tx.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2008 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/pci.h>
  11. #include <linux/tcp.h>
  12. #include <linux/ip.h>
  13. #include <linux/in.h>
  14. #include <linux/if_ether.h>
  15. #include <linux/highmem.h>
  16. #include "net_driver.h"
  17. #include "tx.h"
  18. #include "efx.h"
  19. #include "falcon.h"
  20. #include "workarounds.h"
  21. /*
  22. * TX descriptor ring full threshold
  23. *
  24. * The tx_queue descriptor ring fill-level must fall below this value
  25. * before we restart the netif queue
  26. */
  27. #define EFX_NETDEV_TX_THRESHOLD(_tx_queue) \
  28. (_tx_queue->efx->type->txd_ring_mask / 2u)
  29. /* We want to be able to nest calls to netif_stop_queue(), since each
  30. * channel can have an individual stop on the queue.
  31. */
  32. void efx_stop_queue(struct efx_nic *efx)
  33. {
  34. spin_lock_bh(&efx->netif_stop_lock);
  35. EFX_TRACE(efx, "stop TX queue\n");
  36. atomic_inc(&efx->netif_stop_count);
  37. netif_stop_queue(efx->net_dev);
  38. spin_unlock_bh(&efx->netif_stop_lock);
  39. }
  40. /* Wake netif's TX queue
  41. * We want to be able to nest calls to netif_stop_queue(), since each
  42. * channel can have an individual stop on the queue.
  43. */
  44. inline void efx_wake_queue(struct efx_nic *efx)
  45. {
  46. local_bh_disable();
  47. if (atomic_dec_and_lock(&efx->netif_stop_count,
  48. &efx->netif_stop_lock)) {
  49. EFX_TRACE(efx, "waking TX queue\n");
  50. netif_wake_queue(efx->net_dev);
  51. spin_unlock(&efx->netif_stop_lock);
  52. }
  53. local_bh_enable();
  54. }
  55. static inline void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
  56. struct efx_tx_buffer *buffer)
  57. {
  58. if (buffer->unmap_len) {
  59. struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
  60. if (buffer->unmap_single)
  61. pci_unmap_single(pci_dev, buffer->unmap_addr,
  62. buffer->unmap_len, PCI_DMA_TODEVICE);
  63. else
  64. pci_unmap_page(pci_dev, buffer->unmap_addr,
  65. buffer->unmap_len, PCI_DMA_TODEVICE);
  66. buffer->unmap_len = 0;
  67. buffer->unmap_single = 0;
  68. }
  69. if (buffer->skb) {
  70. dev_kfree_skb_any((struct sk_buff *) buffer->skb);
  71. buffer->skb = NULL;
  72. EFX_TRACE(tx_queue->efx, "TX queue %d transmission id %x "
  73. "complete\n", tx_queue->queue, read_ptr);
  74. }
  75. }
  76. /*
  77. * Add a socket buffer to a TX queue
  78. *
  79. * This maps all fragments of a socket buffer for DMA and adds them to
  80. * the TX queue. The queue's insert pointer will be incremented by
  81. * the number of fragments in the socket buffer.
  82. *
  83. * If any DMA mapping fails, any mapped fragments will be unmapped,
  84. * the queue's insert pointer will be restored to its original value.
  85. *
  86. * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
  87. * You must hold netif_tx_lock() to call this function.
  88. */
  89. static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue,
  90. const struct sk_buff *skb)
  91. {
  92. struct efx_nic *efx = tx_queue->efx;
  93. struct pci_dev *pci_dev = efx->pci_dev;
  94. struct efx_tx_buffer *buffer;
  95. skb_frag_t *fragment;
  96. struct page *page;
  97. int page_offset;
  98. unsigned int len, unmap_len = 0, fill_level, insert_ptr, misalign;
  99. dma_addr_t dma_addr, unmap_addr = 0;
  100. unsigned int dma_len;
  101. unsigned unmap_single;
  102. int q_space, i = 0;
  103. int rc = NETDEV_TX_OK;
  104. EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
  105. /* Get size of the initial fragment */
  106. len = skb_headlen(skb);
  107. fill_level = tx_queue->insert_count - tx_queue->old_read_count;
  108. q_space = efx->type->txd_ring_mask - 1 - fill_level;
  109. /* Map for DMA. Use pci_map_single rather than pci_map_page
  110. * since this is more efficient on machines with sparse
  111. * memory.
