pxa168_eth.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663
  1. /*
  2. * PXA168 ethernet driver.
  3. * Most of the code is derived from mv643xx ethernet driver.
  4. *
  5. * Copyright (C) 2010 Marvell International Ltd.
  6. * Sachin Sanap <ssanap@marvell.com>
  7. * Philip Rakity <prakity@marvell.com>
  8. * Mark Brown <markb@marvell.com>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version 2
  13. * of the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. #include <linux/init.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/in.h>
  27. #include <linux/ip.h>
  28. #include <linux/tcp.h>
  29. #include <linux/udp.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/bitops.h>
  32. #include <linux/delay.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/platform_device.h>
  35. #include <linux/module.h>
  36. #include <linux/kernel.h>
  37. #include <linux/workqueue.h>
  38. #include <linux/clk.h>
  39. #include <linux/phy.h>
  40. #include <linux/io.h>
  41. #include <linux/types.h>
  42. #include <asm/pgtable.h>
  43. #include <asm/system.h>
  44. #include <asm/cacheflush.h>
  45. #include <linux/pxa168_eth.h>
  46. #define DRIVER_NAME "pxa168-eth"
  47. #define DRIVER_VERSION "0.3"
  48. /*
  49. * Registers
  50. */
  51. #define PHY_ADDRESS 0x0000
  52. #define SMI 0x0010
  53. #define PORT_CONFIG 0x0400
  54. #define PORT_CONFIG_EXT 0x0408
  55. #define PORT_COMMAND 0x0410
  56. #define PORT_STATUS 0x0418
  57. #define HTPR 0x0428
  58. #define SDMA_CONFIG 0x0440
  59. #define SDMA_CMD 0x0448
  60. #define INT_CAUSE 0x0450
  61. #define INT_W_CLEAR 0x0454
  62. #define INT_MASK 0x0458
  63. #define ETH_F_RX_DESC_0 0x0480
  64. #define ETH_C_RX_DESC_0 0x04A0
  65. #define ETH_C_TX_DESC_1 0x04E4
  66. /* smi register */
  67. #define SMI_BUSY (1 << 28) /* 0 - Write, 1 - Read */
  68. #define SMI_R_VALID (1 << 27) /* 0 - Write, 1 - Read */
  69. #define SMI_OP_W (0 << 26) /* Write operation */
  70. #define SMI_OP_R (1 << 26) /* Read operation */
  71. #define PHY_WAIT_ITERATIONS 10
  72. #define PXA168_ETH_PHY_ADDR_DEFAULT 0
  73. /* RX & TX descriptor command */
  74. #define BUF_OWNED_BY_DMA (1 << 31)
  75. /* RX descriptor status */
  76. #define RX_EN_INT (1 << 23)
  77. #define RX_FIRST_DESC (1 << 17)
  78. #define RX_LAST_DESC (1 << 16)
  79. #define RX_ERROR (1 << 15)
  80. /* TX descriptor command */
  81. #define TX_EN_INT (1 << 23)
  82. #define TX_GEN_CRC (1 << 22)
  83. #define TX_ZERO_PADDING (1 << 18)
  84. #define TX_FIRST_DESC (1 << 17)
  85. #define TX_LAST_DESC (1 << 16)
  86. #define TX_ERROR (1 << 15)
  87. /* SDMA_CMD */
  88. #define SDMA_CMD_AT (1 << 31)
  89. #define SDMA_CMD_TXDL (1 << 24)
  90. #define SDMA_CMD_TXDH (1 << 23)
  91. #define SDMA_CMD_AR (1 << 15)
  92. #define SDMA_CMD_ERD (1 << 7)
  93. /* Bit definitions of the Port Config Reg */
  94. #define PCR_HS (1 << 12)
  95. #define PCR_EN (1 << 7)
  96. #define PCR_PM (1 << 0)
  97. /* Bit definitions of the Port Config Extend Reg */
  98. #define PCXR_2BSM (1 << 28)
  99. #define PCXR_DSCP_EN (1 << 21)
  100. #define PCXR_MFL_1518 (0 << 14)
  101. #define PCXR_MFL_1536 (1 << 14)
  102. #define PCXR_MFL_2048 (2 << 14)
  103. #define PCXR_MFL_64K (3 << 14)
  104. #define PCXR_FLP (1 << 11)
  105. #define PCXR_PRIO_TX_OFF 3
  106. #define PCXR_TX_HIGH_PRI (7 << PCXR_PRIO_TX_OFF)
  107. /* Bit definitions of the SDMA Config Reg */
  108. #define SDCR_BSZ_OFF 12
  109. #define SDCR_BSZ8 (3 << SDCR_BSZ_OFF)
  110. #define SDCR_BSZ4 (2 << SDCR_BSZ_OFF)
  111. #define SDCR_BSZ2 (1 << SDCR_BSZ_OFF)
  112. #define SDCR_BSZ1 (0 << SDCR_BSZ_OFF)
  113. #define SDCR_BLMR (1 << 6)
  114. #define SDCR_BLMT (1 << 7)
  115. #define SDCR_RIFB (1 << 9)
  116. #define SDCR_RC_OFF 2
  117. #define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF)
  118. /*
  119. * Bit definitions of the Interrupt Cause Reg
  120. * and Interrupt MASK Reg is the same
  121. */
  122. #define ICR_RXBUF (1 << 0)
  123. #define ICR_TXBUF_H (1 << 2)
  124. #define ICR_TXBUF_L (1 << 3)
  125. #define ICR_TXEND_H (1 << 6)
  126. #define ICR_TXEND_L (1 << 7)
  127. #define ICR_RXERR (1 << 8)
  128. #define ICR_TXERR_H (1 << 10)
  129. #define ICR_TXERR_L (1 << 11)
  130. #define ICR_TX_UDR (1 << 13)
  131. #define ICR_MII_CH (1 << 28)
  132. #define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\
  133. ICR_TXERR_H | ICR_TXERR_L |\
  134. ICR_TXEND_H | ICR_TXEND_L |\
  135. ICR_RXBUF | ICR_RXERR | ICR_MII_CH)
  136. #define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
  137. #define NUM_RX_DESCS 64
  138. #define NUM_TX_DESCS 64
  139. #define HASH_ADD 0
  140. #define HASH_DELETE 1
  141. #define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */
  142. #define HOP_NUMBER 12
  143. /* Bit definitions for Port status */
  144. #define PORT_SPEED_100 (1 << 0)
  145. #define FULL_DUPLEX (1 << 1)
  146. #define FLOW_CONTROL_ENABLED (1 << 2)
  147. #define LINK_UP (1 << 3)
  148. /* Bit definitions for work to be done */
  149. #define WORK_LINK (1 << 0)
  150. #define WORK_TX_DONE (1 << 1)
  151. /*
  152. * Misc definitions.
