core.c 196 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_sched.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. *
  311. * Its all a bit involved since we cannot program an hrt while holding the
  312. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  313. * reschedule event.
  314. *
  315. * When we get rescheduled we reprogram the hrtick_timer outside of the
  316. * rq->lock.
  317. */
  318. static void hrtick_clear(struct rq *rq)
  319. {
  320. if (hrtimer_active(&rq->hrtick_timer))
  321. hrtimer_cancel(&rq->hrtick_timer);
  322. }
  323. /*
  324. * High-resolution timer tick.
  325. * Runs from hardirq context with interrupts disabled.
  326. */
  327. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  328. {
  329. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  330. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  331. raw_spin_lock(&rq->lock);
  332. update_rq_clock(rq);
  333. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  334. raw_spin_unlock(&rq->lock);
  335. return HRTIMER_NORESTART;
  336. }
  337. #ifdef CONFIG_SMP
  338. /*
  339. * called from hardirq (IPI) context
  340. */
  341. static void __hrtick_start(void *arg)
  342. {
  343. struct rq *rq = arg;
  344. raw_spin_lock(&rq->lock);
  345. hrtimer_restart(&rq->hrtick_timer);
  346. rq->hrtick_csd_pending = 0;
  347. raw_spin_unlock(&rq->lock);
  348. }
  349. /*
  350. * Called to set the hrtick timer state.
  351. *
  352. * called with rq->lock held and irqs disabled
  353. */
  354. void hrtick_start(struct rq *rq, u64 delay)
  355. {
  356. struct hrtimer *timer = &rq->hrtick_timer;
  357. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  358. hrtimer_set_expires(timer, time);
  359. if (rq == this_rq()) {
  360. hrtimer_restart(timer);
  361. } else if (!rq->hrtick_csd_pending) {
  362. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  363. rq->hrtick_csd_pending = 1;
  364. }
  365. }
  366. static int
  367. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  368. {
  369. int cpu = (int)(long)hcpu;
  370. switch (action) {
  371. case CPU_UP_CANCELED:
  372. case CPU_UP_CANCELED_FROZEN:
  373. case CPU_DOWN_PREPARE:
  374. case CPU_DOWN_PREPARE_FROZEN:
  375. case CPU_DEAD:
  376. case CPU_DEAD_FROZEN:
  377. hrtick_clear(cpu_rq(cpu));
  378. return NOTIFY_OK;
  379. }
  380. return NOTIFY_DONE;
  381. }
  382. static __init void init_hrtick(void)
  383. {
  384. hotcpu_notifier(hotplug_hrtick, 0);
  385. }
  386. #else
  387. /*
  388. * Called to set the hrtick timer state.
  389. *
  390. * called with rq->lock held and irqs disabled
  391. */
  392. void hrtick_start(struct rq *rq, u64 delay)
  393. {
  394. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  395. HRTIMER_MODE_REL_PINNED, 0);
  396. }
  397. static inline void init_hrtick(void)
  398. {
  399. }
  400. #endif /* CONFIG_SMP */
  401. static void init_rq_hrtick(struct rq *rq)
  402. {
  403. #ifdef CONFIG_SMP
  404. rq->hrtick_csd_pending = 0;
  405. rq->hrtick_csd.flags = 0;
  406. rq->hrtick_csd.func = __hrtick_start;
  407. rq->hrtick_csd.info = rq;
  408. #endif
  409. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  410. rq->hrtick_timer.function = hrtick;
  411. }
  412. #else /* CONFIG_SCHED_HRTICK */
  413. static inline void hrtick_clear(struct rq *rq)
  414. {
  415. }
  416. static inline void init_rq_hrtick(struct rq *rq)
  417. {
  418. }
  419. static inline void init_hrtick(void)
  420. {
  421. }
  422. #endif /* CONFIG_SCHED_HRTICK */
  423. /*
  424. * resched_task - mark a task 'to be rescheduled now'.
  425. *
  426. * On UP this means the setting of the need_resched flag, on SMP it
  427. * might also involve a cross-CPU call to trigger the scheduler on
  428. * the target CPU.
  429. */
  430. #ifdef CONFIG_SMP
  431. #ifndef tsk_is_polling
  432. #define tsk_is_polling(t) 0
  433. #endif
  434. void resched_task(struct task_struct *p)
  435. {
  436. int cpu;
  437. assert_raw_spin_locked(&task_rq(p)->lock);
  438. if (test_tsk_need_resched(p))
  439. return;
  440. set_tsk_need_resched(p);
  441. cpu = task_cpu(p);
  442. if (cpu == smp_processor_id())
  443. return;
  444. /* NEED_RESCHED must be visible before we test polling */
  445. smp_mb();
  446. if (!tsk_is_polling(p))
  447. smp_send_reschedule(cpu);
  448. }
  449. void resched_cpu(int cpu)
  450. {
  451. struct rq *rq = cpu_rq(cpu);
  452. unsigned long flags;
  453. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  454. return;
  455. resched_task(cpu_curr(cpu));
  456. raw_spin_unlock_irqrestore(&rq->lock, flags);
  457. }
  458. #ifdef CONFIG_NO_HZ
  459. /*
  460. * In the semi idle case, use the nearest busy cpu for migrating timers
  461. * from an idle cpu. This is good for power-savings.
  462. *
  463. * We don't do similar optimization for completely idle system, as
  464. * selecting an idle cpu will add more delays to the timers than intended
  465. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  466. */
  467. int get_nohz_timer_target(void)
  468. {
  469. int cpu = smp_processor_id();
  470. int i;
  471. struct sched_domain *sd;
  472. rcu_read_lock();
  473. for_each_domain(cpu, sd) {
  474. for_each_cpu(i, sched_domain_span(sd)) {
  475. if (!idle_cpu(i)) {
  476. cpu = i;
  477. goto unlock;
  478. }
  479. }
  480. }
  481. unlock:
  482. rcu_read_unlock();
  483. return cpu;
  484. }
  485. /*
  486. * When add_timer_on() enqueues a timer into the timer wheel of an
  487. * idle CPU then this timer might expire before the next timer event
  488. * which is scheduled to wake up that CPU. In case of a completely
  489. * idle system the next event might even be infinite time into the
  490. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  491. * leaves the inner idle loop so the newly added timer is taken into
  492. * account when the CPU goes back to idle and evaluates the timer
  493. * wheel for the next timer event.
  494. */
  495. void wake_up_idle_cpu(int cpu)
  496. {
  497. struct rq *rq = cpu_rq(cpu);
  498. if (cpu == smp_processor_id())
  499. return;
  500. /*
  501. * This is safe, as this function is called with the timer
  502. * wheel base lock of (cpu) held. When the CPU is on the way
  503. * to idle and has not yet set rq->curr to idle then it will
  504. * be serialized on the timer wheel base lock and take the new
  505. * timer into account automatically.
  506. */
  507. if (rq->curr != rq->idle)
  508. return;
  509. /*
  510. * We can set TIF_RESCHED on the idle task of the other CPU
  511. * lockless. The worst case is that the other CPU runs the
  512. * idle task through an additional NOOP schedule()
  513. */
  514. set_tsk_need_resched(rq->idle);
  515. /* NEED_RESCHED must be visible before we test polling */
  516. smp_mb();
  517. if (!tsk_is_polling(rq->idle))
  518. smp_send_reschedule(cpu);
  519. }
  520. static inline bool got_nohz_idle_kick(void)
  521. {
  522. int cpu = smp_processor_id();
  523. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  524. }
  525. #else /* CONFIG_NO_HZ */
  526. static inline bool got_nohz_idle_kick(void)
  527. {
  528. return false;
  529. }
  530. #endif /* CONFIG_NO_HZ */
  531. void sched_avg_update(struct rq *rq)
  532. {
  533. s64 period = sched_avg_period();
  534. while ((s64)(rq->clock - rq->age_stamp) > period) {
  535. /*
  536. * Inline assembly required to prevent the compiler
  537. * optimising this loop into a divmod call.
  538. * See __iter_div_u64_rem() for another example of this.
  539. */
  540. asm("" : "+rm" (rq->age_stamp));
  541. rq->age_stamp += period;
  542. rq->rt_avg /= 2;
  543. }
  544. }
  545. #else /* !CONFIG_SMP */
  546. void resched_task(struct task_struct *p)
  547. {
  548. assert_raw_spin_locked(&task_rq(p)->lock);
  549. set_tsk_need_resched(p);
  550. }
  551. #endif /* CONFIG_SMP */
  552. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  553. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  554. /*
  555. * Iterate task_group tree rooted at *from, calling @down when first entering a
  556. * node and @up when leaving it for the final time.
  557. *
  558. * Caller must hold rcu_lock or sufficient equivalent.
  559. */
  560. int walk_tg_tree_from(struct task_group *from,
  561. tg_visitor down, tg_visitor up, void *data)
  562. {
  563. struct task_group *parent, *child;
  564. int ret;
  565. parent = from;
  566. down:
  567. ret = (*down)(parent, data);
  568. if (ret)
  569. goto out;
  570. list_for_each_entry_rcu(child, &parent->children, siblings) {
  571. parent = child;
  572. goto down;
  573. up:
  574. continue;
  575. }
  576. ret = (*up)(parent, data);
  577. if (ret || parent == from)
  578. goto out;
  579. child = parent;
  580. parent = parent->parent;
  581. if (parent)
  582. goto up;
  583. out:
  584. return ret;
  585. }
  586. int tg_nop(struct task_group *tg, void *data)
  587. {
  588. return 0;
  589. }
  590. #endif
  591. static void set_load_weight(struct task_struct *p)
  592. {
  593. int prio = p->static_prio - MAX_RT_PRIO;
  594. struct load_weight *load = &p->se.load;
  595. /*
  596. * SCHED_IDLE tasks get minimal weight:
  597. */
  598. if (p->policy == SCHED_IDLE) {
  599. load->weight = scale_load(WEIGHT_IDLEPRIO);
  600. load->inv_weight = WMULT_IDLEPRIO;
  601. return;
  602. }
  603. load->weight = scale_load(prio_to_weight[prio]);
  604. load->inv_weight = prio_to_wmult[prio];
  605. }
  606. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  607. {
  608. update_rq_clock(rq);
  609. sched_info_queued(p);
  610. p->sched_class->enqueue_task(rq, p, flags);
  611. }
  612. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  613. {
  614. update_rq_clock(rq);
  615. sched_info_dequeued(p);
  616. p->sched_class->dequeue_task(rq, p, flags);
  617. }
  618. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  619. {
  620. if (task_contributes_to_load(p))
  621. rq->nr_uninterruptible--;
  622. enqueue_task(rq, p, flags);
  623. }
  624. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  625. {
  626. if (task_contributes_to_load(p))
  627. rq->nr_uninterruptible++;
  628. dequeue_task(rq, p, flags);
  629. }
  630. static void update_rq_clock_task(struct rq *rq, s64 delta)
  631. {
  632. /*
  633. * In theory, the compile should just see 0 here, and optimize out the call
  634. * to sched_rt_avg_update. But I don't trust it...
  635. */
  636. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  637. s64 steal = 0, irq_delta = 0;
  638. #endif
  639. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  640. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  641. /*
  642. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  643. * this case when a previous update_rq_clock() happened inside a
  644. * {soft,}irq region.
  645. *
  646. * When this happens, we stop ->clock_task and only update the
  647. * prev_irq_time stamp to account for the part that fit, so that a next
  648. * update will consume the rest. This ensures ->clock_task is
  649. * monotonic.
  650. *
  651. * It does however cause some slight miss-attribution of {soft,}irq
  652. * time, a more accurate solution would be to update the irq_time using
  653. * the current rq->clock timestamp, except that would require using
  654. * atomic ops.
  655. */
  656. if (irq_delta > delta)
  657. irq_delta = delta;
  658. rq->prev_irq_time += irq_delta;
  659. delta -= irq_delta;
  660. #endif
  661. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  662. if (static_key_false((&paravirt_steal_rq_enabled))) {
  663. u64 st;
  664. steal = paravirt_steal_clock(cpu_of(rq));
  665. steal -= rq->prev_steal_time_rq;
  666. if (unlikely(steal > delta))
  667. steal = delta;
  668. st = steal_ticks(steal);
  669. steal = st * TICK_NSEC;
  670. rq->prev_steal_time_rq += steal;
  671. delta -= steal;
  672. }
  673. #endif
  674. rq->clock_task += delta;
  675. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  676. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  677. sched_rt_avg_update(rq, irq_delta + steal);
  678. #endif
  679. }
  680. void sched_set_stop_task(int cpu, struct task_struct *stop)
  681. {
  682. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  683. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  684. if (stop) {
  685. /*
  686. * Make it appear like a SCHED_FIFO task, its something
  687. * userspace knows about and won't get confused about.
  688. *
  689. * Also, it will make PI more or less work without too
  690. * much confusion -- but then, stop work should not
  691. * rely on PI working anyway.
  692. */
  693. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  694. stop->sched_class = &stop_sched_class;
  695. }
  696. cpu_rq(cpu)->stop = stop;
  697. if (old_stop) {
  698. /*
  699. * Reset it back to a normal scheduling class so that
  700. * it can die in pieces.
  701. */
  702. old_stop->sched_class = &rt_sched_class;
  703. }
  704. }
  705. /*
  706. * __normal_prio - return the priority that is based on the static prio
  707. */
  708. static inline int __normal_prio(struct task_struct *p)
  709. {
  710. return p->static_prio;
  711. }
  712. /*
  713. * Calculate the expected normal priority: i.e. priority
  714. * without taking RT-inheritance into account. Might be
  715. * boosted by interactivity modifiers. Changes upon fork,
  716. * setprio syscalls, and whenever the interactivity
  717. * estimator recalculates.
  718. */
  719. static inline int normal_prio(struct task_struct *p)
  720. {
  721. int prio;
  722. if (task_has_rt_policy(p))
  723. prio = MAX_RT_PRIO-1 - p->rt_priority;
  724. else
  725. prio = __normal_prio(p);
  726. return prio;
  727. }
  728. /*
  729. * Calculate the current priority, i.e. the priority
  730. * taken into account by the scheduler. This value might
  731. * be boosted by RT tasks, or might be boosted by
  732. * interactivity modifiers. Will be RT if the task got
  733. * RT-boosted. If not then it returns p->normal_prio.
  734. */
  735. static int effective_prio(struct task_struct *p)
  736. {
  737. p->normal_prio = normal_prio(p);
  738. /*
  739. * If we are RT tasks or we were boosted to RT priority,
  740. * keep the priority unchanged. Otherwise, update priority
  741. * to the normal priority:
  742. */
  743. if (!rt_prio(p->prio))
  744. return p->normal_prio;
  745. return p->prio;
  746. }
  747. /**
  748. * task_curr - is this task currently executing on a CPU?
  749. * @p: the task in question.
  750. */
  751. inline int task_curr(const struct task_struct *p)
  752. {
  753. return cpu_curr(task_cpu(p)) == p;
  754. }
  755. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  756. const struct sched_class *prev_class,
  757. int oldprio)
  758. {
  759. if (prev_class != p->sched_class) {
  760. if (prev_class->switched_from)
  761. prev_class->switched_from(rq, p);
  762. p->sched_class->switched_to(rq, p);
  763. } else if (oldprio != p->prio)
  764. p->sched_class->prio_changed(rq, p, oldprio);
  765. }
  766. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  767. {
  768. const struct sched_class *class;
  769. if (p->sched_class == rq->curr->sched_class) {
  770. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  771. } else {
  772. for_each_class(class) {
  773. if (class == rq->curr->sched_class)
  774. break;
  775. if (class == p->sched_class) {
  776. resched_task(rq->curr);
  777. break;
  778. }
  779. }
  780. }
  781. /*
  782. * A queue event has occurred, and we're going to schedule. In
  783. * this case, we can save a useless back to back clock update.
  784. */
  785. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  786. rq->skip_clock_update = 1;
  787. }
  788. static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
  789. void register_task_migration_notifier(struct notifier_block *n)
  790. {
  791. atomic_notifier_chain_register(&task_migration_notifier, n);
  792. }
  793. #ifdef CONFIG_SMP
  794. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  795. {
  796. #ifdef CONFIG_SCHED_DEBUG
  797. /*
  798. * We should never call set_task_cpu() on a blocked task,
  799. * ttwu() will sort out the placement.
  800. */
  801. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  802. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  803. #ifdef CONFIG_LOCKDEP
  804. /*
  805. * The caller should hold either p->pi_lock or rq->lock, when changing
  806. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  807. *
  808. * sched_move_task() holds both and thus holding either pins the cgroup,
  809. * see task_group().
  810. *
  811. * Furthermore, all task_rq users should acquire both locks, see
  812. * task_rq_lock().
  813. */
  814. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  815. lockdep_is_held(&task_rq(p)->lock)));
  816. #endif
  817. #endif
  818. trace_sched_migrate_task(p, new_cpu);
  819. if (task_cpu(p) != new_cpu) {
  820. struct task_migration_notifier tmn;
  821. if (p->sched_class->migrate_task_rq)
  822. p->sched_class->migrate_task_rq(p, new_cpu);
  823. p->se.nr_migrations++;
  824. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  825. tmn.task = p;
  826. tmn.from_cpu = task_cpu(p);
  827. tmn.to_cpu = new_cpu;
  828. atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
  829. }
  830. __set_task_cpu(p, new_cpu);
  831. }
  832. struct migration_arg {
  833. struct task_struct *task;
  834. int dest_cpu;
  835. };
  836. static int migration_cpu_stop(void *data);
  837. /*
  838. * wait_task_inactive - wait for a thread to unschedule.
  839. *
  840. * If @match_state is nonzero, it's the @p->state value just checked and
  841. * not expected to change. If it changes, i.e. @p might have woken up,
  842. * then return zero. When we succeed in waiting for @p to be off its CPU,
  843. * we return a positive number (its total switch count). If a second call
  844. * a short while later returns the same number, the caller can be sure that
  845. * @p has remained unscheduled the whole time.
  846. *
  847. * The caller must ensure that the task *will* unschedule sometime soon,
  848. * else this function might spin for a *long* time. This function can't
  849. * be called with interrupts off, or it may introduce deadlock with
  850. * smp_call_function() if an IPI is sent by the same process we are
  851. * waiting to become inactive.
  852. */
  853. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  854. {
  855. unsigned long flags;
  856. int running, on_rq;
  857. unsigned long ncsw;
  858. struct rq *rq;
  859. for (;;) {
  860. /*
  861. * We do the initial early heuristics without holding
  862. * any task-queue locks at all. We'll only try to get
  863. * the runqueue lock when things look like they will
  864. * work out!
  865. */
  866. rq = task_rq(p);
  867. /*
  868. * If the task is actively running on another CPU
  869. * still, just relax and busy-wait without holding
  870. * any locks.
  871. *
  872. * NOTE! Since we don't hold any locks, it's not
  873. * even sure that "rq" stays as the right runqueue!
  874. * But we don't care, since "task_running()" will
  875. * return false if the runqueue has changed and p
  876. * is actually now running somewhere else!
  877. */
  878. while (task_running(rq, p)) {
  879. if (match_state && unlikely(p->state != match_state))
  880. return 0;
  881. cpu_relax();
  882. }
  883. /*
  884. * Ok, time to look more closely! We need the rq
  885. * lock now, to be *sure*. If we're wrong, we'll
  886. * just go back and repeat.
  887. */
  888. rq = task_rq_lock(p, &flags);
  889. trace_sched_wait_task(p);
  890. running = task_running(rq, p);
  891. on_rq = p->on_rq;
  892. ncsw = 0;
  893. if (!match_state || p->state == match_state)
  894. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  895. task_rq_unlock(rq, p, &flags);
  896. /*
  897. * If it changed from the expected state, bail out now.
  898. */
  899. if (unlikely(!ncsw))
  900. break;
  901. /*
  902. * Was it really running after all now that we
  903. * checked with the proper locks actually held?
  904. *
  905. * Oops. Go back and try again..
  906. */
  907. if (unlikely(running)) {
  908. cpu_relax();
  909. continue;
  910. }
  911. /*
  912. * It's not enough that it's not actively running,
  913. * it must be off the runqueue _entirely_, and not
  914. * preempted!
  915. *
  916. * So if it was still runnable (but just not actively
  917. * running right now), it's preempted, and we should
  918. * yield - it could be a while.
  919. */
  920. if (unlikely(on_rq)) {
  921. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  922. set_current_state(TASK_UNINTERRUPTIBLE);
  923. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  924. continue;
  925. }
  926. /*
  927. * Ahh, all good. It wasn't running, and it wasn't
  928. * runnable, which means that it will never become
  929. * running in the future either. We're all done!
  930. */
  931. break;
  932. }
  933. return ncsw;
  934. }
  935. /***
  936. * kick_process - kick a running thread to enter/exit the kernel
  937. * @p: the to-be-kicked thread
  938. *
  939. * Cause a process which is running on another CPU to enter
  940. * kernel-mode, without any delay. (to get signals handled.)
  941. *
  942. * NOTE: this function doesn't have to take the runqueue lock,
  943. * because all it wants to ensure is that the remote task enters
  944. * the kernel. If the IPI races and the task has been migrated
  945. * to another CPU then no harm is done and the purpose has been
  946. * achieved as well.
  947. */
  948. void kick_process(struct task_struct *p)
  949. {
  950. int cpu;
  951. preempt_disable();
  952. cpu = task_cpu(p);
  953. if ((cpu != smp_processor_id()) && task_curr(p))
  954. smp_send_reschedule(cpu);
  955. preempt_enable();
  956. }
  957. EXPORT_SYMBOL_GPL(kick_process);
  958. #endif /* CONFIG_SMP */
  959. #ifdef CONFIG_SMP
  960. /*
  961. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  962. */
  963. static int select_fallback_rq(int cpu, struct task_struct *p)
  964. {
  965. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  966. enum { cpuset, possible, fail } state = cpuset;
  967. int dest_cpu;
  968. /* Look for allowed, online CPU in same node. */
  969. for_each_cpu(dest_cpu, nodemask) {
  970. if (!cpu_online(dest_cpu))
  971. continue;
  972. if (!cpu_active(dest_cpu))
  973. continue;
  974. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  975. return dest_cpu;
  976. }
  977. for (;;) {
  978. /* Any allowed, online CPU? */
  979. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  980. if (!cpu_online(dest_cpu))
  981. continue;
  982. if (!cpu_active(dest_cpu))
  983. continue;
  984. goto out;
  985. }
  986. switch (state) {
  987. case cpuset:
  988. /* No more Mr. Nice Guy. */
  989. cpuset_cpus_allowed_fallback(p);
  990. state = possible;
  991. break;
  992. case possible:
  993. do_set_cpus_allowed(p, cpu_possible_mask);
  994. state = fail;
  995. break;
  996. case fail:
  997. BUG();
  998. break;
  999. }
  1000. }
  1001. out:
  1002. if (state != cpuset) {
  1003. /*
  1004. * Don't tell them about moving exiting tasks or
  1005. * kernel threads (both mm NULL), since they never
  1006. * leave kernel.
  1007. */
  1008. if (p->mm && printk_ratelimit()) {
  1009. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1010. task_pid_nr(p), p->comm, cpu);
  1011. }
  1012. }
  1013. return dest_cpu;
  1014. }
  1015. /*
  1016. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1017. */
  1018. static inline
  1019. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1020. {
  1021. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1022. /*
  1023. * In order not to call set_task_cpu() on a blocking task we need
  1024. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1025. * cpu.
  1026. *
  1027. * Since this is common to all placement strategies, this lives here.
  1028. *
  1029. * [ this allows ->select_task() to simply return task_cpu(p) and
  1030. * not worry about this generic constraint ]
  1031. */
  1032. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1033. !cpu_online(cpu)))
  1034. cpu = select_fallback_rq(task_cpu(p), p);
  1035. return cpu;
  1036. }
  1037. static void update_avg(u64 *avg, u64 sample)
  1038. {
  1039. s64 diff = sample - *avg;
  1040. *avg += diff >> 3;
  1041. }
  1042. #endif
  1043. static void
  1044. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1045. {
  1046. #ifdef CONFIG_SCHEDSTATS
  1047. struct rq *rq = this_rq();
  1048. #ifdef CONFIG_SMP
  1049. int this_cpu = smp_processor_id();
  1050. if (cpu == this_cpu) {
  1051. schedstat_inc(rq, ttwu_local);
  1052. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1053. } else {
  1054. struct sched_domain *sd;
  1055. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1056. rcu_read_lock();
  1057. for_each_domain(this_cpu, sd) {
  1058. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1059. schedstat_inc(sd, ttwu_wake_remote);
  1060. break;
  1061. }
  1062. }
  1063. rcu_read_unlock();
  1064. }
  1065. if (wake_flags & WF_MIGRATED)
  1066. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1067. #endif /* CONFIG_SMP */
  1068. schedstat_inc(rq, ttwu_count);
  1069. schedstat_inc(p, se.statistics.nr_wakeups);
  1070. if (wake_flags & WF_SYNC)
  1071. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1072. #endif /* CONFIG_SCHEDSTATS */
  1073. }
  1074. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1075. {
  1076. activate_task(rq, p, en_flags);
  1077. p->on_rq = 1;
  1078. /* if a worker is waking up, notify workqueue */
  1079. if (p->flags & PF_WQ_WORKER)
  1080. wq_worker_waking_up(p, cpu_of(rq));
  1081. }
  1082. /*
  1083. * Mark the task runnable and perform wakeup-preemption.
  1084. */
  1085. static void
  1086. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1087. {
  1088. trace_sched_wakeup(p, true);
  1089. check_preempt_curr(rq, p, wake_flags);
  1090. p->state = TASK_RUNNING;
  1091. #ifdef CONFIG_SMP
  1092. if (p->sched_class->task_woken)
  1093. p->sched_class->task_woken(rq, p);
  1094. if (rq->idle_stamp) {
  1095. u64 delta = rq->clock - rq->idle_stamp;
  1096. u64 max = 2*sysctl_sched_migration_cost;
  1097. if (delta > max)
  1098. rq->avg_idle = max;
  1099. else
  1100. update_avg(&rq->avg_idle, delta);
  1101. rq->idle_stamp = 0;
  1102. }
  1103. #endif
  1104. }
  1105. static void
  1106. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1107. {
  1108. #ifdef CONFIG_SMP
  1109. if (p->sched_contributes_to_load)
  1110. rq->nr_uninterruptible--;
  1111. #endif
  1112. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1113. ttwu_do_wakeup(rq, p, wake_flags);
  1114. }
  1115. /*
  1116. * Called in case the task @p isn't fully descheduled from its runqueue,
  1117. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1118. * since all we need to do is flip p->state to TASK_RUNNING, since
  1119. * the task is still ->on_rq.
  1120. */
  1121. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1122. {
  1123. struct rq *rq;
  1124. int ret = 0;
  1125. rq = __task_rq_lock(p);
  1126. if (p->on_rq) {
  1127. ttwu_do_wakeup(rq, p, wake_flags);
  1128. ret = 1;
  1129. }
  1130. __task_rq_unlock(rq);
  1131. return ret;
  1132. }
  1133. #ifdef CONFIG_SMP
  1134. static void sched_ttwu_pending(void)
  1135. {
  1136. struct rq *rq = this_rq();
  1137. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1138. struct task_struct *p;
  1139. raw_spin_lock(&rq->lock);
  1140. while (llist) {
  1141. p = llist_entry(llist, struct task_struct, wake_entry);
  1142. llist = llist_next(llist);
  1143. ttwu_do_activate(rq, p, 0);
  1144. }
  1145. raw_spin_unlock(&rq->lock);
  1146. }
  1147. void scheduler_ipi(void)
  1148. {
  1149. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1150. return;
  1151. /*
  1152. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1153. * traditionally all their work was done from the interrupt return
  1154. * path. Now that we actually do some work, we need to make sure
  1155. * we do call them.
  1156. *
  1157. * Some archs already do call them, luckily irq_enter/exit nest
  1158. * properly.
  1159. *
  1160. * Arguably we should visit all archs and update all handlers,
  1161. * however a fair share of IPIs are still resched only so this would
  1162. * somewhat pessimize the simple resched case.
