_vruntime;
  2474. #endif
  2475. se->vruntime -= min_vruntime;
  2476. }
  2477. #ifdef CONFIG_FAIR_GROUP_SCHED
  2478. /*
  2479. * effective_load() calculates the load change as seen from the root_task_group
  2480. *
  2481. * Adding load to a group doesn't make a group heavier, but can cause movement
  2482. * of group shares between cpus. Assuming the shares were perfectly aligned one
  2483. * can calculate the shift in shares.
  2484. *
  2485. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  2486. * on this @cpu and results in a total addition (subtraction) of @wg to the
  2487. * total group weight.
  2488. *
  2489. * Given a runqueue weight distribution (rw_i) we can compute a shares
  2490. * distribution (s_i) using:
  2491. *
  2492. * s_i = rw_i / \Sum rw_j (1)
  2493. *
  2494. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  2495. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  2496. * shares distribution (s_i):
  2497. *
  2498. * rw_i = { 2, 4, 1, 0 }
  2499. * s_i = { 2/7, 4/7, 1/7, 0 }
  2500. *
  2501. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  2502. * task used to run on and the CPU the waker is running on), we need to
  2503. * compute the effect of waking a task on either CPU and, in case of a sync
  2504. * wakeup, compute the effect of the current task going to sleep.
  2505. *
  2506. * So for a change of @wl to the local @cpu with an overall group weight change
  2507. * of @wl we can compute the new shares distribution (s'_i) using:
  2508. *
  2509. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  2510. *
  2511. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  2512. * differences in waking a task to CPU 0. The additional task changes the
  2513. * weight and shares distributions like:
  2514. *
  2515. * rw'_i = { 3, 4, 1, 0 }
  2516. * s'_i = { 3/8, 4/8, 1/8, 0 }
  2517. *
  2518. * We can then compute the difference in effective weight by using:
  2519. *
  2520. * dw_i = S * (s'_i - s_i) (3)
  2521. *
  2522. * Where 'S' is the group weight as seen by its parent.
  2523. *
  2524. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  2525. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  2526. * 4/7) times the weight of the group.
  2527. */
  2528. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  2529. {
  2530. struct sched_entity *se = tg->se[cpu];
  2531. if (!tg->parent) /* the trivial, non-cgroup case */
  2532. return wl;
  2533. for_each_sched_entity(se) {
  2534. long w, W;
  2535. tg = se->my_q->tg;
  2536. /*
  2537. * W = @wg + \Sum rw_j
  2538. */
  2539. W = wg + calc_tg_weight(tg, se->my_q);
  2540. /*
  2541. * w = rw_i + @wl
  2542. */
  2543. w = se->my_q->load.weight + wl;
  2544. /*
  2545. * wl = S * s'_i; see (2)
  2546. */
  2547. if (W > 0 && w < W)
  2548. wl = (w * tg->shares) / W;
  2549. else
  2550. wl = tg->shares;
  2551. /*
  2552. * Per the above, wl is the new se->load.weight value; since
  2553. * those are clipped to [MIN_SHARES, ...) do so now. See
  2554. * calc_cfs_shares().
  2555. */
  2556. if (wl < MIN_SHARES)
  2557. wl = MIN_SHARES;
  2558. /*
  2559. * wl = dw_i = S * (s'_i - s_i); see (3)
  2560. */
  2561. wl -= se->load.weight;
  2562. /*
  2563. * Recursively apply this logic to all parent groups to compute
  2564. * the final effective load change on the root group. Since
  2565. * only the @tg group gets extra weight, all parent groups can
  2566. * only redistribute existing shares. @wl is the shift in shares
  2567. * resulting from this level per the above.
  2568. */
  2569. wg = 0;
  2570. }
  2571. return wl;
  2572. }
  2573. #else
  2574. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  2575. unsigned long wl, unsigned long wg)
  2576. {
  2577. return wl;
  2578. }
  2579. #endif
  2580. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  2581. {
  2582. s64 this_load, load;
  2583. int idx, this_cpu, prev_cpu;
  2584. unsigned long tl_per_task;
  2585. struct task_group *tg;
  2586. unsigned long weight;
  2587. int balanced;
  2588. idx = sd->wake_idx;
  2589. this_cpu = smp_processor_id();
  2590. prev_cpu = task_cpu(p);
  2591. load = source_load(prev_cpu, idx);
  2592. this_load = target_load(this_cpu, idx);
  2593. /*
  2594. * If sync wakeup then subtract the (maximum possible)
  2595. * effect of the currently running task from the load
  2596. * of the current CPU:
  2597. */
  2598. if (sync) {
  2599. tg = task_group(current);
  2600. weight = current->se.load.weight;
  2601. this_load += effective_load(tg, this_cpu, -weight, -weight);
  2602. load += effective_load(tg, prev_cpu, 0, -weight);
  2603. }
  2604. tg = task_group(p);
  2605. weight = p->se.load.weight;
  2606. /*
  2607. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  2608. * due to the sync cause above having dropped this_load to 0, we'll
  2609. * always have an imbalance, but there's really nothing you can do
  2610. * about that, so that's good too.
  2611. *
  2612. * Otherwise check if either cpus are near enough in load to allow this
  2613. * task to be woken on this_cpu.
  2614. */
  2615. if (this_load > 0) {
  2616. s64 this_eff_load, prev_eff_load;
  2617. this_eff_load = 100;
  2618. this_eff_load *= power_of(prev_cpu);
  2619. this_eff_load *= this_load +
  2620. effective_load(tg, this_cpu, weight, weight);
  2621. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  2622. prev_eff_load *= power_of(this_cpu);
  2623. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  2624. balanced = this_eff_load <= prev_eff_load;
  2625. } else
  2626. balanced = true;
  2627. /*
  2628. * If the currently running task will sleep within
  2629. * a reasonable amount of time then attract this newly
  2630. * woken task:
  2631. */
  2632. if (sync && balanced)
  2633. return 1;
  2634. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  2635. tl_per_task = cpu_avg_load_per_task(this_cpu);
  2636. if (balanced ||
  2637. (this_load <= load &&
  2638. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  2639. /*
  2640. * This domain has SD_WAKE_AFFINE and
  2641. * p is cache cold in this domain, and
  2642. * there is no bad imbalance.
  2643. */
  2644. schedstat_inc(sd, ttwu_move_affine);
  2645. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  2646. return 1;
  2647. }
  2648. return 0;
  2649. }
  2650. /*
  2651. * find_idlest_group finds and returns the least busy CPU group within the
  2652. * domain.
  2653. */
  2654. static struct sched_group *
  2655. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  2656. int this_cpu, int load_idx)
  2657. {
  2658. struct sched_group *idlest = NULL, *group = sd->groups;
  2659. unsigned long min_load = ULONG_MAX, this_load = 0;
  2660. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  2661. do {
  2662. unsigned long load, avg_load;
  2663. int local_group;
  2664. int i;
  2665. /* Skip over this group if it has no CPUs allowed */
  2666. if (!cpumask_intersects(sched_group_cpus(group),
  2667. tsk_cpus_allowed(p)))
  2668. continue;
  2669. local_group = cpumask_test_cpu(this_cpu,
  2670. sched_group_cpus(group));
  2671. /* Tally up the load of all CPUs in the group */
  2672. avg_load = 0;
  2673. for_each_cpu(i, sched_group_cpus(group)) {
  2674. /* Bias balancing toward cpus of our domain */
  2675. if (local_group)
  2676. load = source_load(i, load_idx);
  2677. else
  2678. load = target_load(i, load_idx);
  2679. avg_load += load;
  2680. }
  2681. /* Adjust by relative CPU power of the group */
  2682. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  2683. if (local_group) {
  2684. this_load = avg_load;
  2685. } else if (avg_load < min_load) {
  2686. min_load = avg_load;
  2687. idlest = group;
  2688. }
  2689. } while (group = group->next, group != sd->groups);
  2690. if (!idlest || 100*this_load < imbalance*min_load)
  2691. return NULL;
  2692. return idlest;
  2693. }
  2694. /*
  2695. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  2696. */
  2697. static int
  2698. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  2699. {
  2700. unsigned long load, min_load = ULONG_MAX;
  2701. int idlest = -1;
  2702. int i;
  2703. /* Traverse only the allowed CPUs */
  2704. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  2705. load = weighted_cpuload(i);
  2706. if (load < min_load || (load == min_load && i == this_cpu)) {
  2707. min_load = load;
  2708. idlest = i;
  2709. }
  2710. }
  2711. return idlest;
  2712. }
  2713. /*
  2714. * Try and locate an idle CPU in the sched_domain.
  2715. */
  2716. static int select_idle_sibling(struct task_struct *p, int target)
  2717. {
  2718. int cpu = smp_processor_id();
  2719. int prev_cpu = task_cpu(p);
  2720. struct sched_domain *sd;
  2721. struct sched_group *sg;
  2722. int i;
  2723. /*
  2724. * If the task is going to be woken-up on this cpu and if it is
  2725. * already idle, then it is the right target.
  2726. */
  2727. if (target == cpu && idle_cpu(cpu))
  2728. return cpu;
  2729. /*
  2730. * If the task is going to be woken-up on the cpu where it previously
  2731. * ran and if it is currently idle, then it the right target.
  2732. */
  2733. if (target == prev_cpu && idle_cpu(prev_cpu))
  2734. return prev_cpu;
  2735. /*
  2736. * Otherwise, iterate the domains and find an elegible idle cpu.
  2737. */
  2738. sd = rcu_dereference(per_cpu(sd_llc, target));
  2739. for_each_lower_domain(sd) {
  2740. sg = sd->groups;
  2741. do {
  2742. if (!cpumask_intersects(sched_group_cpus(sg),
  2743. tsk_cpus_allowed(p)))
  2744. goto next;
  2745. for_each_cpu(i, sched_group_cpus(sg)) {
  2746. if (!idle_cpu(i))
  2747. goto next;
  2748. }
  2749. target = cpumask_first_and(sched_group_cpus(sg),
  2750. tsk_cpus_allowed(p));
  2751. goto done;
  2752. next:
  2753. sg = sg->next;
  2754. } while (sg != sd->groups);
  2755. }
  2756. done:
  2757. return target;
  2758. }
  2759. /*
  2760. * sched_balance_self: balance the current task (running on cpu) in domains
  2761. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  2762. * SD_BALANCE_EXEC.
  2763. *
  2764. * Balance, ie. select the least loaded group.
  2765. *
  2766. * Returns the target CPU number, or the same CPU if no balancing is needed.
  2767. *
  2768. * preempt must be disabled.
  2769. */
  2770. static int
  2771. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  2772. {
  2773. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  2774. int cpu = smp_processor_id();
  2775. int prev_cpu = task_cpu(p);
  2776. int new_cpu = cpu;
  2777. int want_affine = 0;
  2778. int sync = wake_flags & WF_SYNC;
  2779. if (p->nr_cpus_allowed == 1)
  2780. return prev_cpu;
  2781. if (sd_flag & SD_BALANCE_WAKE) {
  2782. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  2783. want_affine = 1;
  2784. new_cpu = prev_cpu;
  2785. }
  2786. rcu_read_lock();
  2787. for_each_domain(cpu, tmp) {
  2788. if (!(tmp->flags & SD_LOAD_BALANCE))
  2789. continue;
  2790. /*
  2791. * If both cpu and prev_cpu are part of this domain,
  2792. * cpu is a valid SD_WAKE_AFFINE target.
  2793. */
  2794. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  2795. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  2796. affine_sd = tmp;
  2797. break;
  2798. }
  2799. if (tmp->flags & sd_flag)
  2800. sd = tmp;
  2801. }
  2802. if (affine_sd) {
  2803. if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
  2804. prev_cpu = cpu;
  2805. new_cpu = select_idle_sibling(p, prev_cpu);
  2806. goto unlock;
  2807. }
  2808. while (sd) {
  2809. int load_idx = sd->forkexec_idx;
  2810. struct sched_group *group;
  2811. int weight;
  2812. if (!(sd->flags & sd_flag)) {
  2813. sd = sd->child;
  2814. continue;
  2815. }
  2816. if (sd_flag & SD_BALANCE_WAKE)
  2817. load_idx = sd->wake_idx;
  2818. group = find_idlest_group(sd, p, cpu, load_idx);
  2819. if (!group) {
  2820. sd = sd->child;
  2821. continue;
  2822. }
  2823. new_cpu = find_idlest_cpu(group, p, cpu);
  2824. if (new_cpu == -1 || new_cpu == cpu) {
  2825. /* Now try balancing at a lower domain level of cpu */
  2826. sd = sd->child;
  2827. continue;
  2828. }
  2829. /* Now try balancing at a lower domain level of new_cpu */
  2830. cpu = new_cpu;
  2831. weight = sd->span_weight;
  2832. sd = NULL;
  2833. for_each_domain(cpu, tmp) {
  2834. if (weight <= tmp->span_weight)
  2835. break;
  2836. if (tmp->flags & sd_flag)
  2837. sd = tmp;
  2838. }
  2839. /* while loop will break here if sd == NULL */
  2840. }
  2841. unlock:
  2842. rcu_read_unlock();
  2843. return new_cpu;
  2844. }
  2845. /*
  2846. * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
  2847. * removed when useful for applications beyond shares distribution (e.g.