  153. */
  154. #define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
  155. struct rx_desc {
  156. u32 cmd_sts; /* Descriptor command status */
  157. u16 byte_cnt; /* Descriptor buffer byte count */
  158. u16 buf_size; /* Buffer size */
  159. u32 buf_ptr; /* Descriptor buffer pointer */
  160. u32 next_desc_ptr; /* Next descriptor pointer */
  161. };
  162. struct tx_desc {
  163. u32 cmd_sts; /* Command/status field */
  164. u16 reserved;
  165. u16 byte_cnt; /* buffer byte count */
  166. u32 buf_ptr; /* pointer to buffer for this descriptor */
  167. u32 next_desc_ptr; /* Pointer to next descriptor */
  168. };
  169. struct pxa168_eth_private {
  170. int port_num; /* User Ethernet port number */
  171. int rx_resource_err; /* Rx ring resource error flag */
  172. /* Next available and first returning Rx resource */
  173. int rx_curr_desc_q, rx_used_desc_q;
  174. /* Next available and first returning Tx resource */
  175. int tx_curr_desc_q, tx_used_desc_q;
  176. struct rx_desc *p_rx_desc_area;
  177. dma_addr_t rx_desc_dma;
  178. int rx_desc_area_size;
  179. struct sk_buff **rx_skb;
  180. struct tx_desc *p_tx_desc_area;
  181. dma_addr_t tx_desc_dma;
  182. int tx_desc_area_size;
  183. struct sk_buff **tx_skb;
  184. struct work_struct tx_timeout_task;
  185. struct net_device *dev;
  186. struct napi_struct napi;
  187. u8 work_todo;
  188. int skb_size;
  189. struct net_device_stats stats;
  190. /* Size of Tx Ring per queue */
  191. int tx_ring_size;
  192. /* Number of tx descriptors in use */
  193. int tx_desc_count;
  194. /* Size of Rx Ring per queue */
  195. int rx_ring_size;
  196. /* Number of rx descriptors in use */
  197. int rx_desc_count;
  198. /*
  199. * Used in case RX Ring is empty, which can occur when
  200. * system does not have resources (skb's)
  201. */
  202. struct timer_list timeout;
  203. struct mii_bus *smi_bus;
  204. struct phy_device *phy;
  205. /* clock */
  206. struct clk *clk;
  207. struct pxa168_eth_platform_data *pd;
  208. /*
  209. * Ethernet controller base address.
  210. */
  211. void __iomem *base;
  212. /* Pointer to the hardware address filter table */
  213. void *htpr;
  214. dma_addr_t htpr_dma;
  215. };
  216. struct addr_table_entry {
  217. __le32 lo;
  218. __le32 hi;
  219. };
  220. /* Bit fields of a Hash Table Entry */
  221. enum hash_table_entry {
  222. HASH_ENTRY_VALID = 1,
  223. SKIP = 2,
  224. HASH_ENTRY_RECEIVE_DISCARD = 4,
  225. HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
  226. };
  227. static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
  228. static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
  229. static int pxa168_init_hw(struct pxa168_eth_private *pep);
  230. static void eth_port_reset(struct net_device *dev);
  231. static void eth_port_start(struct net_device *dev);
  232. static int pxa168_eth_open(struct net_device *dev);
  233. static int pxa168_eth_stop(struct net_device *dev);
  234. static int ethernet_phy_setup(struct net_device *dev);
  235. static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
  236. {
  237. return readl(pep->base + offset);
  238. }
  239. static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
  240. {
  241. writel(data, pep->base + offset);
  242. }
  243. static void abort_dma(struct pxa168_eth_private *pep)
  244. {
  245. int delay;
  246. int max_retries = 40;
  247. do {
  248. wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
  249. udelay(100);
  250. delay = 10;
  251. while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
  252. && delay-- > 0) {
  253. udelay(10);
  254. }
  255. } while (max_retries-- > 0 && delay <= 0);
  256. if (max_retries <= 0)
  257. printk(KERN_ERR "%s : DMA Stuck\n", __func__);
  258. }
  259. static int ethernet_phy_get(struct pxa168_eth_private *pep)
  260. {
  261. unsigned int reg_data;
  262. reg_data = rdl(pep, PHY_ADDRESS);
  263. return (reg_data >> (5 * pep->port_num)) & 0x1f;
  264. }
  265. static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr)
  266. {
  267. u32 reg_data;
  268. int addr_shift = 5 * pep->port_num;
  269. reg_data = rdl(pep, PHY_ADDRESS);
  270. reg_data &= ~(0x1f << addr_shift);
  271. reg_data |= (phy_addr & 0x1f) << addr_shift;
  272. wrl(pep, PHY_ADDRESS, reg_data);
  273. }
  274. static void ethernet_phy_reset(struct pxa168_eth_private *pep)
  275. {
  276. int data;
  277. data = phy_read(pep->phy, MII_BMCR);
  278. if (data < 0)
  279. return;
  280. data |= BMCR_RESET;
  281. if (phy_write(pep->phy, MII_BMCR, data) < 0)
  282. return;
  283. do {
  284. data = phy_read(pep->phy, MII_BMCR);
  285. } while (data >= 0 && data & BMCR_RESET);
  286. }
  287. static void rxq_refill(struct net_device *dev)
  288. {
  289. struct pxa168_eth_private *pep = netdev_priv(dev);
  290. struct sk_buff *skb;
  291. struct rx_desc *p_used_rx_desc;
  292. int used_rx_desc;
  293. while (pep->rx_desc_count < pep->rx_ring_size) {
  294. int size;
  295. skb = dev_alloc_skb(pep->skb_size);
  296. if (!skb)
  297. break;
  298. if (SKB_DMA_REALIGN)
  299. skb_reserve(skb, SKB_DMA_REALIGN);
  300. pep->rx_desc_count++;
  301. /* Get 'used' Rx descriptor */
  302. used_rx_desc = pep->rx_used_desc_q;
  303. p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
  304. size = skb->end - skb->data;
  305. p_used_rx_desc->buf_ptr = dma_map_single(NULL,
  306. skb->data,
  307. size,
  308. DMA_FROM_DEVICE);
  309. p_used_rx_desc->buf_size = size;
  310. pep->rx_skb[used_rx_desc] = skb;
  311. /* Return the descriptor to DMA ownership */
  312. wmb();
  313. p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
  314. wmb();
  315. /* Move the used descriptor pointer to the next descriptor */
  316. pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
  317. /* Any Rx return cancels the Rx resource error status */
  318. pep->rx_resource_err = 0;
  319. skb_reserve(skb, ETH_HW_IP_ALIGN);
  320. }
  321. /*
  322. * If RX ring is empty of SKB, set a timer to try allocating
  323. * again at a later time.
  324. */
  325. if (pep->rx_desc_count == 0) {
  326. pep->timeout.expires = jiffies + (HZ / 10);
  327. add_timer(&pep->timeout);
  328. }
  329. }
  330. static inline void rxq_refill_timer_wrapper(unsigned long data)
  331. {
  332. struct pxa168_eth_private *pep = (void *)data;
  333. napi_schedule(&pep->napi);
  334. }
  335. static inline u8 flip_8_bits(u8 x)
  336. {
  337. return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
  338. | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
  339. | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
  340. | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
  341. }
  342. static void nibble_swap_every_byte(unsigned char *mac_addr)
  343. {
  344. int i;
  345. for (i = 0; i < ETH_ALEN; i++) {
  346. mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
  347. ((mac_addr[i] & 0xf0) >> 4);
  348. }
  349. }
  350. static void inverse_every_nibble(unsigned char *mac_addr)
  351. {
  352. int i;
  353. for (i = 0; i < ETH_ALEN; i++)
  354. mac_addr[i] = flip_8_bits(mac_addr[i]);
  355. }
  356. /*
  357. * ----------------------------------------------------------------------------
  358. * This function will calculate the hash function of the address.