  1163. */
  1164. irq_enter();
  1165. sched_ttwu_pending();
  1166. /*
  1167. * Check if someone kicked us for doing the nohz idle load balance.
  1168. */
  1169. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1170. this_rq()->idle_balance = 1;
  1171. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1172. }
  1173. irq_exit();
  1174. }
  1175. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1176. {
  1177. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1178. smp_send_reschedule(cpu);
  1179. }
  1180. bool cpus_share_cache(int this_cpu, int that_cpu)
  1181. {
  1182. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1183. }
  1184. #endif /* CONFIG_SMP */
  1185. static void ttwu_queue(struct task_struct *p, int cpu)
  1186. {
  1187. struct rq *rq = cpu_rq(cpu);
  1188. #if defined(CONFIG_SMP)
  1189. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1190. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1191. ttwu_queue_remote(p, cpu);
  1192. return;
  1193. }
  1194. #endif
  1195. raw_spin_lock(&rq->lock);
  1196. ttwu_do_activate(rq, p, 0);
  1197. raw_spin_unlock(&rq->lock);
  1198. }
  1199. /**
  1200. * try_to_wake_up - wake up a thread
  1201. * @p: the thread to be awakened
  1202. * @state: the mask of task states that can be woken
  1203. * @wake_flags: wake modifier flags (WF_*)
  1204. *
  1205. * Put it on the run-queue if it's not already there. The "current"
  1206. * thread is always on the run-queue (except when the actual
  1207. * re-schedule is in progress), and as such you're allowed to do
  1208. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1209. * runnable without the overhead of this.
  1210. *
  1211. * Returns %true if @p was woken up, %false if it was already running
  1212. * or @state didn't match @p's state.
  1213. */
  1214. static int
  1215. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1216. {
  1217. unsigned long flags;
  1218. int cpu, success = 0;
  1219. smp_wmb();
  1220. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1221. if (!(p->state & state))
  1222. goto out;
  1223. success = 1; /* we're going to change ->state */
  1224. cpu = task_cpu(p);
  1225. if (p->on_rq && ttwu_remote(p, wake_flags))
  1226. goto stat;
  1227. #ifdef CONFIG_SMP
  1228. /*
  1229. * If the owning (remote) cpu is still in the middle of schedule() with
  1230. * this task as prev, wait until its done referencing the task.
  1231. */
  1232. while (p->on_cpu)
  1233. cpu_relax();
  1234. /*
  1235. * Pairs with the smp_wmb() in finish_lock_switch().
  1236. */
  1237. smp_rmb();
  1238. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1239. p->state = TASK_WAKING;
  1240. if (p->sched_class->task_waking)
  1241. p->sched_class->task_waking(p);
  1242. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1243. if (task_cpu(p) != cpu) {
  1244. wake_flags |= WF_MIGRATED;
  1245. set_task_cpu(p, cpu);
  1246. }
  1247. #endif /* CONFIG_SMP */
  1248. ttwu_queue(p, cpu);
  1249. stat:
  1250. ttwu_stat(p, cpu, wake_flags);
  1251. out:
  1252. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1253. return success;
  1254. }
  1255. /**
  1256. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1257. * @p: the thread to be awakened
  1258. *
  1259. * Put @p on the run-queue if it's not already there. The caller must
  1260. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1261. * the current task.
  1262. */
  1263. static void try_to_wake_up_local(struct task_struct *p)
  1264. {
  1265. struct rq *rq = task_rq(p);
  1266. BUG_ON(rq != this_rq());
  1267. BUG_ON(p == current);
  1268. lockdep_assert_held(&rq->lock);
  1269. if (!raw_spin_trylock(&p->pi_lock)) {
  1270. raw_spin_unlock(&rq->lock);
  1271. raw_spin_lock(&p->pi_lock);
  1272. raw_spin_lock(&rq->lock);
  1273. }
  1274. if (!(p->state & TASK_NORMAL))
  1275. goto out;
  1276. if (!p->on_rq)
  1277. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1278. ttwu_do_wakeup(rq, p, 0);
  1279. ttwu_stat(p, smp_processor_id(), 0);
  1280. out:
  1281. raw_spin_unlock(&p->pi_lock);
  1282. }
  1283. /**
  1284. * wake_up_process - Wake up a specific process
  1285. * @p: The process to be woken up.
  1286. *
  1287. * Attempt to wake up the nominated process and move it to the set of runnable
  1288. * processes. Returns 1 if the process was woken up, 0 if it was already
  1289. * running.
  1290. *
  1291. * It may be assumed that this function implies a write memory barrier before
  1292. * changing the task state if and only if any tasks are woken up.
  1293. */
  1294. int wake_up_process(struct task_struct *p)
  1295. {
  1296. return try_to_wake_up(p, TASK_ALL, 0);
  1297. }
  1298. EXPORT_SYMBOL(wake_up_process);
  1299. int wake_up_state(struct task_struct *p, unsigned int state)
  1300. {
  1301. return try_to_wake_up(p, state, 0);
  1302. }
  1303. /*
  1304. * Perform scheduler related setup for a newly forked process p.
  1305. * p is forked by current.
  1306. *
  1307. * __sched_fork() is basic setup used by init_idle() too:
  1308. */
  1309. static void __sched_fork(struct task_struct *p)
  1310. {
  1311. p->on_rq = 0;
  1312. p->se.on_rq = 0;
  1313. p->se.exec_start = 0;
  1314. p->se.sum_exec_runtime = 0;
  1315. p->se.prev_sum_exec_runtime = 0;
  1316. p->se.nr_migrations = 0;
  1317. p->se.vruntime = 0;
  1318. INIT_LIST_HEAD(&p->se.group_node);
  1319. /*
  1320. * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
  1321. * removed when useful for applications beyond shares distribution (e.g.
  1322. * load-balance).
  1323. */
  1324. #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
  1325. p->se.avg.runnable_avg_period = 0;
  1326. p->se.avg.runnable_avg_sum = 0;
  1327. #endif
  1328. #ifdef CONFIG_SCHEDSTATS
  1329. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1330. #endif
  1331. INIT_LIST_HEAD(&p->rt.run_list);
  1332. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1333. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1334. #endif
  1335. #ifdef CONFIG_NUMA_BALANCING
  1336. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1337. p->mm->numa_next_scan = jiffies;
  1338. p->mm->numa_next_reset = jiffies;
  1339. p->mm->numa_scan_seq = 0;
  1340. }
  1341. p->node_stamp = 0ULL;
  1342. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1343. p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
  1344. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1345. p->numa_work.next = &p->numa_work;
  1346. #endif /* CONFIG_NUMA_BALANCING */
  1347. }
  1348. #ifdef CONFIG_NUMA_BALANCING
  1349. #ifdef CONFIG_SCHED_DEBUG
  1350. void set_numabalancing_state(bool enabled)
  1351. {
  1352. if (enabled)
  1353. sched_feat_set("NUMA");
  1354. else
  1355. sched_feat_set("NO_NUMA");
  1356. }
  1357. #else
  1358. __read_mostly bool numabalancing_enabled;
  1359. void set_numabalancing_state(bool enabled)
  1360. {
  1361. numabalancing_enabled = enabled;
  1362. }
  1363. #endif /* CONFIG_SCHED_DEBUG */
  1364. #endif /* CONFIG_NUMA_BALANCING */
  1365. /*
  1366. * fork()/clone()-time setup:
  1367. */
  1368. void sched_fork(struct task_struct *p)
  1369. {
  1370. unsigned long flags;
  1371. int cpu = get_cpu();
  1372. __sched_fork(p);
  1373. /*
  1374. * We mark the process as running here. This guarantees that
  1375. * nobody will actually run it, and a signal or other external
  1376. * event cannot wake it up and insert it on the runqueue either.
  1377. */
  1378. p->state = TASK_RUNNING;
  1379. /*
  1380. * Make sure we do not leak PI boosting priority to the child.
  1381. */
  1382. p->prio = current->normal_prio;
  1383. /*
  1384. * Revert to default priority/policy on fork if requested.
  1385. */
  1386. if (unlikely(p->sched_reset_on_fork)) {
  1387. if (task_has_rt_policy(p)) {
  1388. p->policy = SCHED_NORMAL;
  1389. p->static_prio = NICE_TO_PRIO(0);
  1390. p->rt_priority = 0;
  1391. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1392. p->static_prio = NICE_TO_PRIO(0);
  1393. p->prio = p->normal_prio = __normal_prio(p);
  1394. set_load_weight(p);
  1395. /*
  1396. * We don't need the reset flag anymore after the fork. It has
  1397. * fulfilled its duty:
  1398. */
  1399. p->sched_reset_on_fork = 0;
  1400. }
  1401. if (!rt_prio(p->prio))
  1402. p->sched_class = &fair_sched_class;
  1403. if (p->sched_class->task_fork)
  1404. p->sched_class->task_fork(p);
  1405. /*
  1406. * The child is not yet in the pid-hash so no cgroup attach races,
  1407. * and the cgroup is pinned to this child due to cgroup_fork()
  1408. * is ran before sched_fork().
  1409. *
  1410. * Silence PROVE_RCU.
  1411. */
  1412. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1413. set_task_cpu(p, cpu);
  1414. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1415. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1416. if (likely(sched_info_on()))
  1417. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1418. #endif
  1419. #if defined(CONFIG_SMP)
  1420. p->on_cpu = 0;
  1421. #endif
  1422. #ifdef CONFIG_PREEMPT_COUNT
  1423. /* Want to start with kernel preemption disabled. */
  1424. task_thread_info(p)->preempt_count = 1;
  1425. #endif
  1426. #ifdef CONFIG_SMP
  1427. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1428. #endif
  1429. put_cpu();
  1430. }
  1431. /*
  1432. * wake_up_new_task - wake up a newly created task for the first time.
  1433. *
  1434. * This function will do some initial scheduler statistics housekeeping
  1435. * that must be done for every newly created context, then puts the task
  1436. * on the runqueue and wakes it.
  1437. */
  1438. void wake_up_new_task(struct task_struct *p)
  1439. {
  1440. unsigned long flags;
  1441. struct rq *rq;
  1442. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1443. #ifdef CONFIG_SMP
  1444. /*
  1445. * Fork balancing, do it here and not earlier because:
  1446. * - cpus_allowed can change in the fork path
  1447. * - any previously selected cpu might disappear through hotplug
  1448. */
  1449. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1450. #endif
  1451. rq = __task_rq_lock(p);
  1452. activate_task(rq, p, 0);
  1453. p->on_rq = 1;
  1454. trace_sched_wakeup_new(p, true);
  1455. check_preempt_curr(rq, p, WF_FORK);
  1456. #ifdef CONFIG_SMP
  1457. if (p->sched_class->task_woken)
  1458. p->sched_class->task_woken(rq, p);
  1459. #endif
  1460. task_rq_unlock(rq, p, &flags);
  1461. }
  1462. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1463. /**
  1464. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1465. * @notifier: notifier struct to register
  1466. */
  1467. void preempt_notifier_register(struct preempt_notifier *notifier)
  1468. {
  1469. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1470. }
  1471. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1472. /**
  1473. * preempt_notifier_unregister - no longer interested in preemption notifications
  1474. * @notifier: notifier struct to unregister
  1475. *
  1476. * This is safe to call from within a preemption notifier.
  1477. */
  1478. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1479. {
  1480. hlist_del(&notifier->link);
  1481. }
  1482. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1483. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1484. {
  1485. struct preempt_notifier *notifier;
  1486. struct hlist_node *node;
  1487. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1488. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1489. }
  1490. static void
  1491. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1492. struct task_struct *next)
  1493. {
  1494. struct preempt_notifier *notifier;
  1495. struct hlist_node *node;
  1496. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1497. notifier->ops->sched_out(notifier, next);
  1498. }
  1499. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1500. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1501. {
  1502. }
  1503. static void
  1504. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1505. struct task_struct *next)
  1506. {
  1507. }
  1508. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1509. /**
  1510. * prepare_task_switch - prepare to switch tasks
  1511. * @rq: the runqueue preparing to switch
  1512. * @prev: the current task that is being switched out
  1513. * @next: the task we are going to switch to.
  1514. *
  1515. * This is called with the rq lock held and interrupts off. It must
  1516. * be paired with a subsequent finish_task_switch after the context
  1517. * switch.
  1518. *
  1519. * prepare_task_switch sets up locking and calls architecture specific
  1520. * hooks.
  1521. */
  1522. static inline void
  1523. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1524. struct task_struct *next)
  1525. {
  1526. trace_sched_switch(prev, next);
  1527. sched_info_switch(prev, next);
  1528. perf_event_task_sched_out(prev, next);
  1529. fire_sched_out_preempt_notifiers(prev, next);
  1530. prepare_lock_switch(rq, next);
  1531. prepare_arch_switch(next);
  1532. }
  1533. /**
  1534. * finish_task_switch - clean up after a task-switch
  1535. * @rq: runqueue associated with task-switch
  1536. * @prev: the thread we just switched away from.
  1537. *
  1538. * finish_task_switch must be called after the context switch, paired
  1539. * with a prepare_task_switch call before the context switch.
  1540. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1541. * and do any other architecture-specific cleanup actions.
  1542. *
  1543. * Note that we may have delayed dropping an mm in context_switch(). If
  1544. * so, we finish that here outside of the runqueue lock. (Doing it
  1545. * with the lock held can cause deadlocks; see schedule() for
  1546. * details.)
  1547. */
  1548. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1549. __releases(rq->lock)
  1550. {
  1551. struct mm_struct *mm = rq->prev_mm;
  1552. long prev_state;
  1553. rq->prev_mm = NULL;
  1554. /*
  1555. * A task struct has one reference for the use as "current".
  1556. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1557. * schedule one last time. The schedule call will never return, and
  1558. * the scheduled task must drop that reference.
  1559. * The test for TASK_DEAD must occur while the runqueue locks are
  1560. * still held, otherwise prev could be scheduled on another cpu, die
  1561. * there before we look at prev->state, and then the reference would
  1562. * be dropped twice.
  1563. * Manfred Spraul <manfred@colorfullife.com>
  1564. */
  1565. prev_state = prev->state;
  1566. vtime_task_switch(prev);
  1567. finish_arch_switch(prev);
  1568. perf_event_task_sched_in(prev, current);
  1569. finish_lock_switch(rq, prev);
  1570. finish_arch_post_lock_switch();
  1571. fire_sched_in_preempt_notifiers(current);
  1572. if (mm)
  1573. mmdrop(mm);
  1574. if (unlikely(prev_state == TASK_DEAD)) {
  1575. /*
  1576. * Remove function-return probe instances associated with this
  1577. * task and put them back on the free list.
  1578. */
  1579. kprobe_flush_task(prev);
  1580. put_task_struct(prev);
  1581. }
  1582. }
  1583. #ifdef CONFIG_SMP
  1584. /* assumes rq->lock is held */
  1585. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1586. {
  1587. if (prev->sched_class->pre_schedule)
  1588. prev->sched_class->pre_schedule(rq, prev);
  1589. }
  1590. /* rq->lock is NOT held, but preemption is disabled */
  1591. static inline void post_schedule(struct rq *rq)
  1592. {
  1593. if (rq->post_schedule) {
  1594. unsigned long flags;
  1595. raw_spin_lock_irqsave(&rq->lock, flags);
  1596. if (rq->curr->sched_class->post_schedule)
  1597. rq->curr->sched_class->post_schedule(rq);
  1598. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1599. rq->post_schedule = 0;
  1600. }
  1601. }
  1602. #else
  1603. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1604. {
  1605. }
  1606. static inline void post_schedule(struct rq *rq)
  1607. {
  1608. }
  1609. #endif
  1610. /**
  1611. * schedule_tail - first thing a freshly forked thread must call.
  1612. * @prev: the thread we just switched away from.
  1613. */
  1614. asmlinkage void schedule_tail(struct task_struct *prev)
  1615. __releases(rq->lock)
  1616. {
  1617. struct rq *rq = this_rq();
  1618. finish_task_switch(rq, prev);
  1619. /*
  1620. * FIXME: do we need to worry about rq being invalidated by the
  1621. * task_switch?
  1622. */
  1623. post_schedule(rq);
  1624. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1625. /* In this case, finish_task_switch does not reenable preemption */
  1626. preempt_enable();
  1627. #endif
  1628. if (current->set_child_tid)
  1629. put_user(task_pid_vnr(current), current->set_child_tid);
  1630. }
  1631. /*
  1632. * context_switch - switch to the new MM and the new
  1633. * thread's register state.
  1634. */
  1635. static inline void
  1636. context_switch(struct rq *rq, struct task_struct *prev,
  1637. struct task_struct *next)
  1638. {
  1639. struct mm_struct *mm, *oldmm;
  1640. prepare_task_switch(rq, prev, next);
  1641. mm = next->mm;
  1642. oldmm = prev->active_mm;
  1643. /*
  1644. * For paravirt, this is coupled with an exit in switch_to to
  1645. * combine the page table reload and the switch backend into
  1646. * one hypercall.
  1647. */
  1648. arch_start_context_switch(prev);
  1649. if (!mm) {
  1650. next->active_mm = oldmm;
  1651. atomic_inc(&oldmm->mm_count);
  1652. enter_lazy_tlb(oldmm, next);
  1653. } else
  1654. switch_mm(oldmm, mm, next);
  1655. if (!prev->mm) {
  1656. prev->active_mm = NULL;
  1657. rq->prev_mm = oldmm;
  1658. }
  1659. /*
  1660. * Since the runqueue lock will be released by the next
  1661. * task (which is an invalid locking op but in the case
  1662. * of the scheduler it's an obvious special-case), so we
  1663. * do an early lockdep release here:
  1664. */
  1665. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1666. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1667. #endif
  1668. context_tracking_task_switch(prev, next);
  1669. /* Here we just switch the register state and the stack. */
  1670. switch_to(prev, next, prev);
  1671. barrier();
  1672. /*
  1673. * this_rq must be evaluated again because prev may have moved
  1674. * CPUs since it called schedule(), thus the 'rq' on its stack
  1675. * frame will be invalid.
  1676. */
  1677. finish_task_switch(this_rq(), prev);
  1678. }
  1679. /*
  1680. * nr_running, nr_uninterruptible and nr_context_switches:
  1681. *
  1682. * externally visible scheduler statistics: current number of runnable
  1683. * threads, current number of uninterruptible-sleeping threads, total
  1684. * number of context switches performed since bootup.
  1685. */
  1686. unsigned long nr_running(void)
  1687. {
  1688. unsigned long i, sum = 0;
  1689. for_each_online_cpu(i)
  1690. sum += cpu_rq(i)->nr_running;
  1691. return sum;
  1692. }
  1693. unsigned long nr_uninterruptible(void)
  1694. {
  1695. unsigned long i, sum = 0;
  1696. for_each_possible_cpu(i)
  1697. sum += cpu_rq(i)->nr_uninterruptible;
  1698. /*
  1699. * Since we read the counters lockless, it might be slightly
  1700. * inaccurate. Do not allow it to go below zero though:
  1701. */
  1702. if (unlikely((long)sum < 0))
  1703. sum = 0;
  1704. return sum;
  1705. }
  1706. unsigned long long nr_context_switches(void)
  1707. {
  1708. int i;
  1709. unsigned long long sum = 0;
  1710. for_each_possible_cpu(i)
  1711. sum += cpu_rq(i)->nr_switches;
  1712. return sum;
  1713. }
  1714. unsigned long nr_iowait(void)
  1715. {
  1716. unsigned long i, sum = 0;
  1717. for_each_possible_cpu(i)
  1718. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1719. return sum;
  1720. }
  1721. unsigned long nr_iowait_cpu(int cpu)
  1722. {
  1723. struct rq *this = cpu_rq(cpu);
  1724. return atomic_read(&this->nr_iowait);
  1725. }
  1726. unsigned long this_cpu_load(void)
  1727. {
  1728. struct rq *this = this_rq();
  1729. return this->cpu_load[0];
  1730. }
  1731. /*
  1732. * Global load-average calculations
  1733. *
  1734. * We take a distributed and async approach to calculating the global load-avg
  1735. * in order to minimize overhead.
  1736. *
  1737. * The global load average is an exponentially decaying average of nr_running +
  1738. * nr_uninterruptible.
  1739. *
  1740. * Once every LOAD_FREQ:
  1741. *
  1742. * nr_active = 0;
  1743. * for_each_possible_cpu(cpu)
  1744. * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
  1745. *
  1746. * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
  1747. *
  1748. * Due to a number of reasons the above turns in the mess below:
  1749. *
  1750. * - for_each_possible_cpu() is prohibitively expensive on machines with
  1751. * serious number of cpus, therefore we need to take a distributed approach
  1752. * to calculating nr_active.
  1753. *
  1754. * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
  1755. * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
  1756. *
  1757. * So assuming nr_active := 0 when we start out -- true per definition, we
  1758. * can simply take per-cpu deltas and fold those into a global accumulate
  1759. * to obtain the same result. See calc_load_fold_active().
  1760. *
  1761. * Furthermore, in order to avoid synchronizing all per-cpu delta folding
  1762. * across the machine, we assume 10 ticks is sufficient time for every
  1763. * cpu to have completed this task.
  1764. *
  1765. * This places an upper-bound on the IRQ-off latency of the machine. Then
  1766. * again, being late doesn't loose the delta, just wrecks the sample.
  1767. *
  1768. * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
  1769. * this would add another cross-cpu cacheline miss and atomic operation
  1770. * to the wakeup path. Instead we increment on whatever cpu the task ran
  1771. * when it went into uninterruptible state and decrement on whatever cpu
  1772. * did the wakeup. This means that only the sum of nr_uninterruptible over
  1773. * all cpus yields the correct result.
  1774. *
  1775. * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
  1776. */
  1777. /* Variables and functions for calc_load */
  1778. static atomic_long_t calc_load_tasks;
  1779. static unsigned long calc_load_update;
  1780. unsigned long avenrun[3];
  1781. EXPORT_SYMBOL(avenrun); /* should be removed */
  1782. /**
  1783. * get_avenrun - get the load average array
  1784. * @loads: pointer to dest load array
  1785. * @offset: offset to add
  1786. * @shift: shift count to shift the result left
  1787. *
  1788. * These values are estimates at best, so no need for locking.
  1789. */
  1790. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1791. {
  1792. loads[0] = (avenrun[0] + offset) << shift;
  1793. loads[1] = (avenrun[1] + offset) << shift;
  1794. loads[2] = (avenrun[2] + offset) << shift;
  1795. }
  1796. static long calc_load_fold_active(struct rq *this_rq)
  1797. {
  1798. long nr_active, delta = 0;
  1799. nr_active = this_rq->nr_running;
  1800. nr_active += (long) this_rq->nr_uninterruptible;
  1801. if (nr_active != this_rq->calc_load_active) {
  1802. delta = nr_active - this_rq->calc_load_active;
  1803. this_rq->calc_load_active = nr_active;
  1804. }
  1805. return delta;
  1806. }
  1807. /*
  1808. * a1 = a0 * e + a * (1 - e)
  1809. */
  1810. static unsigned long
  1811. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1812. {
  1813. load *= exp;
  1814. load += active * (FIXED_1 - exp);
  1815. load += 1UL << (FSHIFT - 1);
  1816. return load >> FSHIFT;
  1817. }
  1818. #ifdef CONFIG_NO_HZ
  1819. /*
  1820. * Handle NO_HZ for the global load-average.
  1821. *
  1822. * Since the above described distributed algorithm to compute the global
  1823. * load-average relies on per-cpu sampling from the tick, it is affected by
  1824. * NO_HZ.
  1825. *
  1826. * The basic idea is to fold the nr_active delta into a global idle-delta upon
  1827. * entering NO_HZ state such that we can include this as an 'extra' cpu delta
  1828. * when we read the global state.
  1829. *
  1830. * Obviously reality has to ruin such a delightfully simple scheme:
  1831. *
  1832. * - When we go NO_HZ idle during the window, we can negate our sample
  1833. * contribution, causing under-accounting.
  1834. *
  1835. * We avoid this by keeping two idle-delta counters and flipping them
  1836. * when the window starts, thus separating old and new NO_HZ load.
  1837. *
  1838. * The only trick is the slight shift in index flip for read vs write.
  1839. *
  1840. * 0s 5s 10s 15s
  1841. * +10 +10 +10 +10
  1842. * |-|-----------|-|-----------|-|-----------|-|
  1843. * r:0 0 1 1 0 0 1 1 0
  1844. * w:0 1 1 0 0 1 1 0 0
  1845. *
  1846. * This ensures we'll fold the old idle contribution in this window while
  1847. * accumlating the new one.
  1848. *
  1849. * - When we wake up from NO_HZ idle during the window, we push up our
  1850. * contribution, since we effectively move our sample point to a known
  1851. * busy state.
  1852. *
  1853. * This is solved by pushing the window forward, and thus skipping the
  1854. * sample, for this cpu (effectively using the idle-delta for this cpu which
  1855. * was in effect at the time the window opened). This also solves the issue
  1856. * of having to deal with a cpu having been in NOHZ idle for multiple
  1857. * LOAD_FREQ intervals.
  1858. *
  1859. * When making the ILB scale, we should try to pull this in as well.
  1860. */
  1861. static atomic_long_t calc_load_idle[2];
  1862. static int calc_load_idx;
  1863. static inline int calc_load_write_idx(void)
  1864. {
  1865. int idx = calc_load_idx;
  1866. /*
  1867. * See calc_global_nohz(), if we observe the new index, we also
  1868. * need to observe the new update time.
  1869. */
  1870. smp_rmb();
  1871. /*
  1872. * If the folding window started, make sure we start writing in the
  1873. * next idle-delta.
  1874. */
  1875. if (!time_before(jiffies, calc_load_update))
  1876. idx++;
  1877. return idx & 1;
  1878. }
  1879. static inline int calc_load_read_idx(void)
  1880. {
  1881. return calc_load_idx & 1;
  1882. }
  1883. void calc_load_enter_idle(void)
  1884. {
  1885. struct rq *this_rq = this_rq();
  1886. long delta;
  1887. /*
  1888. * We're going into NOHZ mode, if there's any pending delta, fold it
  1889. * into the pending idle delta.
  1890. */
  1891. delta = calc_load_fold_active(this_rq);
  1892. if (delta) {
  1893. int idx = calc_load_write_idx();
  1894. atomic_long_add(delta, &calc_load_idle[idx]);
  1895. }
  1896. }
  1897. void calc_load_exit_idle(void)
  1898. {
  1899. struct rq *this_rq = this_rq();
  1900. /*
  1901. * If we're still before the sample window, we're done.
  1902. */
  1903. if (time_before(jiffies, this_rq->calc_load_update))
  1904. return;
  1905. /*
  1906. * We woke inside or after the sample window, this means we're already
  1907. * accounted through the nohz accounting, so skip the entire deal and
  1908. * sync up for the next window.
  1909. */
  1910. this_rq->calc_load_update = calc_load_update;
  1911. if (time_before(jiffies, this_rq->calc_load_update + 10))
  1912. this_rq->calc_load_update += LOAD_FREQ;
  1913. }
  1914. static long calc_load_fold_idle(void)
  1915. {
  1916. int idx = calc_load_read_idx();
  1917. long delta = 0;
  1918. if (atomic_long_read(&calc_load_idle[idx]))
  1919. delta = atomic_long_xchg(&calc_load_idle[idx], 0);
  1920. return delta;
  1921. }
  1922. /**
  1923. * fixed_power_int - compute: x^n, in O(log n) time
  1924. *
  1925. * @x: base of the power
  1926. * @frac_bits: fractional bits of @x
  1927. * @n: power to raise @x to.
  1928. *
  1929. * By exploiting the relation between the definition of the natural power
  1930. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1931. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1932. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1933. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1934. * of course trivially computable in O(log_2 n), the length of our binary
  1935. * vector.