  2848. * load-balance).
  2849. */
  2850. #ifdef CONFIG_FAIR_GROUP_SCHED
  2851. /*
  2852. * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
  2853. * cfs_rq_of(p) references at time of call are still valid and identify the
  2854. * previous cpu. However, the caller only guarantees p->pi_lock is held; no
  2855. * other assumptions, including the state of rq->lock, should be made.
  2856. */
  2857. static void
  2858. migrate_task_rq_fair(struct task_struct *p, int next_cpu)
  2859. {
  2860. struct sched_entity *se = &p->se;
  2861. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2862. /*
  2863. * Load tracking: accumulate removed load so that it can be processed
  2864. * when we next update owning cfs_rq under rq->lock. Tasks contribute
  2865. * to blocked load iff they have a positive decay-count. It can never
  2866. * be negative here since on-rq tasks have decay-count == 0.
  2867. */
  2868. if (se->avg.decay_count) {
  2869. se->avg.decay_count = -__synchronize_entity_decay(se);
  2870. atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
  2871. }
  2872. }
  2873. #endif
  2874. #endif /* CONFIG_SMP */
  2875. static unsigned long
  2876. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  2877. {
  2878. unsigned long gran = sysctl_sched_wakeup_granularity;
  2879. /*
  2880. * Since its curr running now, convert the gran from real-time
  2881. * to virtual-time in his units.
  2882. *
  2883. * By using 'se' instead of 'curr' we penalize light tasks, so
  2884. * they get preempted easier. That is, if 'se' < 'curr' then
  2885. * the resulting gran will be larger, therefore penalizing the
  2886. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  2887. * be smaller, again penalizing the lighter task.
  2888. *
  2889. * This is especially important for buddies when the leftmost
  2890. * task is higher priority than the buddy.
  2891. */
  2892. return calc_delta_fair(gran, se);
  2893. }
  2894. /*
  2895. * Should 'se' preempt 'curr'.
  2896. *
  2897. * |s1
  2898. * |s2
  2899. * |s3
  2900. * g
  2901. * |<--->|c
  2902. *
  2903. * w(c, s1) = -1
  2904. * w(c, s2) = 0
  2905. * w(c, s3) = 1
  2906. *
  2907. */
  2908. static int
  2909. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  2910. {
  2911. s64 gran, vdiff = curr->vruntime - se->vruntime;
  2912. if (vdiff <= 0)
  2913. return -1;
  2914. gran = wakeup_gran(curr, se);
  2915. if (vdiff > gran)
  2916. return 1;
  2917. return 0;
  2918. }
  2919. static void set_last_buddy(struct sched_entity *se)
  2920. {
  2921. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2922. return;
  2923. for_each_sched_entity(se)
  2924. cfs_rq_of(se)->last = se;
  2925. }
  2926. static void set_next_buddy(struct sched_entity *se)
  2927. {
  2928. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2929. return;
  2930. for_each_sched_entity(se)
  2931. cfs_rq_of(se)->next = se;
  2932. }
  2933. static void set_skip_buddy(struct sched_entity *se)
  2934. {
  2935. for_each_sched_entity(se)
  2936. cfs_rq_of(se)->skip = se;
  2937. }
  2938. /*
  2939. * Preempt the current task with a newly woken task if needed:
  2940. */
  2941. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2942. {
  2943. struct task_struct *curr = rq->curr;
  2944. struct sched_entity *se = &curr->se, *pse = &p->se;
  2945. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2946. int scale = cfs_rq->nr_running >= sched_nr_latency;
  2947. int next_buddy_marked = 0;
  2948. if (unlikely(se == pse))
  2949. return;
  2950. /*
  2951. * This is possible from callers such as move_task(), in which we
  2952. * unconditionally check_prempt_curr() after an enqueue (which may have
  2953. * lead to a throttle). This both saves work and prevents false
  2954. * next-buddy nomination below.
  2955. */
  2956. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  2957. return;
  2958. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  2959. set_next_buddy(pse);
  2960. next_buddy_marked = 1;
  2961. }
  2962. /*
  2963. * We can come here with TIF_NEED_RESCHED already set from new task
  2964. * wake up path.
  2965. *
  2966. * Note: this also catches the edge-case of curr being in a throttled
  2967. * group (e.g. via set_curr_task), since update_curr() (in the
  2968. * enqueue of curr) will have resulted in resched being set. This
  2969. * prevents us from potentially nominating it as a false LAST_BUDDY
  2970. * below.
  2971. */
  2972. if (test_tsk_need_resched(curr))
  2973. return;
  2974. /* Idle tasks are by definition preempted by non-idle tasks. */
  2975. if (unlikely(curr->policy == SCHED_IDLE) &&
  2976. likely(p->policy != SCHED_IDLE))
  2977. goto preempt;
  2978. /*
  2979. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  2980. * is driven by the tick):
  2981. */
  2982. if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
  2983. return;
  2984. find_matching_se(&se, &pse);
  2985. update_curr(cfs_rq_of(se));
  2986. BUG_ON(!pse);
  2987. if (wakeup_preempt_entity(se, pse) == 1) {
  2988. /*
  2989. * Bias pick_next to pick the sched entity that is
  2990. * triggering this preemption.
  2991. */
  2992. if (!next_buddy_marked)
  2993. set_next_buddy(pse);
  2994. goto preempt;
  2995. }
  2996. return;
  2997. preempt:
  2998. resched_task(curr);
  2999. /*
  3000. * Only set the backward buddy when the current task is still
  3001. * on the rq. This can happen when a wakeup gets interleaved
  3002. * with schedule on the ->pre_schedule() or idle_balance()
  3003. * point, either of which can * drop the rq lock.
  3004. *
  3005. * Also, during early boot the idle thread is in the fair class,
  3006. * for obvious reasons its a bad idea to schedule back to it.
  3007. */
  3008. if (unlikely(!se->on_rq || curr == rq->idle))
  3009. return;
  3010. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  3011. set_last_buddy(se);
  3012. }
  3013. static struct task_struct *pick_next_task_fair(struct rq *rq)
  3014. {
  3015. struct task_struct *p;
  3016. struct cfs_rq *cfs_rq = &rq->cfs;
  3017. struct sched_entity *se;
  3018. if (!cfs_rq->nr_running)
  3019. return NULL;
  3020. do {
  3021. se = pick_next_entity(cfs_rq);
  3022. set_next_entity(cfs_rq, se);
  3023. cfs_rq = group_cfs_rq(se);
  3024. } while (cfs_rq);
  3025. p = task_of(se);
  3026. if (hrtick_enabled(rq))
  3027. hrtick_start_fair(rq, p);
  3028. return p;
  3029. }
  3030. /*
  3031. * Account for a descheduled task:
  3032. */
  3033. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  3034. {
  3035. struct sched_entity *se = &prev->se;
  3036. struct cfs_rq *cfs_rq;
  3037. for_each_sched_entity(se) {
  3038. cfs_rq = cfs_rq_of(se);
  3039. put_prev_entity(cfs_rq, se);
  3040. }
  3041. }
  3042. /*
  3043. * sched_yield() is very simple
  3044. *
  3045. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  3046. */
  3047. static void yield_task_fair(struct rq *rq)
  3048. {
  3049. struct task_struct *curr = rq->curr;
  3050. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  3051. struct sched_entity *se = &curr->se;
  3052. /*
  3053. * Are we the only task in the tree?
  3054. */
  3055. if (unlikely(rq->nr_running == 1))
  3056. return;
  3057. clear_buddies(cfs_rq, se);
  3058. if (curr->policy != SCHED_BATCH) {
  3059. update_rq_clock(rq);
  3060. /*
  3061. * Update run-time statistics of the 'current'.
  3062. */
  3063. update_curr(cfs_rq);
  3064. /*
  3065. * Tell update_rq_clock() that we've just updated,
  3066. * so we don't do microscopic update in schedule()
  3067. * and double the fastpath cost.
  3068. */
  3069. rq->skip_clock_update = 1;
  3070. }
  3071. set_skip_buddy(se);
  3072. }
  3073. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  3074. {
  3075. struct sched_entity *se = &p->se;
  3076. /* throttled hierarchies are not runnable */
  3077. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  3078. return false;
  3079. /* Tell the scheduler that we'd really like pse to run next. */
  3080. set_next_buddy(se);
  3081. yield_task_fair(rq);
  3082. return true;
  3083. }
  3084. #ifdef CONFIG_SMP
  3085. /**************************************************
  3086. * Fair scheduling class load-balancing methods.
  3087. *
  3088. * BASICS
  3089. *
  3090. * The purpose of load-balancing is to achieve the same basic fairness the
  3091. * per-cpu scheduler provides, namely provide a proportional amount of compute
  3092. * time to each task. This is expressed in the following equation:
  3093. *
  3094. * W_i,n/P_i == W_j,n/P_j for all i,j (1)
  3095. *
  3096. * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
  3097. * W_i,0 is defined as:
  3098. *
  3099. * W_i,0 = \Sum_j w_i,j (2)
  3100. *
  3101. * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
  3102. * is derived from the nice value as per prio_to_weight[].
  3103. *
  3104. * The weight average is an exponential decay average of the instantaneous
  3105. * weight:
  3106. *
  3107. * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
  3108. *
  3109. * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
  3110. * fraction of 'recent' time available for SCHED_OTHER task execution. But it
  3111. * can also include other factors [XXX].
  3112. *
  3113. * To achieve this balance we define a measure of imbalance which follows
  3114. * directly from (1):
  3115. *
  3116. * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
  3117. *
  3118. * We them move tasks around to minimize the imbalance. In the continuous
  3119. * function space it is obvious this converges, in the discrete case we get
  3120. * a few fun cases generally called infeasible weight scenarios.
  3121. *
  3122. * [XXX expand on:
  3123. * - infeasible weights;
  3124. * - local vs global optima in the discrete case. ]
  3125. *
  3126. *
  3127. * SCHED DOMAINS
  3128. *
  3129. * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
  3130. * for all i,j solution, we create a tree of cpus that follows the hardware
  3131. * topology where each level pairs two lower groups (or better). This results
  3132. * in O(log n) layers. Furthermore we reduce the number of cpus going up the
  3133. * tree to only the first of the previous level and we decrease the frequency
  3134. * of load-balance at each level inv. proportional to the number of cpus in
  3135. * the groups.
  3136. *
  3137. * This yields:
  3138. *
  3139. * log_2 n 1 n
  3140. * \Sum { --- * --- * 2^i } = O(n) (5)
  3141. * i = 0 2^i 2^i
  3142. * `- size of each group
  3143. * | | `- number of cpus doing load-balance
  3144. * | `- freq
  3145. * `- sum over all levels
  3146. *
  3147. * Coupled with a limit on how many tasks we can migrate every balance pass,
  3148. * this makes (5) the runtime complexity of the balancer.
  3149. *
  3150. * An important property here is that each CPU is still (indirectly) connected
  3151. * to every other cpu in at most O(log n) steps:
  3152. *
  3153. * The adjacency matrix of the resulting graph is given by:
  3154. *
  3155. * log_2 n
  3156. * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
  3157. * k = 0
  3158. *
  3159. * And you'll find that:
  3160. *
  3161. * A^(log_2 n)_i,j != 0 for all i,j (7)
  3162. *
  3163. * Showing there's indeed a path between every cpu in at most O(log n) steps.
  3164. * The task movement gives a factor of O(m), giving a convergence complexity
  3165. * of:
  3166. *
  3167. * O(nm log n), n := nr_cpus, m := nr_tasks (8)
  3168. *
  3169. *
  3170. * WORK CONSERVING
  3171. *
  3172. * In order to avoid CPUs going idle while there's still work to do, new idle
  3173. * balancing is more aggressive and has the newly idle cpu iterate up the domain
  3174. * tree itself instead of relying on other CPUs to bring it work.
  3175. *
  3176. * This adds some complexity to both (5) and (8) but it reduces the total idle
  3177. * time.
  3178. *
  3179. * [XXX more?]
