vmx.c 95 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  33. MODULE_AUTHOR("Qumranet");
  34. MODULE_LICENSE("GPL");
  35. static int __read_mostly bypass_guest_pf = 1;
  36. module_param(bypass_guest_pf, bool, S_IRUGO);
  37. static int __read_mostly enable_vpid = 1;
  38. module_param_named(vpid, enable_vpid, bool, 0444);
  39. static int __read_mostly flexpriority_enabled = 1;
  40. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  41. static int __read_mostly enable_ept = 1;
  42. module_param_named(ept, enable_ept, bool, S_IRUGO);
  43. static int __read_mostly emulate_invalid_guest_state = 0;
  44. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  45. struct vmcs {
  46. u32 revision_id;
  47. u32 abort;
  48. char data[0];
  49. };
  50. struct vcpu_vmx {
  51. struct kvm_vcpu vcpu;
  52. struct list_head local_vcpus_link;
  53. unsigned long host_rsp;
  54. int launched;
  55. u8 fail;
  56. u32 idt_vectoring_info;
  57. struct kvm_msr_entry *guest_msrs;
  58. struct kvm_msr_entry *host_msrs;
  59. int nmsrs;
  60. int save_nmsrs;
  61. int msr_offset_efer;
  62. #ifdef CONFIG_X86_64
  63. int msr_offset_kernel_gs_base;
  64. #endif
  65. struct vmcs *vmcs;
  66. struct {
  67. int loaded;
  68. u16 fs_sel, gs_sel, ldt_sel;
  69. int gs_ldt_reload_needed;
  70. int fs_reload_needed;
  71. int guest_efer_loaded;
  72. } host_state;
  73. struct {
  74. struct {
  75. bool pending;
  76. u8 vector;
  77. unsigned rip;
  78. } irq;
  79. } rmode;
  80. int vpid;
  81. bool emulation_required;
  82. enum emulation_result invalid_state_emulation_result;
  83. /* Support for vnmi-less CPUs */
  84. int soft_vnmi_blocked;
  85. ktime_t entry_time;
  86. s64 vnmi_blocked_time;
  87. };
  88. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  89. {
  90. return container_of(vcpu, struct vcpu_vmx, vcpu);
  91. }
  92. static int init_rmode(struct kvm *kvm);
  93. static u64 construct_eptp(unsigned long root_hpa);
  94. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  95. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  96. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  97. static unsigned long *vmx_io_bitmap_a;
  98. static unsigned long *vmx_io_bitmap_b;
  99. static unsigned long *vmx_msr_bitmap_legacy;
  100. static unsigned long *vmx_msr_bitmap_longmode;
  101. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  102. static DEFINE_SPINLOCK(vmx_vpid_lock);
  103. static struct vmcs_config {
  104. int size;
  105. int order;
  106. u32 revision_id;
  107. u32 pin_based_exec_ctrl;
  108. u32 cpu_based_exec_ctrl;
  109. u32 cpu_based_2nd_exec_ctrl;
  110. u32 vmexit_ctrl;
  111. u32 vmentry_ctrl;
  112. } vmcs_config;
  113. static struct vmx_capability {
  114. u32 ept;
  115. u32 vpid;
  116. } vmx_capability;
  117. #define VMX_SEGMENT_FIELD(seg) \
  118. [VCPU_SREG_##seg] = { \
  119. .selector = GUEST_##seg##_SELECTOR, \
  120. .base = GUEST_##seg##_BASE, \
  121. .limit = GUEST_##seg##_LIMIT, \
  122. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  123. }
  124. static struct kvm_vmx_segment_field {
  125. unsigned selector;
  126. unsigned base;
  127. unsigned limit;
  128. unsigned ar_bytes;
  129. } kvm_vmx_segment_fields[] = {
  130. VMX_SEGMENT_FIELD(CS),
  131. VMX_SEGMENT_FIELD(DS),
  132. VMX_SEGMENT_FIELD(ES),
  133. VMX_SEGMENT_FIELD(FS),
  134. VMX_SEGMENT_FIELD(GS),
  135. VMX_SEGMENT_FIELD(SS),
  136. VMX_SEGMENT_FIELD(TR),
  137. VMX_SEGMENT_FIELD(LDTR),
  138. };
  139. /*
  140. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  141. * away by decrementing the array size.
