x86.c 109 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/msr.h>
  40. #include <asm/desc.h>
  41. #include <asm/mtrr.h>
  42. #define MAX_IO_MSRS 256
  43. #define CR0_RESERVED_BITS \
  44. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  45. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  46. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  47. #define CR4_RESERVED_BITS \
  48. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  49. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  50. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  51. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  52. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  53. /* EFER defaults:
  54. * - enable syscall per default because its emulated by KVM
  55. * - enable LME and LMA per default on 64 bit KVM
  56. */
  57. #ifdef CONFIG_X86_64
  58. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  59. #else
  60. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  61. #endif
  62. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  63. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  64. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  65. struct kvm_cpuid_entry2 __user *entries);
  66. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  67. u32 function, u32 index);
  68. struct kvm_x86_ops *kvm_x86_ops;
  69. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  70. struct kvm_stats_debugfs_item debugfs_entries[] = {
  71. { "pf_fixed", VCPU_STAT(pf_fixed) },
  72. { "pf_guest", VCPU_STAT(pf_guest) },
  73. { "tlb_flush", VCPU_STAT(tlb_flush) },
  74. { "invlpg", VCPU_STAT(invlpg) },
  75. { "exits", VCPU_STAT(exits) },
  76. { "io_exits", VCPU_STAT(io_exits) },
  77. { "mmio_exits", VCPU_STAT(mmio_exits) },
  78. { "signal_exits", VCPU_STAT(signal_exits) },
  79. { "irq_window", VCPU_STAT(irq_window_exits) },
  80. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  81. { "halt_exits", VCPU_STAT(halt_exits) },
  82. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  83. { "hypercalls", VCPU_STAT(hypercalls) },
  84. { "request_irq", VCPU_STAT(request_irq_exits) },
  85. { "request_nmi", VCPU_STAT(request_nmi_exits) },
  86. { "irq_exits", VCPU_STAT(irq_exits) },
  87. { "host_state_reload", VCPU_STAT(host_state_reload) },
  88. { "efer_reload", VCPU_STAT(efer_reload) },
  89. { "fpu_reload", VCPU_STAT(fpu_reload) },
  90. { "insn_emulation", VCPU_STAT(insn_emulation) },
  91. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  92. { "irq_injections", VCPU_STAT(irq_injections) },
  93. { "nmi_injections", VCPU_STAT(nmi_injections) },
  94. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  95. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  96. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  97. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  98. { "mmu_flooded", VM_STAT(mmu_flooded) },
  99. { "mmu_recycled", VM_STAT(mmu_recycled) },
  100. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  101. { "mmu_unsync", VM_STAT(mmu_unsync) },
  102. { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
  103. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  104. { "largepages", VM_STAT(lpages) },
  105. { NULL }
  106. };
  107. unsigned long segment_base(u16 selector)
  108. {
  109. struct descriptor_table gdt;
  110. struct desc_struct *d;
  111. unsigned long table_base;
  112. unsigned long v;
  113. if (selector == 0)
  114. return 0;
  115. asm("sgdt %0" : "=m"(gdt));
  116. table_base = gdt.base;
  117. if (selector & 4) { /* from ldt */
  118. u16 ldt_selector;
  119. asm("sldt %0" : "=g"(ldt_selector));
  120. table_base = segment_base(ldt_selector);
  121. }
  122. d = (struct desc_struct *)(table_base + (selector & ~7));
  123. v = d->base0 | ((unsigned long)d->base1 << 16) |
  124. ((unsigned long)d->base2 << 24);
  125. #ifdef CONFIG_X86_64
  126. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  127. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  128. #endif
  129. return v;
  130. }
  131. EXPORT_SYMBOL_GPL(segment_base);
  132. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  133. {
  134. if (irqchip_in_kernel(vcpu->kvm))
  135. return vcpu->arch.apic_base;
  136. else
  137. return vcpu->arch.apic_base;
  138. }
  139. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  140. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  141. {
  142. /* TODO: reserve bits check */
  143. if (irqchip_in_kernel(vcpu->kvm))
  144. kvm_lapic_set_base(vcpu, data);
  145. else
  146. vcpu->arch.apic_base = data;
  147. }
  148. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  149. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  150. {
  151. WARN_ON(vcpu->arch.exception.pending);
  152. vcpu->arch.exception.pending = true;
  153. vcpu->arch.exception.has_error_code = false;
  154. vcpu->arch.exception.nr = nr;
  155. }
  156. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  157. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  158. u32 error_code)
  159. {
  160. ++vcpu->stat.pf_guest;
  161. if (vcpu->arch.exception.pending) {
  162. if (vcpu->arch.exception.nr == PF_VECTOR) {
  163. printk(KERN_DEBUG "kvm: inject_page_fault:"
  164. " double fault 0x%lx\n", addr);
  165. vcpu->arch.exception.nr = DF_VECTOR;
  166. vcpu->arch.exception.error_code = 0;
  167. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  168. /* triple fault -> shutdown */
  169. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  170. }
  171. return;
  172. }
  173. vcpu->arch.cr2 = addr;
  174. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  175. }
  176. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  177. {
  178. vcpu->arch.nmi_pending = 1;
  179. }
  180. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  181. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  182. {
  183. WARN_ON(vcpu->arch.exception.pending);
  184. vcpu->arch.exception.pending = true;
  185. vcpu->arch.exception.has_error_code = true;
  186. vcpu->arch.exception.nr = nr;
  187. vcpu->arch.exception.error_code = error_code;
  188. }
  189. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  190. static void __queue_exception(struct kvm_vcpu *vcpu)
  191. {
  192. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  193. vcpu->arch.exception.has_error_code,
  194. vcpu->arch.exception.error_code);
  195. }
  196. /*
  197. * Load the pae pdptrs. Return true is they are all valid.
  198. */
  199. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  200. {
  201. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  202. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  203. int i;
  204. int ret;
  205. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  206. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  207. offset * sizeof(u64), sizeof(pdpte));
  208. if (ret < 0) {
  209. ret = 0;
  210. goto out;
  211. }
  212. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  213. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  214. ret = 0;
  215. goto out;
  216. }
  217. }
  218. ret = 1;
  219. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  220. out:
  221. return ret;
  222. }
  223. EXPORT_SYMBOL_GPL(load_pdptrs);
  224. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  225. {
  226. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  227. bool changed = true;
  228. int r;
  229. if (is_long_mode(vcpu) || !is_pae(vcpu))
  230. return false;
  231. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  232. if (r < 0)
  233. goto out;
  234. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  235. out:
  236. return changed;
  237. }
  238. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  239. {
  240. if (cr0 & CR0_RESERVED_BITS) {
  241. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  242. cr0, vcpu->arch.cr0);
  243. kvm_inject_gp(vcpu, 0);
  244. return;
  245. }
  246. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  247. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  248. kvm_inject_gp(vcpu, 0);
  249. return;
  250. }
  251. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  252. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  253. "and a clear PE flag\n");
  254. kvm_inject_gp(vcpu, 0);
  255. return;
  256. }
  257. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  258. #ifdef CONFIG_X86_64
  259. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  260. int cs_db, cs_l;
  261. if (!is_pae(vcpu)) {
  262. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  263. "in long mode while PAE is disabled\n");
  264. kvm_inject_gp(vcpu, 0);
  265. return;
  266. }
  267. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  268. if (cs_l) {
  269. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  270. "in long mode while CS.L == 1\n");
  271. kvm_inject_gp(vcpu, 0);
  272. return;
  273. }
  274. } else
  275. #endif
  276. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  277. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  278. "reserved bits\n");
  279. kvm_inject_gp(vcpu, 0);
  280. return;
  281. }
  282. }
  283. kvm_x86_ops->set_cr0(vcpu, cr0);
  284. vcpu->arch.cr0 = cr0;
  285. kvm_mmu_sync_global(vcpu);
  286. kvm_mmu_reset_context(vcpu);
  287. return;
  288. }
  289. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  290. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  291. {
  292. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  293. KVMTRACE_1D(LMSW, vcpu,
  294. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  295. handler);
  296. }
  297. EXPORT_SYMBOL_GPL(kvm_lmsw);
  298. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  299. {
  300. unsigned long old_cr4 = vcpu->arch.cr4;
  301. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  302. if (cr4 & CR4_RESERVED_BITS) {
  303. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  304. kvm_inject_gp(vcpu, 0);
  305. return;
  306. }
  307. if (is_long_mode(vcpu)) {
  308. if (!(cr4 & X86_CR4_PAE)) {
  309. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  310. "in long mode\n");
  311. kvm_inject_gp(vcpu, 0);
  312. return;
  313. }
  314. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  315. && ((cr4 ^ old_cr4) & pdptr_bits)
  316. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  317. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  318. kvm_inject_gp(vcpu, 0);
  319. return;
  320. }
  321. if (cr4 & X86_CR4_VMXE) {
  322. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  323. kvm_inject_gp(vcpu, 0);
  324. return;
  325. }
  326. kvm_x86_ops->set_cr4(vcpu, cr4);
  327. vcpu->arch.cr4 = cr4;
  328. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  329. kvm_mmu_sync_global(vcpu);
  330. kvm_mmu_reset_context(vcpu);
  331. }
  332. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  333. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  334. {
  335. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  336. kvm_mmu_sync_roots(vcpu);
  337. kvm_mmu_flush_tlb(vcpu);
  338. return;
  339. }
  340. if (is_long_mode(vcpu)) {
  341. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  342. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  343. kvm_inject_gp(vcpu, 0);
  344. return;
  345. }
  346. } else {
  347. if (is_pae(vcpu)) {
  348. if (cr3 & CR3_PAE_RESERVED_BITS) {
  349. printk(KERN_DEBUG
  350. "set_cr3: #GP, reserved bits\n");
  351. kvm_inject_gp(vcpu, 0);
  352. return;
  353. }
  354. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  355. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  356. "reserved bits\n");
  357. kvm_inject_gp(vcpu, 0);
  358. return;
  359. }
  360. }
  361. /*
  362. * We don't check reserved bits in nonpae mode, because
  363. * this isn't enforced, and VMware depends on this.
  364. */
  365. }
  366. /*
  367. * Does the new cr3 value map to physical memory? (Note, we
  368. * catch an invalid cr3 even in real-mode, because it would
  369. * cause trouble later on when we turn on paging anyway.)
  370. *
  371. * A real CPU would silently accept an invalid cr3 and would
  372. * attempt to use it - with largely undefined (and often hard
  373. * to debug) behavior on the guest side.
  374. */
  375. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  376. kvm_inject_gp(vcpu, 0);
  377. else {
  378. vcpu->arch.cr3 = cr3;
  379. vcpu->arch.mmu.new_cr3(vcpu);
  380. }
  381. }
  382. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  383. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  384. {
  385. if (cr8 & CR8_RESERVED_BITS) {
  386. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  387. kvm_inject_gp(vcpu, 0);
  388. return;
  389. }
  390. if (irqchip_in_kernel(vcpu->kvm))
  391. kvm_lapic_set_tpr(vcpu, cr8);
  392. else
  393. vcpu->arch.cr8 = cr8;
  394. }
  395. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  396. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  397. {
  398. if (irqchip_in_kernel(vcpu->kvm))
  399. return kvm_lapic_get_cr8(vcpu);
  400. else
  401. return vcpu->arch.cr8;
  402. }
  403. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  404. static inline u32 bit(int bitno)
  405. {
  406. return 1 << (bitno & 31);
  407. }
  408. /*
  409. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  410. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  411. *
  412. * This list is modified at module load time to reflect the
  413. * capabilities of the host cpu.
  414. */
  415. static u32 msrs_to_save[] = {
  416. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  417. MSR_K6_STAR,
  418. #ifdef CONFIG_X86_64
  419. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  420. #endif
  421. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  422. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  423. };
  424. static unsigned num_msrs_to_save;
  425. static u32 emulated_msrs[] = {
  426. MSR_IA32_MISC_ENABLE,
  427. };
  428. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  429. {
  430. if (efer & efer_reserved_bits) {
  431. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  432. efer);
  433. kvm_inject_gp(vcpu, 0);
  434. return;
  435. }
  436. if (is_paging(vcpu)
  437. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  438. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  439. kvm_inject_gp(vcpu, 0);
  440. return;
  441. }
  442. if (efer & EFER_FFXSR) {
  443. struct kvm_cpuid_entry2 *feat;
  444. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  445. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  446. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  447. kvm_inject_gp(vcpu, 0);
  448. return;
  449. }
  450. }
  451. if (efer & EFER_SVME) {
  452. struct kvm_cpuid_entry2 *feat;
  453. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  454. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  455. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  456. kvm_inject_gp(vcpu, 0);
  457. return;
  458. }
  459. }
  460. kvm_x86_ops->set_efer(vcpu, efer);
  461. efer &= ~EFER_LMA;
  462. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  463. vcpu->arch.shadow_efer = efer;
  464. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  465. kvm_mmu_reset_context(vcpu);
  466. }
  467. void kvm_enable_efer_bits(u64 mask)
  468. {
  469. efer_reserved_bits &= ~mask;
  470. }
  471. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  472. /*
  473. * Writes msr value into into the appropriate "register".
  474. * Returns 0 on success, non-0 otherwise.
  475. * Assumes vcpu_load() was already called.
  476. */
  477. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  478. {
  479. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  480. }
  481. /*
  482. * Adapt set_msr() to msr_io()'s calling convention
  483. */
  484. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  485. {
  486. return kvm_set_msr(vcpu, index, *data);
  487. }
  488. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  489. {
  490. static int version;
  491. struct pvclock_wall_clock wc;
  492. struct timespec now, sys, boot;
  493. if (!wall_clock)
  494. return;
  495. version++;
  496. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  497. /*
  498. * The guest calculates current wall clock time by adding
  499. * system time (updated by kvm_write_guest_time below) to the
  500. * wall clock specified here. guest system time equals host
  501. * system time for us, thus we must fill in host boot time here.