  359. * Inputs
  360. * mac_addr_orig - MAC address.
  361. * Outputs
  362. * return the calculated entry.
  363. */
  364. static u32 hash_function(unsigned char *mac_addr_orig)
  365. {
  366. u32 hash_result;
  367. u32 addr0;
  368. u32 addr1;
  369. u32 addr2;
  370. u32 addr3;
  371. unsigned char mac_addr[ETH_ALEN];
  372. /* Make a copy of MAC address since we are going to performe bit
  373. * operations on it
  374. */
  375. memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
  376. nibble_swap_every_byte(mac_addr);
  377. inverse_every_nibble(mac_addr);
  378. addr0 = (mac_addr[5] >> 2) & 0x3f;
  379. addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
  380. addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
  381. addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
  382. hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
  383. hash_result = hash_result & 0x07ff;
  384. return hash_result;
  385. }
  386. /*
  387. * ----------------------------------------------------------------------------
  388. * This function will add/del an entry to the address table.
  389. * Inputs
  390. * pep - ETHERNET .
  391. * mac_addr - MAC address.
  392. * skip - if 1, skip this address.Used in case of deleting an entry which is a
  393. * part of chain in the hash table.We cant just delete the entry since
  394. * that will break the chain.We need to defragment the tables time to
  395. * time.
  396. * rd - 0 Discard packet upon match.
  397. * - 1 Receive packet upon match.
  398. * Outputs
  399. * address table entry is added/deleted.
  400. * 0 if success.
  401. * -ENOSPC if table full
  402. */
  403. static int add_del_hash_entry(struct pxa168_eth_private *pep,
  404. unsigned char *mac_addr,
  405. u32 rd, u32 skip, int del)
  406. {
  407. struct addr_table_entry *entry, *start;
  408. u32 new_high;
  409. u32 new_low;
  410. u32 i;
  411. new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
  412. | (((mac_addr[1] >> 0) & 0xf) << 11)
  413. | (((mac_addr[0] >> 4) & 0xf) << 7)
  414. | (((mac_addr[0] >> 0) & 0xf) << 3)
  415. | (((mac_addr[3] >> 4) & 0x1) << 31)
  416. | (((mac_addr[3] >> 0) & 0xf) << 27)
  417. | (((mac_addr[2] >> 4) & 0xf) << 23)
  418. | (((mac_addr[2] >> 0) & 0xf) << 19)
  419. | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
  420. | HASH_ENTRY_VALID;
  421. new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
  422. | (((mac_addr[5] >> 0) & 0xf) << 11)
  423. | (((mac_addr[4] >> 4) & 0xf) << 7)
  424. | (((mac_addr[4] >> 0) & 0xf) << 3)
  425. | (((mac_addr[3] >> 5) & 0x7) << 0);
  426. /*
  427. * Pick the appropriate table, start scanning for free/reusable
  428. * entries at the index obtained by hashing the specified MAC address
  429. */
  430. start = (struct addr_table_entry *)(pep->htpr);
  431. entry = start + hash_function(mac_addr);
  432. for (i = 0; i < HOP_NUMBER; i++) {
  433. if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
  434. break;
  435. } else {
  436. /* if same address put in same position */
  437. if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
  438. (new_low & 0xfffffff8)) &&
  439. (le32_to_cpu(entry->hi) == new_high)) {
  440. break;
  441. }
  442. }
  443. if (entry == start + 0x7ff)
  444. entry = start;
  445. else
  446. entry++;
  447. }
  448. if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
  449. (le32_to_cpu(entry->hi) != new_high) && del)
  450. return 0;
  451. if (i == HOP_NUMBER) {
  452. if (!del) {
  453. printk(KERN_INFO "%s: table section is full, need to "
  454. "move to 16kB implementation?\n",
  455. __FILE__);
  456. return -ENOSPC;
  457. } else
  458. return 0;
  459. }
  460. /*
  461. * Update the selected entry
  462. */
  463. if (del) {
  464. entry->hi = 0;
  465. entry->lo = 0;
  466. } else {
  467. entry->hi = cpu_to_le32(new_high);
  468. entry->lo = cpu_to_le32(new_low);
  469. }
  470. return 0;
  471. }
  472. /*
  473. * ----------------------------------------------------------------------------
  474. * Create an addressTable entry from MAC address info
  475. * found in the specifed net_device struct
  476. *
  477. * Input : pointer to ethernet interface network device structure
  478. * Output : N/A
  479. */
  480. static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
  481. unsigned char *oaddr,
  482. unsigned char *addr)
  483. {
  484. /* Delete old entry */
  485. if (oaddr)
  486. add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
  487. /* Add new entry */
  488. add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
  489. }
  490. static int init_hash_table(struct pxa168_eth_private *pep)
  491. {
  492. /*
  493. * Hardware expects CPU to build a hash table based on a predefined
  494. * hash function and populate it based on hardware address. The
  495. * location of the hash table is identified by 32-bit pointer stored
  496. * in HTPR internal register. Two possible sizes exists for the hash
  497. * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
  498. * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
  499. * 1/2kB.
  500. */
  501. /* TODO: Add support for 8kB hash table and alternative hash
  502. * function.Driver can dynamically switch to them if the 1/2kB hash
  503. * table is full.
  504. */
  505. if (pep->htpr == NULL) {
  506. pep->htpr = dma_alloc_coherent(pep->dev->dev.parent,
  507. HASH_ADDR_TABLE_SIZE,
  508. &pep->htpr_dma, GFP_KERNEL);
  509. if (pep->htpr == NULL)
  510. return -ENOMEM;
  511. }
  512. memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
  513. wrl(pep, HTPR, pep->htpr_dma);
  514. return 0;
  515. }
  516. static void pxa168_eth_set_rx_mode(struct net_device *dev)
  517. {
  518. struct pxa168_eth_private *pep = netdev_priv(dev);
  519. struct netdev_hw_addr *ha;
  520. u32 val;
  521. val = rdl(pep, PORT_CONFIG);
  522. if (dev->flags & IFF_PROMISC)
  523. val |= PCR_PM;
  524. else
  525. val &= ~PCR_PM;
  526. wrl(pep, PORT_CONFIG, val);
  527. /*
  528. * Remove the old list of MAC address and add dev->addr
  529. * and multicast address.