  142. */
  143. static const u32 vmx_msr_index[] = {
  144. #ifdef CONFIG_X86_64
  145. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  146. #endif
  147. MSR_EFER, MSR_K6_STAR,
  148. };
  149. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  150. static void load_msrs(struct kvm_msr_entry *e, int n)
  151. {
  152. int i;
  153. for (i = 0; i < n; ++i)
  154. wrmsrl(e[i].index, e[i].data);
  155. }
  156. static void save_msrs(struct kvm_msr_entry *e, int n)
  157. {
  158. int i;
  159. for (i = 0; i < n; ++i)
  160. rdmsrl(e[i].index, e[i].data);
  161. }
  162. static inline int is_page_fault(u32 intr_info)
  163. {
  164. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  165. INTR_INFO_VALID_MASK)) ==
  166. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  167. }
  168. static inline int is_no_device(u32 intr_info)
  169. {
  170. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  171. INTR_INFO_VALID_MASK)) ==
  172. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  173. }
  174. static inline int is_invalid_opcode(u32 intr_info)
  175. {
  176. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  177. INTR_INFO_VALID_MASK)) ==
  178. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  179. }
  180. static inline int is_external_interrupt(u32 intr_info)
  181. {
  182. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  183. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  184. }
  185. static inline int cpu_has_vmx_msr_bitmap(void)
  186. {
  187. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  188. }
  189. static inline int cpu_has_vmx_tpr_shadow(void)
  190. {
  191. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  192. }
  193. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  194. {
  195. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  196. }
  197. static inline int cpu_has_secondary_exec_ctrls(void)
  198. {
  199. return vmcs_config.cpu_based_exec_ctrl &
  200. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  201. }
  202. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  203. {
  204. return vmcs_config.cpu_based_2nd_exec_ctrl &
  205. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  206. }
  207. static inline bool cpu_has_vmx_flexpriority(void)
  208. {
  209. return cpu_has_vmx_tpr_shadow() &&
  210. cpu_has_vmx_virtualize_apic_accesses();
  211. }
  212. static inline int cpu_has_vmx_invept_individual_addr(void)
  213. {
  214. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  215. }
  216. static inline int cpu_has_vmx_invept_context(void)
  217. {
  218. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  219. }
  220. static inline int cpu_has_vmx_invept_global(void)
  221. {
  222. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  223. }
  224. static inline int cpu_has_vmx_ept(void)
  225. {
  226. return vmcs_config.cpu_based_2nd_exec_ctrl &
  227. SECONDARY_EXEC_ENABLE_EPT;
  228. }
  229. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  230. {
  231. return flexpriority_enabled &&
  232. (cpu_has_vmx_virtualize_apic_accesses()) &&
  233. (irqchip_in_kernel(kvm));
  234. }
  235. static inline int cpu_has_vmx_vpid(void)
  236. {
  237. return vmcs_config.cpu_based_2nd_exec_ctrl &
  238. SECONDARY_EXEC_ENABLE_VPID;
  239. }
  240. static inline int cpu_has_virtual_nmis(void)
  241. {
  242. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  243. }
  244. static inline bool report_flexpriority(void)
  245. {
  246. return flexpriority_enabled;
  247. }
  248. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  249. {
  250. int i;
  251. for (i = 0; i < vmx->nmsrs; ++i)
  252. if (vmx->guest_msrs[i].index == msr)
  253. return i;
  254. return -1;
  255. }
  256. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  257. {
  258. struct {
  259. u64 vpid : 16;
  260. u64 rsvd : 48;
  261. u64 gva;
  262. } operand = { vpid, 0, gva };
  263. asm volatile (__ex(ASM_VMX_INVVPID)
  264. /* CF==1 or ZF==1 --> rc = -1 */
  265. "; ja 1f ; ud2 ; 1:"
  266. : : "a"(&operand), "c"(ext) : "cc", "memory");
  267. }
  268. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  269. {
  270. struct {
  271. u64 eptp, gpa;
  272. } operand = {eptp, gpa};
  273. asm volatile (__ex(ASM_VMX_INVEPT)
  274. /* CF==1 or ZF==1 --> rc = -1 */
  275. "; ja 1f ; ud2 ; 1:\n"
  276. : : "a" (&operand), "c" (ext) : "cc", "memory");
  277. }
  278. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  279. {
  280. int i;
  281. i = __find_msr_index(vmx, msr);
  282. if (i >= 0)