  3180. *
  3181. *
  3182. * CGROUPS
  3183. *
  3184. * Cgroups make a horror show out of (2), instead of a simple sum we get:
  3185. *
  3186. * s_k,i
  3187. * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
  3188. * S_k
  3189. *
  3190. * Where
  3191. *
  3192. * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
  3193. *
  3194. * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
  3195. *
  3196. * The big problem is S_k, its a global sum needed to compute a local (W_i)
  3197. * property.
  3198. *
  3199. * [XXX write more on how we solve this.. _after_ merging pjt's patches that
  3200. * rewrite all of this once again.]
  3201. */
  3202. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  3203. #define LBF_ALL_PINNED 0x01
  3204. #define LBF_NEED_BREAK 0x02
  3205. #define LBF_SOME_PINNED 0x04
  3206. struct lb_env {
  3207. struct sched_domain *sd;
  3208. struct rq *src_rq;
  3209. int src_cpu;
  3210. int dst_cpu;
  3211. struct rq *dst_rq;
  3212. struct cpumask *dst_grpmask;
  3213. int new_dst_cpu;
  3214. enum cpu_idle_type idle;
  3215. long imbalance;
  3216. /* The set of CPUs under consideration for load-balancing */
  3217. struct cpumask *cpus;
  3218. unsigned int flags;
  3219. unsigned int loop;
  3220. unsigned int loop_break;
  3221. unsigned int loop_max;
  3222. };
  3223. /*
  3224. * move_task - move a task from one runqueue to another runqueue.
  3225. * Both runqueues must be locked.
  3226. */
  3227. static void move_task(struct task_struct *p, struct lb_env *env)
  3228. {
  3229. deactivate_task(env->src_rq, p, 0);
  3230. set_task_cpu(p, env->dst_cpu);
  3231. activate_task(env->dst_rq, p, 0);
  3232. check_preempt_curr(env->dst_rq, p, 0);
  3233. }
  3234. /*
  3235. * Is this task likely cache-hot:
  3236. */
  3237. static int
  3238. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  3239. {
  3240. s64 delta;
  3241. if (p->sched_class != &fair_sched_class)
  3242. return 0;
  3243. if (unlikely(p->policy == SCHED_IDLE))
  3244. return 0;
  3245. /*
  3246. * Buddy candidates are cache hot:
  3247. */
  3248. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  3249. (&p->se == cfs_rq_of(&p->se)->next ||
  3250. &p->se == cfs_rq_of(&p->se)->last))
  3251. return 1;
  3252. if (sysctl_sched_migration_cost == -1)
  3253. return 1;
  3254. if (sysctl_sched_migration_cost == 0)
  3255. return 0;
  3256. delta = now - p->se.exec_start;
  3257. return delta < (s64)sysctl_sched_migration_cost;
  3258. }
  3259. /*
  3260. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  3261. */
  3262. static
  3263. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  3264. {
  3265. int tsk_cache_hot = 0;
  3266. /*
  3267. * We do not migrate tasks that are:
  3268. * 1) running (obviously), or
  3269. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  3270. * 3) are cache-hot on their current CPU.
  3271. */
  3272. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  3273. int new_dst_cpu;
  3274. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  3275. /*
  3276. * Remember if this task can be migrated to any other cpu in
  3277. * our sched_group. We may want to revisit it if we couldn't
  3278. * meet load balance goals by pulling other tasks on src_cpu.
  3279. *
  3280. * Also avoid computing new_dst_cpu if we have already computed
  3281. * one in current iteration.
  3282. */
  3283. if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
  3284. return 0;
  3285. new_dst_cpu = cpumask_first_and(env->dst_grpmask,
  3286. tsk_cpus_allowed(p));
  3287. if (new_dst_cpu < nr_cpu_ids) {
  3288. env->flags |= LBF_SOME_PINNED;
  3289. env->new_dst_cpu = new_dst_cpu;
  3290. }
  3291. return 0;
  3292. }
  3293. /* Record that we found atleast one task that could run on dst_cpu */
  3294. env->flags &= ~LBF_ALL_PINNED;
  3295. if (task_running(env->src_rq, p)) {
  3296. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  3297. return 0;
  3298. }
  3299. /*
  3300. * Aggressive migration if:
  3301. * 1) task is cache cold, or
  3302. * 2) too many balance attempts have failed.
  3303. */
  3304. tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
  3305. if (!tsk_cache_hot ||
  3306. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  3307. #ifdef CONFIG_SCHEDSTATS
  3308. if (tsk_cache_hot) {
  3309. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  3310. schedstat_inc(p, se.statistics.nr_forced_migrations);
  3311. }
  3312. #endif
  3313. return 1;
  3314. }
  3315. if (tsk_cache_hot) {
  3316. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  3317. return 0;
  3318. }
  3319. return 1;
  3320. }
  3321. /*
  3322. * move_one_task tries to move exactly one task from busiest to this_rq, as
  3323. * part of active balancing operations within "domain".
  3324. * Returns 1 if successful and 0 otherwise.
  3325. *
  3326. * Called with both runqueues locked.
  3327. */
  3328. static int move_one_task(struct lb_env *env)
  3329. {
  3330. struct task_struct *p, *n;
  3331. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  3332. if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
  3333. continue;
  3334. if (!can_migrate_task(p, env))
  3335. continue;
  3336. move_task(p, env);
  3337. /*
  3338. * Right now, this is only the second place move_task()
  3339. * is called, so we can safely collect move_task()
  3340. * stats here rather than inside move_task().
  3341. */
  3342. schedstat_inc(env->sd, lb_gained[env->idle]);
  3343. return 1;
  3344. }
  3345. return 0;
  3346. }
  3347. static unsigned long task_h_load(struct task_struct *p);
  3348. static const unsigned int sched_nr_migrate_break = 32;
  3349. /*
  3350. * move_tasks tries to move up to imbalance weighted load from busiest to
  3351. * this_rq, as part of a balancing operation within domain "sd".
  3352. * Returns 1 if successful and 0 otherwise.
  3353. *
  3354. * Called with both runqueues locked.
  3355. */
  3356. static int move_tasks(struct lb_env *env)
  3357. {
  3358. struct list_head *tasks = &env->src_rq->cfs_tasks;
  3359. struct task_struct *p;
  3360. unsigned long load;
  3361. int pulled = 0;
  3362. if (env->imbalance <= 0)
  3363. return 0;
  3364. while (!list_empty(tasks)) {
  3365. p = list_first_entry(tasks, struct task_struct, se.group_node);
  3366. env->loop++;
  3367. /* We've more or less seen every task there is, call it quits */
  3368. if (env->loop > env->loop_max)
  3369. break;
  3370. /* take a breather every nr_migrate tasks */
  3371. if (env->loop > env->loop_break) {
  3372. env->loop_break += sched_nr_migrate_break;
  3373. env->flags |= LBF_NEED_BREAK;
  3374. break;
  3375. }
  3376. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  3377. goto next;
  3378. load = task_h_load(p);
  3379. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  3380. goto next;
  3381. if ((load / 2) > env->imbalance)
  3382. goto next;
  3383. if (!can_migrate_task(p, env))
  3384. goto next;
  3385. move_task(p, env);
  3386. pulled++;
  3387. env->imbalance -= load;
  3388. #ifdef CONFIG_PREEMPT
  3389. /*
  3390. * NEWIDLE balancing is a source of latency, so preemptible
  3391. * kernels will stop after the first task is pulled to minimize
  3392. * the critical section.
  3393. */
  3394. if (env->idle == CPU_NEWLY_IDLE)
  3395. break;
  3396. #endif
  3397. /*
  3398. * We only want to steal up to the prescribed amount of
  3399. * weighted load.
  3400. */
  3401. if (env->imbalance <= 0)
  3402. break;
  3403. continue;
  3404. next:
  3405. list_move_tail(&p->se.group_node, tasks);
  3406. }
  3407. /*
  3408. * Right now, this is one of only two places move_task() is called,
  3409. * so we can safely collect move_task() stats here rather than
  3410. * inside move_task().
  3411. */
  3412. schedstat_add(env->sd, lb_gained[env->idle], pulled);
  3413. return pulled;
  3414. }
  3415. #ifdef CONFIG_FAIR_GROUP_SCHED
  3416. /*
  3417. * update tg->load_weight by folding this cpu's load_avg
  3418. */
  3419. static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
  3420. {
  3421. struct sched_entity *se = tg->se[cpu];
  3422. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
  3423. /* throttled entities do not contribute to load */
  3424. if (throttled_hierarchy(cfs_rq))
  3425. return;
  3426. update_cfs_rq_blocked_load(cfs_rq, 1);
  3427. if (se) {
  3428. update_entity_load_avg(se, 1);
  3429. /*
  3430. * We pivot on our runnable average having decayed to zero for
  3431. * list removal. This generally implies that all our children
  3432. * have also been removed (modulo rounding error or bandwidth
  3433. * control); however, such cases are rare and we can fix these
  3434. * at enqueue.
  3435. *
  3436. * TODO: fix up out-of-order children on enqueue.
  3437. */
  3438. if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
  3439. list_del_leaf_cfs_rq(cfs_rq);
  3440. } else {
  3441. struct rq *rq = rq_of(cfs_rq);
  3442. update_rq_runnable_avg(rq, rq->nr_running);
  3443. }
  3444. }
  3445. static void update_blocked_averages(int cpu)
  3446. {
  3447. struct rq *rq = cpu_rq(cpu);
  3448. struct cfs_rq *cfs_rq;
  3449. unsigned long flags;
  3450. raw_spin_lock_irqsave(&rq->lock, flags);
  3451. update_rq_clock(rq);
  3452. /*
  3453. * Iterates the task_group tree in a bottom up fashion, see
  3454. * list_add_leaf_cfs_rq() for details.
  3455. */
  3456. for_each_leaf_cfs_rq(rq, cfs_rq) {
  3457. /*
  3458. * Note: We may want to consider periodically releasing
  3459. * rq->lock about these updates so that creating many task
  3460. * groups does not result in continually extending hold time.
  3461. */
  3462. __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
  3463. }
  3464. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3465. }
  3466. /*
  3467. * Compute the cpu's hierarchical load factor for each task group.
  3468. * This needs to be done in a top-down fashion because the load of a child
  3469. * group is a fraction of its parents load.
  3470. */
  3471. static int tg_load_down(struct task_group *tg, void *data)
  3472. {
  3473. unsigned long load;
  3474. long cpu = (long)data;
  3475. if (!tg->parent) {
  3476. load = cpu_rq(cpu)->load.weight;
  3477. } else {
  3478. load = tg->parent->cfs_rq[cpu]->h_load;
  3479. load *= tg->se[cpu]->load.weight;
  3480. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  3481. }
  3482. tg->cfs_rq[cpu]->h_load = load;
  3483. return 0;
  3484. }
  3485. static void update_h_load(long cpu)
  3486. {
  3487. struct rq *rq = cpu_rq(cpu);
  3488. unsigned long now = jiffies;
  3489. if (rq->h_load_throttle == now)
  3490. return;
  3491. rq->h_load_throttle = now;
  3492. rcu_read_lock();
  3493. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  3494. rcu_read_unlock();
  3495. }
  3496. static unsigned long task_h_load(struct task_struct *p)
  3497. {
  3498. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  3499. unsigned long load;
  3500. load = p->se.load.weight;
  3501. load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
  3502. return load;
  3503. }
  3504. #else
  3505. static inline void update_blocked_averages(int cpu)
  3506. {
  3507. }
  3508. static inline void update_h_load(long cpu)
  3509. {
  3510. }
  3511. static unsigned long task_h_load(struct task_struct *p)
  3512. {
  3513. return p->se.load.weight;
  3514. }
  3515. #endif
  3516. /********** Helpers for find_busiest_group ************************/
  3517. /*
  3518. * sd_lb_stats - Structure to store the statistics of a sched_domain
  3519. * during load balancing.