  530. */
  531. memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
  532. update_hash_table_mac_address(pep, NULL, dev->dev_addr);
  533. netdev_for_each_mc_addr(ha, dev)
  534. update_hash_table_mac_address(pep, NULL, ha->addr);
  535. }
  536. static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
  537. {
  538. struct sockaddr *sa = addr;
  539. struct pxa168_eth_private *pep = netdev_priv(dev);
  540. unsigned char oldMac[ETH_ALEN];
  541. if (!is_valid_ether_addr(sa->sa_data))
  542. return -EINVAL;
  543. memcpy(oldMac, dev->dev_addr, ETH_ALEN);
  544. memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
  545. netif_addr_lock_bh(dev);
  546. update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
  547. netif_addr_unlock_bh(dev);
  548. return 0;
  549. }
  550. static void eth_port_start(struct net_device *dev)
  551. {
  552. unsigned int val = 0;
  553. struct pxa168_eth_private *pep = netdev_priv(dev);
  554. int tx_curr_desc, rx_curr_desc;
  555. /* Perform PHY reset, if there is a PHY. */
  556. if (pep->phy != NULL) {
  557. struct ethtool_cmd cmd;
  558. pxa168_get_settings(pep->dev, &cmd);
  559. ethernet_phy_reset(pep);
  560. pxa168_set_settings(pep->dev, &cmd);
  561. }
  562. /* Assignment of Tx CTRP of given queue */
  563. tx_curr_desc = pep->tx_curr_desc_q;
  564. wrl(pep, ETH_C_TX_DESC_1,
  565. (u32) ((struct tx_desc *)pep->tx_desc_dma + tx_curr_desc));
  566. /* Assignment of Rx CRDP of given queue */
  567. rx_curr_desc = pep->rx_curr_desc_q;
  568. wrl(pep, ETH_C_RX_DESC_0,
  569. (u32) ((struct rx_desc *)pep->rx_desc_dma + rx_curr_desc));
  570. wrl(pep, ETH_F_RX_DESC_0,
  571. (u32) ((struct rx_desc *)pep->rx_desc_dma + rx_curr_desc));
  572. /* Clear all interrupts */
  573. wrl(pep, INT_CAUSE, 0);
  574. /* Enable all interrupts for receive, transmit and error. */
  575. wrl(pep, INT_MASK, ALL_INTS);
  576. val = rdl(pep, PORT_CONFIG);
  577. val |= PCR_EN;
  578. wrl(pep, PORT_CONFIG, val);
  579. /* Start RX DMA engine */
  580. val = rdl(pep, SDMA_CMD);
  581. val |= SDMA_CMD_ERD;
  582. wrl(pep, SDMA_CMD, val);
  583. }
  584. static void eth_port_reset(struct net_device *dev)
  585. {
  586. struct pxa168_eth_private *pep = netdev_priv(dev);
  587. unsigned int val = 0;
  588. /* Stop all interrupts for receive, transmit and error. */
  589. wrl(pep, INT_MASK, 0);
  590. /* Clear all interrupts */
  591. wrl(pep, INT_CAUSE, 0);
  592. /* Stop RX DMA */
  593. val = rdl(pep, SDMA_CMD);
  594. val &= ~SDMA_CMD_ERD; /* abort dma command */
  595. /* Abort any transmit and receive operations and put DMA
  596. * in idle state.
  597. */
  598. abort_dma(pep);
  599. /* Disable port */
  600. val = rdl(pep, PORT_CONFIG);
  601. val &= ~PCR_EN;
  602. wrl(pep, PORT_CONFIG, val);
  603. }
  604. /*
  605. * txq_reclaim - Free the tx desc data for completed descriptors
  606. * If force is non-zero, frees uncompleted descriptors as well
  607. */
  608. static int txq_reclaim(struct net_device *dev, int force)
  609. {
  610. struct pxa168_eth_private *pep = netdev_priv(dev);
  611. struct tx_desc *desc;
  612. u32 cmd_sts;
  613. struct sk_buff *skb;
  614. int tx_index;
  615. dma_addr_t addr;
  616. int count;
  617. int released = 0;
  618. netif_tx_lock(dev);
  619. pep->work_todo &= ~WORK_TX_DONE;
  620. while (pep->tx_desc_count > 0) {
  621. tx_index = pep->tx_used_desc_q;
  622. desc = &pep->p_tx_desc_area[tx_index];
  623. cmd_sts = desc->cmd_sts;
  624. if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
  625. if (released > 0) {
  626. goto txq_reclaim_end;
  627. } else {
  628. released = -1;
  629. goto txq_reclaim_end;
  630. }
  631. }
  632. pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
  633. pep->tx_desc_count--;
  634. addr = desc->buf_ptr;
  635. count = desc->byte_cnt;
  636. skb = pep->tx_skb[tx_index];
  637. if (skb)
  638. pep->tx_skb[tx_index] = NULL;
  639. if (cmd_sts & TX_ERROR) {
  640. if (net_ratelimit())
  641. printk(KERN_ERR "%s: Error in TX\n", dev->name);
  642. dev->stats.tx_errors++;
  643. }
  644. dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
  645. if (skb)
  646. dev_kfree_skb_irq(skb);
  647. released++;
  648. }
  649. txq_reclaim_end:
  650. netif_tx_unlock(dev);
  651. return released;
  652. }
  653. static void pxa168_eth_tx_timeout(struct net_device *dev)
  654. {
  655. struct pxa168_eth_private *pep = netdev_priv(dev);
  656. printk(KERN_INFO "%s: TX timeout desc_count %d\n",
  657. dev->name, pep->tx_desc_count);
  658. schedule_work(&pep->tx_timeout_task);
  659. }
  660. static void pxa168_eth_tx_timeout_task(struct work_struct *work)
  661. {
  662. struct pxa168_eth_private *pep = container_of(work,
  663. struct pxa168_eth_private,
  664. tx_timeout_task);
  665. struct net_device *dev = pep->dev;
  666. pxa168_eth_stop(dev);
  667. pxa168_eth_open(dev);
  668. }
  669. static int rxq_process(struct net_device *dev, int budget)
  670. {
  671. struct pxa168_eth_private *pep = netdev_priv(dev);
  672. struct net_device_stats *stats = &dev->stats;
  673. unsigned int received_packets = 0;
  674. struct sk_buff *skb;
  675. while (budget-- > 0) {
  676. int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
  677. struct rx_desc *rx_desc;
  678. unsigned int cmd_sts;
  679. /* Do not process Rx ring in case of Rx ring resource error */
  680. if (pep->rx_resource_err)
  681. break;
  682. rx_curr_desc = pep->rx_curr_desc_q;
  683. rx_used_desc = pep->rx_used_desc_q;
  684. rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
  685. cmd_sts = rx_desc->cmd_sts;
  686. rmb();
  687. if (cmd_sts & (BUF_OWNED_BY_DMA))
  688. break;
  689. skb = pep->rx_skb[rx_curr_desc];
  690. pep->rx_skb[rx_curr_desc] = NULL;
  691. rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
  692. pep->rx_curr_desc_q = rx_next_curr_desc;
  693. /* Rx descriptors exhausted. */
  694. /* Set the Rx ring resource error flag */
  695. if (rx_next_curr_desc == rx_used_desc)
  696. pep->rx_resource_err = 1;
  697. pep->rx_desc_count--;
  698. dma_unmap_single(NULL, rx_desc->buf_ptr,
  699. rx_desc->buf_size,
  700. DMA_FROM_DEVICE);
  701. received_packets++;
  702. /*
  703. * Update statistics.
  704. * Note byte count includes 4 byte CRC count
  705. */
  706. stats->rx_packets++;
  707. stats->rx_bytes += rx_desc->byte_cnt;
  708. /*
  709. * In case received a packet without first / last bits on OR
  710. * the error summary bit is on, the packets needs to be droped.
