namespace.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/percpu.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/cpumask.h>
  20. #include <linux/module.h>
  21. #include <linux/sysfs.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/mnt_namespace.h>
  24. #include <linux/namei.h>
  25. #include <linux/nsproxy.h>
  26. #include <linux/security.h>
  27. #include <linux/mount.h>
  28. #include <linux/ramfs.h>
  29. #include <linux/log2.h>
  30. #include <linux/idr.h>
  31. #include <linux/fs_struct.h>
  32. #include <linux/fsnotify.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/unistd.h>
  35. #include "pnode.h"
  36. #include "internal.h"
  37. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  38. #define HASH_SIZE (1UL << HASH_SHIFT)
  39. static int event;
  40. static DEFINE_IDA(mnt_id_ida);
  41. static DEFINE_IDA(mnt_group_ida);
  42. static DEFINE_SPINLOCK(mnt_id_lock);
  43. static int mnt_id_start = 0;
  44. static int mnt_group_start = 1;
  45. static struct list_head *mount_hashtable __read_mostly;
  46. static struct kmem_cache *mnt_cache __read_mostly;
  47. static struct rw_semaphore namespace_sem;
  48. /* /sys/fs */
  49. struct kobject *fs_kobj;
  50. EXPORT_SYMBOL_GPL(fs_kobj);
  51. /*
  52. * vfsmount lock may be taken for read to prevent changes to the
  53. * vfsmount hash, ie. during mountpoint lookups or walking back
  54. * up the tree.
  55. *
  56. * It should be taken for write in all cases where the vfsmount
  57. * tree or hash is modified or when a vfsmount structure is modified.
  58. */
  59. DEFINE_BRLOCK(vfsmount_lock);
  60. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  61. {
  62. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  63. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  64. tmp = tmp + (tmp >> HASH_SHIFT);
  65. return tmp & (HASH_SIZE - 1);
  66. }
  67. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  68. /*
  69. * allocation is serialized by namespace_sem, but we need the spinlock to
  70. * serialize with freeing.
  71. */
  72. static int mnt_alloc_id(struct mount *mnt)
  73. {
  74. int res;
  75. retry:
  76. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  77. spin_lock(&mnt_id_lock);
  78. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt.mnt_id);
  79. if (!res)
  80. mnt_id_start = mnt->mnt.mnt_id + 1;
  81. spin_unlock(&mnt_id_lock);
  82. if (res == -EAGAIN)
  83. goto retry;
  84. return res;
  85. }
  86. static void mnt_free_id(struct mount *mnt)
  87. {
  88. int id = mnt->mnt.mnt_id;
  89. spin_lock(&mnt_id_lock);
  90. ida_remove(&mnt_id_ida, id);
  91. if (mnt_id_start > id)
  92. mnt_id_start = id;
  93. spin_unlock(&mnt_id_lock);
  94. }
  95. /*
  96. * Allocate a new peer group ID
  97. *
  98. * mnt_group_ida is protected by namespace_sem
  99. */
  100. static int mnt_alloc_group_id(struct mount *mnt)
  101. {
  102. int res;
  103. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  104. return -ENOMEM;
  105. res = ida_get_new_above(&mnt_group_ida,
  106. mnt_group_start,
  107. &mnt->mnt.mnt_group_id);
  108. if (!res)
  109. mnt_group_start = mnt->mnt.mnt_group_id + 1;
  110. return res;
  111. }
  112. /*
  113. * Release a peer group ID
  114. */
  115. void mnt_release_group_id(struct mount *mnt)
  116. {
  117. int id = mnt->mnt.mnt_group_id;
  118. ida_remove(&mnt_group_ida, id);
  119. if (mnt_group_start > id)
  120. mnt_group_start = id;
  121. mnt->mnt.mnt_group_id = 0;
  122. }
  123. /*
  124. * vfsmount lock must be held for read
  125. */
  126. static inline void mnt_add_count(struct mount *mnt, int n)
  127. {
  128. #ifdef CONFIG_SMP
  129. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  130. #else
  131. preempt_disable();
  132. mnt->mnt_count += n;
  133. preempt_enable();
  134. #endif
  135. }
  136. /*
  137. * vfsmount lock must be held for write
  138. */
  139. unsigned int mnt_get_count(struct mount *mnt)
  140. {
  141. #ifdef CONFIG_SMP
  142. unsigned int count = 0;
  143. int cpu;
  144. for_each_possible_cpu(cpu) {
  145. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  146. }
  147. return count;
  148. #else
  149. return mnt->mnt_count;
  150. #endif
  151. }
  152. static struct mount *alloc_vfsmnt(const char *name)
  153. {
  154. struct mount *p = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  155. if (p) {
  156. struct vfsmount *mnt = &p->mnt;
  157. int err;
  158. err = mnt_alloc_id(p);
  159. if (err)
  160. goto out_free_cache;
  161. if (name) {
  162. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  163. if (!mnt->mnt_devname)
  164. goto out_free_id;
  165. }
  166. #ifdef CONFIG_SMP
  167. p->mnt_pcp = alloc_percpu(struct mnt_pcp);
  168. if (!p->mnt_pcp)
  169. goto out_free_devname;
  170. this_cpu_add(p->mnt_pcp->mnt_count, 1);
  171. #else
  172. p->mnt_count = 1;
  173. p->mnt_writers = 0;
  174. #endif
  175. INIT_LIST_HEAD(&p->mnt_hash);
  176. INIT_LIST_HEAD(&p->mnt_child);
  177. INIT_LIST_HEAD(&p->mnt_mounts);
  178. INIT_LIST_HEAD(&mnt->mnt_list);
  179. INIT_LIST_HEAD(&p->mnt_expire);
  180. INIT_LIST_HEAD(&p->mnt_share);
  181. INIT_LIST_HEAD(&p->mnt_slave_list);
  182. INIT_LIST_HEAD(&p->mnt_slave);
  183. #ifdef CONFIG_FSNOTIFY
  184. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  185. #endif
  186. }
  187. return p;
  188. #ifdef CONFIG_SMP
  189. out_free_devname:
  190. kfree(p->mnt.mnt_devname);
  191. #endif
  192. out_free_id:
  193. mnt_free_id(p);
  194. out_free_cache:
  195. kmem_cache_free(mnt_cache, p);
  196. return NULL;
  197. }
  198. /*
  199. * Most r/o checks on a fs are for operations that take
  200. * discrete amounts of time, like a write() or unlink().
  201. * We must keep track of when those operations start
  202. * (for permission checks) and when they end, so that
  203. * we can determine when writes are able to occur to
  204. * a filesystem.
  205. */
  206. /*
  207. * __mnt_is_readonly: check whether a mount is read-only
  208. * @mnt: the mount to check for its write status
  209. *
  210. * This shouldn't be used directly ouside of the VFS.
  211. * It does not guarantee that the filesystem will stay
  212. * r/w, just that it is right *now*. This can not and
  213. * should not be used in place of IS_RDONLY(inode).
  214. * mnt_want/drop_write() will _keep_ the filesystem
  215. * r/w.
  216. */
  217. int __mnt_is_readonly(struct vfsmount *mnt)
  218. {
  219. if (mnt->mnt_flags & MNT_READONLY)
  220. return 1;
  221. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  222. return 1;
  223. return 0;
  224. }
  225. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  226. static inline void mnt_inc_writers(struct mount *mnt)
  227. {
  228. #ifdef CONFIG_SMP
  229. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  230. #else
  231. mnt->mnt_writers++;
  232. #endif
  233. }
  234. static inline void mnt_dec_writers(struct mount *mnt)
  235. {
  236. #ifdef CONFIG_SMP
  237. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  238. #else
  239. mnt->mnt_writers--;
  240. #endif
  241. }
  242. static unsigned int mnt_get_writers(struct mount *mnt)
  243. {
  244. #ifdef CONFIG_SMP
  245. unsigned int count = 0;
  246. int cpu;
  247. for_each_possible_cpu(cpu) {
  248. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  249. }
  250. return count;
  251. #else
  252. return mnt->mnt_writers;
  253. #endif
  254. }
  255. /*
  256. * Most r/o checks on a fs are for operations that take
  257. * discrete amounts of time, like a write() or unlink().
  258. * We must keep track of when those operations start
  259. * (for permission checks) and when they end, so that
  260. * we can determine when writes are able to occur to
  261. * a filesystem.
  262. */
  263. /**
  264. * mnt_want_write - get write access to a mount
  265. * @m: the mount on which to take a write
  266. *
  267. * This tells the low-level filesystem that a write is
  268. * about to be performed to it, and makes sure that
  269. * writes are allowed before returning success. When
  270. * the write operation is finished, mnt_drop_write()
  271. * must be called. This is effectively a refcount.
  272. */
  273. int mnt_want_write(struct vfsmount *m)
  274. {
  275. struct mount *mnt = real_mount(m);
  276. int ret = 0;
  277. preempt_disable();
  278. mnt_inc_writers(mnt);
  279. /*
  280. * The store to mnt_inc_writers must be visible before we pass
  281. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  282. * incremented count after it has set MNT_WRITE_HOLD.
  283. */
  284. smp_mb();
  285. while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  286. cpu_relax();
  287. /*
  288. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  289. * be set to match its requirements. So we must not load that until
  290. * MNT_WRITE_HOLD is cleared.
  291. */
  292. smp_rmb();
  293. if (__mnt_is_readonly(m)) {
  294. mnt_dec_writers(mnt);
  295. ret = -EROFS;
  296. goto out;
  297. }
  298. out:
  299. preempt_enable();
  300. return ret;
  301. }
  302. EXPORT_SYMBOL_GPL(mnt_want_write);
  303. /**
  304. * mnt_clone_write - get write access to a mount
  305. * @mnt: the mount on which to take a write
  306. *
  307. * This is effectively like mnt_want_write, except
  308. * it must only be used to take an extra write reference
  309. * on a mountpoint that we already know has a write reference
  310. * on it. This allows some optimisation.
  311. *
  312. * After finished, mnt_drop_write must be called as usual to
  313. * drop the reference.
  314. */
  315. int mnt_clone_write(struct vfsmount *mnt)
  316. {
  317. /* superblock may be r/o */
  318. if (__mnt_is_readonly(mnt))
  319. return -EROFS;
  320. preempt_disable();
  321. mnt_inc_writers(real_mount(mnt));
  322. preempt_enable();
  323. return 0;
  324. }
  325. EXPORT_SYMBOL_GPL(mnt_clone_write);
  326. /**
  327. * mnt_want_write_file - get write access to a file's mount
  328. * @file: the file who's mount on which to take a write
  329. *
  330. * This is like mnt_want_write, but it takes a file and can
  331. * do some optimisations if the file is open for write already
  332. */
  333. int mnt_want_write_file(struct file *file)
  334. {
  335. struct inode *inode = file->f_dentry->d_inode;
  336. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  337. return mnt_want_write(file->f_path.mnt);
  338. else
  339. return mnt_clone_write(file->f_path.mnt);
  340. }
  341. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  342. /**
  343. * mnt_drop_write - give up write access to a mount
  344. * @mnt: the mount on which to give up write access
  345. *
  346. * Tells the low-level filesystem that we are done
  347. * performing writes to it. Must be matched with
  348. * mnt_want_write() call above.