  502. */
  503. now = current_kernel_time();
  504. ktime_get_ts(&sys);
  505. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  506. wc.sec = boot.tv_sec;
  507. wc.nsec = boot.tv_nsec;
  508. wc.version = version;
  509. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  510. version++;
  511. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  512. }
  513. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  514. {
  515. uint32_t quotient, remainder;
  516. /* Don't try to replace with do_div(), this one calculates
  517. * "(dividend << 32) / divisor" */
  518. __asm__ ( "divl %4"
  519. : "=a" (quotient), "=d" (remainder)
  520. : "0" (0), "1" (dividend), "r" (divisor) );
  521. return quotient;
  522. }
  523. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  524. {
  525. uint64_t nsecs = 1000000000LL;
  526. int32_t shift = 0;
  527. uint64_t tps64;
  528. uint32_t tps32;
  529. tps64 = tsc_khz * 1000LL;
  530. while (tps64 > nsecs*2) {
  531. tps64 >>= 1;
  532. shift--;
  533. }
  534. tps32 = (uint32_t)tps64;
  535. while (tps32 <= (uint32_t)nsecs) {
  536. tps32 <<= 1;
  537. shift++;
  538. }
  539. hv_clock->tsc_shift = shift;
  540. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  541. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  542. __func__, tsc_khz, hv_clock->tsc_shift,
  543. hv_clock->tsc_to_system_mul);
  544. }
  545. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  546. static void kvm_write_guest_time(struct kvm_vcpu *v)
  547. {
  548. struct timespec ts;
  549. unsigned long flags;
  550. struct kvm_vcpu_arch *vcpu = &v->arch;
  551. void *shared_kaddr;
  552. if ((!vcpu->time_page))
  553. return;
  554. preempt_disable();
  555. if (unlikely(vcpu->hv_clock_tsc_khz != __get_cpu_var(cpu_tsc_khz))) {
  556. kvm_set_time_scale(__get_cpu_var(cpu_tsc_khz), &vcpu->hv_clock);
  557. vcpu->hv_clock_tsc_khz = __get_cpu_var(cpu_tsc_khz);
  558. }
  559. preempt_enable();
  560. /* Keep irq disabled to prevent changes to the clock */
  561. local_irq_save(flags);
  562. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  563. &vcpu->hv_clock.tsc_timestamp);
  564. ktime_get_ts(&ts);
  565. local_irq_restore(flags);
  566. /* With all the info we got, fill in the values */
  567. vcpu->hv_clock.system_time = ts.tv_nsec +
  568. (NSEC_PER_SEC * (u64)ts.tv_sec);
  569. /*
  570. * The interface expects us to write an even number signaling that the
  571. * update is finished. Since the guest won't see the intermediate
  572. * state, we just increase by 2 at the end.
  573. */
  574. vcpu->hv_clock.version += 2;
  575. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  576. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  577. sizeof(vcpu->hv_clock));
  578. kunmap_atomic(shared_kaddr, KM_USER0);
  579. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  580. }
  581. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  582. {
  583. struct kvm_vcpu_arch *vcpu = &v->arch;
  584. if (!vcpu->time_page)
  585. return 0;
  586. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  587. return 1;
  588. }
  589. static bool msr_mtrr_valid(unsigned msr)
  590. {
  591. switch (msr) {
  592. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  593. case MSR_MTRRfix64K_00000:
  594. case MSR_MTRRfix16K_80000:
  595. case MSR_MTRRfix16K_A0000:
  596. case MSR_MTRRfix4K_C0000:
  597. case MSR_MTRRfix4K_C8000:
  598. case MSR_MTRRfix4K_D0000:
  599. case MSR_MTRRfix4K_D8000:
  600. case MSR_MTRRfix4K_E0000:
  601. case MSR_MTRRfix4K_E8000:
  602. case MSR_MTRRfix4K_F0000:
  603. case MSR_MTRRfix4K_F8000:
  604. case MSR_MTRRdefType:
  605. case MSR_IA32_CR_PAT:
  606. return true;
  607. case 0x2f8:
  608. return true;
  609. }
  610. return false;
  611. }
  612. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  613. {
  614. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  615. if (!msr_mtrr_valid(msr))
  616. return 1;
  617. if (msr == MSR_MTRRdefType) {
  618. vcpu->arch.mtrr_state.def_type = data;
  619. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  620. } else if (msr == MSR_MTRRfix64K_00000)
  621. p[0] = data;
  622. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  623. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  624. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  625. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  626. else if (msr == MSR_IA32_CR_PAT)
  627. vcpu->arch.pat = data;
  628. else { /* Variable MTRRs */
  629. int idx, is_mtrr_mask;
  630. u64 *pt;
  631. idx = (msr - 0x200) / 2;
  632. is_mtrr_mask = msr - 0x200 - 2 * idx;
  633. if (!is_mtrr_mask)
  634. pt =
  635. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  636. else
  637. pt =
  638. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  639. *pt = data;
  640. }
  641. kvm_mmu_reset_context(vcpu);
  642. return 0;
  643. }
  644. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  645. {
  646. switch (msr) {
  647. case MSR_EFER:
  648. set_efer(vcpu, data);
  649. break;
  650. case MSR_IA32_MC0_STATUS:
  651. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  652. __func__, data);
  653. break;
  654. case MSR_IA32_MCG_STATUS:
  655. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  656. __func__, data);
  657. break;
  658. case MSR_IA32_MCG_CTL:
  659. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  660. __func__, data);
  661. break;
  662. case MSR_IA32_DEBUGCTLMSR:
  663. if (!data) {
  664. /* We support the non-activated case already */
  665. break;
  666. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  667. /* Values other than LBR and BTF are vendor-specific,
  668. thus reserved and should throw a #GP */
  669. return 1;
  670. }
  671. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  672. __func__, data);
  673. break;
  674. case MSR_IA32_UCODE_REV:
  675. case MSR_IA32_UCODE_WRITE:
  676. case MSR_VM_HSAVE_PA:
  677. break;
  678. case 0x200 ... 0x2ff:
  679. return set_msr_mtrr(vcpu, msr, data);
  680. case MSR_IA32_APICBASE:
  681. kvm_set_apic_base(vcpu, data);
  682. break;
  683. case MSR_IA32_MISC_ENABLE:
  684. vcpu->arch.ia32_misc_enable_msr = data;
  685. break;
  686. case MSR_KVM_WALL_CLOCK:
  687. vcpu->kvm->arch.wall_clock = data;
  688. kvm_write_wall_clock(vcpu->kvm, data);
  689. break;
  690. case MSR_KVM_SYSTEM_TIME: {
  691. if (vcpu->arch.time_page) {
  692. kvm_release_page_dirty(vcpu->arch.time_page);
  693. vcpu->arch.time_page = NULL;
  694. }
  695. vcpu->arch.time = data;
  696. /* we verify if the enable bit is set... */
  697. if (!(data & 1))
  698. break;
  699. /* ...but clean it before doing the actual write */
  700. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  701. vcpu->arch.time_page =
  702. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  703. if (is_error_page(vcpu->arch.time_page)) {
  704. kvm_release_page_clean(vcpu->arch.time_page);
  705. vcpu->arch.time_page = NULL;
  706. }
  707. kvm_request_guest_time_update(vcpu);
  708. break;
  709. }
  710. default:
  711. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  712. return 1;
  713. }
  714. return 0;
  715. }
  716. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  717. /*
  718. * Reads an msr value (of 'msr_index') into 'pdata'.
  719. * Returns 0 on success, non-0 otherwise.
  720. * Assumes vcpu_load() was already called.
  721. */
  722. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  723. {
  724. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  725. }
  726. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  727. {
  728. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  729. if (!msr_mtrr_valid(msr))
  730. return 1;
  731. if (msr == MSR_MTRRdefType)
  732. *pdata = vcpu->arch.mtrr_state.def_type +
  733. (vcpu->arch.mtrr_state.enabled << 10);
  734. else if (msr == MSR_MTRRfix64K_00000)
  735. *pdata = p[0];
  736. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  737. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  738. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  739. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  740. else if (msr == MSR_IA32_CR_PAT)
  741. *pdata = vcpu->arch.pat;
  742. else { /* Variable MTRRs */
  743. int idx, is_mtrr_mask;
  744. u64 *pt;
  745. idx = (msr - 0x200) / 2;
  746. is_mtrr_mask = msr - 0x200 - 2 * idx;
  747. if (!is_mtrr_mask)
  748. pt =
  749. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  750. else
  751. pt =
  752. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  753. *pdata = *pt;
  754. }
  755. return 0;
  756. }
  757. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  758. {
  759. u64 data;
  760. switch (msr) {
  761. case 0xc0010010: /* SYSCFG */
  762. case 0xc0010015: /* HWCR */
  763. case MSR_IA32_PLATFORM_ID:
  764. case MSR_IA32_P5_MC_ADDR:
  765. case MSR_IA32_P5_MC_TYPE:
  766. case MSR_IA32_MC0_CTL:
  767. case MSR_IA32_MCG_STATUS:
  768. case MSR_IA32_MCG_CAP:
  769. case MSR_IA32_MCG_CTL:
  770. case MSR_IA32_MC0_MISC:
  771. case MSR_IA32_MC0_MISC+4:
  772. case MSR_IA32_MC0_MISC+8:
  773. case MSR_IA32_MC0_MISC+12:
  774. case MSR_IA32_MC0_MISC+16:
  775. case MSR_IA32_MC0_MISC+20:
  776. case MSR_IA32_UCODE_REV:
  777. case MSR_IA32_EBL_CR_POWERON:
  778. case MSR_IA32_DEBUGCTLMSR:
  779. case MSR_IA32_LASTBRANCHFROMIP:
  780. case MSR_IA32_LASTBRANCHTOIP:
  781. case MSR_IA32_LASTINTFROMIP:
  782. case MSR_IA32_LASTINTTOIP:
  783. case MSR_VM_HSAVE_PA:
  784. case MSR_P6_EVNTSEL0:
  785. case MSR_P6_EVNTSEL1:
  786. data = 0;
  787. break;
  788. case MSR_MTRRcap:
  789. data = 0x500 | KVM_NR_VAR_MTRR;
  790. break;
  791. case 0x200 ... 0x2ff:
  792. return get_msr_mtrr(vcpu, msr, pdata);
  793. case 0xcd: /* fsb frequency */
  794. data = 3;
  795. break;
  796. case MSR_IA32_APICBASE:
  797. data = kvm_get_apic_base(vcpu);
  798. break;
  799. case MSR_IA32_MISC_ENABLE:
  800. data = vcpu->arch.ia32_misc_enable_msr;
  801. break;
  802. case MSR_IA32_PERF_STATUS:
  803. /* TSC increment by tick */
  804. data = 1000ULL;
  805. /* CPU multiplier */
  806. data |= (((uint64_t)4ULL) << 40);
  807. break;
  808. case MSR_EFER:
  809. data = vcpu->arch.shadow_efer;
  810. break;
  811. case MSR_KVM_WALL_CLOCK:
  812. data = vcpu->kvm->arch.wall_clock;
  813. break;
  814. case MSR_KVM_SYSTEM_TIME:
  815. data = vcpu->arch.time;
  816. break;
  817. default:
  818. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  819. return 1;
  820. }
  821. *pdata = data;
  822. return 0;
  823. }
  824. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  825. /*
  826. * Read or write a bunch of msrs. All parameters are kernel addresses.
  827. *
  828. * @return number of msrs set successfully.
  829. */
  830. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  831. struct kvm_msr_entry *entries,
  832. int (*do_msr)(struct kvm_vcpu *vcpu,
  833. unsigned index, u64 *data))
  834. {
  835. int i;
  836. vcpu_load(vcpu);
  837. down_read(&vcpu->kvm->slots_lock);
  838. for (i = 0; i < msrs->nmsrs; ++i)
  839. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  840. break;
  841. up_read(&vcpu->kvm->slots_lock);
  842. vcpu_put(vcpu);
  843. return i;
  844. }
  845. /*
  846. * Read or write a bunch of msrs. Parameters are user addresses.
  847. *
  848. * @return number of msrs set successfully.