  711. */
  712. if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
  713. (RX_FIRST_DESC | RX_LAST_DESC))
  714. || (cmd_sts & RX_ERROR)) {
  715. stats->rx_dropped++;
  716. if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
  717. (RX_FIRST_DESC | RX_LAST_DESC)) {
  718. if (net_ratelimit())
  719. printk(KERN_ERR
  720. "%s: Rx pkt on multiple desc\n",
  721. dev->name);
  722. }
  723. if (cmd_sts & RX_ERROR)
  724. stats->rx_errors++;
  725. dev_kfree_skb_irq(skb);
  726. } else {
  727. /*
  728. * The -4 is for the CRC in the trailer of the
  729. * received packet
  730. */
  731. skb_put(skb, rx_desc->byte_cnt - 4);
  732. skb->protocol = eth_type_trans(skb, dev);
  733. netif_receive_skb(skb);
  734. }
  735. }
  736. /* Fill RX ring with skb's */
  737. rxq_refill(dev);
  738. return received_packets;
  739. }
  740. static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
  741. struct net_device *dev)
  742. {
  743. u32 icr;
  744. int ret = 0;
  745. icr = rdl(pep, INT_CAUSE);
  746. if (icr == 0)
  747. return IRQ_NONE;
  748. wrl(pep, INT_CAUSE, ~icr);
  749. if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
  750. pep->work_todo |= WORK_TX_DONE;
  751. ret = 1;
  752. }
  753. if (icr & ICR_RXBUF)
  754. ret = 1;
  755. if (icr & ICR_MII_CH) {
  756. pep->work_todo |= WORK_LINK;
  757. ret = 1;
  758. }
  759. return ret;
  760. }
  761. static void handle_link_event(struct pxa168_eth_private *pep)
  762. {
  763. struct net_device *dev = pep->dev;
  764. u32 port_status;
  765. int speed;
  766. int duplex;
  767. int fc;
  768. port_status = rdl(pep, PORT_STATUS);
  769. if (!(port_status & LINK_UP)) {
  770. if (netif_carrier_ok(dev)) {
  771. printk(KERN_INFO "%s: link down\n", dev->name);
  772. netif_carrier_off(dev);
  773. txq_reclaim(dev, 1);
  774. }
  775. return;
  776. }
  777. if (port_status & PORT_SPEED_100)
  778. speed = 100;
  779. else
  780. speed = 10;
  781. duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
  782. fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0;
  783. printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
  784. "flow control %sabled\n", dev->name,
  785. speed, duplex ? "full" : "half", fc ? "en" : "dis");
  786. if (!netif_carrier_ok(dev))
  787. netif_carrier_on(dev);
  788. }
  789. static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
  790. {
  791. struct net_device *dev = (struct net_device *)dev_id;
  792. struct pxa168_eth_private *pep = netdev_priv(dev);
  793. if (unlikely(!pxa168_eth_collect_events(pep, dev)))
  794. return IRQ_NONE;
  795. /* Disable interrupts */
  796. wrl(pep, INT_MASK, 0);
  797. napi_schedule(&pep->napi);
  798. return IRQ_HANDLED;
  799. }
  800. static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
  801. {
  802. int skb_size;
  803. /*
  804. * Reserve 2+14 bytes for an ethernet header (the hardware
  805. * automatically prepends 2 bytes of dummy data to each
  806. * received packet), 16 bytes for up to four VLAN tags, and
  807. * 4 bytes for the trailing FCS -- 36 bytes total.
  808. */
  809. skb_size = pep->dev->mtu + 36;
  810. /*
  811. * Make sure that the skb size is a multiple of 8 bytes, as
  812. * the lower three bits of the receive descriptor's buffer
  813. * size field are ignored by the hardware.
  814. */
  815. pep->skb_size = (skb_size + 7) & ~7;
  816. /*
  817. * If NET_SKB_PAD is smaller than a cache line,
  818. * netdev_alloc_skb() will cause skb->data to be misaligned
  819. * to a cache line boundary. If this is the case, include
  820. * some extra space to allow re-aligning the data area.
  821. */
  822. pep->skb_size += SKB_DMA_REALIGN;
  823. }
  824. static int set_port_config_ext(struct pxa168_eth_private *pep)
  825. {
  826. int skb_size;
  827. pxa168_eth_recalc_skb_size(pep);
  828. if (pep->skb_size <= 1518)
  829. skb_size = PCXR_MFL_1518;
  830. else if (pep->skb_size <= 1536)
  831. skb_size = PCXR_MFL_1536;
  832. else if (pep->skb_size <= 2048)
  833. skb_size = PCXR_MFL_2048;
  834. else
  835. skb_size = PCXR_MFL_64K;
  836. /* Extended Port Configuration */
  837. wrl(pep,
  838. PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */
  839. PCXR_DSCP_EN | /* Enable DSCP in IP */
  840. skb_size | PCXR_FLP | /* do not force link pass */
  841. PCXR_TX_HIGH_PRI); /* Transmit - high priority queue */
  842. return 0;
  843. }
  844. static int pxa168_init_hw(struct pxa168_eth_private *pep)
  845. {
  846. int err = 0;
  847. /* Disable interrupts */
  848. wrl(pep, INT_MASK, 0);
  849. wrl(pep, INT_CAUSE, 0);
  850. /* Write to ICR to clear interrupts. */
  851. wrl(pep, INT_W_CLEAR, 0);
  852. /* Abort any transmit and receive operations and put DMA
  853. * in idle state.