  349. */
  350. void mnt_drop_write(struct vfsmount *mnt)
  351. {
  352. preempt_disable();
  353. mnt_dec_writers(real_mount(mnt));
  354. preempt_enable();
  355. }
  356. EXPORT_SYMBOL_GPL(mnt_drop_write);
  357. void mnt_drop_write_file(struct file *file)
  358. {
  359. mnt_drop_write(file->f_path.mnt);
  360. }
  361. EXPORT_SYMBOL(mnt_drop_write_file);
  362. static int mnt_make_readonly(struct mount *mnt)
  363. {
  364. int ret = 0;
  365. br_write_lock(vfsmount_lock);
  366. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  367. /*
  368. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  369. * should be visible before we do.
  370. */
  371. smp_mb();
  372. /*
  373. * With writers on hold, if this value is zero, then there are
  374. * definitely no active writers (although held writers may subsequently
  375. * increment the count, they'll have to wait, and decrement it after
  376. * seeing MNT_READONLY).
  377. *
  378. * It is OK to have counter incremented on one CPU and decremented on
  379. * another: the sum will add up correctly. The danger would be when we
  380. * sum up each counter, if we read a counter before it is incremented,
  381. * but then read another CPU's count which it has been subsequently
  382. * decremented from -- we would see more decrements than we should.
  383. * MNT_WRITE_HOLD protects against this scenario, because
  384. * mnt_want_write first increments count, then smp_mb, then spins on
  385. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  386. * we're counting up here.
  387. */
  388. if (mnt_get_writers(mnt) > 0)
  389. ret = -EBUSY;
  390. else
  391. mnt->mnt.mnt_flags |= MNT_READONLY;
  392. /*
  393. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  394. * that become unheld will see MNT_READONLY.
  395. */
  396. smp_wmb();
  397. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  398. br_write_unlock(vfsmount_lock);
  399. return ret;
  400. }
  401. static void __mnt_unmake_readonly(struct mount *mnt)
  402. {
  403. br_write_lock(vfsmount_lock);
  404. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  405. br_write_unlock(vfsmount_lock);
  406. }
  407. static void free_vfsmnt(struct mount *mnt)
  408. {
  409. kfree(mnt->mnt.mnt_devname);
  410. mnt_free_id(mnt);
  411. #ifdef CONFIG_SMP
  412. free_percpu(mnt->mnt_pcp);
  413. #endif
  414. kmem_cache_free(mnt_cache, mnt);
  415. }
  416. /*
  417. * find the first or last mount at @dentry on vfsmount @mnt depending on
  418. * @dir. If @dir is set return the first mount else return the last mount.
  419. * vfsmount_lock must be held for read or write.
  420. */
  421. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  422. int dir)
  423. {
  424. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  425. struct list_head *tmp = head;
  426. struct mount *p, *found = NULL;
  427. for (;;) {
  428. tmp = dir ? tmp->next : tmp->prev;
  429. p = NULL;
  430. if (tmp == head)
  431. break;
  432. p = list_entry(tmp, struct mount, mnt_hash);
  433. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
  434. found = p;
  435. break;
  436. }
  437. }
  438. return found;
  439. }
  440. /*
  441. * lookup_mnt increments the ref count before returning
  442. * the vfsmount struct.
  443. */
  444. struct vfsmount *lookup_mnt(struct path *path)
  445. {
  446. struct mount *child_mnt;
  447. br_read_lock(vfsmount_lock);
  448. child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
  449. if (child_mnt) {
  450. mnt_add_count(child_mnt, 1);
  451. br_read_unlock(vfsmount_lock);
  452. return &child_mnt->mnt;
  453. } else {
  454. br_read_unlock(vfsmount_lock);
  455. return NULL;
  456. }
  457. }
  458. static inline int check_mnt(struct vfsmount *mnt)
  459. {
  460. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  461. }
  462. /*
  463. * vfsmount lock must be held for write
  464. */
  465. static void touch_mnt_namespace(struct mnt_namespace *ns)
  466. {
  467. if (ns) {
  468. ns->event = ++event;
  469. wake_up_interruptible(&ns->poll);
  470. }
  471. }
  472. /*
  473. * vfsmount lock must be held for write
  474. */
  475. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  476. {
  477. if (ns && ns->event != event) {
  478. ns->event = event;
  479. wake_up_interruptible(&ns->poll);
  480. }
  481. }
  482. /*
  483. * Clear dentry's mounted state if it has no remaining mounts.
  484. * vfsmount_lock must be held for write.
  485. */
  486. static void dentry_reset_mounted(struct dentry *dentry)
  487. {
  488. unsigned u;
  489. for (u = 0; u < HASH_SIZE; u++) {
  490. struct mount *p;
  491. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  492. if (p->mnt_mountpoint == dentry)
  493. return;
  494. }
  495. }
  496. spin_lock(&dentry->d_lock);
  497. dentry->d_flags &= ~DCACHE_MOUNTED;
  498. spin_unlock(&dentry->d_lock);
  499. }
  500. /*
  501. * vfsmount lock must be held for write
  502. */
  503. static void detach_mnt(struct mount *mnt, struct path *old_path)
  504. {
  505. old_path->dentry = mnt->mnt_mountpoint;
  506. old_path->mnt = &mnt->mnt_parent->mnt;
  507. mnt->mnt_parent = mnt;
  508. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  509. list_del_init(&mnt->mnt_child);
  510. list_del_init(&mnt->mnt_hash);
  511. dentry_reset_mounted(old_path->dentry);
  512. }
  513. /*
  514. * vfsmount lock must be held for write
  515. */
  516. void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
  517. struct mount *child_mnt)
  518. {
  519. child_mnt->mnt_parent = real_mount(mntget(&mnt->mnt));
  520. child_mnt->mnt_mountpoint = dget(dentry);
  521. spin_lock(&dentry->d_lock);
  522. dentry->d_flags |= DCACHE_MOUNTED;
  523. spin_unlock(&dentry->d_lock);
  524. }
  525. /*
  526. * vfsmount lock must be held for write
  527. */
  528. static void attach_mnt(struct mount *mnt, struct path *path)
  529. {
  530. mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
  531. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  532. hash(path->mnt, path->dentry));
  533. list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
  534. }
  535. static inline void __mnt_make_longterm(struct mount *mnt)
  536. {
  537. #ifdef CONFIG_SMP
  538. atomic_inc(&mnt->mnt_longterm);
  539. #endif
  540. }
  541. /* needs vfsmount lock for write */
  542. static inline void __mnt_make_shortterm(struct mount *mnt)
  543. {
  544. #ifdef CONFIG_SMP
  545. atomic_dec(&mnt->mnt_longterm);
  546. #endif
  547. }
  548. /*
  549. * vfsmount lock must be held for write
  550. */
  551. static void commit_tree(struct mount *mnt)
  552. {
  553. struct mount *parent = mnt->mnt_parent;
  554. struct mount *m;
  555. LIST_HEAD(head);
  556. struct mnt_namespace *n = parent->mnt.mnt_ns;
  557. BUG_ON(parent == mnt);
  558. list_add_tail(&head, &mnt->mnt.mnt_list);
  559. list_for_each_entry(m, &head, mnt.mnt_list) {
  560. m->mnt.mnt_ns = n;
  561. __mnt_make_longterm(m);
  562. }
  563. list_splice(&head, n->list.prev);
  564. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  565. hash(&parent->mnt, mnt->mnt_mountpoint));
  566. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  567. touch_mnt_namespace(n);
  568. }
  569. static struct mount *next_mnt(struct mount *p, struct vfsmount *root)
  570. {
  571. struct list_head *next = p->mnt_mounts.next;
  572. if (next == &p->mnt_mounts) {
  573. while (1) {
  574. if (&p->mnt == root)
  575. return NULL;
  576. next = p->mnt_child.next;
  577. if (next != &p->mnt_parent->mnt_mounts)
  578. break;
  579. p = p->mnt_parent;
  580. }
  581. }
  582. return list_entry(next, struct mount, mnt_child);
  583. }
  584. static struct mount *skip_mnt_tree(struct mount *p)
  585. {
  586. struct list_head *prev = p->mnt_mounts.prev;
  587. while (prev != &p->mnt_mounts) {
  588. p = list_entry(prev, struct mount, mnt_child);
  589. prev = p->mnt_mounts.prev;
  590. }
  591. return p;
  592. }
  593. struct vfsmount *
  594. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  595. {
  596. struct mount *mnt;
  597. struct dentry *root;
  598. if (!type)
  599. return ERR_PTR(-ENODEV);
  600. mnt = alloc_vfsmnt(name);
  601. if (!mnt)
  602. return ERR_PTR(-ENOMEM);
  603. if (flags & MS_KERNMOUNT)
  604. mnt->mnt.mnt_flags = MNT_INTERNAL;
  605. root = mount_fs(type, flags, name, data);
  606. if (IS_ERR(root)) {
  607. free_vfsmnt(mnt);
  608. return ERR_CAST(root);
  609. }
  610. mnt->mnt.mnt_root = root;
  611. mnt->mnt.mnt_sb = root->d_sb;
  612. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  613. mnt->mnt_parent = mnt;
  614. return &mnt->mnt;
  615. }
  616. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  617. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  618. int flag)
  619. {
  620. struct super_block *sb = old->mnt.mnt_sb;
  621. struct mount *mnt = alloc_vfsmnt(old->mnt.mnt_devname);
  622. if (mnt) {
  623. if (flag & (CL_SLAVE | CL_PRIVATE))
  624. mnt->mnt.mnt_group_id = 0; /* not a peer of original */
  625. else
  626. mnt->mnt.mnt_group_id = old->mnt.mnt_group_id;
  627. if ((flag & CL_MAKE_SHARED) && !mnt->mnt.mnt_group_id) {
  628. int err = mnt_alloc_group_id(mnt);
  629. if (err)
  630. goto out_free;
  631. }
  632. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
  633. atomic_inc(&sb->s_active);
  634. mnt->mnt.mnt_sb = sb;
  635. mnt->mnt.mnt_root = dget(root);
  636. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  637. mnt->mnt_parent = mnt;
  638. if (flag & CL_SLAVE) {
  639. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  640. mnt->mnt_master = old;
  641. CLEAR_MNT_SHARED(&mnt->mnt);
  642. } else if (!(flag & CL_PRIVATE)) {
  643. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(&old->mnt))
  644. list_add(&mnt->mnt_share, &old->mnt_share);
  645. if (IS_MNT_SLAVE(old))
  646. list_add(&mnt->mnt_slave, &old->mnt_slave);
  647. mnt->mnt_master = old->mnt_master;
  648. }
  649. if (flag & CL_MAKE_SHARED)
  650. set_mnt_shared(mnt);
  651. /* stick the duplicate mount on the same expiry list
  652. * as the original if that was on one */
  653. if (flag & CL_EXPIRE) {
  654. if (!list_empty(&old->mnt_expire))
  655. list_add(&mnt->mnt_expire, &old->mnt_expire);
  656. }
  657. }
  658. return mnt;
  659. out_free:
  660. free_vfsmnt(mnt);
  661. return NULL;
  662. }
  663. static inline void mntfree(struct mount *mnt)
  664. {
  665. struct vfsmount *m = &mnt->mnt;
  666. struct super_block *sb = m->mnt_sb;
  667. /*
  668. * This probably indicates that somebody messed
  669. * up a mnt_want/drop_write() pair. If this
  670. * happens, the filesystem was probably unable
  671. * to make r/w->r/o transitions.