  3520. */
  3521. struct sd_lb_stats {
  3522. struct sched_group *busiest; /* Busiest group in this sd */
  3523. struct sched_group *this; /* Local group in this sd */
  3524. unsigned long total_load; /* Total load of all groups in sd */
  3525. unsigned long total_pwr; /* Total power of all groups in sd */
  3526. unsigned long avg_load; /* Average load across all groups in sd */
  3527. /** Statistics of this group */
  3528. unsigned long this_load;
  3529. unsigned long this_load_per_task;
  3530. unsigned long this_nr_running;
  3531. unsigned long this_has_capacity;
  3532. unsigned int this_idle_cpus;
  3533. /* Statistics of the busiest group */
  3534. unsigned int busiest_idle_cpus;
  3535. unsigned long max_load;
  3536. unsigned long busiest_load_per_task;
  3537. unsigned long busiest_nr_running;
  3538. unsigned long busiest_group_capacity;
  3539. unsigned long busiest_has_capacity;
  3540. unsigned int busiest_group_weight;
  3541. int group_imb; /* Is there imbalance in this sd */
  3542. };
  3543. /*
  3544. * sg_lb_stats - stats of a sched_group required for load_balancing
  3545. */
  3546. struct sg_lb_stats {
  3547. unsigned long avg_load; /*Avg load across the CPUs of the group */
  3548. unsigned long group_load; /* Total load over the CPUs of the group */
  3549. unsigned long sum_nr_running; /* Nr tasks running in the group */
  3550. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  3551. unsigned long group_capacity;
  3552. unsigned long idle_cpus;
  3553. unsigned long group_weight;
  3554. int group_imb; /* Is there an imbalance in the group ? */
  3555. int group_has_capacity; /* Is there extra capacity in the group? */
  3556. };
  3557. /**
  3558. * get_sd_load_idx - Obtain the load index for a given sched domain.
  3559. * @sd: The sched_domain whose load_idx is to be obtained.
  3560. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  3561. */
  3562. static inline int get_sd_load_idx(struct sched_domain *sd,
  3563. enum cpu_idle_type idle)
  3564. {
  3565. int load_idx;
  3566. switch (idle) {
  3567. case CPU_NOT_IDLE:
  3568. load_idx = sd->busy_idx;
  3569. break;
  3570. case CPU_NEWLY_IDLE:
  3571. load_idx = sd->newidle_idx;
  3572. break;
  3573. default:
  3574. load_idx = sd->idle_idx;
  3575. break;
  3576. }
  3577. return load_idx;
  3578. }
  3579. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3580. {
  3581. return SCHED_POWER_SCALE;
  3582. }
  3583. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3584. {
  3585. return default_scale_freq_power(sd, cpu);
  3586. }
  3587. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3588. {
  3589. unsigned long weight = sd->span_weight;
  3590. unsigned long smt_gain = sd->smt_gain;
  3591. smt_gain /= weight;
  3592. return smt_gain;
  3593. }
  3594. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3595. {
  3596. return default_scale_smt_power(sd, cpu);
  3597. }
  3598. unsigned long scale_rt_power(int cpu)
  3599. {
  3600. struct rq *rq = cpu_rq(cpu);
  3601. u64 total, available, age_stamp, avg;
  3602. /*
  3603. * Since we're reading these variables without serialization make sure
  3604. * we read them once before doing sanity checks on them.
  3605. */
  3606. age_stamp = ACCESS_ONCE(rq->age_stamp);
  3607. avg = ACCESS_ONCE(rq->rt_avg);
  3608. total = sched_avg_period() + (rq->clock - age_stamp);
  3609. if (unlikely(total < avg)) {
  3610. /* Ensures that power won't end up being negative */
  3611. available = 0;
  3612. } else {
  3613. available = total - avg;
  3614. }
  3615. if (unlikely((s64)total < SCHED_POWER_SCALE))
  3616. total = SCHED_POWER_SCALE;
  3617. total >>= SCHED_POWER_SHIFT;
  3618. return div_u64(available, total);
  3619. }
  3620. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3621. {
  3622. unsigned long weight = sd->span_weight;
  3623. unsigned long power = SCHED_POWER_SCALE;
  3624. struct sched_group *sdg = sd->groups;
  3625. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3626. if (sched_feat(ARCH_POWER))
  3627. power *= arch_scale_smt_power(sd, cpu);
  3628. else
  3629. power *= default_scale_smt_power(sd, cpu);
  3630. power >>= SCHED_POWER_SHIFT;
  3631. }
  3632. sdg->sgp->power_orig = power;
  3633. if (sched_feat(ARCH_POWER))
  3634. power *= arch_scale_freq_power(sd, cpu);
  3635. else
  3636. power *= default_scale_freq_power(sd, cpu);
  3637. power >>= SCHED_POWER_SHIFT;
  3638. power *= scale_rt_power(cpu);
  3639. power >>= SCHED_POWER_SHIFT;
  3640. if (!power)
  3641. power = 1;
  3642. cpu_rq(cpu)->cpu_power = power;
  3643. sdg->sgp->power = power;
  3644. }
  3645. void update_group_power(struct sched_domain *sd, int cpu)
  3646. {
  3647. struct sched_domain *child = sd->child;
  3648. struct sched_group *group, *sdg = sd->groups;
  3649. unsigned long power;
  3650. unsigned long interval;
  3651. interval = msecs_to_jiffies(sd->balance_interval);
  3652. interval = clamp(interval, 1UL, max_load_balance_interval);
  3653. sdg->sgp->next_update = jiffies + interval;
  3654. if (!child) {
  3655. update_cpu_power(sd, cpu);
  3656. return;
  3657. }
  3658. power = 0;
  3659. if (child->flags & SD_OVERLAP) {
  3660. /*
  3661. * SD_OVERLAP domains cannot assume that child groups
  3662. * span the current group.
  3663. */
  3664. for_each_cpu(cpu, sched_group_cpus(sdg))
  3665. power += power_of(cpu);
  3666. } else {
  3667. /*
  3668. * !SD_OVERLAP domains can assume that child groups
  3669. * span the current group.
  3670. */
  3671. group = child->groups;
  3672. do {
  3673. power += group->sgp->power;
  3674. group = group->next;
  3675. } while (group != child->groups);
  3676. }
  3677. sdg->sgp->power_orig = sdg->sgp->power = power;
  3678. }
  3679. /*
  3680. * Try and fix up capacity for tiny siblings, this is needed when
  3681. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  3682. * which on its own isn't powerful enough.
  3683. *
  3684. * See update_sd_pick_busiest() and check_asym_packing().
  3685. */
  3686. static inline int
  3687. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  3688. {
  3689. /*
  3690. * Only siblings can have significantly less than SCHED_POWER_SCALE
  3691. */
  3692. if (!(sd->flags & SD_SHARE_CPUPOWER))
  3693. return 0;
  3694. /*
  3695. * If ~90% of the cpu_power is still there, we're good.
  3696. */
  3697. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  3698. return 1;
  3699. return 0;
  3700. }
  3701. /**
  3702. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3703. * @env: The load balancing environment.
  3704. * @group: sched_group whose statistics are to be updated.
  3705. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3706. * @local_group: Does group contain this_cpu.
  3707. * @balance: Should we balance.
  3708. * @sgs: variable to hold the statistics for this group.
  3709. */
  3710. static inline void update_sg_lb_stats(struct lb_env *env,
  3711. struct sched_group *group, int load_idx,
  3712. int local_group, int *balance, struct sg_lb_stats *sgs)
  3713. {
  3714. unsigned long nr_running, max_nr_running, min_nr_running;
  3715. unsigned long load, max_cpu_load, min_cpu_load;
  3716. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3717. unsigned long avg_load_per_task = 0;
  3718. int i;
  3719. if (local_group)
  3720. balance_cpu = group_balance_cpu(group);
  3721. /* Tally up the load of all CPUs in the group */
  3722. max_cpu_load = 0;
  3723. min_cpu_load = ~0UL;
  3724. max_nr_running = 0;
  3725. min_nr_running = ~0UL;
  3726. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  3727. struct rq *rq = cpu_rq(i);
  3728. nr_running = rq->nr_running;
  3729. /* Bias balancing toward cpus of our domain */
  3730. if (local_group) {
  3731. if (idle_cpu(i) && !first_idle_cpu &&
  3732. cpumask_test_cpu(i, sched_group_mask(group))) {
  3733. first_idle_cpu = 1;
  3734. balance_cpu = i;
  3735. }
  3736. load = target_load(i, load_idx);
  3737. } else {
  3738. load = source_load(i, load_idx);
  3739. if (load > max_cpu_load)
  3740. max_cpu_load = load;
  3741. if (min_cpu_load > load)
  3742. min_cpu_load = load;
  3743. if (nr_running > max_nr_running)
  3744. max_nr_running = nr_running;
  3745. if (min_nr_running > nr_running)
  3746. min_nr_running = nr_running;
  3747. }
  3748. sgs->group_load += load;
  3749. sgs->sum_nr_running += nr_running;
  3750. sgs->sum_weighted_load += weighted_cpuload(i);
  3751. if (idle_cpu(i))
  3752. sgs->idle_cpus++;
  3753. }
  3754. /*
  3755. * First idle cpu or the first cpu(busiest) in this sched group
  3756. * is eligible for doing load balancing at this and above
  3757. * domains. In the newly idle case, we will allow all the cpu's
  3758. * to do the newly idle load balance.
  3759. */
  3760. if (local_group) {
  3761. if (env->idle != CPU_NEWLY_IDLE) {
  3762. if (balance_cpu != env->dst_cpu) {
  3763. *balance = 0;
  3764. return;
  3765. }
  3766. update_group_power(env->sd, env->dst_cpu);
  3767. } else if (time_after_eq(jiffies, group->sgp->next_update))
  3768. update_group_power(env->sd, env->dst_cpu);
  3769. }
  3770. /* Adjust by relative CPU power of the group */
  3771. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  3772. /*
  3773. * Consider the group unbalanced when the imbalance is larger
  3774. * than the average weight of a task.
  3775. *
  3776. * APZ: with cgroup the avg task weight can vary wildly and
  3777. * might not be a suitable number - should we keep a
  3778. * normalized nr_running number somewhere that negates
  3779. * the hierarchy?
  3780. */
  3781. if (sgs->sum_nr_running)
  3782. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  3783. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
  3784. (max_nr_running - min_nr_running) > 1)
  3785. sgs->group_imb = 1;
  3786. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  3787. SCHED_POWER_SCALE);
  3788. if (!sgs->group_capacity)
  3789. sgs->group_capacity = fix_small_capacity(env->sd, group);
  3790. sgs->group_weight = group->group_weight;
  3791. if (sgs->group_capacity > sgs->sum_nr_running)
  3792. sgs->group_has_capacity = 1;
  3793. }
  3794. /**
  3795. * update_sd_pick_busiest - return 1 on busiest group
  3796. * @env: The load balancing environment.
  3797. * @sds: sched_domain statistics
  3798. * @sg: sched_group candidate to be checked for being the busiest
  3799. * @sgs: sched_group statistics
  3800. *
  3801. * Determine if @sg is a busier group than the previously selected
  3802. * busiest group.
  3803. */
  3804. static bool update_sd_pick_busiest(struct lb_env *env,
  3805. struct sd_lb_stats *sds,
  3806. struct sched_group *sg,
  3807. struct sg_lb_stats *sgs)
  3808. {
  3809. if (sgs->avg_load <= sds->max_load)
  3810. return false;
  3811. if (sgs->sum_nr_running > sgs->group_capacity)
  3812. return true;
  3813. if (sgs->group_imb)
  3814. return true;
  3815. /*
  3816. * ASYM_PACKING needs to move all the work to the lowest
  3817. * numbered CPUs in the group, therefore mark all groups
  3818. * higher than ourself as busy.
  3819. */
  3820. if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  3821. env->dst_cpu < group_first_cpu(sg)) {
  3822. if (!sds->busiest)
  3823. return true;
  3824. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  3825. return true;
  3826. }
  3827. return false;
  3828. }
  3829. /**
  3830. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  3831. * @env: The load balancing environment.
  3832. * @balance: Should we balance.
  3833. * @sds: variable to hold the statistics for this sched_domain.
  3834. */
  3835. static inline void update_sd_lb_stats(struct lb_env *env,
  3836. int *balance, struct sd_lb_stats *sds)
  3837. {
  3838. struct sched_domain *child = env->sd->child;
  3839. struct sched_group *sg = env->sd->groups;
  3840. struct sg_lb_stats sgs;
  3841. int load_idx, prefer_sibling = 0;
  3842. if (child && child->flags & SD_PREFER_SIBLING)
  3843. prefer_sibling = 1;
  3844. load_idx = get_sd_load_idx(env->sd, env->idle);
  3845. do {
  3846. int local_group;
  3847. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
  3848. memset(&sgs, 0, sizeof(sgs));
  3849. update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
  3850. if (local_group && !(*balance))
  3851. return;
  3852. sds->total_load += sgs.group_load;
  3853. sds->total_pwr += sg->sgp->power;
  3854. /*
  3855. * In case the child domain prefers tasks go to siblings
  3856. * first, lower the sg capacity to one so that we'll try
  3857. * and move all the excess tasks away. We lower the capacity
  3858. * of a group only if the local group has the capacity to fit
  3859. * these excess tasks, i.e. nr_running < group_capacity. The
  3860. * extra check prevents the case where you always pull from the
  3861. * heaviest group when it is already under-utilized (possible
  3862. * with a large weight task outweighs the tasks on the system).