  112. */
  113. unmap_single = 1;
  114. dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
  115. /* Process all fragments */
  116. while (1) {
  117. if (unlikely(pci_dma_mapping_error(dma_addr)))
  118. goto pci_err;
  119. /* Store fields for marking in the per-fragment final
  120. * descriptor */
  121. unmap_len = len;
  122. unmap_addr = dma_addr;
  123. /* Add to TX queue, splitting across DMA boundaries */
  124. do {
  125. if (unlikely(q_space-- <= 0)) {
  126. /* It might be that completions have
  127. * happened since the xmit path last
  128. * checked. Update the xmit path's
  129. * copy of read_count.
  130. */
  131. ++tx_queue->stopped;
  132. /* This memory barrier protects the
  133. * change of stopped from the access
  134. * of read_count. */
  135. smp_mb();
  136. tx_queue->old_read_count =
  137. *(volatile unsigned *)
  138. &tx_queue->read_count;
  139. fill_level = (tx_queue->insert_count
  140. - tx_queue->old_read_count);
  141. q_space = (efx->type->txd_ring_mask - 1 -
  142. fill_level);
  143. if (unlikely(q_space-- <= 0))
  144. goto stop;
  145. smp_mb();
  146. --tx_queue->stopped;
  147. }
  148. insert_ptr = (tx_queue->insert_count &
  149. efx->type->txd_ring_mask);
  150. buffer = &tx_queue->buffer[insert_ptr];
  151. EFX_BUG_ON_PARANOID(buffer->skb);
  152. EFX_BUG_ON_PARANOID(buffer->len);
  153. EFX_BUG_ON_PARANOID(buffer->continuation != 1);
  154. EFX_BUG_ON_PARANOID(buffer->unmap_len);
  155. dma_len = (((~dma_addr) & efx->type->tx_dma_mask) + 1);
  156. if (likely(dma_len > len))
  157. dma_len = len;
  158. misalign = (unsigned)dma_addr & efx->type->bug5391_mask;
  159. if (misalign && dma_len + misalign > 512)
  160. dma_len = 512 - misalign;
  161. /* Fill out per descriptor fields */
  162. buffer->len = dma_len;
  163. buffer->dma_addr = dma_addr;
  164. len -= dma_len;
  165. dma_addr += dma_len;
  166. ++tx_queue->insert_count;
  167. } while (len);
  168. /* Transfer ownership of the unmapping to the final buffer */
  169. buffer->unmap_addr = unmap_addr;
  170. buffer->unmap_single = unmap_single;
  171. buffer->unmap_len = unmap_len;
  172. unmap_len = 0;
  173. /* Get address and size of next fragment */
  174. if (i >= skb_shinfo(skb)->nr_frags)
  175. break;
  176. fragment = &skb_shinfo(skb)->frags[i];
  177. len = fragment->size;
  178. page = fragment->page;
  179. page_offset = fragment->page_offset;
  180. i++;
  181. /* Map for DMA */
  182. unmap_single = 0;
  183. dma_addr = pci_map_page(pci_dev, page, page_offset, len,
  184. PCI_DMA_TODEVICE);
  185. }
  186. /* Transfer ownership of the skb to the final buffer */
  187. buffer->skb = skb;
  188. buffer->continuation = 0;
  189. /* Pass off to hardware */
  190. falcon_push_buffers(tx_queue);
  191. return NETDEV_TX_OK;
  192. pci_err:
  193. EFX_ERR_RL(efx, " TX queue %d could not map skb with %d bytes %d "
  194. "fragments for DMA\n", tx_queue->queue, skb->len,
  195. skb_shinfo(skb)->nr_frags + 1);
  196. /* Mark the packet as transmitted, and free the SKB ourselves */
  197. dev_kfree_skb_any((struct sk_buff *)skb);