  1936. */
  1937. static unsigned long
  1938. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1939. {
  1940. unsigned long result = 1UL << frac_bits;
  1941. if (n) for (;;) {
  1942. if (n & 1) {
  1943. result *= x;
  1944. result += 1UL << (frac_bits - 1);
  1945. result >>= frac_bits;
  1946. }
  1947. n >>= 1;
  1948. if (!n)
  1949. break;
  1950. x *= x;
  1951. x += 1UL << (frac_bits - 1);
  1952. x >>= frac_bits;
  1953. }
  1954. return result;
  1955. }
  1956. /*
  1957. * a1 = a0 * e + a * (1 - e)
  1958. *
  1959. * a2 = a1 * e + a * (1 - e)
  1960. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1961. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1962. *
  1963. * a3 = a2 * e + a * (1 - e)
  1964. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1965. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1966. *
  1967. * ...
  1968. *
  1969. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1970. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1971. * = a0 * e^n + a * (1 - e^n)
  1972. *
  1973. * [1] application of the geometric series:
  1974. *
  1975. * n 1 - x^(n+1)
  1976. * S_n := \Sum x^i = -------------
  1977. * i=0 1 - x
  1978. */
  1979. static unsigned long
  1980. calc_load_n(unsigned long load, unsigned long exp,
  1981. unsigned long active, unsigned int n)
  1982. {
  1983. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1984. }
  1985. /*
  1986. * NO_HZ can leave us missing all per-cpu ticks calling
  1987. * calc_load_account_active(), but since an idle CPU folds its delta into
  1988. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1989. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1990. *
  1991. * Once we've updated the global active value, we need to apply the exponential
  1992. * weights adjusted to the number of cycles missed.
  1993. */
  1994. static void calc_global_nohz(void)
  1995. {
  1996. long delta, active, n;
  1997. if (!time_before(jiffies, calc_load_update + 10)) {
  1998. /*
  1999. * Catch-up, fold however many we are behind still
  2000. */
  2001. delta = jiffies - calc_load_update - 10;
  2002. n = 1 + (delta / LOAD_FREQ);
  2003. active = atomic_long_read(&calc_load_tasks);
  2004. active = active > 0 ? active * FIXED_1 : 0;
  2005. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2006. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2007. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2008. calc_load_update += n * LOAD_FREQ;
  2009. }
  2010. /*
  2011. * Flip the idle index...
  2012. *
  2013. * Make sure we first write the new time then flip the index, so that
  2014. * calc_load_write_idx() will see the new time when it reads the new
  2015. * index, this avoids a double flip messing things up.
  2016. */
  2017. smp_wmb();
  2018. calc_load_idx++;
  2019. }
  2020. #else /* !CONFIG_NO_HZ */
  2021. static inline long calc_load_fold_idle(void) { return 0; }
  2022. static inline void calc_global_nohz(void) { }
  2023. #endif /* CONFIG_NO_HZ */
  2024. /*
  2025. * calc_load - update the avenrun load estimates 10 ticks after the
  2026. * CPUs have updated calc_load_tasks.
  2027. */
  2028. void calc_global_load(unsigned long ticks)
  2029. {
  2030. long active, delta;
  2031. if (time_before(jiffies, calc_load_update + 10))
  2032. return;
  2033. /*
  2034. * Fold the 'old' idle-delta to include all NO_HZ cpus.
  2035. */
  2036. delta = calc_load_fold_idle();
  2037. if (delta)
  2038. atomic_long_add(delta, &calc_load_tasks);
  2039. active = atomic_long_read(&calc_load_tasks);
  2040. active = active > 0 ? active * FIXED_1 : 0;
  2041. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2042. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2043. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2044. calc_load_update += LOAD_FREQ;
  2045. /*
  2046. * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
  2047. */
  2048. calc_global_nohz();
  2049. }
  2050. /*
  2051. * Called from update_cpu_load() to periodically update this CPU's
  2052. * active count.
  2053. */
  2054. static void calc_load_account_active(struct rq *this_rq)
  2055. {
  2056. long delta;
  2057. if (time_before(jiffies, this_rq->calc_load_update))
  2058. return;
  2059. delta = calc_load_fold_active(this_rq);
  2060. if (delta)
  2061. atomic_long_add(delta, &calc_load_tasks);
  2062. this_rq->calc_load_update += LOAD_FREQ;
  2063. }
  2064. /*
  2065. * End of global load-average stuff
  2066. */
  2067. /*
  2068. * The exact cpuload at various idx values, calculated at every tick would be
  2069. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2070. *
  2071. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2072. * on nth tick when cpu may be busy, then we have:
  2073. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2074. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2075. *
  2076. * decay_load_missed() below does efficient calculation of
  2077. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2078. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2079. *
  2080. * The calculation is approximated on a 128 point scale.
  2081. * degrade_zero_ticks is the number of ticks after which load at any
  2082. * particular idx is approximated to be zero.
  2083. * degrade_factor is a precomputed table, a row for each load idx.
  2084. * Each column corresponds to degradation factor for a power of two ticks,
  2085. * based on 128 point scale.
  2086. * Example:
  2087. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2088. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2089. *
  2090. * With this power of 2 load factors, we can degrade the load n times
  2091. * by looking at 1 bits in n and doing as many mult/shift instead of
  2092. * n mult/shifts needed by the exact degradation.
  2093. */
  2094. #define DEGRADE_SHIFT 7
  2095. static const unsigned char
  2096. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2097. static const unsigned char
  2098. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2099. {0, 0, 0, 0, 0, 0, 0, 0},
  2100. {64, 32, 8, 0, 0, 0, 0, 0},
  2101. {96, 72, 40, 12, 1, 0, 0},
  2102. {112, 98, 75, 43, 15, 1, 0},
  2103. {120, 112, 98, 76, 45, 16, 2} };
  2104. /*
  2105. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2106. * would be when CPU is idle and so we just decay the old load without
  2107. * adding any new load.
  2108. */
  2109. static unsigned long
  2110. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2111. {
  2112. int j = 0;
  2113. if (!missed_updates)
  2114. return load;
  2115. if (missed_updates >= degrade_zero_ticks[idx])
  2116. return 0;
  2117. if (idx == 1)
  2118. return load >> missed_updates;
  2119. while (missed_updates) {
  2120. if (missed_updates % 2)
  2121. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2122. missed_updates >>= 1;
  2123. j++;
  2124. }
  2125. return load;
  2126. }
  2127. /*
  2128. * Update rq->cpu_load[] statistics. This function is usually called every
  2129. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2130. * every tick. We fix it up based on jiffies.
  2131. */
  2132. static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
  2133. unsigned long pending_updates)
  2134. {
  2135. int i, scale;
  2136. this_rq->nr_load_updates++;
  2137. /* Update our load: */
  2138. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2139. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2140. unsigned long old_load, new_load;
  2141. /* scale is effectively 1 << i now, and >> i divides by scale */
  2142. old_load = this_rq->cpu_load[i];
  2143. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2144. new_load = this_load;
  2145. /*
  2146. * Round up the averaging division if load is increasing. This
  2147. * prevents us from getting stuck on 9 if the load is 10, for
  2148. * example.
  2149. */
  2150. if (new_load > old_load)
  2151. new_load += scale - 1;
  2152. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2153. }
  2154. sched_avg_update(this_rq);
  2155. }
  2156. #ifdef CONFIG_NO_HZ
  2157. /*
  2158. * There is no sane way to deal with nohz on smp when using jiffies because the
  2159. * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
  2160. * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  2161. *
  2162. * Therefore we cannot use the delta approach from the regular tick since that
  2163. * would seriously skew the load calculation. However we'll make do for those
  2164. * updates happening while idle (nohz_idle_balance) or coming out of idle
  2165. * (tick_nohz_idle_exit).
  2166. *
  2167. * This means we might still be one tick off for nohz periods.
  2168. */
  2169. /*
  2170. * Called from nohz_idle_balance() to update the load ratings before doing the
  2171. * idle balance.
  2172. */
  2173. void update_idle_cpu_load(struct rq *this_rq)
  2174. {
  2175. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2176. unsigned long load = this_rq->load.weight;
  2177. unsigned long pending_updates;
  2178. /*
  2179. * bail if there's load or we're actually up-to-date.
  2180. */
  2181. if (load || curr_jiffies == this_rq->last_load_update_tick)
  2182. return;
  2183. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2184. this_rq->last_load_update_tick = curr_jiffies;
  2185. __update_cpu_load(this_rq, load, pending_updates);
  2186. }
  2187. /*
  2188. * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
  2189. */
  2190. void update_cpu_load_nohz(void)
  2191. {
  2192. struct rq *this_rq = this_rq();
  2193. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2194. unsigned long pending_updates;
  2195. if (curr_jiffies == this_rq->last_load_update_tick)
  2196. return;
  2197. raw_spin_lock(&this_rq->lock);
  2198. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2199. if (pending_updates) {
  2200. this_rq->last_load_update_tick = curr_jiffies;
  2201. /*
  2202. * We were idle, this means load 0, the current load might be
  2203. * !0 due to remote wakeups and the sort.
  2204. */
  2205. __update_cpu_load(this_rq, 0, pending_updates);
  2206. }
  2207. raw_spin_unlock(&this_rq->lock);
  2208. }
  2209. #endif /* CONFIG_NO_HZ */
  2210. /*
  2211. * Called from scheduler_tick()
  2212. */
  2213. static void update_cpu_load_active(struct rq *this_rq)
  2214. {
  2215. /*
  2216. * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
  2217. */
  2218. this_rq->last_load_update_tick = jiffies;
  2219. __update_cpu_load(this_rq, this_rq->load.weight, 1);
  2220. calc_load_account_active(this_rq);
  2221. }
  2222. #ifdef CONFIG_SMP
  2223. /*
  2224. * sched_exec - execve() is a valuable balancing opportunity, because at
  2225. * this point the task has the smallest effective memory and cache footprint.
  2226. */
  2227. void sched_exec(void)
  2228. {
  2229. struct task_struct *p = current;
  2230. unsigned long flags;
  2231. int dest_cpu;
  2232. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2233. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2234. if (dest_cpu == smp_processor_id())
  2235. goto unlock;
  2236. if (likely(cpu_active(dest_cpu))) {
  2237. struct migration_arg arg = { p, dest_cpu };
  2238. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2239. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2240. return;
  2241. }
  2242. unlock:
  2243. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2244. }
  2245. #endif
  2246. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2247. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2248. EXPORT_PER_CPU_SYMBOL(kstat);
  2249. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2250. /*
  2251. * Return any ns on the sched_clock that have not yet been accounted in
  2252. * @p in case that task is currently running.
  2253. *
  2254. * Called with task_rq_lock() held on @rq.
  2255. */
  2256. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2257. {
  2258. u64 ns = 0;
  2259. if (task_current(rq, p)) {
  2260. update_rq_clock(rq);
  2261. ns = rq->clock_task - p->se.exec_start;
  2262. if ((s64)ns < 0)
  2263. ns = 0;
  2264. }
  2265. return ns;
  2266. }
  2267. unsigned long long task_delta_exec(struct task_struct *p)
  2268. {
  2269. unsigned long flags;
  2270. struct rq *rq;
  2271. u64 ns = 0;
  2272. rq = task_rq_lock(p, &flags);
  2273. ns = do_task_delta_exec(p, rq);
  2274. task_rq_unlock(rq, p, &flags);
  2275. return ns;
  2276. }
  2277. /*
  2278. * Return accounted runtime for the task.
  2279. * In case the task is currently running, return the runtime plus current's
  2280. * pending runtime that have not been accounted yet.
  2281. */
  2282. unsigned long long task_sched_runtime(struct task_struct *p)
  2283. {
  2284. unsigned long flags;
  2285. struct rq *rq;
  2286. u64 ns = 0;
  2287. rq = task_rq_lock(p, &flags);
  2288. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2289. task_rq_unlock(rq, p, &flags);
  2290. return ns;
  2291. }
  2292. /*
  2293. * This function gets called by the timer code, with HZ frequency.
  2294. * We call it with interrupts disabled.
  2295. */
  2296. void scheduler_tick(void)
  2297. {
  2298. int cpu = smp_processor_id();
  2299. struct rq *rq = cpu_rq(cpu);
  2300. struct task_struct *curr = rq->curr;
  2301. sched_clock_tick();
  2302. raw_spin_lock(&rq->lock);
  2303. update_rq_clock(rq);
  2304. update_cpu_load_active(rq);
  2305. curr->sched_class->task_tick(rq, curr, 0);
  2306. raw_spin_unlock(&rq->lock);
  2307. perf_event_task_tick();
  2308. #ifdef CONFIG_SMP
  2309. rq->idle_balance = idle_cpu(cpu);
  2310. trigger_load_balance(rq, cpu);
  2311. #endif
  2312. }
  2313. notrace unsigned long get_parent_ip(unsigned long addr)
  2314. {
  2315. if (in_lock_functions(addr)) {
  2316. addr = CALLER_ADDR2;
  2317. if (in_lock_functions(addr))
  2318. addr = CALLER_ADDR3;
  2319. }
  2320. return addr;
  2321. }
  2322. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2323. defined(CONFIG_PREEMPT_TRACER))
  2324. void __kprobes add_preempt_count(int val)
  2325. {
  2326. #ifdef CONFIG_DEBUG_PREEMPT
  2327. /*
  2328. * Underflow?
  2329. */
  2330. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2331. return;
  2332. #endif
  2333. preempt_count() += val;
  2334. #ifdef CONFIG_DEBUG_PREEMPT
  2335. /*
  2336. * Spinlock count overflowing soon?
  2337. */
  2338. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2339. PREEMPT_MASK - 10);
  2340. #endif
  2341. if (preempt_count() == val)
  2342. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2343. }
  2344. EXPORT_SYMBOL(add_preempt_count);
  2345. void __kprobes sub_preempt_count(int val)
  2346. {
  2347. #ifdef CONFIG_DEBUG_PREEMPT
  2348. /*
  2349. * Underflow?
  2350. */
  2351. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2352. return;
  2353. /*
  2354. * Is the spinlock portion underflowing?
  2355. */
  2356. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2357. !(preempt_count() & PREEMPT_MASK)))
  2358. return;
  2359. #endif
  2360. if (preempt_count() == val)
  2361. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2362. preempt_count() -= val;
  2363. }
  2364. EXPORT_SYMBOL(sub_preempt_count);
  2365. #endif
  2366. /*
  2367. * Print scheduling while atomic bug:
  2368. */
  2369. static noinline void __schedule_bug(struct task_struct *prev)
  2370. {
  2371. if (oops_in_progress)
  2372. return;
  2373. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2374. prev->comm, prev->pid, preempt_count());
  2375. debug_show_held_locks(prev);
  2376. print_modules();
  2377. if (irqs_disabled())
  2378. print_irqtrace_events(prev);
  2379. dump_stack();
  2380. add_taint(TAINT_WARN);
  2381. }
  2382. /*
  2383. * Various schedule()-time debugging checks and statistics:
  2384. */
  2385. static inline void schedule_debug(struct task_struct *prev)
  2386. {
  2387. /*
  2388. * Test if we are atomic. Since do_exit() needs to call into
  2389. * schedule() atomically, we ignore that path for now.
  2390. * Otherwise, whine if we are scheduling when we should not be.
  2391. */
  2392. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2393. __schedule_bug(prev);
  2394. rcu_sleep_check();
  2395. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2396. schedstat_inc(this_rq(), sched_count);
  2397. }
  2398. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2399. {
  2400. if (prev->on_rq || rq->skip_clock_update < 0)
  2401. update_rq_clock(rq);
  2402. prev->sched_class->put_prev_task(rq, prev);
  2403. }
  2404. /*
  2405. * Pick up the highest-prio task:
  2406. */
  2407. static inline struct task_struct *
  2408. pick_next_task(struct rq *rq)
  2409. {
  2410. const struct sched_class *class;
  2411. struct task_struct *p;
  2412. /*
  2413. * Optimization: we know that if all tasks are in
  2414. * the fair class we can call that function directly:
  2415. */
  2416. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2417. p = fair_sched_class.pick_next_task(rq);
  2418. if (likely(p))
  2419. return p;
  2420. }
  2421. for_each_class(class) {
  2422. p = class->pick_next_task(rq);
  2423. if (p)
  2424. return p;
  2425. }
  2426. BUG(); /* the idle class will always have a runnable task */
  2427. }
  2428. /*
  2429. * __schedule() is the main scheduler function.
  2430. *
  2431. * The main means of driving the scheduler and thus entering this function are:
  2432. *
  2433. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2434. *
  2435. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2436. * paths. For example, see arch/x86/entry_64.S.
  2437. *
  2438. * To drive preemption between tasks, the scheduler sets the flag in timer
  2439. * interrupt handler scheduler_tick().
  2440. *
  2441. * 3. Wakeups don't really cause entry into schedule(). They add a
  2442. * task to the run-queue and that's it.
  2443. *
  2444. * Now, if the new task added to the run-queue preempts the current
  2445. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2446. * called on the nearest possible occasion:
  2447. *
  2448. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2449. *
  2450. * - in syscall or exception context, at the next outmost
  2451. * preempt_enable(). (this might be as soon as the wake_up()'s
  2452. * spin_unlock()!)
  2453. *
  2454. * - in IRQ context, return from interrupt-handler to
  2455. * preemptible context
  2456. *
  2457. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2458. * then at the next:
  2459. *
  2460. * - cond_resched() call
  2461. * - explicit schedule() call
  2462. * - return from syscall or exception to user-space
  2463. * - return from interrupt-handler to user-space
  2464. */
  2465. static void __sched __schedule(void)
  2466. {
  2467. struct task_struct *prev, *next;
  2468. unsigned long *switch_count;
  2469. struct rq *rq;
  2470. int cpu;
  2471. need_resched:
  2472. preempt_disable();
  2473. cpu = smp_processor_id();
  2474. rq = cpu_rq(cpu);
  2475. rcu_note_context_switch(cpu);
  2476. prev = rq->curr;
  2477. schedule_debug(prev);
  2478. if (sched_feat(HRTICK))
  2479. hrtick_clear(rq);
  2480. raw_spin_lock_irq(&rq->lock);
  2481. switch_count = &prev->nivcsw;
  2482. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2483. if (unlikely(signal_pending_state(prev->state, prev))) {
  2484. prev->state = TASK_RUNNING;
  2485. } else {
  2486. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2487. prev->on_rq = 0;
  2488. /*
  2489. * If a worker went to sleep, notify and ask workqueue
  2490. * whether it wants to wake up a task to maintain
  2491. * concurrency.
  2492. */
  2493. if (prev->flags & PF_WQ_WORKER) {
  2494. struct task_struct *to_wakeup;
  2495. to_wakeup = wq_worker_sleeping(prev, cpu);
  2496. if (to_wakeup)
  2497. try_to_wake_up_local(to_wakeup);
  2498. }
  2499. }
  2500. switch_count = &prev->nvcsw;
  2501. }
  2502. pre_schedule(rq, prev);
  2503. if (unlikely(!rq->nr_running))
  2504. idle_balance(cpu, rq);
  2505. put_prev_task(rq, prev);
  2506. next = pick_next_task(rq);
  2507. clear_tsk_need_resched(prev);
  2508. rq->skip_clock_update = 0;
  2509. if (likely(prev != next)) {
  2510. rq->nr_switches++;
  2511. rq->curr = next;
  2512. ++*switch_count;
  2513. context_switch(rq, prev, next); /* unlocks the rq */
  2514. /*
  2515. * The context switch have flipped the stack from under us
  2516. * and restored the local variables which were saved when
  2517. * this task called schedule() in the past. prev == current
  2518. * is still correct, but it can be moved to another cpu/rq.
  2519. */
  2520. cpu = smp_processor_id();
  2521. rq = cpu_rq(cpu);
  2522. } else
  2523. raw_spin_unlock_irq(&rq->lock);
  2524. post_schedule(rq);
  2525. sched_preempt_enable_no_resched();
  2526. if (need_resched())
  2527. goto need_resched;
  2528. }
  2529. static inline void sched_submit_work(struct task_struct *tsk)
  2530. {
  2531. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2532. return;
  2533. /*
  2534. * If we are going to sleep and we have plugged IO queued,
  2535. * make sure to submit it to avoid deadlocks.
  2536. */
  2537. if (blk_needs_flush_plug(tsk))
  2538. blk_schedule_flush_plug(tsk);
  2539. }
  2540. asmlinkage void __sched schedule(void)
  2541. {
  2542. struct task_struct *tsk = current;
  2543. sched_submit_work(tsk);
  2544. __schedule();
  2545. }
  2546. EXPORT_SYMBOL(schedule);
  2547. #ifdef CONFIG_CONTEXT_TRACKING
  2548. asmlinkage void __sched schedule_user(void)
  2549. {
  2550. /*
  2551. * If we come here after a random call to set_need_resched(),
  2552. * or we have been woken up remotely but the IPI has not yet arrived,
  2553. * we haven't yet exited the RCU idle mode. Do it here manually until
  2554. * we find a better solution.
  2555. */
  2556. user_exit();
  2557. schedule();
  2558. user_enter();
  2559. }
  2560. #endif
  2561. /**
  2562. * schedule_preempt_disabled - called with preemption disabled
  2563. *
  2564. * Returns with preemption disabled. Note: preempt_count must be 1
  2565. */
  2566. void __sched schedule_preempt_disabled(void)
  2567. {
  2568. sched_preempt_enable_no_resched();
  2569. schedule();
  2570. preempt_disable();
  2571. }
  2572. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2573. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2574. {
  2575. if (lock->owner != owner)
  2576. return false;
  2577. /*
  2578. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2579. * lock->owner still matches owner, if that fails, owner might
  2580. * point to free()d memory, if it still matches, the rcu_read_lock()
  2581. * ensures the memory stays valid.
  2582. */
  2583. barrier();
  2584. return owner->on_cpu;
  2585. }
  2586. /*
  2587. * Look out! "owner" is an entirely speculative pointer
  2588. * access and not reliable.
  2589. */
  2590. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2591. {
  2592. if (!sched_feat(OWNER_SPIN))
  2593. return 0;
  2594. rcu_read_lock();
  2595. while (owner_running(lock, owner)) {
  2596. if (need_resched())
  2597. break;
  2598. arch_mutex_cpu_relax();
  2599. }
  2600. rcu_read_unlock();
  2601. /*
  2602. * We break out the loop above on need_resched() and when the
  2603. * owner changed, which is a sign for heavy contention. Return
  2604. * success only when lock->owner is NULL.
  2605. */
  2606. return lock->owner == NULL;
  2607. }
  2608. #endif
  2609. #ifdef CONFIG_PREEMPT
  2610. /*
  2611. * this is the entry point to schedule() from in-kernel preemption
  2612. * off of preempt_enable. Kernel preemptions off return from interrupt
  2613. * occur there and call schedule directly.
  2614. */
  2615. asmlinkage void __sched notrace preempt_schedule(void)
  2616. {
  2617. struct thread_info *ti = current_thread_info();
  2618. /*
  2619. * If there is a non-zero preempt_count or interrupts are disabled,
  2620. * we do not want to preempt the current task. Just return..
  2621. */
  2622. if (likely(ti->preempt_count || irqs_disabled()))
  2623. return;
  2624. do {
  2625. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2626. __schedule();
  2627. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2628. /*
  2629. * Check again in case we missed a preemption opportunity
  2630. * between schedule and now.
  2631. */
  2632. barrier();
  2633. } while (need_resched());
  2634. }
  2635. EXPORT_SYMBOL(preempt_schedule);
  2636. /*
  2637. * this is the entry point to schedule() from kernel preemption
  2638. * off of irq context.
  2639. * Note, that this is called and return with irqs disabled. This will
  2640. * protect us against recursive calling from irq.
  2641. */
  2642. asmlinkage void __sched preempt_schedule_irq(void)
  2643. {
  2644. struct thread_info *ti = current_thread_info();
  2645. /* Catch callers which need to be fixed */
  2646. BUG_ON(ti->preempt_count || !irqs_disabled());
  2647. user_exit();
  2648. do {
  2649. add_preempt_count(PREEMPT_ACTIVE);
  2650. local_irq_enable();
  2651. __schedule();
  2652. local_irq_disable();
  2653. sub_preempt_count(PREEMPT_ACTIVE);
  2654. /*
  2655. * Check again in case we missed a preemption opportunity
  2656. * between schedule and now.
  2657. */
  2658. barrier();
  2659. } while (need_resched());
  2660. }
  2661. #endif /* CONFIG_PREEMPT */
  2662. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2663. void *key)
  2664. {
  2665. return try_to_wake_up(curr->private, mode, wake_flags);
  2666. }
  2667. EXPORT_SYMBOL(default_wake_function);
  2668. /*
  2669. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2670. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2671. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2672. *
  2673. * There are circumstances in which we can try to wake a task which has already
  2674. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2675. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2676. */
  2677. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2678. int nr_exclusive, int wake_flags, void *key)
  2679. {
  2680. wait_queue_t *curr, *next;
  2681. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2682. unsigned flags = curr->flags;
  2683. if (curr->func(curr, mode, wake_flags, key) &&
  2684. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2685. break;
  2686. }
  2687. }
  2688. /**
  2689. * __wake_up - wake up threads blocked on a waitqueue.
  2690. * @q: the waitqueue
  2691. * @mode: which threads
  2692. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2693. * @key: is directly passed to the wakeup function
  2694. *
  2695. * It may be assumed that this function implies a write memory barrier before
  2696. * changing the task state if and only if any tasks are woken up.
  2697. */
  2698. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2699. int nr_exclusive, void *key)
  2700. {
  2701. unsigned long flags;
  2702. spin_lock_irqsave(&q->lock, flags);
  2703. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2704. spin_unlock_irqrestore(&q->lock, flags);
  2705. }
  2706. EXPORT_SYMBOL(__wake_up);
  2707. /*
  2708. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2709. */
  2710. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2711. {
  2712. __wake_up_common(q, mode, nr, 0, NULL);
  2713. }
  2714. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2715. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2716. {
  2717. __wake_up_common(q, mode, 1, 0, key);
  2718. }
  2719. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2720. /**
  2721. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2722. * @q: the waitqueue
  2723. * @mode: which threads
  2724. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2725. * @key: opaque value to be passed to wakeup targets
  2726. *
  2727. * The sync wakeup differs that the waker knows that it will schedule
  2728. * away soon, so while the target thread will be woken up, it will not
  2729. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2730. * with each other. This can prevent needless bouncing between CPUs.
  2731. *
  2732. * On UP it can prevent extra preemption.
  2733. *
  2734. * It may be assumed that this function implies a write memory barrier before
  2735. * changing the task state if and only if any tasks are woken up.
  2736. */
  2737. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2738. int nr_exclusive, void *key)
  2739. {
  2740. unsigned long flags;
  2741. int wake_flags = WF_SYNC;
  2742. if (unlikely(!q))
  2743. return;
  2744. if (unlikely(!nr_exclusive))
  2745. wake_flags = 0;
  2746. spin_lock_irqsave(&q->lock, flags);
  2747. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2748. spin_unlock_irqrestore(&q->lock, flags);
  2749. }
  2750. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2751. /*
  2752. * __wake_up_sync - see __wake_up_sync_key()
  2753. */
  2754. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2755. {
  2756. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2757. }
  2758. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2759. /**
  2760. * complete: - signals a single thread waiting on this completion
  2761. * @x: holds the state of this particular completion
  2762. *
  2763. * This will wake up a single thread waiting on this completion. Threads will be
  2764. * awakened in the same order in which they were queued.
  2765. *
  2766. * See also complete_all(), wait_for_completion() and related routines.
  2767. *
  2768. * It may be assumed that this function implies a write memory barrier before
  2769. * changing the task state if and only if any tasks are woken up.
  2770. */
  2771. void complete(struct completion *x)
  2772. {
  2773. unsigned long flags;
  2774. spin_lock_irqsave(&x->wait.lock, flags);
  2775. x->done++;
  2776. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2777. spin_unlock_irqrestore(&x->wait.lock, flags);
  2778. }
  2779. EXPORT_SYMBOL(complete);
  2780. /**
  2781. * complete_all: - signals all threads waiting on this completion
  2782. * @x: holds the state of this particular completion
  2783. *
  2784. * This will wake up all threads waiting on this particular completion event.
  2785. *
  2786. * It may be assumed that this function implies a write memory barrier before
  2787. * changing the task state if and only if any tasks are woken up.