  283. return &vmx->guest_msrs[i];
  284. return NULL;
  285. }
  286. static void vmcs_clear(struct vmcs *vmcs)
  287. {
  288. u64 phys_addr = __pa(vmcs);
  289. u8 error;
  290. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  291. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  292. : "cc", "memory");
  293. if (error)
  294. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  295. vmcs, phys_addr);
  296. }
  297. static void __vcpu_clear(void *arg)
  298. {
  299. struct vcpu_vmx *vmx = arg;
  300. int cpu = raw_smp_processor_id();
  301. if (vmx->vcpu.cpu == cpu)
  302. vmcs_clear(vmx->vmcs);
  303. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  304. per_cpu(current_vmcs, cpu) = NULL;
  305. rdtscll(vmx->vcpu.arch.host_tsc);
  306. list_del(&vmx->local_vcpus_link);
  307. vmx->vcpu.cpu = -1;
  308. vmx->launched = 0;
  309. }
  310. static void vcpu_clear(struct vcpu_vmx *vmx)
  311. {
  312. if (vmx->vcpu.cpu == -1)
  313. return;
  314. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  315. }
  316. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  317. {
  318. if (vmx->vpid == 0)
  319. return;
  320. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  321. }
  322. static inline void ept_sync_global(void)
  323. {
  324. if (cpu_has_vmx_invept_global())
  325. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  326. }
  327. static inline void ept_sync_context(u64 eptp)
  328. {
  329. if (enable_ept) {
  330. if (cpu_has_vmx_invept_context())
  331. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  332. else
  333. ept_sync_global();
  334. }
  335. }
  336. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  337. {
  338. if (enable_ept) {
  339. if (cpu_has_vmx_invept_individual_addr())
  340. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  341. eptp, gpa);
  342. else
  343. ept_sync_context(eptp);
  344. }
  345. }
  346. static unsigned long vmcs_readl(unsigned long field)
  347. {
  348. unsigned long value;
  349. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  350. : "=a"(value) : "d"(field) : "cc");
  351. return value;
  352. }
  353. static u16 vmcs_read16(unsigned long field)
  354. {
  355. return vmcs_readl(field);
  356. }
  357. static u32 vmcs_read32(unsigned long field)
  358. {
  359. return vmcs_readl(field);
  360. }
  361. static u64 vmcs_read64(unsigned long field)
  362. {
  363. #ifdef CONFIG_X86_64
  364. return vmcs_readl(field);
  365. #else
  366. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  367. #endif
  368. }
  369. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  370. {
  371. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  372. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  373. dump_stack();
  374. }
  375. static void vmcs_writel(unsigned long field, unsigned long value)
  376. {
  377. u8 error;
  378. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  379. : "=q"(error) : "a"(value), "d"(field) : "cc");
  380. if (unlikely(error))
  381. vmwrite_error(field, value);
  382. }
  383. static void vmcs_write16(unsigned long field, u16 value)
  384. {
  385. vmcs_writel(field, value);
  386. }
  387. static void vmcs_write32(unsigned long field, u32 value)
  388. {
  389. vmcs_writel(field, value);
  390. }
  391. static void vmcs_write64(unsigned long field, u64 value)
  392. {
  393. vmcs_writel(field, value);
  394. #ifndef CONFIG_X86_64
  395. asm volatile ("");
  396. vmcs_writel(field+1, value >> 32);
  397. #endif
  398. }
  399. static void vmcs_clear_bits(unsigned long field, u32 mask)
  400. {
  401. vmcs_writel(field, vmcs_readl(field) & ~mask);
  402. }
  403. static void vmcs_set_bits(unsigned long field, u32 mask)
  404. {
  405. vmcs_writel(field, vmcs_readl(field) | mask);
  406. }
  407. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  408. {
  409. u32 eb;
  410. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  411. if (!vcpu->fpu_active)
  412. eb |= 1u << NM_VECTOR;
  413. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  414. if (vcpu->guest_debug &
  415. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  416. eb |= 1u << DB_VECTOR;
  417. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  418. eb |= 1u << BP_VECTOR;
  419. }
  420. if (vcpu->arch.rmode.active)
  421. eb = ~0;
  422. if (enable_ept)
  423. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  424. vmcs_write32(EXCEPTION_BITMAP, eb);
  425. }
  426. static void reload_tss(void)
  427. {
  428. /*
  429. * VT restores TR but not its size. Useless.
