tlbex.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Synthesize TLB refill handlers at runtime.
  7. *
  8. * Copyright (C) 2004,2005 by Thiemo Seufer
  9. */
  10. #include <stdarg.h>
  11. #include <linux/config.h>
  12. #include <linux/mm.h>
  13. #include <linux/kernel.h>
  14. #include <linux/types.h>
  15. #include <linux/string.h>
  16. #include <linux/init.h>
  17. #include <asm/pgtable.h>
  18. #include <asm/cacheflush.h>
  19. #include <asm/mmu_context.h>
  20. #include <asm/inst.h>
  21. #include <asm/elf.h>
  22. #include <asm/smp.h>
  23. #include <asm/war.h>
  24. /* #define DEBUG_TLB */
  25. static __init int __attribute__((unused)) r45k_bvahwbug(void)
  26. {
  27. /* XXX: We should probe for the presence of this bug, but we don't. */
  28. return 0;
  29. }
  30. static __init int __attribute__((unused)) r4k_250MHZhwbug(void)
  31. {
  32. /* XXX: We should probe for the presence of this bug, but we don't. */
  33. return 0;
  34. }
  35. static __init int __attribute__((unused)) bcm1250_m3_war(void)
  36. {
  37. return BCM1250_M3_WAR;
  38. }
  39. static __init int __attribute__((unused)) r10000_llsc_war(void)
  40. {
  41. return R10000_LLSC_WAR;
  42. }
  43. /*
  44. * A little micro-assembler, intended for TLB refill handler
  45. * synthesizing. It is intentionally kept simple, does only support
  46. * a subset of instructions, and does not try to hide pipeline effects
  47. * like branch delay slots.
  48. */
  49. enum fields
  50. {
  51. RS = 0x001,
  52. RT = 0x002,
  53. RD = 0x004,
  54. RE = 0x008,
  55. SIMM = 0x010,
  56. UIMM = 0x020,
  57. BIMM = 0x040,
  58. JIMM = 0x080,
  59. FUNC = 0x100,
  60. };
  61. #define OP_MASK 0x2f
  62. #define OP_SH 26
  63. #define RS_MASK 0x1f
  64. #define RS_SH 21
  65. #define RT_MASK 0x1f
  66. #define RT_SH 16
  67. #define RD_MASK 0x1f
  68. #define RD_SH 11
  69. #define RE_MASK 0x1f
  70. #define RE_SH 6
  71. #define IMM_MASK 0xffff
  72. #define IMM_SH 0
  73. #define JIMM_MASK 0x3ffffff
  74. #define JIMM_SH 0
  75. #define FUNC_MASK 0x2f
  76. #define FUNC_SH 0
  77. enum opcode {
  78. insn_invalid,
  79. insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
  80. insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
  81. insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
  82. insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
  83. insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
  84. insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
  85. insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
  86. insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
  87. insn_tlbwr, insn_xor, insn_xori
  88. };
  89. struct insn {
  90. enum opcode opcode;
  91. u32 match;
  92. enum fields fields;
  93. };
  94. /* This macro sets the non-variable bits of an instruction. */
  95. #define M(a, b, c, d, e, f) \
  96. ((a) << OP_SH \
  97. | (b) << RS_SH \
  98. | (c) << RT_SH \
  99. | (d) << RD_SH \
  100. | (e) << RE_SH \
  101. | (f) << FUNC_SH)
  102. static __initdata struct insn insn_table[] = {
  103. { insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
  104. { insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
  105. { insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
  106. { insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
  107. { insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
  108. { insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
  109. { insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
  110. { insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
  111. { insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
  112. { insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
  113. { insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
  114. { insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
  115. { insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
  116. { insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD },
  117. { insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD },
  118. { insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
  119. { insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
  120. { insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
  121. { insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
  122. { insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
  123. { insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
  124. { insn_j, M(j_op,0,0,0,0,0), JIMM },
  125. { insn_jal, M(jal_op,0,0,0,0,0), JIMM },
  126. { insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
  127. { insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
  128. { insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
  129. { insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
  130. { insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
  131. { insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
  132. { insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD },
  133. { insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD },
  134. { insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
  135. { insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
  136. { insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
  137. { insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
  138. { insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
  139. { insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
  140. { insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
  141. { insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
  142. { insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
  143. { insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
  144. { insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
  145. { insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
  146. { insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
  147. { insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
  148. { insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
  149. { insn_invalid, 0, 0 }
  150. };
  151. #undef M
  152. static __init u32 build_rs(u32 arg)
  153. {
  154. if (arg & ~RS_MASK)
  155. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  156. return (arg & RS_MASK) << RS_SH;
  157. }
  158. static __init u32 build_rt(u32 arg)
  159. {
  160. if (arg & ~RT_MASK)
  161. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  162. return (arg & RT_MASK) << RT_SH;
  163. }
  164. static __init u32 build_rd(u32 arg)
  165. {
  166. if (arg & ~RD_MASK)
  167. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  168. return (arg & RD_MASK) << RD_SH;
  169. }
  170. static __init u32 build_re(u32 arg)
  171. {
  172. if (arg & ~RE_MASK)
  173. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  174. return (arg & RE_MASK) << RE_SH;
  175. }
  176. static __init u32 build_simm(s32 arg)
  177. {
  178. if (arg > 0x7fff || arg < -0x8000)
  179. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  180. return arg & 0xffff;
  181. }
  182. static __init u32 build_uimm(u32 arg)
  183. {
  184. if (arg & ~IMM_MASK)
  185. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  186. return arg & IMM_MASK;
  187. }
  188. static __init u32 build_bimm(s32 arg)
  189. {
  190. if (arg > 0x1ffff || arg < -0x20000)
  191. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  192. if (arg & 0x3)
  193. printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
  194. return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
  195. }
  196. static __init u32 build_jimm(u32 arg)
  197. {
  198. if (arg & ~((JIMM_MASK) << 2))
  199. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  200. return (arg >> 2) & JIMM_MASK;
  201. }
  202. static __init u32 build_func(u32 arg)
  203. {
  204. if (arg & ~FUNC_MASK)
  205. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  206. return arg & FUNC_MASK;
  207. }
  208. /*
  209. * The order of opcode arguments is implicitly left to right,
  210. * starting with RS and ending with FUNC or IMM.
  211. */
  212. static void __init build_insn(u32 **buf, enum opcode opc, ...)