  2788. */
  2789. void complete_all(struct completion *x)
  2790. {
  2791. unsigned long flags;
  2792. spin_lock_irqsave(&x->wait.lock, flags);
  2793. x->done += UINT_MAX/2;
  2794. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2795. spin_unlock_irqrestore(&x->wait.lock, flags);
  2796. }
  2797. EXPORT_SYMBOL(complete_all);
  2798. static inline long __sched
  2799. do_wait_for_common(struct completion *x, long timeout, int state)
  2800. {
  2801. if (!x->done) {
  2802. DECLARE_WAITQUEUE(wait, current);
  2803. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2804. do {
  2805. if (signal_pending_state(state, current)) {
  2806. timeout = -ERESTARTSYS;
  2807. break;
  2808. }
  2809. __set_current_state(state);
  2810. spin_unlock_irq(&x->wait.lock);
  2811. timeout = schedule_timeout(timeout);
  2812. spin_lock_irq(&x->wait.lock);
  2813. } while (!x->done && timeout);
  2814. __remove_wait_queue(&x->wait, &wait);
  2815. if (!x->done)
  2816. return timeout;
  2817. }
  2818. x->done--;
  2819. return timeout ?: 1;
  2820. }
  2821. static long __sched
  2822. wait_for_common(struct completion *x, long timeout, int state)
  2823. {
  2824. might_sleep();
  2825. spin_lock_irq(&x->wait.lock);
  2826. timeout = do_wait_for_common(x, timeout, state);
  2827. spin_unlock_irq(&x->wait.lock);
  2828. return timeout;
  2829. }
  2830. /**
  2831. * wait_for_completion: - waits for completion of a task
  2832. * @x: holds the state of this particular completion
  2833. *
  2834. * This waits to be signaled for completion of a specific task. It is NOT
  2835. * interruptible and there is no timeout.
  2836. *
  2837. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  2838. * and interrupt capability. Also see complete().
  2839. */
  2840. void __sched wait_for_completion(struct completion *x)
  2841. {
  2842. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2843. }
  2844. EXPORT_SYMBOL(wait_for_completion);
  2845. /**
  2846. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  2847. * @x: holds the state of this particular completion
  2848. * @timeout: timeout value in jiffies
  2849. *
  2850. * This waits for either a completion of a specific task to be signaled or for a
  2851. * specified timeout to expire. The timeout is in jiffies. It is not
  2852. * interruptible.
  2853. *
  2854. * The return value is 0 if timed out, and positive (at least 1, or number of
  2855. * jiffies left till timeout) if completed.
  2856. */
  2857. unsigned long __sched
  2858. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2859. {
  2860. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  2861. }
  2862. EXPORT_SYMBOL(wait_for_completion_timeout);
  2863. /**
  2864. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  2865. * @x: holds the state of this particular completion
  2866. *
  2867. * This waits for completion of a specific task to be signaled. It is
  2868. * interruptible.
  2869. *
  2870. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2871. */
  2872. int __sched wait_for_completion_interruptible(struct completion *x)
  2873. {
  2874. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  2875. if (t == -ERESTARTSYS)
  2876. return t;
  2877. return 0;
  2878. }
  2879. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2880. /**
  2881. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  2882. * @x: holds the state of this particular completion
  2883. * @timeout: timeout value in jiffies
  2884. *
  2885. * This waits for either a completion of a specific task to be signaled or for a
  2886. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  2887. *
  2888. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2889. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2890. */
  2891. long __sched
  2892. wait_for_completion_interruptible_timeout(struct completion *x,
  2893. unsigned long timeout)
  2894. {
  2895. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  2896. }
  2897. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2898. /**
  2899. * wait_for_completion_killable: - waits for completion of a task (killable)
  2900. * @x: holds the state of this particular completion
  2901. *
  2902. * This waits to be signaled for completion of a specific task. It can be
  2903. * interrupted by a kill signal.
  2904. *
  2905. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2906. */
  2907. int __sched wait_for_completion_killable(struct completion *x)
  2908. {
  2909. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  2910. if (t == -ERESTARTSYS)
  2911. return t;
  2912. return 0;
  2913. }
  2914. EXPORT_SYMBOL(wait_for_completion_killable);
  2915. /**
  2916. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  2917. * @x: holds the state of this particular completion
  2918. * @timeout: timeout value in jiffies
  2919. *
  2920. * This waits for either a completion of a specific task to be
  2921. * signaled or for a specified timeout to expire. It can be
  2922. * interrupted by a kill signal. The timeout is in jiffies.
  2923. *
  2924. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2925. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2926. */
  2927. long __sched
  2928. wait_for_completion_killable_timeout(struct completion *x,
  2929. unsigned long timeout)
  2930. {
  2931. return wait_for_common(x, timeout, TASK_KILLABLE);
  2932. }
  2933. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  2934. /**
  2935. * try_wait_for_completion - try to decrement a completion without blocking
  2936. * @x: completion structure
  2937. *
  2938. * Returns: 0 if a decrement cannot be done without blocking
  2939. * 1 if a decrement succeeded.
  2940. *
  2941. * If a completion is being used as a counting completion,
  2942. * attempt to decrement the counter without blocking. This
  2943. * enables us to avoid waiting if the resource the completion
  2944. * is protecting is not available.
  2945. */
  2946. bool try_wait_for_completion(struct completion *x)
  2947. {
  2948. unsigned long flags;
  2949. int ret = 1;
  2950. spin_lock_irqsave(&x->wait.lock, flags);
  2951. if (!x->done)
  2952. ret = 0;
  2953. else
  2954. x->done--;
  2955. spin_unlock_irqrestore(&x->wait.lock, flags);
  2956. return ret;
  2957. }
  2958. EXPORT_SYMBOL(try_wait_for_completion);
  2959. /**
  2960. * completion_done - Test to see if a completion has any waiters
  2961. * @x: completion structure
  2962. *
  2963. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  2964. * 1 if there are no waiters.
  2965. *
  2966. */
  2967. bool completion_done(struct completion *x)
  2968. {
  2969. unsigned long flags;
  2970. int ret = 1;
  2971. spin_lock_irqsave(&x->wait.lock, flags);
  2972. if (!x->done)
  2973. ret = 0;
  2974. spin_unlock_irqrestore(&x->wait.lock, flags);
  2975. return ret;
  2976. }
  2977. EXPORT_SYMBOL(completion_done);
  2978. static long __sched
  2979. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2980. {
  2981. unsigned long flags;
  2982. wait_queue_t wait;
  2983. init_waitqueue_entry(&wait, current);
  2984. __set_current_state(state);
  2985. spin_lock_irqsave(&q->lock, flags);
  2986. __add_wait_queue(q, &wait);
  2987. spin_unlock(&q->lock);
  2988. timeout = schedule_timeout(timeout);
  2989. spin_lock_irq(&q->lock);
  2990. __remove_wait_queue(q, &wait);
  2991. spin_unlock_irqrestore(&q->lock, flags);
  2992. return timeout;
  2993. }
  2994. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2995. {
  2996. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2997. }
  2998. EXPORT_SYMBOL(interruptible_sleep_on);
  2999. long __sched
  3000. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3001. {
  3002. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3003. }
  3004. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3005. void __sched sleep_on(wait_queue_head_t *q)
  3006. {
  3007. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3008. }
  3009. EXPORT_SYMBOL(sleep_on);
  3010. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3011. {
  3012. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3013. }
  3014. EXPORT_SYMBOL(sleep_on_timeout);
  3015. #ifdef CONFIG_RT_MUTEXES
  3016. /*
  3017. * rt_mutex_setprio - set the current priority of a task
  3018. * @p: task
  3019. * @prio: prio value (kernel-internal form)
  3020. *
  3021. * This function changes the 'effective' priority of a task. It does
  3022. * not touch ->normal_prio like __setscheduler().
  3023. *
  3024. * Used by the rt_mutex code to implement priority inheritance logic.
  3025. */
  3026. void rt_mutex_setprio(struct task_struct *p, int prio)
  3027. {
  3028. int oldprio, on_rq, running;
  3029. struct rq *rq;
  3030. const struct sched_class *prev_class;
  3031. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3032. rq = __task_rq_lock(p);
  3033. /*
  3034. * Idle task boosting is a nono in general. There is one
  3035. * exception, when PREEMPT_RT and NOHZ is active:
  3036. *
  3037. * The idle task calls get_next_timer_interrupt() and holds
  3038. * the timer wheel base->lock on the CPU and another CPU wants
  3039. * to access the timer (probably to cancel it). We can safely
  3040. * ignore the boosting request, as the idle CPU runs this code
  3041. * with interrupts disabled and will complete the lock
  3042. * protected section without being interrupted. So there is no
  3043. * real need to boost.
  3044. */
  3045. if (unlikely(p == rq->idle)) {
  3046. WARN_ON(p != rq->curr);
  3047. WARN_ON(p->pi_blocked_on);
  3048. goto out_unlock;
  3049. }
  3050. trace_sched_pi_setprio(p, prio);
  3051. oldprio = p->prio;
  3052. prev_class = p->sched_class;
  3053. on_rq = p->on_rq;
  3054. running = task_current(rq, p);
  3055. if (on_rq)
  3056. dequeue_task(rq, p, 0);
  3057. if (running)
  3058. p->sched_class->put_prev_task(rq, p);
  3059. if (rt_prio(prio))
  3060. p->sched_class = &rt_sched_class;
  3061. else
  3062. p->sched_class = &fair_sched_class;
  3063. p->prio = prio;
  3064. if (running)
  3065. p->sched_class->set_curr_task(rq);
  3066. if (on_rq)
  3067. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3068. check_class_changed(rq, p, prev_class, oldprio);
  3069. out_unlock:
  3070. __task_rq_unlock(rq);
  3071. }
  3072. #endif
  3073. void set_user_nice(struct task_struct *p, long nice)
  3074. {
  3075. int old_prio, delta, on_rq;
  3076. unsigned long flags;
  3077. struct rq *rq;
  3078. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3079. return;
  3080. /*
  3081. * We have to be careful, if called from sys_setpriority(),
  3082. * the task might be in the middle of scheduling on another CPU.
  3083. */
  3084. rq = task_rq_lock(p, &flags);
  3085. /*
  3086. * The RT priorities are set via sched_setscheduler(), but we still
  3087. * allow the 'normal' nice value to be set - but as expected
  3088. * it wont have any effect on scheduling until the task is
  3089. * SCHED_FIFO/SCHED_RR:
  3090. */
  3091. if (task_has_rt_policy(p)) {
  3092. p->static_prio = NICE_TO_PRIO(nice);
  3093. goto out_unlock;
  3094. }
  3095. on_rq = p->on_rq;
  3096. if (on_rq)
  3097. dequeue_task(rq, p, 0);
  3098. p->static_prio = NICE_TO_PRIO(nice);
  3099. set_load_weight(p);
  3100. old_prio = p->prio;
  3101. p->prio = effective_prio(p);
  3102. delta = p->prio - old_prio;
  3103. if (on_rq) {
  3104. enqueue_task(rq, p, 0);
  3105. /*
  3106. * If the task increased its priority or is running and
  3107. * lowered its priority, then reschedule its CPU:
  3108. */
  3109. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3110. resched_task(rq->curr);
  3111. }
  3112. out_unlock:
  3113. task_rq_unlock(rq, p, &flags);
  3114. }
  3115. EXPORT_SYMBOL(set_user_nice);
  3116. /*
  3117. * can_nice - check if a task can reduce its nice value
  3118. * @p: task
  3119. * @nice: nice value
  3120. */
  3121. int can_nice(const struct task_struct *p, const int nice)
  3122. {
  3123. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3124. int nice_rlim = 20 - nice;
  3125. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3126. capable(CAP_SYS_NICE));
  3127. }
  3128. #ifdef __ARCH_WANT_SYS_NICE
  3129. /*
  3130. * sys_nice - change the priority of the current process.
  3131. * @increment: priority increment
  3132. *
  3133. * sys_setpriority is a more generic, but much slower function that
  3134. * does similar things.
  3135. */
  3136. SYSCALL_DEFINE1(nice, int, increment)
  3137. {
  3138. long nice, retval;
  3139. /*
  3140. * Setpriority might change our priority at the same moment.
  3141. * We don't have to worry. Conceptually one call occurs first
  3142. * and we have a single winner.
  3143. */
  3144. if (increment < -40)
  3145. increment = -40;
  3146. if (increment > 40)
  3147. increment = 40;
  3148. nice = TASK_NICE(current) + increment;
  3149. if (nice < -20)
  3150. nice = -20;
  3151. if (nice > 19)
  3152. nice = 19;
  3153. if (increment < 0 && !can_nice(current, nice))
  3154. return -EPERM;
  3155. retval = security_task_setnice(current, nice);
  3156. if (retval)
  3157. return retval;
  3158. set_user_nice(current, nice);
  3159. return 0;
  3160. }
  3161. #endif
  3162. /**
  3163. * task_prio - return the priority value of a given task.
  3164. * @p: the task in question.
  3165. *
  3166. * This is the priority value as seen by users in /proc.
  3167. * RT tasks are offset by -200. Normal tasks are centered
  3168. * around 0, value goes from -16 to +15.
  3169. */
  3170. int task_prio(const struct task_struct *p)
  3171. {
  3172. return p->prio - MAX_RT_PRIO;
  3173. }
  3174. /**
  3175. * task_nice - return the nice value of a given task.
  3176. * @p: the task in question.
  3177. */
  3178. int task_nice(const struct task_struct *p)
  3179. {
  3180. return TASK_NICE(p);
  3181. }
  3182. EXPORT_SYMBOL(task_nice);
  3183. /**
  3184. * idle_cpu - is a given cpu idle currently?
  3185. * @cpu: the processor in question.
  3186. */
  3187. int idle_cpu(int cpu)
  3188. {
  3189. struct rq *rq = cpu_rq(cpu);
  3190. if (rq->curr != rq->idle)
  3191. return 0;
  3192. if (rq->nr_running)
  3193. return 0;
  3194. #ifdef CONFIG_SMP
  3195. if (!llist_empty(&rq->wake_list))
  3196. return 0;
  3197. #endif
  3198. return 1;
  3199. }
  3200. /**
  3201. * idle_task - return the idle task for a given cpu.
  3202. * @cpu: the processor in question.
  3203. */
  3204. struct task_struct *idle_task(int cpu)
  3205. {
  3206. return cpu_rq(cpu)->idle;
  3207. }
  3208. /**
  3209. * find_process_by_pid - find a process with a matching PID value.
  3210. * @pid: the pid in question.
  3211. */
  3212. static struct task_struct *find_process_by_pid(pid_t pid)
  3213. {
  3214. return pid ? find_task_by_vpid(pid) : current;
  3215. }
  3216. /* Actually do priority change: must hold rq lock. */
  3217. static void
  3218. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3219. {
  3220. p->policy = policy;
  3221. p->rt_priority = prio;
  3222. p->normal_prio = normal_prio(p);
  3223. /* we are holding p->pi_lock already */
  3224. p->prio = rt_mutex_getprio(p);
  3225. if (rt_prio(p->prio))
  3226. p->sched_class = &rt_sched_class;
  3227. else
  3228. p->sched_class = &fair_sched_class;
  3229. set_load_weight(p);
  3230. }
  3231. /*
  3232. * check the target process has a UID that matches the current process's
  3233. */
  3234. static bool check_same_owner(struct task_struct *p)
  3235. {
  3236. const struct cred *cred = current_cred(), *pcred;
  3237. bool match;
  3238. rcu_read_lock();
  3239. pcred = __task_cred(p);
  3240. match = (uid_eq(cred->euid, pcred->euid) ||
  3241. uid_eq(cred->euid, pcred->uid));
  3242. rcu_read_unlock();
  3243. return match;
  3244. }
  3245. static int __sched_setscheduler(struct task_struct *p, int policy,
  3246. const struct sched_param *param, bool user)
  3247. {
  3248. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3249. unsigned long flags;
  3250. const struct sched_class *prev_class;
  3251. struct rq *rq;
  3252. int reset_on_fork;
  3253. /* may grab non-irq protected spin_locks */
  3254. BUG_ON(in_interrupt());
  3255. recheck:
  3256. /* double check policy once rq lock held */
  3257. if (policy < 0) {
  3258. reset_on_fork = p->sched_reset_on_fork;
  3259. policy = oldpolicy = p->policy;
  3260. } else {
  3261. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3262. policy &= ~SCHED_RESET_ON_FORK;
  3263. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3264. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3265. policy != SCHED_IDLE)
  3266. return -EINVAL;
  3267. }
  3268. /*
  3269. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3270. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3271. * SCHED_BATCH and SCHED_IDLE is 0.
  3272. */
  3273. if (param->sched_priority < 0 ||
  3274. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3275. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3276. return -EINVAL;
  3277. if (rt_policy(policy) != (param->sched_priority != 0))
  3278. return -EINVAL;
  3279. /*
  3280. * Allow unprivileged RT tasks to decrease priority:
  3281. */
  3282. if (user && !capable(CAP_SYS_NICE)) {
  3283. if (rt_policy(policy)) {
  3284. unsigned long rlim_rtprio =
  3285. task_rlimit(p, RLIMIT_RTPRIO);
  3286. /* can't set/change the rt policy */
  3287. if (policy != p->policy && !rlim_rtprio)
  3288. return -EPERM;
  3289. /* can't increase priority */
  3290. if (param->sched_priority > p->rt_priority &&
  3291. param->sched_priority > rlim_rtprio)
  3292. return -EPERM;
  3293. }
  3294. /*
  3295. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3296. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3297. */
  3298. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3299. if (!can_nice(p, TASK_NICE(p)))
  3300. return -EPERM;
  3301. }
  3302. /* can't change other user's priorities */
  3303. if (!check_same_owner(p))
  3304. return -EPERM;
  3305. /* Normal users shall not reset the sched_reset_on_fork flag */
  3306. if (p->sched_reset_on_fork && !reset_on_fork)
  3307. return -EPERM;
  3308. }
  3309. if (user) {
  3310. retval = security_task_setscheduler(p);
  3311. if (retval)
  3312. return retval;
  3313. }
  3314. /*
  3315. * make sure no PI-waiters arrive (or leave) while we are
  3316. * changing the priority of the task:
  3317. *
  3318. * To be able to change p->policy safely, the appropriate
  3319. * runqueue lock must be held.
  3320. */
  3321. rq = task_rq_lock(p, &flags);
  3322. /*
  3323. * Changing the policy of the stop threads its a very bad idea
  3324. */
  3325. if (p == rq->stop) {
  3326. task_rq_unlock(rq, p, &flags);
  3327. return -EINVAL;
  3328. }
  3329. /*
  3330. * If not changing anything there's no need to proceed further:
  3331. */
  3332. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3333. param->sched_priority == p->rt_priority))) {
  3334. task_rq_unlock(rq, p, &flags);
  3335. return 0;
  3336. }
  3337. #ifdef CONFIG_RT_GROUP_SCHED
  3338. if (user) {
  3339. /*
  3340. * Do not allow realtime tasks into groups that have no runtime
  3341. * assigned.
  3342. */
  3343. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3344. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3345. !task_group_is_autogroup(task_group(p))) {
  3346. task_rq_unlock(rq, p, &flags);
  3347. return -EPERM;
  3348. }
  3349. }
  3350. #endif
  3351. /* recheck policy now with rq lock held */
  3352. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3353. policy = oldpolicy = -1;
  3354. task_rq_unlock(rq, p, &flags);
  3355. goto recheck;
  3356. }
  3357. on_rq = p->on_rq;
  3358. running = task_current(rq, p);
  3359. if (on_rq)
  3360. dequeue_task(rq, p, 0);
  3361. if (running)
  3362. p->sched_class->put_prev_task(rq, p);
  3363. p->sched_reset_on_fork = reset_on_fork;
  3364. oldprio = p->prio;
  3365. prev_class = p->sched_class;
  3366. __setscheduler(rq, p, policy, param->sched_priority);
  3367. if (running)
  3368. p->sched_class->set_curr_task(rq);
  3369. if (on_rq)
  3370. enqueue_task(rq, p, 0);
  3371. check_class_changed(rq, p, prev_class, oldprio);
  3372. task_rq_unlock(rq, p, &flags);
  3373. rt_mutex_adjust_pi(p);
  3374. return 0;
  3375. }
  3376. /**
  3377. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3378. * @p: the task in question.
  3379. * @policy: new policy.
  3380. * @param: structure containing the new RT priority.
  3381. *
  3382. * NOTE that the task may be already dead.
  3383. */
  3384. int sched_setscheduler(struct task_struct *p, int policy,
  3385. const struct sched_param *param)
  3386. {
  3387. return __sched_setscheduler(p, policy, param, true);
  3388. }
  3389. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3390. /**
  3391. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3392. * @p: the task in question.
  3393. * @policy: new policy.
  3394. * @param: structure containing the new RT priority.
  3395. *
  3396. * Just like sched_setscheduler, only don't bother checking if the
  3397. * current context has permission. For example, this is needed in
  3398. * stop_machine(): we create temporary high priority worker threads,
  3399. * but our caller might not have that capability.
  3400. */
  3401. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3402. const struct sched_param *param)
  3403. {
  3404. return __sched_setscheduler(p, policy, param, false);
  3405. }
  3406. static int
  3407. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3408. {
  3409. struct sched_param lparam;
  3410. struct task_struct *p;
  3411. int retval;
  3412. if (!param || pid < 0)
  3413. return -EINVAL;
  3414. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3415. return -EFAULT;
  3416. rcu_read_lock();
  3417. retval = -ESRCH;
  3418. p = find_process_by_pid(pid);
  3419. if (p != NULL)
  3420. retval = sched_setscheduler(p, policy, &lparam);
  3421. rcu_read_unlock();
  3422. return retval;
  3423. }
  3424. /**
  3425. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3426. * @pid: the pid in question.
  3427. * @policy: new policy.
  3428. * @param: structure containing the new RT priority.
  3429. */
  3430. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3431. struct sched_param __user *, param)
  3432. {
  3433. /* negative values for policy are not valid */
  3434. if (policy < 0)
  3435. return -EINVAL;
  3436. return do_sched_setscheduler(pid, policy, param);
  3437. }
  3438. /**
  3439. * sys_sched_setparam - set/change the RT priority of a thread
  3440. * @pid: the pid in question.
  3441. * @param: structure containing the new RT priority.
  3442. */
  3443. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3444. {
  3445. return do_sched_setscheduler(pid, -1, param);
  3446. }
  3447. /**
  3448. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3449. * @pid: the pid in question.
  3450. */
  3451. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3452. {
  3453. struct task_struct *p;
  3454. int retval;
  3455. if (pid < 0)
  3456. return -EINVAL;
  3457. retval = -ESRCH;
  3458. rcu_read_lock();
  3459. p = find_process_by_pid(pid);
  3460. if (p) {
  3461. retval = security_task_getscheduler(p);
  3462. if (!retval)
  3463. retval = p->policy
  3464. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3465. }
  3466. rcu_read_unlock();
  3467. return retval;
  3468. }
  3469. /**
  3470. * sys_sched_getparam - get the RT priority of a thread
  3471. * @pid: the pid in question.
  3472. * @param: structure containing the RT priority.
  3473. */
  3474. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3475. {
  3476. struct sched_param lp;
  3477. struct task_struct *p;
  3478. int retval;
  3479. if (!param || pid < 0)
  3480. return -EINVAL;
  3481. rcu_read_lock();
  3482. p = find_process_by_pid(pid);
  3483. retval = -ESRCH;
  3484. if (!p)
  3485. goto out_unlock;
  3486. retval = security_task_getscheduler(p);
  3487. if (retval)
  3488. goto out_unlock;
  3489. lp.sched_priority = p->rt_priority;
  3490. rcu_read_unlock();
  3491. /*
  3492. * This one might sleep, we cannot do it with a spinlock held ...
  3493. */
  3494. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3495. return retval;
  3496. out_unlock:
  3497. rcu_read_unlock();
  3498. return retval;
  3499. }
  3500. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3501. {
  3502. cpumask_var_t cpus_allowed, new_mask;
  3503. struct task_struct *p;
  3504. int retval;
  3505. get_online_cpus();
  3506. rcu_read_lock();
  3507. p = find_process_by_pid(pid);
  3508. if (!p) {
  3509. rcu_read_unlock();
  3510. put_online_cpus();
  3511. return -ESRCH;
  3512. }
  3513. /* Prevent p going away */
  3514. get_task_struct(p);
  3515. rcu_read_unlock();
  3516. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3517. retval = -ENOMEM;
  3518. goto out_put_task;
  3519. }
  3520. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3521. retval = -ENOMEM;
  3522. goto out_free_cpus_allowed;
  3523. }
  3524. retval = -EPERM;
  3525. if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
  3526. goto out_unlock;
  3527. retval = security_task_setscheduler(p);
  3528. if (retval)
  3529. goto out_unlock;
  3530. cpuset_cpus_allowed(p, cpus_allowed);
  3531. cpumask_and(new_mask, in_mask, cpus_allowed);
  3532. again:
  3533. retval = set_cpus_allowed_ptr(p, new_mask);
  3534. if (!retval) {
  3535. cpuset_cpus_allowed(p, cpus_allowed);
  3536. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3537. /*
  3538. * We must have raced with a concurrent cpuset
  3539. * update. Just reset the cpus_allowed to the
  3540. * cpuset's cpus_allowed
  3541. */
  3542. cpumask_copy(new_mask, cpus_allowed);
  3543. goto again;
  3544. }
  3545. }
  3546. out_unlock:
  3547. free_cpumask_var(new_mask);
  3548. out_free_cpus_allowed:
  3549. free_cpumask_var(cpus_allowed);
  3550. out_put_task:
  3551. put_task_struct(p);
  3552. put_online_cpus();
  3553. return retval;
  3554. }
  3555. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3556. struct cpumask *new_mask)
  3557. {
  3558. if (len < cpumask_size())
  3559. cpumask_clear(new_mask);
  3560. else if (len > cpumask_size())
  3561. len = cpumask_size();
  3562. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3563. }
  3564. /**
  3565. * sys_sched_setaffinity - set the cpu affinity of a process
  3566. * @pid: pid of the process
  3567. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3568. * @user_mask_ptr: user-space pointer to the new cpu mask
  3569. */
  3570. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3571. unsigned long __user *, user_mask_ptr)
  3572. {
  3573. cpumask_var_t new_mask;
  3574. int retval;
  3575. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3576. return -ENOMEM;
  3577. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3578. if (retval == 0)
  3579. retval = sched_setaffinity(pid, new_mask);
  3580. free_cpumask_var(new_mask);
  3581. return retval;
  3582. }
  3583. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3584. {
  3585. struct task_struct *p;
  3586. unsigned long flags;
  3587. int retval;
  3588. get_online_cpus();
  3589. rcu_read_lock();
  3590. retval = -ESRCH;
  3591. p = find_process_by_pid(pid);
  3592. if (!p)
  3593. goto out_unlock;
  3594. retval = security_task_getscheduler(p);
  3595. if (retval)
  3596. goto out_unlock;
  3597. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3598. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3599. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3600. out_unlock:
  3601. rcu_read_unlock();
  3602. put_online_cpus();
  3603. return retval;
  3604. }
  3605. /**
  3606. * sys_sched_getaffinity - get the cpu affinity of a process
  3607. * @pid: pid of the process
  3608. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3609. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3610. */
  3611. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3612. unsigned long __user *, user_mask_ptr)
  3613. {
  3614. int ret;
  3615. cpumask_var_t mask;
  3616. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3617. return -EINVAL;
  3618. if (len & (sizeof(unsigned long)-1))
  3619. return -EINVAL;
  3620. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3621. return -ENOMEM;
  3622. ret = sched_getaffinity(pid, mask);
  3623. if (ret == 0) {
  3624. size_t retlen = min_t(size_t, len, cpumask_size());
  3625. if (copy_to_user(user_mask_ptr, mask, retlen))
  3626. ret = -EFAULT;
  3627. else
  3628. ret = retlen;
  3629. }
  3630. free_cpumask_var(mask);
  3631. return ret;
  3632. }
  3633. /**
  3634. * sys_sched_yield - yield the current processor to other threads.
