rtc-mxc.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520
  1. /*
  2. * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
  3. *
  4. * The code contained herein is licensed under the GNU General Public
  5. * License. You may obtain a copy of the GNU General Public License
  6. * Version 2 or later at the following locations:
  7. *
  8. * http://www.opensource.org/licenses/gpl-license.html
  9. * http://www.gnu.org/copyleft/gpl.html
  10. */
  11. #include <linux/io.h>
  12. #include <linux/rtc.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/clk.h>
  18. #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
  19. #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
  20. #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
  21. #define RTC_SW_BIT (1 << 0)
  22. #define RTC_ALM_BIT (1 << 2)
  23. #define RTC_1HZ_BIT (1 << 4)
  24. #define RTC_2HZ_BIT (1 << 7)
  25. #define RTC_SAM0_BIT (1 << 8)
  26. #define RTC_SAM1_BIT (1 << 9)
  27. #define RTC_SAM2_BIT (1 << 10)
  28. #define RTC_SAM3_BIT (1 << 11)
  29. #define RTC_SAM4_BIT (1 << 12)
  30. #define RTC_SAM5_BIT (1 << 13)
  31. #define RTC_SAM6_BIT (1 << 14)
  32. #define RTC_SAM7_BIT (1 << 15)
  33. #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
  34. RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
  35. RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
  36. #define RTC_ENABLE_BIT (1 << 7)
  37. #define MAX_PIE_NUM 9
  38. #define MAX_PIE_FREQ 512
  39. static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
  40. { 2, RTC_2HZ_BIT },
  41. { 4, RTC_SAM0_BIT },
  42. { 8, RTC_SAM1_BIT },
  43. { 16, RTC_SAM2_BIT },
  44. { 32, RTC_SAM3_BIT },
  45. { 64, RTC_SAM4_BIT },
  46. { 128, RTC_SAM5_BIT },
  47. { 256, RTC_SAM6_BIT },
  48. { MAX_PIE_FREQ, RTC_SAM7_BIT },
  49. };
  50. #define MXC_RTC_TIME 0
  51. #define MXC_RTC_ALARM 1
  52. #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
  53. #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
  54. #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
  55. #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
  56. #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
  57. #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
  58. #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
  59. #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
  60. #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
  61. #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
  62. #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
  63. #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
  64. #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
  65. enum imx_rtc_type {
  66. IMX1_RTC,
  67. IMX21_RTC,
  68. };
  69. struct rtc_plat_data {
  70. struct rtc_device *rtc;
  71. void __iomem *ioaddr;
  72. int irq;
  73. struct clk *clk;
  74. struct rtc_time g_rtc_alarm;
  75. enum imx_rtc_type devtype;
  76. };
  77. static struct platform_device_id imx_rtc_devtype[] = {
  78. {
  79. .name = "imx1-rtc",
  80. .driver_data = IMX1_RTC,
  81. }, {
  82. .name = "imx21-rtc",
  83. .driver_data = IMX21_RTC,
  84. }, {
  85. /* sentinel */
  86. }
  87. };
  88. MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
  89. static inline int is_imx1_rtc(struct rtc_plat_data *data)
  90. {
  91. return data->devtype == IMX1_RTC;
  92. }
  93. /*
  94. * This function is used to obtain the RTC time or the alarm value in
  95. * second.
  96. */
  97. static u32 get_alarm_or_time(struct device *dev, int time_alarm)
  98. {
  99. struct platform_device *pdev = to_platform_device(dev);
  100. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  101. void __iomem *ioaddr = pdata->ioaddr;
  102. u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
  103. switch (time_alarm) {
  104. case MXC_RTC_TIME:
  105. day = readw(ioaddr + RTC_DAYR);
  106. hr_min = readw(ioaddr + RTC_HOURMIN);
  107. sec = readw(ioaddr + RTC_SECOND);
  108. break;
  109. case MXC_RTC_ALARM:
  110. day = readw(ioaddr + RTC_DAYALARM);
  111. hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
  112. sec = readw(ioaddr + RTC_ALRM_SEC);
  113. break;
  114. }
  115. hr = hr_min >> 8;
  116. min = hr_min & 0xff;
  117. return (((day * 24 + hr) * 60) + min) * 60 + sec;
  118. }
  119. /*
  120. * This function sets the RTC alarm value or the time value.