  672. */
  673. /*
  674. * The locking used to deal with mnt_count decrement provides barriers,
  675. * so mnt_get_writers() below is safe.
  676. */
  677. WARN_ON(mnt_get_writers(mnt));
  678. fsnotify_vfsmount_delete(m);
  679. dput(m->mnt_root);
  680. free_vfsmnt(mnt);
  681. deactivate_super(sb);
  682. }
  683. static void mntput_no_expire(struct vfsmount *m)
  684. {
  685. struct mount *mnt = real_mount(m);
  686. put_again:
  687. #ifdef CONFIG_SMP
  688. br_read_lock(vfsmount_lock);
  689. if (likely(atomic_read(&mnt->mnt_longterm))) {
  690. mnt_add_count(mnt, -1);
  691. br_read_unlock(vfsmount_lock);
  692. return;
  693. }
  694. br_read_unlock(vfsmount_lock);
  695. br_write_lock(vfsmount_lock);
  696. mnt_add_count(mnt, -1);
  697. if (mnt_get_count(mnt)) {
  698. br_write_unlock(vfsmount_lock);
  699. return;
  700. }
  701. #else
  702. mnt_add_count(mnt, -1);
  703. if (likely(mnt_get_count(mnt)))
  704. return;
  705. br_write_lock(vfsmount_lock);
  706. #endif
  707. if (unlikely(mnt->mnt.mnt_pinned)) {
  708. mnt_add_count(mnt, mnt->mnt.mnt_pinned + 1);
  709. mnt->mnt.mnt_pinned = 0;
  710. br_write_unlock(vfsmount_lock);
  711. acct_auto_close_mnt(m);
  712. goto put_again;
  713. }
  714. br_write_unlock(vfsmount_lock);
  715. mntfree(mnt);
  716. }
  717. void mntput(struct vfsmount *mnt)
  718. {
  719. if (mnt) {
  720. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  721. if (unlikely(mnt->mnt_expiry_mark))
  722. mnt->mnt_expiry_mark = 0;
  723. mntput_no_expire(mnt);
  724. }
  725. }
  726. EXPORT_SYMBOL(mntput);
  727. struct vfsmount *mntget(struct vfsmount *mnt)
  728. {
  729. if (mnt)
  730. mnt_add_count(real_mount(mnt), 1);
  731. return mnt;
  732. }
  733. EXPORT_SYMBOL(mntget);
  734. void mnt_pin(struct vfsmount *mnt)
  735. {
  736. br_write_lock(vfsmount_lock);
  737. mnt->mnt_pinned++;
  738. br_write_unlock(vfsmount_lock);
  739. }
  740. EXPORT_SYMBOL(mnt_pin);
  741. void mnt_unpin(struct vfsmount *mnt)
  742. {
  743. br_write_lock(vfsmount_lock);
  744. if (mnt->mnt_pinned) {
  745. mnt_add_count(real_mount(mnt), 1);
  746. mnt->mnt_pinned--;
  747. }
  748. br_write_unlock(vfsmount_lock);
  749. }
  750. EXPORT_SYMBOL(mnt_unpin);
  751. static inline void mangle(struct seq_file *m, const char *s)
  752. {
  753. seq_escape(m, s, " \t\n\\");
  754. }
  755. /*
  756. * Simple .show_options callback for filesystems which don't want to
  757. * implement more complex mount option showing.
  758. *
  759. * See also save_mount_options().
  760. */
  761. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  762. {
  763. const char *options;
  764. rcu_read_lock();
  765. options = rcu_dereference(mnt->mnt_sb->s_options);
  766. if (options != NULL && options[0]) {
  767. seq_putc(m, ',');
  768. mangle(m, options);
  769. }
  770. rcu_read_unlock();
  771. return 0;
  772. }
  773. EXPORT_SYMBOL(generic_show_options);
  774. /*
  775. * If filesystem uses generic_show_options(), this function should be
  776. * called from the fill_super() callback.
  777. *
  778. * The .remount_fs callback usually needs to be handled in a special
  779. * way, to make sure, that previous options are not overwritten if the
  780. * remount fails.
  781. *
  782. * Also note, that if the filesystem's .remount_fs function doesn't
  783. * reset all options to their default value, but changes only newly
  784. * given options, then the displayed options will not reflect reality
  785. * any more.
  786. */
  787. void save_mount_options(struct super_block *sb, char *options)
  788. {
  789. BUG_ON(sb->s_options);
  790. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  791. }
  792. EXPORT_SYMBOL(save_mount_options);
  793. void replace_mount_options(struct super_block *sb, char *options)
  794. {
  795. char *old = sb->s_options;
  796. rcu_assign_pointer(sb->s_options, options);
  797. if (old) {
  798. synchronize_rcu();
  799. kfree(old);
  800. }
  801. }
  802. EXPORT_SYMBOL(replace_mount_options);
  803. #ifdef CONFIG_PROC_FS
  804. /* iterator */
  805. static void *m_start(struct seq_file *m, loff_t *pos)
  806. {
  807. struct proc_mounts *p = m->private;
  808. down_read(&namespace_sem);
  809. return seq_list_start(&p->ns->list, *pos);
  810. }
  811. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  812. {
  813. struct proc_mounts *p = m->private;
  814. return seq_list_next(v, &p->ns->list, pos);
  815. }
  816. static void m_stop(struct seq_file *m, void *v)
  817. {
  818. up_read(&namespace_sem);
  819. }
  820. int mnt_had_events(struct proc_mounts *p)
  821. {
  822. struct mnt_namespace *ns = p->ns;
  823. int res = 0;
  824. br_read_lock(vfsmount_lock);
  825. if (p->m.poll_event != ns->event) {
  826. p->m.poll_event = ns->event;
  827. res = 1;
  828. }
  829. br_read_unlock(vfsmount_lock);
  830. return res;
  831. }
  832. struct proc_fs_info {
  833. int flag;
  834. const char *str;
  835. };
  836. static int show_sb_opts(struct seq_file *m, struct super_block *sb)
  837. {
  838. static const struct proc_fs_info fs_info[] = {
  839. { MS_SYNCHRONOUS, ",sync" },
  840. { MS_DIRSYNC, ",dirsync" },
  841. { MS_MANDLOCK, ",mand" },
  842. { 0, NULL }
  843. };
  844. const struct proc_fs_info *fs_infop;
  845. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  846. if (sb->s_flags & fs_infop->flag)
  847. seq_puts(m, fs_infop->str);
  848. }
  849. return security_sb_show_options(m, sb);
  850. }
  851. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  852. {
  853. static const struct proc_fs_info mnt_info[] = {
  854. { MNT_NOSUID, ",nosuid" },
  855. { MNT_NODEV, ",nodev" },
  856. { MNT_NOEXEC, ",noexec" },
  857. { MNT_NOATIME, ",noatime" },
  858. { MNT_NODIRATIME, ",nodiratime" },
  859. { MNT_RELATIME, ",relatime" },
  860. { 0, NULL }
  861. };
  862. const struct proc_fs_info *fs_infop;
  863. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  864. if (mnt->mnt_flags & fs_infop->flag)
  865. seq_puts(m, fs_infop->str);
  866. }
  867. }
  868. static void show_type(struct seq_file *m, struct super_block *sb)
  869. {
  870. mangle(m, sb->s_type->name);
  871. if (sb->s_subtype && sb->s_subtype[0]) {
  872. seq_putc(m, '.');
  873. mangle(m, sb->s_subtype);
  874. }
  875. }
  876. static int show_vfsmnt(struct seq_file *m, void *v)
  877. {
  878. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  879. int err = 0;
  880. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  881. if (mnt->mnt_sb->s_op->show_devname) {
  882. err = mnt->mnt_sb->s_op->show_devname(m, mnt);
  883. if (err)
  884. goto out;
  885. } else {
  886. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  887. }
  888. seq_putc(m, ' ');
  889. seq_path(m, &mnt_path, " \t\n\\");
  890. seq_putc(m, ' ');
  891. show_type(m, mnt->mnt_sb);
  892. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  893. err = show_sb_opts(m, mnt->mnt_sb);
  894. if (err)
  895. goto out;
  896. show_mnt_opts(m, mnt);
  897. if (mnt->mnt_sb->s_op->show_options)
  898. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  899. seq_puts(m, " 0 0\n");
  900. out:
  901. return err;
  902. }
  903. const struct seq_operations mounts_op = {
  904. .start = m_start,
  905. .next = m_next,
  906. .stop = m_stop,
  907. .show = show_vfsmnt
  908. };
  909. static int show_mountinfo(struct seq_file *m, void *v)
  910. {
  911. struct proc_mounts *p = m->private;
  912. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  913. struct mount *r = real_mount(mnt);
  914. struct super_block *sb = mnt->mnt_sb;
  915. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  916. struct path root = p->root;
  917. int err = 0;
  918. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, r->mnt_parent->mnt.mnt_id,
  919. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  920. if (sb->s_op->show_path)
  921. err = sb->s_op->show_path(m, mnt);
  922. else
  923. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  924. if (err)
  925. goto out;
  926. seq_putc(m, ' ');
  927. /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
  928. err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
  929. if (err)
  930. goto out;
  931. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  932. show_mnt_opts(m, mnt);
  933. /* Tagged fields ("foo:X" or "bar") */
  934. if (IS_MNT_SHARED(mnt))
  935. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  936. if (IS_MNT_SLAVE(r)) {
  937. int master = r->mnt_master->mnt.mnt_group_id;
  938. int dom = get_dominating_id(r, &p->root);
  939. seq_printf(m, " master:%i", master);
  940. if (dom && dom != master)
  941. seq_printf(m, " propagate_from:%i", dom);
  942. }
  943. if (IS_MNT_UNBINDABLE(mnt))
  944. seq_puts(m, " unbindable");
  945. /* Filesystem specific data */
  946. seq_puts(m, " - ");
  947. show_type(m, sb);
  948. seq_putc(m, ' ');
  949. if (sb->s_op->show_devname)
  950. err = sb->s_op->show_devname(m, mnt);
  951. else
  952. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  953. if (err)
  954. goto out;
  955. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  956. err = show_sb_opts(m, sb);
  957. if (err)
  958. goto out;
  959. if (sb->s_op->show_options)
  960. err = sb->s_op->show_options(m, mnt);
  961. seq_putc(m, '\n');
  962. out:
  963. return err;
  964. }
  965. const struct seq_operations mountinfo_op = {
  966. .start = m_start,
  967. .next = m_next,
  968. .stop = m_stop,
  969. .show = show_mountinfo,
  970. };
  971. static int show_vfsstat(struct seq_file *m, void *v)
  972. {
  973. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  974. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  975. int err = 0;
  976. /* device */
  977. if (mnt->mnt_sb->s_op->show_devname) {
  978. seq_puts(m, "device ");
  979. err = mnt->mnt_sb->s_op->show_devname(m, mnt);
  980. } else {
  981. if (mnt->mnt_devname) {
  982. seq_puts(m, "device ");
  983. mangle(m, mnt->mnt_devname);
  984. } else
  985. seq_puts(m, "no device");
  986. }
  987. /* mount point */
  988. seq_puts(m, " mounted on ");
  989. seq_path(m, &mnt_path, " \t\n\\");
  990. seq_putc(m, ' ');
  991. /* file system type */
  992. seq_puts(m, "with fstype ");
  993. show_type(m, mnt->mnt_sb);
  994. /* optional statistics */
  995. if (mnt->mnt_sb->s_op->show_stats) {
  996. seq_putc(m, ' ');
  997. if (!err)
  998. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  999. }
  1000. seq_putc(m, '\n');
  1001. return err;
  1002. }
  1003. const struct seq_operations mountstats_op = {
  1004. .start = m_start,
  1005. .next = m_next,
  1006. .stop = m_stop,
  1007. .show = show_vfsstat,
  1008. };
  1009. #endif /* CONFIG_PROC_FS */
  1010. /**
  1011. * may_umount_tree - check if a mount tree is busy
  1012. * @mnt: root of mount tree
  1013. *
  1014. * This is called to check if a tree of mounts has any
  1015. * open files, pwds, chroots or sub mounts that are
  1016. * busy.