  3635. *
  3636. * This function yields the current CPU to other tasks. If there are no
  3637. * other threads running on this CPU then this function will return.
  3638. */
  3639. SYSCALL_DEFINE0(sched_yield)
  3640. {
  3641. struct rq *rq = this_rq_lock();
  3642. schedstat_inc(rq, yld_count);
  3643. current->sched_class->yield_task(rq);
  3644. /*
  3645. * Since we are going to call schedule() anyway, there's
  3646. * no need to preempt or enable interrupts:
  3647. */
  3648. __release(rq->lock);
  3649. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3650. do_raw_spin_unlock(&rq->lock);
  3651. sched_preempt_enable_no_resched();
  3652. schedule();
  3653. return 0;
  3654. }
  3655. static inline int should_resched(void)
  3656. {
  3657. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3658. }
  3659. static void __cond_resched(void)
  3660. {
  3661. add_preempt_count(PREEMPT_ACTIVE);
  3662. __schedule();
  3663. sub_preempt_count(PREEMPT_ACTIVE);
  3664. }
  3665. int __sched _cond_resched(void)
  3666. {
  3667. if (should_resched()) {
  3668. __cond_resched();
  3669. return 1;
  3670. }
  3671. return 0;
  3672. }
  3673. EXPORT_SYMBOL(_cond_resched);
  3674. /*
  3675. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3676. * call schedule, and on return reacquire the lock.
  3677. *
  3678. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3679. * operations here to prevent schedule() from being called twice (once via
  3680. * spin_unlock(), once by hand).
  3681. */
  3682. int __cond_resched_lock(spinlock_t *lock)
  3683. {
  3684. int resched = should_resched();
  3685. int ret = 0;
  3686. lockdep_assert_held(lock);
  3687. if (spin_needbreak(lock) || resched) {
  3688. spin_unlock(lock);
  3689. if (resched)
  3690. __cond_resched();
  3691. else
  3692. cpu_relax();
  3693. ret = 1;
  3694. spin_lock(lock);
  3695. }
  3696. return ret;
  3697. }
  3698. EXPORT_SYMBOL(__cond_resched_lock);
  3699. int __sched __cond_resched_softirq(void)
  3700. {
  3701. BUG_ON(!in_softirq());
  3702. if (should_resched()) {
  3703. local_bh_enable();
  3704. __cond_resched();
  3705. local_bh_disable();
  3706. return 1;
  3707. }
  3708. return 0;
  3709. }
  3710. EXPORT_SYMBOL(__cond_resched_softirq);
  3711. /**
  3712. * yield - yield the current processor to other threads.
  3713. *
  3714. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3715. *
  3716. * The scheduler is at all times free to pick the calling task as the most
  3717. * eligible task to run, if removing the yield() call from your code breaks
  3718. * it, its already broken.
  3719. *
  3720. * Typical broken usage is:
  3721. *
  3722. * while (!event)
  3723. * yield();
  3724. *
  3725. * where one assumes that yield() will let 'the other' process run that will
  3726. * make event true. If the current task is a SCHED_FIFO task that will never
  3727. * happen. Never use yield() as a progress guarantee!!
  3728. *
  3729. * If you want to use yield() to wait for something, use wait_event().
  3730. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3731. * If you still want to use yield(), do not!
  3732. */
  3733. void __sched yield(void)
  3734. {
  3735. set_current_state(TASK_RUNNING);
  3736. sys_sched_yield();
  3737. }
  3738. EXPORT_SYMBOL(yield);
  3739. /**
  3740. * yield_to - yield the current processor to another thread in
  3741. * your thread group, or accelerate that thread toward the
  3742. * processor it's on.
  3743. * @p: target task
  3744. * @preempt: whether task preemption is allowed or not
  3745. *
  3746. * It's the caller's job to ensure that the target task struct
  3747. * can't go away on us before we can do any checks.
  3748. *
  3749. * Returns true if we indeed boosted the target task.
  3750. */
  3751. bool __sched yield_to(struct task_struct *p, bool preempt)
  3752. {
  3753. struct task_struct *curr = current;
  3754. struct rq *rq, *p_rq;
  3755. unsigned long flags;
  3756. bool yielded = 0;
  3757. local_irq_save(flags);
  3758. rq = this_rq();
  3759. again:
  3760. p_rq = task_rq(p);
  3761. double_rq_lock(rq, p_rq);
  3762. while (task_rq(p) != p_rq) {
  3763. double_rq_unlock(rq, p_rq);
  3764. goto again;
  3765. }
  3766. if (!curr->sched_class->yield_to_task)
  3767. goto out;
  3768. if (curr->sched_class != p->sched_class)
  3769. goto out;
  3770. if (task_running(p_rq, p) || p->state)
  3771. goto out;
  3772. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3773. if (yielded) {
  3774. schedstat_inc(rq, yld_count);
  3775. /*
  3776. * Make p's CPU reschedule; pick_next_entity takes care of
  3777. * fairness.
  3778. */
  3779. if (preempt && rq != p_rq)
  3780. resched_task(p_rq->curr);
  3781. }
  3782. out:
  3783. double_rq_unlock(rq, p_rq);
  3784. local_irq_restore(flags);
  3785. if (yielded)
  3786. schedule();
  3787. return yielded;
  3788. }
  3789. EXPORT_SYMBOL_GPL(yield_to);
  3790. /*
  3791. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3792. * that process accounting knows that this is a task in IO wait state.
  3793. */
  3794. void __sched io_schedule(void)
  3795. {
  3796. struct rq *rq = raw_rq();
  3797. delayacct_blkio_start();
  3798. atomic_inc(&rq->nr_iowait);
  3799. blk_flush_plug(current);
  3800. current->in_iowait = 1;
  3801. schedule();
  3802. current->in_iowait = 0;
  3803. atomic_dec(&rq->nr_iowait);
  3804. delayacct_blkio_end();
  3805. }
  3806. EXPORT_SYMBOL(io_schedule);
  3807. long __sched io_schedule_timeout(long timeout)
  3808. {
  3809. struct rq *rq = raw_rq();
  3810. long ret;
  3811. delayacct_blkio_start();
  3812. atomic_inc(&rq->nr_iowait);
  3813. blk_flush_plug(current);
  3814. current->in_iowait = 1;
  3815. ret = schedule_timeout(timeout);
  3816. current->in_iowait = 0;
  3817. atomic_dec(&rq->nr_iowait);
  3818. delayacct_blkio_end();
  3819. return ret;
  3820. }
  3821. /**
  3822. * sys_sched_get_priority_max - return maximum RT priority.
  3823. * @policy: scheduling class.
  3824. *
  3825. * this syscall returns the maximum rt_priority that can be used
  3826. * by a given scheduling class.
  3827. */
  3828. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3829. {
  3830. int ret = -EINVAL;
  3831. switch (policy) {
  3832. case SCHED_FIFO:
  3833. case SCHED_RR:
  3834. ret = MAX_USER_RT_PRIO-1;
  3835. break;
  3836. case SCHED_NORMAL:
  3837. case SCHED_BATCH:
  3838. case SCHED_IDLE:
  3839. ret = 0;
  3840. break;
  3841. }
  3842. return ret;
  3843. }
  3844. /**
  3845. * sys_sched_get_priority_min - return minimum RT priority.
  3846. * @policy: scheduling class.
  3847. *
  3848. * this syscall returns the minimum rt_priority that can be used
  3849. * by a given scheduling class.
  3850. */
  3851. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3852. {
  3853. int ret = -EINVAL;
  3854. switch (policy) {
  3855. case SCHED_FIFO:
  3856. case SCHED_RR:
  3857. ret = 1;
  3858. break;
  3859. case SCHED_NORMAL:
  3860. case SCHED_BATCH:
  3861. case SCHED_IDLE:
  3862. ret = 0;
  3863. }
  3864. return ret;
  3865. }
  3866. /**
  3867. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3868. * @pid: pid of the process.
  3869. * @interval: userspace pointer to the timeslice value.
  3870. *
  3871. * this syscall writes the default timeslice value of a given process
  3872. * into the user-space timespec buffer. A value of '0' means infinity.
  3873. */
  3874. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3875. struct timespec __user *, interval)
  3876. {
  3877. struct task_struct *p;
  3878. unsigned int time_slice;
  3879. unsigned long flags;
  3880. struct rq *rq;
  3881. int retval;
  3882. struct timespec t;
  3883. if (pid < 0)
  3884. return -EINVAL;
  3885. retval = -ESRCH;
  3886. rcu_read_lock();
  3887. p = find_process_by_pid(pid);
  3888. if (!p)
  3889. goto out_unlock;
  3890. retval = security_task_getscheduler(p);
  3891. if (retval)
  3892. goto out_unlock;
  3893. rq = task_rq_lock(p, &flags);
  3894. time_slice = p->sched_class->get_rr_interval(rq, p);
  3895. task_rq_unlock(rq, p, &flags);
  3896. rcu_read_unlock();
  3897. jiffies_to_timespec(time_slice, &t);
  3898. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3899. return retval;
  3900. out_unlock:
  3901. rcu_read_unlock();
  3902. return retval;
  3903. }
  3904. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3905. void sched_show_task(struct task_struct *p)
  3906. {
  3907. unsigned long free = 0;
  3908. int ppid;
  3909. unsigned state;
  3910. state = p->state ? __ffs(p->state) + 1 : 0;
  3911. printk(KERN_INFO "%-15.15s %c", p->comm,
  3912. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3913. #if BITS_PER_LONG == 32
  3914. if (state == TASK_RUNNING)
  3915. printk(KERN_CONT " running ");
  3916. else
  3917. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3918. #else
  3919. if (state == TASK_RUNNING)
  3920. printk(KERN_CONT " running task ");
  3921. else
  3922. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3923. #endif
  3924. #ifdef CONFIG_DEBUG_STACK_USAGE
  3925. free = stack_not_used(p);
  3926. #endif
  3927. rcu_read_lock();
  3928. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3929. rcu_read_unlock();
  3930. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3931. task_pid_nr(p), ppid,
  3932. (unsigned long)task_thread_info(p)->flags);
  3933. show_stack(p, NULL);
  3934. }
  3935. void show_state_filter(unsigned long state_filter)
  3936. {
  3937. struct task_struct *g, *p;
  3938. #if BITS_PER_LONG == 32
  3939. printk(KERN_INFO
  3940. " task PC stack pid father\n");
  3941. #else
  3942. printk(KERN_INFO
  3943. " task PC stack pid father\n");
  3944. #endif
  3945. rcu_read_lock();
  3946. do_each_thread(g, p) {
  3947. /*
  3948. * reset the NMI-timeout, listing all files on a slow
  3949. * console might take a lot of time:
  3950. */
  3951. touch_nmi_watchdog();
  3952. if (!state_filter || (p->state & state_filter))
  3953. sched_show_task(p);
  3954. } while_each_thread(g, p);
  3955. touch_all_softlockup_watchdogs();
  3956. #ifdef CONFIG_SCHED_DEBUG
  3957. sysrq_sched_debug_show();
  3958. #endif
  3959. rcu_read_unlock();
  3960. /*
  3961. * Only show locks if all tasks are dumped:
  3962. */
  3963. if (!state_filter)
  3964. debug_show_all_locks();
  3965. }
  3966. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  3967. {
  3968. idle->sched_class = &idle_sched_class;
  3969. }
  3970. /**
  3971. * init_idle - set up an idle thread for a given CPU
  3972. * @idle: task in question
  3973. * @cpu: cpu the idle task belongs to
  3974. *
  3975. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3976. * flag, to make booting more robust.
  3977. */
  3978. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  3979. {
  3980. struct rq *rq = cpu_rq(cpu);
  3981. unsigned long flags;
  3982. raw_spin_lock_irqsave(&rq->lock, flags);
  3983. __sched_fork(idle);
  3984. idle->state = TASK_RUNNING;
  3985. idle->se.exec_start = sched_clock();
  3986. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3987. /*
  3988. * We're having a chicken and egg problem, even though we are
  3989. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3990. * lockdep check in task_group() will fail.
  3991. *
  3992. * Similar case to sched_fork(). / Alternatively we could
  3993. * use task_rq_lock() here and obtain the other rq->lock.
  3994. *
  3995. * Silence PROVE_RCU
  3996. */
  3997. rcu_read_lock();
  3998. __set_task_cpu(idle, cpu);
  3999. rcu_read_unlock();
  4000. rq->curr = rq->idle = idle;
  4001. #if defined(CONFIG_SMP)
  4002. idle->on_cpu = 1;
  4003. #endif
  4004. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4005. /* Set the preempt count _outside_ the spinlocks! */
  4006. task_thread_info(idle)->preempt_count = 0;
  4007. /*
  4008. * The idle tasks have their own, simple scheduling class:
  4009. */
  4010. idle->sched_class = &idle_sched_class;
  4011. ftrace_graph_init_idle_task(idle, cpu);
  4012. #if defined(CONFIG_SMP)
  4013. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4014. #endif
  4015. }
  4016. #ifdef CONFIG_SMP
  4017. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4018. {
  4019. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4020. p->sched_class->set_cpus_allowed(p, new_mask);
  4021. cpumask_copy(&p->cpus_allowed, new_mask);
  4022. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4023. }
  4024. /*
  4025. * This is how migration works:
  4026. *
  4027. * 1) we invoke migration_cpu_stop() on the target CPU using
  4028. * stop_one_cpu().
  4029. * 2) stopper starts to run (implicitly forcing the migrated thread
  4030. * off the CPU)
  4031. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4032. * 4) if it's in the wrong runqueue then the migration thread removes
  4033. * it and puts it into the right queue.
  4034. * 5) stopper completes and stop_one_cpu() returns and the migration
  4035. * is done.
  4036. */
  4037. /*
  4038. * Change a given task's CPU affinity. Migrate the thread to a
  4039. * proper CPU and schedule it away if the CPU it's executing on
  4040. * is removed from the allowed bitmask.
  4041. *
  4042. * NOTE: the caller must have a valid reference to the task, the
  4043. * task must not exit() & deallocate itself prematurely. The
  4044. * call is not atomic; no spinlocks may be held.
  4045. */
  4046. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4047. {
  4048. unsigned long flags;
  4049. struct rq *rq;
  4050. unsigned int dest_cpu;
  4051. int ret = 0;
  4052. rq = task_rq_lock(p, &flags);
  4053. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4054. goto out;
  4055. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4056. ret = -EINVAL;
  4057. goto out;
  4058. }
  4059. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4060. ret = -EINVAL;
  4061. goto out;
  4062. }
  4063. do_set_cpus_allowed(p, new_mask);
  4064. /* Can the task run on the task's current CPU? If so, we're done */
  4065. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4066. goto out;
  4067. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4068. if (p->on_rq) {
  4069. struct migration_arg arg = { p, dest_cpu };
  4070. /* Need help from migration thread: drop lock and wait. */
  4071. task_rq_unlock(rq, p, &flags);
  4072. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4073. tlb_migrate_finish(p->mm);
  4074. return 0;
  4075. }
  4076. out:
  4077. task_rq_unlock(rq, p, &flags);
  4078. return ret;
  4079. }
  4080. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4081. /*
  4082. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4083. * this because either it can't run here any more (set_cpus_allowed()
  4084. * away from this CPU, or CPU going down), or because we're
  4085. * attempting to rebalance this task on exec (sched_exec).
  4086. *
  4087. * So we race with normal scheduler movements, but that's OK, as long
  4088. * as the task is no longer on this CPU.
  4089. *
  4090. * Returns non-zero if task was successfully migrated.
  4091. */
  4092. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4093. {
  4094. struct rq *rq_dest, *rq_src;
  4095. int ret = 0;
  4096. if (unlikely(!cpu_active(dest_cpu)))
  4097. return ret;
  4098. rq_src = cpu_rq(src_cpu);
  4099. rq_dest = cpu_rq(dest_cpu);
  4100. raw_spin_lock(&p->pi_lock);
  4101. double_rq_lock(rq_src, rq_dest);
  4102. /* Already moved. */
  4103. if (task_cpu(p) != src_cpu)
  4104. goto done;
  4105. /* Affinity changed (again). */
  4106. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4107. goto fail;
  4108. /*
  4109. * If we're not on a rq, the next wake-up will ensure we're
  4110. * placed properly.
  4111. */
  4112. if (p->on_rq) {
  4113. dequeue_task(rq_src, p, 0);
  4114. set_task_cpu(p, dest_cpu);
  4115. enqueue_task(rq_dest, p, 0);
  4116. check_preempt_curr(rq_dest, p, 0);
  4117. }
  4118. done:
  4119. ret = 1;
  4120. fail:
  4121. double_rq_unlock(rq_src, rq_dest);
  4122. raw_spin_unlock(&p->pi_lock);
  4123. return ret;
  4124. }
  4125. /*
  4126. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4127. * and performs thread migration by bumping thread off CPU then
  4128. * 'pushing' onto another runqueue.
  4129. */
  4130. static int migration_cpu_stop(void *data)
  4131. {
  4132. struct migration_arg *arg = data;
  4133. /*
  4134. * The original target cpu might have gone down and we might
  4135. * be on another cpu but it doesn't matter.
  4136. */
  4137. local_irq_disable();
  4138. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4139. local_irq_enable();
  4140. return 0;
  4141. }
  4142. #ifdef CONFIG_HOTPLUG_CPU
  4143. /*
  4144. * Ensures that the idle task is using init_mm right before its cpu goes
  4145. * offline.
  4146. */
  4147. void idle_task_exit(void)
  4148. {
  4149. struct mm_struct *mm = current->active_mm;
  4150. BUG_ON(cpu_online(smp_processor_id()));
  4151. if (mm != &init_mm)
  4152. switch_mm(mm, &init_mm, current);
  4153. mmdrop(mm);
  4154. }
  4155. /*
  4156. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4157. * we might have. Assumes we're called after migrate_tasks() so that the
  4158. * nr_active count is stable.
  4159. *
  4160. * Also see the comment "Global load-average calculations".
  4161. */
  4162. static void calc_load_migrate(struct rq *rq)
  4163. {
  4164. long delta = calc_load_fold_active(rq);
  4165. if (delta)
  4166. atomic_long_add(delta, &calc_load_tasks);
  4167. }
  4168. /*
  4169. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4170. * try_to_wake_up()->select_task_rq().
  4171. *
  4172. * Called with rq->lock held even though we'er in stop_machine() and
  4173. * there's no concurrency possible, we hold the required locks anyway
  4174. * because of lock validation efforts.
  4175. */
  4176. static void migrate_tasks(unsigned int dead_cpu)
  4177. {
  4178. struct rq *rq = cpu_rq(dead_cpu);
  4179. struct task_struct *next, *stop = rq->stop;
  4180. int dest_cpu;
  4181. /*
  4182. * Fudge the rq selection such that the below task selection loop
  4183. * doesn't get stuck on the currently eligible stop task.
  4184. *
  4185. * We're currently inside stop_machine() and the rq is either stuck
  4186. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4187. * either way we should never end up calling schedule() until we're
  4188. * done here.
  4189. */
  4190. rq->stop = NULL;
  4191. for ( ; ; ) {
  4192. /*
  4193. * There's this thread running, bail when that's the only
  4194. * remaining thread.
  4195. */
  4196. if (rq->nr_running == 1)
  4197. break;
  4198. next = pick_next_task(rq);
  4199. BUG_ON(!next);
  4200. next->sched_class->put_prev_task(rq, next);
  4201. /* Find suitable destination for @next, with force if needed. */
  4202. dest_cpu = select_fallback_rq(dead_cpu, next);
  4203. raw_spin_unlock(&rq->lock);
  4204. __migrate_task(next, dead_cpu, dest_cpu);
  4205. raw_spin_lock(&rq->lock);
  4206. }
  4207. rq->stop = stop;
  4208. }
  4209. #endif /* CONFIG_HOTPLUG_CPU */
  4210. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4211. static struct ctl_table sd_ctl_dir[] = {
  4212. {
  4213. .procname = "sched_domain",
  4214. .mode = 0555,
  4215. },
  4216. {}
  4217. };
  4218. static struct ctl_table sd_ctl_root[] = {
  4219. {
  4220. .procname = "kernel",
  4221. .mode = 0555,
  4222. .child = sd_ctl_dir,
  4223. },
  4224. {}
  4225. };
  4226. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4227. {
  4228. struct ctl_table *entry =
  4229. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4230. return entry;
  4231. }
  4232. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4233. {
  4234. struct ctl_table *entry;
  4235. /*
  4236. * In the intermediate directories, both the child directory and
  4237. * procname are dynamically allocated and could fail but the mode
  4238. * will always be set. In the lowest directory the names are
  4239. * static strings and all have proc handlers.
  4240. */
  4241. for (entry = *tablep; entry->mode; entry++) {
  4242. if (entry->child)
  4243. sd_free_ctl_entry(&entry->child);
  4244. if (entry->proc_handler == NULL)
  4245. kfree(entry->procname);
  4246. }
  4247. kfree(*tablep);
  4248. *tablep = NULL;
  4249. }
  4250. static int min_load_idx = 0;
  4251. static int max_load_idx = CPU_LOAD_IDX_MAX;
  4252. static void
  4253. set_table_entry(struct ctl_table *entry,
  4254. const char *procname, void *data, int maxlen,
  4255. umode_t mode, proc_handler *proc_handler,
  4256. bool load_idx)
  4257. {
  4258. entry->procname = procname;
  4259. entry->data = data;
  4260. entry->maxlen = maxlen;
  4261. entry->mode = mode;
  4262. entry->proc_handler = proc_handler;
  4263. if (load_idx) {
  4264. entry->extra1 = &min_load_idx;
  4265. entry->extra2 = &max_load_idx;
  4266. }
  4267. }
  4268. static struct ctl_table *
  4269. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4270. {
  4271. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4272. if (table == NULL)
  4273. return NULL;
  4274. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4275. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4276. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4277. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4278. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4279. sizeof(int), 0644, proc_dointvec_minmax, true);
  4280. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4281. sizeof(int), 0644, proc_dointvec_minmax, true);
  4282. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4283. sizeof(int), 0644, proc_dointvec_minmax, true);
  4284. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4285. sizeof(int), 0644, proc_dointvec_minmax, true);
  4286. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4287. sizeof(int), 0644, proc_dointvec_minmax, true);
  4288. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4289. sizeof(int), 0644, proc_dointvec_minmax, false);
  4290. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4291. sizeof(int), 0644, proc_dointvec_minmax, false);
  4292. set_table_entry(&table[9], "cache_nice_tries",
  4293. &sd->cache_nice_tries,
  4294. sizeof(int), 0644, proc_dointvec_minmax, false);
  4295. set_table_entry(&table[10], "flags", &sd->flags,
  4296. sizeof(int), 0644, proc_dointvec_minmax, false);
  4297. set_table_entry(&table[11], "name", sd->name,
  4298. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4299. /* &table[12] is terminator */
  4300. return table;
  4301. }
  4302. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4303. {
  4304. struct ctl_table *entry, *table;
  4305. struct sched_domain *sd;
  4306. int domain_num = 0, i;
  4307. char buf[32];
  4308. for_each_domain(cpu, sd)
  4309. domain_num++;
  4310. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4311. if (table == NULL)
  4312. return NULL;
  4313. i = 0;
  4314. for_each_domain(cpu, sd) {
  4315. snprintf(buf, 32, "domain%d", i);
  4316. entry->procname = kstrdup(buf, GFP_KERNEL);
  4317. entry->mode = 0555;
  4318. entry->child = sd_alloc_ctl_domain_table(sd);
  4319. entry++;
  4320. i++;
  4321. }
  4322. return table;
  4323. }
  4324. static struct ctl_table_header *sd_sysctl_header;
  4325. static void register_sched_domain_sysctl(void)
  4326. {
  4327. int i, cpu_num = num_possible_cpus();
  4328. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4329. char buf[32];
  4330. WARN_ON(sd_ctl_dir[0].child);
  4331. sd_ctl_dir[0].child = entry;
  4332. if (entry == NULL)
  4333. return;
  4334. for_each_possible_cpu(i) {
  4335. snprintf(buf, 32, "cpu%d", i);
  4336. entry->procname = kstrdup(buf, GFP_KERNEL);
  4337. entry->mode = 0555;
  4338. entry->child = sd_alloc_ctl_cpu_table(i);
  4339. entry++;
  4340. }
  4341. WARN_ON(sd_sysctl_header);
  4342. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4343. }
  4344. /* may be called multiple times per register */
  4345. static void unregister_sched_domain_sysctl(void)
  4346. {
  4347. if (sd_sysctl_header)
  4348. unregister_sysctl_table(sd_sysctl_header);
  4349. sd_sysctl_header = NULL;
  4350. if (sd_ctl_dir[0].child)
  4351. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4352. }
  4353. #else
  4354. static void register_sched_domain_sysctl(void)
  4355. {
  4356. }
  4357. static void unregister_sched_domain_sysctl(void)
  4358. {
  4359. }
  4360. #endif
  4361. static void set_rq_online(struct rq *rq)
  4362. {
  4363. if (!rq->online) {
  4364. const struct sched_class *class;
  4365. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4366. rq->online = 1;
  4367. for_each_class(class) {
  4368. if (class->rq_online)
  4369. class->rq_online(rq);
  4370. }
  4371. }
  4372. }
  4373. static void set_rq_offline(struct rq *rq)
  4374. {
  4375. if (rq->online) {
  4376. const struct sched_class *class;
  4377. for_each_class(class) {
  4378. if (class->rq_offline)
  4379. class->rq_offline(rq);
  4380. }
  4381. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4382. rq->online = 0;
  4383. }
  4384. }
  4385. /*
  4386. * migration_call - callback that gets triggered when a CPU is added.
  4387. * Here we can start up the necessary migration thread for the new CPU.
  4388. */
  4389. static int __cpuinit
  4390. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4391. {
  4392. int cpu = (long)hcpu;
  4393. unsigned long flags;
  4394. struct rq *rq = cpu_rq(cpu);
  4395. switch (action & ~CPU_TASKS_FROZEN) {
  4396. case CPU_UP_PREPARE:
  4397. rq->calc_load_update = calc_load_update;
  4398. break;
  4399. case CPU_ONLINE:
  4400. /* Update our root-domain */
  4401. raw_spin_lock_irqsave(&rq->lock, flags);
  4402. if (rq->rd) {
  4403. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4404. set_rq_online(rq);
  4405. }
  4406. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4407. break;
  4408. #ifdef CONFIG_HOTPLUG_CPU
  4409. case CPU_DYING:
  4410. sched_ttwu_pending();
  4411. /* Update our root-domain */
  4412. raw_spin_lock_irqsave(&rq->lock, flags);
  4413. if (rq->rd) {
  4414. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4415. set_rq_offline(rq);
  4416. }
  4417. migrate_tasks(cpu);
  4418. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4419. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4420. break;
  4421. case CPU_DEAD:
  4422. calc_load_migrate(rq);
  4423. break;
  4424. #endif
  4425. }
  4426. update_max_interval();
  4427. return NOTIFY_OK;
  4428. }
  4429. /*
  4430. * Register at high priority so that task migration (migrate_all_tasks)
  4431. * happens before everything else. This has to be lower priority than
  4432. * the notifier in the perf_event subsystem, though.