  121. */
  122. static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
  123. {
  124. u32 day, hr, min, sec, temp;
  125. struct platform_device *pdev = to_platform_device(dev);
  126. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  127. void __iomem *ioaddr = pdata->ioaddr;
  128. day = time / 86400;
  129. time -= day * 86400;
  130. /* time is within a day now */
  131. hr = time / 3600;
  132. time -= hr * 3600;
  133. /* time is within an hour now */
  134. min = time / 60;
  135. sec = time - min * 60;
  136. temp = (hr << 8) + min;
  137. switch (time_alarm) {
  138. case MXC_RTC_TIME:
  139. writew(day, ioaddr + RTC_DAYR);
  140. writew(sec, ioaddr + RTC_SECOND);
  141. writew(temp, ioaddr + RTC_HOURMIN);
  142. break;
  143. case MXC_RTC_ALARM:
  144. writew(day, ioaddr + RTC_DAYALARM);
  145. writew(sec, ioaddr + RTC_ALRM_SEC);
  146. writew(temp, ioaddr + RTC_ALRM_HM);
  147. break;
  148. }
  149. }
  150. /*
  151. * This function updates the RTC alarm registers and then clears all the
  152. * interrupt status bits.
  153. */
  154. static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
  155. {
  156. struct rtc_time alarm_tm, now_tm;
  157. unsigned long now, time;
  158. struct platform_device *pdev = to_platform_device(dev);
  159. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  160. void __iomem *ioaddr = pdata->ioaddr;
  161. now = get_alarm_or_time(dev, MXC_RTC_TIME);
  162. rtc_time_to_tm(now, &now_tm);
  163. alarm_tm.tm_year = now_tm.tm_year;
  164. alarm_tm.tm_mon = now_tm.tm_mon;
  165. alarm_tm.tm_mday = now_tm.tm_mday;
  166. alarm_tm.tm_hour = alrm->tm_hour;
  167. alarm_tm.tm_min = alrm->tm_min;
  168. alarm_tm.tm_sec = alrm->tm_sec;
  169. rtc_tm_to_time(&alarm_tm, &time);
  170. /* clear all the interrupt status bits */
  171. writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
  172. set_alarm_or_time(dev, MXC_RTC_ALARM, time);
  173. return 0;
  174. }
  175. static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
  176. unsigned int enabled)
  177. {
  178. struct platform_device *pdev = to_platform_device(dev);
  179. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  180. void __iomem *ioaddr = pdata->ioaddr;
  181. u32 reg;
  182. spin_lock_irq(&pdata->rtc->irq_lock);
  183. reg = readw(ioaddr + RTC_RTCIENR);
  184. if (enabled)
  185. reg |= bit;
  186. else
  187. reg &= ~bit;
  188. writew(reg, ioaddr + RTC_RTCIENR);
  189. spin_unlock_irq(&pdata->rtc->irq_lock);
  190. }
  191. /* This function is the RTC interrupt service routine. */
  192. static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
  193. {
  194. struct platform_device *pdev = dev_id;
  195. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  196. void __iomem *ioaddr = pdata->ioaddr;
  197. unsigned long flags;
  198. u32 status;
  199. u32 events = 0;
  200. spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
  201. status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
  202. /* clear interrupt sources */
  203. writew(status, ioaddr + RTC_RTCISR);
  204. /* update irq data & counter */
  205. if (status & RTC_ALM_BIT) {
  206. events |= (RTC_AF | RTC_IRQF);
  207. /* RTC alarm should be one-shot */
  208. mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
  209. }
  210. if (status & RTC_1HZ_BIT)
  211. events |= (RTC_UF | RTC_IRQF);
  212. if (status & PIT_ALL_ON)
  213. events |= (RTC_PF | RTC_IRQF);
  214. rtc_update_irq(pdata->rtc, 1, events);
  215. spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
  216. return IRQ_HANDLED;
  217. }
  218. /*
  219. * Clear all interrupts and release the IRQ
  220. */
  221. static void mxc_rtc_release(struct device *dev)
  222. {
  223. struct platform_device *pdev = to_platform_device(dev);
  224. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  225. void __iomem *ioaddr = pdata->ioaddr;
  226. spin_lock_irq(&pdata->rtc->irq_lock);
  227. /* Disable all rtc interrupts */
  228. writew(0, ioaddr + RTC_RTCIENR);
  229. /* Clear all interrupt status */
  230. writew(0xffffffff, ioaddr + RTC_RTCISR);
  231. spin_unlock_irq(&pdata->rtc->irq_lock);
  232. }
  233. static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
  234. {
  235. mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
  236. return 0;
  237. }
  238. /*
  239. * This function reads the current RTC time into tm in Gregorian date.
