rt2500pci.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000
  1. /*
  2. Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. /*
  23. * Set enviroment defines for rt2x00.h
  24. */
  25. #define DRV_NAME "rt2500pci"
  26. #include <linux/delay.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/init.h>
  29. #include <linux/kernel.h>
  30. #include <linux/module.h>
  31. #include <linux/pci.h>
  32. #include <linux/eeprom_93cx6.h>
  33. #include "rt2x00.h"
  34. #include "rt2x00pci.h"
  35. #include "rt2500pci.h"
  36. /*
  37. * Register access.
  38. * All access to the CSR registers will go through the methods
  39. * rt2x00pci_register_read and rt2x00pci_register_write.
  40. * BBP and RF register require indirect register access,
  41. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  42. * These indirect registers work with busy bits,
  43. * and we will try maximal REGISTER_BUSY_COUNT times to access
  44. * the register while taking a REGISTER_BUSY_DELAY us delay
  45. * between each attampt. When the busy bit is still set at that time,
  46. * the access attempt is considered to have failed,
  47. * and we will print an error.
  48. */
  49. static u32 rt2500pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
  50. {
  51. u32 reg;
  52. unsigned int i;
  53. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  54. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  55. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  56. break;
  57. udelay(REGISTER_BUSY_DELAY);
  58. }
  59. return reg;
  60. }
  61. static void rt2500pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
  62. const unsigned int word, const u8 value)
  63. {
  64. u32 reg;
  65. /*
  66. * Wait until the BBP becomes ready.
  67. */
  68. reg = rt2500pci_bbp_check(rt2x00dev);
  69. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  70. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  71. return;
  72. }
  73. /*
  74. * Write the data into the BBP.
  75. */
  76. reg = 0;
  77. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  78. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  79. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  80. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  81. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  82. }
  83. static void rt2500pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
  84. const unsigned int word, u8 *value)
  85. {
  86. u32 reg;
  87. /*
  88. * Wait until the BBP becomes ready.
  89. */
  90. reg = rt2500pci_bbp_check(rt2x00dev);
  91. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  92. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  93. return;
  94. }
  95. /*
  96. * Write the request into the BBP.
  97. */
  98. reg = 0;
  99. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  100. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  101. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  102. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  103. /*
  104. * Wait until the BBP becomes ready.
  105. */
  106. reg = rt2500pci_bbp_check(rt2x00dev);
  107. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  108. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  109. *value = 0xff;
  110. return;
  111. }
  112. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  113. }
  114. static void rt2500pci_rf_write(const struct rt2x00_dev *rt2x00dev,
  115. const unsigned int word, const u32 value)
  116. {
  117. u32 reg;
  118. unsigned int i;
  119. if (!word)
  120. return;
  121. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  122. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  123. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  124. goto rf_write;
  125. udelay(REGISTER_BUSY_DELAY);
  126. }
  127. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  128. return;
  129. rf_write:
  130. reg = 0;
  131. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  132. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  133. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  134. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  135. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  136. rt2x00_rf_write(rt2x00dev, word, value);
  137. }
  138. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  139. {
  140. struct rt2x00_dev *rt2x00dev = eeprom->data;
  141. u32 reg;
  142. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  143. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  144. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  145. eeprom->reg_data_clock =
  146. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  147. eeprom->reg_chip_select =
  148. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  149. }
  150. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  151. {
  152. struct rt2x00_dev *rt2x00dev = eeprom->data;
  153. u32 reg = 0;
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  155. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  156. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  157. !!eeprom->reg_data_clock);
  158. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  159. !!eeprom->reg_chip_select);
  160. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  161. }
  162. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  163. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  164. static void rt2500pci_read_csr(const struct rt2x00_dev *rt2x00dev,
  165. const unsigned int word, u32 *data)
  166. {
  167. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  168. }
  169. static void rt2500pci_write_csr(const struct rt2x00_dev *rt2x00dev,
  170. const unsigned int word, u32 data)
  171. {
  172. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  173. }
  174. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  175. .owner = THIS_MODULE,
  176. .csr = {
  177. .read = rt2500pci_read_csr,
  178. .write = rt2500pci_write_csr,
  179. .word_size = sizeof(u32),
  180. .word_count = CSR_REG_SIZE / sizeof(u32),
  181. },
  182. .eeprom = {
  183. .read = rt2x00_eeprom_read,
  184. .write = rt2x00_eeprom_write,
  185. .word_size = sizeof(u16),
  186. .word_count = EEPROM_SIZE / sizeof(u16),
  187. },
  188. .bbp = {
  189. .read = rt2500pci_bbp_read,
  190. .write = rt2500pci_bbp_write,
  191. .word_size = sizeof(u8),
  192. .word_count = BBP_SIZE / sizeof(u8),
  193. },
  194. .rf = {
  195. .read = rt2x00_rf_read,
  196. .write = rt2500pci_rf_write,
  197. .word_size = sizeof(u32),
  198. .word_count = RF_SIZE / sizeof(u32),
  199. },
  200. };
  201. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  202. #ifdef CONFIG_RT2500PCI_RFKILL
  203. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  204. {
  205. u32 reg;
  206. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  207. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  208. }
  209. #endif /* CONFIG_RT2400PCI_RFKILL */
  210. /*
  211. * Configuration handlers.
  212. */
  213. static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, u8 *addr)
  214. {
  215. __le32 reg[2];
  216. memset(&reg, 0, sizeof(reg));
  217. memcpy(&reg, addr, ETH_ALEN);
  218. /*
  219. * The MAC address is passed to us as an array of bytes,
  220. * that array is little endian, so no need for byte ordering.