  1017. */
  1018. int may_umount_tree(struct vfsmount *mnt)
  1019. {
  1020. int actual_refs = 0;
  1021. int minimum_refs = 0;
  1022. struct mount *p;
  1023. BUG_ON(!mnt);
  1024. /* write lock needed for mnt_get_count */
  1025. br_write_lock(vfsmount_lock);
  1026. for (p = real_mount(mnt); p; p = next_mnt(p, mnt)) {
  1027. actual_refs += mnt_get_count(p);
  1028. minimum_refs += 2;
  1029. }
  1030. br_write_unlock(vfsmount_lock);
  1031. if (actual_refs > minimum_refs)
  1032. return 0;
  1033. return 1;
  1034. }
  1035. EXPORT_SYMBOL(may_umount_tree);
  1036. /**
  1037. * may_umount - check if a mount point is busy
  1038. * @mnt: root of mount
  1039. *
  1040. * This is called to check if a mount point has any
  1041. * open files, pwds, chroots or sub mounts. If the
  1042. * mount has sub mounts this will return busy
  1043. * regardless of whether the sub mounts are busy.
  1044. *
  1045. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1046. * give false negatives. The main reason why it's here is that we need
  1047. * a non-destructive way to look for easily umountable filesystems.
  1048. */
  1049. int may_umount(struct vfsmount *mnt)
  1050. {
  1051. int ret = 1;
  1052. down_read(&namespace_sem);
  1053. br_write_lock(vfsmount_lock);
  1054. if (propagate_mount_busy(real_mount(mnt), 2))
  1055. ret = 0;
  1056. br_write_unlock(vfsmount_lock);
  1057. up_read(&namespace_sem);
  1058. return ret;
  1059. }
  1060. EXPORT_SYMBOL(may_umount);
  1061. void release_mounts(struct list_head *head)
  1062. {
  1063. struct mount *mnt;
  1064. while (!list_empty(head)) {
  1065. mnt = list_first_entry(head, struct mount, mnt_hash);
  1066. list_del_init(&mnt->mnt_hash);
  1067. if (mnt_has_parent(mnt)) {
  1068. struct dentry *dentry;
  1069. struct vfsmount *m;
  1070. br_write_lock(vfsmount_lock);
  1071. dentry = mnt->mnt_mountpoint;
  1072. m = &mnt->mnt_parent->mnt;
  1073. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  1074. mnt->mnt_parent = mnt;
  1075. m->mnt_ghosts--;
  1076. br_write_unlock(vfsmount_lock);
  1077. dput(dentry);
  1078. mntput(m);
  1079. }
  1080. mntput(&mnt->mnt);
  1081. }
  1082. }
  1083. /*
  1084. * vfsmount lock must be held for write
  1085. * namespace_sem must be held for write
  1086. */
  1087. void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
  1088. {
  1089. LIST_HEAD(tmp_list);
  1090. struct mount *p;
  1091. for (p = mnt; p; p = next_mnt(p, &mnt->mnt))
  1092. list_move(&p->mnt_hash, &tmp_list);
  1093. if (propagate)
  1094. propagate_umount(&tmp_list);
  1095. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1096. list_del_init(&p->mnt_expire);
  1097. list_del_init(&p->mnt.mnt_list);
  1098. __touch_mnt_namespace(p->mnt.mnt_ns);
  1099. p->mnt.mnt_ns = NULL;
  1100. __mnt_make_shortterm(p);
  1101. list_del_init(&p->mnt_child);
  1102. if (mnt_has_parent(p)) {
  1103. p->mnt_parent->mnt.mnt_ghosts++;
  1104. dentry_reset_mounted(p->mnt_mountpoint);
  1105. }
  1106. change_mnt_propagation(p, MS_PRIVATE);
  1107. }
  1108. list_splice(&tmp_list, kill);
  1109. }
  1110. static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
  1111. static int do_umount(struct mount *mnt, int flags)
  1112. {
  1113. struct super_block *sb = mnt->mnt.mnt_sb;
  1114. int retval;
  1115. LIST_HEAD(umount_list);
  1116. retval = security_sb_umount(&mnt->mnt, flags);
  1117. if (retval)
  1118. return retval;
  1119. /*
  1120. * Allow userspace to request a mountpoint be expired rather than
  1121. * unmounting unconditionally. Unmount only happens if:
  1122. * (1) the mark is already set (the mark is cleared by mntput())
  1123. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1124. */
  1125. if (flags & MNT_EXPIRE) {
  1126. if (&mnt->mnt == current->fs->root.mnt ||
  1127. flags & (MNT_FORCE | MNT_DETACH))
  1128. return -EINVAL;
  1129. /*
  1130. * probably don't strictly need the lock here if we examined
  1131. * all race cases, but it's a slowpath.
  1132. */
  1133. br_write_lock(vfsmount_lock);
  1134. if (mnt_get_count(mnt) != 2) {
  1135. br_write_unlock(vfsmount_lock);
  1136. return -EBUSY;
  1137. }
  1138. br_write_unlock(vfsmount_lock);
  1139. if (!xchg(&mnt->mnt.mnt_expiry_mark, 1))
  1140. return -EAGAIN;
  1141. }
  1142. /*
  1143. * If we may have to abort operations to get out of this
  1144. * mount, and they will themselves hold resources we must
  1145. * allow the fs to do things. In the Unix tradition of
  1146. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1147. * might fail to complete on the first run through as other tasks
  1148. * must return, and the like. Thats for the mount program to worry
  1149. * about for the moment.
  1150. */
  1151. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1152. sb->s_op->umount_begin(sb);
  1153. }
  1154. /*
  1155. * No sense to grab the lock for this test, but test itself looks
  1156. * somewhat bogus. Suggestions for better replacement?
  1157. * Ho-hum... In principle, we might treat that as umount + switch
  1158. * to rootfs. GC would eventually take care of the old vfsmount.
  1159. * Actually it makes sense, especially if rootfs would contain a
  1160. * /reboot - static binary that would close all descriptors and
  1161. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1162. */
  1163. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1164. /*
  1165. * Special case for "unmounting" root ...
  1166. * we just try to remount it readonly.
  1167. */
  1168. down_write(&sb->s_umount);
  1169. if (!(sb->s_flags & MS_RDONLY))
  1170. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1171. up_write(&sb->s_umount);
  1172. return retval;
  1173. }
  1174. down_write(&namespace_sem);
  1175. br_write_lock(vfsmount_lock);
  1176. event++;
  1177. if (!(flags & MNT_DETACH))
  1178. shrink_submounts(mnt, &umount_list);
  1179. retval = -EBUSY;
  1180. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1181. if (!list_empty(&mnt->mnt.mnt_list))
  1182. umount_tree(mnt, 1, &umount_list);
  1183. retval = 0;
  1184. }
  1185. br_write_unlock(vfsmount_lock);
  1186. up_write(&namespace_sem);
  1187. release_mounts(&umount_list);
  1188. return retval;
  1189. }
  1190. /*
  1191. * Now umount can handle mount points as well as block devices.
  1192. * This is important for filesystems which use unnamed block devices.
  1193. *
  1194. * We now support a flag for forced unmount like the other 'big iron'
  1195. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1196. */
  1197. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1198. {
  1199. struct path path;
  1200. int retval;
  1201. int lookup_flags = 0;
  1202. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1203. return -EINVAL;
  1204. if (!(flags & UMOUNT_NOFOLLOW))
  1205. lookup_flags |= LOOKUP_FOLLOW;
  1206. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1207. if (retval)
  1208. goto out;
  1209. retval = -EINVAL;
  1210. if (path.dentry != path.mnt->mnt_root)
  1211. goto dput_and_out;
  1212. if (!check_mnt(path.mnt))
  1213. goto dput_and_out;
  1214. retval = -EPERM;
  1215. if (!capable(CAP_SYS_ADMIN))
  1216. goto dput_and_out;
  1217. retval = do_umount(real_mount(path.mnt), flags);
  1218. dput_and_out:
  1219. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1220. dput(path.dentry);
  1221. mntput_no_expire(path.mnt);
  1222. out:
  1223. return retval;
  1224. }
  1225. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1226. /*
  1227. * The 2.0 compatible umount. No flags.