  240. */
  241. static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
  242. {
  243. u32 val;
  244. /* Avoid roll-over from reading the different registers */
  245. do {
  246. val = get_alarm_or_time(dev, MXC_RTC_TIME);
  247. } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
  248. rtc_time_to_tm(val, tm);
  249. return 0;
  250. }
  251. /*
  252. * This function sets the internal RTC time based on tm in Gregorian date.
  253. */
  254. static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
  255. {
  256. struct platform_device *pdev = to_platform_device(dev);
  257. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  258. /*
  259. * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
  260. */
  261. if (is_imx1_rtc(pdata)) {
  262. struct rtc_time tm;
  263. rtc_time_to_tm(time, &tm);
  264. tm.tm_year = 70;
  265. rtc_tm_to_time(&tm, &time);
  266. }
  267. /* Avoid roll-over from reading the different registers */
  268. do {
  269. set_alarm_or_time(dev, MXC_RTC_TIME, time);
  270. } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
  271. return 0;
  272. }
  273. /*
  274. * This function reads the current alarm value into the passed in 'alrm'
  275. * argument. It updates the alrm's pending field value based on the whether
  276. * an alarm interrupt occurs or not.
  277. */
  278. static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  279. {
  280. struct platform_device *pdev = to_platform_device(dev);
  281. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  282. void __iomem *ioaddr = pdata->ioaddr;
  283. rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
  284. alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
  285. return 0;
  286. }
  287. /*
  288. * This function sets the RTC alarm based on passed in alrm.
  289. */
  290. static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  291. {
  292. struct platform_device *pdev = to_platform_device(dev);
  293. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  294. int ret;
  295. ret = rtc_update_alarm(dev, &alrm->time);
  296. if (ret)
  297. return ret;
  298. memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
  299. mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
  300. return 0;
  301. }
  302. /* RTC layer */
  303. static struct rtc_class_ops mxc_rtc_ops = {
  304. .release = mxc_rtc_release,
  305. .read_time = mxc_rtc_read_time,
  306. .set_mmss = mxc_rtc_set_mmss,
  307. .read_alarm = mxc_rtc_read_alarm,
  308. .set_alarm = mxc_rtc_set_alarm,
  309. .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
  310. };
  311. static int __devinit mxc_rtc_probe(struct platform_device *pdev)
  312. {
  313. struct resource *res;
  314. struct rtc_device *rtc;
  315. struct rtc_plat_data *pdata = NULL;
  316. u32 reg;
  317. unsigned long rate;
  318. int ret;
  319. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  320. if (!res)
  321. return -ENODEV;
  322. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  323. if (!pdata)
  324. return -ENOMEM;
  325. pdata->devtype = pdev->id_entry->driver_data;
  326. if (!devm_request_mem_region(&pdev->dev, res->start,
  327. resource_size(res), pdev->name))
  328. return -EBUSY;