  221. */
  222. rt2x00pci_register_multiwrite(rt2x00dev, CSR3, &reg, sizeof(reg));
  223. }
  224. static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev, u8 *bssid)
  225. {
  226. __le32 reg[2];
  227. memset(&reg, 0, sizeof(reg));
  228. memcpy(&reg, bssid, ETH_ALEN);
  229. /*
  230. * The BSSID is passed to us as an array of bytes,
  231. * that array is little endian, so no need for byte ordering.
  232. */
  233. rt2x00pci_register_multiwrite(rt2x00dev, CSR5, &reg, sizeof(reg));
  234. }
  235. static void rt2500pci_config_packet_filter(struct rt2x00_dev *rt2x00dev,
  236. const unsigned int filter)
  237. {
  238. int promisc = !!(filter & IFF_PROMISC);
  239. int multicast = !!(filter & IFF_MULTICAST);
  240. int broadcast = !!(filter & IFF_BROADCAST);
  241. u32 reg;
  242. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  243. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME, !promisc);
  244. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST, !multicast);
  245. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, !broadcast);
  246. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  247. }
  248. static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type)
  249. {
  250. u32 reg;
  251. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  252. /*
  253. * Apply hardware packet filter.
  254. */
  255. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  256. if (!is_monitor_present(&rt2x00dev->interface) &&
  257. (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_STA))
  258. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS, 1);
  259. else
  260. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS, 0);
  261. /*
  262. * If there is a non-monitor interface present
  263. * the packet should be strict (even if a monitor interface is present!).
  264. * When there is only 1 interface present which is in monitor mode
  265. * we should start accepting _all_ frames.
  266. */
  267. if (is_interface_present(&rt2x00dev->interface)) {
  268. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC, 1);
  269. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL, 1);
  270. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL, 1);
  271. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  272. } else if (is_monitor_present(&rt2x00dev->interface)) {
  273. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC, 0);
  274. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL, 0);
  275. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL, 0);
  276. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 0);
  277. }
  278. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  279. /*
  280. * Enable beacon config
  281. */
  282. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  283. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
  284. PREAMBLE + get_duration(IEEE80211_HEADER, 2));
  285. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
  286. rt2x00lib_get_ring(rt2x00dev,
  287. IEEE80211_TX_QUEUE_BEACON)
  288. ->tx_params.cw_min);
  289. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  290. /*
  291. * Enable synchronisation.
  292. */
  293. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  294. if (is_interface_present(&rt2x00dev->interface)) {
  295. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  296. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  297. }
  298. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  299. if (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_AP)
  300. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 2);
  301. else if (type == IEEE80211_IF_TYPE_STA)
  302. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 1);
  303. else if (is_monitor_present(&rt2x00dev->interface) &&
  304. !is_interface_present(&rt2x00dev->interface))
  305. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  306. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  307. }
  308. static void rt2500pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
  309. {
  310. struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
  311. u32 reg;
  312. u32 preamble;
  313. u16 value;
  314. if (DEVICE_GET_RATE_FIELD(rate, PREAMBLE))
  315. preamble = SHORT_PREAMBLE;
  316. else
  317. preamble = PREAMBLE;
  318. reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATEMASK;
  319. rt2x00pci_register_write(rt2x00dev, ARCSR1, reg);
  320. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  321. value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
  322. SHORT_DIFS : DIFS) +
  323. PLCP + preamble + get_duration(ACK_SIZE, 10);
  324. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, value);
  325. value = SIFS + PLCP + preamble + get_duration(ACK_SIZE, 10);
  326. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, value);
  327. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  328. preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE) ? 0x08 : 0x00;
  329. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  330. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble);
  331. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  332. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  333. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  334. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  335. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble);
  336. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  337. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  338. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  339. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  340. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble);
  341. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  342. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  343. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  344. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  345. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble);
  346. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  347. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  348. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  349. }
  350. static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  351. const int phymode)
  352. {
  353. struct ieee80211_hw_mode *mode;
  354. struct ieee80211_rate *rate;
  355. if (phymode == MODE_IEEE80211A)
  356. rt2x00dev->curr_hwmode = HWMODE_A;
  357. else if (phymode == MODE_IEEE80211B)
  358. rt2x00dev->curr_hwmode = HWMODE_B;
  359. else
  360. rt2x00dev->curr_hwmode = HWMODE_G;
  361. mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
  362. rate = &mode->rates[mode->num_rates - 1];
  363. rt2500pci_config_rate(rt2x00dev, rate->val2);
  364. }
  365. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  366. const int index, const int channel,
  367. const int txpower)
  368. {
  369. struct rf_channel reg;
  370. u8 r70;
  371. /*
  372. * Fill rf_reg structure.
  373. */
  374. memcpy(&reg, &rt2x00dev->spec.channels[index], sizeof(reg));
  375. /*
  376. * Set TXpower.
  377. */
  378. rt2x00_set_field32(&reg.rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  379. /*
  380. * Switch on tuning bits.
  381. * For RT2523 devices we do not need to update the R1 register.
  382. */
  383. if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
  384. rt2x00_set_field32(&reg.rf1, RF1_TUNER, 1);
  385. rt2x00_set_field32(&reg.rf3, RF3_TUNER, 1);
  386. /*
  387. * For RT2525 we should first set the channel to half band higher.
  388. */
  389. if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  390. static const u32 vals[] = {
  391. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  392. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  393. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  394. 0x00080d2e, 0x00080d3a
  395. };
  396. rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
  397. rt2500pci_rf_write(rt2x00dev, 2, vals[channel - 1]);
  398. rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
  399. if (reg.rf4)
  400. rt2500pci_rf_write(rt2x00dev, 4, reg.rf4);
  401. }
  402. rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
  403. rt2500pci_rf_write(rt2x00dev, 2, reg.rf2);
  404. rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
  405. if (reg.rf4)
  406. rt2500pci_rf_write(rt2x00dev, 4, reg.rf4);
  407. /*
  408. * Channel 14 requires the Japan filter bit to be set.