  1228. */
  1229. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1230. {
  1231. return sys_umount(name, 0);
  1232. }
  1233. #endif
  1234. static int mount_is_safe(struct path *path)
  1235. {
  1236. if (capable(CAP_SYS_ADMIN))
  1237. return 0;
  1238. return -EPERM;
  1239. #ifdef notyet
  1240. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1241. return -EPERM;
  1242. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1243. if (current_uid() != path->dentry->d_inode->i_uid)
  1244. return -EPERM;
  1245. }
  1246. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1247. return -EPERM;
  1248. return 0;
  1249. #endif
  1250. }
  1251. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1252. int flag)
  1253. {
  1254. struct mount *res, *p, *q, *r;
  1255. struct path path;
  1256. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(&mnt->mnt))
  1257. return NULL;
  1258. res = q = clone_mnt(mnt, dentry, flag);
  1259. if (!q)
  1260. goto Enomem;
  1261. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1262. p = mnt;
  1263. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1264. struct mount *s;
  1265. if (!is_subdir(r->mnt_mountpoint, dentry))
  1266. continue;
  1267. for (s = r; s; s = next_mnt(s, &r->mnt)) {
  1268. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(&s->mnt)) {
  1269. s = skip_mnt_tree(s);
  1270. continue;
  1271. }
  1272. while (p != s->mnt_parent) {
  1273. p = p->mnt_parent;
  1274. q = q->mnt_parent;
  1275. }
  1276. p = s;
  1277. path.mnt = &q->mnt;
  1278. path.dentry = p->mnt_mountpoint;
  1279. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1280. if (!q)
  1281. goto Enomem;
  1282. br_write_lock(vfsmount_lock);
  1283. list_add_tail(&q->mnt.mnt_list, &res->mnt.mnt_list);
  1284. attach_mnt(q, &path);
  1285. br_write_unlock(vfsmount_lock);
  1286. }
  1287. }
  1288. return res;
  1289. Enomem:
  1290. if (res) {
  1291. LIST_HEAD(umount_list);
  1292. br_write_lock(vfsmount_lock);
  1293. umount_tree(res, 0, &umount_list);
  1294. br_write_unlock(vfsmount_lock);
  1295. release_mounts(&umount_list);
  1296. }
  1297. return NULL;
  1298. }
  1299. struct vfsmount *collect_mounts(struct path *path)
  1300. {
  1301. struct mount *tree;
  1302. down_write(&namespace_sem);
  1303. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1304. CL_COPY_ALL | CL_PRIVATE);
  1305. up_write(&namespace_sem);
  1306. return tree ? &tree->mnt : NULL;
  1307. }
  1308. void drop_collected_mounts(struct vfsmount *mnt)
  1309. {
  1310. LIST_HEAD(umount_list);
  1311. down_write(&namespace_sem);
  1312. br_write_lock(vfsmount_lock);
  1313. umount_tree(real_mount(mnt), 0, &umount_list);
  1314. br_write_unlock(vfsmount_lock);
  1315. up_write(&namespace_sem);
  1316. release_mounts(&umount_list);
  1317. }
  1318. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1319. struct vfsmount *root)
  1320. {
  1321. struct vfsmount *mnt;
  1322. int res = f(root, arg);
  1323. if (res)
  1324. return res;
  1325. list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
  1326. res = f(mnt, arg);
  1327. if (res)
  1328. return res;
  1329. }
  1330. return 0;
  1331. }
  1332. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1333. {
  1334. struct mount *p;
  1335. for (p = mnt; p != end; p = next_mnt(p, &mnt->mnt)) {
  1336. if (p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt))
  1337. mnt_release_group_id(p);
  1338. }
  1339. }
  1340. static int invent_group_ids(struct mount *mnt, bool recurse)
  1341. {
  1342. struct mount *p;
  1343. for (p = mnt; p; p = recurse ? next_mnt(p, &mnt->mnt) : NULL) {
  1344. if (!p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt)) {
  1345. int err = mnt_alloc_group_id(p);
  1346. if (err) {
  1347. cleanup_group_ids(mnt, p);
  1348. return err;
  1349. }
  1350. }
  1351. }
  1352. return 0;
  1353. }
  1354. /*
  1355. * @source_mnt : mount tree to be attached
  1356. * @nd : place the mount tree @source_mnt is attached
  1357. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1358. * store the parent mount and mountpoint dentry.
  1359. * (done when source_mnt is moved)
  1360. *
  1361. * NOTE: in the table below explains the semantics when a source mount
  1362. * of a given type is attached to a destination mount of a given type.
  1363. * ---------------------------------------------------------------------------
  1364. * | BIND MOUNT OPERATION |
  1365. * |**************************************************************************
  1366. * | source-->| shared | private | slave | unbindable |
  1367. * | dest | | | | |
  1368. * | | | | | | |
  1369. * | v | | | | |
  1370. * |**************************************************************************
  1371. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1372. * | | | | | |
  1373. * |non-shared| shared (+) | private | slave (*) | invalid |
  1374. * ***************************************************************************
  1375. * A bind operation clones the source mount and mounts the clone on the
  1376. * destination mount.
  1377. *
  1378. * (++) the cloned mount is propagated to all the mounts in the propagation
  1379. * tree of the destination mount and the cloned mount is added to
  1380. * the peer group of the source mount.
  1381. * (+) the cloned mount is created under the destination mount and is marked
  1382. * as shared. The cloned mount is added to the peer group of the source
  1383. * mount.
  1384. * (+++) the mount is propagated to all the mounts in the propagation tree
  1385. * of the destination mount and the cloned mount is made slave
  1386. * of the same master as that of the source mount. The cloned mount
  1387. * is marked as 'shared and slave'.
  1388. * (*) the cloned mount is made a slave of the same master as that of the
  1389. * source mount.
  1390. *
  1391. * ---------------------------------------------------------------------------
  1392. * | MOVE MOUNT OPERATION |
  1393. * |**************************************************************************
  1394. * | source-->| shared | private | slave | unbindable |
  1395. * | dest | | | | |
  1396. * | | | | | | |
  1397. * | v | | | | |
  1398. * |**************************************************************************
  1399. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1400. * | | | | | |
  1401. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1402. * ***************************************************************************
  1403. *
  1404. * (+) the mount is moved to the destination. And is then propagated to
  1405. * all the mounts in the propagation tree of the destination mount.
  1406. * (+*) the mount is moved to the destination.
  1407. * (+++) the mount is moved to the destination and is then propagated to
  1408. * all the mounts belonging to the destination mount's propagation tree.
  1409. * the mount is marked as 'shared and slave'.
  1410. * (*) the mount continues to be a slave at the new location.
  1411. *
  1412. * if the source mount is a tree, the operations explained above is
  1413. * applied to each mount in the tree.
  1414. * Must be called without spinlocks held, since this function can sleep
  1415. * in allocations.
  1416. */
  1417. static int attach_recursive_mnt(struct mount *source_mnt,
  1418. struct path *path, struct path *parent_path)
  1419. {
  1420. LIST_HEAD(tree_list);
  1421. struct mount *dest_mnt = real_mount(path->mnt);
  1422. struct dentry *dest_dentry = path->dentry;
  1423. struct mount *child, *p;
  1424. int err;
  1425. if (IS_MNT_SHARED(&dest_mnt->mnt)) {
  1426. err = invent_group_ids(source_mnt, true);
  1427. if (err)
  1428. goto out;
  1429. }
  1430. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1431. if (err)
  1432. goto out_cleanup_ids;
  1433. br_write_lock(vfsmount_lock);
  1434. if (IS_MNT_SHARED(&dest_mnt->mnt)) {
  1435. for (p = source_mnt; p; p = next_mnt(p, &source_mnt->mnt))
  1436. set_mnt_shared(p);
  1437. }
  1438. if (parent_path) {
  1439. detach_mnt(source_mnt, parent_path);
  1440. attach_mnt(source_mnt, path);
  1441. touch_mnt_namespace(parent_path->mnt->mnt_ns);
  1442. } else {
  1443. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1444. commit_tree(source_mnt);
  1445. }
  1446. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1447. list_del_init(&child->mnt_hash);
  1448. commit_tree(child);
  1449. }
  1450. br_write_unlock(vfsmount_lock);
  1451. return 0;
  1452. out_cleanup_ids:
  1453. if (IS_MNT_SHARED(&dest_mnt->mnt))
  1454. cleanup_group_ids(source_mnt, NULL);
  1455. out:
  1456. return err;
  1457. }
  1458. static int lock_mount(struct path *path)
  1459. {
  1460. struct vfsmount *mnt;
  1461. retry:
  1462. mutex_lock(&path->dentry->d_inode->i_mutex);
  1463. if (unlikely(cant_mount(path->dentry))) {
  1464. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1465. return -ENOENT;
  1466. }
  1467. down_write(&namespace_sem);
  1468. mnt = lookup_mnt(path);
  1469. if (likely(!mnt))
  1470. return 0;
  1471. up_write(&namespace_sem);
  1472. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1473. path_put(path);
  1474. path->mnt = mnt;
  1475. path->dentry = dget(mnt->mnt_root);
  1476. goto retry;
  1477. }
  1478. static void unlock_mount(struct path *path)
  1479. {
  1480. up_write(&namespace_sem);
  1481. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1482. }
  1483. static int graft_tree(struct mount *mnt, struct path *path)
  1484. {
  1485. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1486. return -EINVAL;
  1487. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1488. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1489. return -ENOTDIR;
  1490. if (d_unlinked(path->dentry))
  1491. return -ENOENT;
  1492. return attach_recursive_mnt(mnt, path, NULL);
  1493. }
  1494. /*
  1495. * Sanity check the flags to change_mnt_propagation.
  1496. */
  1497. static int flags_to_propagation_type(int flags)
  1498. {
  1499. int type = flags & ~(MS_REC | MS_SILENT);
  1500. /* Fail if any non-propagation flags are set */
  1501. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1502. return 0;
  1503. /* Only one propagation flag should be set */
  1504. if (!is_power_of_2(type))
  1505. return 0;
  1506. return type;
  1507. }
  1508. /*
  1509. * recursively change the type of the mountpoint.
  1510. */
  1511. static int do_change_type(struct path *path, int flag)
  1512. {
  1513. struct mount *m;
  1514. struct mount *mnt = real_mount(path->mnt);
  1515. int recurse = flag & MS_REC;
  1516. int type;
  1517. int err = 0;
  1518. if (!capable(CAP_SYS_ADMIN))
  1519. return -EPERM;
  1520. if (path->dentry != path->mnt->mnt_root)
  1521. return -EINVAL;
  1522. type = flags_to_propagation_type(flag);
  1523. if (!type)
  1524. return -EINVAL;
  1525. down_write(&namespace_sem);
  1526. if (type == MS_SHARED) {
  1527. err = invent_group_ids(mnt, recurse);
  1528. if (err)
  1529. goto out_unlock;
  1530. }
  1531. br_write_lock(vfsmount_lock);
  1532. for (m = mnt; m; m = (recurse ? next_mnt(m, &mnt->mnt) : NULL))
  1533. change_mnt_propagation(m, type);
  1534. br_write_unlock(vfsmount_lock);
  1535. out_unlock:
  1536. up_write(&namespace_sem);
  1537. return err;
  1538. }
  1539. /*
  1540. * do loopback mount.