  329. pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
  330. resource_size(res));
  331. pdata->clk = devm_clk_get(&pdev->dev, NULL);
  332. if (IS_ERR(pdata->clk)) {
  333. dev_err(&pdev->dev, "unable to get clock!\n");
  334. ret = PTR_ERR(pdata->clk);
  335. goto exit_free_pdata;
  336. }
  337. clk_prepare_enable(pdata->clk);
  338. rate = clk_get_rate(pdata->clk);
  339. if (rate == 32768)
  340. reg = RTC_INPUT_CLK_32768HZ;
  341. else if (rate == 32000)
  342. reg = RTC_INPUT_CLK_32000HZ;
  343. else if (rate == 38400)
  344. reg = RTC_INPUT_CLK_38400HZ;
  345. else {
  346. dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
  347. ret = -EINVAL;
  348. goto exit_put_clk;
  349. }
  350. reg |= RTC_ENABLE_BIT;
  351. writew(reg, (pdata->ioaddr + RTC_RTCCTL));
  352. if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
  353. dev_err(&pdev->dev, "hardware module can't be enabled!\n");
  354. ret = -EIO;
  355. goto exit_put_clk;
  356. }
  357. platform_set_drvdata(pdev, pdata);
  358. /* Configure and enable the RTC */
  359. pdata->irq = platform_get_irq(pdev, 0);
  360. if (pdata->irq >= 0 &&
  361. devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
  362. IRQF_SHARED, pdev->name, pdev) < 0) {
  363. dev_warn(&pdev->dev, "interrupt not available.\n");
  364. pdata->irq = -1;
  365. }
  366. if (pdata->irq >=0)
  367. device_init_wakeup(&pdev->dev, 1);
  368. rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
  369. THIS_MODULE);
  370. if (IS_ERR(rtc)) {
  371. ret = PTR_ERR(rtc);
  372. goto exit_clr_drvdata;
  373. }
  374. pdata->rtc = rtc;
  375. return 0;
  376. exit_clr_drvdata:
  377. platform_set_drvdata(pdev, NULL);
  378. exit_put_clk:
  379. clk_disable_unprepare(pdata->clk);
  380. exit_free_pdata:
  381. return ret;
  382. }
  383. static int __devexit mxc_rtc_remove(struct platform_device *pdev)
  384. {
  385. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  386. rtc_device_unregister(pdata->rtc);
  387. clk_disable_unprepare(pdata->clk);
  388. platform_set_drvdata(pdev, NULL);
  389. return 0;
  390. }
  391. #ifdef CONFIG_PM
  392. static int mxc_rtc_suspend(struct device *dev)
  393. {
  394. struct rtc_plat_data *pdata = dev_get_drvdata(dev);
  395. if (device_may_wakeup(dev))
  396. enable_irq_wake(pdata->irq);
  397. return 0;
  398. }
  399. static int mxc_rtc_resume(struct device *dev)
  400. {
  401. struct rtc_plat_data *pdata = dev_get_drvdata(dev);
  402. if (device_may_wakeup(dev))
  403. disable_irq_wake(pdata->irq);
  404. return 0;
  405. }
  406. static struct dev_pm_ops mxc_rtc_pm_ops = {
  407. .suspend = mxc_rtc_suspend,
  408. .resume = mxc_rtc_resume,
  409. };
  410. #endif
  411. static struct platform_driver mxc_rtc_driver = {
  412. .driver = {
  413. .name = "mxc_rtc",
  414. #ifdef CONFIG_PM
  415. .pm = &mxc_rtc_pm_ops,
  416. #endif
  417. .owner = THIS_MODULE,
  418. },
  419. .id_table = imx_rtc_devtype,
  420. .probe = mxc_rtc_probe,
  421. .remove = __devexit_p(mxc_rtc_remove),
  422. };
  423. module_platform_driver(mxc_rtc_driver)
  424. MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
  425. MODULE_DESCRIPTION("RTC driver for Freescale MXC");
  426. MODULE_LICENSE("GPL");