  430. */
  431. struct descriptor_table gdt;
  432. struct desc_struct *descs;
  433. kvm_get_gdt(&gdt);
  434. descs = (void *)gdt.base;
  435. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  436. load_TR_desc();
  437. }
  438. static void load_transition_efer(struct vcpu_vmx *vmx)
  439. {
  440. int efer_offset = vmx->msr_offset_efer;
  441. u64 host_efer = vmx->host_msrs[efer_offset].data;
  442. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  443. u64 ignore_bits;
  444. if (efer_offset < 0)
  445. return;
  446. /*
  447. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  448. * outside long mode
  449. */
  450. ignore_bits = EFER_NX | EFER_SCE;
  451. #ifdef CONFIG_X86_64
  452. ignore_bits |= EFER_LMA | EFER_LME;
  453. /* SCE is meaningful only in long mode on Intel */
  454. if (guest_efer & EFER_LMA)
  455. ignore_bits &= ~(u64)EFER_SCE;
  456. #endif
  457. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  458. return;
  459. vmx->host_state.guest_efer_loaded = 1;
  460. guest_efer &= ~ignore_bits;
  461. guest_efer |= host_efer & ignore_bits;
  462. wrmsrl(MSR_EFER, guest_efer);
  463. vmx->vcpu.stat.efer_reload++;
  464. }
  465. static void reload_host_efer(struct vcpu_vmx *vmx)
  466. {
  467. if (vmx->host_state.guest_efer_loaded) {
  468. vmx->host_state.guest_efer_loaded = 0;
  469. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  470. }
  471. }
  472. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  473. {
  474. struct vcpu_vmx *vmx = to_vmx(vcpu);
  475. if (vmx->host_state.loaded)
  476. return;
  477. vmx->host_state.loaded = 1;
  478. /*
  479. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  480. * allow segment selectors with cpl > 0 or ti == 1.
  481. */
  482. vmx->host_state.ldt_sel = kvm_read_ldt();
  483. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  484. vmx->host_state.fs_sel = kvm_read_fs();
  485. if (!(vmx->host_state.fs_sel & 7)) {
  486. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  487. vmx->host_state.fs_reload_needed = 0;
  488. } else {
  489. vmcs_write16(HOST_FS_SELECTOR, 0);
  490. vmx->host_state.fs_reload_needed = 1;
  491. }
  492. vmx->host_state.gs_sel = kvm_read_gs();
  493. if (!(vmx->host_state.gs_sel & 7))
  494. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  495. else {
  496. vmcs_write16(HOST_GS_SELECTOR, 0);
  497. vmx->host_state.gs_ldt_reload_needed = 1;
  498. }
  499. #ifdef CONFIG_X86_64
  500. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  501. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  502. #else
  503. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  504. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  505. #endif
  506. #ifdef CONFIG_X86_64
  507. if (is_long_mode(&vmx->vcpu))
  508. save_msrs(vmx->host_msrs +
  509. vmx->msr_offset_kernel_gs_base, 1);
  510. #endif
  511. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  512. load_transition_efer(vmx);
  513. }
  514. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  515. {
  516. unsigned long flags;
  517. if (!vmx->host_state.loaded)
  518. return;
  519. ++vmx->vcpu.stat.host_state_reload;
  520. vmx->host_state.loaded = 0;
  521. if (vmx->host_state.fs_reload_needed)
  522. kvm_load_fs(vmx->host_state.fs_sel);
  523. if (vmx->host_state.gs_ldt_reload_needed) {
  524. kvm_load_ldt(vmx->host_state.ldt_sel);
  525. /*
  526. * If we have to reload gs, we must take care to
  527. * preserve our gs base.