  849. */
  850. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  851. int (*do_msr)(struct kvm_vcpu *vcpu,
  852. unsigned index, u64 *data),
  853. int writeback)
  854. {
  855. struct kvm_msrs msrs;
  856. struct kvm_msr_entry *entries;
  857. int r, n;
  858. unsigned size;
  859. r = -EFAULT;
  860. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  861. goto out;
  862. r = -E2BIG;
  863. if (msrs.nmsrs >= MAX_IO_MSRS)
  864. goto out;
  865. r = -ENOMEM;
  866. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  867. entries = vmalloc(size);
  868. if (!entries)
  869. goto out;
  870. r = -EFAULT;
  871. if (copy_from_user(entries, user_msrs->entries, size))
  872. goto out_free;
  873. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  874. if (r < 0)
  875. goto out_free;
  876. r = -EFAULT;
  877. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  878. goto out_free;
  879. r = n;
  880. out_free:
  881. vfree(entries);
  882. out:
  883. return r;
  884. }
  885. int kvm_dev_ioctl_check_extension(long ext)
  886. {
  887. int r;
  888. switch (ext) {
  889. case KVM_CAP_IRQCHIP:
  890. case KVM_CAP_HLT:
  891. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  892. case KVM_CAP_SET_TSS_ADDR:
  893. case KVM_CAP_EXT_CPUID:
  894. case KVM_CAP_CLOCKSOURCE:
  895. case KVM_CAP_PIT:
  896. case KVM_CAP_NOP_IO_DELAY:
  897. case KVM_CAP_MP_STATE:
  898. case KVM_CAP_SYNC_MMU:
  899. case KVM_CAP_REINJECT_CONTROL:
  900. case KVM_CAP_IRQ_INJECT_STATUS:
  901. case KVM_CAP_ASSIGN_DEV_IRQ:
  902. r = 1;
  903. break;
  904. case KVM_CAP_COALESCED_MMIO:
  905. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  906. break;
  907. case KVM_CAP_VAPIC:
  908. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  909. break;
  910. case KVM_CAP_NR_VCPUS:
  911. r = KVM_MAX_VCPUS;
  912. break;
  913. case KVM_CAP_NR_MEMSLOTS:
  914. r = KVM_MEMORY_SLOTS;
  915. break;
  916. case KVM_CAP_PV_MMU:
  917. r = !tdp_enabled;
  918. break;
  919. case KVM_CAP_IOMMU:
  920. r = iommu_found();
  921. break;
  922. default:
  923. r = 0;
  924. break;
  925. }
  926. return r;
  927. }
  928. long kvm_arch_dev_ioctl(struct file *filp,
  929. unsigned int ioctl, unsigned long arg)
  930. {
  931. void __user *argp = (void __user *)arg;
  932. long r;
  933. switch (ioctl) {
  934. case KVM_GET_MSR_INDEX_LIST: {
  935. struct kvm_msr_list __user *user_msr_list = argp;
  936. struct kvm_msr_list msr_list;
  937. unsigned n;
  938. r = -EFAULT;
  939. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  940. goto out;
  941. n = msr_list.nmsrs;
  942. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  943. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  944. goto out;
  945. r = -E2BIG;
  946. if (n < num_msrs_to_save)
  947. goto out;
  948. r = -EFAULT;
  949. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  950. num_msrs_to_save * sizeof(u32)))
  951. goto out;
  952. if (copy_to_user(user_msr_list->indices
  953. + num_msrs_to_save * sizeof(u32),
  954. &emulated_msrs,
  955. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  956. goto out;
  957. r = 0;
  958. break;
  959. }
  960. case KVM_GET_SUPPORTED_CPUID: {
  961. struct kvm_cpuid2 __user *cpuid_arg = argp;
  962. struct kvm_cpuid2 cpuid;
  963. r = -EFAULT;
  964. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  965. goto out;
  966. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  967. cpuid_arg->entries);
  968. if (r)
  969. goto out;
  970. r = -EFAULT;
  971. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  972. goto out;
  973. r = 0;
  974. break;
  975. }
  976. default:
  977. r = -EINVAL;
  978. }
  979. out:
  980. return r;
  981. }
  982. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  983. {
  984. kvm_x86_ops->vcpu_load(vcpu, cpu);
  985. kvm_request_guest_time_update(vcpu);
  986. }
  987. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  988. {
  989. kvm_x86_ops->vcpu_put(vcpu);
  990. kvm_put_guest_fpu(vcpu);
  991. }
  992. static int is_efer_nx(void)
  993. {
  994. unsigned long long efer = 0;
  995. rdmsrl_safe(MSR_EFER, &efer);
  996. return efer & EFER_NX;
  997. }
  998. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  999. {
  1000. int i;
  1001. struct kvm_cpuid_entry2 *e, *entry;
  1002. entry = NULL;
  1003. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1004. e = &vcpu->arch.cpuid_entries[i];
  1005. if (e->function == 0x80000001) {
  1006. entry = e;
  1007. break;
  1008. }
  1009. }
  1010. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1011. entry->edx &= ~(1 << 20);
  1012. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1013. }
  1014. }
  1015. /* when an old userspace process fills a new kernel module */
  1016. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1017. struct kvm_cpuid *cpuid,
  1018. struct kvm_cpuid_entry __user *entries)
  1019. {
  1020. int r, i;
  1021. struct kvm_cpuid_entry *cpuid_entries;
  1022. r = -E2BIG;
  1023. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1024. goto out;
  1025. r = -ENOMEM;
  1026. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1027. if (!cpuid_entries)
  1028. goto out;
  1029. r = -EFAULT;
  1030. if (copy_from_user(cpuid_entries, entries,
  1031. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1032. goto out_free;
  1033. for (i = 0; i < cpuid->nent; i++) {
  1034. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1035. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1036. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1037. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1038. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1039. vcpu->arch.cpuid_entries[i].index = 0;
  1040. vcpu->arch.cpuid_entries[i].flags = 0;
  1041. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1042. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1043. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1044. }
  1045. vcpu->arch.cpuid_nent = cpuid->nent;
  1046. cpuid_fix_nx_cap(vcpu);
  1047. r = 0;
  1048. out_free:
  1049. vfree(cpuid_entries);
  1050. out:
  1051. return r;
  1052. }
  1053. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1054. struct kvm_cpuid2 *cpuid,
  1055. struct kvm_cpuid_entry2 __user *entries)
  1056. {
  1057. int r;
  1058. r = -E2BIG;
  1059. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1060. goto out;
  1061. r = -EFAULT;
  1062. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1063. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1064. goto out;
  1065. vcpu->arch.cpuid_nent = cpuid->nent;
  1066. return 0;
  1067. out:
  1068. return r;
  1069. }
  1070. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1071. struct kvm_cpuid2 *cpuid,
  1072. struct kvm_cpuid_entry2 __user *entries)
  1073. {
  1074. int r;
  1075. r = -E2BIG;
  1076. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1077. goto out;
  1078. r = -EFAULT;
  1079. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1080. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1081. goto out;
  1082. return 0;
  1083. out:
  1084. cpuid->nent = vcpu->arch.cpuid_nent;
  1085. return r;
  1086. }
  1087. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1088. u32 index)
  1089. {
  1090. entry->function = function;
  1091. entry->index = index;
  1092. cpuid_count(entry->function, entry->index,
  1093. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1094. entry->flags = 0;
  1095. }
  1096. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1097. u32 index, int *nent, int maxnent)
  1098. {
  1099. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  1100. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1101. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1102. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1103. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1104. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  1105. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1106. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  1107. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  1108. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  1109. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  1110. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1111. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1112. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1113. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1114. bit(X86_FEATURE_PGE) |
  1115. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1116. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  1117. bit(X86_FEATURE_SYSCALL) |
  1118. (is_efer_nx() ? bit(X86_FEATURE_NX) : 0) |
  1119. #ifdef CONFIG_X86_64
  1120. bit(X86_FEATURE_LM) |
  1121. #endif
  1122. bit(X86_FEATURE_FXSR_OPT) |
  1123. bit(X86_FEATURE_MMXEXT) |
  1124. bit(X86_FEATURE_3DNOWEXT) |
  1125. bit(X86_FEATURE_3DNOW);
  1126. const u32 kvm_supported_word3_x86_features =
  1127. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  1128. const u32 kvm_supported_word6_x86_features =
  1129. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
  1130. bit(X86_FEATURE_SVM);
  1131. /* all calls to cpuid_count() should be made on the same cpu */
  1132. get_cpu();
  1133. do_cpuid_1_ent(entry, function, index);
  1134. ++*nent;
  1135. switch (function) {
  1136. case 0:
  1137. entry->eax = min(entry->eax, (u32)0xb);
  1138. break;
  1139. case 1:
  1140. entry->edx &= kvm_supported_word0_x86_features;
  1141. entry->ecx &= kvm_supported_word3_x86_features;
  1142. break;
  1143. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1144. * may return different values. This forces us to get_cpu() before
  1145. * issuing the first command, and also to emulate this annoying behavior
  1146. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1147. case 2: {
  1148. int t, times = entry->eax & 0xff;
  1149. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1150. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1151. for (t = 1; t < times && *nent < maxnent; ++t) {
  1152. do_cpuid_1_ent(&entry[t], function, 0);
  1153. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1154. ++*nent;
  1155. }
  1156. break;
  1157. }
  1158. /* function 4 and 0xb have additional index. */
  1159. case 4: {
  1160. int i, cache_type;
  1161. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1162. /* read more entries until cache_type is zero */
  1163. for (i = 1; *nent < maxnent; ++i) {
  1164. cache_type = entry[i - 1].eax & 0x1f;
  1165. if (!cache_type)
  1166. break;
  1167. do_cpuid_1_ent(&entry[i], function, i);
  1168. entry[i].flags |=
  1169. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1170. ++*nent;
  1171. }
  1172. break;
  1173. }
  1174. case 0xb: {
  1175. int i, level_type;
  1176. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1177. /* read more entries until level_type is zero */
  1178. for (i = 1; *nent < maxnent; ++i) {
  1179. level_type = entry[i - 1].ecx & 0xff00;
  1180. if (!level_type)
  1181. break;
  1182. do_cpuid_1_ent(&entry[i], function, i);
  1183. entry[i].flags |=
  1184. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1185. ++*nent;
  1186. }
  1187. break;
  1188. }
  1189. case 0x80000000:
  1190. entry->eax = min(entry->eax, 0x8000001a);
  1191. break;
  1192. case 0x80000001:
  1193. entry->edx &= kvm_supported_word1_x86_features;
  1194. entry->ecx &= kvm_supported_word6_x86_features;
  1195. break;
  1196. }
  1197. put_cpu();
  1198. }
  1199. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1200. struct kvm_cpuid_entry2 __user *entries)
  1201. {
  1202. struct kvm_cpuid_entry2 *cpuid_entries;
  1203. int limit, nent = 0, r = -E2BIG;
  1204. u32 func;
  1205. if (cpuid->nent < 1)
  1206. goto out;
  1207. r = -ENOMEM;
  1208. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1209. if (!cpuid_entries)
  1210. goto out;
  1211. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1212. limit = cpuid_entries[0].eax;
  1213. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1214. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1215. &nent, cpuid->nent);
  1216. r = -E2BIG;
  1217. if (nent >= cpuid->nent)
  1218. goto out_free;
  1219. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1220. limit = cpuid_entries[nent - 1].eax;
  1221. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1222. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1223. &nent, cpuid->nent);
  1224. r = -EFAULT;
  1225. if (copy_to_user(entries, cpuid_entries,
  1226. nent * sizeof(struct kvm_cpuid_entry2)))
  1227. goto out_free;
  1228. cpuid->nent = nent;
  1229. r = 0;
  1230. out_free:
  1231. vfree(cpuid_entries);
  1232. out:
  1233. return r;
  1234. }
  1235. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1236. struct kvm_lapic_state *s)
  1237. {
  1238. vcpu_load(vcpu);
  1239. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1240. vcpu_put(vcpu);
  1241. return 0;
  1242. }
  1243. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1244. struct kvm_lapic_state *s)
  1245. {
  1246. vcpu_load(vcpu);
  1247. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1248. kvm_apic_post_state_restore(vcpu);
  1249. vcpu_put(vcpu);
  1250. return 0;
  1251. }
  1252. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1253. struct kvm_interrupt *irq)
  1254. {
  1255. if (irq->irq < 0 || irq->irq >= 256)
  1256. return -EINVAL;
  1257. if (irqchip_in_kernel(vcpu->kvm))
  1258. return -ENXIO;
  1259. vcpu_load(vcpu);
  1260. set_bit(irq->irq, vcpu->arch.irq_pending);
  1261. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1262. vcpu_put(vcpu);
  1263. return 0;
  1264. }
  1265. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1266. {
  1267. vcpu_load(vcpu);
  1268. kvm_inject_nmi(vcpu);
  1269. vcpu_put(vcpu);
  1270. return 0;
  1271. }
  1272. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1273. struct kvm_tpr_access_ctl *tac)
  1274. {
  1275. if (tac->flags)
  1276. return -EINVAL;
  1277. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1278. return 0;
  1279. }
  1280. long kvm_arch_vcpu_ioctl(struct file *filp,
  1281. unsigned int ioctl, unsigned long arg)
  1282. {
  1283. struct kvm_vcpu *vcpu = filp->private_data;
  1284. void __user *argp = (void __user *)arg;
  1285. int r;
  1286. struct kvm_lapic_state *lapic = NULL;
  1287. switch (ioctl) {
  1288. case KVM_GET_LAPIC: {
  1289. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1290. r = -ENOMEM;
  1291. if (!lapic)
  1292. goto out;
  1293. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1294. if (r)
  1295. goto out;
  1296. r = -EFAULT;
  1297. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1298. goto out;
  1299. r = 0;
  1300. break;
  1301. }
  1302. case KVM_SET_LAPIC: {
  1303. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1304. r = -ENOMEM;
  1305. if (!lapic)
  1306. goto out;
  1307. r = -EFAULT;
  1308. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1309. goto out;
  1310. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1311. if (r)
  1312. goto out;
  1313. r = 0;
  1314. break;
  1315. }
  1316. case KVM_INTERRUPT: {
  1317. struct kvm_interrupt irq;
  1318. r = -EFAULT;
  1319. if (copy_from_user(&irq, argp, sizeof irq))
  1320. goto out;
  1321. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1322. if (r)
  1323. goto out;
  1324. r = 0;
  1325. break;
  1326. }
  1327. case KVM_NMI: {
  1328. r = kvm_vcpu_ioctl_nmi(vcpu);
  1329. if (r)
  1330. goto out;
  1331. r = 0;
  1332. break;
  1333. }
  1334. case KVM_SET_CPUID: {
  1335. struct kvm_cpuid __user *cpuid_arg = argp;
  1336. struct kvm_cpuid cpuid;
  1337. r = -EFAULT;
  1338. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1339. goto out;
  1340. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1341. if (r)
  1342. goto out;
  1343. break;
  1344. }
  1345. case KVM_SET_CPUID2: {
  1346. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1347. struct kvm_cpuid2 cpuid;
  1348. r = -EFAULT;
  1349. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1350. goto out;
  1351. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1352. cpuid_arg->entries);
  1353. if (r)
  1354. goto out;
  1355. break;
  1356. }
  1357. case KVM_GET_CPUID2: {
  1358. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1359. struct kvm_cpuid2 cpuid;
  1360. r = -EFAULT;
  1361. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1362. goto out;
  1363. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1364. cpuid_arg->entries);
  1365. if (r)
  1366. goto out;
  1367. r = -EFAULT;
  1368. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1369. goto out;
  1370. r = 0;
  1371. break;
  1372. }
  1373. case KVM_GET_MSRS:
  1374. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1375. break;
  1376. case KVM_SET_MSRS:
  1377. r = msr_io(vcpu, argp, do_set_msr, 0);
  1378. break;
  1379. case KVM_TPR_ACCESS_REPORTING: {
  1380. struct kvm_tpr_access_ctl tac;
  1381. r = -EFAULT;
  1382. if (copy_from_user(&tac, argp, sizeof tac))
  1383. goto out;
  1384. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1385. if (r)
  1386. goto out;
  1387. r = -EFAULT;
  1388. if (copy_to_user(argp, &tac, sizeof tac))
  1389. goto out;
  1390. r = 0;
  1391. break;
  1392. };
  1393. case KVM_SET_VAPIC_ADDR: {
  1394. struct kvm_vapic_addr va;
  1395. r = -EINVAL;
  1396. if (!irqchip_in_kernel(vcpu->kvm))
  1397. goto out;
  1398. r = -EFAULT;
  1399. if (copy_from_user(&va, argp, sizeof va))
  1400. goto out;
  1401. r = 0;
  1402. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1403. break;
  1404. }
  1405. default:
  1406. r = -EINVAL;
  1407. }
  1408. out:
  1409. if (lapic)
  1410. kfree(lapic);
  1411. return r;
  1412. }
  1413. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1414. {
  1415. int ret;
  1416. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1417. return -1;
  1418. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1419. return ret;
  1420. }
  1421. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1422. u32 kvm_nr_mmu_pages)
  1423. {
  1424. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1425. return -EINVAL;
  1426. down_write(&kvm->slots_lock);
  1427. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1428. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1429. up_write(&kvm->slots_lock);
  1430. return 0;
  1431. }
  1432. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1433. {
  1434. return kvm->arch.n_alloc_mmu_pages;
  1435. }
  1436. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1437. {
  1438. int i;
  1439. struct kvm_mem_alias *alias;
  1440. for (i = 0; i < kvm->arch.naliases; ++i) {
  1441. alias = &kvm->arch.aliases[i];
  1442. if (gfn >= alias->base_gfn
  1443. && gfn < alias->base_gfn + alias->npages)
  1444. return alias->target_gfn + gfn - alias->base_gfn;
  1445. }
  1446. return gfn;
  1447. }
  1448. /*
  1449. * Set a new alias region. Aliases map a portion of physical memory into
  1450. * another portion. This is useful for memory windows, for example the PC
  1451. * VGA region.