  854. */
  855. abort_dma(pep);
  856. /* Initialize address hash table */
  857. err = init_hash_table(pep);
  858. if (err)
  859. return err;
  860. /* SDMA configuration */
  861. wrl(pep, SDMA_CONFIG, SDCR_BSZ8 | /* Burst size = 32 bytes */
  862. SDCR_RIFB | /* Rx interrupt on frame */
  863. SDCR_BLMT | /* Little endian transmit */
  864. SDCR_BLMR | /* Little endian receive */
  865. SDCR_RC_MAX_RETRANS); /* Max retransmit count */
  866. /* Port Configuration */
  867. wrl(pep, PORT_CONFIG, PCR_HS); /* Hash size is 1/2kb */
  868. set_port_config_ext(pep);
  869. return err;
  870. }
  871. static int rxq_init(struct net_device *dev)
  872. {
  873. struct pxa168_eth_private *pep = netdev_priv(dev);
  874. struct rx_desc *p_rx_desc;
  875. int size = 0, i = 0;
  876. int rx_desc_num = pep->rx_ring_size;
  877. /* Allocate RX skb rings */
  878. pep->rx_skb = kmalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
  879. GFP_KERNEL);
  880. if (!pep->rx_skb) {
  881. printk(KERN_ERR "%s: Cannot alloc RX skb ring\n", dev->name);
  882. return -ENOMEM;
  883. }
  884. /* Allocate RX ring */
  885. pep->rx_desc_count = 0;
  886. size = pep->rx_ring_size * sizeof(struct rx_desc);
  887. pep->rx_desc_area_size = size;
  888. pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
  889. &pep->rx_desc_dma, GFP_KERNEL);
  890. if (!pep->p_rx_desc_area) {
  891. printk(KERN_ERR "%s: Cannot alloc RX ring (size %d bytes)\n",
  892. dev->name, size);
  893. goto out;
  894. }
  895. memset((void *)pep->p_rx_desc_area, 0, size);
  896. /* initialize the next_desc_ptr links in the Rx descriptors ring */
  897. p_rx_desc = (struct rx_desc *)pep->p_rx_desc_area;
  898. for (i = 0; i < rx_desc_num; i++) {
  899. p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
  900. ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
  901. }
  902. /* Save Rx desc pointer to driver struct. */
  903. pep->rx_curr_desc_q = 0;
  904. pep->rx_used_desc_q = 0;
  905. pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
  906. return 0;
  907. out:
  908. kfree(pep->rx_skb);
  909. return -ENOMEM;
  910. }
  911. static void rxq_deinit(struct net_device *dev)
  912. {
  913. struct pxa168_eth_private *pep = netdev_priv(dev);
  914. int curr;
  915. /* Free preallocated skb's on RX rings */
  916. for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
  917. if (pep->rx_skb[curr]) {
  918. dev_kfree_skb(pep->rx_skb[curr]);
  919. pep->rx_desc_count--;
  920. }
  921. }
  922. if (pep->rx_desc_count)
  923. printk(KERN_ERR
  924. "Error in freeing Rx Ring. %d skb's still\n",
  925. pep->rx_desc_count);
  926. /* Free RX ring */
  927. if (pep->p_rx_desc_area)
  928. dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
  929. pep->p_rx_desc_area, pep->rx_desc_dma);
  930. kfree(pep->rx_skb);
  931. }
  932. static int txq_init(struct net_device *dev)
  933. {
  934. struct pxa168_eth_private *pep = netdev_priv(dev);
  935. struct tx_desc *p_tx_desc;
  936. int size = 0, i = 0;
  937. int tx_desc_num = pep->tx_ring_size;
  938. pep->tx_skb = kmalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
  939. GFP_KERNEL);
  940. if (!pep->tx_skb) {
  941. printk(KERN_ERR "%s: Cannot alloc TX skb ring\n", dev->name);
  942. return -ENOMEM;
  943. }
  944. /* Allocate TX ring */
  945. pep->tx_desc_count = 0;
  946. size = pep->tx_ring_size * sizeof(struct tx_desc);
  947. pep->tx_desc_area_size = size;
  948. pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
  949. &pep->tx_desc_dma, GFP_KERNEL);
  950. if (!pep->p_tx_desc_area) {
  951. printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
  952. dev->name, size);
  953. goto out;
  954. }
  955. memset((void *)pep->p_tx_desc_area, 0, pep->tx_desc_area_size);
  956. /* Initialize the next_desc_ptr links in the Tx descriptors ring */
  957. p_tx_desc = (struct tx_desc *)pep->p_tx_desc_area;
  958. for (i = 0; i < tx_desc_num; i++) {
  959. p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
  960. ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
  961. }
  962. pep->tx_curr_desc_q = 0;
  963. pep->tx_used_desc_q = 0;
  964. pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
  965. return 0;
  966. out:
  967. kfree(pep->tx_skb);
  968. return -ENOMEM;
  969. }
  970. static void txq_deinit(struct net_device *dev)
  971. {
  972. struct pxa168_eth_private *pep = netdev_priv(dev);
  973. /* Free outstanding skb's on TX ring */
  974. txq_reclaim(dev, 1);
  975. BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
  976. /* Free TX ring */
  977. if (pep->p_tx_desc_area)
  978. dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
  979. pep->p_tx_desc_area, pep->tx_desc_dma);
  980. kfree(pep->tx_skb);
  981. }
  982. static int pxa168_eth_open(struct net_device *dev)
  983. {
  984. struct pxa168_eth_private *pep = netdev_priv(dev);
  985. int err;
  986. err = request_irq(dev->irq, pxa168_eth_int_handler,
  987. IRQF_DISABLED, dev->name, dev);
  988. if (err) {
  989. dev_printk(KERN_ERR, &dev->dev, "can't assign irq\n");
  990. return -EAGAIN;
  991. }
  992. pep->rx_resource_err = 0;
  993. err = rxq_init(dev);
  994. if (err != 0)
  995. goto out_free_irq;
  996. err = txq_init(dev);
  997. if (err != 0)
  998. goto out_free_rx_skb;
  999. pep->rx_used_desc_q = 0;
  1000. pep->rx_curr_desc_q = 0;
  1001. /* Fill RX ring with skb's */
  1002. rxq_refill(dev);
  1003. pep->rx_used_desc_q = 0;
  1004. pep->rx_curr_desc_q = 0;
  1005. netif_carrier_off(dev);
  1006. eth_port_start(dev);
  1007. napi_enable(&pep->napi);
  1008. return 0;
  1009. out_free_rx_skb:
  1010. rxq_deinit(dev);
  1011. out_free_irq:
  1012. free_irq(dev->irq, dev);
  1013. return err;
  1014. }
  1015. static int pxa168_eth_stop(struct net_device *dev)
  1016. {
  1017. struct pxa168_eth_private *pep = netdev_priv(dev);
  1018. eth_port_reset(dev);
  1019. /* Disable interrupts */
  1020. wrl(pep, INT_MASK, 0);
  1021. wrl(pep, INT_CAUSE, 0);
  1022. /* Write to ICR to clear interrupts. */
  1023. wrl(pep, INT_W_CLEAR, 0);
  1024. napi_disable(&pep->napi);
  1025. del_timer_sync(&pep->timeout);
  1026. netif_carrier_off(dev);
  1027. free_irq(dev->irq, dev);
  1028. rxq_deinit(dev);
  1029. txq_deinit(dev);
  1030. return 0;
  1031. }
  1032. static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
  1033. {
  1034. int retval;
  1035. struct pxa168_eth_private *pep = netdev_priv(dev);
  1036. if ((mtu > 9500) || (mtu < 68))
  1037. return -EINVAL;
  1038. dev->mtu = mtu;
  1039. retval = set_port_config_ext(pep);
  1040. if (!netif_running(dev))
  1041. return 0;
  1042. /*
  1043. * Stop and then re-open the interface. This will allocate RX
  1044. * skbs of the new MTU.
  1045. * There is a possible danger that the open will not succeed,
  1046. * due to memory being full.
  1047. */
  1048. pxa168_eth_stop(dev);
  1049. if (pxa168_eth_open(dev)) {
  1050. dev_printk(KERN_ERR, &dev->dev,
  1051. "fatal error on re-opening device after "
  1052. "MTU change\n");
  1053. }
  1054. return 0;
  1055. }
  1056. static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
  1057. {
  1058. int tx_desc_curr;
  1059. tx_desc_curr = pep->tx_curr_desc_q;
  1060. pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
  1061. BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
  1062. pep->tx_desc_count++;
  1063. return tx_desc_curr;
  1064. }
  1065. static int pxa168_rx_poll(struct napi_struct *napi, int budget)
  1066. {
  1067. struct pxa168_eth_private *pep =
  1068. container_of(napi, struct pxa168_eth_private, napi);
  1069. struct net_device *dev = pep->dev;
  1070. int work_done = 0;
  1071. if (unlikely(pep->work_todo & WORK_LINK)) {
  1072. pep->work_todo &= ~(WORK_LINK);
  1073. handle_link_event(pep);
  1074. }
  1075. /*
  1076. * We call txq_reclaim every time since in NAPI interupts are disabled
  1077. * and due to this we miss the TX_DONE interrupt,which is not updated in
  1078. * interrupt status register.