  528. */
  529. local_irq_save(flags);
  530. kvm_load_gs(vmx->host_state.gs_sel);
  531. #ifdef CONFIG_X86_64
  532. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  533. #endif
  534. local_irq_restore(flags);
  535. }
  536. reload_tss();
  537. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  538. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  539. reload_host_efer(vmx);
  540. }
  541. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  542. {
  543. preempt_disable();
  544. __vmx_load_host_state(vmx);
  545. preempt_enable();
  546. }
  547. /*
  548. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  549. * vcpu mutex is already taken.
  550. */
  551. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  552. {
  553. struct vcpu_vmx *vmx = to_vmx(vcpu);
  554. u64 phys_addr = __pa(vmx->vmcs);
  555. u64 tsc_this, delta, new_offset;
  556. if (vcpu->cpu != cpu) {
  557. vcpu_clear(vmx);
  558. kvm_migrate_timers(vcpu);
  559. vpid_sync_vcpu_all(vmx);
  560. local_irq_disable();
  561. list_add(&vmx->local_vcpus_link,
  562. &per_cpu(vcpus_on_cpu, cpu));
  563. local_irq_enable();
  564. }
  565. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  566. u8 error;
  567. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  568. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  569. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  570. : "cc");
  571. if (error)
  572. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  573. vmx->vmcs, phys_addr);
  574. }
  575. if (vcpu->cpu != cpu) {
  576. struct descriptor_table dt;
  577. unsigned long sysenter_esp;
  578. vcpu->cpu = cpu;
  579. /*
  580. * Linux uses per-cpu TSS and GDT, so set these when switching
  581. * processors.
  582. */
  583. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  584. kvm_get_gdt(&dt);
  585. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  586. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  587. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  588. /*
  589. * Make sure the time stamp counter is monotonous.
  590. */
  591. rdtscll(tsc_this);
  592. if (tsc_this < vcpu->arch.host_tsc) {
  593. delta = vcpu->arch.host_tsc - tsc_this;
  594. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  595. vmcs_write64(TSC_OFFSET, new_offset);
  596. }
  597. }
  598. }
  599. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  600. {
  601. __vmx_load_host_state(to_vmx(vcpu));
  602. }
  603. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  604. {
  605. if (vcpu->fpu_active)
  606. return;
  607. vcpu->fpu_active = 1;
  608. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  609. if (vcpu->arch.cr0 & X86_CR0_TS)
  610. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  611. update_exception_bitmap(vcpu);
  612. }
  613. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  614. {
  615. if (!vcpu->fpu_active)
  616. return;
  617. vcpu->fpu_active = 0;
  618. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  619. update_exception_bitmap(vcpu);
  620. }
  621. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  622. {
  623. return vmcs_readl(GUEST_RFLAGS);
  624. }
  625. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  626. {
  627. if (vcpu->arch.rmode.active)
  628. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  629. vmcs_writel(GUEST_RFLAGS, rflags);
  630. }
  631. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  632. {
  633. unsigned long rip;
  634. u32 interruptibility;
  635. rip = kvm_rip_read(vcpu);
  636. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  637. kvm_rip_write(vcpu, rip);
  638. /*
  639. * We emulated an instruction, so temporary interrupt blocking
  640. * should be removed, if set.
  641. */
  642. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  643. if (interruptibility & 3)
  644. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  645. interruptibility & ~3);
  646. }
  647. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  648. bool has_error_code, u32 error_code)
  649. {
  650. struct vcpu_vmx *vmx = to_vmx(vcpu);
  651. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  652. if (has_error_code) {
  653. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  654. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  655. }
  656. if (vcpu->arch.rmode.active) {
  657. vmx->rmode.irq.pending = true;
  658. vmx->rmode.irq.vector = nr;
  659. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  660. if (nr == BP_VECTOR || nr == OF_VECTOR)
  661. vmx->rmode.irq.rip++;
  662. intr_info |= INTR_TYPE_SOFT_INTR;
  663. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  664. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  665. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  666. return;
  667. }
  668. if (nr == BP_VECTOR || nr == OF_VECTOR) {
  669. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  670. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  671. } else
  672. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  673. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  674. }
  675. /*
  676. * Swap MSR entry in host/guest MSR entry array.