  213. {
  214. struct insn *ip = NULL;
  215. unsigned int i;
  216. va_list ap;
  217. u32 op;
  218. for (i = 0; insn_table[i].opcode != insn_invalid; i++)
  219. if (insn_table[i].opcode == opc) {
  220. ip = &insn_table[i];
  221. break;
  222. }
  223. if (!ip)
  224. panic("Unsupported TLB synthesizer instruction %d", opc);
  225. op = ip->match;
  226. va_start(ap, opc);
  227. if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
  228. if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
  229. if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
  230. if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
  231. if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
  232. if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
  233. if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
  234. if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
  235. if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
  236. va_end(ap);
  237. **buf = op;
  238. (*buf)++;
  239. }
  240. #define I_u1u2u3(op) \
  241. static inline void i##op(u32 **buf, unsigned int a, \
  242. unsigned int b, unsigned int c) \
  243. { \
  244. build_insn(buf, insn##op, a, b, c); \
  245. }
  246. #define I_u2u1u3(op) \
  247. static inline void i##op(u32 **buf, unsigned int a, \
  248. unsigned int b, unsigned int c) \
  249. { \
  250. build_insn(buf, insn##op, b, a, c); \
  251. }
  252. #define I_u3u1u2(op) \
  253. static inline void i##op(u32 **buf, unsigned int a, \
  254. unsigned int b, unsigned int c) \
  255. { \
  256. build_insn(buf, insn##op, b, c, a); \
  257. }
  258. #define I_u1u2s3(op) \
  259. static inline void i##op(u32 **buf, unsigned int a, \
  260. unsigned int b, signed int c) \
  261. { \
  262. build_insn(buf, insn##op, a, b, c); \
  263. }
  264. #define I_u2s3u1(op) \
  265. static inline void i##op(u32 **buf, unsigned int a, \
  266. signed int b, unsigned int c) \
  267. { \
  268. build_insn(buf, insn##op, c, a, b); \
  269. }
  270. #define I_u2u1s3(op) \
  271. static inline void i##op(u32 **buf, unsigned int a, \
  272. unsigned int b, signed int c) \
  273. { \
  274. build_insn(buf, insn##op, b, a, c); \
  275. }
  276. #define I_u1u2(op) \
  277. static inline void i##op(u32 **buf, unsigned int a, \
  278. unsigned int b) \
  279. { \
  280. build_insn(buf, insn##op, a, b); \
  281. }
  282. #define I_u1s2(op) \
  283. static inline void i##op(u32 **buf, unsigned int a, \
  284. signed int b) \
  285. { \
  286. build_insn(buf, insn##op, a, b); \
  287. }
  288. #define I_u1(op) \
  289. static inline void i##op(u32 **buf, unsigned int a) \
  290. { \
  291. build_insn(buf, insn##op, a); \
  292. }
  293. #define I_0(op) \
  294. static inline void i##op(u32 **buf) \
  295. { \
  296. build_insn(buf, insn##op); \
  297. }
  298. I_u2u1s3(_addiu);
  299. I_u3u1u2(_addu);
  300. I_u2u1u3(_andi);
  301. I_u3u1u2(_and);
  302. I_u1u2s3(_beq);
  303. I_u1u2s3(_beql);
  304. I_u1s2(_bgez);
  305. I_u1s2(_bgezl);
  306. I_u1s2(_bltz);
  307. I_u1s2(_bltzl);
  308. I_u1u2s3(_bne);
  309. I_u1u2(_dmfc0);
  310. I_u1u2(_dmtc0);
  311. I_u2u1s3(_daddiu);
  312. I_u3u1u2(_daddu);
  313. I_u2u1u3(_dsll);
  314. I_u2u1u3(_dsll32);
  315. I_u2u1u3(_dsra);
  316. I_u2u1u3(_dsrl);
  317. I_u3u1u2(_dsubu);
  318. I_0(_eret);
  319. I_u1(_j);
  320. I_u1(_jal);
  321. I_u1(_jr);
  322. I_u2s3u1(_ld);
  323. I_u2s3u1(_ll);
  324. I_u2s3u1(_lld);
  325. I_u1s2(_lui);
  326. I_u2s3u1(_lw);
  327. I_u1u2(_mfc0);
  328. I_u1u2(_mtc0);
  329. I_u2u1u3(_ori);
  330. I_0(_rfe);
  331. I_u2s3u1(_sc);
  332. I_u2s3u1(_scd);
  333. I_u2s3u1(_sd);
  334. I_u2u1u3(_sll);
  335. I_u2u1u3(_sra);
  336. I_u2u1u3(_srl);
  337. I_u3u1u2(_subu);
  338. I_u2s3u1(_sw);
  339. I_0(_tlbp);
  340. I_0(_tlbwi);
  341. I_0(_tlbwr);
  342. I_u3u1u2(_xor)
  343. I_u2u1u3(_xori);
  344. /*
  345. * handling labels
  346. */
  347. enum label_id {
  348. label_invalid,
  349. label_second_part,
  350. label_leave,
  351. label_vmalloc,
  352. label_vmalloc_done,
  353. label_tlbw_hazard,
  354. label_split,
  355. label_nopage_tlbl,
  356. label_nopage_tlbs,
  357. label_nopage_tlbm,
  358. label_smp_pgtable_change,
  359. label_r3000_write_probe_fail,
  360. label_r3000_write_probe_ok
  361. };
  362. struct label {
  363. u32 *addr;
  364. enum label_id lab;
  365. };
  366. static __init void build_label(struct label **lab, u32 *addr,
  367. enum label_id l)
  368. {
  369. (*lab)->addr = addr;
  370. (*lab)->lab = l;
  371. (*lab)++;
  372. }
  373. #define L_LA(lb) \
  374. static inline void l##lb(struct label **lab, u32 *addr) \
  375. { \
  376. build_label(lab, addr, label##lb); \
  377. }
  378. L_LA(_second_part)
  379. L_LA(_leave)
  380. L_LA(_vmalloc)
  381. L_LA(_vmalloc_done)
  382. L_LA(_tlbw_hazard)
  383. L_LA(_split)
  384. L_LA(_nopage_tlbl)
  385. L_LA(_nopage_tlbs)
  386. L_LA(_nopage_tlbm)
  387. L_LA(_smp_pgtable_change)
  388. L_LA(_r3000_write_probe_fail)
  389. L_LA(_r3000_write_probe_ok)
  390. /* convenience macros for instructions */
  391. #ifdef CONFIG_64BIT
  392. # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
  393. # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
  394. # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
  395. # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
  396. # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
  397. # define i_MFC0(buf, rt, rd) i_dmfc0(buf, rt, rd)
  398. # define i_MTC0(buf, rt, rd) i_dmtc0(buf, rt, rd)
  399. # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
  400. # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
  401. # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
  402. # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
  403. # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
  404. #else
  405. # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
  406. # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
  407. # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
  408. # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
  409. # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
  410. # define i_MFC0(buf, rt, rd) i_mfc0(buf, rt, rd)
  411. # define i_MTC0(buf, rt, rd) i_mtc0(buf, rt, rd)
  412. # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
  413. # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
  414. # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
  415. # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
  416. # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
  417. #endif
  418. #define i_b(buf, off) i_beq(buf, 0, 0, off)
  419. #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
  420. #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
  421. #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
  422. #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
  423. #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
  424. #define i_nop(buf) i_sll(buf, 0, 0, 0)
  425. #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
  426. #define i_ehb(buf) i_sll(buf, 0, 0, 3)
  427. #ifdef CONFIG_64BIT
  428. static __init int __attribute__((unused)) in_compat_space_p(long addr)
  429. {
  430. /* Is this address in 32bit compat space? */