  1079. */
  1080. txq_reclaim(dev, 0);
  1081. if (netif_queue_stopped(dev)
  1082. && pep->tx_ring_size - pep->tx_desc_count > 1) {
  1083. netif_wake_queue(dev);
  1084. }
  1085. work_done = rxq_process(dev, budget);
  1086. if (work_done < budget) {
  1087. napi_complete(napi);
  1088. wrl(pep, INT_MASK, ALL_INTS);
  1089. }
  1090. return work_done;
  1091. }
  1092. static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1093. {
  1094. struct pxa168_eth_private *pep = netdev_priv(dev);
  1095. struct net_device_stats *stats = &dev->stats;
  1096. struct tx_desc *desc;
  1097. int tx_index;
  1098. int length;
  1099. tx_index = eth_alloc_tx_desc_index(pep);
  1100. desc = &pep->p_tx_desc_area[tx_index];
  1101. length = skb->len;
  1102. pep->tx_skb[tx_index] = skb;
  1103. desc->byte_cnt = length;
  1104. desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
  1105. wmb();
  1106. desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
  1107. TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
  1108. wmb();
  1109. wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
  1110. stats->tx_bytes += skb->len;
  1111. stats->tx_packets++;
  1112. dev->trans_start = jiffies;
  1113. if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
  1114. /* We handled the current skb, but now we are out of space.*/
  1115. netif_stop_queue(dev);
  1116. }
  1117. return NETDEV_TX_OK;
  1118. }
  1119. static int smi_wait_ready(struct pxa168_eth_private *pep)
  1120. {
  1121. int i = 0;
  1122. /* wait for the SMI register to become available */
  1123. for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
  1124. if (i == PHY_WAIT_ITERATIONS)
  1125. return -ETIMEDOUT;
  1126. msleep(10);
  1127. }
  1128. return 0;
  1129. }
  1130. static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
  1131. {
  1132. struct pxa168_eth_private *pep = bus->priv;
  1133. int i = 0;
  1134. int val;
  1135. if (smi_wait_ready(pep)) {
  1136. printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
  1137. return -ETIMEDOUT;
  1138. }
  1139. wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
  1140. /* now wait for the data to be valid */
  1141. for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
  1142. if (i == PHY_WAIT_ITERATIONS) {
  1143. printk(KERN_WARNING
  1144. "pxa168_eth: SMI bus read not valid\n");
  1145. return -ENODEV;
  1146. }
  1147. msleep(10);
  1148. }
  1149. return val & 0xffff;
  1150. }
  1151. static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
  1152. u16 value)
  1153. {
  1154. struct pxa168_eth_private *pep = bus->priv;
  1155. if (smi_wait_ready(pep)) {
  1156. printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
  1157. return -ETIMEDOUT;
  1158. }
  1159. wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
  1160. SMI_OP_W | (value & 0xffff));
  1161. if (smi_wait_ready(pep)) {
  1162. printk(KERN_ERR "pxa168_eth: SMI bus busy timeout\n");
  1163. return -ETIMEDOUT;
  1164. }
  1165. return 0;
  1166. }
  1167. static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
  1168. int cmd)
  1169. {
  1170. struct pxa168_eth_private *pep = netdev_priv(dev);
  1171. if (pep->phy != NULL)
  1172. return phy_mii_ioctl(pep->phy, if_mii(ifr), cmd);
  1173. return -EOPNOTSUPP;
  1174. }
  1175. static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr)
  1176. {
  1177. struct mii_bus *bus = pep->smi_bus;
  1178. struct phy_device *phydev;
  1179. int start;
  1180. int num;
  1181. int i;
  1182. if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) {
  1183. /* Scan entire range */
  1184. start = ethernet_phy_get(pep);
  1185. num = 32;
  1186. } else {
  1187. /* Use phy addr specific to platform */
  1188. start = phy_addr & 0x1f;
  1189. num = 1;
  1190. }
  1191. phydev = NULL;
  1192. for (i = 0; i < num; i++) {
  1193. int addr = (start + i) & 0x1f;
  1194. if (bus->phy_map[addr] == NULL)
  1195. mdiobus_scan(bus, addr);
  1196. if (phydev == NULL) {
  1197. phydev = bus->phy_map[addr];
  1198. if (phydev != NULL)
  1199. ethernet_phy_set_addr(pep, addr);
  1200. }
  1201. }
  1202. return phydev;
  1203. }
  1204. static void phy_init(struct pxa168_eth_private *pep, int speed, int duplex)
  1205. {
  1206. struct phy_device *phy = pep->phy;
  1207. ethernet_phy_reset(pep);
  1208. phy_attach(pep->dev, dev_name(&phy->dev), 0, PHY_INTERFACE_MODE_MII);
  1209. if (speed == 0) {
  1210. phy->autoneg = AUTONEG_ENABLE;
  1211. phy->speed = 0;
  1212. phy->duplex = 0;
  1213. phy->supported &= PHY_BASIC_FEATURES;
  1214. phy->advertising = phy->supported | ADVERTISED_Autoneg;
  1215. } else {
  1216. phy->autoneg = AUTONEG_DISABLE;
  1217. phy->advertising = 0;
  1218. phy->speed = speed;
  1219. phy->duplex = duplex;
  1220. }
  1221. phy_start_aneg(phy);
  1222. }
  1223. static int ethernet_phy_setup(struct net_device *dev)
  1224. {
  1225. struct pxa168_eth_private *pep = netdev_priv(dev);
  1226. if (pep->pd != NULL) {
  1227. if (pep->pd->init)
  1228. pep->pd->init();
  1229. }
  1230. pep->phy = phy_scan(pep, pep->pd->phy_addr & 0x1f);
  1231. if (pep->phy != NULL)
  1232. phy_init(pep, pep->pd->speed, pep->pd->duplex);
  1233. update_hash_table_mac_address(pep, NULL, dev->dev_addr);
  1234. return 0;
  1235. }
  1236. static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1237. {
  1238. struct pxa168_eth_private *pep = netdev_priv(dev);
  1239. int err;
  1240. err = phy_read_status(pep->phy);
  1241. if (err == 0)
  1242. err = phy_ethtool_gset(pep->phy, cmd);
  1243. return err;
  1244. }
  1245. static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1246. {
  1247. struct pxa168_eth_private *pep = netdev_priv(dev);
  1248. return phy_ethtool_sset(pep->phy, cmd);
  1249. }
  1250. static void pxa168_get_drvinfo(struct net_device *dev,
  1251. struct ethtool_drvinfo *info)
  1252. {
  1253. strncpy(info->driver, DRIVER_NAME, 32);
  1254. strncpy(info->version, DRIVER_VERSION, 32);
  1255. strncpy(info->fw_version, "N/A", 32);
  1256. strncpy(info->bus_info, "N/A", 32);
  1257. }
  1258. static u32 pxa168_get_link(struct net_device *dev)
  1259. {
  1260. return !!netif_carrier_ok(dev);