  4433. */
  4434. static struct notifier_block __cpuinitdata migration_notifier = {
  4435. .notifier_call = migration_call,
  4436. .priority = CPU_PRI_MIGRATION,
  4437. };
  4438. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4439. unsigned long action, void *hcpu)
  4440. {
  4441. switch (action & ~CPU_TASKS_FROZEN) {
  4442. case CPU_STARTING:
  4443. case CPU_DOWN_FAILED:
  4444. set_cpu_active((long)hcpu, true);
  4445. return NOTIFY_OK;
  4446. default:
  4447. return NOTIFY_DONE;
  4448. }
  4449. }
  4450. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4451. unsigned long action, void *hcpu)
  4452. {
  4453. switch (action & ~CPU_TASKS_FROZEN) {
  4454. case CPU_DOWN_PREPARE:
  4455. set_cpu_active((long)hcpu, false);
  4456. return NOTIFY_OK;
  4457. default:
  4458. return NOTIFY_DONE;
  4459. }
  4460. }
  4461. static int __init migration_init(void)
  4462. {
  4463. void *cpu = (void *)(long)smp_processor_id();
  4464. int err;
  4465. /* Initialize migration for the boot CPU */
  4466. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4467. BUG_ON(err == NOTIFY_BAD);
  4468. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4469. register_cpu_notifier(&migration_notifier);
  4470. /* Register cpu active notifiers */
  4471. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4472. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4473. return 0;
  4474. }
  4475. early_initcall(migration_init);
  4476. #endif
  4477. #ifdef CONFIG_SMP
  4478. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4479. #ifdef CONFIG_SCHED_DEBUG
  4480. static __read_mostly int sched_debug_enabled;
  4481. static int __init sched_debug_setup(char *str)
  4482. {
  4483. sched_debug_enabled = 1;
  4484. return 0;
  4485. }
  4486. early_param("sched_debug", sched_debug_setup);
  4487. static inline bool sched_debug(void)
  4488. {
  4489. return sched_debug_enabled;
  4490. }
  4491. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4492. struct cpumask *groupmask)
  4493. {
  4494. struct sched_group *group = sd->groups;
  4495. char str[256];
  4496. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4497. cpumask_clear(groupmask);
  4498. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4499. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4500. printk("does not load-balance\n");
  4501. if (sd->parent)
  4502. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4503. " has parent");
  4504. return -1;
  4505. }
  4506. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4507. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4508. printk(KERN_ERR "ERROR: domain->span does not contain "
  4509. "CPU%d\n", cpu);
  4510. }
  4511. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4512. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4513. " CPU%d\n", cpu);
  4514. }
  4515. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4516. do {
  4517. if (!group) {
  4518. printk("\n");
  4519. printk(KERN_ERR "ERROR: group is NULL\n");
  4520. break;
  4521. }
  4522. /*
  4523. * Even though we initialize ->power to something semi-sane,
  4524. * we leave power_orig unset. This allows us to detect if
  4525. * domain iteration is still funny without causing /0 traps.
  4526. */
  4527. if (!group->sgp->power_orig) {
  4528. printk(KERN_CONT "\n");
  4529. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4530. "set\n");
  4531. break;
  4532. }
  4533. if (!cpumask_weight(sched_group_cpus(group))) {
  4534. printk(KERN_CONT "\n");
  4535. printk(KERN_ERR "ERROR: empty group\n");
  4536. break;
  4537. }
  4538. if (!(sd->flags & SD_OVERLAP) &&
  4539. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4540. printk(KERN_CONT "\n");
  4541. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4542. break;
  4543. }
  4544. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4545. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4546. printk(KERN_CONT " %s", str);
  4547. if (group->sgp->power != SCHED_POWER_SCALE) {
  4548. printk(KERN_CONT " (cpu_power = %d)",
  4549. group->sgp->power);
  4550. }
  4551. group = group->next;
  4552. } while (group != sd->groups);
  4553. printk(KERN_CONT "\n");
  4554. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4555. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4556. if (sd->parent &&
  4557. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4558. printk(KERN_ERR "ERROR: parent span is not a superset "
  4559. "of domain->span\n");
  4560. return 0;
  4561. }
  4562. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4563. {
  4564. int level = 0;
  4565. if (!sched_debug_enabled)
  4566. return;
  4567. if (!sd) {
  4568. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4569. return;
  4570. }
  4571. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4572. for (;;) {
  4573. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4574. break;
  4575. level++;
  4576. sd = sd->parent;
  4577. if (!sd)
  4578. break;
  4579. }
  4580. }
  4581. #else /* !CONFIG_SCHED_DEBUG */
  4582. # define sched_domain_debug(sd, cpu) do { } while (0)
  4583. static inline bool sched_debug(void)
  4584. {
  4585. return false;
  4586. }
  4587. #endif /* CONFIG_SCHED_DEBUG */
  4588. static int sd_degenerate(struct sched_domain *sd)
  4589. {
  4590. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4591. return 1;
  4592. /* Following flags need at least 2 groups */
  4593. if (sd->flags & (SD_LOAD_BALANCE |
  4594. SD_BALANCE_NEWIDLE |
  4595. SD_BALANCE_FORK |
  4596. SD_BALANCE_EXEC |
  4597. SD_SHARE_CPUPOWER |
  4598. SD_SHARE_PKG_RESOURCES)) {
  4599. if (sd->groups != sd->groups->next)
  4600. return 0;
  4601. }
  4602. /* Following flags don't use groups */
  4603. if (sd->flags & (SD_WAKE_AFFINE))
  4604. return 0;
  4605. return 1;
  4606. }
  4607. static int
  4608. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4609. {
  4610. unsigned long cflags = sd->flags, pflags = parent->flags;
  4611. if (sd_degenerate(parent))
  4612. return 1;
  4613. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4614. return 0;
  4615. /* Flags needing groups don't count if only 1 group in parent */
  4616. if (parent->groups == parent->groups->next) {
  4617. pflags &= ~(SD_LOAD_BALANCE |
  4618. SD_BALANCE_NEWIDLE |
  4619. SD_BALANCE_FORK |
  4620. SD_BALANCE_EXEC |
  4621. SD_SHARE_CPUPOWER |
  4622. SD_SHARE_PKG_RESOURCES);
  4623. if (nr_node_ids == 1)
  4624. pflags &= ~SD_SERIALIZE;
  4625. }
  4626. if (~cflags & pflags)
  4627. return 0;
  4628. return 1;
  4629. }
  4630. static void free_rootdomain(struct rcu_head *rcu)
  4631. {
  4632. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4633. cpupri_cleanup(&rd->cpupri);
  4634. free_cpumask_var(rd->rto_mask);
  4635. free_cpumask_var(rd->online);
  4636. free_cpumask_var(rd->span);
  4637. kfree(rd);
  4638. }
  4639. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4640. {
  4641. struct root_domain *old_rd = NULL;
  4642. unsigned long flags;
  4643. raw_spin_lock_irqsave(&rq->lock, flags);
  4644. if (rq->rd) {
  4645. old_rd = rq->rd;
  4646. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4647. set_rq_offline(rq);
  4648. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4649. /*
  4650. * If we dont want to free the old_rt yet then
  4651. * set old_rd to NULL to skip the freeing later
  4652. * in this function:
  4653. */
  4654. if (!atomic_dec_and_test(&old_rd->refcount))
  4655. old_rd = NULL;
  4656. }
  4657. atomic_inc(&rd->refcount);
  4658. rq->rd = rd;
  4659. cpumask_set_cpu(rq->cpu, rd->span);
  4660. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4661. set_rq_online(rq);
  4662. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4663. if (old_rd)
  4664. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4665. }
  4666. static int init_rootdomain(struct root_domain *rd)
  4667. {
  4668. memset(rd, 0, sizeof(*rd));
  4669. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4670. goto out;
  4671. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4672. goto free_span;
  4673. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4674. goto free_online;
  4675. if (cpupri_init(&rd->cpupri) != 0)
  4676. goto free_rto_mask;
  4677. return 0;
  4678. free_rto_mask:
  4679. free_cpumask_var(rd->rto_mask);
  4680. free_online:
  4681. free_cpumask_var(rd->online);
  4682. free_span:
  4683. free_cpumask_var(rd->span);
  4684. out:
  4685. return -ENOMEM;
  4686. }
  4687. /*
  4688. * By default the system creates a single root-domain with all cpus as
  4689. * members (mimicking the global state we have today).
  4690. */
  4691. struct root_domain def_root_domain;
  4692. static void init_defrootdomain(void)
  4693. {
  4694. init_rootdomain(&def_root_domain);
  4695. atomic_set(&def_root_domain.refcount, 1);
  4696. }
  4697. static struct root_domain *alloc_rootdomain(void)
  4698. {
  4699. struct root_domain *rd;
  4700. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4701. if (!rd)
  4702. return NULL;
  4703. if (init_rootdomain(rd) != 0) {
  4704. kfree(rd);
  4705. return NULL;
  4706. }
  4707. return rd;
  4708. }
  4709. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4710. {
  4711. struct sched_group *tmp, *first;
  4712. if (!sg)
  4713. return;
  4714. first = sg;
  4715. do {
  4716. tmp = sg->next;
  4717. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4718. kfree(sg->sgp);
  4719. kfree(sg);
  4720. sg = tmp;
  4721. } while (sg != first);
  4722. }
  4723. static void free_sched_domain(struct rcu_head *rcu)
  4724. {
  4725. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4726. /*
  4727. * If its an overlapping domain it has private groups, iterate and
  4728. * nuke them all.
  4729. */
  4730. if (sd->flags & SD_OVERLAP) {
  4731. free_sched_groups(sd->groups, 1);
  4732. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4733. kfree(sd->groups->sgp);
  4734. kfree(sd->groups);
  4735. }
  4736. kfree(sd);
  4737. }
  4738. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4739. {
  4740. call_rcu(&sd->rcu, free_sched_domain);
  4741. }
  4742. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4743. {
  4744. for (; sd; sd = sd->parent)
  4745. destroy_sched_domain(sd, cpu);
  4746. }
  4747. /*
  4748. * Keep a special pointer to the highest sched_domain that has
  4749. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4750. * allows us to avoid some pointer chasing select_idle_sibling().
  4751. *
  4752. * Also keep a unique ID per domain (we use the first cpu number in
  4753. * the cpumask of the domain), this allows us to quickly tell if
  4754. * two cpus are in the same cache domain, see cpus_share_cache().
  4755. */
  4756. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4757. DEFINE_PER_CPU(int, sd_llc_id);
  4758. static void update_top_cache_domain(int cpu)
  4759. {
  4760. struct sched_domain *sd;
  4761. int id = cpu;
  4762. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4763. if (sd)
  4764. id = cpumask_first(sched_domain_span(sd));
  4765. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4766. per_cpu(sd_llc_id, cpu) = id;
  4767. }
  4768. /*
  4769. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4770. * hold the hotplug lock.
  4771. */
  4772. static void
  4773. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4774. {
  4775. struct rq *rq = cpu_rq(cpu);
  4776. struct sched_domain *tmp;
  4777. /* Remove the sched domains which do not contribute to scheduling. */
  4778. for (tmp = sd; tmp; ) {
  4779. struct sched_domain *parent = tmp->parent;
  4780. if (!parent)
  4781. break;
  4782. if (sd_parent_degenerate(tmp, parent)) {
  4783. tmp->parent = parent->parent;
  4784. if (parent->parent)
  4785. parent->parent->child = tmp;
  4786. destroy_sched_domain(parent, cpu);
  4787. } else
  4788. tmp = tmp->parent;
  4789. }
  4790. if (sd && sd_degenerate(sd)) {
  4791. tmp = sd;
  4792. sd = sd->parent;
  4793. destroy_sched_domain(tmp, cpu);
  4794. if (sd)
  4795. sd->child = NULL;
  4796. }
  4797. sched_domain_debug(sd, cpu);
  4798. rq_attach_root(rq, rd);
  4799. tmp = rq->sd;
  4800. rcu_assign_pointer(rq->sd, sd);
  4801. destroy_sched_domains(tmp, cpu);
  4802. update_top_cache_domain(cpu);
  4803. }
  4804. /* cpus with isolated domains */
  4805. static cpumask_var_t cpu_isolated_map;
  4806. /* Setup the mask of cpus configured for isolated domains */
  4807. static int __init isolated_cpu_setup(char *str)
  4808. {
  4809. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4810. cpulist_parse(str, cpu_isolated_map);
  4811. return 1;
  4812. }
  4813. __setup("isolcpus=", isolated_cpu_setup);
  4814. static const struct cpumask *cpu_cpu_mask(int cpu)
  4815. {
  4816. return cpumask_of_node(cpu_to_node(cpu));
  4817. }
  4818. struct sd_data {
  4819. struct sched_domain **__percpu sd;
  4820. struct sched_group **__percpu sg;
  4821. struct sched_group_power **__percpu sgp;
  4822. };
  4823. struct s_data {
  4824. struct sched_domain ** __percpu sd;
  4825. struct root_domain *rd;
  4826. };
  4827. enum s_alloc {
  4828. sa_rootdomain,
  4829. sa_sd,
  4830. sa_sd_storage,
  4831. sa_none,
  4832. };
  4833. struct sched_domain_topology_level;
  4834. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4835. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4836. #define SDTL_OVERLAP 0x01
  4837. struct sched_domain_topology_level {
  4838. sched_domain_init_f init;
  4839. sched_domain_mask_f mask;
  4840. int flags;
  4841. int numa_level;
  4842. struct sd_data data;
  4843. };
  4844. /*
  4845. * Build an iteration mask that can exclude certain CPUs from the upwards
  4846. * domain traversal.
  4847. *
  4848. * Asymmetric node setups can result in situations where the domain tree is of
  4849. * unequal depth, make sure to skip domains that already cover the entire
  4850. * range.
  4851. *
  4852. * In that case build_sched_domains() will have terminated the iteration early
  4853. * and our sibling sd spans will be empty. Domains should always include the
  4854. * cpu they're built on, so check that.
  4855. *
  4856. */
  4857. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4858. {
  4859. const struct cpumask *span = sched_domain_span(sd);
  4860. struct sd_data *sdd = sd->private;
  4861. struct sched_domain *sibling;
  4862. int i;
  4863. for_each_cpu(i, span) {
  4864. sibling = *per_cpu_ptr(sdd->sd, i);
  4865. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4866. continue;
  4867. cpumask_set_cpu(i, sched_group_mask(sg));
  4868. }
  4869. }
  4870. /*
  4871. * Return the canonical balance cpu for this group, this is the first cpu
  4872. * of this group that's also in the iteration mask.
  4873. */
  4874. int group_balance_cpu(struct sched_group *sg)
  4875. {
  4876. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4877. }
  4878. static int
  4879. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4880. {
  4881. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4882. const struct cpumask *span = sched_domain_span(sd);
  4883. struct cpumask *covered = sched_domains_tmpmask;
  4884. struct sd_data *sdd = sd->private;
  4885. struct sched_domain *child;
  4886. int i;
  4887. cpumask_clear(covered);
  4888. for_each_cpu(i, span) {
  4889. struct cpumask *sg_span;
  4890. if (cpumask_test_cpu(i, covered))
  4891. continue;
  4892. child = *per_cpu_ptr(sdd->sd, i);
  4893. /* See the comment near build_group_mask(). */
  4894. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4895. continue;
  4896. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4897. GFP_KERNEL, cpu_to_node(cpu));
  4898. if (!sg)
  4899. goto fail;
  4900. sg_span = sched_group_cpus(sg);
  4901. if (child->child) {
  4902. child = child->child;
  4903. cpumask_copy(sg_span, sched_domain_span(child));
  4904. } else
  4905. cpumask_set_cpu(i, sg_span);
  4906. cpumask_or(covered, covered, sg_span);
  4907. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4908. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4909. build_group_mask(sd, sg);
  4910. /*
  4911. * Initialize sgp->power such that even if we mess up the
  4912. * domains and no possible iteration will get us here, we won't
  4913. * die on a /0 trap.
  4914. */
  4915. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4916. /*
  4917. * Make sure the first group of this domain contains the
  4918. * canonical balance cpu. Otherwise the sched_domain iteration
  4919. * breaks. See update_sg_lb_stats().
  4920. */
  4921. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4922. group_balance_cpu(sg) == cpu)
  4923. groups = sg;
  4924. if (!first)
  4925. first = sg;
  4926. if (last)
  4927. last->next = sg;
  4928. last = sg;
  4929. last->next = first;
  4930. }
  4931. sd->groups = groups;
  4932. return 0;
  4933. fail:
  4934. free_sched_groups(first, 0);
  4935. return -ENOMEM;
  4936. }
  4937. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4938. {
  4939. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4940. struct sched_domain *child = sd->child;
  4941. if (child)
  4942. cpu = cpumask_first(sched_domain_span(child));
  4943. if (sg) {
  4944. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4945. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4946. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4947. }
  4948. return cpu;
  4949. }
  4950. /*
  4951. * build_sched_groups will build a circular linked list of the groups
  4952. * covered by the given span, and will set each group's ->cpumask correctly,
  4953. * and ->cpu_power to 0.
  4954. *
  4955. * Assumes the sched_domain tree is fully constructed
  4956. */
  4957. static int
  4958. build_sched_groups(struct sched_domain *sd, int cpu)
  4959. {
  4960. struct sched_group *first = NULL, *last = NULL;
  4961. struct sd_data *sdd = sd->private;
  4962. const struct cpumask *span = sched_domain_span(sd);
  4963. struct cpumask *covered;
  4964. int i;
  4965. get_group(cpu, sdd, &sd->groups);
  4966. atomic_inc(&sd->groups->ref);
  4967. if (cpu != cpumask_first(sched_domain_span(sd)))
  4968. return 0;
  4969. lockdep_assert_held(&sched_domains_mutex);
  4970. covered = sched_domains_tmpmask;
  4971. cpumask_clear(covered);
  4972. for_each_cpu(i, span) {
  4973. struct sched_group *sg;
  4974. int group = get_group(i, sdd, &sg);
  4975. int j;
  4976. if (cpumask_test_cpu(i, covered))
  4977. continue;
  4978. cpumask_clear(sched_group_cpus(sg));
  4979. sg->sgp->power = 0;
  4980. cpumask_setall(sched_group_mask(sg));
  4981. for_each_cpu(j, span) {
  4982. if (get_group(j, sdd, NULL) != group)
  4983. continue;
  4984. cpumask_set_cpu(j, covered);
  4985. cpumask_set_cpu(j, sched_group_cpus(sg));
  4986. }
  4987. if (!first)
  4988. first = sg;
  4989. if (last)
  4990. last->next = sg;
  4991. last = sg;
  4992. }
  4993. last->next = first;
  4994. return 0;
  4995. }
  4996. /*
  4997. * Initialize sched groups cpu_power.
  4998. *
  4999. * cpu_power indicates the capacity of sched group, which is used while
  5000. * distributing the load between different sched groups in a sched domain.
  5001. * Typically cpu_power for all the groups in a sched domain will be same unless
  5002. * there are asymmetries in the topology. If there are asymmetries, group
  5003. * having more cpu_power will pickup more load compared to the group having
  5004. * less cpu_power.
  5005. */
  5006. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5007. {
  5008. struct sched_group *sg = sd->groups;
  5009. WARN_ON(!sd || !sg);
  5010. do {
  5011. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5012. sg = sg->next;
  5013. } while (sg != sd->groups);
  5014. if (cpu != group_balance_cpu(sg))
  5015. return;
  5016. update_group_power(sd, cpu);
  5017. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5018. }
  5019. int __weak arch_sd_sibling_asym_packing(void)
  5020. {
  5021. return 0*SD_ASYM_PACKING;
  5022. }
  5023. /*
  5024. * Initializers for schedule domains
  5025. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5026. */
  5027. #ifdef CONFIG_SCHED_DEBUG
  5028. # define SD_INIT_NAME(sd, type) sd->name = #type
  5029. #else
  5030. # define SD_INIT_NAME(sd, type) do { } while (0)
  5031. #endif
  5032. #define SD_INIT_FUNC(type) \
  5033. static noinline struct sched_domain * \
  5034. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5035. { \
  5036. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5037. *sd = SD_##type##_INIT; \
  5038. SD_INIT_NAME(sd, type); \
  5039. sd->private = &tl->data; \
  5040. return sd; \
  5041. }
  5042. SD_INIT_FUNC(CPU)
  5043. #ifdef CONFIG_SCHED_SMT
  5044. SD_INIT_FUNC(SIBLING)
  5045. #endif
  5046. #ifdef CONFIG_SCHED_MC
  5047. SD_INIT_FUNC(MC)
  5048. #endif
  5049. #ifdef CONFIG_SCHED_BOOK
  5050. SD_INIT_FUNC(BOOK)
  5051. #endif
  5052. static int default_relax_domain_level = -1;
  5053. int sched_domain_level_max;
  5054. static int __init setup_relax_domain_level(char *str)
  5055. {
  5056. if (kstrtoint(str, 0, &default_relax_domain_level))
  5057. pr_warn("Unable to set relax_domain_level\n");
  5058. return 1;
  5059. }
  5060. __setup("relax_domain_level=", setup_relax_domain_level);
  5061. static void set_domain_attribute(struct sched_domain *sd,
  5062. struct sched_domain_attr *attr)
  5063. {
  5064. int request;
  5065. if (!attr || attr->relax_domain_level < 0) {
  5066. if (default_relax_domain_level < 0)
  5067. return;
  5068. else
  5069. request = default_relax_domain_level;
  5070. } else
  5071. request = attr->relax_domain_level;
  5072. if (request < sd->level) {
  5073. /* turn off idle balance on this domain */
  5074. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5075. } else {
  5076. /* turn on idle balance on this domain */
  5077. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5078. }
  5079. }
  5080. static void __sdt_free(const struct cpumask *cpu_map);
  5081. static int __sdt_alloc(const struct cpumask *cpu_map);
  5082. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5083. const struct cpumask *cpu_map)
  5084. {
  5085. switch (what) {
  5086. case sa_rootdomain:
  5087. if (!atomic_read(&d->rd->refcount))
  5088. free_rootdomain(&d->rd->rcu); /* fall through */
  5089. case sa_sd:
  5090. free_percpu(d->sd); /* fall through */
  5091. case sa_sd_storage:
  5092. __sdt_free(cpu_map); /* fall through */
  5093. case sa_none:
  5094. break;
  5095. }
  5096. }
  5097. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5098. const struct cpumask *cpu_map)
  5099. {
  5100. memset(d, 0, sizeof(*d));
  5101. if (__sdt_alloc(cpu_map))
  5102. return sa_sd_storage;
  5103. d->sd = alloc_percpu(struct sched_domain *);
  5104. if (!d->sd)
  5105. return sa_sd_storage;
  5106. d->rd = alloc_rootdomain();
  5107. if (!d->rd)
  5108. return sa_sd;
  5109. return sa_rootdomain;
  5110. }
  5111. /*
  5112. * NULL the sd_data elements we've used to build the sched_domain and
  5113. * sched_group structure so that the subsequent __free_domain_allocs()
  5114. * will not free the data we're using.
  5115. */
  5116. static void claim_allocations(int cpu, struct sched_domain *sd)
  5117. {
  5118. struct sd_data *sdd = sd->private;
  5119. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5120. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5121. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5122. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5123. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5124. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5125. }
  5126. #ifdef CONFIG_SCHED_SMT
  5127. static const struct cpumask *cpu_smt_mask(int cpu)
  5128. {
  5129. return topology_thread_cpumask(cpu);
  5130. }
  5131. #endif
  5132. /*
  5133. * Topology list, bottom-up.
  5134. */
  5135. static struct sched_domain_topology_level default_topology[] = {
  5136. #ifdef CONFIG_SCHED_SMT
  5137. { sd_init_SIBLING, cpu_smt_mask, },
  5138. #endif
  5139. #ifdef CONFIG_SCHED_MC
  5140. { sd_init_MC, cpu_coregroup_mask, },
  5141. #endif
  5142. #ifdef CONFIG_SCHED_BOOK
  5143. { sd_init_BOOK, cpu_book_mask, },
  5144. #endif
  5145. { sd_init_CPU, cpu_cpu_mask, },
  5146. { NULL, },
  5147. };
  5148. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5149. #ifdef CONFIG_NUMA
  5150. static int sched_domains_numa_levels;
  5151. static int *sched_domains_numa_distance;
  5152. static struct cpumask ***sched_domains_numa_masks;
  5153. static int sched_domains_curr_level;
  5154. static inline int sd_local_flags(int level)
  5155. {
  5156. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5157. return 0;
  5158. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5159. }
  5160. static struct sched_domain *
  5161. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5162. {
  5163. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5164. int level = tl->numa_level;
  5165. int sd_weight = cpumask_weight(
  5166. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5167. *sd = (struct sched_domain){
  5168. .min_interval = sd_weight,
  5169. .max_interval = 2*sd_weight,
  5170. .busy_factor = 32,
  5171. .imbalance_pct = 125,
  5172. .cache_nice_tries = 2,
  5173. .busy_idx = 3,
  5174. .idle_idx = 2,
  5175. .newidle_idx = 0,
  5176. .wake_idx = 0,
  5177. .forkexec_idx = 0,
  5178. .flags = 1*SD_LOAD_BALANCE
  5179. | 1*SD_BALANCE_NEWIDLE
  5180. | 0*SD_BALANCE_EXEC
  5181. | 0*SD_BALANCE_FORK
  5182. | 0*SD_BALANCE_WAKE
  5183. | 0*SD_WAKE_AFFINE
  5184. | 0*SD_SHARE_CPUPOWER
  5185. | 0*SD_SHARE_PKG_RESOURCES
  5186. | 1*SD_SERIALIZE
  5187. | 0*SD_PREFER_SIBLING
  5188. | sd_local_flags(level)
  5189. ,
  5190. .last_balance = jiffies,
  5191. .balance_interval = sd_weight,
  5192. };
  5193. SD_INIT_NAME(sd, NUMA);
  5194. sd->private = &tl->data;
  5195. /*
  5196. * Ugly hack to pass state to sd_numa_mask()...
  5197. */
  5198. sched_domains_curr_level = tl->numa_level;
  5199. return sd;
  5200. }
  5201. static const struct cpumask *sd_numa_mask(int cpu)
  5202. {
  5203. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5204. }
  5205. static void sched_numa_warn(const char *str)
  5206. {
  5207. static int done = false;
  5208. int i,j;
  5209. if (done)
  5210. return;
  5211. done = true;
  5212. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5213. for (i = 0; i < nr_node_ids; i++) {
  5214. printk(KERN_WARNING " ");
  5215. for (j = 0; j < nr_node_ids; j++)
  5216. printk(KERN_CONT "%02d ", node_distance(i,j));
  5217. printk(KERN_CONT "\n");
  5218. }
  5219. printk(KERN_WARNING "\n");
  5220. }
  5221. static bool find_numa_distance(int distance)
  5222. {
  5223. int i;
  5224. if (distance == node_distance(0, 0))
  5225. return true;
  5226. for (i = 0; i < sched_domains_numa_levels; i++) {
  5227. if (sched_domains_numa_distance[i] == distance)
  5228. return true;
  5229. }
  5230. return false;
  5231. }
  5232. static void sched_init_numa(void)
  5233. {
  5234. int next_distance, curr_distance = node_distance(0, 0);
  5235. struct sched_domain_topology_level *tl;
  5236. int level = 0;
  5237. int i, j, k;
  5238. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5239. if (!sched_domains_numa_distance)
  5240. return;
  5241. /*
  5242. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5243. * unique distances in the node_distance() table.
  5244. *
  5245. * Assumes node_distance(0,j) includes all distances in
  5246. * node_distance(i,j) in order to avoid cubic time.
  5247. */
  5248. next_distance = curr_distance;
  5249. for (i = 0; i < nr_node_ids; i++) {
  5250. for (j = 0; j < nr_node_ids; j++) {
  5251. for (k = 0; k < nr_node_ids; k++) {
  5252. int distance = node_distance(i, k);
  5253. if (distance > curr_distance &&
  5254. (distance < next_distance ||
  5255. next_distance == curr_distance))
  5256. next_distance = distance;
  5257. /*
  5258. * While not a strong assumption it would be nice to know
  5259. * about cases where if node A is connected to B, B is not
  5260. * equally connected to A.
  5261. */
  5262. if (sched_debug() && node_distance(k, i) != distance)
  5263. sched_numa_warn("Node-distance not symmetric");
  5264. if (sched_debug() && i && !find_numa_distance(distance))
  5265. sched_numa_warn("Node-0 not representative");
  5266. }
  5267. if (next_distance != curr_distance) {
  5268. sched_domains_numa_distance[level++] = next_distance;
  5269. sched_domains_numa_levels = level;
  5270. curr_distance = next_distance;
  5271. } else break;
  5272. }
  5273. /*
  5274. * In case of sched_debug() we verify the above assumption.