  1452. */
  1453. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1454. struct kvm_memory_alias *alias)
  1455. {
  1456. int r, n;
  1457. struct kvm_mem_alias *p;
  1458. r = -EINVAL;
  1459. /* General sanity checks */
  1460. if (alias->memory_size & (PAGE_SIZE - 1))
  1461. goto out;
  1462. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1463. goto out;
  1464. if (alias->slot >= KVM_ALIAS_SLOTS)
  1465. goto out;
  1466. if (alias->guest_phys_addr + alias->memory_size
  1467. < alias->guest_phys_addr)
  1468. goto out;
  1469. if (alias->target_phys_addr + alias->memory_size
  1470. < alias->target_phys_addr)
  1471. goto out;
  1472. down_write(&kvm->slots_lock);
  1473. spin_lock(&kvm->mmu_lock);
  1474. p = &kvm->arch.aliases[alias->slot];
  1475. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1476. p->npages = alias->memory_size >> PAGE_SHIFT;
  1477. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1478. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1479. if (kvm->arch.aliases[n - 1].npages)
  1480. break;
  1481. kvm->arch.naliases = n;
  1482. spin_unlock(&kvm->mmu_lock);
  1483. kvm_mmu_zap_all(kvm);
  1484. up_write(&kvm->slots_lock);
  1485. return 0;
  1486. out:
  1487. return r;
  1488. }
  1489. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1490. {
  1491. int r;
  1492. r = 0;
  1493. switch (chip->chip_id) {
  1494. case KVM_IRQCHIP_PIC_MASTER:
  1495. memcpy(&chip->chip.pic,
  1496. &pic_irqchip(kvm)->pics[0],
  1497. sizeof(struct kvm_pic_state));
  1498. break;
  1499. case KVM_IRQCHIP_PIC_SLAVE:
  1500. memcpy(&chip->chip.pic,
  1501. &pic_irqchip(kvm)->pics[1],
  1502. sizeof(struct kvm_pic_state));
  1503. break;
  1504. case KVM_IRQCHIP_IOAPIC:
  1505. memcpy(&chip->chip.ioapic,
  1506. ioapic_irqchip(kvm),
  1507. sizeof(struct kvm_ioapic_state));
  1508. break;
  1509. default:
  1510. r = -EINVAL;
  1511. break;
  1512. }
  1513. return r;
  1514. }
  1515. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1516. {
  1517. int r;
  1518. r = 0;
  1519. switch (chip->chip_id) {
  1520. case KVM_IRQCHIP_PIC_MASTER:
  1521. memcpy(&pic_irqchip(kvm)->pics[0],
  1522. &chip->chip.pic,
  1523. sizeof(struct kvm_pic_state));
  1524. break;
  1525. case KVM_IRQCHIP_PIC_SLAVE:
  1526. memcpy(&pic_irqchip(kvm)->pics[1],
  1527. &chip->chip.pic,
  1528. sizeof(struct kvm_pic_state));
  1529. break;
  1530. case KVM_IRQCHIP_IOAPIC:
  1531. memcpy(ioapic_irqchip(kvm),
  1532. &chip->chip.ioapic,
  1533. sizeof(struct kvm_ioapic_state));
  1534. break;
  1535. default:
  1536. r = -EINVAL;
  1537. break;
  1538. }
  1539. kvm_pic_update_irq(pic_irqchip(kvm));
  1540. return r;
  1541. }
  1542. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1543. {
  1544. int r = 0;
  1545. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1546. return r;
  1547. }
  1548. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1549. {
  1550. int r = 0;
  1551. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1552. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1553. return r;
  1554. }
  1555. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1556. struct kvm_reinject_control *control)
  1557. {
  1558. if (!kvm->arch.vpit)
  1559. return -ENXIO;
  1560. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1561. return 0;
  1562. }
  1563. /*
  1564. * Get (and clear) the dirty memory log for a memory slot.
  1565. */
  1566. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1567. struct kvm_dirty_log *log)
  1568. {
  1569. int r;
  1570. int n;
  1571. struct kvm_memory_slot *memslot;
  1572. int is_dirty = 0;
  1573. down_write(&kvm->slots_lock);
  1574. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1575. if (r)
  1576. goto out;
  1577. /* If nothing is dirty, don't bother messing with page tables. */
  1578. if (is_dirty) {
  1579. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1580. kvm_flush_remote_tlbs(kvm);
  1581. memslot = &kvm->memslots[log->slot];
  1582. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1583. memset(memslot->dirty_bitmap, 0, n);
  1584. }
  1585. r = 0;
  1586. out:
  1587. up_write(&kvm->slots_lock);
  1588. return r;
  1589. }
  1590. long kvm_arch_vm_ioctl(struct file *filp,
  1591. unsigned int ioctl, unsigned long arg)
  1592. {
  1593. struct kvm *kvm = filp->private_data;
  1594. void __user *argp = (void __user *)arg;
  1595. int r = -EINVAL;
  1596. /*
  1597. * This union makes it completely explicit to gcc-3.x
  1598. * that these two variables' stack usage should be
  1599. * combined, not added together.
  1600. */
  1601. union {
  1602. struct kvm_pit_state ps;
  1603. struct kvm_memory_alias alias;
  1604. } u;
  1605. switch (ioctl) {
  1606. case KVM_SET_TSS_ADDR:
  1607. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1608. if (r < 0)
  1609. goto out;
  1610. break;
  1611. case KVM_SET_MEMORY_REGION: {
  1612. struct kvm_memory_region kvm_mem;
  1613. struct kvm_userspace_memory_region kvm_userspace_mem;
  1614. r = -EFAULT;
  1615. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1616. goto out;
  1617. kvm_userspace_mem.slot = kvm_mem.slot;
  1618. kvm_userspace_mem.flags = kvm_mem.flags;
  1619. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1620. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1621. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1622. if (r)
  1623. goto out;
  1624. break;
  1625. }
  1626. case KVM_SET_NR_MMU_PAGES:
  1627. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1628. if (r)
  1629. goto out;
  1630. break;
  1631. case KVM_GET_NR_MMU_PAGES:
  1632. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1633. break;
  1634. case KVM_SET_MEMORY_ALIAS:
  1635. r = -EFAULT;
  1636. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1637. goto out;
  1638. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1639. if (r)
  1640. goto out;
  1641. break;
  1642. case KVM_CREATE_IRQCHIP:
  1643. r = -ENOMEM;
  1644. kvm->arch.vpic = kvm_create_pic(kvm);
  1645. if (kvm->arch.vpic) {
  1646. r = kvm_ioapic_init(kvm);
  1647. if (r) {
  1648. kfree(kvm->arch.vpic);
  1649. kvm->arch.vpic = NULL;
  1650. goto out;
  1651. }
  1652. } else
  1653. goto out;
  1654. r = kvm_setup_default_irq_routing(kvm);
  1655. if (r) {
  1656. kfree(kvm->arch.vpic);
  1657. kfree(kvm->arch.vioapic);
  1658. goto out;
  1659. }
  1660. break;
  1661. case KVM_CREATE_PIT:
  1662. mutex_lock(&kvm->lock);
  1663. r = -EEXIST;
  1664. if (kvm->arch.vpit)
  1665. goto create_pit_unlock;
  1666. r = -ENOMEM;
  1667. kvm->arch.vpit = kvm_create_pit(kvm);
  1668. if (kvm->arch.vpit)
  1669. r = 0;
  1670. create_pit_unlock:
  1671. mutex_unlock(&kvm->lock);
  1672. break;
  1673. case KVM_IRQ_LINE_STATUS:
  1674. case KVM_IRQ_LINE: {
  1675. struct kvm_irq_level irq_event;
  1676. r = -EFAULT;
  1677. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1678. goto out;
  1679. if (irqchip_in_kernel(kvm)) {
  1680. __s32 status;
  1681. mutex_lock(&kvm->lock);
  1682. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1683. irq_event.irq, irq_event.level);
  1684. mutex_unlock(&kvm->lock);
  1685. if (ioctl == KVM_IRQ_LINE_STATUS) {
  1686. irq_event.status = status;
  1687. if (copy_to_user(argp, &irq_event,
  1688. sizeof irq_event))
  1689. goto out;
  1690. }
  1691. r = 0;
  1692. }
  1693. break;
  1694. }
  1695. case KVM_GET_IRQCHIP: {
  1696. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1697. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1698. r = -ENOMEM;
  1699. if (!chip)
  1700. goto out;
  1701. r = -EFAULT;
  1702. if (copy_from_user(chip, argp, sizeof *chip))
  1703. goto get_irqchip_out;
  1704. r = -ENXIO;
  1705. if (!irqchip_in_kernel(kvm))
  1706. goto get_irqchip_out;
  1707. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1708. if (r)
  1709. goto get_irqchip_out;
  1710. r = -EFAULT;
  1711. if (copy_to_user(argp, chip, sizeof *chip))
  1712. goto get_irqchip_out;
  1713. r = 0;
  1714. get_irqchip_out:
  1715. kfree(chip);
  1716. if (r)
  1717. goto out;
  1718. break;
  1719. }
  1720. case KVM_SET_IRQCHIP: {
  1721. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1722. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1723. r = -ENOMEM;
  1724. if (!chip)
  1725. goto out;
  1726. r = -EFAULT;
  1727. if (copy_from_user(chip, argp, sizeof *chip))
  1728. goto set_irqchip_out;
  1729. r = -ENXIO;
  1730. if (!irqchip_in_kernel(kvm))
  1731. goto set_irqchip_out;
  1732. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1733. if (r)
  1734. goto set_irqchip_out;
  1735. r = 0;
  1736. set_irqchip_out:
  1737. kfree(chip);
  1738. if (r)
  1739. goto out;
  1740. break;
  1741. }
  1742. case KVM_GET_PIT: {
  1743. r = -EFAULT;
  1744. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1745. goto out;
  1746. r = -ENXIO;
  1747. if (!kvm->arch.vpit)
  1748. goto out;
  1749. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1750. if (r)
  1751. goto out;
  1752. r = -EFAULT;
  1753. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  1754. goto out;
  1755. r = 0;
  1756. break;
  1757. }
  1758. case KVM_SET_PIT: {
  1759. r = -EFAULT;
  1760. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  1761. goto out;
  1762. r = -ENXIO;
  1763. if (!kvm->arch.vpit)
  1764. goto out;
  1765. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  1766. if (r)
  1767. goto out;
  1768. r = 0;
  1769. break;
  1770. }
  1771. case KVM_REINJECT_CONTROL: {
  1772. struct kvm_reinject_control control;
  1773. r = -EFAULT;
  1774. if (copy_from_user(&control, argp, sizeof(control)))
  1775. goto out;
  1776. r = kvm_vm_ioctl_reinject(kvm, &control);
  1777. if (r)
  1778. goto out;
  1779. r = 0;
  1780. break;
  1781. }
  1782. default:
  1783. ;
  1784. }
  1785. out:
  1786. return r;
  1787. }
  1788. static void kvm_init_msr_list(void)
  1789. {
  1790. u32 dummy[2];
  1791. unsigned i, j;
  1792. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1793. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1794. continue;
  1795. if (j < i)
  1796. msrs_to_save[j] = msrs_to_save[i];
  1797. j++;
  1798. }
  1799. num_msrs_to_save = j;
  1800. }
  1801. /*
  1802. * Only apic need an MMIO device hook, so shortcut now..
  1803. */
  1804. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1805. gpa_t addr, int len,
  1806. int is_write)
  1807. {
  1808. struct kvm_io_device *dev;
  1809. if (vcpu->arch.apic) {
  1810. dev = &vcpu->arch.apic->dev;
  1811. if (dev->in_range(dev, addr, len, is_write))
  1812. return dev;
  1813. }
  1814. return NULL;
  1815. }
  1816. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1817. gpa_t addr, int len,
  1818. int is_write)
  1819. {
  1820. struct kvm_io_device *dev;
  1821. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  1822. if (dev == NULL)
  1823. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  1824. is_write);
  1825. return dev;
  1826. }
  1827. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  1828. struct kvm_vcpu *vcpu)
  1829. {
  1830. void *data = val;
  1831. int r = X86EMUL_CONTINUE;
  1832. while (bytes) {
  1833. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1834. unsigned offset = addr & (PAGE_SIZE-1);
  1835. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  1836. int ret;
  1837. if (gpa == UNMAPPED_GVA) {
  1838. r = X86EMUL_PROPAGATE_FAULT;
  1839. goto out;
  1840. }
  1841. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  1842. if (ret < 0) {
  1843. r = X86EMUL_UNHANDLEABLE;
  1844. goto out;
  1845. }
  1846. bytes -= toread;
  1847. data += toread;
  1848. addr += toread;
  1849. }
  1850. out:
  1851. return r;
  1852. }
  1853. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  1854. struct kvm_vcpu *vcpu)
  1855. {
  1856. void *data = val;
  1857. int r = X86EMUL_CONTINUE;
  1858. while (bytes) {
  1859. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1860. unsigned offset = addr & (PAGE_SIZE-1);
  1861. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  1862. int ret;
  1863. if (gpa == UNMAPPED_GVA) {
  1864. r = X86EMUL_PROPAGATE_FAULT;
  1865. goto out;
  1866. }
  1867. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  1868. if (ret < 0) {
  1869. r = X86EMUL_UNHANDLEABLE;
  1870. goto out;
  1871. }
  1872. bytes -= towrite;
  1873. data += towrite;
  1874. addr += towrite;
  1875. }
  1876. out:
  1877. return r;
  1878. }
  1879. static int emulator_read_emulated(unsigned long addr,
  1880. void *val,
  1881. unsigned int bytes,
  1882. struct kvm_vcpu *vcpu)
  1883. {
  1884. struct kvm_io_device *mmio_dev;
  1885. gpa_t gpa;
  1886. if (vcpu->mmio_read_completed) {
  1887. memcpy(val, vcpu->mmio_data, bytes);
  1888. vcpu->mmio_read_completed = 0;
  1889. return X86EMUL_CONTINUE;
  1890. }
  1891. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1892. /* For APIC access vmexit */
  1893. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1894. goto mmio;
  1895. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  1896. == X86EMUL_CONTINUE)
  1897. return X86EMUL_CONTINUE;
  1898. if (gpa == UNMAPPED_GVA)
  1899. return X86EMUL_PROPAGATE_FAULT;
  1900. mmio:
  1901. /*
  1902. * Is this MMIO handled locally?
  1903. */
  1904. mutex_lock(&vcpu->kvm->lock);
  1905. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  1906. if (mmio_dev) {
  1907. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1908. mutex_unlock(&vcpu->kvm->lock);
  1909. return X86EMUL_CONTINUE;
  1910. }
  1911. mutex_unlock(&vcpu->kvm->lock);
  1912. vcpu->mmio_needed = 1;
  1913. vcpu->mmio_phys_addr = gpa;
  1914. vcpu->mmio_size = bytes;
  1915. vcpu->mmio_is_write = 0;
  1916. return X86EMUL_UNHANDLEABLE;
  1917. }
  1918. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1919. const void *val, int bytes)
  1920. {
  1921. int ret;
  1922. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1923. if (ret < 0)
  1924. return 0;
  1925. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  1926. return 1;
  1927. }
  1928. static int emulator_write_emulated_onepage(unsigned long addr,
  1929. const void *val,
  1930. unsigned int bytes,
  1931. struct kvm_vcpu *vcpu)
  1932. {
  1933. struct kvm_io_device *mmio_dev;
  1934. gpa_t gpa;
  1935. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1936. if (gpa == UNMAPPED_GVA) {
  1937. kvm_inject_page_fault(vcpu, addr, 2);
  1938. return X86EMUL_PROPAGATE_FAULT;
  1939. }
  1940. /* For APIC access vmexit */
  1941. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1942. goto mmio;
  1943. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1944. return X86EMUL_CONTINUE;
  1945. mmio:
  1946. /*
  1947. * Is this MMIO handled locally?