  431. return (((addr) & 0xffffffff00000000) == 0xffffffff00000000);
  432. }
  433. static __init int __attribute__((unused)) rel_highest(long val)
  434. {
  435. return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
  436. }
  437. static __init int __attribute__((unused)) rel_higher(long val)
  438. {
  439. return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
  440. }
  441. #endif
  442. static __init int rel_hi(long val)
  443. {
  444. return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
  445. }
  446. static __init int rel_lo(long val)
  447. {
  448. return ((val & 0xffff) ^ 0x8000) - 0x8000;
  449. }
  450. static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
  451. {
  452. #ifdef CONFIG_64BIT
  453. if (!in_compat_space_p(addr)) {
  454. i_lui(buf, rs, rel_highest(addr));
  455. if (rel_higher(addr))
  456. i_daddiu(buf, rs, rs, rel_higher(addr));
  457. if (rel_hi(addr)) {
  458. i_dsll(buf, rs, rs, 16);
  459. i_daddiu(buf, rs, rs, rel_hi(addr));
  460. i_dsll(buf, rs, rs, 16);
  461. } else
  462. i_dsll32(buf, rs, rs, 0);
  463. } else
  464. #endif
  465. i_lui(buf, rs, rel_hi(addr));
  466. }
  467. static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs,
  468. long addr)
  469. {
  470. i_LA_mostly(buf, rs, addr);
  471. if (rel_lo(addr))
  472. i_ADDIU(buf, rs, rs, rel_lo(addr));
  473. }
  474. /*
  475. * handle relocations
  476. */
  477. struct reloc {
  478. u32 *addr;
  479. unsigned int type;
  480. enum label_id lab;
  481. };
  482. static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
  483. enum label_id l)
  484. {
  485. (*rel)->addr = addr;
  486. (*rel)->type = R_MIPS_PC16;
  487. (*rel)->lab = l;
  488. (*rel)++;
  489. }
  490. static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
  491. {
  492. long laddr = (long)lab->addr;
  493. long raddr = (long)rel->addr;
  494. switch (rel->type) {
  495. case R_MIPS_PC16:
  496. *rel->addr |= build_bimm(laddr - (raddr + 4));
  497. break;
  498. default:
  499. panic("Unsupported TLB synthesizer relocation %d",
  500. rel->type);
  501. }
  502. }
  503. static __init void resolve_relocs(struct reloc *rel, struct label *lab)
  504. {
  505. struct label *l;
  506. for (; rel->lab != label_invalid; rel++)
  507. for (l = lab; l->lab != label_invalid; l++)
  508. if (rel->lab == l->lab)
  509. __resolve_relocs(rel, l);
  510. }
  511. static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
  512. long off)
  513. {
  514. for (; rel->lab != label_invalid; rel++)
  515. if (rel->addr >= first && rel->addr < end)
  516. rel->addr += off;
  517. }
  518. static __init void move_labels(struct label *lab, u32 *first, u32 *end,
  519. long off)
  520. {
  521. for (; lab->lab != label_invalid; lab++)
  522. if (lab->addr >= first && lab->addr < end)
  523. lab->addr += off;
  524. }
  525. static __init void copy_handler(struct reloc *rel, struct label *lab,
  526. u32 *first, u32 *end, u32 *target)
  527. {
  528. long off = (long)(target - first);
  529. memcpy(target, first, (end - first) * sizeof(u32));
  530. move_relocs(rel, first, end, off);
  531. move_labels(lab, first, end, off);
  532. }
  533. static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel,
  534. u32 *addr)
  535. {
  536. for (; rel->lab != label_invalid; rel++) {
  537. if (rel->addr == addr
  538. && (rel->type == R_MIPS_PC16
  539. || rel->type == R_MIPS_26))
  540. return 1;
  541. }
  542. return 0;
  543. }
  544. /* convenience functions for labeled branches */
  545. static void __attribute__((unused)) il_bltz(u32 **p, struct reloc **r,
  546. unsigned int reg, enum label_id l)
  547. {
  548. r_mips_pc16(r, *p, l);
  549. i_bltz(p, reg, 0);
  550. }
  551. static void __attribute__((unused)) il_b(u32 **p, struct reloc **r,
  552. enum label_id l)
  553. {
  554. r_mips_pc16(r, *p, l);
  555. i_b(p, 0);
  556. }
  557. static void il_beqz(u32 **p, struct reloc **r, unsigned int reg,
  558. enum label_id l)
  559. {
  560. r_mips_pc16(r, *p, l);
  561. i_beqz(p, reg, 0);
  562. }
  563. static void __attribute__((unused))
  564. il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
  565. {
  566. r_mips_pc16(r, *p, l);
  567. i_beqzl(p, reg, 0);
  568. }
  569. static void il_bnez(u32 **p, struct reloc **r, unsigned int reg,
  570. enum label_id l)
  571. {
  572. r_mips_pc16(r, *p, l);
  573. i_bnez(p, reg, 0);
  574. }
  575. static void il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
  576. enum label_id l)
  577. {
  578. r_mips_pc16(r, *p, l);
  579. i_bgezl(p, reg, 0);
  580. }
  581. /* The only general purpose registers allowed in TLB handlers. */
  582. #define K0 26
  583. #define K1 27
  584. /* Some CP0 registers */
  585. #define C0_INDEX 0
  586. #define C0_ENTRYLO0 2
  587. #define C0_ENTRYLO1 3
  588. #define C0_CONTEXT 4
  589. #define C0_BADVADDR 8
  590. #define C0_ENTRYHI 10
  591. #define C0_EPC 14
  592. #define C0_XCONTEXT 20
  593. #ifdef CONFIG_64BIT
  594. # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
  595. #else
  596. # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
  597. #endif
  598. /* The worst case length of the handler is around 18 instructions for
  599. * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
  600. * Maximum space available is 32 instructions for R3000 and 64
  601. * instructions for R4000.
  602. *
  603. * We deliberately chose a buffer size of 128, so we won't scribble
  604. * over anything important on overflow before we panic.
  605. */
  606. static __initdata u32 tlb_handler[128];
  607. /* simply assume worst case size for labels and relocs */
  608. static __initdata struct label labels[128];
  609. static __initdata struct reloc relocs[128];
  610. /*
  611. * The R3000 TLB handler is simple.
  612. */
  613. static void __init build_r3000_tlb_refill_handler(void)
  614. {
  615. long pgdc = (long)pgd_current;
  616. u32 *p;
  617. memset(tlb_handler, 0, sizeof(tlb_handler));
  618. p = tlb_handler;
  619. i_mfc0(&p, K0, C0_BADVADDR);
  620. i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
  621. i_lw(&p, K1, rel_lo(pgdc), K1);
  622. i_srl(&p, K0, K0, 22); /* load delay */
  623. i_sll(&p, K0, K0, 2);
  624. i_addu(&p, K1, K1, K0);
  625. i_mfc0(&p, K0, C0_CONTEXT);
  626. i_lw(&p, K1, 0, K1); /* cp0 delay */
  627. i_andi(&p, K0, K0, 0xffc); /* load delay */
  628. i_addu(&p, K1, K1, K0);
  629. i_lw(&p, K0, 0, K1);
  630. i_nop(&p); /* load delay */
  631. i_mtc0(&p, K0, C0_ENTRYLO0);
  632. i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
  633. i_tlbwr(&p); /* cp0 delay */
  634. i_jr(&p, K1);
  635. i_rfe(&p); /* branch delay */
  636. if (p > tlb_handler + 32)
  637. panic("TLB refill handler space exceeded");
  638. printk("Synthesized TLB handler (%u instructions).\n",
  639. (unsigned int)(p - tlb_handler));
  640. #ifdef DEBUG_TLB
  641. {
  642. int i;
  643. for (i = 0; i < (p - tlb_handler); i++)
  644. printk("%08x\n", tlb_handler[i]);
  645. }
  646. #endif
  647. memcpy((void *)CAC_BASE, tlb_handler, 0x80);
  648. flush_icache_range(CAC_BASE, CAC_BASE + 0x80);
  649. }
  650. /*
  651. * The R4000 TLB handler is much more complicated. We have two
  652. * consecutive handler areas with 32 instructions space each.