  409. */
  410. r70 = 0x46;
  411. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, channel == 14);
  412. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  413. msleep(1);
  414. /*
  415. * Switch off tuning bits.
  416. * For RT2523 devices we do not need to update the R1 register.
  417. */
  418. if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  419. rt2x00_set_field32(&reg.rf1, RF1_TUNER, 0);
  420. rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
  421. }
  422. rt2x00_set_field32(&reg.rf3, RF3_TUNER, 0);
  423. rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
  424. /*
  425. * Clear false CRC during channel switch.
  426. */
  427. rt2x00pci_register_read(rt2x00dev, CNT0, &reg.rf1);
  428. }
  429. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  430. const int txpower)
  431. {
  432. u32 rf3;
  433. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  434. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  435. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  436. }
  437. static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  438. const int antenna_tx, const int antenna_rx)
  439. {
  440. u32 reg;
  441. u8 r14;
  442. u8 r2;
  443. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  444. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  445. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  446. /*
  447. * Configure the TX antenna.
  448. */
  449. switch (antenna_tx) {
  450. case ANTENNA_SW_DIVERSITY:
  451. case ANTENNA_HW_DIVERSITY:
  452. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  453. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  454. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  455. break;
  456. case ANTENNA_A:
  457. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  458. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  459. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  460. break;
  461. case ANTENNA_B:
  462. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  463. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  464. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  465. break;
  466. }
  467. /*
  468. * Configure the RX antenna.
  469. */
  470. switch (antenna_rx) {
  471. case ANTENNA_SW_DIVERSITY:
  472. case ANTENNA_HW_DIVERSITY:
  473. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  474. break;
  475. case ANTENNA_A:
  476. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  477. break;
  478. case ANTENNA_B:
  479. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  480. break;
  481. }
  482. /*
  483. * RT2525E and RT5222 need to flip TX I/Q
  484. */
  485. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  486. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  487. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  488. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  489. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  490. /*
  491. * RT2525E does not need RX I/Q Flip.
  492. */
  493. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  494. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  495. } else {
  496. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  497. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  498. }
  499. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  500. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  501. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  502. }
  503. static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
  504. const int short_slot_time,
  505. const int beacon_int)
  506. {
  507. u32 reg;
  508. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  509. rt2x00_set_field32(&reg, CSR11_SLOT_TIME,
  510. short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
  511. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  512. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  513. rt2x00_set_field32(&reg, CSR18_SIFS, SIFS);
  514. rt2x00_set_field32(&reg, CSR18_PIFS,
  515. short_slot_time ? SHORT_PIFS : PIFS);
  516. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  517. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  518. rt2x00_set_field32(&reg, CSR19_DIFS,
  519. short_slot_time ? SHORT_DIFS : DIFS);
  520. rt2x00_set_field32(&reg, CSR19_EIFS, EIFS);
  521. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  522. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  523. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  524. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  525. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  526. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  527. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, beacon_int * 16);
  528. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, beacon_int * 16);
  529. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  530. }
  531. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  532. const unsigned int flags,
  533. struct ieee80211_conf *conf)
  534. {
  535. int short_slot_time = conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME;
  536. if (flags & CONFIG_UPDATE_PHYMODE)
  537. rt2500pci_config_phymode(rt2x00dev, conf->phymode);
  538. if (flags & CONFIG_UPDATE_CHANNEL)
  539. rt2500pci_config_channel(rt2x00dev, conf->channel_val,
  540. conf->channel, conf->power_level);
  541. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  542. rt2500pci_config_txpower(rt2x00dev, conf->power_level);
  543. if (flags & CONFIG_UPDATE_ANTENNA)
  544. rt2500pci_config_antenna(rt2x00dev, conf->antenna_sel_tx,
  545. conf->antenna_sel_rx);
  546. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  547. rt2500pci_config_duration(rt2x00dev, short_slot_time,
  548. conf->beacon_int);
  549. }
  550. /*
  551. * LED functions.
  552. */
  553. static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
  554. {
  555. u32 reg;
  556. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  557. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
  558. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
  559. if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
  560. rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
  561. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
  562. } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
  563. rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
  564. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
  565. } else {
  566. rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
  567. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
  568. }
  569. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  570. }
  571. static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
  572. {
  573. u32 reg;
  574. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  575. rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
  576. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
  577. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  578. }
  579. /*
  580. * Link tuning
  581. */
  582. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev)
  583. {
  584. u32 reg;
  585. /*
  586. * Update FCS error count from register.
  587. */
  588. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  589. rt2x00dev->link.rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  590. /*
  591. * Update False CCA count from register.
  592. */
  593. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  594. rt2x00dev->link.false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  595. }
  596. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  597. {
  598. rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
  599. rt2x00dev->link.vgc_level = 0x48;
  600. }
  601. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  602. {
  603. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  604. u8 r17;
  605. /*
  606. * To prevent collisions with MAC ASIC on chipsets
  607. * up to version C the link tuning should halt after 20
  608. * seconds.
  609. */
  610. if (rt2x00_get_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
  611. rt2x00dev->link.count > 20)
  612. return;
  613. rt2500pci_bbp_read(rt2x00dev, 17, &r17);
  614. /*
  615. * Chipset versions C and lower should directly continue
  616. * to the dynamic CCA tuning.