  198. goto unwind;
  199. stop:
  200. rc = NETDEV_TX_BUSY;
  201. if (tx_queue->stopped == 1)
  202. efx_stop_queue(efx);
  203. unwind:
  204. /* Work backwards until we hit the original insert pointer value */
  205. while (tx_queue->insert_count != tx_queue->write_count) {
  206. --tx_queue->insert_count;
  207. insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask;
  208. buffer = &tx_queue->buffer[insert_ptr];
  209. efx_dequeue_buffer(tx_queue, buffer);
  210. buffer->len = 0;
  211. }
  212. /* Free the fragment we were mid-way through pushing */
  213. if (unmap_len)
  214. pci_unmap_page(pci_dev, unmap_addr, unmap_len,
  215. PCI_DMA_TODEVICE);
  216. return rc;
  217. }
  218. /* Remove packets from the TX queue
  219. *
  220. * This removes packets from the TX queue, up to and including the
  221. * specified index.
  222. */
  223. static inline void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
  224. unsigned int index)
  225. {
  226. struct efx_nic *efx = tx_queue->efx;
  227. unsigned int stop_index, read_ptr;
  228. unsigned int mask = tx_queue->efx->type->txd_ring_mask;
  229. stop_index = (index + 1) & mask;
  230. read_ptr = tx_queue->read_count & mask;
  231. while (read_ptr != stop_index) {
  232. struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
  233. if (unlikely(buffer->len == 0)) {
  234. EFX_ERR(tx_queue->efx, "TX queue %d spurious TX "
  235. "completion id %x\n", tx_queue->queue,
  236. read_ptr);
  237. efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
  238. return;
  239. }
  240. efx_dequeue_buffer(tx_queue, buffer);
  241. buffer->continuation = 1;
  242. buffer->len = 0;
  243. ++tx_queue->read_count;
  244. read_ptr = tx_queue->read_count & mask;
  245. }
  246. }
  247. /* Initiate a packet transmission on the specified TX queue.
  248. * Note that returning anything other than NETDEV_TX_OK will cause the
  249. * OS to free the skb.
  250. *
  251. * This function is split out from efx_hard_start_xmit to allow the
  252. * loopback test to direct packets via specific TX queues. It is
  253. * therefore a non-static inline, so as not to penalise performance
  254. * for non-loopback transmissions.
  255. *
  256. * Context: netif_tx_lock held
  257. */
  258. inline int efx_xmit(struct efx_nic *efx,
  259. struct efx_tx_queue *tx_queue, struct sk_buff *skb)
  260. {
  261. int rc;
  262. /* Map fragments for DMA and add to TX queue */
  263. rc = efx_enqueue_skb(tx_queue, skb);
  264. if (unlikely(rc != NETDEV_TX_OK))
  265. goto out;
  266. /* Update last TX timer */
  267. efx->net_dev->trans_start = jiffies;
  268. out:
  269. return rc;
  270. }
  271. /* Initiate a packet transmission. We use one channel per CPU
  272. * (sharing when we have more CPUs than channels). On Falcon, the TX
  273. * completion events will be directed back to the CPU that transmitted
  274. * the packet, which should be cache-efficient.
  275. *
  276. * Context: non-blocking.
  277. * Note that returning anything other than NETDEV_TX_OK will cause the
  278. * OS to free the skb.