  653. * Since they aren't used at the same time, we can overflow in the
  654. * other one.To keep things simple, we first assume linear space,
  655. * then we relocate it to the final handler layout as needed.
  656. */
  657. static __initdata u32 final_handler[64];
  658. /*
  659. * Hazards
  660. *
  661. * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
  662. * 2. A timing hazard exists for the TLBP instruction.
  663. *
  664. * stalling_instruction
  665. * TLBP
  666. *
  667. * The JTLB is being read for the TLBP throughout the stall generated by the
  668. * previous instruction. This is not really correct as the stalling instruction
  669. * can modify the address used to access the JTLB. The failure symptom is that
  670. * the TLBP instruction will use an address created for the stalling instruction
  671. * and not the address held in C0_ENHI and thus report the wrong results.
  672. *
  673. * The software work-around is to not allow the instruction preceding the TLBP
  674. * to stall - make it an NOP or some other instruction guaranteed not to stall.
  675. *
  676. * Errata 2 will not be fixed. This errata is also on the R5000.
  677. *
  678. * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
  679. */
  680. static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p)
  681. {
  682. switch (current_cpu_data.cputype) {
  683. case CPU_R5000:
  684. case CPU_R5000A:
  685. case CPU_NEVADA:
  686. i_nop(p);
  687. i_tlbp(p);
  688. break;
  689. default:
  690. i_tlbp(p);
  691. break;
  692. }
  693. }
  694. /*
  695. * Write random or indexed TLB entry, and care about the hazards from
  696. * the preceeding mtc0 and for the following eret.
  697. */
  698. enum tlb_write_entry { tlb_random, tlb_indexed };
  699. static __init void build_tlb_write_entry(u32 **p, struct label **l,
  700. struct reloc **r,
  701. enum tlb_write_entry wmode)
  702. {
  703. void(*tlbw)(u32 **) = NULL;
  704. switch (wmode) {
  705. case tlb_random: tlbw = i_tlbwr; break;
  706. case tlb_indexed: tlbw = i_tlbwi; break;
  707. }
  708. switch (current_cpu_data.cputype) {
  709. case CPU_R4000PC:
  710. case CPU_R4000SC:
  711. case CPU_R4000MC:
  712. case CPU_R4400PC:
  713. case CPU_R4400SC:
  714. case CPU_R4400MC:
  715. /*
  716. * This branch uses up a mtc0 hazard nop slot and saves
  717. * two nops after the tlbw instruction.
  718. */
  719. il_bgezl(p, r, 0, label_tlbw_hazard);
  720. tlbw(p);
  721. l_tlbw_hazard(l, *p);
  722. i_nop(p);
  723. break;
  724. case CPU_R4300:
  725. case CPU_R4600:
  726. case CPU_R4700:
  727. case CPU_R5000:
  728. case CPU_R5000A:
  729. case CPU_5KC:
  730. case CPU_TX49XX:
  731. case CPU_AU1000:
  732. case CPU_AU1100:
  733. case CPU_AU1500:
  734. case CPU_AU1550:
  735. case CPU_AU1200:
  736. i_nop(p);
  737. tlbw(p);
  738. break;
  739. case CPU_R10000:
  740. case CPU_R12000:
  741. case CPU_4KC:
  742. case CPU_SB1:
  743. case CPU_4KSC:
  744. case CPU_20KC:
  745. case CPU_25KF:
  746. tlbw(p);
  747. break;
  748. case CPU_NEVADA:
  749. i_nop(p); /* QED specifies 2 nops hazard */
  750. /*
  751. * This branch uses up a mtc0 hazard nop slot and saves
  752. * a nop after the tlbw instruction.
  753. */
  754. il_bgezl(p, r, 0, label_tlbw_hazard);
  755. tlbw(p);
  756. l_tlbw_hazard(l, *p);
  757. break;
  758. case CPU_RM7000:
  759. i_nop(p);
  760. i_nop(p);
  761. i_nop(p);
  762. i_nop(p);
  763. tlbw(p);
  764. break;
  765. case CPU_4KEC:
  766. case CPU_24K:
  767. i_ehb(p);
  768. tlbw(p);
  769. break;
  770. case CPU_RM9000:
  771. /*
  772. * When the JTLB is updated by tlbwi or tlbwr, a subsequent
  773. * use of the JTLB for instructions should not occur for 4
  774. * cpu cycles and use for data translations should not occur
  775. * for 3 cpu cycles.
  776. */
  777. i_ssnop(p);
  778. i_ssnop(p);
  779. i_ssnop(p);
  780. i_ssnop(p);
  781. tlbw(p);
  782. i_ssnop(p);
  783. i_ssnop(p);
  784. i_ssnop(p);
  785. i_ssnop(p);
  786. break;
  787. case CPU_VR4111:
  788. case CPU_VR4121:
  789. case CPU_VR4122:
  790. case CPU_VR4181:
  791. case CPU_VR4181A:
  792. i_nop(p);
  793. i_nop(p);
  794. tlbw(p);
  795. i_nop(p);
  796. i_nop(p);
  797. break;
  798. case CPU_VR4131:
  799. case CPU_VR4133:
  800. i_nop(p);
  801. i_nop(p);
  802. tlbw(p);
  803. break;
  804. default:
  805. panic("No TLB refill handler yet (CPU type: %d)",
  806. current_cpu_data.cputype);
  807. break;
  808. }
  809. }
  810. #ifdef CONFIG_64BIT
  811. /*
  812. * TMP and PTR are scratch.
  813. * TMP will be clobbered, PTR will hold the pmd entry.
  814. */
  815. static __init void
  816. build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
  817. unsigned int tmp, unsigned int ptr)
  818. {
  819. long pgdc = (long)pgd_current;
  820. /*
  821. * The vmalloc handling is not in the hotpath.
  822. */
  823. i_dmfc0(p, tmp, C0_BADVADDR);
  824. il_bltz(p, r, tmp, label_vmalloc);
  825. /* No i_nop needed here, since the next insn doesn't touch TMP. */
  826. #ifdef CONFIG_SMP
  827. # ifdef CONFIG_BUILD_ELF64
  828. /*
  829. * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
  830. * stored in CONTEXT.
  831. */
  832. i_dmfc0(p, ptr, C0_CONTEXT);
  833. i_dsrl(p, ptr, ptr, 23);
  834. i_LA_mostly(p, tmp, pgdc);
  835. i_daddu(p, ptr, ptr, tmp);
  836. i_dmfc0(p, tmp, C0_BADVADDR);
  837. i_ld(p, ptr, rel_lo(pgdc), ptr);
  838. # else
  839. /*
  840. * 64 bit SMP running in compat space has the lower part of
  841. * &pgd_current[smp_processor_id()] stored in CONTEXT.
  842. */
  843. if (!in_compat_space_p(pgdc))
  844. panic("Invalid page directory address!");
  845. i_dmfc0(p, ptr, C0_CONTEXT);
  846. i_dsra(p, ptr, ptr, 23);
  847. i_ld(p, ptr, 0, ptr);
  848. # endif
  849. #else
  850. i_LA_mostly(p, ptr, pgdc);
  851. i_ld(p, ptr, rel_lo(pgdc), ptr);
  852. #endif
  853. l_vmalloc_done(l, *p);
  854. i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); /* get pgd offset in bytes */
  855. i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
  856. i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
  857. i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  858. i_ld(p, ptr, 0, ptr); /* get pmd pointer */
  859. i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
  860. i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
  861. i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
  862. }
  863. /*
  864. * BVADDR is the faulting address, PTR is scratch.