  617. */
  618. if (rt2x00_get_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
  619. goto dynamic_cca_tune;
  620. /*
  621. * A too low RSSI will cause too much false CCA which will
  622. * then corrupt the R17 tuning. To remidy this the tuning should
  623. * be stopped (While making sure the R17 value will not exceed limits)
  624. */
  625. if (rssi < -80 && rt2x00dev->link.count > 20) {
  626. if (r17 >= 0x41) {
  627. r17 = rt2x00dev->link.vgc_level;
  628. rt2500pci_bbp_write(rt2x00dev, 17, r17);
  629. }
  630. return;
  631. }
  632. /*
  633. * Special big-R17 for short distance
  634. */
  635. if (rssi >= -58) {
  636. if (r17 != 0x50)
  637. rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
  638. return;
  639. }
  640. /*
  641. * Special mid-R17 for middle distance
  642. */
  643. if (rssi >= -74) {
  644. if (r17 != 0x41)
  645. rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
  646. return;
  647. }
  648. /*
  649. * Leave short or middle distance condition, restore r17
  650. * to the dynamic tuning range.
  651. */
  652. if (r17 >= 0x41) {
  653. rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
  654. return;
  655. }
  656. dynamic_cca_tune:
  657. /*
  658. * R17 is inside the dynamic tuning range,
  659. * start tuning the link based on the false cca counter.
  660. */
  661. if (rt2x00dev->link.false_cca > 512 && r17 < 0x40) {
  662. rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
  663. rt2x00dev->link.vgc_level = r17;
  664. } else if (rt2x00dev->link.false_cca < 100 && r17 > 0x32) {
  665. rt2500pci_bbp_write(rt2x00dev, 17, --r17);
  666. rt2x00dev->link.vgc_level = r17;
  667. }
  668. }
  669. /*
  670. * Initialization functions.
  671. */
  672. static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
  673. {
  674. struct data_ring *ring = rt2x00dev->rx;
  675. struct data_desc *rxd;
  676. unsigned int i;
  677. u32 word;
  678. memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
  679. for (i = 0; i < ring->stats.limit; i++) {
  680. rxd = ring->entry[i].priv;
  681. rt2x00_desc_read(rxd, 1, &word);
  682. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
  683. ring->entry[i].data_dma);
  684. rt2x00_desc_write(rxd, 1, word);
  685. rt2x00_desc_read(rxd, 0, &word);
  686. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  687. rt2x00_desc_write(rxd, 0, word);
  688. }
  689. rt2x00_ring_index_clear(rt2x00dev->rx);
  690. }
  691. static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
  692. {
  693. struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
  694. struct data_desc *txd;
  695. unsigned int i;
  696. u32 word;
  697. memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
  698. for (i = 0; i < ring->stats.limit; i++) {
  699. txd = ring->entry[i].priv;
  700. rt2x00_desc_read(txd, 1, &word);
  701. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
  702. ring->entry[i].data_dma);
  703. rt2x00_desc_write(txd, 1, word);
  704. rt2x00_desc_read(txd, 0, &word);
  705. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  706. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  707. rt2x00_desc_write(txd, 0, word);
  708. }
  709. rt2x00_ring_index_clear(ring);
  710. }
  711. static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
  712. {
  713. u32 reg;
  714. /*
  715. * Initialize rings.
  716. */
  717. rt2500pci_init_rxring(rt2x00dev);
  718. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  719. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  720. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
  721. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
  722. /*
  723. * Initialize registers.
  724. */
  725. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  726. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
  727. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
  728. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
  729. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
  730. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
  731. rt2x00dev->bcn[1].stats.limit);
  732. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
  733. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
  734. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  735. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  736. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  737. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
  738. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  739. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  740. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  741. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
  742. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  743. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  744. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  745. rt2x00dev->bcn[1].data_dma);
  746. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  747. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  748. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  749. rt2x00dev->bcn[0].data_dma);
  750. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  751. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  752. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  753. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
  754. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  755. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  756. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  757. rt2x00dev->rx->data_dma);
  758. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  759. return 0;
  760. }
  761. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  762. {
  763. u32 reg;
  764. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  765. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  766. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  767. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  768. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  769. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  770. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  771. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  772. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  773. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  774. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  775. rt2x00dev->rx->data_size / 128);
  776. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  777. /*
  778. * Always use CWmin and CWmax set in descriptor.
  779. */
  780. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  781. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  782. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  783. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  784. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  785. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  786. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  787. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  788. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  789. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  790. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  791. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  792. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  793. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  794. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  795. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  796. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  797. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  798. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  799. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  800. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  801. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  802. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  803. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  804. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  805. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  806. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  807. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  808. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  809. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  810. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  811. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  812. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  813. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  814. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  815. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  816. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  817. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  818. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  819. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  820. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  821. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  822. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  823. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  824. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  825. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  826. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  827. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  828. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  829. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  830. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  831. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  832. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  833. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  834. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  835. return -EBUSY;
  836. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  837. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  838. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  839. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  840. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  841. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  842. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  843. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  844. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  845. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  846. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  847. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  848. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  849. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  850. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  851. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  852. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  853. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  854. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  855. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  856. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  857. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  858. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  859. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  860. /*
  861. * We must clear the FCS and FIFO error count.
  862. * These registers are cleared on read,
  863. * so we may pass a useless variable to store the value.