  1948. */
  1949. mutex_lock(&vcpu->kvm->lock);
  1950. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  1951. if (mmio_dev) {
  1952. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1953. mutex_unlock(&vcpu->kvm->lock);
  1954. return X86EMUL_CONTINUE;
  1955. }
  1956. mutex_unlock(&vcpu->kvm->lock);
  1957. vcpu->mmio_needed = 1;
  1958. vcpu->mmio_phys_addr = gpa;
  1959. vcpu->mmio_size = bytes;
  1960. vcpu->mmio_is_write = 1;
  1961. memcpy(vcpu->mmio_data, val, bytes);
  1962. return X86EMUL_CONTINUE;
  1963. }
  1964. int emulator_write_emulated(unsigned long addr,
  1965. const void *val,
  1966. unsigned int bytes,
  1967. struct kvm_vcpu *vcpu)
  1968. {
  1969. /* Crossing a page boundary? */
  1970. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1971. int rc, now;
  1972. now = -addr & ~PAGE_MASK;
  1973. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1974. if (rc != X86EMUL_CONTINUE)
  1975. return rc;
  1976. addr += now;
  1977. val += now;
  1978. bytes -= now;
  1979. }
  1980. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1981. }
  1982. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1983. static int emulator_cmpxchg_emulated(unsigned long addr,
  1984. const void *old,
  1985. const void *new,
  1986. unsigned int bytes,
  1987. struct kvm_vcpu *vcpu)
  1988. {
  1989. static int reported;
  1990. if (!reported) {
  1991. reported = 1;
  1992. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1993. }
  1994. #ifndef CONFIG_X86_64
  1995. /* guests cmpxchg8b have to be emulated atomically */
  1996. if (bytes == 8) {
  1997. gpa_t gpa;
  1998. struct page *page;
  1999. char *kaddr;
  2000. u64 val;
  2001. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2002. if (gpa == UNMAPPED_GVA ||
  2003. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2004. goto emul_write;
  2005. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2006. goto emul_write;
  2007. val = *(u64 *)new;
  2008. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2009. kaddr = kmap_atomic(page, KM_USER0);
  2010. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2011. kunmap_atomic(kaddr, KM_USER0);
  2012. kvm_release_page_dirty(page);
  2013. }
  2014. emul_write:
  2015. #endif
  2016. return emulator_write_emulated(addr, new, bytes, vcpu);
  2017. }
  2018. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2019. {
  2020. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2021. }
  2022. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2023. {
  2024. kvm_mmu_invlpg(vcpu, address);
  2025. return X86EMUL_CONTINUE;
  2026. }
  2027. int emulate_clts(struct kvm_vcpu *vcpu)
  2028. {
  2029. KVMTRACE_0D(CLTS, vcpu, handler);
  2030. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2031. return X86EMUL_CONTINUE;
  2032. }
  2033. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2034. {
  2035. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2036. switch (dr) {
  2037. case 0 ... 3:
  2038. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2039. return X86EMUL_CONTINUE;
  2040. default:
  2041. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2042. return X86EMUL_UNHANDLEABLE;
  2043. }
  2044. }
  2045. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2046. {
  2047. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2048. int exception;
  2049. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2050. if (exception) {
  2051. /* FIXME: better handling */
  2052. return X86EMUL_UNHANDLEABLE;
  2053. }
  2054. return X86EMUL_CONTINUE;
  2055. }
  2056. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2057. {
  2058. u8 opcodes[4];
  2059. unsigned long rip = kvm_rip_read(vcpu);
  2060. unsigned long rip_linear;
  2061. if (!printk_ratelimit())
  2062. return;
  2063. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2064. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2065. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2066. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2067. }
  2068. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2069. static struct x86_emulate_ops emulate_ops = {
  2070. .read_std = kvm_read_guest_virt,
  2071. .read_emulated = emulator_read_emulated,
  2072. .write_emulated = emulator_write_emulated,
  2073. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2074. };
  2075. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2076. {
  2077. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2078. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2079. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2080. vcpu->arch.regs_dirty = ~0;
  2081. }
  2082. int emulate_instruction(struct kvm_vcpu *vcpu,
  2083. struct kvm_run *run,
  2084. unsigned long cr2,
  2085. u16 error_code,
  2086. int emulation_type)
  2087. {
  2088. int r;
  2089. struct decode_cache *c;
  2090. kvm_clear_exception_queue(vcpu);
  2091. vcpu->arch.mmio_fault_cr2 = cr2;
  2092. /*
  2093. * TODO: fix x86_emulate.c to use guest_read/write_register
  2094. * instead of direct ->regs accesses, can save hundred cycles
  2095. * on Intel for instructions that don't read/change RSP, for
  2096. * for example.
  2097. */
  2098. cache_all_regs(vcpu);
  2099. vcpu->mmio_is_write = 0;
  2100. vcpu->arch.pio.string = 0;
  2101. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2102. int cs_db, cs_l;
  2103. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2104. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2105. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2106. vcpu->arch.emulate_ctxt.mode =
  2107. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2108. ? X86EMUL_MODE_REAL : cs_l
  2109. ? X86EMUL_MODE_PROT64 : cs_db
  2110. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2111. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2112. /* Reject the instructions other than VMCALL/VMMCALL when
  2113. * try to emulate invalid opcode */
  2114. c = &vcpu->arch.emulate_ctxt.decode;
  2115. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  2116. (!(c->twobyte && c->b == 0x01 &&
  2117. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  2118. c->modrm_mod == 3 && c->modrm_rm == 1)))
  2119. return EMULATE_FAIL;
  2120. ++vcpu->stat.insn_emulation;
  2121. if (r) {
  2122. ++vcpu->stat.insn_emulation_fail;
  2123. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2124. return EMULATE_DONE;
  2125. return EMULATE_FAIL;
  2126. }
  2127. }
  2128. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2129. if (vcpu->arch.pio.string)
  2130. return EMULATE_DO_MMIO;
  2131. if ((r || vcpu->mmio_is_write) && run) {
  2132. run->exit_reason = KVM_EXIT_MMIO;
  2133. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2134. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2135. run->mmio.len = vcpu->mmio_size;
  2136. run->mmio.is_write = vcpu->mmio_is_write;
  2137. }
  2138. if (r) {
  2139. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2140. return EMULATE_DONE;
  2141. if (!vcpu->mmio_needed) {
  2142. kvm_report_emulation_failure(vcpu, "mmio");
  2143. return EMULATE_FAIL;
  2144. }
  2145. return EMULATE_DO_MMIO;
  2146. }
  2147. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2148. if (vcpu->mmio_is_write) {
  2149. vcpu->mmio_needed = 0;
  2150. return EMULATE_DO_MMIO;
  2151. }
  2152. return EMULATE_DONE;
  2153. }
  2154. EXPORT_SYMBOL_GPL(emulate_instruction);
  2155. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2156. {
  2157. void *p = vcpu->arch.pio_data;
  2158. gva_t q = vcpu->arch.pio.guest_gva;
  2159. unsigned bytes;
  2160. int ret;
  2161. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2162. if (vcpu->arch.pio.in)
  2163. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2164. else
  2165. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2166. return ret;
  2167. }
  2168. int complete_pio(struct kvm_vcpu *vcpu)
  2169. {
  2170. struct kvm_pio_request *io = &vcpu->arch.pio;
  2171. long delta;
  2172. int r;
  2173. unsigned long val;
  2174. if (!io->string) {
  2175. if (io->in) {
  2176. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2177. memcpy(&val, vcpu->arch.pio_data, io->size);
  2178. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2179. }
  2180. } else {
  2181. if (io->in) {
  2182. r = pio_copy_data(vcpu);
  2183. if (r)
  2184. return r;
  2185. }
  2186. delta = 1;
  2187. if (io->rep) {
  2188. delta *= io->cur_count;
  2189. /*
  2190. * The size of the register should really depend on
  2191. * current address size.
  2192. */
  2193. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2194. val -= delta;
  2195. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2196. }
  2197. if (io->down)
  2198. delta = -delta;
  2199. delta *= io->size;
  2200. if (io->in) {
  2201. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2202. val += delta;
  2203. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2204. } else {
  2205. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2206. val += delta;
  2207. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2208. }
  2209. }
  2210. io->count -= io->cur_count;
  2211. io->cur_count = 0;
  2212. return 0;
  2213. }
  2214. static void kernel_pio(struct kvm_io_device *pio_dev,
  2215. struct kvm_vcpu *vcpu,
  2216. void *pd)
  2217. {
  2218. /* TODO: String I/O for in kernel device */
  2219. mutex_lock(&vcpu->kvm->lock);
  2220. if (vcpu->arch.pio.in)
  2221. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2222. vcpu->arch.pio.size,
  2223. pd);
  2224. else
  2225. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2226. vcpu->arch.pio.size,
  2227. pd);
  2228. mutex_unlock(&vcpu->kvm->lock);
  2229. }
  2230. static void pio_string_write(struct kvm_io_device *pio_dev,
  2231. struct kvm_vcpu *vcpu)
  2232. {
  2233. struct kvm_pio_request *io = &vcpu->arch.pio;
  2234. void *pd = vcpu->arch.pio_data;
  2235. int i;
  2236. mutex_lock(&vcpu->kvm->lock);
  2237. for (i = 0; i < io->cur_count; i++) {
  2238. kvm_iodevice_write(pio_dev, io->port,
  2239. io->size,
  2240. pd);
  2241. pd += io->size;
  2242. }
  2243. mutex_unlock(&vcpu->kvm->lock);
  2244. }
  2245. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2246. gpa_t addr, int len,
  2247. int is_write)
  2248. {
  2249. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2250. }
  2251. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2252. int size, unsigned port)
  2253. {
  2254. struct kvm_io_device *pio_dev;
  2255. unsigned long val;
  2256. vcpu->run->exit_reason = KVM_EXIT_IO;
  2257. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2258. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2259. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2260. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2261. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2262. vcpu->arch.pio.in = in;
  2263. vcpu->arch.pio.string = 0;
  2264. vcpu->arch.pio.down = 0;
  2265. vcpu->arch.pio.rep = 0;
  2266. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2267. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2268. handler);
  2269. else
  2270. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2271. handler);
  2272. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2273. memcpy(vcpu->arch.pio_data, &val, 4);
  2274. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2275. if (pio_dev) {
  2276. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2277. complete_pio(vcpu);
  2278. return 1;
  2279. }
  2280. return 0;
  2281. }
  2282. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2283. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2284. int size, unsigned long count, int down,
  2285. gva_t address, int rep, unsigned port)
  2286. {
  2287. unsigned now, in_page;
  2288. int ret = 0;
  2289. struct kvm_io_device *pio_dev;
  2290. vcpu->run->exit_reason = KVM_EXIT_IO;
  2291. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2292. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2293. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2294. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2295. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2296. vcpu->arch.pio.in = in;
  2297. vcpu->arch.pio.string = 1;
  2298. vcpu->arch.pio.down = down;
  2299. vcpu->arch.pio.rep = rep;
  2300. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2301. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2302. handler);
  2303. else
  2304. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2305. handler);
  2306. if (!count) {
  2307. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2308. return 1;
  2309. }
  2310. if (!down)
  2311. in_page = PAGE_SIZE - offset_in_page(address);
  2312. else
  2313. in_page = offset_in_page(address) + size;
  2314. now = min(count, (unsigned long)in_page / size);
  2315. if (!now)
  2316. now = 1;
  2317. if (down) {
  2318. /*
  2319. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2320. */
  2321. pr_unimpl(vcpu, "guest string pio down\n");
  2322. kvm_inject_gp(vcpu, 0);
  2323. return 1;
  2324. }
  2325. vcpu->run->io.count = now;
  2326. vcpu->arch.pio.cur_count = now;
  2327. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2328. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2329. vcpu->arch.pio.guest_gva = address;
  2330. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2331. vcpu->arch.pio.cur_count,
  2332. !vcpu->arch.pio.in);
  2333. if (!vcpu->arch.pio.in) {
  2334. /* string PIO write */
  2335. ret = pio_copy_data(vcpu);
  2336. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2337. kvm_inject_gp(vcpu, 0);
  2338. return 1;
  2339. }
  2340. if (ret == 0 && pio_dev) {
  2341. pio_string_write(pio_dev, vcpu);
  2342. complete_pio(vcpu);
  2343. if (vcpu->arch.pio.count == 0)
  2344. ret = 1;
  2345. }
  2346. } else if (pio_dev)
  2347. pr_unimpl(vcpu, "no string pio read support yet, "
  2348. "port %x size %d count %ld\n",
  2349. port, size, count);
  2350. return ret;
  2351. }
  2352. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2353. static void bounce_off(void *info)
  2354. {
  2355. /* nothing */
  2356. }
  2357. static unsigned int ref_freq;
  2358. static unsigned long tsc_khz_ref;
  2359. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2360. void *data)
  2361. {
  2362. struct cpufreq_freqs *freq = data;
  2363. struct kvm *kvm;
  2364. struct kvm_vcpu *vcpu;
  2365. int i, send_ipi = 0;
  2366. if (!ref_freq)
  2367. ref_freq = freq->old;
  2368. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2369. return 0;
  2370. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2371. return 0;
  2372. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2373. spin_lock(&kvm_lock);
  2374. list_for_each_entry(kvm, &vm_list, vm_list) {
  2375. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2376. vcpu = kvm->vcpus[i];
  2377. if (!vcpu)
  2378. continue;
  2379. if (vcpu->cpu != freq->cpu)
  2380. continue;
  2381. if (!kvm_request_guest_time_update(vcpu))
  2382. continue;
  2383. if (vcpu->cpu != smp_processor_id())
  2384. send_ipi++;
  2385. }
  2386. }
  2387. spin_unlock(&kvm_lock);
  2388. if (freq->old < freq->new && send_ipi) {
  2389. /*
  2390. * We upscale the frequency. Must make the guest
  2391. * doesn't see old kvmclock values while running with
  2392. * the new frequency, otherwise we risk the guest sees
  2393. * time go backwards.
  2394. *
  2395. * In case we update the frequency for another cpu
  2396. * (which might be in guest context) send an interrupt
  2397. * to kick the cpu out of guest context. Next time
  2398. * guest context is entered kvmclock will be updated,
  2399. * so the guest will not see stale values.