  865. * PTR will hold the pgd for vmalloc.
  866. */
  867. static __init void
  868. build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
  869. unsigned int bvaddr, unsigned int ptr)
  870. {
  871. long swpd = (long)swapper_pg_dir;
  872. l_vmalloc(l, *p);
  873. i_LA(p, ptr, VMALLOC_START);
  874. i_dsubu(p, bvaddr, bvaddr, ptr);
  875. if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
  876. il_b(p, r, label_vmalloc_done);
  877. i_lui(p, ptr, rel_hi(swpd));
  878. } else {
  879. i_LA_mostly(p, ptr, swpd);
  880. il_b(p, r, label_vmalloc_done);
  881. i_daddiu(p, ptr, ptr, rel_lo(swpd));
  882. }
  883. }
  884. #else /* !CONFIG_64BIT */
  885. /*
  886. * TMP and PTR are scratch.
  887. * TMP will be clobbered, PTR will hold the pgd entry.
  888. */
  889. static __init void __attribute__((unused))
  890. build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
  891. {
  892. long pgdc = (long)pgd_current;
  893. /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
  894. #ifdef CONFIG_SMP
  895. i_mfc0(p, ptr, C0_CONTEXT);
  896. i_LA_mostly(p, tmp, pgdc);
  897. i_srl(p, ptr, ptr, 23);
  898. i_addu(p, ptr, tmp, ptr);
  899. #else
  900. i_LA_mostly(p, ptr, pgdc);
  901. #endif
  902. i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  903. i_lw(p, ptr, rel_lo(pgdc), ptr);
  904. i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
  905. i_sll(p, tmp, tmp, PGD_T_LOG2);
  906. i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
  907. }
  908. #endif /* !CONFIG_64BIT */
  909. static __init void build_adjust_context(u32 **p, unsigned int ctx)
  910. {
  911. unsigned int shift = 4 - (PTE_T_LOG2 + 1);
  912. unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
  913. switch (current_cpu_data.cputype) {
  914. case CPU_VR41XX:
  915. case CPU_VR4111:
  916. case CPU_VR4121:
  917. case CPU_VR4122:
  918. case CPU_VR4131:
  919. case CPU_VR4181:
  920. case CPU_VR4181A:
  921. case CPU_VR4133:
  922. shift += 2;
  923. break;
  924. default:
  925. break;
  926. }
  927. if (shift)
  928. i_SRL(p, ctx, ctx, shift);
  929. i_andi(p, ctx, ctx, mask);
  930. }
  931. static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
  932. {
  933. /*
  934. * Bug workaround for the Nevada. It seems as if under certain
  935. * circumstances the move from cp0_context might produce a
  936. * bogus result when the mfc0 instruction and its consumer are
  937. * in a different cacheline or a load instruction, probably any
  938. * memory reference, is between them.
  939. */
  940. switch (current_cpu_data.cputype) {
  941. case CPU_NEVADA:
  942. i_LW(p, ptr, 0, ptr);
  943. GET_CONTEXT(p, tmp); /* get context reg */
  944. break;
  945. default:
  946. GET_CONTEXT(p, tmp); /* get context reg */
  947. i_LW(p, ptr, 0, ptr);
  948. break;
  949. }
  950. build_adjust_context(p, tmp);
  951. i_ADDU(p, ptr, ptr, tmp); /* add in offset */
  952. }
  953. static __init void build_update_entries(u32 **p, unsigned int tmp,
  954. unsigned int ptep)
  955. {
  956. /*
  957. * 64bit address support (36bit on a 32bit CPU) in a 32bit
  958. * Kernel is a special case. Only a few CPUs use it.
  959. */
  960. #ifdef CONFIG_64BIT_PHYS_ADDR
  961. if (cpu_has_64bits) {
  962. i_ld(p, tmp, 0, ptep); /* get even pte */
  963. i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  964. i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
  965. i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
  966. i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
  967. i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
  968. } else {
  969. int pte_off_even = sizeof(pte_t) / 2;
  970. int pte_off_odd = pte_off_even + sizeof(pte_t);
  971. /* The pte entries are pre-shifted */
  972. i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
  973. i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
  974. i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
  975. i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
  976. }
  977. #else
  978. i_LW(p, tmp, 0, ptep); /* get even pte */
  979. i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  980. if (r45k_bvahwbug())
  981. build_tlb_probe_entry(p);
  982. i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
  983. if (r4k_250MHZhwbug())
  984. i_mtc0(p, 0, C0_ENTRYLO0);
  985. i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
  986. i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
  987. if (r45k_bvahwbug())
  988. i_mfc0(p, tmp, C0_INDEX);
  989. if (r4k_250MHZhwbug())
  990. i_mtc0(p, 0, C0_ENTRYLO1);
  991. i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
  992. #endif
  993. }
  994. static void __init build_r4000_tlb_refill_handler(void)
  995. {
  996. u32 *p = tlb_handler;
  997. struct label *l = labels;
  998. struct reloc *r = relocs;
  999. u32 *f;
  1000. unsigned int final_len;
  1001. memset(tlb_handler, 0, sizeof(tlb_handler));
  1002. memset(labels, 0, sizeof(labels));
  1003. memset(relocs, 0, sizeof(relocs));
  1004. memset(final_handler, 0, sizeof(final_handler));
  1005. /*
  1006. * create the plain linear handler
  1007. */
  1008. if (bcm1250_m3_war()) {
  1009. i_MFC0(&p, K0, C0_BADVADDR);
  1010. i_MFC0(&p, K1, C0_ENTRYHI);
  1011. i_xor(&p, K0, K0, K1);
  1012. i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
  1013. il_bnez(&p, &r, K0, label_leave);
  1014. /* No need for i_nop */
  1015. }
  1016. #ifdef CONFIG_64BIT
  1017. build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
  1018. #else
  1019. build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
  1020. #endif
  1021. build_get_ptep(&p, K0, K1);
  1022. build_update_entries(&p, K0, K1);
  1023. build_tlb_write_entry(&p, &l, &r, tlb_random);
  1024. l_leave(&l, p);
  1025. i_eret(&p); /* return from trap */
  1026. #ifdef CONFIG_64BIT
  1027. build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
  1028. #endif
  1029. /*
  1030. * Overflow check: For the 64bit handler, we need at least one
  1031. * free instruction slot for the wrap-around branch. In worst
  1032. * case, if the intended insertion point is a delay slot, we
  1033. * need three, with the the second nop'ed and the third being
  1034. * unused.
  1035. */
  1036. #ifdef CONFIG_32BIT
  1037. if ((p - tlb_handler) > 64)
  1038. panic("TLB refill handler space exceeded");
  1039. #else
  1040. if (((p - tlb_handler) > 63)
  1041. || (((p - tlb_handler) > 61)
  1042. && insn_has_bdelay(relocs, tlb_handler + 29)))
  1043. panic("TLB refill handler space exceeded");
  1044. #endif
  1045. /*
  1046. * Now fold the handler in the TLB refill handler space.