  3863. */
  3864. if (prefer_sibling && !local_group && sds->this_has_capacity)
  3865. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3866. if (local_group) {
  3867. sds->this_load = sgs.avg_load;
  3868. sds->this = sg;
  3869. sds->this_nr_running = sgs.sum_nr_running;
  3870. sds->this_load_per_task = sgs.sum_weighted_load;
  3871. sds->this_has_capacity = sgs.group_has_capacity;
  3872. sds->this_idle_cpus = sgs.idle_cpus;
  3873. } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
  3874. sds->max_load = sgs.avg_load;
  3875. sds->busiest = sg;
  3876. sds->busiest_nr_running = sgs.sum_nr_running;
  3877. sds->busiest_idle_cpus = sgs.idle_cpus;
  3878. sds->busiest_group_capacity = sgs.group_capacity;
  3879. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3880. sds->busiest_has_capacity = sgs.group_has_capacity;
  3881. sds->busiest_group_weight = sgs.group_weight;
  3882. sds->group_imb = sgs.group_imb;
  3883. }
  3884. sg = sg->next;
  3885. } while (sg != env->sd->groups);
  3886. }
  3887. /**
  3888. * check_asym_packing - Check to see if the group is packed into the
  3889. * sched doman.
  3890. *
  3891. * This is primarily intended to used at the sibling level. Some
  3892. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  3893. * case of POWER7, it can move to lower SMT modes only when higher
  3894. * threads are idle. When in lower SMT modes, the threads will
  3895. * perform better since they share less core resources. Hence when we
  3896. * have idle threads, we want them to be the higher ones.
  3897. *
  3898. * This packing function is run on idle threads. It checks to see if
  3899. * the busiest CPU in this domain (core in the P7 case) has a higher
  3900. * CPU number than the packing function is being run on. Here we are
  3901. * assuming lower CPU number will be equivalent to lower a SMT thread
  3902. * number.
  3903. *
  3904. * Returns 1 when packing is required and a task should be moved to
  3905. * this CPU. The amount of the imbalance is returned in *imbalance.
  3906. *
  3907. * @env: The load balancing environment.
  3908. * @sds: Statistics of the sched_domain which is to be packed
  3909. */
  3910. static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
  3911. {
  3912. int busiest_cpu;
  3913. if (!(env->sd->flags & SD_ASYM_PACKING))
  3914. return 0;
  3915. if (!sds->busiest)
  3916. return 0;
  3917. busiest_cpu = group_first_cpu(sds->busiest);
  3918. if (env->dst_cpu > busiest_cpu)
  3919. return 0;
  3920. env->imbalance = DIV_ROUND_CLOSEST(
  3921. sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
  3922. return 1;
  3923. }
  3924. /**
  3925. * fix_small_imbalance - Calculate the minor imbalance that exists
  3926. * amongst the groups of a sched_domain, during
  3927. * load balancing.
  3928. * @env: The load balancing environment.
  3929. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3930. */
  3931. static inline
  3932. void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  3933. {
  3934. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3935. unsigned int imbn = 2;
  3936. unsigned long scaled_busy_load_per_task;
  3937. if (sds->this_nr_running) {
  3938. sds->this_load_per_task /= sds->this_nr_running;
  3939. if (sds->busiest_load_per_task >
  3940. sds->this_load_per_task)
  3941. imbn = 1;
  3942. } else {
  3943. sds->this_load_per_task =
  3944. cpu_avg_load_per_task(env->dst_cpu);
  3945. }
  3946. scaled_busy_load_per_task = sds->busiest_load_per_task
  3947. * SCHED_POWER_SCALE;
  3948. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  3949. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  3950. (scaled_busy_load_per_task * imbn)) {
  3951. env->imbalance = sds->busiest_load_per_task;
  3952. return;
  3953. }
  3954. /*
  3955. * OK, we don't have enough imbalance to justify moving tasks,
  3956. * however we may be able to increase total CPU power used by
  3957. * moving them.
  3958. */
  3959. pwr_now += sds->busiest->sgp->power *
  3960. min(sds->busiest_load_per_task, sds->max_load);
  3961. pwr_now += sds->this->sgp->power *
  3962. min(sds->this_load_per_task, sds->this_load);
  3963. pwr_now /= SCHED_POWER_SCALE;
  3964. /* Amount of load we'd subtract */
  3965. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3966. sds->busiest->sgp->power;
  3967. if (sds->max_load > tmp)
  3968. pwr_move += sds->busiest->sgp->power *
  3969. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3970. /* Amount of load we'd add */
  3971. if (sds->max_load * sds->busiest->sgp->power <
  3972. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  3973. tmp = (sds->max_load * sds->busiest->sgp->power) /
  3974. sds->this->sgp->power;
  3975. else
  3976. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3977. sds->this->sgp->power;
  3978. pwr_move += sds->this->sgp->power *
  3979. min(sds->this_load_per_task, sds->this_load + tmp);
  3980. pwr_move /= SCHED_POWER_SCALE;
  3981. /* Move if we gain throughput */
  3982. if (pwr_move > pwr_now)
  3983. env->imbalance = sds->busiest_load_per_task;
  3984. }
  3985. /**
  3986. * calculate_imbalance - Calculate the amount of imbalance present within the
  3987. * groups of a given sched_domain during load balance.
  3988. * @env: load balance environment
  3989. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3990. */
  3991. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  3992. {
  3993. unsigned long max_pull, load_above_capacity = ~0UL;
  3994. sds->busiest_load_per_task /= sds->busiest_nr_running;
  3995. if (sds->group_imb) {
  3996. sds->busiest_load_per_task =
  3997. min(sds->busiest_load_per_task, sds->avg_load);
  3998. }
  3999. /*
  4000. * In the presence of smp nice balancing, certain scenarios can have
  4001. * max load less than avg load(as we skip the groups at or below
  4002. * its cpu_power, while calculating max_load..)
  4003. */
  4004. if (sds->max_load < sds->avg_load) {
  4005. env->imbalance = 0;
  4006. return fix_small_imbalance(env, sds);
  4007. }
  4008. if (!sds->group_imb) {
  4009. /*
  4010. * Don't want to pull so many tasks that a group would go idle.
  4011. */
  4012. load_above_capacity = (sds->busiest_nr_running -
  4013. sds->busiest_group_capacity);
  4014. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  4015. load_above_capacity /= sds->busiest->sgp->power;
  4016. }
  4017. /*
  4018. * We're trying to get all the cpus to the average_load, so we don't
  4019. * want to push ourselves above the average load, nor do we wish to
  4020. * reduce the max loaded cpu below the average load. At the same time,
  4021. * we also don't want to reduce the group load below the group capacity
  4022. * (so that we can implement power-savings policies etc). Thus we look
  4023. * for the minimum possible imbalance.
  4024. * Be careful of negative numbers as they'll appear as very large values
  4025. * with unsigned longs.
  4026. */
  4027. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  4028. /* How much load to actually move to equalise the imbalance */
  4029. env->imbalance = min(max_pull * sds->busiest->sgp->power,
  4030. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  4031. / SCHED_POWER_SCALE;
  4032. /*
  4033. * if *imbalance is less than the average load per runnable task
  4034. * there is no guarantee that any tasks will be moved so we'll have
  4035. * a think about bumping its value to force at least one task to be
  4036. * moved
  4037. */
  4038. if (env->imbalance < sds->busiest_load_per_task)
  4039. return fix_small_imbalance(env, sds);
  4040. }
  4041. /******* find_busiest_group() helpers end here *********************/
  4042. /**
  4043. * find_busiest_group - Returns the busiest group within the sched_domain
  4044. * if there is an imbalance. If there isn't an imbalance, and
  4045. * the user has opted for power-savings, it returns a group whose
  4046. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  4047. * such a group exists.
  4048. *
  4049. * Also calculates the amount of weighted load which should be moved
  4050. * to restore balance.
  4051. *
  4052. * @env: The load balancing environment.
  4053. * @balance: Pointer to a variable indicating if this_cpu
  4054. * is the appropriate cpu to perform load balancing at this_level.
  4055. *
  4056. * Returns: - the busiest group if imbalance exists.
  4057. * - If no imbalance and user has opted for power-savings balance,
  4058. * return the least loaded group whose CPUs can be
  4059. * put to idle by rebalancing its tasks onto our group.
  4060. */
  4061. static struct sched_group *
  4062. find_busiest_group(struct lb_env *env, int *balance)
  4063. {
  4064. struct sd_lb_stats sds;
  4065. memset(&sds, 0, sizeof(sds));
  4066. /*
  4067. * Compute the various statistics relavent for load balancing at
  4068. * this level.
  4069. */
  4070. update_sd_lb_stats(env, balance, &sds);
  4071. /*
  4072. * this_cpu is not the appropriate cpu to perform load balancing at
  4073. * this level.
  4074. */
  4075. if (!(*balance))
  4076. goto ret;
  4077. if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
  4078. check_asym_packing(env, &sds))
  4079. return sds.busiest;
  4080. /* There is no busy sibling group to pull tasks from */
  4081. if (!sds.busiest || sds.busiest_nr_running == 0)
  4082. goto out_balanced;
  4083. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  4084. /*
  4085. * If the busiest group is imbalanced the below checks don't
  4086. * work because they assumes all things are equal, which typically
  4087. * isn't true due to cpus_allowed constraints and the like.
  4088. */
  4089. if (sds.group_imb)
  4090. goto force_balance;
  4091. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  4092. if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  4093. !sds.busiest_has_capacity)
  4094. goto force_balance;
  4095. /*
  4096. * If the local group is more busy than the selected busiest group
  4097. * don't try and pull any tasks.
  4098. */
  4099. if (sds.this_load >= sds.max_load)
  4100. goto out_balanced;
  4101. /*
  4102. * Don't pull any tasks if this group is already above the domain
  4103. * average load.
  4104. */
  4105. if (sds.this_load >= sds.avg_load)
  4106. goto out_balanced;
  4107. if (env->idle == CPU_IDLE) {
  4108. /*
  4109. * This cpu is idle. If the busiest group load doesn't
  4110. * have more tasks than the number of available cpu's and
  4111. * there is no imbalance between this and busiest group
  4112. * wrt to idle cpu's, it is balanced.
  4113. */
  4114. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  4115. sds.busiest_nr_running <= sds.busiest_group_weight)
  4116. goto out_balanced;
  4117. } else {
  4118. /*
  4119. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  4120. * imbalance_pct to be conservative.
  4121. */
  4122. if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
  4123. goto out_balanced;
  4124. }
  4125. force_balance:
  4126. /* Looks like there is an imbalance. Compute it */
  4127. calculate_imbalance(env, &sds);
  4128. return sds.busiest;
  4129. out_balanced:
  4130. ret:
  4131. env->imbalance = 0;
  4132. return NULL;
  4133. }
  4134. /*
  4135. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  4136. */
  4137. static struct rq *find_busiest_queue(struct lb_env *env,
  4138. struct sched_group *group)
  4139. {
  4140. struct rq *busiest = NULL, *rq;
  4141. unsigned long max_load = 0;
  4142. int i;
  4143. for_each_cpu(i, sched_group_cpus(group)) {
  4144. unsigned long power = power_of(i);
  4145. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  4146. SCHED_POWER_SCALE);
  4147. unsigned long wl;
  4148. if (!capacity)
  4149. capacity = fix_small_capacity(env->sd, group);
  4150. if (!cpumask_test_cpu(i, env->cpus))
  4151. continue;
  4152. rq = cpu_rq(i);
  4153. wl = weighted_cpuload(i);
  4154. /*
  4155. * When comparing with imbalance, use weighted_cpuload()
  4156. * which is not scaled with the cpu power.
  4157. */
  4158. if (capacity && rq->nr_running == 1 && wl > env->imbalance)
  4159. continue;
  4160. /*
  4161. * For the load comparisons with the other cpu's, consider
  4162. * the weighted_cpuload() scaled with the cpu power, so that
  4163. * the load can be moved away from the cpu that is potentially
  4164. * running at a lower capacity.
  4165. */
  4166. wl = (wl * SCHED_POWER_SCALE) / power;
  4167. if (wl > max_load) {
  4168. max_load = wl;
  4169. busiest = rq;
  4170. }
  4171. }
  4172. return busiest;
  4173. }
  4174. /*
  4175. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  4176. * so long as it is large enough.
  4177. */
  4178. #define MAX_PINNED_INTERVAL 512
  4179. /* Working cpumask for load_balance and load_balance_newidle. */
  4180. DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  4181. static int need_active_balance(struct lb_env *env)
  4182. {
  4183. struct sched_domain *sd = env->sd;
  4184. if (env->idle == CPU_NEWLY_IDLE) {
  4185. /*
  4186. * ASYM_PACKING needs to force migrate tasks from busy but
  4187. * higher numbered CPUs in order to pack all tasks in the
  4188. * lowest numbered CPUs.