  677. */
  678. #ifdef CONFIG_X86_64
  679. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  680. {
  681. struct kvm_msr_entry tmp;
  682. tmp = vmx->guest_msrs[to];
  683. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  684. vmx->guest_msrs[from] = tmp;
  685. tmp = vmx->host_msrs[to];
  686. vmx->host_msrs[to] = vmx->host_msrs[from];
  687. vmx->host_msrs[from] = tmp;
  688. }
  689. #endif
  690. /*
  691. * Set up the vmcs to automatically save and restore system
  692. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  693. * mode, as fiddling with msrs is very expensive.
  694. */
  695. static void setup_msrs(struct vcpu_vmx *vmx)
  696. {
  697. int save_nmsrs;
  698. unsigned long *msr_bitmap;
  699. vmx_load_host_state(vmx);
  700. save_nmsrs = 0;
  701. #ifdef CONFIG_X86_64
  702. if (is_long_mode(&vmx->vcpu)) {
  703. int index;
  704. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  705. if (index >= 0)
  706. move_msr_up(vmx, index, save_nmsrs++);
  707. index = __find_msr_index(vmx, MSR_LSTAR);
  708. if (index >= 0)
  709. move_msr_up(vmx, index, save_nmsrs++);
  710. index = __find_msr_index(vmx, MSR_CSTAR);
  711. if (index >= 0)
  712. move_msr_up(vmx, index, save_nmsrs++);
  713. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  714. if (index >= 0)
  715. move_msr_up(vmx, index, save_nmsrs++);
  716. /*
  717. * MSR_K6_STAR is only needed on long mode guests, and only
  718. * if efer.sce is enabled.
  719. */
  720. index = __find_msr_index(vmx, MSR_K6_STAR);
  721. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  722. move_msr_up(vmx, index, save_nmsrs++);
  723. }
  724. #endif
  725. vmx->save_nmsrs = save_nmsrs;
  726. #ifdef CONFIG_X86_64
  727. vmx->msr_offset_kernel_gs_base =
  728. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  729. #endif
  730. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  731. if (cpu_has_vmx_msr_bitmap()) {
  732. if (is_long_mode(&vmx->vcpu))
  733. msr_bitmap = vmx_msr_bitmap_longmode;
  734. else
  735. msr_bitmap = vmx_msr_bitmap_legacy;
  736. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  737. }
  738. }
  739. /*
  740. * reads and returns guest's timestamp counter "register"
  741. * guest_tsc = host_tsc + tsc_offset -- 21.3
  742. */
  743. static u64 guest_read_tsc(void)
  744. {
  745. u64 host_tsc, tsc_offset;
  746. rdtscll(host_tsc);
  747. tsc_offset = vmcs_read64(TSC_OFFSET);
  748. return host_tsc + tsc_offset;
  749. }
  750. /*
  751. * writes 'guest_tsc' into guest's timestamp counter "register"
  752. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  753. */
  754. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  755. {
  756. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  757. }
  758. /*
  759. * Reads an msr value (of 'msr_index') into 'pdata'.
  760. * Returns 0 on success, non-0 otherwise.
  761. * Assumes vcpu_load() was already called.
  762. */
  763. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  764. {
  765. u64 data;
  766. struct kvm_msr_entry *msr;
  767. if (!pdata) {
  768. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  769. return -EINVAL;
  770. }
  771. switch (msr_index) {
  772. #ifdef CONFIG_X86_64
  773. case MSR_FS_BASE:
  774. data = vmcs_readl(GUEST_FS_BASE);
  775. break;
  776. case MSR_GS_BASE:
  777. data = vmcs_readl(GUEST_GS_BASE);
  778. break;
  779. case MSR_EFER:
  780. return kvm_get_msr_common(vcpu, msr_index, pdata);
  781. #endif
  782. case MSR_IA32_TIME_STAMP_COUNTER:
  783. data = guest_read_tsc();
  784. break;
  785. case MSR_IA32_SYSENTER_CS:
  786. data = vmcs_read32(GUEST_SYSENTER_CS);
  787. break;
  788. case MSR_IA32_SYSENTER_EIP:
  789. data = vmcs_readl(GUEST_SYSENTER_EIP);
  790. break;
  791. case MSR_IA32_SYSENTER_ESP:
  792. data = vmcs_readl(GUEST_SYSENTER_ESP);
  793. break;
  794. default:
  795. vmx_load_host_state(to_vmx(vcpu));
  796. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  797. if (msr) {
  798. data = msr->data;
  799. break;
  800. }
  801. return kvm_get_msr_common(vcpu, msr_index, pdata);
  802. }
  803. *pdata = data;
  804. return 0;
  805. }
  806. /*
  807. * Writes msr value into into the appropriate "register".