  1047. */
  1048. #ifdef CONFIG_32BIT
  1049. f = final_handler;
  1050. /* Simplest case, just copy the handler. */
  1051. copy_handler(relocs, labels, tlb_handler, p, f);
  1052. final_len = p - tlb_handler;
  1053. #else /* CONFIG_64BIT */
  1054. f = final_handler + 32;
  1055. if ((p - tlb_handler) <= 32) {
  1056. /* Just copy the handler. */
  1057. copy_handler(relocs, labels, tlb_handler, p, f);
  1058. final_len = p - tlb_handler;
  1059. } else {
  1060. u32 *split = tlb_handler + 30;
  1061. /*
  1062. * Find the split point.
  1063. */
  1064. if (insn_has_bdelay(relocs, split - 1))
  1065. split--;
  1066. /* Copy first part of the handler. */
  1067. copy_handler(relocs, labels, tlb_handler, split, f);
  1068. f += split - tlb_handler;
  1069. /* Insert branch. */
  1070. l_split(&l, final_handler);
  1071. il_b(&f, &r, label_split);
  1072. if (insn_has_bdelay(relocs, split))
  1073. i_nop(&f);
  1074. else {
  1075. copy_handler(relocs, labels, split, split + 1, f);
  1076. move_labels(labels, f, f + 1, -1);
  1077. f++;
  1078. split++;
  1079. }
  1080. /* Copy the rest of the handler. */
  1081. copy_handler(relocs, labels, split, p, final_handler);
  1082. final_len = (f - (final_handler + 32)) + (p - split);
  1083. }
  1084. #endif /* CONFIG_64BIT */
  1085. resolve_relocs(relocs, labels);
  1086. printk("Synthesized TLB refill handler (%u instructions).\n",
  1087. final_len);
  1088. #ifdef DEBUG_TLB
  1089. {
  1090. int i;
  1091. for (i = 0; i < final_len; i++)
  1092. printk("%08x\n", final_handler[i]);
  1093. }
  1094. #endif
  1095. memcpy((void *)CAC_BASE, final_handler, 0x100);
  1096. flush_icache_range(CAC_BASE, CAC_BASE + 0x100);
  1097. }
  1098. /*
  1099. * TLB load/store/modify handlers.
  1100. *
  1101. * Only the fastpath gets synthesized at runtime, the slowpath for
  1102. * do_page_fault remains normal asm.
  1103. */
  1104. extern void tlb_do_page_fault_0(void);
  1105. extern void tlb_do_page_fault_1(void);
  1106. #define __tlb_handler_align \
  1107. __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
  1108. /*
  1109. * 128 instructions for the fastpath handler is generous and should
  1110. * never be exceeded.
  1111. */
  1112. #define FASTPATH_SIZE 128
  1113. u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
  1114. u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
  1115. u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
  1116. static void __init
  1117. iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
  1118. {
  1119. #ifdef CONFIG_SMP
  1120. # ifdef CONFIG_64BIT_PHYS_ADDR
  1121. if (cpu_has_64bits)
  1122. i_lld(p, pte, 0, ptr);
  1123. else
  1124. # endif
  1125. i_LL(p, pte, 0, ptr);
  1126. #else
  1127. # ifdef CONFIG_64BIT_PHYS_ADDR
  1128. if (cpu_has_64bits)
  1129. i_ld(p, pte, 0, ptr);
  1130. else
  1131. # endif
  1132. i_LW(p, pte, 0, ptr);
  1133. #endif
  1134. }
  1135. static void __init
  1136. iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
  1137. unsigned int mode)
  1138. {
  1139. #ifdef CONFIG_64BIT_PHYS_ADDR
  1140. unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
  1141. #endif
  1142. i_ori(p, pte, pte, mode);
  1143. #ifdef CONFIG_SMP
  1144. # ifdef CONFIG_64BIT_PHYS_ADDR
  1145. if (cpu_has_64bits)
  1146. i_scd(p, pte, 0, ptr);
  1147. else
  1148. # endif
  1149. i_SC(p, pte, 0, ptr);
  1150. if (r10000_llsc_war())
  1151. il_beqzl(p, r, pte, label_smp_pgtable_change);
  1152. else
  1153. il_beqz(p, r, pte, label_smp_pgtable_change);
  1154. # ifdef CONFIG_64BIT_PHYS_ADDR
  1155. if (!cpu_has_64bits) {
  1156. /* no i_nop needed */
  1157. i_ll(p, pte, sizeof(pte_t) / 2, ptr);
  1158. i_ori(p, pte, pte, hwmode);
  1159. i_sc(p, pte, sizeof(pte_t) / 2, ptr);
  1160. il_beqz(p, r, pte, label_smp_pgtable_change);
  1161. /* no i_nop needed */
  1162. i_lw(p, pte, 0, ptr);
  1163. } else
  1164. i_nop(p);
  1165. # else
  1166. i_nop(p);
  1167. # endif
  1168. #else
  1169. # ifdef CONFIG_64BIT_PHYS_ADDR
  1170. if (cpu_has_64bits)
  1171. i_sd(p, pte, 0, ptr);
  1172. else
  1173. # endif
  1174. i_SW(p, pte, 0, ptr);
  1175. # ifdef CONFIG_64BIT_PHYS_ADDR
  1176. if (!cpu_has_64bits) {
  1177. i_lw(p, pte, sizeof(pte_t) / 2, ptr);
  1178. i_ori(p, pte, pte, hwmode);
  1179. i_sw(p, pte, sizeof(pte_t) / 2, ptr);
  1180. i_lw(p, pte, 0, ptr);
  1181. }
  1182. # endif
  1183. #endif
  1184. }
  1185. /*
  1186. * Check if PTE is present, if not then jump to LABEL. PTR points to
  1187. * the page table where this PTE is located, PTE will be re-loaded
  1188. * with it's original value.
  1189. */
  1190. static void __init
  1191. build_pte_present(u32 **p, struct label **l, struct reloc **r,
  1192. unsigned int pte, unsigned int ptr, enum label_id lid)
  1193. {
  1194. i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
  1195. i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
  1196. il_bnez(p, r, pte, lid);
  1197. iPTE_LW(p, l, pte, ptr);
  1198. }
  1199. /* Make PTE valid, store result in PTR. */
  1200. static void __init
  1201. build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
  1202. unsigned int ptr)
  1203. {
  1204. unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
  1205. iPTE_SW(p, r, pte, ptr, mode);
  1206. }
  1207. /*
  1208. * Check if PTE can be written to, if not branch to LABEL. Regardless
  1209. * restore PTE with value from PTR when done.
  1210. */
  1211. static void __init
  1212. build_pte_writable(u32 **p, struct label **l, struct reloc **r,
  1213. unsigned int pte, unsigned int ptr, enum label_id lid)
  1214. {
  1215. i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1216. i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1217. il_bnez(p, r, pte, lid);
  1218. iPTE_LW(p, l, pte, ptr);
  1219. }
  1220. /* Make PTE writable, update software status bits as well, then store
  1221. * at PTR.
  1222. */
  1223. static void __init
  1224. build_make_write(u32 **p, struct reloc **r, unsigned int pte,
  1225. unsigned int ptr)
  1226. {
  1227. unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
  1228. | _PAGE_DIRTY);
  1229. iPTE_SW(p, r, pte, ptr, mode);
  1230. }
  1231. /*
  1232. * Check if PTE can be modified, if not branch to LABEL. Regardless
  1233. * restore PTE with value from PTR when done.