  4189. */
  4190. if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
  4191. return 1;
  4192. }
  4193. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  4194. }
  4195. static int active_load_balance_cpu_stop(void *data);
  4196. /*
  4197. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  4198. * tasks if there is an imbalance.
  4199. */
  4200. static int load_balance(int this_cpu, struct rq *this_rq,
  4201. struct sched_domain *sd, enum cpu_idle_type idle,
  4202. int *balance)
  4203. {
  4204. int ld_moved, cur_ld_moved, active_balance = 0;
  4205. int lb_iterations, max_lb_iterations;
  4206. struct sched_group *group;
  4207. struct rq *busiest;
  4208. unsigned long flags;
  4209. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  4210. struct lb_env env = {
  4211. .sd = sd,
  4212. .dst_cpu = this_cpu,
  4213. .dst_rq = this_rq,
  4214. .dst_grpmask = sched_group_cpus(sd->groups),
  4215. .idle = idle,
  4216. .loop_break = sched_nr_migrate_break,
  4217. .cpus = cpus,
  4218. };
  4219. cpumask_copy(cpus, cpu_active_mask);
  4220. max_lb_iterations = cpumask_weight(env.dst_grpmask);
  4221. schedstat_inc(sd, lb_count[idle]);
  4222. redo:
  4223. group = find_busiest_group(&env, balance);
  4224. if (*balance == 0)
  4225. goto out_balanced;
  4226. if (!group) {
  4227. schedstat_inc(sd, lb_nobusyg[idle]);
  4228. goto out_balanced;
  4229. }
  4230. busiest = find_busiest_queue(&env, group);
  4231. if (!busiest) {
  4232. schedstat_inc(sd, lb_nobusyq[idle]);
  4233. goto out_balanced;
  4234. }
  4235. BUG_ON(busiest == env.dst_rq);
  4236. schedstat_add(sd, lb_imbalance[idle], env.imbalance);
  4237. ld_moved = 0;
  4238. lb_iterations = 1;
  4239. if (busiest->nr_running > 1) {
  4240. /*
  4241. * Attempt to move tasks. If find_busiest_group has found
  4242. * an imbalance but busiest->nr_running <= 1, the group is
  4243. * still unbalanced. ld_moved simply stays zero, so it is
  4244. * correctly treated as an imbalance.
  4245. */
  4246. env.flags |= LBF_ALL_PINNED;
  4247. env.src_cpu = busiest->cpu;
  4248. env.src_rq = busiest;
  4249. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  4250. update_h_load(env.src_cpu);
  4251. more_balance:
  4252. local_irq_save(flags);
  4253. double_rq_lock(env.dst_rq, busiest);
  4254. /*
  4255. * cur_ld_moved - load moved in current iteration
  4256. * ld_moved - cumulative load moved across iterations
  4257. */
  4258. cur_ld_moved = move_tasks(&env);
  4259. ld_moved += cur_ld_moved;
  4260. double_rq_unlock(env.dst_rq, busiest);
  4261. local_irq_restore(flags);
  4262. if (env.flags & LBF_NEED_BREAK) {
  4263. env.flags &= ~LBF_NEED_BREAK;
  4264. goto more_balance;
  4265. }
  4266. /*
  4267. * some other cpu did the load balance for us.
  4268. */
  4269. if (cur_ld_moved && env.dst_cpu != smp_processor_id())
  4270. resched_cpu(env.dst_cpu);
  4271. /*
  4272. * Revisit (affine) tasks on src_cpu that couldn't be moved to
  4273. * us and move them to an alternate dst_cpu in our sched_group
  4274. * where they can run. The upper limit on how many times we
  4275. * iterate on same src_cpu is dependent on number of cpus in our
  4276. * sched_group.
  4277. *
  4278. * This changes load balance semantics a bit on who can move
  4279. * load to a given_cpu. In addition to the given_cpu itself
  4280. * (or a ilb_cpu acting on its behalf where given_cpu is
  4281. * nohz-idle), we now have balance_cpu in a position to move
  4282. * load to given_cpu. In rare situations, this may cause
  4283. * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
  4284. * _independently_ and at _same_ time to move some load to
  4285. * given_cpu) causing exceess load to be moved to given_cpu.
  4286. * This however should not happen so much in practice and
  4287. * moreover subsequent load balance cycles should correct the
  4288. * excess load moved.
  4289. */
  4290. if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
  4291. lb_iterations++ < max_lb_iterations) {
  4292. env.dst_rq = cpu_rq(env.new_dst_cpu);
  4293. env.dst_cpu = env.new_dst_cpu;
  4294. env.flags &= ~LBF_SOME_PINNED;
  4295. env.loop = 0;
  4296. env.loop_break = sched_nr_migrate_break;
  4297. /*
  4298. * Go back to "more_balance" rather than "redo" since we
  4299. * need to continue with same src_cpu.
  4300. */
  4301. goto more_balance;
  4302. }
  4303. /* All tasks on this runqueue were pinned by CPU affinity */
  4304. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  4305. cpumask_clear_cpu(cpu_of(busiest), cpus);
  4306. if (!cpumask_empty(cpus)) {
  4307. env.loop = 0;
  4308. env.loop_break = sched_nr_migrate_break;
  4309. goto redo;
  4310. }
  4311. goto out_balanced;
  4312. }
  4313. }
  4314. if (!ld_moved) {
  4315. schedstat_inc(sd, lb_failed[idle]);
  4316. /*
  4317. * Increment the failure counter only on periodic balance.
  4318. * We do not want newidle balance, which can be very
  4319. * frequent, pollute the failure counter causing
  4320. * excessive cache_hot migrations and active balances.
  4321. */
  4322. if (idle != CPU_NEWLY_IDLE)
  4323. sd->nr_balance_failed++;
  4324. if (need_active_balance(&env)) {
  4325. raw_spin_lock_irqsave(&busiest->lock, flags);
  4326. /* don't kick the active_load_balance_cpu_stop,
  4327. * if the curr task on busiest cpu can't be
  4328. * moved to this_cpu
  4329. */
  4330. if (!cpumask_test_cpu(this_cpu,
  4331. tsk_cpus_allowed(busiest->curr))) {
  4332. raw_spin_unlock_irqrestore(&busiest->lock,
  4333. flags);
  4334. env.flags |= LBF_ALL_PINNED;
  4335. goto out_one_pinned;
  4336. }
  4337. /*
  4338. * ->active_balance synchronizes accesses to
  4339. * ->active_balance_work. Once set, it's cleared
  4340. * only after active load balance is finished.
  4341. */
  4342. if (!busiest->active_balance) {
  4343. busiest->active_balance = 1;
  4344. busiest->push_cpu = this_cpu;
  4345. active_balance = 1;
  4346. }
  4347. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  4348. if (active_balance) {
  4349. stop_one_cpu_nowait(cpu_of(busiest),
  4350. active_load_balance_cpu_stop, busiest,
  4351. &busiest->active_balance_work);
  4352. }
  4353. /*
  4354. * We've kicked active balancing, reset the failure
  4355. * counter.
  4356. */
  4357. sd->nr_balance_failed = sd->cache_nice_tries+1;
  4358. }
  4359. } else
  4360. sd->nr_balance_failed = 0;
  4361. if (likely(!active_balance)) {
  4362. /* We were unbalanced, so reset the balancing interval */
  4363. sd->balance_interval = sd->min_interval;
  4364. } else {
  4365. /*
  4366. * If we've begun active balancing, start to back off. This
  4367. * case may not be covered by the all_pinned logic if there
  4368. * is only 1 task on the busy runqueue (because we don't call
  4369. * move_tasks).
  4370. */
  4371. if (sd->balance_interval < sd->max_interval)
  4372. sd->balance_interval *= 2;
  4373. }
  4374. goto out;
  4375. out_balanced:
  4376. schedstat_inc(sd, lb_balanced[idle]);
  4377. sd->nr_balance_failed = 0;
  4378. out_one_pinned:
  4379. /* tune up the balancing interval */
  4380. if (((env.flags & LBF_ALL_PINNED) &&
  4381. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  4382. (sd->balance_interval < sd->max_interval))
  4383. sd->balance_interval *= 2;
  4384. ld_moved = 0;
  4385. out:
  4386. return ld_moved;
  4387. }
  4388. /*
  4389. * idle_balance is called by schedule() if this_cpu is about to become
  4390. * idle. Attempts to pull tasks from other CPUs.
  4391. */
  4392. void idle_balance(int this_cpu, struct rq *this_rq)
  4393. {
  4394. struct sched_domain *sd;
  4395. int pulled_task = 0;
  4396. unsigned long next_balance = jiffies + HZ;
  4397. this_rq->idle_stamp = this_rq->clock;
  4398. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  4399. return;
  4400. update_rq_runnable_avg(this_rq, 1);
  4401. /*
  4402. * Drop the rq->lock, but keep IRQ/preempt disabled.
  4403. */
  4404. raw_spin_unlock(&this_rq->lock);
  4405. update_blocked_averages(this_cpu);
  4406. rcu_read_lock();
  4407. for_each_domain(this_cpu, sd) {
  4408. unsigned long interval;
  4409. int balance = 1;
  4410. if (!(sd->flags & SD_LOAD_BALANCE))
  4411. continue;
  4412. if (sd->flags & SD_BALANCE_NEWIDLE) {
  4413. /* If we've pulled tasks over stop searching: */
  4414. pulled_task = load_balance(this_cpu, this_rq,
  4415. sd, CPU_NEWLY_IDLE, &balance);
  4416. }
  4417. interval = msecs_to_jiffies(sd->balance_interval);
  4418. if (time_after(next_balance, sd->last_balance + interval))
  4419. next_balance = sd->last_balance + interval;
  4420. if (pulled_task) {
  4421. this_rq->idle_stamp = 0;
  4422. break;
  4423. }
  4424. }
  4425. rcu_read_unlock();
  4426. raw_spin_lock(&this_rq->lock);
  4427. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  4428. /*
  4429. * We are going idle. next_balance may be set based on
  4430. * a busy processor. So reset next_balance.
  4431. */
  4432. this_rq->next_balance = next_balance;
  4433. }
  4434. }
  4435. /*
  4436. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  4437. * running tasks off the busiest CPU onto idle CPUs. It requires at
  4438. * least 1 task to be running on each physical CPU where possible, and
  4439. * avoids physical / logical imbalances.
  4440. */
  4441. static int active_load_balance_cpu_stop(void *data)
  4442. {
  4443. struct rq *busiest_rq = data;
  4444. int busiest_cpu = cpu_of(busiest_rq);
  4445. int target_cpu = busiest_rq->push_cpu;
  4446. struct rq *target_rq = cpu_rq(target_cpu);
  4447. struct sched_domain *sd;
  4448. raw_spin_lock_irq(&busiest_rq->lock);
  4449. /* make sure the requested cpu hasn't gone down in the meantime */
  4450. if (unlikely(busiest_cpu != smp_processor_id() ||
  4451. !busiest_rq->active_balance))
  4452. goto out_unlock;
  4453. /* Is there any task to move? */
  4454. if (busiest_rq->nr_running <= 1)
  4455. goto out_unlock;
  4456. /*
  4457. * This condition is "impossible", if it occurs
  4458. * we need to fix it. Originally reported by
  4459. * Bjorn Helgaas on a 128-cpu setup.
  4460. */
  4461. BUG_ON(busiest_rq == target_rq);
  4462. /* move a task from busiest_rq to target_rq */
  4463. double_lock_balance(busiest_rq, target_rq);
  4464. /* Search for an sd spanning us and the target CPU. */
  4465. rcu_read_lock();
  4466. for_each_domain(target_cpu, sd) {
  4467. if ((sd->flags & SD_LOAD_BALANCE) &&
  4468. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  4469. break;
  4470. }
  4471. if (likely(sd)) {
  4472. struct lb_env env = {
  4473. .sd = sd,
  4474. .dst_cpu = target_cpu,
  4475. .dst_rq = target_rq,
  4476. .src_cpu = busiest_rq->cpu,
  4477. .src_rq = busiest_rq,
  4478. .idle = CPU_IDLE,
  4479. };
  4480. schedstat_inc(sd, alb_count);
  4481. if (move_one_task(&env))
  4482. schedstat_inc(sd, alb_pushed);
  4483. else
  4484. schedstat_inc(sd, alb_failed);
  4485. }
  4486. rcu_read_unlock();
  4487. double_unlock_balance(busiest_rq, target_rq);
  4488. out_unlock:
  4489. busiest_rq->active_balance = 0;
  4490. raw_spin_unlock_irq(&busiest_rq->lock);
  4491. return 0;
  4492. }
  4493. #ifdef CONFIG_NO_HZ
  4494. /*
  4495. * idle load balancing details
  4496. * - When one of the busy CPUs notice that there may be an idle rebalancing
  4497. * needed, they will kick the idle load balancer, which then does idle
  4498. * load balancing for all the idle CPUs.