  2400. */
  2401. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2402. }
  2403. return 0;
  2404. }
  2405. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2406. .notifier_call = kvmclock_cpufreq_notifier
  2407. };
  2408. int kvm_arch_init(void *opaque)
  2409. {
  2410. int r, cpu;
  2411. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2412. if (kvm_x86_ops) {
  2413. printk(KERN_ERR "kvm: already loaded the other module\n");
  2414. r = -EEXIST;
  2415. goto out;
  2416. }
  2417. if (!ops->cpu_has_kvm_support()) {
  2418. printk(KERN_ERR "kvm: no hardware support\n");
  2419. r = -EOPNOTSUPP;
  2420. goto out;
  2421. }
  2422. if (ops->disabled_by_bios()) {
  2423. printk(KERN_ERR "kvm: disabled by bios\n");
  2424. r = -EOPNOTSUPP;
  2425. goto out;
  2426. }
  2427. r = kvm_mmu_module_init();
  2428. if (r)
  2429. goto out;
  2430. kvm_init_msr_list();
  2431. kvm_x86_ops = ops;
  2432. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2433. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2434. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2435. PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
  2436. for_each_possible_cpu(cpu)
  2437. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2438. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2439. tsc_khz_ref = tsc_khz;
  2440. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2441. CPUFREQ_TRANSITION_NOTIFIER);
  2442. }
  2443. return 0;
  2444. out:
  2445. return r;
  2446. }
  2447. void kvm_arch_exit(void)
  2448. {
  2449. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2450. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2451. CPUFREQ_TRANSITION_NOTIFIER);
  2452. kvm_x86_ops = NULL;
  2453. kvm_mmu_module_exit();
  2454. }
  2455. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2456. {
  2457. ++vcpu->stat.halt_exits;
  2458. KVMTRACE_0D(HLT, vcpu, handler);
  2459. if (irqchip_in_kernel(vcpu->kvm)) {
  2460. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2461. return 1;
  2462. } else {
  2463. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2464. return 0;
  2465. }
  2466. }
  2467. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2468. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2469. unsigned long a1)
  2470. {
  2471. if (is_long_mode(vcpu))
  2472. return a0;
  2473. else
  2474. return a0 | ((gpa_t)a1 << 32);
  2475. }
  2476. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2477. {
  2478. unsigned long nr, a0, a1, a2, a3, ret;
  2479. int r = 1;
  2480. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2481. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2482. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2483. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2484. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2485. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2486. if (!is_long_mode(vcpu)) {
  2487. nr &= 0xFFFFFFFF;
  2488. a0 &= 0xFFFFFFFF;
  2489. a1 &= 0xFFFFFFFF;
  2490. a2 &= 0xFFFFFFFF;
  2491. a3 &= 0xFFFFFFFF;
  2492. }
  2493. switch (nr) {
  2494. case KVM_HC_VAPIC_POLL_IRQ:
  2495. ret = 0;
  2496. break;
  2497. case KVM_HC_MMU_OP:
  2498. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2499. break;
  2500. default:
  2501. ret = -KVM_ENOSYS;
  2502. break;
  2503. }
  2504. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2505. ++vcpu->stat.hypercalls;
  2506. return r;
  2507. }
  2508. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2509. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2510. {
  2511. char instruction[3];
  2512. int ret = 0;
  2513. unsigned long rip = kvm_rip_read(vcpu);
  2514. /*
  2515. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2516. * to ensure that the updated hypercall appears atomically across all
  2517. * VCPUs.
  2518. */
  2519. kvm_mmu_zap_all(vcpu->kvm);
  2520. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2521. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2522. != X86EMUL_CONTINUE)
  2523. ret = -EFAULT;
  2524. return ret;
  2525. }
  2526. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2527. {
  2528. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2529. }
  2530. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2531. {
  2532. struct descriptor_table dt = { limit, base };
  2533. kvm_x86_ops->set_gdt(vcpu, &dt);
  2534. }
  2535. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2536. {
  2537. struct descriptor_table dt = { limit, base };
  2538. kvm_x86_ops->set_idt(vcpu, &dt);
  2539. }
  2540. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2541. unsigned long *rflags)
  2542. {
  2543. kvm_lmsw(vcpu, msw);
  2544. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2545. }
  2546. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2547. {
  2548. unsigned long value;
  2549. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2550. switch (cr) {
  2551. case 0:
  2552. value = vcpu->arch.cr0;
  2553. break;
  2554. case 2:
  2555. value = vcpu->arch.cr2;
  2556. break;
  2557. case 3:
  2558. value = vcpu->arch.cr3;
  2559. break;
  2560. case 4:
  2561. value = vcpu->arch.cr4;
  2562. break;
  2563. case 8:
  2564. value = kvm_get_cr8(vcpu);
  2565. break;
  2566. default:
  2567. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2568. return 0;
  2569. }
  2570. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2571. (u32)((u64)value >> 32), handler);
  2572. return value;
  2573. }
  2574. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2575. unsigned long *rflags)
  2576. {
  2577. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2578. (u32)((u64)val >> 32), handler);
  2579. switch (cr) {
  2580. case 0:
  2581. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2582. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2583. break;
  2584. case 2:
  2585. vcpu->arch.cr2 = val;
  2586. break;
  2587. case 3:
  2588. kvm_set_cr3(vcpu, val);
  2589. break;
  2590. case 4:
  2591. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2592. break;
  2593. case 8:
  2594. kvm_set_cr8(vcpu, val & 0xfUL);
  2595. break;
  2596. default:
  2597. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2598. }
  2599. }
  2600. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2601. {
  2602. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2603. int j, nent = vcpu->arch.cpuid_nent;
  2604. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2605. /* when no next entry is found, the current entry[i] is reselected */
  2606. for (j = i + 1; ; j = (j + 1) % nent) {
  2607. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2608. if (ej->function == e->function) {
  2609. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2610. return j;
  2611. }
  2612. }
  2613. return 0; /* silence gcc, even though control never reaches here */
  2614. }
  2615. /* find an entry with matching function, matching index (if needed), and that
  2616. * should be read next (if it's stateful) */
  2617. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2618. u32 function, u32 index)
  2619. {
  2620. if (e->function != function)
  2621. return 0;
  2622. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2623. return 0;
  2624. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2625. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2626. return 0;
  2627. return 1;
  2628. }
  2629. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2630. u32 function, u32 index)
  2631. {
  2632. int i;
  2633. struct kvm_cpuid_entry2 *best = NULL;
  2634. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2635. struct kvm_cpuid_entry2 *e;
  2636. e = &vcpu->arch.cpuid_entries[i];
  2637. if (is_matching_cpuid_entry(e, function, index)) {
  2638. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2639. move_to_next_stateful_cpuid_entry(vcpu, i);
  2640. best = e;
  2641. break;
  2642. }
  2643. /*
  2644. * Both basic or both extended?
  2645. */
  2646. if (((e->function ^ function) & 0x80000000) == 0)
  2647. if (!best || e->function > best->function)
  2648. best = e;
  2649. }
  2650. return best;
  2651. }
  2652. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  2653. {
  2654. struct kvm_cpuid_entry2 *best;
  2655. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  2656. if (best)
  2657. return best->eax & 0xff;
  2658. return 36;
  2659. }
  2660. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2661. {
  2662. u32 function, index;
  2663. struct kvm_cpuid_entry2 *best;
  2664. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2665. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2666. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2667. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2668. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2669. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2670. best = kvm_find_cpuid_entry(vcpu, function, index);
  2671. if (best) {
  2672. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2673. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2674. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2675. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2676. }
  2677. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2678. KVMTRACE_5D(CPUID, vcpu, function,
  2679. (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
  2680. (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
  2681. (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
  2682. (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
  2683. }
  2684. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2685. /*
  2686. * Check if userspace requested an interrupt window, and that the
  2687. * interrupt window is open.
  2688. *
  2689. * No need to exit to userspace if we already have an interrupt queued.
  2690. */
  2691. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2692. struct kvm_run *kvm_run)
  2693. {
  2694. return (!vcpu->arch.irq_summary &&
  2695. kvm_run->request_interrupt_window &&
  2696. vcpu->arch.interrupt_window_open &&
  2697. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2698. }
  2699. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2700. struct kvm_run *kvm_run)
  2701. {
  2702. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2703. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2704. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2705. if (irqchip_in_kernel(vcpu->kvm))
  2706. kvm_run->ready_for_interrupt_injection = 1;
  2707. else
  2708. kvm_run->ready_for_interrupt_injection =
  2709. (vcpu->arch.interrupt_window_open &&
  2710. vcpu->arch.irq_summary == 0);
  2711. }
  2712. static void vapic_enter(struct kvm_vcpu *vcpu)
  2713. {
  2714. struct kvm_lapic *apic = vcpu->arch.apic;
  2715. struct page *page;
  2716. if (!apic || !apic->vapic_addr)
  2717. return;
  2718. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2719. vcpu->arch.apic->vapic_page = page;
  2720. }
  2721. static void vapic_exit(struct kvm_vcpu *vcpu)
  2722. {
  2723. struct kvm_lapic *apic = vcpu->arch.apic;
  2724. if (!apic || !apic->vapic_addr)
  2725. return;
  2726. down_read(&vcpu->kvm->slots_lock);
  2727. kvm_release_page_dirty(apic->vapic_page);
  2728. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2729. up_read(&vcpu->kvm->slots_lock);
  2730. }
  2731. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2732. {
  2733. int r;
  2734. if (vcpu->requests)
  2735. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2736. kvm_mmu_unload(vcpu);
  2737. r = kvm_mmu_reload(vcpu);
  2738. if (unlikely(r))
  2739. goto out;
  2740. if (vcpu->requests) {
  2741. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2742. __kvm_migrate_timers(vcpu);
  2743. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  2744. kvm_write_guest_time(vcpu);
  2745. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  2746. kvm_mmu_sync_roots(vcpu);
  2747. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2748. kvm_x86_ops->tlb_flush(vcpu);
  2749. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2750. &vcpu->requests)) {
  2751. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2752. r = 0;
  2753. goto out;
  2754. }
  2755. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2756. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2757. r = 0;
  2758. goto out;
  2759. }
  2760. }
  2761. preempt_disable();
  2762. kvm_x86_ops->prepare_guest_switch(vcpu);
  2763. kvm_load_guest_fpu(vcpu);
  2764. local_irq_disable();
  2765. if (vcpu->requests || need_resched() || signal_pending(current)) {
  2766. local_irq_enable();
  2767. preempt_enable();
  2768. r = 1;
  2769. goto out;
  2770. }
  2771. vcpu->guest_mode = 1;
  2772. /*
  2773. * Make sure that guest_mode assignment won't happen after
  2774. * testing the pending IRQ vector bitmap.
  2775. */
  2776. smp_wmb();
  2777. if (vcpu->arch.exception.pending)
  2778. __queue_exception(vcpu);
  2779. else if (irqchip_in_kernel(vcpu->kvm))
  2780. kvm_x86_ops->inject_pending_irq(vcpu);
  2781. else
  2782. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2783. kvm_lapic_sync_to_vapic(vcpu);
  2784. up_read(&vcpu->kvm->slots_lock);
  2785. kvm_guest_enter();
  2786. get_debugreg(vcpu->arch.host_dr6, 6);
  2787. get_debugreg(vcpu->arch.host_dr7, 7);
  2788. if (unlikely(vcpu->arch.switch_db_regs)) {
  2789. get_debugreg(vcpu->arch.host_db[0], 0);
  2790. get_debugreg(vcpu->arch.host_db[1], 1);
  2791. get_debugreg(vcpu->arch.host_db[2], 2);
  2792. get_debugreg(vcpu->arch.host_db[3], 3);
  2793. set_debugreg(0, 7);
  2794. set_debugreg(vcpu->arch.eff_db[0], 0);
  2795. set_debugreg(vcpu->arch.eff_db[1], 1);
  2796. set_debugreg(vcpu->arch.eff_db[2], 2);
  2797. set_debugreg(vcpu->arch.eff_db[3], 3);
  2798. }
  2799. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2800. kvm_x86_ops->run(vcpu, kvm_run);
  2801. if (unlikely(vcpu->arch.switch_db_regs)) {
  2802. set_debugreg(0, 7);
  2803. set_debugreg(vcpu->arch.host_db[0], 0);
  2804. set_debugreg(vcpu->arch.host_db[1], 1);
  2805. set_debugreg(vcpu->arch.host_db[2], 2);
  2806. set_debugreg(vcpu->arch.host_db[3], 3);
  2807. }
  2808. set_debugreg(vcpu->arch.host_dr6, 6);
  2809. set_debugreg(vcpu->arch.host_dr7, 7);
  2810. vcpu->guest_mode = 0;
  2811. local_irq_enable();
  2812. ++vcpu->stat.exits;
  2813. /*
  2814. * We must have an instruction between local_irq_enable() and
  2815. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2816. * the interrupt shadow. The stat.exits increment will do nicely.
  2817. * But we need to prevent reordering, hence this barrier():
  2818. */
  2819. barrier();
  2820. kvm_guest_exit();
  2821. preempt_enable();
  2822. down_read(&vcpu->kvm->slots_lock);
  2823. /*
  2824. * Profile KVM exit RIPs:
  2825. */
  2826. if (unlikely(prof_on == KVM_PROFILING)) {
  2827. unsigned long rip = kvm_rip_read(vcpu);
  2828. profile_hit(KVM_PROFILING, (void *)rip);
  2829. }
  2830. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2831. vcpu->arch.exception.pending = false;
  2832. kvm_lapic_sync_from_vapic(vcpu);
  2833. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2834. out:
  2835. return r;
  2836. }
  2837. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2838. {
  2839. int r;
  2840. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2841. pr_debug("vcpu %d received sipi with vector # %x\n",
  2842. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2843. kvm_lapic_reset(vcpu);
  2844. r = kvm_arch_vcpu_reset(vcpu);
  2845. if (r)
  2846. return r;
  2847. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2848. }
  2849. down_read(&vcpu->kvm->slots_lock);
  2850. vapic_enter(vcpu);
  2851. r = 1;
  2852. while (r > 0) {
  2853. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  2854. r = vcpu_enter_guest(vcpu, kvm_run);
  2855. else {
  2856. up_read(&vcpu->kvm->slots_lock);
  2857. kvm_vcpu_block(vcpu);
  2858. down_read(&vcpu->kvm->slots_lock);
  2859. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  2860. {
  2861. switch(vcpu->arch.mp_state) {
  2862. case KVM_MP_STATE_HALTED:
  2863. vcpu->arch.mp_state =
  2864. KVM_MP_STATE_RUNNABLE;
  2865. case KVM_MP_STATE_RUNNABLE:
  2866. break;
  2867. case KVM_MP_STATE_SIPI_RECEIVED:
  2868. default:
  2869. r = -EINTR;
  2870. break;
  2871. }
  2872. }
  2873. }
  2874. if (r <= 0)
  2875. break;
  2876. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2877. if (kvm_cpu_has_pending_timer(vcpu))
  2878. kvm_inject_pending_timer_irqs(vcpu);
  2879. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2880. r = -EINTR;
  2881. kvm_run->exit_reason = KVM_EXIT_INTR;
  2882. ++vcpu->stat.request_irq_exits;
  2883. }
  2884. if (signal_pending(current)) {
  2885. r = -EINTR;
  2886. kvm_run->exit_reason = KVM_EXIT_INTR;
  2887. ++vcpu->stat.signal_exits;
  2888. }
  2889. if (need_resched()) {
  2890. up_read(&vcpu->kvm->slots_lock);
  2891. kvm_resched(vcpu);
  2892. down_read(&vcpu->kvm->slots_lock);
  2893. }
  2894. }
  2895. up_read(&vcpu->kvm->slots_lock);
  2896. post_kvm_run_save(vcpu, kvm_run);
  2897. vapic_exit(vcpu);
  2898. return r;
  2899. }
  2900. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2901. {
  2902. int r;
  2903. sigset_t sigsaved;
  2904. vcpu_load(vcpu);
  2905. if (vcpu->sigset_active)
  2906. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2907. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  2908. kvm_vcpu_block(vcpu);
  2909. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  2910. r = -EAGAIN;
  2911. goto out;
  2912. }
  2913. /* re-sync apic's tpr */
  2914. if (!irqchip_in_kernel(vcpu->kvm))
  2915. kvm_set_cr8(vcpu, kvm_run->cr8);
  2916. if (vcpu->arch.pio.cur_count) {
  2917. r = complete_pio(vcpu);
  2918. if (r)
  2919. goto out;
  2920. }
  2921. #if CONFIG_HAS_IOMEM
  2922. if (vcpu->mmio_needed) {
  2923. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2924. vcpu->mmio_read_completed = 1;
  2925. vcpu->mmio_needed = 0;
  2926. down_read(&vcpu->kvm->slots_lock);
  2927. r = emulate_instruction(vcpu, kvm_run,
  2928. vcpu->arch.mmio_fault_cr2, 0,
  2929. EMULTYPE_NO_DECODE);
  2930. up_read(&vcpu->kvm->slots_lock);
  2931. if (r == EMULATE_DO_MMIO) {
  2932. /*
  2933. * Read-modify-write. Back to userspace.