  1234. */
  1235. static void __init
  1236. build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
  1237. unsigned int pte, unsigned int ptr, enum label_id lid)
  1238. {
  1239. i_andi(p, pte, pte, _PAGE_WRITE);
  1240. il_beqz(p, r, pte, lid);
  1241. iPTE_LW(p, l, pte, ptr);
  1242. }
  1243. /*
  1244. * R3000 style TLB load/store/modify handlers.
  1245. */
  1246. /* This places the pte in the page table at PTR into ENTRYLO0. */
  1247. static void __init
  1248. build_r3000_pte_reload(u32 **p, unsigned int ptr)
  1249. {
  1250. i_lw(p, ptr, 0, ptr);
  1251. i_nop(p); /* load delay */
  1252. i_mtc0(p, ptr, C0_ENTRYLO0);
  1253. i_nop(p); /* cp0 delay */
  1254. }
  1255. /*
  1256. * The index register may have the probe fail bit set,
  1257. * because we would trap on access kseg2, i.e. without refill.
  1258. */
  1259. static void __init
  1260. build_r3000_tlb_write(u32 **p, struct label **l, struct reloc **r,
  1261. unsigned int tmp)
  1262. {
  1263. i_mfc0(p, tmp, C0_INDEX);
  1264. i_nop(p); /* cp0 delay */
  1265. il_bltz(p, r, tmp, label_r3000_write_probe_fail);
  1266. i_nop(p); /* branch delay */
  1267. i_tlbwi(p);
  1268. il_b(p, r, label_r3000_write_probe_ok);
  1269. i_nop(p); /* branch delay */
  1270. l_r3000_write_probe_fail(l, *p);
  1271. i_tlbwr(p);
  1272. l_r3000_write_probe_ok(l, *p);
  1273. }
  1274. static void __init
  1275. build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
  1276. unsigned int ptr)
  1277. {
  1278. long pgdc = (long)pgd_current;
  1279. i_mfc0(p, pte, C0_BADVADDR);
  1280. i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
  1281. i_lw(p, ptr, rel_lo(pgdc), ptr);
  1282. i_srl(p, pte, pte, 22); /* load delay */
  1283. i_sll(p, pte, pte, 2);
  1284. i_addu(p, ptr, ptr, pte);
  1285. i_mfc0(p, pte, C0_CONTEXT);
  1286. i_lw(p, ptr, 0, ptr); /* cp0 delay */
  1287. i_andi(p, pte, pte, 0xffc); /* load delay */
  1288. i_addu(p, ptr, ptr, pte);
  1289. i_lw(p, pte, 0, ptr);
  1290. i_nop(p); /* load delay */
  1291. i_tlbp(p);
  1292. }
  1293. static void __init
  1294. build_r3000_tlbchange_handler_tail(u32 **p, unsigned int tmp)
  1295. {
  1296. i_mfc0(p, tmp, C0_EPC);
  1297. i_nop(p); /* cp0 delay */
  1298. i_jr(p, tmp);
  1299. i_rfe(p); /* branch delay */
  1300. }
  1301. static void __init build_r3000_tlb_load_handler(void)
  1302. {
  1303. u32 *p = handle_tlbl;
  1304. struct label *l = labels;
  1305. struct reloc *r = relocs;
  1306. memset(handle_tlbl, 0, sizeof(handle_tlbl));
  1307. memset(labels, 0, sizeof(labels));
  1308. memset(relocs, 0, sizeof(relocs));
  1309. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1310. build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
  1311. build_make_valid(&p, &r, K0, K1);
  1312. build_r3000_pte_reload(&p, K1);
  1313. build_r3000_tlb_write(&p, &l, &r, K0);
  1314. build_r3000_tlbchange_handler_tail(&p, K0);
  1315. l_nopage_tlbl(&l, p);
  1316. i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1317. i_nop(&p);
  1318. if ((p - handle_tlbl) > FASTPATH_SIZE)
  1319. panic("TLB load handler fastpath space exceeded");
  1320. resolve_relocs(relocs, labels);
  1321. printk("Synthesized TLB load handler fastpath (%u instructions).\n",
  1322. (unsigned int)(p - handle_tlbl));
  1323. #ifdef DEBUG_TLB
  1324. {
  1325. int i;
  1326. for (i = 0; i < (p - handle_tlbl); i++)
  1327. printk("%08x\n", handle_tlbl[i]);
  1328. }
  1329. #endif
  1330. flush_icache_range((unsigned long)handle_tlbl,
  1331. (unsigned long)handle_tlbl + FASTPATH_SIZE * sizeof(u32));
  1332. }
  1333. static void __init build_r3000_tlb_store_handler(void)
  1334. {
  1335. u32 *p = handle_tlbs;
  1336. struct label *l = labels;
  1337. struct reloc *r = relocs;
  1338. memset(handle_tlbs, 0, sizeof(handle_tlbs));
  1339. memset(labels, 0, sizeof(labels));
  1340. memset(relocs, 0, sizeof(relocs));
  1341. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1342. build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
  1343. build_make_write(&p, &r, K0, K1);
  1344. build_r3000_pte_reload(&p, K1);
  1345. build_r3000_tlb_write(&p, &l, &r, K0);
  1346. build_r3000_tlbchange_handler_tail(&p, K0);
  1347. l_nopage_tlbs(&l, p);
  1348. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1349. i_nop(&p);
  1350. if ((p - handle_tlbs) > FASTPATH_SIZE)
  1351. panic("TLB store handler fastpath space exceeded");
  1352. resolve_relocs(relocs, labels);
  1353. printk("Synthesized TLB store handler fastpath (%u instructions).\n",
  1354. (unsigned int)(p - handle_tlbs));
  1355. #ifdef DEBUG_TLB
  1356. {
  1357. int i;
  1358. for (i = 0; i < (p - handle_tlbs); i++)
  1359. printk("%08x\n", handle_tlbs[i]);
  1360. }
  1361. #endif
  1362. flush_icache_range((unsigned long)handle_tlbs,
  1363. (unsigned long)handle_tlbs + FASTPATH_SIZE * sizeof(u32));
  1364. }
  1365. static void __init build_r3000_tlb_modify_handler(void)
  1366. {
  1367. u32 *p = handle_tlbm;
  1368. struct label *l = labels;
  1369. struct reloc *r = relocs;
  1370. memset(handle_tlbm, 0, sizeof(handle_tlbm));
  1371. memset(labels, 0, sizeof(labels));
  1372. memset(relocs, 0, sizeof(relocs));
  1373. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1374. build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
  1375. build_make_write(&p, &r, K0, K1);
  1376. build_r3000_pte_reload(&p, K1);
  1377. i_tlbwi(&p);
  1378. build_r3000_tlbchange_handler_tail(&p, K0);
  1379. l_nopage_tlbm(&l, p);
  1380. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1381. i_nop(&p);
  1382. if ((p - handle_tlbm) > FASTPATH_SIZE)
  1383. panic("TLB modify handler fastpath space exceeded");
  1384. resolve_relocs(relocs, labels);
  1385. printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
  1386. (unsigned int)(p - handle_tlbm));
  1387. #ifdef DEBUG_TLB
  1388. {
  1389. int i;
  1390. for (i = 0; i < (p - handle_tlbm); i++)
  1391. printk("%08x\n", handle_tlbm[i]);
  1392. }
  1393. #endif
  1394. flush_icache_range((unsigned long)handle_tlbm,
  1395. (unsigned long)handle_tlbm + FASTPATH_SIZE * sizeof(u32));
  1396. }
  1397. /*
  1398. * R4000 style TLB load/store/modify handlers.