  1541. */
  1542. static int do_loopback(struct path *path, char *old_name,
  1543. int recurse)
  1544. {
  1545. LIST_HEAD(umount_list);
  1546. struct path old_path;
  1547. struct mount *mnt = NULL, *old;
  1548. int err = mount_is_safe(path);
  1549. if (err)
  1550. return err;
  1551. if (!old_name || !*old_name)
  1552. return -EINVAL;
  1553. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1554. if (err)
  1555. return err;
  1556. err = lock_mount(path);
  1557. if (err)
  1558. goto out;
  1559. old = real_mount(old_path.mnt);
  1560. err = -EINVAL;
  1561. if (IS_MNT_UNBINDABLE(old_path.mnt))
  1562. goto out2;
  1563. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1564. goto out2;
  1565. err = -ENOMEM;
  1566. if (recurse)
  1567. mnt = copy_tree(old, old_path.dentry, 0);
  1568. else
  1569. mnt = clone_mnt(old, old_path.dentry, 0);
  1570. if (!mnt)
  1571. goto out2;
  1572. err = graft_tree(mnt, path);
  1573. if (err) {
  1574. br_write_lock(vfsmount_lock);
  1575. umount_tree(mnt, 0, &umount_list);
  1576. br_write_unlock(vfsmount_lock);
  1577. }
  1578. out2:
  1579. unlock_mount(path);
  1580. release_mounts(&umount_list);
  1581. out:
  1582. path_put(&old_path);
  1583. return err;
  1584. }
  1585. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1586. {
  1587. int error = 0;
  1588. int readonly_request = 0;
  1589. if (ms_flags & MS_RDONLY)
  1590. readonly_request = 1;
  1591. if (readonly_request == __mnt_is_readonly(mnt))
  1592. return 0;
  1593. if (readonly_request)
  1594. error = mnt_make_readonly(real_mount(mnt));
  1595. else
  1596. __mnt_unmake_readonly(real_mount(mnt));
  1597. return error;
  1598. }
  1599. /*
  1600. * change filesystem flags. dir should be a physical root of filesystem.
  1601. * If you've mounted a non-root directory somewhere and want to do remount
  1602. * on it - tough luck.
  1603. */
  1604. static int do_remount(struct path *path, int flags, int mnt_flags,
  1605. void *data)
  1606. {
  1607. int err;
  1608. struct super_block *sb = path->mnt->mnt_sb;
  1609. if (!capable(CAP_SYS_ADMIN))
  1610. return -EPERM;
  1611. if (!check_mnt(path->mnt))
  1612. return -EINVAL;
  1613. if (path->dentry != path->mnt->mnt_root)
  1614. return -EINVAL;
  1615. err = security_sb_remount(sb, data);
  1616. if (err)
  1617. return err;
  1618. down_write(&sb->s_umount);
  1619. if (flags & MS_BIND)
  1620. err = change_mount_flags(path->mnt, flags);
  1621. else
  1622. err = do_remount_sb(sb, flags, data, 0);
  1623. if (!err) {
  1624. br_write_lock(vfsmount_lock);
  1625. mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
  1626. path->mnt->mnt_flags = mnt_flags;
  1627. br_write_unlock(vfsmount_lock);
  1628. }
  1629. up_write(&sb->s_umount);
  1630. if (!err) {
  1631. br_write_lock(vfsmount_lock);
  1632. touch_mnt_namespace(path->mnt->mnt_ns);
  1633. br_write_unlock(vfsmount_lock);
  1634. }
  1635. return err;
  1636. }
  1637. static inline int tree_contains_unbindable(struct mount *mnt)
  1638. {
  1639. struct mount *p;
  1640. for (p = mnt; p; p = next_mnt(p, &mnt->mnt)) {
  1641. if (IS_MNT_UNBINDABLE(&p->mnt))
  1642. return 1;
  1643. }
  1644. return 0;
  1645. }
  1646. static int do_move_mount(struct path *path, char *old_name)
  1647. {
  1648. struct path old_path, parent_path;
  1649. struct mount *p;
  1650. struct mount *old;
  1651. int err = 0;
  1652. if (!capable(CAP_SYS_ADMIN))
  1653. return -EPERM;
  1654. if (!old_name || !*old_name)
  1655. return -EINVAL;
  1656. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1657. if (err)
  1658. return err;
  1659. err = lock_mount(path);
  1660. if (err < 0)
  1661. goto out;
  1662. err = -EINVAL;
  1663. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1664. goto out1;
  1665. if (d_unlinked(path->dentry))
  1666. goto out1;
  1667. err = -EINVAL;
  1668. if (old_path.dentry != old_path.mnt->mnt_root)
  1669. goto out1;
  1670. old = real_mount(old_path.mnt);
  1671. if (!mnt_has_parent(old))
  1672. goto out1;
  1673. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1674. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1675. goto out1;
  1676. /*
  1677. * Don't move a mount residing in a shared parent.
  1678. */
  1679. if (IS_MNT_SHARED(&old->mnt_parent->mnt))
  1680. goto out1;
  1681. /*
  1682. * Don't move a mount tree containing unbindable mounts to a destination
  1683. * mount which is shared.
  1684. */
  1685. if (IS_MNT_SHARED(path->mnt) &&
  1686. tree_contains_unbindable(old))
  1687. goto out1;
  1688. err = -ELOOP;
  1689. for (p = real_mount(path->mnt); mnt_has_parent(p); p = p->mnt_parent)
  1690. if (p == old)
  1691. goto out1;
  1692. err = attach_recursive_mnt(old, path, &parent_path);
  1693. if (err)
  1694. goto out1;
  1695. /* if the mount is moved, it should no longer be expire
  1696. * automatically */
  1697. list_del_init(&old->mnt_expire);
  1698. out1:
  1699. unlock_mount(path);
  1700. out:
  1701. if (!err)
  1702. path_put(&parent_path);
  1703. path_put(&old_path);
  1704. return err;
  1705. }
  1706. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1707. {
  1708. int err;
  1709. const char *subtype = strchr(fstype, '.');
  1710. if (subtype) {
  1711. subtype++;
  1712. err = -EINVAL;
  1713. if (!subtype[0])
  1714. goto err;
  1715. } else
  1716. subtype = "";
  1717. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1718. err = -ENOMEM;
  1719. if (!mnt->mnt_sb->s_subtype)
  1720. goto err;
  1721. return mnt;
  1722. err:
  1723. mntput(mnt);
  1724. return ERR_PTR(err);
  1725. }
  1726. static struct vfsmount *
  1727. do_kern_mount(const char *fstype, int flags, const char *name, void *data)
  1728. {
  1729. struct file_system_type *type = get_fs_type(fstype);
  1730. struct vfsmount *mnt;
  1731. if (!type)
  1732. return ERR_PTR(-ENODEV);
  1733. mnt = vfs_kern_mount(type, flags, name, data);
  1734. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1735. !mnt->mnt_sb->s_subtype)
  1736. mnt = fs_set_subtype(mnt, fstype);
  1737. put_filesystem(type);
  1738. return mnt;
  1739. }
  1740. /*
  1741. * add a mount into a namespace's mount tree
  1742. */
  1743. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1744. {
  1745. int err;
  1746. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1747. err = lock_mount(path);
  1748. if (err)
  1749. return err;
  1750. err = -EINVAL;
  1751. if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
  1752. goto unlock;
  1753. /* Refuse the same filesystem on the same mount point */
  1754. err = -EBUSY;
  1755. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1756. path->mnt->mnt_root == path->dentry)
  1757. goto unlock;
  1758. err = -EINVAL;
  1759. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1760. goto unlock;
  1761. newmnt->mnt.mnt_flags = mnt_flags;
  1762. err = graft_tree(newmnt, path);
  1763. unlock:
  1764. unlock_mount(path);
  1765. return err;
  1766. }
  1767. /*
  1768. * create a new mount for userspace and request it to be added into the
  1769. * namespace's tree
  1770. */
  1771. static int do_new_mount(struct path *path, char *type, int flags,
  1772. int mnt_flags, char *name, void *data)
  1773. {
  1774. struct vfsmount *mnt;
  1775. int err;
  1776. if (!type)
  1777. return -EINVAL;
  1778. /* we need capabilities... */
  1779. if (!capable(CAP_SYS_ADMIN))
  1780. return -EPERM;
  1781. mnt = do_kern_mount(type, flags, name, data);
  1782. if (IS_ERR(mnt))
  1783. return PTR_ERR(mnt);
  1784. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1785. if (err)
  1786. mntput(mnt);
  1787. return err;
  1788. }
  1789. int finish_automount(struct vfsmount *m, struct path *path)
  1790. {
  1791. struct mount *mnt = real_mount(m);
  1792. int err;
  1793. /* The new mount record should have at least 2 refs to prevent it being
  1794. * expired before we get a chance to add it
  1795. */
  1796. BUG_ON(mnt_get_count(mnt) < 2);
  1797. if (m->mnt_sb == path->mnt->mnt_sb &&
  1798. m->mnt_root == path->dentry) {
  1799. err = -ELOOP;
  1800. goto fail;
  1801. }
  1802. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1803. if (!err)
  1804. return 0;
  1805. fail:
  1806. /* remove m from any expiration list it may be on */
  1807. if (!list_empty(&mnt->mnt_expire)) {
  1808. down_write(&namespace_sem);
  1809. br_write_lock(vfsmount_lock);
  1810. list_del_init(&mnt->mnt_expire);
  1811. br_write_unlock(vfsmount_lock);
  1812. up_write(&namespace_sem);
  1813. }
  1814. mntput(m);
  1815. mntput(m);
  1816. return err;
  1817. }
  1818. /**
  1819. * mnt_set_expiry - Put a mount on an expiration list
  1820. * @mnt: The mount to list.
  1821. * @expiry_list: The list to add the mount to.