  2934. */
  2935. r = 0;
  2936. goto out;
  2937. }
  2938. }
  2939. #endif
  2940. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  2941. kvm_register_write(vcpu, VCPU_REGS_RAX,
  2942. kvm_run->hypercall.ret);
  2943. r = __vcpu_run(vcpu, kvm_run);
  2944. out:
  2945. if (vcpu->sigset_active)
  2946. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2947. vcpu_put(vcpu);
  2948. return r;
  2949. }
  2950. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2951. {
  2952. vcpu_load(vcpu);
  2953. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2954. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2955. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2956. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2957. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2958. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2959. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  2960. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  2961. #ifdef CONFIG_X86_64
  2962. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  2963. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  2964. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  2965. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  2966. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  2967. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  2968. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  2969. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  2970. #endif
  2971. regs->rip = kvm_rip_read(vcpu);
  2972. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2973. /*
  2974. * Don't leak debug flags in case they were set for guest debugging
  2975. */
  2976. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2977. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2978. vcpu_put(vcpu);
  2979. return 0;
  2980. }
  2981. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2982. {
  2983. vcpu_load(vcpu);
  2984. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  2985. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  2986. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  2987. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  2988. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  2989. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  2990. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  2991. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  2992. #ifdef CONFIG_X86_64
  2993. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  2994. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  2995. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  2996. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  2997. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  2998. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  2999. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3000. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3001. #endif
  3002. kvm_rip_write(vcpu, regs->rip);
  3003. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3004. vcpu->arch.exception.pending = false;
  3005. vcpu_put(vcpu);
  3006. return 0;
  3007. }
  3008. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3009. struct kvm_segment *var, int seg)
  3010. {
  3011. kvm_x86_ops->get_segment(vcpu, var, seg);
  3012. }
  3013. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3014. {
  3015. struct kvm_segment cs;
  3016. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3017. *db = cs.db;
  3018. *l = cs.l;
  3019. }
  3020. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3021. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3022. struct kvm_sregs *sregs)
  3023. {
  3024. struct descriptor_table dt;
  3025. int pending_vec;
  3026. vcpu_load(vcpu);
  3027. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3028. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3029. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3030. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3031. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3032. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3033. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3034. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3035. kvm_x86_ops->get_idt(vcpu, &dt);
  3036. sregs->idt.limit = dt.limit;
  3037. sregs->idt.base = dt.base;
  3038. kvm_x86_ops->get_gdt(vcpu, &dt);
  3039. sregs->gdt.limit = dt.limit;
  3040. sregs->gdt.base = dt.base;
  3041. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3042. sregs->cr0 = vcpu->arch.cr0;
  3043. sregs->cr2 = vcpu->arch.cr2;
  3044. sregs->cr3 = vcpu->arch.cr3;
  3045. sregs->cr4 = vcpu->arch.cr4;
  3046. sregs->cr8 = kvm_get_cr8(vcpu);
  3047. sregs->efer = vcpu->arch.shadow_efer;
  3048. sregs->apic_base = kvm_get_apic_base(vcpu);
  3049. if (irqchip_in_kernel(vcpu->kvm)) {
  3050. memset(sregs->interrupt_bitmap, 0,
  3051. sizeof sregs->interrupt_bitmap);
  3052. pending_vec = kvm_x86_ops->get_irq(vcpu);
  3053. if (pending_vec >= 0)
  3054. set_bit(pending_vec,
  3055. (unsigned long *)sregs->interrupt_bitmap);
  3056. } else
  3057. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  3058. sizeof sregs->interrupt_bitmap);
  3059. vcpu_put(vcpu);
  3060. return 0;
  3061. }
  3062. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3063. struct kvm_mp_state *mp_state)
  3064. {
  3065. vcpu_load(vcpu);
  3066. mp_state->mp_state = vcpu->arch.mp_state;
  3067. vcpu_put(vcpu);
  3068. return 0;
  3069. }
  3070. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3071. struct kvm_mp_state *mp_state)
  3072. {
  3073. vcpu_load(vcpu);
  3074. vcpu->arch.mp_state = mp_state->mp_state;
  3075. vcpu_put(vcpu);
  3076. return 0;
  3077. }
  3078. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3079. struct kvm_segment *var, int seg)
  3080. {
  3081. kvm_x86_ops->set_segment(vcpu, var, seg);
  3082. }
  3083. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3084. struct kvm_segment *kvm_desct)
  3085. {
  3086. kvm_desct->base = seg_desc->base0;
  3087. kvm_desct->base |= seg_desc->base1 << 16;
  3088. kvm_desct->base |= seg_desc->base2 << 24;
  3089. kvm_desct->limit = seg_desc->limit0;
  3090. kvm_desct->limit |= seg_desc->limit << 16;
  3091. if (seg_desc->g) {
  3092. kvm_desct->limit <<= 12;
  3093. kvm_desct->limit |= 0xfff;
  3094. }
  3095. kvm_desct->selector = selector;
  3096. kvm_desct->type = seg_desc->type;
  3097. kvm_desct->present = seg_desc->p;
  3098. kvm_desct->dpl = seg_desc->dpl;
  3099. kvm_desct->db = seg_desc->d;
  3100. kvm_desct->s = seg_desc->s;
  3101. kvm_desct->l = seg_desc->l;
  3102. kvm_desct->g = seg_desc->g;
  3103. kvm_desct->avl = seg_desc->avl;
  3104. if (!selector)
  3105. kvm_desct->unusable = 1;
  3106. else
  3107. kvm_desct->unusable = 0;
  3108. kvm_desct->padding = 0;
  3109. }
  3110. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3111. u16 selector,
  3112. struct descriptor_table *dtable)
  3113. {
  3114. if (selector & 1 << 2) {
  3115. struct kvm_segment kvm_seg;
  3116. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3117. if (kvm_seg.unusable)
  3118. dtable->limit = 0;
  3119. else
  3120. dtable->limit = kvm_seg.limit;
  3121. dtable->base = kvm_seg.base;
  3122. }
  3123. else
  3124. kvm_x86_ops->get_gdt(vcpu, dtable);
  3125. }
  3126. /* allowed just for 8 bytes segments */
  3127. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3128. struct desc_struct *seg_desc)
  3129. {
  3130. gpa_t gpa;
  3131. struct descriptor_table dtable;
  3132. u16 index = selector >> 3;
  3133. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3134. if (dtable.limit < index * 8 + 7) {
  3135. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3136. return 1;
  3137. }
  3138. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3139. gpa += index * 8;
  3140. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  3141. }
  3142. /* allowed just for 8 bytes segments */
  3143. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3144. struct desc_struct *seg_desc)
  3145. {
  3146. gpa_t gpa;
  3147. struct descriptor_table dtable;
  3148. u16 index = selector >> 3;
  3149. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3150. if (dtable.limit < index * 8 + 7)
  3151. return 1;
  3152. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3153. gpa += index * 8;
  3154. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  3155. }
  3156. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  3157. struct desc_struct *seg_desc)
  3158. {
  3159. u32 base_addr;
  3160. base_addr = seg_desc->base0;
  3161. base_addr |= (seg_desc->base1 << 16);
  3162. base_addr |= (seg_desc->base2 << 24);
  3163. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3164. }
  3165. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3166. {
  3167. struct kvm_segment kvm_seg;
  3168. kvm_get_segment(vcpu, &kvm_seg, seg);
  3169. return kvm_seg.selector;
  3170. }
  3171. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3172. u16 selector,
  3173. struct kvm_segment *kvm_seg)
  3174. {
  3175. struct desc_struct seg_desc;
  3176. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3177. return 1;
  3178. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3179. return 0;
  3180. }
  3181. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3182. {
  3183. struct kvm_segment segvar = {
  3184. .base = selector << 4,
  3185. .limit = 0xffff,
  3186. .selector = selector,
  3187. .type = 3,
  3188. .present = 1,
  3189. .dpl = 3,
  3190. .db = 0,
  3191. .s = 1,
  3192. .l = 0,
  3193. .g = 0,
  3194. .avl = 0,
  3195. .unusable = 0,
  3196. };
  3197. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3198. return 0;
  3199. }
  3200. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3201. int type_bits, int seg)
  3202. {
  3203. struct kvm_segment kvm_seg;
  3204. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3205. return kvm_load_realmode_segment(vcpu, selector, seg);
  3206. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3207. return 1;
  3208. kvm_seg.type |= type_bits;
  3209. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3210. seg != VCPU_SREG_LDTR)
  3211. if (!kvm_seg.s)
  3212. kvm_seg.unusable = 1;
  3213. kvm_set_segment(vcpu, &kvm_seg, seg);
  3214. return 0;
  3215. }
  3216. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3217. struct tss_segment_32 *tss)
  3218. {
  3219. tss->cr3 = vcpu->arch.cr3;
  3220. tss->eip = kvm_rip_read(vcpu);
  3221. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3222. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3223. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3224. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3225. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3226. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3227. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3228. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3229. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3230. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3231. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3232. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3233. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3234. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3235. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3236. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3237. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3238. }
  3239. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3240. struct tss_segment_32 *tss)
  3241. {
  3242. kvm_set_cr3(vcpu, tss->cr3);
  3243. kvm_rip_write(vcpu, tss->eip);
  3244. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3245. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3246. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3247. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3248. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3249. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3250. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3251. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3252. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3253. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3254. return 1;
  3255. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3256. return 1;
  3257. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3258. return 1;
  3259. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3260. return 1;
  3261. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3262. return 1;
  3263. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3264. return 1;
  3265. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3266. return 1;
  3267. return 0;
  3268. }
  3269. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3270. struct tss_segment_16 *tss)
  3271. {
  3272. tss->ip = kvm_rip_read(vcpu);
  3273. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3274. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3275. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3276. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3277. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3278. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3279. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3280. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3281. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3282. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3283. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3284. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3285. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3286. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3287. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3288. }
  3289. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3290. struct tss_segment_16 *tss)
  3291. {
  3292. kvm_rip_write(vcpu, tss->ip);
  3293. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3294. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3295. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3296. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3297. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3298. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3299. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3300. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3301. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3302. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3303. return 1;
  3304. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3305. return 1;
  3306. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3307. return 1;
  3308. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3309. return 1;
  3310. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3311. return 1;
  3312. return 0;
  3313. }
  3314. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3315. u32 old_tss_base,
  3316. struct desc_struct *nseg_desc)
  3317. {
  3318. struct tss_segment_16 tss_segment_16;
  3319. int ret = 0;
  3320. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3321. sizeof tss_segment_16))
  3322. goto out;
  3323. save_state_to_tss16(vcpu, &tss_segment_16);
  3324. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3325. sizeof tss_segment_16))
  3326. goto out;
  3327. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3328. &tss_segment_16, sizeof tss_segment_16))
  3329. goto out;
  3330. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3331. goto out;
  3332. ret = 1;
  3333. out:
  3334. return ret;
  3335. }
  3336. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3337. u32 old_tss_base,
  3338. struct desc_struct *nseg_desc)
  3339. {
  3340. struct tss_segment_32 tss_segment_32;
  3341. int ret = 0;
  3342. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3343. sizeof tss_segment_32))
  3344. goto out;
  3345. save_state_to_tss32(vcpu, &tss_segment_32);
  3346. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3347. sizeof tss_segment_32))
  3348. goto out;
  3349. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3350. &tss_segment_32, sizeof tss_segment_32))
  3351. goto out;
  3352. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3353. goto out;
  3354. ret = 1;
  3355. out:
  3356. return ret;
  3357. }
  3358. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3359. {
  3360. struct kvm_segment tr_seg;
  3361. struct desc_struct cseg_desc;
  3362. struct desc_struct nseg_desc;
  3363. int ret = 0;
  3364. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3365. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3366. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3367. /* FIXME: Handle errors. Failure to read either TSS or their
  3368. * descriptors should generate a pagefault.