  4499. */
  4500. static struct {
  4501. cpumask_var_t idle_cpus_mask;
  4502. atomic_t nr_cpus;
  4503. unsigned long next_balance; /* in jiffy units */
  4504. } nohz ____cacheline_aligned;
  4505. static inline int find_new_ilb(int call_cpu)
  4506. {
  4507. int ilb = cpumask_first(nohz.idle_cpus_mask);
  4508. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  4509. return ilb;
  4510. return nr_cpu_ids;
  4511. }
  4512. /*
  4513. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  4514. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  4515. * CPU (if there is one).
  4516. */
  4517. static void nohz_balancer_kick(int cpu)
  4518. {
  4519. int ilb_cpu;
  4520. nohz.next_balance++;
  4521. ilb_cpu = find_new_ilb(cpu);
  4522. if (ilb_cpu >= nr_cpu_ids)
  4523. return;
  4524. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  4525. return;
  4526. /*
  4527. * Use smp_send_reschedule() instead of resched_cpu().
  4528. * This way we generate a sched IPI on the target cpu which
  4529. * is idle. And the softirq performing nohz idle load balance
  4530. * will be run before returning from the IPI.
  4531. */
  4532. smp_send_reschedule(ilb_cpu);
  4533. return;
  4534. }
  4535. static inline void nohz_balance_exit_idle(int cpu)
  4536. {
  4537. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  4538. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  4539. atomic_dec(&nohz.nr_cpus);
  4540. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4541. }
  4542. }
  4543. static inline void set_cpu_sd_state_busy(void)
  4544. {
  4545. struct sched_domain *sd;
  4546. int cpu = smp_processor_id();
  4547. if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  4548. return;
  4549. clear_bit(NOHZ_IDLE, nohz_flags(cpu));
  4550. rcu_read_lock();
  4551. for_each_domain(cpu, sd)
  4552. atomic_inc(&sd->groups->sgp->nr_busy_cpus);
  4553. rcu_read_unlock();
  4554. }
  4555. void set_cpu_sd_state_idle(void)
  4556. {
  4557. struct sched_domain *sd;
  4558. int cpu = smp_processor_id();
  4559. if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  4560. return;
  4561. set_bit(NOHZ_IDLE, nohz_flags(cpu));
  4562. rcu_read_lock();
  4563. for_each_domain(cpu, sd)
  4564. atomic_dec(&sd->groups->sgp->nr_busy_cpus);
  4565. rcu_read_unlock();
  4566. }
  4567. /*
  4568. * This routine will record that the cpu is going idle with tick stopped.
  4569. * This info will be used in performing idle load balancing in the future.
  4570. */
  4571. void nohz_balance_enter_idle(int cpu)
  4572. {
  4573. /*
  4574. * If this cpu is going down, then nothing needs to be done.
  4575. */
  4576. if (!cpu_active(cpu))
  4577. return;
  4578. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  4579. return;
  4580. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  4581. atomic_inc(&nohz.nr_cpus);
  4582. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4583. }
  4584. static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
  4585. unsigned long action, void *hcpu)
  4586. {
  4587. switch (action & ~CPU_TASKS_FROZEN) {
  4588. case CPU_DYING:
  4589. nohz_balance_exit_idle(smp_processor_id());
  4590. return NOTIFY_OK;
  4591. default:
  4592. return NOTIFY_DONE;
  4593. }
  4594. }
  4595. #endif
  4596. static DEFINE_SPINLOCK(balancing);
  4597. /*
  4598. * Scale the max load_balance interval with the number of CPUs in the system.
  4599. * This trades load-balance latency on larger machines for less cross talk.
  4600. */
  4601. void update_max_interval(void)
  4602. {
  4603. max_load_balance_interval = HZ*num_online_cpus()/10;
  4604. }
  4605. /*
  4606. * It checks each scheduling domain to see if it is due to be balanced,
  4607. * and initiates a balancing operation if so.
  4608. *
  4609. * Balancing parameters are set up in arch_init_sched_domains.
  4610. */
  4611. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4612. {
  4613. int balance = 1;
  4614. struct rq *rq = cpu_rq(cpu);
  4615. unsigned long interval;
  4616. struct sched_domain *sd;
  4617. /* Earliest time when we have to do rebalance again */
  4618. unsigned long next_balance = jiffies + 60*HZ;
  4619. int update_next_balance = 0;
  4620. int need_serialize;
  4621. update_blocked_averages(cpu);
  4622. rcu_read_lock();
  4623. for_each_domain(cpu, sd) {
  4624. if (!(sd->flags & SD_LOAD_BALANCE))
  4625. continue;
  4626. interval = sd->balance_interval;
  4627. if (idle != CPU_IDLE)
  4628. interval *= sd->busy_factor;
  4629. /* scale ms to jiffies */
  4630. interval = msecs_to_jiffies(interval);
  4631. interval = clamp(interval, 1UL, max_load_balance_interval);
  4632. need_serialize = sd->flags & SD_SERIALIZE;
  4633. if (need_serialize) {
  4634. if (!spin_trylock(&balancing))
  4635. goto out;
  4636. }
  4637. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4638. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4639. /*
  4640. * We've pulled tasks over so either we're no
  4641. * longer idle.
  4642. */
  4643. idle = CPU_NOT_IDLE;
  4644. }
  4645. sd->last_balance = jiffies;
  4646. }
  4647. if (need_serialize)
  4648. spin_unlock(&balancing);
  4649. out:
  4650. if (time_after(next_balance, sd->last_balance + interval)) {
  4651. next_balance = sd->last_balance + interval;
  4652. update_next_balance = 1;
  4653. }
  4654. /*
  4655. * Stop the load balance at this level. There is another
  4656. * CPU in our sched group which is doing load balancing more
  4657. * actively.
  4658. */
  4659. if (!balance)
  4660. break;
  4661. }
  4662. rcu_read_unlock();
  4663. /*
  4664. * next_balance will be updated only when there is a need.
  4665. * When the cpu is attached to null domain for ex, it will not be
  4666. * updated.
  4667. */
  4668. if (likely(update_next_balance))
  4669. rq->next_balance = next_balance;
  4670. }
  4671. #ifdef CONFIG_NO_HZ
  4672. /*
  4673. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  4674. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4675. */
  4676. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  4677. {
  4678. struct rq *this_rq = cpu_rq(this_cpu);
  4679. struct rq *rq;
  4680. int balance_cpu;
  4681. if (idle != CPU_IDLE ||
  4682. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  4683. goto end;
  4684. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  4685. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  4686. continue;
  4687. /*
  4688. * If this cpu gets work to do, stop the load balancing
  4689. * work being done for other cpus. Next load
  4690. * balancing owner will pick it up.
  4691. */
  4692. if (need_resched())
  4693. break;
  4694. rq = cpu_rq(balance_cpu);
  4695. raw_spin_lock_irq(&rq->lock);
  4696. update_rq_clock(rq);
  4697. update_idle_cpu_load(rq);
  4698. raw_spin_unlock_irq(&rq->lock);
  4699. rebalance_domains(balance_cpu, CPU_IDLE);
  4700. if (time_after(this_rq->next_balance, rq->next_balance))
  4701. this_rq->next_balance = rq->next_balance;
  4702. }
  4703. nohz.next_balance = this_rq->next_balance;
  4704. end:
  4705. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  4706. }
  4707. /*
  4708. * Current heuristic for kicking the idle load balancer in the presence
  4709. * of an idle cpu is the system.
  4710. * - This rq has more than one task.
  4711. * - At any scheduler domain level, this cpu's scheduler group has multiple
  4712. * busy cpu's exceeding the group's power.
  4713. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  4714. * domain span are idle.
  4715. */
  4716. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  4717. {
  4718. unsigned long now = jiffies;
  4719. struct sched_domain *sd;
  4720. if (unlikely(idle_cpu(cpu)))
  4721. return 0;
  4722. /*
  4723. * We may be recently in ticked or tickless idle mode. At the first
  4724. * busy tick after returning from idle, we will update the busy stats.
  4725. */
  4726. set_cpu_sd_state_busy();
  4727. nohz_balance_exit_idle(cpu);
  4728. /*
  4729. * None are in tickless mode and hence no need for NOHZ idle load
  4730. * balancing.
  4731. */
  4732. if (likely(!atomic_read(&nohz.nr_cpus)))
  4733. return 0;
  4734. if (time_before(now, nohz.next_balance))
  4735. return 0;
  4736. if (rq->nr_running >= 2)
  4737. goto need_kick;
  4738. rcu_read_lock();
  4739. for_each_domain(cpu, sd) {
  4740. struct sched_group *sg = sd->groups;
  4741. struct sched_group_power *sgp = sg->sgp;
  4742. int nr_busy = atomic_read(&sgp->nr_busy_cpus);
  4743. if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
  4744. goto need_kick_unlock;
  4745. if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
  4746. && (cpumask_first_and(nohz.idle_cpus_mask,
  4747. sched_domain_span(sd)) < cpu))
  4748. goto need_kick_unlock;
  4749. if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
  4750. break;
  4751. }
  4752. rcu_read_unlock();
  4753. return 0;
  4754. need_kick_unlock:
  4755. rcu_read_unlock();
  4756. need_kick:
  4757. return 1;
  4758. }
  4759. #else
  4760. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  4761. #endif
  4762. /*
  4763. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4764. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  4765. */
  4766. static void run_rebalance_domains(struct softirq_action *h)
  4767. {
  4768. int this_cpu = smp_processor_id();
  4769. struct rq *this_rq = cpu_rq(this_cpu);
  4770. enum cpu_idle_type idle = this_rq->idle_balance ?
  4771. CPU_IDLE : CPU_NOT_IDLE;
  4772. rebalance_domains(this_cpu, idle);
  4773. /*
  4774. * If this cpu has a pending nohz_balance_kick, then do the
  4775. * balancing on behalf of the other idle cpus whose ticks are
  4776. * stopped.
  4777. */
  4778. nohz_idle_balance(this_cpu, idle);
  4779. }
  4780. static inline int on_null_domain(int cpu)
  4781. {
  4782. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  4783. }
  4784. /*
  4785. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4786. */
  4787. void trigger_load_balance(struct rq *rq, int cpu)
  4788. {
  4789. /* Don't need to rebalance while attached to NULL domain */
  4790. if (time_after_eq(jiffies, rq->next_balance) &&
  4791. likely(!on_null_domain(cpu)))
  4792. raise_softirq(SCHED_SOFTIRQ);
  4793. #ifdef CONFIG_NO_HZ
  4794. if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  4795. nohz_balancer_kick(cpu);
  4796. #endif
  4797. }
  4798. static void rq_online_fair(struct rq *rq)
  4799. {
  4800. update_sysctl();
  4801. }
  4802. static void rq_offline_fair(struct rq *rq)
  4803. {
  4804. update_sysctl();
  4805. /* Ensure any throttled groups are reachable by pick_next_task */
  4806. unthrottle_offline_cfs_rqs(rq);
  4807. }
  4808. #endif /* CONFIG_SMP */
  4809. /*
  4810. * scheduler tick hitting a task of our scheduling class:
  4811. */
  4812. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  4813. {
  4814. struct cfs_rq *cfs_rq;
  4815. struct sched_entity *se = &curr->se;
  4816. for_each_sched_entity(se) {
  4817. cfs_rq = cfs_rq_of(se);
  4818. entity_tick(cfs_rq, se, queued);
  4819. }
  4820. if (sched_feat_numa(NUMA))
  4821. task_tick_numa(rq, curr);
  4822. update_rq_runnable_avg(rq, 1);
  4823. }
  4824. /*
  4825. * called on fork with the child task as argument from the parent's context
  4826. * - child not yet on the tasklist
  4827. * - preemption disabled
  4828. */
  4829. static void task_fork_fair(struct task_struct *p)
  4830. {
  4831. struct cfs_rq *cfs_rq;
  4832. struct sched_entity *se = &p->se, *curr;
  4833. int this_cpu = smp_processor_id();
  4834. struct rq *rq = this_rq();
  4835. unsigned long flags;
  4836. raw_spin_lock_irqsave(&rq->lock, flags);
  4837. update_rq_clock(rq);
  4838. cfs_rq = task_cfs_rq(current);
  4839. curr = cfs_rq->curr;
  4840. if (unlikely(task_cpu(p) != this_cpu)) {
  4841. rcu_read_lock();
  4842. __set_task_cpu(p, this_cpu);
  4843. rcu_read_unlock();
  4844. }
  4845. update_curr(cfs_rq);
  4846. if (curr)
  4847. se->vruntime = curr->vruntime;
  4848. place_entity(cfs_rq, se, 1);
  4849. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  4850. /*
  4851. * Upon rescheduling, sched_class::put_prev_task() will place
  4852. * 'current' within the tree based on its new key value.