  5275. */
  5276. if (!sched_debug())
  5277. break;
  5278. }
  5279. /*
  5280. * 'level' contains the number of unique distances, excluding the
  5281. * identity distance node_distance(i,i).
  5282. *
  5283. * The sched_domains_nume_distance[] array includes the actual distance
  5284. * numbers.
  5285. */
  5286. /*
  5287. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5288. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5289. * the array will contain less then 'level' members. This could be
  5290. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5291. * in other functions.
  5292. *
  5293. * We reset it to 'level' at the end of this function.
  5294. */
  5295. sched_domains_numa_levels = 0;
  5296. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5297. if (!sched_domains_numa_masks)
  5298. return;
  5299. /*
  5300. * Now for each level, construct a mask per node which contains all
  5301. * cpus of nodes that are that many hops away from us.
  5302. */
  5303. for (i = 0; i < level; i++) {
  5304. sched_domains_numa_masks[i] =
  5305. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5306. if (!sched_domains_numa_masks[i])
  5307. return;
  5308. for (j = 0; j < nr_node_ids; j++) {
  5309. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5310. if (!mask)
  5311. return;
  5312. sched_domains_numa_masks[i][j] = mask;
  5313. for (k = 0; k < nr_node_ids; k++) {
  5314. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5315. continue;
  5316. cpumask_or(mask, mask, cpumask_of_node(k));
  5317. }
  5318. }
  5319. }
  5320. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5321. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5322. if (!tl)
  5323. return;
  5324. /*
  5325. * Copy the default topology bits..
  5326. */
  5327. for (i = 0; default_topology[i].init; i++)
  5328. tl[i] = default_topology[i];
  5329. /*
  5330. * .. and append 'j' levels of NUMA goodness.
  5331. */
  5332. for (j = 0; j < level; i++, j++) {
  5333. tl[i] = (struct sched_domain_topology_level){
  5334. .init = sd_numa_init,
  5335. .mask = sd_numa_mask,
  5336. .flags = SDTL_OVERLAP,
  5337. .numa_level = j,
  5338. };
  5339. }
  5340. sched_domain_topology = tl;
  5341. sched_domains_numa_levels = level;
  5342. }
  5343. static void sched_domains_numa_masks_set(int cpu)
  5344. {
  5345. int i, j;
  5346. int node = cpu_to_node(cpu);
  5347. for (i = 0; i < sched_domains_numa_levels; i++) {
  5348. for (j = 0; j < nr_node_ids; j++) {
  5349. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5350. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5351. }
  5352. }
  5353. }
  5354. static void sched_domains_numa_masks_clear(int cpu)
  5355. {
  5356. int i, j;
  5357. for (i = 0; i < sched_domains_numa_levels; i++) {
  5358. for (j = 0; j < nr_node_ids; j++)
  5359. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5360. }
  5361. }
  5362. /*
  5363. * Update sched_domains_numa_masks[level][node] array when new cpus
  5364. * are onlined.
  5365. */
  5366. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5367. unsigned long action,
  5368. void *hcpu)
  5369. {
  5370. int cpu = (long)hcpu;
  5371. switch (action & ~CPU_TASKS_FROZEN) {
  5372. case CPU_ONLINE:
  5373. sched_domains_numa_masks_set(cpu);
  5374. break;
  5375. case CPU_DEAD:
  5376. sched_domains_numa_masks_clear(cpu);
  5377. break;
  5378. default:
  5379. return NOTIFY_DONE;
  5380. }
  5381. return NOTIFY_OK;
  5382. }
  5383. #else
  5384. static inline void sched_init_numa(void)
  5385. {
  5386. }
  5387. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5388. unsigned long action,
  5389. void *hcpu)
  5390. {
  5391. return 0;
  5392. }
  5393. #endif /* CONFIG_NUMA */
  5394. static int __sdt_alloc(const struct cpumask *cpu_map)
  5395. {
  5396. struct sched_domain_topology_level *tl;
  5397. int j;
  5398. for (tl = sched_domain_topology; tl->init; tl++) {
  5399. struct sd_data *sdd = &tl->data;
  5400. sdd->sd = alloc_percpu(struct sched_domain *);
  5401. if (!sdd->sd)
  5402. return -ENOMEM;
  5403. sdd->sg = alloc_percpu(struct sched_group *);
  5404. if (!sdd->sg)
  5405. return -ENOMEM;
  5406. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5407. if (!sdd->sgp)
  5408. return -ENOMEM;
  5409. for_each_cpu(j, cpu_map) {
  5410. struct sched_domain *sd;
  5411. struct sched_group *sg;
  5412. struct sched_group_power *sgp;
  5413. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5414. GFP_KERNEL, cpu_to_node(j));
  5415. if (!sd)
  5416. return -ENOMEM;
  5417. *per_cpu_ptr(sdd->sd, j) = sd;
  5418. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5419. GFP_KERNEL, cpu_to_node(j));
  5420. if (!sg)
  5421. return -ENOMEM;
  5422. sg->next = sg;
  5423. *per_cpu_ptr(sdd->sg, j) = sg;
  5424. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5425. GFP_KERNEL, cpu_to_node(j));
  5426. if (!sgp)
  5427. return -ENOMEM;
  5428. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5429. }
  5430. }
  5431. return 0;
  5432. }
  5433. static void __sdt_free(const struct cpumask *cpu_map)
  5434. {
  5435. struct sched_domain_topology_level *tl;
  5436. int j;
  5437. for (tl = sched_domain_topology; tl->init; tl++) {
  5438. struct sd_data *sdd = &tl->data;
  5439. for_each_cpu(j, cpu_map) {
  5440. struct sched_domain *sd;
  5441. if (sdd->sd) {
  5442. sd = *per_cpu_ptr(sdd->sd, j);
  5443. if (sd && (sd->flags & SD_OVERLAP))
  5444. free_sched_groups(sd->groups, 0);
  5445. kfree(*per_cpu_ptr(sdd->sd, j));
  5446. }
  5447. if (sdd->sg)
  5448. kfree(*per_cpu_ptr(sdd->sg, j));
  5449. if (sdd->sgp)
  5450. kfree(*per_cpu_ptr(sdd->sgp, j));
  5451. }
  5452. free_percpu(sdd->sd);
  5453. sdd->sd = NULL;
  5454. free_percpu(sdd->sg);
  5455. sdd->sg = NULL;
  5456. free_percpu(sdd->sgp);
  5457. sdd->sgp = NULL;
  5458. }
  5459. }
  5460. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5461. struct s_data *d, const struct cpumask *cpu_map,
  5462. struct sched_domain_attr *attr, struct sched_domain *child,
  5463. int cpu)
  5464. {
  5465. struct sched_domain *sd = tl->init(tl, cpu);
  5466. if (!sd)
  5467. return child;
  5468. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5469. if (child) {
  5470. sd->level = child->level + 1;
  5471. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5472. child->parent = sd;
  5473. }
  5474. sd->child = child;
  5475. set_domain_attribute(sd, attr);
  5476. return sd;
  5477. }
  5478. /*
  5479. * Build sched domains for a given set of cpus and attach the sched domains
  5480. * to the individual cpus
  5481. */
  5482. static int build_sched_domains(const struct cpumask *cpu_map,
  5483. struct sched_domain_attr *attr)
  5484. {
  5485. enum s_alloc alloc_state = sa_none;
  5486. struct sched_domain *sd;
  5487. struct s_data d;
  5488. int i, ret = -ENOMEM;
  5489. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5490. if (alloc_state != sa_rootdomain)
  5491. goto error;
  5492. /* Set up domains for cpus specified by the cpu_map. */
  5493. for_each_cpu(i, cpu_map) {
  5494. struct sched_domain_topology_level *tl;
  5495. sd = NULL;
  5496. for (tl = sched_domain_topology; tl->init; tl++) {
  5497. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5498. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5499. sd->flags |= SD_OVERLAP;
  5500. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5501. break;
  5502. }
  5503. while (sd->child)
  5504. sd = sd->child;
  5505. *per_cpu_ptr(d.sd, i) = sd;
  5506. }
  5507. /* Build the groups for the domains */
  5508. for_each_cpu(i, cpu_map) {
  5509. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5510. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5511. if (sd->flags & SD_OVERLAP) {
  5512. if (build_overlap_sched_groups(sd, i))
  5513. goto error;
  5514. } else {
  5515. if (build_sched_groups(sd, i))
  5516. goto error;
  5517. }
  5518. }
  5519. }
  5520. /* Calculate CPU power for physical packages and nodes */
  5521. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5522. if (!cpumask_test_cpu(i, cpu_map))
  5523. continue;
  5524. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5525. claim_allocations(i, sd);
  5526. init_sched_groups_power(i, sd);
  5527. }
  5528. }
  5529. /* Attach the domains */
  5530. rcu_read_lock();
  5531. for_each_cpu(i, cpu_map) {
  5532. sd = *per_cpu_ptr(d.sd, i);
  5533. cpu_attach_domain(sd, d.rd, i);
  5534. }
  5535. rcu_read_unlock();
  5536. ret = 0;
  5537. error:
  5538. __free_domain_allocs(&d, alloc_state, cpu_map);
  5539. return ret;
  5540. }
  5541. static cpumask_var_t *doms_cur; /* current sched domains */
  5542. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5543. static struct sched_domain_attr *dattr_cur;
  5544. /* attribues of custom domains in 'doms_cur' */
  5545. /*
  5546. * Special case: If a kmalloc of a doms_cur partition (array of
  5547. * cpumask) fails, then fallback to a single sched domain,
  5548. * as determined by the single cpumask fallback_doms.
  5549. */
  5550. static cpumask_var_t fallback_doms;
  5551. /*
  5552. * arch_update_cpu_topology lets virtualized architectures update the
  5553. * cpu core maps. It is supposed to return 1 if the topology changed
  5554. * or 0 if it stayed the same.
  5555. */
  5556. int __attribute__((weak)) arch_update_cpu_topology(void)
  5557. {
  5558. return 0;
  5559. }
  5560. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5561. {
  5562. int i;
  5563. cpumask_var_t *doms;
  5564. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5565. if (!doms)
  5566. return NULL;
  5567. for (i = 0; i < ndoms; i++) {
  5568. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5569. free_sched_domains(doms, i);
  5570. return NULL;
  5571. }
  5572. }
  5573. return doms;
  5574. }
  5575. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5576. {
  5577. unsigned int i;
  5578. for (i = 0; i < ndoms; i++)
  5579. free_cpumask_var(doms[i]);
  5580. kfree(doms);
  5581. }
  5582. /*
  5583. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5584. * For now this just excludes isolated cpus, but could be used to
  5585. * exclude other special cases in the future.
  5586. */
  5587. static int init_sched_domains(const struct cpumask *cpu_map)
  5588. {
  5589. int err;
  5590. arch_update_cpu_topology();
  5591. ndoms_cur = 1;
  5592. doms_cur = alloc_sched_domains(ndoms_cur);
  5593. if (!doms_cur)
  5594. doms_cur = &fallback_doms;
  5595. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5596. err = build_sched_domains(doms_cur[0], NULL);
  5597. register_sched_domain_sysctl();
  5598. return err;
  5599. }
  5600. /*
  5601. * Detach sched domains from a group of cpus specified in cpu_map
  5602. * These cpus will now be attached to the NULL domain
  5603. */
  5604. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5605. {
  5606. int i;
  5607. rcu_read_lock();
  5608. for_each_cpu(i, cpu_map)
  5609. cpu_attach_domain(NULL, &def_root_domain, i);
  5610. rcu_read_unlock();
  5611. }
  5612. /* handle null as "default" */
  5613. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5614. struct sched_domain_attr *new, int idx_new)
  5615. {
  5616. struct sched_domain_attr tmp;
  5617. /* fast path */
  5618. if (!new && !cur)
  5619. return 1;
  5620. tmp = SD_ATTR_INIT;
  5621. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5622. new ? (new + idx_new) : &tmp,
  5623. sizeof(struct sched_domain_attr));
  5624. }
  5625. /*
  5626. * Partition sched domains as specified by the 'ndoms_new'
  5627. * cpumasks in the array doms_new[] of cpumasks. This compares
  5628. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5629. * It destroys each deleted domain and builds each new domain.
  5630. *
  5631. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5632. * The masks don't intersect (don't overlap.) We should setup one
  5633. * sched domain for each mask. CPUs not in any of the cpumasks will
  5634. * not be load balanced. If the same cpumask appears both in the
  5635. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5636. * it as it is.
  5637. *
  5638. * The passed in 'doms_new' should be allocated using
  5639. * alloc_sched_domains. This routine takes ownership of it and will
  5640. * free_sched_domains it when done with it. If the caller failed the
  5641. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5642. * and partition_sched_domains() will fallback to the single partition
  5643. * 'fallback_doms', it also forces the domains to be rebuilt.
  5644. *
  5645. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5646. * ndoms_new == 0 is a special case for destroying existing domains,
  5647. * and it will not create the default domain.
  5648. *
  5649. * Call with hotplug lock held
  5650. */
  5651. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5652. struct sched_domain_attr *dattr_new)
  5653. {
  5654. int i, j, n;
  5655. int new_topology;
  5656. mutex_lock(&sched_domains_mutex);
  5657. /* always unregister in case we don't destroy any domains */
  5658. unregister_sched_domain_sysctl();
  5659. /* Let architecture update cpu core mappings. */
  5660. new_topology = arch_update_cpu_topology();
  5661. n = doms_new ? ndoms_new : 0;
  5662. /* Destroy deleted domains */
  5663. for (i = 0; i < ndoms_cur; i++) {
  5664. for (j = 0; j < n && !new_topology; j++) {
  5665. if (cpumask_equal(doms_cur[i], doms_new[j])
  5666. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5667. goto match1;
  5668. }
  5669. /* no match - a current sched domain not in new doms_new[] */
  5670. detach_destroy_domains(doms_cur[i]);
  5671. match1:
  5672. ;
  5673. }
  5674. if (doms_new == NULL) {
  5675. ndoms_cur = 0;
  5676. doms_new = &fallback_doms;
  5677. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5678. WARN_ON_ONCE(dattr_new);
  5679. }
  5680. /* Build new domains */
  5681. for (i = 0; i < ndoms_new; i++) {
  5682. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5683. if (cpumask_equal(doms_new[i], doms_cur[j])
  5684. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5685. goto match2;
  5686. }
  5687. /* no match - add a new doms_new */
  5688. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5689. match2:
  5690. ;
  5691. }
  5692. /* Remember the new sched domains */
  5693. if (doms_cur != &fallback_doms)
  5694. free_sched_domains(doms_cur, ndoms_cur);
  5695. kfree(dattr_cur); /* kfree(NULL) is safe */
  5696. doms_cur = doms_new;
  5697. dattr_cur = dattr_new;
  5698. ndoms_cur = ndoms_new;
  5699. register_sched_domain_sysctl();
  5700. mutex_unlock(&sched_domains_mutex);
  5701. }
  5702. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5703. /*
  5704. * Update cpusets according to cpu_active mask. If cpusets are
  5705. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5706. * around partition_sched_domains().
  5707. *
  5708. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5709. * want to restore it back to its original state upon resume anyway.
  5710. */
  5711. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5712. void *hcpu)
  5713. {
  5714. switch (action) {
  5715. case CPU_ONLINE_FROZEN:
  5716. case CPU_DOWN_FAILED_FROZEN:
  5717. /*
  5718. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5719. * resume sequence. As long as this is not the last online
  5720. * operation in the resume sequence, just build a single sched
  5721. * domain, ignoring cpusets.
  5722. */
  5723. num_cpus_frozen--;
  5724. if (likely(num_cpus_frozen)) {
  5725. partition_sched_domains(1, NULL, NULL);
  5726. break;
  5727. }
  5728. /*
  5729. * This is the last CPU online operation. So fall through and
  5730. * restore the original sched domains by considering the
  5731. * cpuset configurations.
  5732. */
  5733. case CPU_ONLINE:
  5734. case CPU_DOWN_FAILED:
  5735. cpuset_update_active_cpus(true);
  5736. break;
  5737. default:
  5738. return NOTIFY_DONE;
  5739. }
  5740. return NOTIFY_OK;
  5741. }
  5742. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5743. void *hcpu)
  5744. {
  5745. switch (action) {
  5746. case CPU_DOWN_PREPARE:
  5747. cpuset_update_active_cpus(false);
  5748. break;
  5749. case CPU_DOWN_PREPARE_FROZEN:
  5750. num_cpus_frozen++;
  5751. partition_sched_domains(1, NULL, NULL);
  5752. break;
  5753. default:
  5754. return NOTIFY_DONE;
  5755. }
  5756. return NOTIFY_OK;
  5757. }
  5758. void __init sched_init_smp(void)
  5759. {
  5760. cpumask_var_t non_isolated_cpus;
  5761. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5762. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5763. sched_init_numa();
  5764. get_online_cpus();
  5765. mutex_lock(&sched_domains_mutex);
  5766. init_sched_domains(cpu_active_mask);
  5767. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5768. if (cpumask_empty(non_isolated_cpus))
  5769. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5770. mutex_unlock(&sched_domains_mutex);
  5771. put_online_cpus();
  5772. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5773. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5774. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5775. /* RT runtime code needs to handle some hotplug events */
  5776. hotcpu_notifier(update_runtime, 0);
  5777. init_hrtick();
  5778. /* Move init over to a non-isolated CPU */
  5779. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5780. BUG();
  5781. sched_init_granularity();
  5782. free_cpumask_var(non_isolated_cpus);
  5783. init_sched_rt_class();
  5784. }
  5785. #else
  5786. void __init sched_init_smp(void)
  5787. {
  5788. sched_init_granularity();
  5789. }
  5790. #endif /* CONFIG_SMP */
  5791. const_debug unsigned int sysctl_timer_migration = 1;
  5792. int in_sched_functions(unsigned long addr)
  5793. {
  5794. return in_lock_functions(addr) ||
  5795. (addr >= (unsigned long)__sched_text_start
  5796. && addr < (unsigned long)__sched_text_end);
  5797. }
  5798. #ifdef CONFIG_CGROUP_SCHED
  5799. struct task_group root_task_group;
  5800. LIST_HEAD(task_groups);
  5801. #endif
  5802. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5803. void __init sched_init(void)
  5804. {
  5805. int i, j;
  5806. unsigned long alloc_size = 0, ptr;
  5807. #ifdef CONFIG_FAIR_GROUP_SCHED
  5808. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5809. #endif
  5810. #ifdef CONFIG_RT_GROUP_SCHED
  5811. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5812. #endif
  5813. #ifdef CONFIG_CPUMASK_OFFSTACK
  5814. alloc_size += num_possible_cpus() * cpumask_size();
  5815. #endif
  5816. if (alloc_size) {
  5817. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5818. #ifdef CONFIG_FAIR_GROUP_SCHED
  5819. root_task_group.se = (struct sched_entity **)ptr;
  5820. ptr += nr_cpu_ids * sizeof(void **);
  5821. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5822. ptr += nr_cpu_ids * sizeof(void **);
  5823. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5824. #ifdef CONFIG_RT_GROUP_SCHED
  5825. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5826. ptr += nr_cpu_ids * sizeof(void **);
  5827. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5828. ptr += nr_cpu_ids * sizeof(void **);
  5829. #endif /* CONFIG_RT_GROUP_SCHED */
  5830. #ifdef CONFIG_CPUMASK_OFFSTACK
  5831. for_each_possible_cpu(i) {
  5832. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5833. ptr += cpumask_size();
  5834. }
  5835. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5836. }
  5837. #ifdef CONFIG_SMP
  5838. init_defrootdomain();
  5839. #endif
  5840. init_rt_bandwidth(&def_rt_bandwidth,
  5841. global_rt_period(), global_rt_runtime());
  5842. #ifdef CONFIG_RT_GROUP_SCHED
  5843. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5844. global_rt_period(), global_rt_runtime());
  5845. #endif /* CONFIG_RT_GROUP_SCHED */
  5846. #ifdef CONFIG_CGROUP_SCHED
  5847. list_add(&root_task_group.list, &task_groups);
  5848. INIT_LIST_HEAD(&root_task_group.children);
  5849. INIT_LIST_HEAD(&root_task_group.siblings);
  5850. autogroup_init(&init_task);
  5851. #endif /* CONFIG_CGROUP_SCHED */
  5852. #ifdef CONFIG_CGROUP_CPUACCT
  5853. root_cpuacct.cpustat = &kernel_cpustat;
  5854. root_cpuacct.cpuusage = alloc_percpu(u64);
  5855. /* Too early, not expected to fail */
  5856. BUG_ON(!root_cpuacct.cpuusage);
  5857. #endif
  5858. for_each_possible_cpu(i) {
  5859. struct rq *rq;
  5860. rq = cpu_rq(i);
  5861. raw_spin_lock_init(&rq->lock);
  5862. rq->nr_running = 0;
  5863. rq->calc_load_active = 0;
  5864. rq->calc_load_update = jiffies + LOAD_FREQ;
  5865. init_cfs_rq(&rq->cfs);
  5866. init_rt_rq(&rq->rt, rq);
  5867. #ifdef CONFIG_FAIR_GROUP_SCHED
  5868. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5869. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5870. /*
  5871. * How much cpu bandwidth does root_task_group get?
  5872. *
  5873. * In case of task-groups formed thr' the cgroup filesystem, it
  5874. * gets 100% of the cpu resources in the system. This overall
  5875. * system cpu resource is divided among the tasks of
  5876. * root_task_group and its child task-groups in a fair manner,
  5877. * based on each entity's (task or task-group's) weight
  5878. * (se->load.weight).
  5879. *
  5880. * In other words, if root_task_group has 10 tasks of weight
  5881. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5882. * then A0's share of the cpu resource is:
  5883. *
  5884. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5885. *
  5886. * We achieve this by letting root_task_group's tasks sit
  5887. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5888. */
  5889. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5890. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5891. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5892. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5893. #ifdef CONFIG_RT_GROUP_SCHED
  5894. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5895. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5896. #endif
  5897. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5898. rq->cpu_load[j] = 0;
  5899. rq->last_load_update_tick = jiffies;
  5900. #ifdef CONFIG_SMP
  5901. rq->sd = NULL;
  5902. rq->rd = NULL;
  5903. rq->cpu_power = SCHED_POWER_SCALE;
  5904. rq->post_schedule = 0;
  5905. rq->active_balance = 0;
  5906. rq->next_balance = jiffies;
  5907. rq->push_cpu = 0;
  5908. rq->cpu = i;
  5909. rq->online = 0;
  5910. rq->idle_stamp = 0;
  5911. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5912. INIT_LIST_HEAD(&rq->cfs_tasks);
  5913. rq_attach_root(rq, &def_root_domain);
  5914. #ifdef CONFIG_NO_HZ
  5915. rq->nohz_flags = 0;
  5916. #endif
  5917. #endif
  5918. init_rq_hrtick(rq);
  5919. atomic_set(&rq->nr_iowait, 0);
  5920. }
  5921. set_load_weight(&init_task);
  5922. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5923. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5924. #endif
  5925. #ifdef CONFIG_RT_MUTEXES
  5926. plist_head_init(&init_task.pi_waiters);
  5927. #endif
  5928. /*
  5929. * The boot idle thread does lazy MMU switching as well:
  5930. */
  5931. atomic_inc(&init_mm.mm_count);
  5932. enter_lazy_tlb(&init_mm, current);
  5933. /*
  5934. * Make us the idle thread. Technically, schedule() should not be
  5935. * called from this thread, however somewhere below it might be,
  5936. * but because we are the idle thread, we just pick up running again
  5937. * when this runqueue becomes "idle".
  5938. */
  5939. init_idle(current, smp_processor_id());
  5940. calc_load_update = jiffies + LOAD_FREQ;
  5941. /*
  5942. * During early bootup we pretend to be a normal task:
  5943. */
  5944. current->sched_class = &fair_sched_class;
  5945. #ifdef CONFIG_SMP
  5946. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5947. /* May be allocated at isolcpus cmdline parse time */
  5948. if (cpu_isolated_map == NULL)
  5949. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5950. idle_thread_set_boot_cpu();
  5951. #endif
  5952. init_sched_fair_class();
  5953. scheduler_running = 1;
  5954. }
  5955. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5956. static inline int preempt_count_equals(int preempt_offset)
  5957. {
  5958. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5959. return (nested == preempt_offset);
  5960. }
  5961. void __might_sleep(const char *file, int line, int preempt_offset)
  5962. {
  5963. static unsigned long prev_jiffy; /* ratelimiting */
  5964. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5965. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5966. system_state != SYSTEM_RUNNING || oops_in_progress)
  5967. return;
  5968. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5969. return;
  5970. prev_jiffy = jiffies;
  5971. printk(KERN_ERR
  5972. "BUG: sleeping function called from invalid context at %s:%d\n",
  5973. file, line);
  5974. printk(KERN_ERR
  5975. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5976. in_atomic(), irqs_disabled(),
  5977. current->pid, current->comm);
  5978. debug_show_held_locks(current);
  5979. if (irqs_disabled())
  5980. print_irqtrace_events(current);
  5981. dump_stack();
  5982. }
  5983. EXPORT_SYMBOL(__might_sleep);
  5984. #endif
  5985. #ifdef CONFIG_MAGIC_SYSRQ
  5986. static void normalize_task(struct rq *rq, struct task_struct *p)
  5987. {
  5988. const struct sched_class *prev_class = p->sched_class;
  5989. int old_prio = p->prio;
  5990. int on_rq;
  5991. on_rq = p->on_rq;
  5992. if (on_rq)
  5993. dequeue_task(rq, p, 0);
  5994. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5995. if (on_rq) {
  5996. enqueue_task(rq, p, 0);
  5997. resched_task(rq->curr);
  5998. }
  5999. check_class_changed(rq, p, prev_class, old_prio);
  6000. }
  6001. void normalize_rt_tasks(void)
  6002. {
  6003. struct task_struct *g, *p;
  6004. unsigned long flags;
  6005. struct rq *rq;
  6006. read_lock_irqsave(&tasklist_lock, flags);
  6007. do_each_thread(g, p) {
  6008. /*
  6009. * Only normalize user tasks:
  6010. */
  6011. if (!p->mm)
  6012. continue;
  6013. p->se.exec_start = 0;
  6014. #ifdef CONFIG_SCHEDSTATS
  6015. p->se.statistics.wait_start = 0;
  6016. p->se.statistics.sleep_start = 0;
  6017. p->se.statistics.block_start = 0;
  6018. #endif
  6019. if (!rt_task(p)) {
  6020. /*
  6021. * Renice negative nice level userspace
  6022. * tasks back to 0:
  6023. */
  6024. if (TASK_NICE(p) < 0 && p->mm)
  6025. set_user_nice(p, 0);
  6026. continue;
  6027. }
  6028. raw_spin_lock(&p->pi_lock);
  6029. rq = __task_rq_lock(p);
  6030. normalize_task(rq, p);
  6031. __task_rq_unlock(rq);
  6032. raw_spin_unlock(&p->pi_lock);
  6033. } while_each_thread(g, p);
  6034. read_unlock_irqrestore(&tasklist_lock, flags);
  6035. }
  6036. #endif /* CONFIG_MAGIC_SYSRQ */
  6037. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6038. /*
  6039. * These functions are only useful for the IA64 MCA handling, or kdb.
  6040. *
  6041. * They can only be called when the whole system has been
  6042. * stopped - every CPU needs to be quiescent, and no scheduling
  6043. * activity can take place. Using them for anything else would
  6044. * be a serious bug, and as a result, they aren't even visible
  6045. * under any other configuration.
  6046. */
  6047. /**
  6048. * curr_task - return the current task for a given cpu.
  6049. * @cpu: the processor in question.
  6050. *
  6051. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6052. */
  6053. struct task_struct *curr_task(int cpu)
  6054. {
  6055. return cpu_curr(cpu);
  6056. }
  6057. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6058. #ifdef CONFIG_IA64
  6059. /**
  6060. * set_curr_task - set the current task for a given cpu.
  6061. * @cpu: the processor in question.
  6062. * @p: the task pointer to set.