  3369. */
  3370. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3371. goto out;
  3372. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3373. goto out;
  3374. if (reason != TASK_SWITCH_IRET) {
  3375. int cpl;
  3376. cpl = kvm_x86_ops->get_cpl(vcpu);
  3377. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3378. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3379. return 1;
  3380. }
  3381. }
  3382. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3383. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3384. return 1;
  3385. }
  3386. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3387. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3388. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3389. }
  3390. if (reason == TASK_SWITCH_IRET) {
  3391. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3392. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3393. }
  3394. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3395. if (nseg_desc.type & 8)
  3396. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
  3397. &nseg_desc);
  3398. else
  3399. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
  3400. &nseg_desc);
  3401. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3402. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3403. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3404. }
  3405. if (reason != TASK_SWITCH_IRET) {
  3406. nseg_desc.type |= (1 << 1);
  3407. save_guest_segment_descriptor(vcpu, tss_selector,
  3408. &nseg_desc);
  3409. }
  3410. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3411. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3412. tr_seg.type = 11;
  3413. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3414. out:
  3415. return ret;
  3416. }
  3417. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3418. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3419. struct kvm_sregs *sregs)
  3420. {
  3421. int mmu_reset_needed = 0;
  3422. int i, pending_vec, max_bits;
  3423. struct descriptor_table dt;
  3424. vcpu_load(vcpu);
  3425. dt.limit = sregs->idt.limit;
  3426. dt.base = sregs->idt.base;
  3427. kvm_x86_ops->set_idt(vcpu, &dt);
  3428. dt.limit = sregs->gdt.limit;
  3429. dt.base = sregs->gdt.base;
  3430. kvm_x86_ops->set_gdt(vcpu, &dt);
  3431. vcpu->arch.cr2 = sregs->cr2;
  3432. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3433. vcpu->arch.cr3 = sregs->cr3;
  3434. kvm_set_cr8(vcpu, sregs->cr8);
  3435. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3436. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3437. kvm_set_apic_base(vcpu, sregs->apic_base);
  3438. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3439. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3440. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3441. vcpu->arch.cr0 = sregs->cr0;
  3442. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3443. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3444. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3445. load_pdptrs(vcpu, vcpu->arch.cr3);
  3446. if (mmu_reset_needed)
  3447. kvm_mmu_reset_context(vcpu);
  3448. if (!irqchip_in_kernel(vcpu->kvm)) {
  3449. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3450. sizeof vcpu->arch.irq_pending);
  3451. vcpu->arch.irq_summary = 0;
  3452. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3453. if (vcpu->arch.irq_pending[i])
  3454. __set_bit(i, &vcpu->arch.irq_summary);
  3455. } else {
  3456. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3457. pending_vec = find_first_bit(
  3458. (const unsigned long *)sregs->interrupt_bitmap,
  3459. max_bits);
  3460. /* Only pending external irq is handled here */
  3461. if (pending_vec < max_bits) {
  3462. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3463. pr_debug("Set back pending irq %d\n",
  3464. pending_vec);
  3465. }
  3466. kvm_pic_clear_isr_ack(vcpu->kvm);
  3467. }
  3468. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3469. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3470. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3471. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3472. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3473. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3474. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3475. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3476. /* Older userspace won't unhalt the vcpu on reset. */
  3477. if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
  3478. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3479. !(vcpu->arch.cr0 & X86_CR0_PE))
  3480. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3481. vcpu_put(vcpu);
  3482. return 0;
  3483. }
  3484. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3485. struct kvm_guest_debug *dbg)
  3486. {
  3487. int i, r;
  3488. vcpu_load(vcpu);
  3489. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3490. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3491. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3492. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3493. vcpu->arch.switch_db_regs =
  3494. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3495. } else {
  3496. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3497. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3498. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3499. }
  3500. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3501. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3502. kvm_queue_exception(vcpu, DB_VECTOR);
  3503. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3504. kvm_queue_exception(vcpu, BP_VECTOR);
  3505. vcpu_put(vcpu);
  3506. return r;
  3507. }
  3508. /*
  3509. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3510. * we have asm/x86/processor.h
  3511. */
  3512. struct fxsave {
  3513. u16 cwd;
  3514. u16 swd;
  3515. u16 twd;
  3516. u16 fop;
  3517. u64 rip;
  3518. u64 rdp;
  3519. u32 mxcsr;
  3520. u32 mxcsr_mask;
  3521. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3522. #ifdef CONFIG_X86_64
  3523. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3524. #else
  3525. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3526. #endif
  3527. };
  3528. /*
  3529. * Translate a guest virtual address to a guest physical address.
  3530. */
  3531. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3532. struct kvm_translation *tr)
  3533. {
  3534. unsigned long vaddr = tr->linear_address;
  3535. gpa_t gpa;
  3536. vcpu_load(vcpu);
  3537. down_read(&vcpu->kvm->slots_lock);
  3538. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3539. up_read(&vcpu->kvm->slots_lock);
  3540. tr->physical_address = gpa;
  3541. tr->valid = gpa != UNMAPPED_GVA;
  3542. tr->writeable = 1;
  3543. tr->usermode = 0;
  3544. vcpu_put(vcpu);
  3545. return 0;
  3546. }
  3547. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3548. {
  3549. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3550. vcpu_load(vcpu);
  3551. memcpy(fpu->fpr, fxsave->st_space, 128);
  3552. fpu->fcw = fxsave->cwd;
  3553. fpu->fsw = fxsave->swd;
  3554. fpu->ftwx = fxsave->twd;
  3555. fpu->last_opcode = fxsave->fop;
  3556. fpu->last_ip = fxsave->rip;
  3557. fpu->last_dp = fxsave->rdp;
  3558. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3559. vcpu_put(vcpu);
  3560. return 0;
  3561. }
  3562. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3563. {
  3564. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3565. vcpu_load(vcpu);
  3566. memcpy(fxsave->st_space, fpu->fpr, 128);
  3567. fxsave->cwd = fpu->fcw;
  3568. fxsave->swd = fpu->fsw;
  3569. fxsave->twd = fpu->ftwx;
  3570. fxsave->fop = fpu->last_opcode;
  3571. fxsave->rip = fpu->last_ip;
  3572. fxsave->rdp = fpu->last_dp;
  3573. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3574. vcpu_put(vcpu);
  3575. return 0;
  3576. }
  3577. void fx_init(struct kvm_vcpu *vcpu)
  3578. {
  3579. unsigned after_mxcsr_mask;
  3580. /*
  3581. * Touch the fpu the first time in non atomic context as if
  3582. * this is the first fpu instruction the exception handler
  3583. * will fire before the instruction returns and it'll have to
  3584. * allocate ram with GFP_KERNEL.
  3585. */
  3586. if (!used_math())
  3587. kvm_fx_save(&vcpu->arch.host_fx_image);
  3588. /* Initialize guest FPU by resetting ours and saving into guest's */
  3589. preempt_disable();
  3590. kvm_fx_save(&vcpu->arch.host_fx_image);
  3591. kvm_fx_finit();
  3592. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3593. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3594. preempt_enable();
  3595. vcpu->arch.cr0 |= X86_CR0_ET;
  3596. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3597. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3598. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3599. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3600. }
  3601. EXPORT_SYMBOL_GPL(fx_init);
  3602. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3603. {
  3604. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3605. return;
  3606. vcpu->guest_fpu_loaded = 1;
  3607. kvm_fx_save(&vcpu->arch.host_fx_image);
  3608. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3609. }
  3610. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3611. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3612. {
  3613. if (!vcpu->guest_fpu_loaded)
  3614. return;
  3615. vcpu->guest_fpu_loaded = 0;
  3616. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3617. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3618. ++vcpu->stat.fpu_reload;
  3619. }
  3620. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3621. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3622. {
  3623. if (vcpu->arch.time_page) {
  3624. kvm_release_page_dirty(vcpu->arch.time_page);
  3625. vcpu->arch.time_page = NULL;
  3626. }
  3627. kvm_x86_ops->vcpu_free(vcpu);
  3628. }
  3629. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3630. unsigned int id)
  3631. {
  3632. return kvm_x86_ops->vcpu_create(kvm, id);
  3633. }
  3634. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3635. {
  3636. int r;
  3637. /* We do fxsave: this must be aligned. */
  3638. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3639. vcpu->arch.mtrr_state.have_fixed = 1;
  3640. vcpu_load(vcpu);
  3641. r = kvm_arch_vcpu_reset(vcpu);
  3642. if (r == 0)
  3643. r = kvm_mmu_setup(vcpu);
  3644. vcpu_put(vcpu);
  3645. if (r < 0)
  3646. goto free_vcpu;
  3647. return 0;
  3648. free_vcpu:
  3649. kvm_x86_ops->vcpu_free(vcpu);
  3650. return r;
  3651. }
  3652. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3653. {
  3654. vcpu_load(vcpu);
  3655. kvm_mmu_unload(vcpu);
  3656. vcpu_put(vcpu);
  3657. kvm_x86_ops->vcpu_free(vcpu);
  3658. }
  3659. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3660. {
  3661. vcpu->arch.nmi_pending = false;
  3662. vcpu->arch.nmi_injected = false;
  3663. vcpu->arch.switch_db_regs = 0;
  3664. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  3665. vcpu->arch.dr6 = DR6_FIXED_1;
  3666. vcpu->arch.dr7 = DR7_FIXED_1;
  3667. return kvm_x86_ops->vcpu_reset(vcpu);
  3668. }
  3669. void kvm_arch_hardware_enable(void *garbage)
  3670. {
  3671. kvm_x86_ops->hardware_enable(garbage);
  3672. }
  3673. void kvm_arch_hardware_disable(void *garbage)
  3674. {
  3675. kvm_x86_ops->hardware_disable(garbage);
  3676. }
  3677. int kvm_arch_hardware_setup(void)
  3678. {
  3679. return kvm_x86_ops->hardware_setup();
  3680. }
  3681. void kvm_arch_hardware_unsetup(void)
  3682. {
  3683. kvm_x86_ops->hardware_unsetup();
  3684. }
  3685. void kvm_arch_check_processor_compat(void *rtn)
  3686. {
  3687. kvm_x86_ops->check_processor_compatibility(rtn);
  3688. }
  3689. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3690. {
  3691. struct page *page;
  3692. struct kvm *kvm;
  3693. int r;
  3694. BUG_ON(vcpu->kvm == NULL);
  3695. kvm = vcpu->kvm;
  3696. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3697. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3698. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3699. else
  3700. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3701. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3702. if (!page) {
  3703. r = -ENOMEM;
  3704. goto fail;
  3705. }
  3706. vcpu->arch.pio_data = page_address(page);
  3707. r = kvm_mmu_create(vcpu);
  3708. if (r < 0)
  3709. goto fail_free_pio_data;
  3710. if (irqchip_in_kernel(kvm)) {
  3711. r = kvm_create_lapic(vcpu);
  3712. if (r < 0)
  3713. goto fail_mmu_destroy;
  3714. }
  3715. return 0;
  3716. fail_mmu_destroy:
  3717. kvm_mmu_destroy(vcpu);
  3718. fail_free_pio_data:
  3719. free_page((unsigned long)vcpu->arch.pio_data);
  3720. fail:
  3721. return r;
  3722. }
  3723. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3724. {
  3725. kvm_free_lapic(vcpu);
  3726. down_read(&vcpu->kvm->slots_lock);
  3727. kvm_mmu_destroy(vcpu);
  3728. up_read(&vcpu->kvm->slots_lock);
  3729. free_page((unsigned long)vcpu->arch.pio_data);
  3730. }
  3731. struct kvm *kvm_arch_create_vm(void)
  3732. {
  3733. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3734. if (!kvm)
  3735. return ERR_PTR(-ENOMEM);
  3736. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3737. INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
  3738. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  3739. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  3740. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  3741. rdtscll(kvm->arch.vm_init_tsc);
  3742. return kvm;
  3743. }
  3744. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3745. {
  3746. vcpu_load(vcpu);
  3747. kvm_mmu_unload(vcpu);
  3748. vcpu_put(vcpu);
  3749. }
  3750. static void kvm_free_vcpus(struct kvm *kvm)
  3751. {
  3752. unsigned int i;
  3753. /*
  3754. * Unpin any mmu pages first.
  3755. */
  3756. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3757. if (kvm->vcpus[i])
  3758. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3759. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3760. if (kvm->vcpus[i]) {
  3761. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3762. kvm->vcpus[i] = NULL;
  3763. }
  3764. }
  3765. }
  3766. void kvm_arch_sync_events(struct kvm *kvm)
  3767. {
  3768. kvm_free_all_assigned_devices(kvm);
  3769. }
  3770. void kvm_arch_destroy_vm(struct kvm *kvm)
  3771. {
  3772. kvm_iommu_unmap_guest(kvm);
  3773. kvm_free_pit(kvm);
  3774. kfree(kvm->arch.vpic);
  3775. kfree(kvm->arch.vioapic);
  3776. kvm_free_vcpus(kvm);
  3777. kvm_free_physmem(kvm);
  3778. if (kvm->arch.apic_access_page)
  3779. put_page(kvm->arch.apic_access_page);
  3780. if (kvm->arch.ept_identity_pagetable)
  3781. put_page(kvm->arch.ept_identity_pagetable);
  3782. kfree(kvm);
  3783. }
  3784. int kvm_arch_set_memory_region(struct kvm *kvm,
  3785. struct kvm_userspace_memory_region *mem,
  3786. struct kvm_memory_slot old,
  3787. int user_alloc)
  3788. {
  3789. int npages = mem->memory_size >> PAGE_SHIFT;
  3790. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3791. /*To keep backward compatibility with older userspace,
  3792. *x86 needs to hanlde !user_alloc case.
  3793. */
  3794. if (!user_alloc) {
  3795. if (npages && !old.rmap) {
  3796. unsigned long userspace_addr;
  3797. down_write(&current->mm->mmap_sem);
  3798. userspace_addr = do_mmap(NULL, 0,
  3799. npages * PAGE_SIZE,
  3800. PROT_READ | PROT_WRITE,
  3801. MAP_PRIVATE | MAP_ANONYMOUS,
  3802. 0);
  3803. up_write(&current->mm->mmap_sem);
  3804. if (IS_ERR((void *)userspace_addr))
  3805. return PTR_ERR((void *)userspace_addr);
  3806. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  3807. spin_lock(&kvm->mmu_lock);
  3808. memslot->userspace_addr = userspace_addr;
  3809. spin_unlock(&kvm->mmu_lock);
  3810. } else {
  3811. if (!old.user_alloc && old.rmap) {
  3812. int ret;
  3813. down_write(&current->mm->mmap_sem);
  3814. ret = do_munmap(current->mm, old.userspace_addr,
  3815. old.npages * PAGE_SIZE);
  3816. up_write(&current->mm->mmap_sem);
  3817. if (ret < 0)
  3818. printk(KERN_WARNING
  3819. "kvm_vm_ioctl_set_memory_region: "
  3820. "failed to munmap memory\n");
  3821. }
  3822. }
  3823. }
  3824. if (!kvm->arch.n_requested_mmu_pages) {
  3825. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3826. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3827. }
  3828. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3829. kvm_flush_remote_tlbs(kvm);
  3830. return 0;
  3831. }
  3832. void kvm_arch_flush_shadow(struct kvm *kvm)
  3833. {
  3834. kvm_mmu_zap_all(kvm);
  3835. }
  3836. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3837. {
  3838. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3839. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  3840. || vcpu->arch.nmi_pending;
  3841. }
  3842. static void vcpu_kick_intr(void *info)
  3843. {
  3844. #ifdef DEBUG
  3845. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3846. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3847. #endif
  3848. }
  3849. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3850. {
  3851. int ipi_pcpu = vcpu->cpu;
  3852. int cpu = get_cpu();
  3853. if (waitqueue_active(&vcpu->wq)) {
  3854. wake_up_interruptible(&vcpu->wq);
  3855. ++vcpu->stat.halt_wakeup;
  3856. }
  3857. /*
  3858. * We may be called synchronously with irqs disabled in guest mode,
  3859. * So need not to call smp_call_function_single() in that case.
  3860. */
  3861. if (vcpu->guest_mode && vcpu->cpu != cpu)
  3862. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  3863. put_cpu();
  3864. }
  3865. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  3866. {
  3867. return kvm_x86_ops->interrupt_allowed(vcpu);
  3868. }