  4853. */
  4854. swap(curr->vruntime, se->vruntime);
  4855. resched_task(rq->curr);
  4856. }
  4857. se->vruntime -= cfs_rq->min_vruntime;
  4858. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4859. }
  4860. /*
  4861. * Priority of the task has changed. Check to see if we preempt
  4862. * the current task.
  4863. */
  4864. static void
  4865. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  4866. {
  4867. if (!p->se.on_rq)
  4868. return;
  4869. /*
  4870. * Reschedule if we are currently running on this runqueue and
  4871. * our priority decreased, or if we are not currently running on
  4872. * this runqueue and our priority is higher than the current's
  4873. */
  4874. if (rq->curr == p) {
  4875. if (p->prio > oldprio)
  4876. resched_task(rq->curr);
  4877. } else
  4878. check_preempt_curr(rq, p, 0);
  4879. }
  4880. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  4881. {
  4882. struct sched_entity *se = &p->se;
  4883. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4884. /*
  4885. * Ensure the task's vruntime is normalized, so that when its
  4886. * switched back to the fair class the enqueue_entity(.flags=0) will
  4887. * do the right thing.
  4888. *
  4889. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  4890. * have normalized the vruntime, if it was !on_rq, then only when
  4891. * the task is sleeping will it still have non-normalized vruntime.
  4892. */
  4893. if (!se->on_rq && p->state != TASK_RUNNING) {
  4894. /*
  4895. * Fix up our vruntime so that the current sleep doesn't
  4896. * cause 'unlimited' sleep bonus.
  4897. */
  4898. place_entity(cfs_rq, se, 0);
  4899. se->vruntime -= cfs_rq->min_vruntime;
  4900. }
  4901. #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
  4902. /*
  4903. * Remove our load from contribution when we leave sched_fair
  4904. * and ensure we don't carry in an old decay_count if we
  4905. * switch back.
  4906. */
  4907. if (p->se.avg.decay_count) {
  4908. struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
  4909. __synchronize_entity_decay(&p->se);
  4910. subtract_blocked_load_contrib(cfs_rq,
  4911. p->se.avg.load_avg_contrib);
  4912. }
  4913. #endif
  4914. }
  4915. /*
  4916. * We switched to the sched_fair class.
  4917. */
  4918. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  4919. {
  4920. if (!p->se.on_rq)
  4921. return;
  4922. /*
  4923. * We were most likely switched from sched_rt, so
  4924. * kick off the schedule if running, otherwise just see
  4925. * if we can still preempt the current task.
  4926. */
  4927. if (rq->curr == p)
  4928. resched_task(rq->curr);
  4929. else
  4930. check_preempt_curr(rq, p, 0);
  4931. }
  4932. /* Account for a task changing its policy or group.
  4933. *
  4934. * This routine is mostly called to set cfs_rq->curr field when a task
  4935. * migrates between groups/classes.
  4936. */
  4937. static void set_curr_task_fair(struct rq *rq)
  4938. {
  4939. struct sched_entity *se = &rq->curr->se;
  4940. for_each_sched_entity(se) {
  4941. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4942. set_next_entity(cfs_rq, se);
  4943. /* ensure bandwidth has been allocated on our new cfs_rq */
  4944. account_cfs_rq_runtime(cfs_rq, 0);
  4945. }
  4946. }
  4947. void init_cfs_rq(struct cfs_rq *cfs_rq)
  4948. {
  4949. cfs_rq->tasks_timeline = RB_ROOT;
  4950. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  4951. #ifndef CONFIG_64BIT
  4952. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  4953. #endif
  4954. #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
  4955. atomic64_set(&cfs_rq->decay_counter, 1);
  4956. atomic64_set(&cfs_rq->removed_load, 0);
  4957. #endif
  4958. }
  4959. #ifdef CONFIG_FAIR_GROUP_SCHED
  4960. static void task_move_group_fair(struct task_struct *p, int on_rq)
  4961. {
  4962. struct cfs_rq *cfs_rq;
  4963. /*
  4964. * If the task was not on the rq at the time of this cgroup movement
  4965. * it must have been asleep, sleeping tasks keep their ->vruntime
  4966. * absolute on their old rq until wakeup (needed for the fair sleeper
  4967. * bonus in place_entity()).
  4968. *
  4969. * If it was on the rq, we've just 'preempted' it, which does convert
  4970. * ->vruntime to a relative base.
  4971. *
  4972. * Make sure both cases convert their relative position when migrating
  4973. * to another cgroup's rq. This does somewhat interfere with the
  4974. * fair sleeper stuff for the first placement, but who cares.
  4975. */
  4976. /*
  4977. * When !on_rq, vruntime of the task has usually NOT been normalized.
  4978. * But there are some cases where it has already been normalized:
  4979. *
  4980. * - Moving a forked child which is waiting for being woken up by
  4981. * wake_up_new_task().
  4982. * - Moving a task which has been woken up by try_to_wake_up() and
  4983. * waiting for actually being woken up by sched_ttwu_pending().
  4984. *
  4985. * To prevent boost or penalty in the new cfs_rq caused by delta
  4986. * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
  4987. */
  4988. if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
  4989. on_rq = 1;
  4990. if (!on_rq)
  4991. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  4992. set_task_rq(p, task_cpu(p));
  4993. if (!on_rq) {
  4994. cfs_rq = cfs_rq_of(&p->se);
  4995. p->se.vruntime += cfs_rq->min_vruntime;
  4996. #ifdef CONFIG_SMP
  4997. /*
  4998. * migrate_task_rq_fair() will have removed our previous
  4999. * contribution, but we must synchronize for ongoing future
  5000. * decay.
  5001. */
  5002. p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
  5003. cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
  5004. #endif
  5005. }
  5006. }
  5007. void free_fair_sched_group(struct task_group *tg)
  5008. {
  5009. int i;
  5010. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  5011. for_each_possible_cpu(i) {
  5012. if (tg->cfs_rq)
  5013. kfree(tg->cfs_rq[i]);
  5014. if (tg->se)
  5015. kfree(tg->se[i]);
  5016. }
  5017. kfree(tg->cfs_rq);
  5018. kfree(tg->se);
  5019. }
  5020. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  5021. {
  5022. struct cfs_rq *cfs_rq;
  5023. struct sched_entity *se;
  5024. int i;
  5025. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  5026. if (!tg->cfs_rq)
  5027. goto err;
  5028. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  5029. if (!tg->se)
  5030. goto err;
  5031. tg->shares = NICE_0_LOAD;
  5032. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  5033. for_each_possible_cpu(i) {
  5034. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  5035. GFP_KERNEL, cpu_to_node(i));
  5036. if (!cfs_rq)
  5037. goto err;
  5038. se = kzalloc_node(sizeof(struct sched_entity),
  5039. GFP_KERNEL, cpu_to_node(i));
  5040. if (!se)
  5041. goto err_free_rq;
  5042. init_cfs_rq(cfs_rq);
  5043. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  5044. }
  5045. return 1;
  5046. err_free_rq:
  5047. kfree(cfs_rq);
  5048. err:
  5049. return 0;
  5050. }
  5051. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  5052. {
  5053. struct rq *rq = cpu_rq(cpu);
  5054. unsigned long flags;
  5055. /*
  5056. * Only empty task groups can be destroyed; so we can speculatively
  5057. * check on_list without danger of it being re-added.
  5058. */
  5059. if (!tg->cfs_rq[cpu]->on_list)
  5060. return;
  5061. raw_spin_lock_irqsave(&rq->lock, flags);
  5062. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  5063. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5064. }
  5065. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  5066. struct sched_entity *se, int cpu,
  5067. struct sched_entity *parent)
  5068. {
  5069. struct rq *rq = cpu_rq(cpu);
  5070. cfs_rq->tg = tg;
  5071. cfs_rq->rq = rq;
  5072. init_cfs_rq_runtime(cfs_rq);
  5073. tg->cfs_rq[cpu] = cfs_rq;
  5074. tg->se[cpu] = se;
  5075. /* se could be NULL for root_task_group */
  5076. if (!se)
  5077. return;
  5078. if (!parent)
  5079. se->cfs_rq = &rq->cfs;
  5080. else
  5081. se->cfs_rq = parent->my_q;
  5082. se->my_q = cfs_rq;
  5083. update_load_set(&se->load, 0);
  5084. se->parent = parent;
  5085. }
  5086. static DEFINE_MUTEX(shares_mutex);
  5087. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  5088. {
  5089. int i;
  5090. unsigned long flags;
  5091. /*
  5092. * We can't change the weight of the root cgroup.
  5093. */
  5094. if (!tg->se[0])
  5095. return -EINVAL;
  5096. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  5097. mutex_lock(&shares_mutex);
  5098. if (tg->shares == shares)
  5099. goto done;
  5100. tg->shares = shares;
  5101. for_each_possible_cpu(i) {
  5102. struct rq *rq = cpu_rq(i);
  5103. struct sched_entity *se;
  5104. se = tg->se[i];
  5105. /* Propagate contribution to hierarchy */
  5106. raw_spin_lock_irqsave(&rq->lock, flags);
  5107. for_each_sched_entity(se)
  5108. update_cfs_shares(group_cfs_rq(se));
  5109. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5110. }
  5111. done:
  5112. mutex_unlock(&shares_mutex);
  5113. return 0;
  5114. }
  5115. #else /* CONFIG_FAIR_GROUP_SCHED */
  5116. void free_fair_sched_group(struct task_group *tg) { }
  5117. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  5118. {
  5119. return 1;
  5120. }
  5121. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  5122. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5123. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  5124. {
  5125. struct sched_entity *se = &task->se;
  5126. unsigned int rr_interval = 0;
  5127. /*
  5128. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  5129. * idle runqueue:
  5130. */
  5131. if (rq->cfs.load.weight)
  5132. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5133. return rr_interval;
  5134. }
  5135. /*
  5136. * All the scheduling class methods:
  5137. */
  5138. const struct sched_class fair_sched_class = {
  5139. .next = &idle_sched_class,
  5140. .enqueue_task = enqueue_task_fair,
  5141. .dequeue_task = dequeue_task_fair,
  5142. .yield_task = yield_task_fair,
  5143. .yield_to_task = yield_to_task_fair,
  5144. .check_preempt_curr = check_preempt_wakeup,
  5145. .pick_next_task = pick_next_task_fair,
  5146. .put_prev_task = put_prev_task_fair,
  5147. #ifdef CONFIG_SMP
  5148. .select_task_rq = select_task_rq_fair,
  5149. #ifdef CONFIG_FAIR_GROUP_SCHED
  5150. .migrate_task_rq = migrate_task_rq_fair,
  5151. #endif
  5152. .rq_online = rq_online_fair,
  5153. .rq_offline = rq_offline_fair,
  5154. .task_waking = task_waking_fair,
  5155. #endif
  5156. .set_curr_task = set_curr_task_fair,
  5157. .task_tick = task_tick_fair,
  5158. .task_fork = task_fork_fair,
  5159. .prio_changed = prio_changed_fair,
  5160. .switched_from = switched_from_fair,
  5161. .switched_to = switched_to_fair,
  5162. .get_rr_interval = get_rr_interval_fair,
  5163. #ifdef CONFIG_FAIR_GROUP_SCHED
  5164. .task_move_group = task_move_group_fair,
  5165. #endif
  5166. };
  5167. #ifdef CONFIG_SCHED_DEBUG
  5168. void print_cfs_stats(struct seq_file *m, int cpu)
  5169. {
  5170. struct cfs_rq *cfs_rq;
  5171. rcu_read_lock();
  5172. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  5173. print_cfs_rq(m, cpu, cfs_rq);
  5174. rcu_read_unlock();
  5175. }
  5176. #endif
  5177. __init void init_sched_fair_class(void)
  5178. {
  5179. #ifdef CONFIG_SMP
  5180. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  5181. #ifdef CONFIG_NO_HZ
  5182. nohz.next_balance = jiffies;
  5183. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  5184. cpu_notifier(sched_ilb_notifier, 0);
  5185. #endif
  5186. #endif /* SMP */
  5187. }