  1261. }
  1262. static const struct ethtool_ops pxa168_ethtool_ops = {
  1263. .get_settings = pxa168_get_settings,
  1264. .set_settings = pxa168_set_settings,
  1265. .get_drvinfo = pxa168_get_drvinfo,
  1266. .get_link = pxa168_get_link,
  1267. };
  1268. static const struct net_device_ops pxa168_eth_netdev_ops = {
  1269. .ndo_open = pxa168_eth_open,
  1270. .ndo_stop = pxa168_eth_stop,
  1271. .ndo_start_xmit = pxa168_eth_start_xmit,
  1272. .ndo_set_rx_mode = pxa168_eth_set_rx_mode,
  1273. .ndo_set_mac_address = pxa168_eth_set_mac_address,
  1274. .ndo_validate_addr = eth_validate_addr,
  1275. .ndo_do_ioctl = pxa168_eth_do_ioctl,
  1276. .ndo_change_mtu = pxa168_eth_change_mtu,
  1277. .ndo_tx_timeout = pxa168_eth_tx_timeout,
  1278. };
  1279. static int pxa168_eth_probe(struct platform_device *pdev)
  1280. {
  1281. struct pxa168_eth_private *pep = NULL;
  1282. struct net_device *dev = NULL;
  1283. struct resource *res;
  1284. struct clk *clk;
  1285. int err;
  1286. printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
  1287. clk = clk_get(&pdev->dev, "MFUCLK");
  1288. if (IS_ERR(clk)) {
  1289. printk(KERN_ERR "%s: Fast Ethernet failed to get clock\n",
  1290. DRIVER_NAME);
  1291. return -ENODEV;
  1292. }
  1293. clk_enable(clk);
  1294. dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
  1295. if (!dev) {
  1296. err = -ENOMEM;
  1297. goto out;
  1298. }
  1299. platform_set_drvdata(pdev, dev);
  1300. pep = netdev_priv(dev);
  1301. pep->dev = dev;
  1302. pep->clk = clk;
  1303. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1304. if (res == NULL) {
  1305. err = -ENODEV;
  1306. goto out;
  1307. }
  1308. pep->base = ioremap(res->start, res->end - res->start + 1);
  1309. if (pep->base == NULL) {
  1310. err = -ENOMEM;
  1311. goto out;
  1312. }
  1313. res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  1314. BUG_ON(!res);
  1315. dev->irq = res->start;
  1316. dev->netdev_ops = &pxa168_eth_netdev_ops;
  1317. dev->watchdog_timeo = 2 * HZ;
  1318. dev->base_addr = 0;
  1319. SET_ETHTOOL_OPS(dev, &pxa168_ethtool_ops);
  1320. INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
  1321. printk(KERN_INFO "%s:Using random mac address\n", DRIVER_NAME);
  1322. random_ether_addr(dev->dev_addr);
  1323. pep->pd = pdev->dev.platform_data;
  1324. pep->rx_ring_size = NUM_RX_DESCS;
  1325. if (pep->pd->rx_queue_size)
  1326. pep->rx_ring_size = pep->pd->rx_queue_size;
  1327. pep->tx_ring_size = NUM_TX_DESCS;
  1328. if (pep->pd->tx_queue_size)
  1329. pep->tx_ring_size = pep->pd->tx_queue_size;
  1330. pep->port_num = pep->pd->port_number;
  1331. /* Hardware supports only 3 ports */
  1332. BUG_ON(pep->port_num > 2);
  1333. netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
  1334. memset(&pep->timeout, 0, sizeof(struct timer_list));
  1335. init_timer(&pep->timeout);
  1336. pep->timeout.function = rxq_refill_timer_wrapper;
  1337. pep->timeout.data = (unsigned long)pep;
  1338. pep->smi_bus = mdiobus_alloc();
  1339. if (pep->smi_bus == NULL) {
  1340. err = -ENOMEM;
  1341. goto out;
  1342. }
  1343. pep->smi_bus->priv = pep;
  1344. pep->smi_bus->name = "pxa168_eth smi";
  1345. pep->smi_bus->read = pxa168_smi_read;
  1346. pep->smi_bus->write = pxa168_smi_write;
  1347. snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%d", pdev->id);
  1348. pep->smi_bus->parent = &pdev->dev;
  1349. pep->smi_bus->phy_mask = 0xffffffff;
  1350. if (mdiobus_register(pep->smi_bus) < 0) {
  1351. err = -ENOMEM;
  1352. goto out;
  1353. }
  1354. pxa168_init_hw(pep);
  1355. err = ethernet_phy_setup(dev);
  1356. if (err)
  1357. goto out;
  1358. SET_NETDEV_DEV(dev, &pdev->dev);
  1359. err = register_netdev(dev);
  1360. if (err)
  1361. goto out;
  1362. return 0;
  1363. out:
  1364. if (pep->clk) {
  1365. clk_disable(pep->clk);
  1366. clk_put(pep->clk);
  1367. pep->clk = NULL;
  1368. }
  1369. if (pep->base) {
  1370. iounmap(pep->base);
  1371. pep->base = NULL;
  1372. }
  1373. if (dev)
  1374. free_netdev(dev);
  1375. return err;
  1376. }
  1377. static int pxa168_eth_remove(struct platform_device *pdev)
  1378. {
  1379. struct net_device *dev = platform_get_drvdata(pdev);
  1380. struct pxa168_eth_private *pep = netdev_priv(dev);
  1381. if (pep->htpr) {
  1382. dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
  1383. pep->htpr, pep->htpr_dma);
  1384. pep->htpr = NULL;
  1385. }
  1386. if (pep->clk) {
  1387. clk_disable(pep->clk);
  1388. clk_put(pep->clk);
  1389. pep->clk = NULL;
  1390. }
  1391. if (pep->phy != NULL)
  1392. phy_detach(pep->phy);
  1393. iounmap(pep->base);
  1394. pep->base = NULL;
  1395. unregister_netdev(dev);
  1396. flush_scheduled_work();
  1397. free_netdev(dev);
  1398. platform_set_drvdata(pdev, NULL);
  1399. return 0;
  1400. }
  1401. static void pxa168_eth_shutdown(struct platform_device *pdev)
  1402. {
  1403. struct net_device *dev = platform_get_drvdata(pdev);
  1404. eth_port_reset(dev);
  1405. }
  1406. #ifdef CONFIG_PM
  1407. static int pxa168_eth_resume(struct platform_device *pdev)
  1408. {
  1409. return -ENOSYS;
  1410. }
  1411. static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
  1412. {
  1413. return -ENOSYS;
  1414. }
  1415. #else
  1416. #define pxa168_eth_resume NULL
  1417. #define pxa168_eth_suspend NULL
  1418. #endif
  1419. static struct platform_driver pxa168_eth_driver = {
  1420. .probe = pxa168_eth_probe,
  1421. .remove = pxa168_eth_remove,
  1422. .shutdown = pxa168_eth_shutdown,
  1423. .resume = pxa168_eth_resume,
  1424. .suspend = pxa168_eth_suspend,
  1425. .driver = {
  1426. .name = DRIVER_NAME,
  1427. },
  1428. };
  1429. static int __init pxa168_init_module(void)
  1430. {
  1431. return platform_driver_register(&pxa168_eth_driver);
  1432. }
  1433. static void __exit pxa168_cleanup_module(void)
  1434. {
  1435. platform_driver_unregister(&pxa168_eth_driver);
  1436. }
  1437. module_init(pxa168_init_module);
  1438. module_exit(pxa168_cleanup_module);
  1439. MODULE_LICENSE("GPL");
  1440. MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
  1441. MODULE_ALIAS("platform:pxa168_eth");