  864. */
  865. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  866. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  867. return 0;
  868. }
  869. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  870. {
  871. unsigned int i;
  872. u16 eeprom;
  873. u8 reg_id;
  874. u8 value;
  875. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  876. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  877. if ((value != 0xff) && (value != 0x00))
  878. goto continue_csr_init;
  879. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  880. udelay(REGISTER_BUSY_DELAY);
  881. }
  882. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  883. return -EACCES;
  884. continue_csr_init:
  885. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  886. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  887. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  888. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  889. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  890. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  891. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  892. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  893. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  894. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  895. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  896. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  897. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  898. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  899. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  900. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  901. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  902. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  903. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  904. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  905. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  906. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  907. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  908. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  909. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  910. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  911. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  912. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  913. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  914. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  915. DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
  916. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  917. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  918. if (eeprom != 0xffff && eeprom != 0x0000) {
  919. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  920. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  921. DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
  922. reg_id, value);
  923. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  924. }
  925. }
  926. DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
  927. return 0;
  928. }
  929. /*
  930. * Device state switch handlers.
  931. */
  932. static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  933. enum dev_state state)
  934. {
  935. u32 reg;
  936. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  937. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  938. state == STATE_RADIO_RX_OFF);
  939. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  940. }
  941. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  942. enum dev_state state)
  943. {
  944. int mask = (state == STATE_RADIO_IRQ_OFF);
  945. u32 reg;
  946. /*
  947. * When interrupts are being enabled, the interrupt registers
  948. * should clear the register to assure a clean state.
  949. */
  950. if (state == STATE_RADIO_IRQ_ON) {
  951. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  952. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  953. }
  954. /*
  955. * Only toggle the interrupts bits we are going to use.
  956. * Non-checked interrupt bits are disabled by default.
  957. */
  958. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  959. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  960. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  961. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  962. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  963. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  964. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  965. }
  966. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  967. {
  968. /*
  969. * Initialize all registers.
  970. */
  971. if (rt2500pci_init_rings(rt2x00dev) ||
  972. rt2500pci_init_registers(rt2x00dev) ||
  973. rt2500pci_init_bbp(rt2x00dev)) {
  974. ERROR(rt2x00dev, "Register initialization failed.\n");
  975. return -EIO;
  976. }
  977. /*
  978. * Enable interrupts.
  979. */
  980. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  981. /*
  982. * Enable LED
  983. */
  984. rt2500pci_enable_led(rt2x00dev);
  985. return 0;
  986. }
  987. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  988. {
  989. u32 reg;
  990. /*
  991. * Disable LED
  992. */
  993. rt2500pci_disable_led(rt2x00dev);
  994. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  995. /*
  996. * Disable synchronisation.
  997. */
  998. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  999. /*
  1000. * Cancel RX and TX.
  1001. */
  1002. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1003. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  1004. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1005. /*
  1006. * Disable interrupts.
  1007. */
  1008. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  1009. }
  1010. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  1011. enum dev_state state)
  1012. {
  1013. u32 reg;
  1014. unsigned int i;
  1015. char put_to_sleep;
  1016. char bbp_state;
  1017. char rf_state;
  1018. put_to_sleep = (state != STATE_AWAKE);
  1019. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  1020. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  1021. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  1022. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  1023. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  1024. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  1025. /*
  1026. * Device is not guaranteed to be in the requested state yet.
  1027. * We must wait until the register indicates that the
  1028. * device has entered the correct state.
  1029. */
  1030. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1031. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  1032. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  1033. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  1034. if (bbp_state == state && rf_state == state)
  1035. return 0;
  1036. msleep(10);
  1037. }
  1038. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  1039. "current device state: bbp %d and rf %d.\n",
  1040. state, bbp_state, rf_state);
  1041. return -EBUSY;
  1042. }
  1043. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  1044. enum dev_state state)
  1045. {
  1046. int retval = 0;
  1047. switch (state) {
  1048. case STATE_RADIO_ON:
  1049. retval = rt2500pci_enable_radio(rt2x00dev);
  1050. break;
  1051. case STATE_RADIO_OFF:
  1052. rt2500pci_disable_radio(rt2x00dev);
  1053. break;
  1054. case STATE_RADIO_RX_ON:
  1055. case STATE_RADIO_RX_OFF:
  1056. rt2500pci_toggle_rx(rt2x00dev, state);
  1057. break;
  1058. case STATE_DEEP_SLEEP:
  1059. case STATE_SLEEP:
  1060. case STATE_STANDBY:
  1061. case STATE_AWAKE:
  1062. retval = rt2500pci_set_state(rt2x00dev, state);
  1063. break;
  1064. default:
  1065. retval = -ENOTSUPP;
  1066. break;
  1067. }
  1068. return retval;
  1069. }
  1070. /*
  1071. * TX descriptor initialization
  1072. */
  1073. static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  1074. struct data_desc *txd,
  1075. struct data_entry_desc *desc,
  1076. struct ieee80211_hdr *ieee80211hdr,
  1077. unsigned int length,
  1078. struct ieee80211_tx_control *control)
  1079. {
  1080. u32 word;
  1081. /*
  1082. * Start writing the descriptor words.