  1399. */
  1400. static void __init
  1401. build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
  1402. struct reloc **r, unsigned int pte,
  1403. unsigned int ptr)
  1404. {
  1405. #ifdef CONFIG_64BIT
  1406. build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
  1407. #else
  1408. build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
  1409. #endif
  1410. i_MFC0(p, pte, C0_BADVADDR);
  1411. i_LW(p, ptr, 0, ptr);
  1412. i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
  1413. i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
  1414. i_ADDU(p, ptr, ptr, pte);
  1415. #ifdef CONFIG_SMP
  1416. l_smp_pgtable_change(l, *p);
  1417. # endif
  1418. iPTE_LW(p, l, pte, ptr); /* get even pte */
  1419. build_tlb_probe_entry(p);
  1420. }
  1421. static void __init
  1422. build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
  1423. struct reloc **r, unsigned int tmp,
  1424. unsigned int ptr)
  1425. {
  1426. i_ori(p, ptr, ptr, sizeof(pte_t));
  1427. i_xori(p, ptr, ptr, sizeof(pte_t));
  1428. build_update_entries(p, tmp, ptr);
  1429. build_tlb_write_entry(p, l, r, tlb_indexed);
  1430. l_leave(l, *p);
  1431. i_eret(p); /* return from trap */
  1432. #ifdef CONFIG_64BIT
  1433. build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
  1434. #endif
  1435. }
  1436. static void __init build_r4000_tlb_load_handler(void)
  1437. {
  1438. u32 *p = handle_tlbl;
  1439. struct label *l = labels;
  1440. struct reloc *r = relocs;
  1441. memset(handle_tlbl, 0, sizeof(handle_tlbl));
  1442. memset(labels, 0, sizeof(labels));
  1443. memset(relocs, 0, sizeof(relocs));
  1444. if (bcm1250_m3_war()) {
  1445. i_MFC0(&p, K0, C0_BADVADDR);
  1446. i_MFC0(&p, K1, C0_ENTRYHI);
  1447. i_xor(&p, K0, K0, K1);
  1448. i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
  1449. il_bnez(&p, &r, K0, label_leave);
  1450. /* No need for i_nop */
  1451. }
  1452. build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
  1453. build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
  1454. build_make_valid(&p, &r, K0, K1);
  1455. build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
  1456. l_nopage_tlbl(&l, p);
  1457. i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1458. i_nop(&p);
  1459. if ((p - handle_tlbl) > FASTPATH_SIZE)
  1460. panic("TLB load handler fastpath space exceeded");
  1461. resolve_relocs(relocs, labels);
  1462. printk("Synthesized TLB load handler fastpath (%u instructions).\n",
  1463. (unsigned int)(p - handle_tlbl));
  1464. #ifdef DEBUG_TLB
  1465. {
  1466. int i;
  1467. for (i = 0; i < (p - handle_tlbl); i++)
  1468. printk("%08x\n", handle_tlbl[i]);
  1469. }
  1470. #endif
  1471. flush_icache_range((unsigned long)handle_tlbl,
  1472. (unsigned long)handle_tlbl + FASTPATH_SIZE * sizeof(u32));
  1473. }
  1474. static void __init build_r4000_tlb_store_handler(void)
  1475. {
  1476. u32 *p = handle_tlbs;
  1477. struct label *l = labels;
  1478. struct reloc *r = relocs;
  1479. memset(handle_tlbs, 0, sizeof(handle_tlbs));
  1480. memset(labels, 0, sizeof(labels));
  1481. memset(relocs, 0, sizeof(relocs));
  1482. build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
  1483. build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
  1484. build_make_write(&p, &r, K0, K1);
  1485. build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
  1486. l_nopage_tlbs(&l, p);
  1487. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1488. i_nop(&p);
  1489. if ((p - handle_tlbs) > FASTPATH_SIZE)
  1490. panic("TLB store handler fastpath space exceeded");
  1491. resolve_relocs(relocs, labels);
  1492. printk("Synthesized TLB store handler fastpath (%u instructions).\n",
  1493. (unsigned int)(p - handle_tlbs));
  1494. #ifdef DEBUG_TLB
  1495. {
  1496. int i;
  1497. for (i = 0; i < (p - handle_tlbs); i++)
  1498. printk("%08x\n", handle_tlbs[i]);
  1499. }
  1500. #endif
  1501. flush_icache_range((unsigned long)handle_tlbs,
  1502. (unsigned long)handle_tlbs + FASTPATH_SIZE * sizeof(u32));
  1503. }
  1504. static void __init build_r4000_tlb_modify_handler(void)
  1505. {
  1506. u32 *p = handle_tlbm;
  1507. struct label *l = labels;
  1508. struct reloc *r = relocs;
  1509. memset(handle_tlbm, 0, sizeof(handle_tlbm));
  1510. memset(labels, 0, sizeof(labels));
  1511. memset(relocs, 0, sizeof(relocs));
  1512. build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
  1513. build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
  1514. /* Present and writable bits set, set accessed and dirty bits. */
  1515. build_make_write(&p, &r, K0, K1);
  1516. build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
  1517. l_nopage_tlbm(&l, p);
  1518. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1519. i_nop(&p);
  1520. if ((p - handle_tlbm) > FASTPATH_SIZE)
  1521. panic("TLB modify handler fastpath space exceeded");
  1522. resolve_relocs(relocs, labels);
  1523. printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
  1524. (unsigned int)(p - handle_tlbm));
  1525. #ifdef DEBUG_TLB
  1526. {
  1527. int i;
  1528. for (i = 0; i < (p - handle_tlbm); i++)
  1529. printk("%08x\n", handle_tlbm[i]);
  1530. }
  1531. #endif
  1532. flush_icache_range((unsigned long)handle_tlbm,
  1533. (unsigned long)handle_tlbm + FASTPATH_SIZE * sizeof(u32));
  1534. }
  1535. void __init build_tlb_refill_handler(void)
  1536. {
  1537. /*
  1538. * The refill handler is generated per-CPU, multi-node systems
  1539. * may have local storage for it. The other handlers are only
  1540. * needed once.
  1541. */
  1542. static int run_once = 0;
  1543. switch (current_cpu_data.cputype) {
  1544. case CPU_R2000:
  1545. case CPU_R3000:
  1546. case CPU_R3000A:
  1547. case CPU_R3081E:
  1548. case CPU_TX3912:
  1549. case CPU_TX3922:
  1550. case CPU_TX3927:
  1551. build_r3000_tlb_refill_handler();
  1552. if (!run_once) {
  1553. build_r3000_tlb_load_handler();
  1554. build_r3000_tlb_store_handler();
  1555. build_r3000_tlb_modify_handler();
  1556. run_once++;
  1557. }
  1558. break;
  1559. case CPU_R6000:
  1560. case CPU_R6000A:
  1561. panic("No R6000 TLB refill handler yet");
  1562. break;
  1563. case CPU_R8000:
  1564. panic("No R8000 TLB refill handler yet");
  1565. break;
  1566. default:
  1567. build_r4000_tlb_refill_handler();
  1568. if (!run_once) {
  1569. build_r4000_tlb_load_handler();
  1570. build_r4000_tlb_store_handler();
  1571. build_r4000_tlb_modify_handler();
  1572. run_once++;
  1573. }
  1574. }
  1575. }