  1822. */
  1823. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1824. {
  1825. down_write(&namespace_sem);
  1826. br_write_lock(vfsmount_lock);
  1827. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1828. br_write_unlock(vfsmount_lock);
  1829. up_write(&namespace_sem);
  1830. }
  1831. EXPORT_SYMBOL(mnt_set_expiry);
  1832. /*
  1833. * process a list of expirable mountpoints with the intent of discarding any
  1834. * mountpoints that aren't in use and haven't been touched since last we came
  1835. * here
  1836. */
  1837. void mark_mounts_for_expiry(struct list_head *mounts)
  1838. {
  1839. struct mount *mnt, *next;
  1840. LIST_HEAD(graveyard);
  1841. LIST_HEAD(umounts);
  1842. if (list_empty(mounts))
  1843. return;
  1844. down_write(&namespace_sem);
  1845. br_write_lock(vfsmount_lock);
  1846. /* extract from the expiration list every vfsmount that matches the
  1847. * following criteria:
  1848. * - only referenced by its parent vfsmount
  1849. * - still marked for expiry (marked on the last call here; marks are
  1850. * cleared by mntput())
  1851. */
  1852. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1853. if (!xchg(&mnt->mnt.mnt_expiry_mark, 1) ||
  1854. propagate_mount_busy(mnt, 1))
  1855. continue;
  1856. list_move(&mnt->mnt_expire, &graveyard);
  1857. }
  1858. while (!list_empty(&graveyard)) {
  1859. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1860. touch_mnt_namespace(mnt->mnt.mnt_ns);
  1861. umount_tree(mnt, 1, &umounts);
  1862. }
  1863. br_write_unlock(vfsmount_lock);
  1864. up_write(&namespace_sem);
  1865. release_mounts(&umounts);
  1866. }
  1867. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1868. /*
  1869. * Ripoff of 'select_parent()'
  1870. *
  1871. * search the list of submounts for a given mountpoint, and move any
  1872. * shrinkable submounts to the 'graveyard' list.
  1873. */
  1874. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1875. {
  1876. struct mount *this_parent = parent;
  1877. struct list_head *next;
  1878. int found = 0;
  1879. repeat:
  1880. next = this_parent->mnt_mounts.next;
  1881. resume:
  1882. while (next != &this_parent->mnt_mounts) {
  1883. struct list_head *tmp = next;
  1884. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1885. next = tmp->next;
  1886. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1887. continue;
  1888. /*
  1889. * Descend a level if the d_mounts list is non-empty.
  1890. */
  1891. if (!list_empty(&mnt->mnt_mounts)) {
  1892. this_parent = mnt;
  1893. goto repeat;
  1894. }
  1895. if (!propagate_mount_busy(mnt, 1)) {
  1896. list_move_tail(&mnt->mnt_expire, graveyard);
  1897. found++;
  1898. }
  1899. }
  1900. /*
  1901. * All done at this level ... ascend and resume the search
  1902. */
  1903. if (this_parent != parent) {
  1904. next = this_parent->mnt_child.next;
  1905. this_parent = this_parent->mnt_parent;
  1906. goto resume;
  1907. }
  1908. return found;
  1909. }
  1910. /*
  1911. * process a list of expirable mountpoints with the intent of discarding any
  1912. * submounts of a specific parent mountpoint
  1913. *
  1914. * vfsmount_lock must be held for write
  1915. */
  1916. static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
  1917. {
  1918. LIST_HEAD(graveyard);
  1919. struct mount *m;
  1920. /* extract submounts of 'mountpoint' from the expiration list */
  1921. while (select_submounts(mnt, &graveyard)) {
  1922. while (!list_empty(&graveyard)) {
  1923. m = list_first_entry(&graveyard, struct mount,
  1924. mnt_expire);
  1925. touch_mnt_namespace(m->mnt.mnt_ns);
  1926. umount_tree(m, 1, umounts);
  1927. }
  1928. }
  1929. }
  1930. /*
  1931. * Some copy_from_user() implementations do not return the exact number of
  1932. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1933. * Note that this function differs from copy_from_user() in that it will oops
  1934. * on bad values of `to', rather than returning a short copy.
  1935. */
  1936. static long exact_copy_from_user(void *to, const void __user * from,
  1937. unsigned long n)
  1938. {
  1939. char *t = to;
  1940. const char __user *f = from;
  1941. char c;
  1942. if (!access_ok(VERIFY_READ, from, n))
  1943. return n;
  1944. while (n) {
  1945. if (__get_user(c, f)) {
  1946. memset(t, 0, n);
  1947. break;
  1948. }
  1949. *t++ = c;
  1950. f++;
  1951. n--;
  1952. }
  1953. return n;
  1954. }
  1955. int copy_mount_options(const void __user * data, unsigned long *where)
  1956. {
  1957. int i;
  1958. unsigned long page;
  1959. unsigned long size;
  1960. *where = 0;
  1961. if (!data)
  1962. return 0;
  1963. if (!(page = __get_free_page(GFP_KERNEL)))
  1964. return -ENOMEM;
  1965. /* We only care that *some* data at the address the user
  1966. * gave us is valid. Just in case, we'll zero
  1967. * the remainder of the page.
  1968. */
  1969. /* copy_from_user cannot cross TASK_SIZE ! */
  1970. size = TASK_SIZE - (unsigned long)data;
  1971. if (size > PAGE_SIZE)
  1972. size = PAGE_SIZE;
  1973. i = size - exact_copy_from_user((void *)page, data, size);
  1974. if (!i) {
  1975. free_page(page);
  1976. return -EFAULT;
  1977. }
  1978. if (i != PAGE_SIZE)
  1979. memset((char *)page + i, 0, PAGE_SIZE - i);
  1980. *where = page;
  1981. return 0;
  1982. }
  1983. int copy_mount_string(const void __user *data, char **where)
  1984. {
  1985. char *tmp;
  1986. if (!data) {
  1987. *where = NULL;
  1988. return 0;
  1989. }
  1990. tmp = strndup_user(data, PAGE_SIZE);
  1991. if (IS_ERR(tmp))
  1992. return PTR_ERR(tmp);
  1993. *where = tmp;
  1994. return 0;
  1995. }
  1996. /*
  1997. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1998. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1999. *
  2000. * data is a (void *) that can point to any structure up to
  2001. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2002. * information (or be NULL).
  2003. *
  2004. * Pre-0.97 versions of mount() didn't have a flags word.
  2005. * When the flags word was introduced its top half was required
  2006. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2007. * Therefore, if this magic number is present, it carries no information
  2008. * and must be discarded.
  2009. */
  2010. long do_mount(char *dev_name, char *dir_name, char *type_page,
  2011. unsigned long flags, void *data_page)
  2012. {
  2013. struct path path;
  2014. int retval = 0;
  2015. int mnt_flags = 0;
  2016. /* Discard magic */
  2017. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2018. flags &= ~MS_MGC_MSK;
  2019. /* Basic sanity checks */
  2020. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  2021. return -EINVAL;
  2022. if (data_page)
  2023. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2024. /* ... and get the mountpoint */
  2025. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  2026. if (retval)
  2027. return retval;
  2028. retval = security_sb_mount(dev_name, &path,
  2029. type_page, flags, data_page);
  2030. if (retval)
  2031. goto dput_out;
  2032. /* Default to relatime unless overriden */
  2033. if (!(flags & MS_NOATIME))
  2034. mnt_flags |= MNT_RELATIME;
  2035. /* Separate the per-mountpoint flags */
  2036. if (flags & MS_NOSUID)
  2037. mnt_flags |= MNT_NOSUID;
  2038. if (flags & MS_NODEV)
  2039. mnt_flags |= MNT_NODEV;
  2040. if (flags & MS_NOEXEC)
  2041. mnt_flags |= MNT_NOEXEC;
  2042. if (flags & MS_NOATIME)
  2043. mnt_flags |= MNT_NOATIME;
  2044. if (flags & MS_NODIRATIME)
  2045. mnt_flags |= MNT_NODIRATIME;
  2046. if (flags & MS_STRICTATIME)
  2047. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2048. if (flags & MS_RDONLY)
  2049. mnt_flags |= MNT_READONLY;
  2050. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2051. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2052. MS_STRICTATIME);
  2053. if (flags & MS_REMOUNT)
  2054. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2055. data_page);
  2056. else if (flags & MS_BIND)
  2057. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2058. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2059. retval = do_change_type(&path, flags);
  2060. else if (flags & MS_MOVE)
  2061. retval = do_move_mount(&path, dev_name);
  2062. else
  2063. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2064. dev_name, data_page);
  2065. dput_out:
  2066. path_put(&path);
  2067. return retval;
  2068. }
  2069. static struct mnt_namespace *alloc_mnt_ns(void)
  2070. {
  2071. struct mnt_namespace *new_ns;
  2072. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2073. if (!new_ns)
  2074. return ERR_PTR(-ENOMEM);
  2075. atomic_set(&new_ns->count, 1);
  2076. new_ns->root = NULL;
  2077. INIT_LIST_HEAD(&new_ns->list);
  2078. init_waitqueue_head(&new_ns->poll);
  2079. new_ns->event = 0;
  2080. return new_ns;
  2081. }
  2082. void mnt_make_longterm(struct vfsmount *mnt)
  2083. {
  2084. __mnt_make_longterm(real_mount(mnt));
  2085. }
  2086. void mnt_make_shortterm(struct vfsmount *m)
  2087. {
  2088. #ifdef CONFIG_SMP
  2089. struct mount *mnt = real_mount(m);
  2090. if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
  2091. return;
  2092. br_write_lock(vfsmount_lock);
  2093. atomic_dec(&mnt->mnt_longterm);
  2094. br_write_unlock(vfsmount_lock);
  2095. #endif
  2096. }
  2097. /*
  2098. * Allocate a new namespace structure and populate it with contents
  2099. * copied from the namespace of the passed in task structure.
  2100. */
  2101. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  2102. struct fs_struct *fs)
  2103. {
  2104. struct mnt_namespace *new_ns;
  2105. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2106. struct mount *p, *q;
  2107. struct mount *new;
  2108. new_ns = alloc_mnt_ns();
  2109. if (IS_ERR(new_ns))
  2110. return new_ns;
  2111. down_write(&namespace_sem);
  2112. /* First pass: copy the tree topology */
  2113. new = copy_tree(real_mount(mnt_ns->root), mnt_ns->root->mnt_root,
  2114. CL_COPY_ALL | CL_EXPIRE);
  2115. if (!new) {
  2116. up_write(&namespace_sem);
  2117. kfree(new_ns);
  2118. return ERR_PTR(-ENOMEM);
  2119. }
  2120. new_ns->root = &new->mnt;
  2121. br_write_lock(vfsmount_lock);
  2122. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  2123. br_write_unlock(vfsmount_lock);
  2124. /*
  2125. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2126. * as belonging to new namespace. We have already acquired a private
  2127. * fs_struct, so tsk->fs->lock is not needed.