  1083. */
  1084. rt2x00_desc_read(txd, 2, &word);
  1085. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  1086. rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
  1087. rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
  1088. rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
  1089. rt2x00_desc_write(txd, 2, word);
  1090. rt2x00_desc_read(txd, 3, &word);
  1091. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
  1092. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
  1093. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
  1094. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
  1095. rt2x00_desc_write(txd, 3, word);
  1096. rt2x00_desc_read(txd, 10, &word);
  1097. rt2x00_set_field32(&word, TXD_W10_RTS,
  1098. test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
  1099. rt2x00_desc_write(txd, 10, word);
  1100. rt2x00_desc_read(txd, 0, &word);
  1101. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1102. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1103. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1104. test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
  1105. rt2x00_set_field32(&word, TXD_W0_ACK,
  1106. !(control->flags & IEEE80211_TXCTL_NO_ACK));
  1107. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1108. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
  1109. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1110. test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
  1111. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1112. rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
  1113. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1114. !!(control->flags &
  1115. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  1116. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
  1117. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1118. rt2x00_desc_write(txd, 0, word);
  1119. }
  1120. /*
  1121. * TX data initialization
  1122. */
  1123. static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1124. unsigned int queue)
  1125. {
  1126. u32 reg;
  1127. if (queue == IEEE80211_TX_QUEUE_BEACON) {
  1128. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1129. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  1130. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1131. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1132. }
  1133. return;
  1134. }
  1135. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1136. if (queue == IEEE80211_TX_QUEUE_DATA0)
  1137. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
  1138. else if (queue == IEEE80211_TX_QUEUE_DATA1)
  1139. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
  1140. else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
  1141. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
  1142. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1143. }
  1144. /*
  1145. * RX control handlers
  1146. */
  1147. static int rt2500pci_fill_rxdone(struct data_entry *entry,
  1148. int *signal, int *rssi, int *ofdm, int *size)
  1149. {
  1150. struct data_desc *rxd = entry->priv;
  1151. u32 word0;
  1152. u32 word2;
  1153. rt2x00_desc_read(rxd, 0, &word0);
  1154. rt2x00_desc_read(rxd, 2, &word2);
  1155. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR) ||
  1156. rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR) ||
  1157. rt2x00_get_field32(word0, RXD_W0_ICV_ERROR))
  1158. return -EINVAL;
  1159. *signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1160. *rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1161. entry->ring->rt2x00dev->rssi_offset;
  1162. *ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
  1163. *size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1164. return 0;
  1165. }
  1166. /*
  1167. * Interrupt functions.
  1168. */
  1169. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
  1170. {
  1171. struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
  1172. struct data_entry *entry;
  1173. struct data_desc *txd;
  1174. u32 word;
  1175. int tx_status;
  1176. int retry;
  1177. while (!rt2x00_ring_empty(ring)) {
  1178. entry = rt2x00_get_data_entry_done(ring);
  1179. txd = entry->priv;
  1180. rt2x00_desc_read(txd, 0, &word);
  1181. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1182. !rt2x00_get_field32(word, TXD_W0_VALID))
  1183. break;
  1184. /*
  1185. * Obtain the status about this packet.
  1186. */
  1187. tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
  1188. retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1189. rt2x00lib_txdone(entry, tx_status, retry);
  1190. /*
  1191. * Make this entry available for reuse.
  1192. */
  1193. entry->flags = 0;
  1194. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  1195. rt2x00_desc_write(txd, 0, word);
  1196. rt2x00_ring_index_done_inc(ring);
  1197. }
  1198. /*
  1199. * If the data ring was full before the txdone handler
  1200. * we must make sure the packet queue in the mac80211 stack
  1201. * is reenabled when the txdone handler has finished.
  1202. */
  1203. entry = ring->entry;
  1204. if (!rt2x00_ring_full(ring))
  1205. ieee80211_wake_queue(rt2x00dev->hw,
  1206. entry->tx_status.control.queue);
  1207. }
  1208. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1209. {
  1210. struct rt2x00_dev *rt2x00dev = dev_instance;
  1211. u32 reg;
  1212. /*
  1213. * Get the interrupt sources & saved to local variable.
  1214. * Write register value back to clear pending interrupts.
  1215. */
  1216. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1217. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1218. if (!reg)
  1219. return IRQ_NONE;
  1220. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  1221. return IRQ_HANDLED;
  1222. /*
  1223. * Handle interrupts, walk through all bits
  1224. * and run the tasks, the bits are checked in order of
  1225. * priority.
  1226. */
  1227. /*
  1228. * 1 - Beacon timer expired interrupt.
  1229. */
  1230. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1231. rt2x00lib_beacondone(rt2x00dev);
  1232. /*
  1233. * 2 - Rx ring done interrupt.
  1234. */
  1235. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1236. rt2x00pci_rxdone(rt2x00dev);
  1237. /*
  1238. * 3 - Atim ring transmit done interrupt.
  1239. */
  1240. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1241. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
  1242. /*
  1243. * 4 - Priority ring transmit done interrupt.
  1244. */
  1245. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1246. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  1247. /*
  1248. * 5 - Tx ring transmit done interrupt.
  1249. */
  1250. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1251. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  1252. return IRQ_HANDLED;
  1253. }
  1254. /*
  1255. * Device probe functions.
  1256. */
  1257. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1258. {
  1259. struct eeprom_93cx6 eeprom;
  1260. u32 reg;
  1261. u16 word;
  1262. u8 *mac;
  1263. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1264. eeprom.data = rt2x00dev;
  1265. eeprom.register_read = rt2500pci_eepromregister_read;
  1266. eeprom.register_write = rt2500pci_eepromregister_write;
  1267. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1268. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1269. eeprom.reg_data_in = 0;
  1270. eeprom.reg_data_out = 0;
  1271. eeprom.reg_data_clock = 0;
  1272. eeprom.reg_chip_select = 0;
  1273. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1274. EEPROM_SIZE / sizeof(u16));
  1275. /*
  1276. * Start validation of the data that has been read.
  1277. */
  1278. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1279. if (!is_valid_ether_addr(mac)) {
  1280. random_ether_addr(mac);
  1281. EEPROM(rt2x00dev, "MAC: " MAC_FMT "\n", MAC_ARG(mac));
  1282. }
  1283. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1284. if (word == 0xffff) {
  1285. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1286. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 0);
  1287. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 0);
  1288. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 0);
  1289. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1290. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1291. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1292. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1293. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1294. }
  1295. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1296. if (word == 0xffff) {
  1297. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1298. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1299. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1300. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1301. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1302. }
  1303. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1304. if (word == 0xffff) {
  1305. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1306. DEFAULT_RSSI_OFFSET);
  1307. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1308. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1309. }
  1310. return 0;
  1311. }
  1312. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1313. {
  1314. u32 reg;
  1315. u16 value;
  1316. u16 eeprom;
  1317. /*
  1318. * Read EEPROM word for configuration.