  6063. *
  6064. * Description: This function must only be used when non-maskable interrupts
  6065. * are serviced on a separate stack. It allows the architecture to switch the
  6066. * notion of the current task on a cpu in a non-blocking manner. This function
  6067. * must be called with all CPU's synchronized, and interrupts disabled, the
  6068. * and caller must save the original value of the current task (see
  6069. * curr_task() above) and restore that value before reenabling interrupts and
  6070. * re-starting the system.
  6071. *
  6072. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6073. */
  6074. void set_curr_task(int cpu, struct task_struct *p)
  6075. {
  6076. cpu_curr(cpu) = p;
  6077. }
  6078. #endif
  6079. #ifdef CONFIG_CGROUP_SCHED
  6080. /* task_group_lock serializes the addition/removal of task groups */
  6081. static DEFINE_SPINLOCK(task_group_lock);
  6082. static void free_sched_group(struct task_group *tg)
  6083. {
  6084. free_fair_sched_group(tg);
  6085. free_rt_sched_group(tg);
  6086. autogroup_free(tg);
  6087. kfree(tg);
  6088. }
  6089. /* allocate runqueue etc for a new task group */
  6090. struct task_group *sched_create_group(struct task_group *parent)
  6091. {
  6092. struct task_group *tg;
  6093. unsigned long flags;
  6094. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6095. if (!tg)
  6096. return ERR_PTR(-ENOMEM);
  6097. if (!alloc_fair_sched_group(tg, parent))
  6098. goto err;
  6099. if (!alloc_rt_sched_group(tg, parent))
  6100. goto err;
  6101. spin_lock_irqsave(&task_group_lock, flags);
  6102. list_add_rcu(&tg->list, &task_groups);
  6103. WARN_ON(!parent); /* root should already exist */
  6104. tg->parent = parent;
  6105. INIT_LIST_HEAD(&tg->children);
  6106. list_add_rcu(&tg->siblings, &parent->children);
  6107. spin_unlock_irqrestore(&task_group_lock, flags);
  6108. return tg;
  6109. err:
  6110. free_sched_group(tg);
  6111. return ERR_PTR(-ENOMEM);
  6112. }
  6113. /* rcu callback to free various structures associated with a task group */
  6114. static void free_sched_group_rcu(struct rcu_head *rhp)
  6115. {
  6116. /* now it should be safe to free those cfs_rqs */
  6117. free_sched_group(container_of(rhp, struct task_group, rcu));
  6118. }
  6119. /* Destroy runqueue etc associated with a task group */
  6120. void sched_destroy_group(struct task_group *tg)
  6121. {
  6122. unsigned long flags;
  6123. int i;
  6124. /* end participation in shares distribution */
  6125. for_each_possible_cpu(i)
  6126. unregister_fair_sched_group(tg, i);
  6127. spin_lock_irqsave(&task_group_lock, flags);
  6128. list_del_rcu(&tg->list);
  6129. list_del_rcu(&tg->siblings);
  6130. spin_unlock_irqrestore(&task_group_lock, flags);
  6131. /* wait for possible concurrent references to cfs_rqs complete */
  6132. call_rcu(&tg->rcu, free_sched_group_rcu);
  6133. }
  6134. /* change task's runqueue when it moves between groups.
  6135. * The caller of this function should have put the task in its new group
  6136. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6137. * reflect its new group.
  6138. */
  6139. void sched_move_task(struct task_struct *tsk)
  6140. {
  6141. struct task_group *tg;
  6142. int on_rq, running;
  6143. unsigned long flags;
  6144. struct rq *rq;
  6145. rq = task_rq_lock(tsk, &flags);
  6146. running = task_current(rq, tsk);
  6147. on_rq = tsk->on_rq;
  6148. if (on_rq)
  6149. dequeue_task(rq, tsk, 0);
  6150. if (unlikely(running))
  6151. tsk->sched_class->put_prev_task(rq, tsk);
  6152. tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
  6153. lockdep_is_held(&tsk->sighand->siglock)),
  6154. struct task_group, css);
  6155. tg = autogroup_task_group(tsk, tg);
  6156. tsk->sched_task_group = tg;
  6157. #ifdef CONFIG_FAIR_GROUP_SCHED
  6158. if (tsk->sched_class->task_move_group)
  6159. tsk->sched_class->task_move_group(tsk, on_rq);
  6160. else
  6161. #endif
  6162. set_task_rq(tsk, task_cpu(tsk));
  6163. if (unlikely(running))
  6164. tsk->sched_class->set_curr_task(rq);
  6165. if (on_rq)
  6166. enqueue_task(rq, tsk, 0);
  6167. task_rq_unlock(rq, tsk, &flags);
  6168. }
  6169. #endif /* CONFIG_CGROUP_SCHED */
  6170. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6171. static unsigned long to_ratio(u64 period, u64 runtime)
  6172. {
  6173. if (runtime == RUNTIME_INF)
  6174. return 1ULL << 20;
  6175. return div64_u64(runtime << 20, period);
  6176. }
  6177. #endif
  6178. #ifdef CONFIG_RT_GROUP_SCHED
  6179. /*
  6180. * Ensure that the real time constraints are schedulable.
  6181. */
  6182. static DEFINE_MUTEX(rt_constraints_mutex);
  6183. /* Must be called with tasklist_lock held */
  6184. static inline int tg_has_rt_tasks(struct task_group *tg)
  6185. {
  6186. struct task_struct *g, *p;
  6187. do_each_thread(g, p) {
  6188. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6189. return 1;
  6190. } while_each_thread(g, p);
  6191. return 0;
  6192. }
  6193. struct rt_schedulable_data {
  6194. struct task_group *tg;
  6195. u64 rt_period;
  6196. u64 rt_runtime;
  6197. };
  6198. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6199. {
  6200. struct rt_schedulable_data *d = data;
  6201. struct task_group *child;
  6202. unsigned long total, sum = 0;
  6203. u64 period, runtime;
  6204. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6205. runtime = tg->rt_bandwidth.rt_runtime;
  6206. if (tg == d->tg) {
  6207. period = d->rt_period;
  6208. runtime = d->rt_runtime;
  6209. }
  6210. /*
  6211. * Cannot have more runtime than the period.
  6212. */
  6213. if (runtime > period && runtime != RUNTIME_INF)
  6214. return -EINVAL;
  6215. /*
  6216. * Ensure we don't starve existing RT tasks.
  6217. */
  6218. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6219. return -EBUSY;
  6220. total = to_ratio(period, runtime);
  6221. /*
  6222. * Nobody can have more than the global setting allows.
  6223. */
  6224. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6225. return -EINVAL;
  6226. /*
  6227. * The sum of our children's runtime should not exceed our own.
  6228. */
  6229. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6230. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6231. runtime = child->rt_bandwidth.rt_runtime;
  6232. if (child == d->tg) {
  6233. period = d->rt_period;
  6234. runtime = d->rt_runtime;
  6235. }
  6236. sum += to_ratio(period, runtime);
  6237. }
  6238. if (sum > total)
  6239. return -EINVAL;
  6240. return 0;
  6241. }
  6242. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6243. {
  6244. int ret;
  6245. struct rt_schedulable_data data = {
  6246. .tg = tg,
  6247. .rt_period = period,
  6248. .rt_runtime = runtime,
  6249. };
  6250. rcu_read_lock();
  6251. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6252. rcu_read_unlock();
  6253. return ret;
  6254. }
  6255. static int tg_set_rt_bandwidth(struct task_group *tg,
  6256. u64 rt_period, u64 rt_runtime)
  6257. {
  6258. int i, err = 0;
  6259. mutex_lock(&rt_constraints_mutex);
  6260. read_lock(&tasklist_lock);
  6261. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6262. if (err)
  6263. goto unlock;
  6264. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6265. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6266. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6267. for_each_possible_cpu(i) {
  6268. struct rt_rq *rt_rq = tg->rt_rq[i];
  6269. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6270. rt_rq->rt_runtime = rt_runtime;
  6271. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6272. }
  6273. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6274. unlock:
  6275. read_unlock(&tasklist_lock);
  6276. mutex_unlock(&rt_constraints_mutex);
  6277. return err;
  6278. }
  6279. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6280. {
  6281. u64 rt_runtime, rt_period;
  6282. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6283. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6284. if (rt_runtime_us < 0)
  6285. rt_runtime = RUNTIME_INF;
  6286. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6287. }
  6288. long sched_group_rt_runtime(struct task_group *tg)
  6289. {
  6290. u64 rt_runtime_us;
  6291. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6292. return -1;
  6293. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6294. do_div(rt_runtime_us, NSEC_PER_USEC);
  6295. return rt_runtime_us;
  6296. }
  6297. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6298. {
  6299. u64 rt_runtime, rt_period;
  6300. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6301. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6302. if (rt_period == 0)
  6303. return -EINVAL;
  6304. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6305. }
  6306. long sched_group_rt_period(struct task_group *tg)
  6307. {
  6308. u64 rt_period_us;
  6309. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6310. do_div(rt_period_us, NSEC_PER_USEC);
  6311. return rt_period_us;
  6312. }
  6313. static int sched_rt_global_constraints(void)
  6314. {
  6315. u64 runtime, period;
  6316. int ret = 0;
  6317. if (sysctl_sched_rt_period <= 0)
  6318. return -EINVAL;
  6319. runtime = global_rt_runtime();
  6320. period = global_rt_period();
  6321. /*
  6322. * Sanity check on the sysctl variables.
  6323. */
  6324. if (runtime > period && runtime != RUNTIME_INF)
  6325. return -EINVAL;
  6326. mutex_lock(&rt_constraints_mutex);
  6327. read_lock(&tasklist_lock);
  6328. ret = __rt_schedulable(NULL, 0, 0);
  6329. read_unlock(&tasklist_lock);
  6330. mutex_unlock(&rt_constraints_mutex);
  6331. return ret;
  6332. }
  6333. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6334. {
  6335. /* Don't accept realtime tasks when there is no way for them to run */
  6336. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6337. return 0;
  6338. return 1;
  6339. }
  6340. #else /* !CONFIG_RT_GROUP_SCHED */
  6341. static int sched_rt_global_constraints(void)
  6342. {
  6343. unsigned long flags;
  6344. int i;
  6345. if (sysctl_sched_rt_period <= 0)
  6346. return -EINVAL;
  6347. /*
  6348. * There's always some RT tasks in the root group
  6349. * -- migration, kstopmachine etc..
  6350. */
  6351. if (sysctl_sched_rt_runtime == 0)
  6352. return -EBUSY;
  6353. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6354. for_each_possible_cpu(i) {
  6355. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6356. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6357. rt_rq->rt_runtime = global_rt_runtime();
  6358. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6359. }
  6360. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6361. return 0;
  6362. }
  6363. #endif /* CONFIG_RT_GROUP_SCHED */
  6364. int sched_rt_handler(struct ctl_table *table, int write,
  6365. void __user *buffer, size_t *lenp,
  6366. loff_t *ppos)
  6367. {
  6368. int ret;
  6369. int old_period, old_runtime;
  6370. static DEFINE_MUTEX(mutex);
  6371. mutex_lock(&mutex);
  6372. old_period = sysctl_sched_rt_period;
  6373. old_runtime = sysctl_sched_rt_runtime;
  6374. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6375. if (!ret && write) {
  6376. ret = sched_rt_global_constraints();
  6377. if (ret) {
  6378. sysctl_sched_rt_period = old_period;
  6379. sysctl_sched_rt_runtime = old_runtime;
  6380. } else {
  6381. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6382. def_rt_bandwidth.rt_period =
  6383. ns_to_ktime(global_rt_period());
  6384. }
  6385. }
  6386. mutex_unlock(&mutex);
  6387. return ret;
  6388. }
  6389. #ifdef CONFIG_CGROUP_SCHED
  6390. /* return corresponding task_group object of a cgroup */
  6391. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6392. {
  6393. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6394. struct task_group, css);
  6395. }
  6396. static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
  6397. {
  6398. struct task_group *tg, *parent;
  6399. if (!cgrp->parent) {
  6400. /* This is early initialization for the top cgroup */
  6401. return &root_task_group.css;
  6402. }
  6403. parent = cgroup_tg(cgrp->parent);
  6404. tg = sched_create_group(parent);
  6405. if (IS_ERR(tg))
  6406. return ERR_PTR(-ENOMEM);
  6407. return &tg->css;
  6408. }
  6409. static void cpu_cgroup_css_free(struct cgroup *cgrp)
  6410. {
  6411. struct task_group *tg = cgroup_tg(cgrp);
  6412. sched_destroy_group(tg);
  6413. }
  6414. static int cpu_cgroup_can_attach(struct cgroup *cgrp,
  6415. struct cgroup_taskset *tset)
  6416. {
  6417. struct task_struct *task;
  6418. cgroup_taskset_for_each(task, cgrp, tset) {
  6419. #ifdef CONFIG_RT_GROUP_SCHED
  6420. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6421. return -EINVAL;
  6422. #else
  6423. /* We don't support RT-tasks being in separate groups */
  6424. if (task->sched_class != &fair_sched_class)
  6425. return -EINVAL;
  6426. #endif
  6427. }
  6428. return 0;
  6429. }
  6430. static void cpu_cgroup_attach(struct cgroup *cgrp,
  6431. struct cgroup_taskset *tset)
  6432. {
  6433. struct task_struct *task;
  6434. cgroup_taskset_for_each(task, cgrp, tset)
  6435. sched_move_task(task);
  6436. }
  6437. static void
  6438. cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6439. struct task_struct *task)
  6440. {
  6441. /*
  6442. * cgroup_exit() is called in the copy_process() failure path.
  6443. * Ignore this case since the task hasn't ran yet, this avoids
  6444. * trying to poke a half freed task state from generic code.
  6445. */
  6446. if (!(task->flags & PF_EXITING))
  6447. return;
  6448. sched_move_task(task);
  6449. }
  6450. #ifdef CONFIG_FAIR_GROUP_SCHED
  6451. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6452. u64 shareval)
  6453. {
  6454. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6455. }
  6456. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6457. {
  6458. struct task_group *tg = cgroup_tg(cgrp);
  6459. return (u64) scale_load_down(tg->shares);
  6460. }
  6461. #ifdef CONFIG_CFS_BANDWIDTH
  6462. static DEFINE_MUTEX(cfs_constraints_mutex);
  6463. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6464. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6465. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6466. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6467. {
  6468. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6469. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6470. if (tg == &root_task_group)
  6471. return -EINVAL;
  6472. /*
  6473. * Ensure we have at some amount of bandwidth every period. This is
  6474. * to prevent reaching a state of large arrears when throttled via
  6475. * entity_tick() resulting in prolonged exit starvation.
  6476. */
  6477. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6478. return -EINVAL;
  6479. /*
  6480. * Likewise, bound things on the otherside by preventing insane quota
  6481. * periods. This also allows us to normalize in computing quota
  6482. * feasibility.
  6483. */
  6484. if (period > max_cfs_quota_period)
  6485. return -EINVAL;
  6486. mutex_lock(&cfs_constraints_mutex);
  6487. ret = __cfs_schedulable(tg, period, quota);
  6488. if (ret)
  6489. goto out_unlock;
  6490. runtime_enabled = quota != RUNTIME_INF;
  6491. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6492. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6493. raw_spin_lock_irq(&cfs_b->lock);
  6494. cfs_b->period = ns_to_ktime(period);
  6495. cfs_b->quota = quota;
  6496. __refill_cfs_bandwidth_runtime(cfs_b);
  6497. /* restart the period timer (if active) to handle new period expiry */
  6498. if (runtime_enabled && cfs_b->timer_active) {
  6499. /* force a reprogram */
  6500. cfs_b->timer_active = 0;
  6501. __start_cfs_bandwidth(cfs_b);
  6502. }
  6503. raw_spin_unlock_irq(&cfs_b->lock);
  6504. for_each_possible_cpu(i) {
  6505. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6506. struct rq *rq = cfs_rq->rq;
  6507. raw_spin_lock_irq(&rq->lock);
  6508. cfs_rq->runtime_enabled = runtime_enabled;
  6509. cfs_rq->runtime_remaining = 0;
  6510. if (cfs_rq->throttled)
  6511. unthrottle_cfs_rq(cfs_rq);
  6512. raw_spin_unlock_irq(&rq->lock);
  6513. }
  6514. out_unlock:
  6515. mutex_unlock(&cfs_constraints_mutex);
  6516. return ret;
  6517. }
  6518. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6519. {
  6520. u64 quota, period;
  6521. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6522. if (cfs_quota_us < 0)
  6523. quota = RUNTIME_INF;
  6524. else
  6525. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6526. return tg_set_cfs_bandwidth(tg, period, quota);
  6527. }
  6528. long tg_get_cfs_quota(struct task_group *tg)
  6529. {
  6530. u64 quota_us;
  6531. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6532. return -1;
  6533. quota_us = tg->cfs_bandwidth.quota;
  6534. do_div(quota_us, NSEC_PER_USEC);
  6535. return quota_us;
  6536. }
  6537. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6538. {
  6539. u64 quota, period;
  6540. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6541. quota = tg->cfs_bandwidth.quota;
  6542. return tg_set_cfs_bandwidth(tg, period, quota);
  6543. }
  6544. long tg_get_cfs_period(struct task_group *tg)
  6545. {
  6546. u64 cfs_period_us;
  6547. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6548. do_div(cfs_period_us, NSEC_PER_USEC);
  6549. return cfs_period_us;
  6550. }
  6551. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6552. {
  6553. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6554. }
  6555. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6556. s64 cfs_quota_us)
  6557. {
  6558. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6559. }
  6560. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6561. {
  6562. return tg_get_cfs_period(cgroup_tg(cgrp));
  6563. }
  6564. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6565. u64 cfs_period_us)
  6566. {
  6567. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6568. }
  6569. struct cfs_schedulable_data {
  6570. struct task_group *tg;
  6571. u64 period, quota;
  6572. };
  6573. /*
  6574. * normalize group quota/period to be quota/max_period
  6575. * note: units are usecs
  6576. */
  6577. static u64 normalize_cfs_quota(struct task_group *tg,
  6578. struct cfs_schedulable_data *d)
  6579. {
  6580. u64 quota, period;
  6581. if (tg == d->tg) {
  6582. period = d->period;
  6583. quota = d->quota;
  6584. } else {
  6585. period = tg_get_cfs_period(tg);
  6586. quota = tg_get_cfs_quota(tg);
  6587. }
  6588. /* note: these should typically be equivalent */
  6589. if (quota == RUNTIME_INF || quota == -1)
  6590. return RUNTIME_INF;
  6591. return to_ratio(period, quota);
  6592. }
  6593. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6594. {
  6595. struct cfs_schedulable_data *d = data;
  6596. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6597. s64 quota = 0, parent_quota = -1;
  6598. if (!tg->parent) {
  6599. quota = RUNTIME_INF;
  6600. } else {
  6601. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6602. quota = normalize_cfs_quota(tg, d);
  6603. parent_quota = parent_b->hierarchal_quota;
  6604. /*
  6605. * ensure max(child_quota) <= parent_quota, inherit when no
  6606. * limit is set
  6607. */
  6608. if (quota == RUNTIME_INF)
  6609. quota = parent_quota;
  6610. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6611. return -EINVAL;
  6612. }
  6613. cfs_b->hierarchal_quota = quota;
  6614. return 0;
  6615. }
  6616. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6617. {
  6618. int ret;
  6619. struct cfs_schedulable_data data = {
  6620. .tg = tg,
  6621. .period = period,
  6622. .quota = quota,
  6623. };
  6624. if (quota != RUNTIME_INF) {
  6625. do_div(data.period, NSEC_PER_USEC);
  6626. do_div(data.quota, NSEC_PER_USEC);
  6627. }
  6628. rcu_read_lock();
  6629. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6630. rcu_read_unlock();
  6631. return ret;
  6632. }
  6633. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6634. struct cgroup_map_cb *cb)
  6635. {
  6636. struct task_group *tg = cgroup_tg(cgrp);
  6637. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6638. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6639. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6640. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6641. return 0;
  6642. }
  6643. #endif /* CONFIG_CFS_BANDWIDTH */
  6644. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6645. #ifdef CONFIG_RT_GROUP_SCHED
  6646. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6647. s64 val)
  6648. {
  6649. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6650. }
  6651. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6652. {
  6653. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6654. }
  6655. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6656. u64 rt_period_us)
  6657. {
  6658. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6659. }
  6660. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6661. {
  6662. return sched_group_rt_period(cgroup_tg(cgrp));
  6663. }
  6664. #endif /* CONFIG_RT_GROUP_SCHED */
  6665. static struct cftype cpu_files[] = {
  6666. #ifdef CONFIG_FAIR_GROUP_SCHED
  6667. {
  6668. .name = "shares",
  6669. .read_u64 = cpu_shares_read_u64,
  6670. .write_u64 = cpu_shares_write_u64,
  6671. },
  6672. #endif
  6673. #ifdef CONFIG_CFS_BANDWIDTH
  6674. {
  6675. .name = "cfs_quota_us",
  6676. .read_s64 = cpu_cfs_quota_read_s64,
  6677. .write_s64 = cpu_cfs_quota_write_s64,
  6678. },
  6679. {
  6680. .name = "cfs_period_us",
  6681. .read_u64 = cpu_cfs_period_read_u64,
  6682. .write_u64 = cpu_cfs_period_write_u64,
  6683. },
  6684. {
  6685. .name = "stat",
  6686. .read_map = cpu_stats_show,
  6687. },
  6688. #endif
  6689. #ifdef CONFIG_RT_GROUP_SCHED
  6690. {
  6691. .name = "rt_runtime_us",
  6692. .read_s64 = cpu_rt_runtime_read,
  6693. .write_s64 = cpu_rt_runtime_write,
  6694. },
  6695. {
  6696. .name = "rt_period_us",
  6697. .read_u64 = cpu_rt_period_read_uint,
  6698. .write_u64 = cpu_rt_period_write_uint,
  6699. },
  6700. #endif
  6701. { } /* terminate */
  6702. };
  6703. struct cgroup_subsys cpu_cgroup_subsys = {
  6704. .name = "cpu",
  6705. .css_alloc = cpu_cgroup_css_alloc,
  6706. .css_free = cpu_cgroup_css_free,
  6707. .can_attach = cpu_cgroup_can_attach,
  6708. .attach = cpu_cgroup_attach,
  6709. .exit = cpu_cgroup_exit,
  6710. .subsys_id = cpu_cgroup_subsys_id,
  6711. .base_cftypes = cpu_files,
  6712. .early_init = 1,
  6713. };
  6714. #endif /* CONFIG_CGROUP_SCHED */
  6715. #ifdef CONFIG_CGROUP_CPUACCT
  6716. /*
  6717. * CPU accounting code for task groups.
  6718. *
  6719. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6720. * (balbir@in.ibm.com).
  6721. */
  6722. struct cpuacct root_cpuacct;
  6723. /* create a new cpu accounting group */
  6724. static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
  6725. {
  6726. struct cpuacct *ca;
  6727. if (!cgrp->parent)
  6728. return &root_cpuacct.css;
  6729. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6730. if (!ca)
  6731. goto out;
  6732. ca->cpuusage = alloc_percpu(u64);
  6733. if (!ca->cpuusage)
  6734. goto out_free_ca;
  6735. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6736. if (!ca->cpustat)
  6737. goto out_free_cpuusage;
  6738. return &ca->css;
  6739. out_free_cpuusage:
  6740. free_percpu(ca->cpuusage);
  6741. out_free_ca:
  6742. kfree(ca);
  6743. out:
  6744. return ERR_PTR(-ENOMEM);
  6745. }
  6746. /* destroy an existing cpu accounting group */
  6747. static void cpuacct_css_free(struct cgroup *cgrp)
  6748. {
  6749. struct cpuacct *ca = cgroup_ca(cgrp);
  6750. free_percpu(ca->cpustat);
  6751. free_percpu(ca->cpuusage);
  6752. kfree(ca);
  6753. }
  6754. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6755. {
  6756. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6757. u64 data;
  6758. #ifndef CONFIG_64BIT
  6759. /*
  6760. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6761. */
  6762. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6763. data = *cpuusage;
  6764. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6765. #else
  6766. data = *cpuusage;
  6767. #endif
  6768. return data;
  6769. }
  6770. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6771. {
  6772. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6773. #ifndef CONFIG_64BIT
  6774. /*
  6775. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6776. */
  6777. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6778. *cpuusage = val;
  6779. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6780. #else
  6781. *cpuusage = val;
  6782. #endif
  6783. }
  6784. /* return total cpu usage (in nanoseconds) of a group */
  6785. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6786. {
  6787. struct cpuacct *ca = cgroup_ca(cgrp);
  6788. u64 totalcpuusage = 0;
  6789. int i;
  6790. for_each_present_cpu(i)
  6791. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6792. return totalcpuusage;
  6793. }
  6794. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6795. u64 reset)
  6796. {
  6797. struct cpuacct *ca = cgroup_ca(cgrp);
  6798. int err = 0;
  6799. int i;
  6800. if (reset) {
  6801. err = -EINVAL;
  6802. goto out;
  6803. }
  6804. for_each_present_cpu(i)
  6805. cpuacct_cpuusage_write(ca, i, 0);
  6806. out:
  6807. return err;
  6808. }
  6809. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6810. struct seq_file *m)
  6811. {
  6812. struct cpuacct *ca = cgroup_ca(cgroup);
  6813. u64 percpu;
  6814. int i;
  6815. for_each_present_cpu(i) {
  6816. percpu = cpuacct_cpuusage_read(ca, i);
  6817. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6818. }
  6819. seq_printf(m, "\n");
  6820. return 0;
  6821. }
  6822. static const char *cpuacct_stat_desc[] = {
  6823. [CPUACCT_STAT_USER] = "user",
  6824. [CPUACCT_STAT_SYSTEM] = "system",
  6825. };
  6826. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6827. struct cgroup_map_cb *cb)
  6828. {
  6829. struct cpuacct *ca = cgroup_ca(cgrp);
  6830. int cpu;
  6831. s64 val = 0;
  6832. for_each_online_cpu(cpu) {
  6833. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6834. val += kcpustat->cpustat[CPUTIME_USER];
  6835. val += kcpustat->cpustat[CPUTIME_NICE];
  6836. }
  6837. val = cputime64_to_clock_t(val);
  6838. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6839. val = 0;
  6840. for_each_online_cpu(cpu) {
  6841. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6842. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6843. val += kcpustat->cpustat[CPUTIME_IRQ];
  6844. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6845. }
  6846. val = cputime64_to_clock_t(val);
  6847. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6848. return 0;
  6849. }
  6850. static struct cftype files[] = {
  6851. {
  6852. .name = "usage",
  6853. .read_u64 = cpuusage_read,
  6854. .write_u64 = cpuusage_write,
  6855. },
  6856. {
  6857. .name = "usage_percpu",
  6858. .read_seq_string = cpuacct_percpu_seq_read,
  6859. },
  6860. {
  6861. .name = "stat",
  6862. .read_map = cpuacct_stats_show,
  6863. },
  6864. { } /* terminate */
  6865. };
  6866. /*
  6867. * charge this task's execution time to its accounting group.
  6868. *
  6869. * called with rq->lock held.
  6870. */
  6871. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6872. {
  6873. struct cpuacct *ca;
  6874. int cpu;
  6875. if (unlikely(!cpuacct_subsys.active))
  6876. return;
  6877. cpu = task_cpu(tsk);
  6878. rcu_read_lock();
  6879. ca = task_ca(tsk);
  6880. for (; ca; ca = parent_ca(ca)) {
  6881. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6882. *cpuusage += cputime;
  6883. }
  6884. rcu_read_unlock();
  6885. }
  6886. struct cgroup_subsys cpuacct_subsys = {
  6887. .name = "cpuacct",
  6888. .css_alloc = cpuacct_css_alloc,
  6889. .css_free = cpuacct_css_free,
  6890. .subsys_id = cpuacct_subsys_id,
  6891. .base_cftypes = files,
  6892. };
  6893. #endif /* CONFIG_CGROUP_CPUACCT */
  6894. void dump_cpu_task(int cpu)
  6895. {
  6896. pr_info("Task dump for CPU %d:\n", cpu);
  6897. sched_show_task(cpu_curr(cpu));
  6898. }