  2128. */
  2129. p = real_mount(mnt_ns->root);
  2130. q = new;
  2131. while (p) {
  2132. q->mnt.mnt_ns = new_ns;
  2133. __mnt_make_longterm(q);
  2134. if (fs) {
  2135. if (&p->mnt == fs->root.mnt) {
  2136. fs->root.mnt = mntget(&q->mnt);
  2137. __mnt_make_longterm(q);
  2138. mnt_make_shortterm(&p->mnt);
  2139. rootmnt = &p->mnt;
  2140. }
  2141. if (&p->mnt == fs->pwd.mnt) {
  2142. fs->pwd.mnt = mntget(&q->mnt);
  2143. __mnt_make_longterm(q);
  2144. mnt_make_shortterm(&p->mnt);
  2145. pwdmnt = &p->mnt;
  2146. }
  2147. }
  2148. p = next_mnt(p, mnt_ns->root);
  2149. q = next_mnt(q, new_ns->root);
  2150. }
  2151. up_write(&namespace_sem);
  2152. if (rootmnt)
  2153. mntput(rootmnt);
  2154. if (pwdmnt)
  2155. mntput(pwdmnt);
  2156. return new_ns;
  2157. }
  2158. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2159. struct fs_struct *new_fs)
  2160. {
  2161. struct mnt_namespace *new_ns;
  2162. BUG_ON(!ns);
  2163. get_mnt_ns(ns);
  2164. if (!(flags & CLONE_NEWNS))
  2165. return ns;
  2166. new_ns = dup_mnt_ns(ns, new_fs);
  2167. put_mnt_ns(ns);
  2168. return new_ns;
  2169. }
  2170. /**
  2171. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2172. * @mnt: pointer to the new root filesystem mountpoint
  2173. */
  2174. static struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
  2175. {
  2176. struct mnt_namespace *new_ns;
  2177. new_ns = alloc_mnt_ns();
  2178. if (!IS_ERR(new_ns)) {
  2179. mnt->mnt_ns = new_ns;
  2180. __mnt_make_longterm(real_mount(mnt));
  2181. new_ns->root = mnt;
  2182. list_add(&new_ns->list, &new_ns->root->mnt_list);
  2183. } else {
  2184. mntput(mnt);
  2185. }
  2186. return new_ns;
  2187. }
  2188. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2189. {
  2190. struct mnt_namespace *ns;
  2191. struct super_block *s;
  2192. struct path path;
  2193. int err;
  2194. ns = create_mnt_ns(mnt);
  2195. if (IS_ERR(ns))
  2196. return ERR_CAST(ns);
  2197. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2198. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2199. put_mnt_ns(ns);
  2200. if (err)
  2201. return ERR_PTR(err);
  2202. /* trade a vfsmount reference for active sb one */
  2203. s = path.mnt->mnt_sb;
  2204. atomic_inc(&s->s_active);
  2205. mntput(path.mnt);
  2206. /* lock the sucker */
  2207. down_write(&s->s_umount);
  2208. /* ... and return the root of (sub)tree on it */
  2209. return path.dentry;
  2210. }
  2211. EXPORT_SYMBOL(mount_subtree);
  2212. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2213. char __user *, type, unsigned long, flags, void __user *, data)
  2214. {
  2215. int ret;
  2216. char *kernel_type;
  2217. char *kernel_dir;
  2218. char *kernel_dev;
  2219. unsigned long data_page;
  2220. ret = copy_mount_string(type, &kernel_type);
  2221. if (ret < 0)
  2222. goto out_type;
  2223. kernel_dir = getname(dir_name);
  2224. if (IS_ERR(kernel_dir)) {
  2225. ret = PTR_ERR(kernel_dir);
  2226. goto out_dir;
  2227. }
  2228. ret = copy_mount_string(dev_name, &kernel_dev);
  2229. if (ret < 0)
  2230. goto out_dev;
  2231. ret = copy_mount_options(data, &data_page);
  2232. if (ret < 0)
  2233. goto out_data;
  2234. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  2235. (void *) data_page);
  2236. free_page(data_page);
  2237. out_data:
  2238. kfree(kernel_dev);
  2239. out_dev:
  2240. putname(kernel_dir);
  2241. out_dir:
  2242. kfree(kernel_type);
  2243. out_type:
  2244. return ret;
  2245. }
  2246. /*
  2247. * Return true if path is reachable from root
  2248. *
  2249. * namespace_sem or vfsmount_lock is held
  2250. */
  2251. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2252. const struct path *root)
  2253. {
  2254. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2255. dentry = mnt->mnt_mountpoint;
  2256. mnt = mnt->mnt_parent;
  2257. }
  2258. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2259. }
  2260. int path_is_under(struct path *path1, struct path *path2)
  2261. {
  2262. int res;
  2263. br_read_lock(vfsmount_lock);
  2264. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2265. br_read_unlock(vfsmount_lock);
  2266. return res;
  2267. }
  2268. EXPORT_SYMBOL(path_is_under);
  2269. /*
  2270. * pivot_root Semantics:
  2271. * Moves the root file system of the current process to the directory put_old,
  2272. * makes new_root as the new root file system of the current process, and sets
  2273. * root/cwd of all processes which had them on the current root to new_root.
  2274. *
  2275. * Restrictions:
  2276. * The new_root and put_old must be directories, and must not be on the
  2277. * same file system as the current process root. The put_old must be
  2278. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2279. * pointed to by put_old must yield the same directory as new_root. No other
  2280. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2281. *
  2282. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2283. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2284. * in this situation.
  2285. *
  2286. * Notes:
  2287. * - we don't move root/cwd if they are not at the root (reason: if something
  2288. * cared enough to change them, it's probably wrong to force them elsewhere)
  2289. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2290. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2291. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2292. * first.
  2293. */
  2294. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2295. const char __user *, put_old)
  2296. {
  2297. struct path new, old, parent_path, root_parent, root;
  2298. struct mount *new_mnt, *root_mnt;
  2299. int error;
  2300. if (!capable(CAP_SYS_ADMIN))
  2301. return -EPERM;
  2302. error = user_path_dir(new_root, &new);
  2303. if (error)
  2304. goto out0;
  2305. error = user_path_dir(put_old, &old);
  2306. if (error)
  2307. goto out1;
  2308. error = security_sb_pivotroot(&old, &new);
  2309. if (error)
  2310. goto out2;
  2311. get_fs_root(current->fs, &root);
  2312. error = lock_mount(&old);
  2313. if (error)
  2314. goto out3;
  2315. error = -EINVAL;
  2316. new_mnt = real_mount(new.mnt);
  2317. root_mnt = real_mount(root.mnt);
  2318. if (IS_MNT_SHARED(old.mnt) ||
  2319. IS_MNT_SHARED(&new_mnt->mnt_parent->mnt) ||
  2320. IS_MNT_SHARED(&root_mnt->mnt_parent->mnt))
  2321. goto out4;
  2322. if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
  2323. goto out4;
  2324. error = -ENOENT;
  2325. if (d_unlinked(new.dentry))
  2326. goto out4;
  2327. if (d_unlinked(old.dentry))
  2328. goto out4;
  2329. error = -EBUSY;
  2330. if (new.mnt == root.mnt ||
  2331. old.mnt == root.mnt)
  2332. goto out4; /* loop, on the same file system */
  2333. error = -EINVAL;
  2334. if (root.mnt->mnt_root != root.dentry)
  2335. goto out4; /* not a mountpoint */
  2336. if (!mnt_has_parent(root_mnt))
  2337. goto out4; /* not attached */
  2338. if (new.mnt->mnt_root != new.dentry)
  2339. goto out4; /* not a mountpoint */
  2340. if (!mnt_has_parent(new_mnt))
  2341. goto out4; /* not attached */
  2342. /* make sure we can reach put_old from new_root */
  2343. if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
  2344. goto out4;
  2345. br_write_lock(vfsmount_lock);
  2346. detach_mnt(new_mnt, &parent_path);
  2347. detach_mnt(root_mnt, &root_parent);
  2348. /* mount old root on put_old */
  2349. attach_mnt(root_mnt, &old);
  2350. /* mount new_root on / */
  2351. attach_mnt(new_mnt, &root_parent);
  2352. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2353. br_write_unlock(vfsmount_lock);
  2354. chroot_fs_refs(&root, &new);
  2355. error = 0;
  2356. out4:
  2357. unlock_mount(&old);
  2358. if (!error) {
  2359. path_put(&root_parent);
  2360. path_put(&parent_path);
  2361. }
  2362. out3:
  2363. path_put(&root);
  2364. out2:
  2365. path_put(&old);
  2366. out1:
  2367. path_put(&new);
  2368. out0:
  2369. return error;
  2370. }
  2371. static void __init init_mount_tree(void)
  2372. {
  2373. struct vfsmount *mnt;
  2374. struct mnt_namespace *ns;
  2375. struct path root;
  2376. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2377. if (IS_ERR(mnt))
  2378. panic("Can't create rootfs");
  2379. ns = create_mnt_ns(mnt);
  2380. if (IS_ERR(ns))
  2381. panic("Can't allocate initial namespace");
  2382. init_task.nsproxy->mnt_ns = ns;
  2383. get_mnt_ns(ns);
  2384. root.mnt = ns->root;
  2385. root.dentry = ns->root->mnt_root;
  2386. set_fs_pwd(current->fs, &root);
  2387. set_fs_root(current->fs, &root);
  2388. }
  2389. void __init mnt_init(void)
  2390. {
  2391. unsigned u;
  2392. int err;
  2393. init_rwsem(&namespace_sem);
  2394. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2395. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2396. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2397. if (!mount_hashtable)
  2398. panic("Failed to allocate mount hash table\n");
  2399. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2400. for (u = 0; u < HASH_SIZE; u++)
  2401. INIT_LIST_HEAD(&mount_hashtable[u]);
  2402. br_lock_init(vfsmount_lock);
  2403. err = sysfs_init();
  2404. if (err)
  2405. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2406. __func__, err);
  2407. fs_kobj = kobject_create_and_add("fs", NULL);
  2408. if (!fs_kobj)
  2409. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2410. init_rootfs();
  2411. init_mount_tree();
  2412. }
  2413. void put_mnt_ns(struct mnt_namespace *ns)
  2414. {
  2415. LIST_HEAD(umount_list);
  2416. if (!atomic_dec_and_test(&ns->count))
  2417. return;
  2418. down_write(&namespace_sem);
  2419. br_write_lock(vfsmount_lock);
  2420. umount_tree(real_mount(ns->root), 0, &umount_list);
  2421. br_write_unlock(vfsmount_lock);
  2422. up_write(&namespace_sem);
  2423. release_mounts(&umount_list);
  2424. kfree(ns);
  2425. }
  2426. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2427. {
  2428. struct vfsmount *mnt;
  2429. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2430. if (!IS_ERR(mnt)) {
  2431. /*
  2432. * it is a longterm mount, don't release mnt until
  2433. * we unmount before file sys is unregistered
  2434. */
  2435. mnt_make_longterm(mnt);
  2436. }
  2437. return mnt;
  2438. }
  2439. EXPORT_SYMBOL_GPL(kern_mount_data);
  2440. void kern_unmount(struct vfsmount *mnt)
  2441. {
  2442. /* release long term mount so mount point can be released */
  2443. if (!IS_ERR_OR_NULL(mnt)) {
  2444. mnt_make_shortterm(mnt);
  2445. mntput(mnt);
  2446. }
  2447. }
  2448. EXPORT_SYMBOL(kern_unmount);
  2449. bool our_mnt(struct vfsmount *mnt)
  2450. {
  2451. return check_mnt(mnt);
  2452. }