  1319. */
  1320. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1321. /*
  1322. * Identify RF chipset.
  1323. */
  1324. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1325. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1326. rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
  1327. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1328. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1329. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1330. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1331. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1332. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1333. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1334. return -ENODEV;
  1335. }
  1336. /*
  1337. * Identify default antenna configuration.
  1338. */
  1339. rt2x00dev->hw->conf.antenna_sel_tx =
  1340. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1341. rt2x00dev->hw->conf.antenna_sel_rx =
  1342. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1343. /*
  1344. * Store led mode, for correct led behaviour.
  1345. */
  1346. rt2x00dev->led_mode =
  1347. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1348. /*
  1349. * Detect if this device has an hardware controlled radio.
  1350. */
  1351. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1352. __set_bit(DEVICE_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1353. /*
  1354. * Check if the BBP tuning should be enabled.
  1355. */
  1356. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1357. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1358. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1359. /*
  1360. * Read the RSSI <-> dBm offset information.
  1361. */
  1362. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1363. rt2x00dev->rssi_offset =
  1364. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1365. return 0;
  1366. }
  1367. /*
  1368. * RF value list for RF2522
  1369. * Supports: 2.4 GHz
  1370. */
  1371. static const struct rf_channel rf_vals_bg_2522[] = {
  1372. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1373. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1374. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1375. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1376. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1377. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1378. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1379. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1380. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1381. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1382. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1383. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1384. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1385. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1386. };
  1387. /*
  1388. * RF value list for RF2523
  1389. * Supports: 2.4 GHz
  1390. */
  1391. static const struct rf_channel rf_vals_bg_2523[] = {
  1392. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1393. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1394. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1395. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1396. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1397. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1398. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1399. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1400. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1401. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1402. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1403. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1404. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1405. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1406. };
  1407. /*
  1408. * RF value list for RF2524
  1409. * Supports: 2.4 GHz
  1410. */
  1411. static const struct rf_channel rf_vals_bg_2524[] = {
  1412. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1413. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1414. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1415. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1416. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1417. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1418. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1419. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1420. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1421. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1422. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1423. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1424. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1425. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1426. };
  1427. /*
  1428. * RF value list for RF2525
  1429. * Supports: 2.4 GHz
  1430. */
  1431. static const struct rf_channel rf_vals_bg_2525[] = {
  1432. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1433. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1434. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1435. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1436. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1437. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1438. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1439. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1440. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1441. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1442. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1443. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1444. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1445. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1446. };
  1447. /*
  1448. * RF value list for RF2525e
  1449. * Supports: 2.4 GHz
  1450. */
  1451. static const struct rf_channel rf_vals_bg_2525e[] = {
  1452. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1453. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1454. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1455. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1456. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1457. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1458. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1459. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1460. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1461. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1462. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1463. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1464. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1465. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1466. };
  1467. /*
  1468. * RF value list for RF5222
  1469. * Supports: 2.4 GHz & 5.2 GHz
  1470. */
  1471. static const struct rf_channel rf_vals_5222[] = {
  1472. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1473. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1474. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1475. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1476. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1477. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1478. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1479. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1480. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1481. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1482. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1483. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1484. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1485. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1486. /* 802.11 UNI / HyperLan 2 */
  1487. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1488. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1489. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1490. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1491. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1492. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1493. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1494. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1495. /* 802.11 HyperLan 2 */
  1496. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1497. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1498. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1499. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1500. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1501. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1502. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1503. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1504. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1505. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1506. /* 802.11 UNII */
  1507. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1508. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1509. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1510. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1511. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1512. };
  1513. static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1514. {
  1515. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1516. u8 *txpower;
  1517. unsigned int i;
  1518. /*
  1519. * Initialize all hw fields.
  1520. */
  1521. rt2x00dev->hw->flags =
  1522. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1523. IEEE80211_HW_MONITOR_DURING_OPER |
  1524. IEEE80211_HW_NO_PROBE_FILTERING;
  1525. rt2x00dev->hw->extra_tx_headroom = 0;
  1526. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1527. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1528. rt2x00dev->hw->queues = 2;
  1529. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1530. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1531. rt2x00_eeprom_addr(rt2x00dev,
  1532. EEPROM_MAC_ADDR_0));
  1533. /*
  1534. * Convert tx_power array in eeprom.
  1535. */
  1536. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1537. for (i = 0; i < 14; i++)
  1538. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1539. /*
  1540. * Initialize hw_mode information.
  1541. */
  1542. spec->num_modes = 2;
  1543. spec->num_rates = 12;
  1544. spec->tx_power_a = NULL;
  1545. spec->tx_power_bg = txpower;
  1546. spec->tx_power_default = DEFAULT_TXPOWER;
  1547. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1548. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1549. spec->channels = rf_vals_bg_2522;
  1550. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1551. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1552. spec->channels = rf_vals_bg_2523;
  1553. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1554. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1555. spec->channels = rf_vals_bg_2524;
  1556. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1557. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1558. spec->channels = rf_vals_bg_2525;
  1559. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1560. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1561. spec->channels = rf_vals_bg_2525e;
  1562. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1563. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1564. spec->channels = rf_vals_5222;
  1565. spec->num_modes = 3;
  1566. }
  1567. }
  1568. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1569. {
  1570. int retval;
  1571. /*
  1572. * Allocate eeprom data.