  279. */
  280. int efx_hard_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
  281. {
  282. struct efx_nic *efx = net_dev->priv;
  283. return efx_xmit(efx, &efx->tx_queue[0], skb);
  284. }
  285. void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
  286. {
  287. unsigned fill_level;
  288. struct efx_nic *efx = tx_queue->efx;
  289. EFX_BUG_ON_PARANOID(index > efx->type->txd_ring_mask);
  290. efx_dequeue_buffers(tx_queue, index);
  291. /* See if we need to restart the netif queue. This barrier
  292. * separates the update of read_count from the test of
  293. * stopped. */
  294. smp_mb();
  295. if (unlikely(tx_queue->stopped)) {
  296. fill_level = tx_queue->insert_count - tx_queue->read_count;
  297. if (fill_level < EFX_NETDEV_TX_THRESHOLD(tx_queue)) {
  298. EFX_BUG_ON_PARANOID(!NET_DEV_REGISTERED(efx));
  299. /* Do this under netif_tx_lock(), to avoid racing
  300. * with efx_xmit(). */
  301. netif_tx_lock(efx->net_dev);
  302. if (tx_queue->stopped) {
  303. tx_queue->stopped = 0;
  304. efx_wake_queue(efx);
  305. }
  306. netif_tx_unlock(efx->net_dev);
  307. }
  308. }
  309. }
  310. int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
  311. {
  312. struct efx_nic *efx = tx_queue->efx;
  313. unsigned int txq_size;
  314. int i, rc;
  315. EFX_LOG(efx, "creating TX queue %d\n", tx_queue->queue);
  316. /* Allocate software ring */
  317. txq_size = (efx->type->txd_ring_mask + 1) * sizeof(*tx_queue->buffer);
  318. tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL);
  319. if (!tx_queue->buffer) {
  320. rc = -ENOMEM;
  321. goto fail1;
  322. }
  323. for (i = 0; i <= efx->type->txd_ring_mask; ++i)
  324. tx_queue->buffer[i].continuation = 1;
  325. /* Allocate hardware ring */
  326. rc = falcon_probe_tx(tx_queue);
  327. if (rc)
  328. goto fail2;
  329. return 0;
  330. fail2:
  331. kfree(tx_queue->buffer);
  332. tx_queue->buffer = NULL;
  333. fail1:
  334. tx_queue->used = 0;
  335. return rc;
  336. }
  337. int efx_init_tx_queue(struct efx_tx_queue *tx_queue)
  338. {
  339. EFX_LOG(tx_queue->efx, "initialising TX queue %d\n", tx_queue->queue);
  340. tx_queue->insert_count = 0;
  341. tx_queue->write_count = 0;
  342. tx_queue->read_count = 0;
  343. tx_queue->old_read_count = 0;
  344. BUG_ON(tx_queue->stopped);
  345. /* Set up TX descriptor ring */
  346. return falcon_init_tx(tx_queue);
  347. }
  348. void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
  349. {
  350. struct efx_tx_buffer *buffer;
  351. if (!tx_queue->buffer)
  352. return;
  353. /* Free any buffers left in the ring */
  354. while (tx_queue->read_count != tx_queue->write_count) {
  355. buffer = &tx_queue->buffer[tx_queue->read_count &
  356. tx_queue->efx->type->txd_ring_mask];
  357. efx_dequeue_buffer(tx_queue, buffer);
  358. buffer->continuation = 1;
  359. buffer->len = 0;
  360. ++tx_queue->read_count;
  361. }
  362. }
  363. void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
  364. {
  365. EFX_LOG(tx_queue->efx, "shutting down TX queue %d\n", tx_queue->queue);
  366. /* Flush TX queue, remove descriptor ring */
  367. falcon_fini_tx(tx_queue);
  368. efx_release_tx_buffers(tx_queue);
  369. /* Release queue's stop on port, if any */
  370. if (tx_queue->stopped) {
  371. tx_queue->stopped = 0;
  372. efx_wake_queue(tx_queue->efx);
  373. }
  374. }
  375. void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
  376. {
  377. EFX_LOG(tx_queue->efx, "destroying TX queue %d\n", tx_queue->queue);
  378. falcon_remove_tx(tx_queue);
  379. kfree(tx_queue->buffer);
  380. tx_queue->buffer = NULL;
  381. tx_queue->used = 0;
  382. }