  1573. */
  1574. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1575. if (retval)
  1576. return retval;
  1577. retval = rt2500pci_init_eeprom(rt2x00dev);
  1578. if (retval)
  1579. return retval;
  1580. /*
  1581. * Initialize hw specifications.
  1582. */
  1583. rt2500pci_probe_hw_mode(rt2x00dev);
  1584. /*
  1585. * This device requires the beacon ring
  1586. */
  1587. __set_bit(REQUIRE_BEACON_RING, &rt2x00dev->flags);
  1588. /*
  1589. * Set the rssi offset.
  1590. */
  1591. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1592. return 0;
  1593. }
  1594. /*
  1595. * IEEE80211 stack callback functions.
  1596. */
  1597. static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
  1598. u32 short_retry, u32 long_retry)
  1599. {
  1600. struct rt2x00_dev *rt2x00dev = hw->priv;
  1601. u32 reg;
  1602. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1603. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1604. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1605. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1606. return 0;
  1607. }
  1608. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
  1609. {
  1610. struct rt2x00_dev *rt2x00dev = hw->priv;
  1611. u64 tsf;
  1612. u32 reg;
  1613. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1614. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1615. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1616. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1617. return tsf;
  1618. }
  1619. static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
  1620. {
  1621. struct rt2x00_dev *rt2x00dev = hw->priv;
  1622. rt2x00pci_register_write(rt2x00dev, CSR16, 0);
  1623. rt2x00pci_register_write(rt2x00dev, CSR17, 0);
  1624. }
  1625. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1626. {
  1627. struct rt2x00_dev *rt2x00dev = hw->priv;
  1628. u32 reg;
  1629. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1630. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1631. }
  1632. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1633. .tx = rt2x00mac_tx,
  1634. .add_interface = rt2x00mac_add_interface,
  1635. .remove_interface = rt2x00mac_remove_interface,
  1636. .config = rt2x00mac_config,
  1637. .config_interface = rt2x00mac_config_interface,
  1638. .set_multicast_list = rt2x00mac_set_multicast_list,
  1639. .get_stats = rt2x00mac_get_stats,
  1640. .set_retry_limit = rt2500pci_set_retry_limit,
  1641. .conf_tx = rt2x00mac_conf_tx,
  1642. .get_tx_stats = rt2x00mac_get_tx_stats,
  1643. .get_tsf = rt2500pci_get_tsf,
  1644. .reset_tsf = rt2500pci_reset_tsf,
  1645. .beacon_update = rt2x00pci_beacon_update,
  1646. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1647. };
  1648. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1649. .irq_handler = rt2500pci_interrupt,
  1650. .probe_hw = rt2500pci_probe_hw,
  1651. .initialize = rt2x00pci_initialize,
  1652. .uninitialize = rt2x00pci_uninitialize,
  1653. .set_device_state = rt2500pci_set_device_state,
  1654. #ifdef CONFIG_RT2500PCI_RFKILL
  1655. .rfkill_poll = rt2500pci_rfkill_poll,
  1656. #endif /* CONFIG_RT2500PCI_RFKILL */
  1657. .link_stats = rt2500pci_link_stats,
  1658. .reset_tuner = rt2500pci_reset_tuner,
  1659. .link_tuner = rt2500pci_link_tuner,
  1660. .write_tx_desc = rt2500pci_write_tx_desc,
  1661. .write_tx_data = rt2x00pci_write_tx_data,
  1662. .kick_tx_queue = rt2500pci_kick_tx_queue,
  1663. .fill_rxdone = rt2500pci_fill_rxdone,
  1664. .config_mac_addr = rt2500pci_config_mac_addr,
  1665. .config_bssid = rt2500pci_config_bssid,
  1666. .config_packet_filter = rt2500pci_config_packet_filter,
  1667. .config_type = rt2500pci_config_type,
  1668. .config = rt2500pci_config,
  1669. };
  1670. static const struct rt2x00_ops rt2500pci_ops = {
  1671. .name = DRV_NAME,
  1672. .rxd_size = RXD_DESC_SIZE,
  1673. .txd_size = TXD_DESC_SIZE,
  1674. .eeprom_size = EEPROM_SIZE,
  1675. .rf_size = RF_SIZE,
  1676. .lib = &rt2500pci_rt2x00_ops,
  1677. .hw = &rt2500pci_mac80211_ops,
  1678. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1679. .debugfs = &rt2500pci_rt2x00debug,
  1680. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1681. };
  1682. /*
  1683. * RT2500pci module information.
  1684. */
  1685. static struct pci_device_id rt2500pci_device_table[] = {
  1686. { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
  1687. { 0, }
  1688. };
  1689. MODULE_AUTHOR(DRV_PROJECT);
  1690. MODULE_VERSION(DRV_VERSION);
  1691. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1692. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1693. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1694. MODULE_LICENSE("GPL");
  1695. static struct pci_driver rt2500pci_driver = {
  1696. .name = DRV_NAME,
  1697. .id_table = rt2500pci_device_table,
  1698. .probe = rt2x00pci_probe,
  1699. .remove = __devexit_p(rt2x00pci_remove),
  1700. .suspend = rt2x00pci_suspend,
  1701. .resume = rt2x00pci_resume,
  1702. };
  1703. static int __init rt2500pci_init(void)
  1704. {
  1705. return pci_register_driver(&rt2500pci_driver);
  1706. }
  1707. static void __exit rt2500pci_exit(void)
  1708. {
  1709. pci_unregister_driver(&rt2500pci_driver);
  1710. }
  1711. module_init(rt2500pci_init);
  1712. module_exit(rt2500pci_exit);