  808. * Returns 0 on success, non-0 otherwise.
  809. * Assumes vcpu_load() was already called.
  810. */
  811. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  812. {
  813. struct vcpu_vmx *vmx = to_vmx(vcpu);
  814. struct kvm_msr_entry *msr;
  815. u64 host_tsc;
  816. int ret = 0;
  817. switch (msr_index) {
  818. case MSR_EFER:
  819. vmx_load_host_state(vmx);
  820. ret = kvm_set_msr_common(vcpu, msr_index, data);
  821. break;
  822. #ifdef CONFIG_X86_64
  823. case MSR_FS_BASE:
  824. vmcs_writel(GUEST_FS_BASE, data);
  825. break;
  826. case MSR_GS_BASE:
  827. vmcs_writel(GUEST_GS_BASE, data);
  828. break;
  829. #endif
  830. case MSR_IA32_SYSENTER_CS:
  831. vmcs_write32(GUEST_SYSENTER_CS, data);
  832. break;
  833. case MSR_IA32_SYSENTER_EIP:
  834. vmcs_writel(GUEST_SYSENTER_EIP, data);
  835. break;
  836. case MSR_IA32_SYSENTER_ESP:
  837. vmcs_writel(GUEST_SYSENTER_ESP, data);
  838. break;
  839. case MSR_IA32_TIME_STAMP_COUNTER:
  840. rdtscll(host_tsc);
  841. guest_write_tsc(data, host_tsc);
  842. break;
  843. case MSR_P6_PERFCTR0:
  844. case MSR_P6_PERFCTR1:
  845. case MSR_P6_EVNTSEL0:
  846. case MSR_P6_EVNTSEL1:
  847. /*
  848. * Just discard all writes to the performance counters; this
  849. * should keep both older linux and windows 64-bit guests
  850. * happy
  851. */
  852. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  853. break;
  854. case MSR_IA32_CR_PAT:
  855. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  856. vmcs_write64(GUEST_IA32_PAT, data);
  857. vcpu->arch.pat = data;
  858. break;
  859. }
  860. /* Otherwise falls through to kvm_set_msr_common */
  861. default:
  862. vmx_load_host_state(vmx);
  863. msr = find_msr_entry(vmx, msr_index);
  864. if (msr) {
  865. msr->data = data;
  866. break;
  867. }
  868. ret = kvm_set_msr_common(vcpu, msr_index, data);
  869. }
  870. return ret;
  871. }
  872. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  873. {
  874. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  875. switch (reg) {
  876. case VCPU_REGS_RSP:
  877. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  878. break;
  879. case VCPU_REGS_RIP:
  880. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  881. break;
  882. default:
  883. break;
  884. }
  885. }
  886. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  887. {
  888. int old_debug = vcpu->guest_debug;
  889. unsigned long flags;
  890. vcpu->guest_debug = dbg->control;
  891. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  892. vcpu->guest_debug = 0;
  893. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  894. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  895. else
  896. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  897. flags = vmcs_readl(GUEST_RFLAGS);
  898. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  899. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  900. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  901. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  902. vmcs_writel(GUEST_RFLAGS, flags);
  903. update_exception_bitmap(vcpu);
  904. return 0;
  905. }
  906. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  907. {
  908. if (!vcpu->arch.interrupt.pending)
  909. return -1;
  910. return vcpu->arch.interrupt.nr;
  911. }
  912. static __init int cpu_has_kvm_support(void)
  913. {
  914. return cpu_has_vmx();
  915. }
  916. static __init int vmx_disabled_by_bios(void)
  917. {
  918. u64 msr;
  919. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  920. return (msr & (FEATURE_CONTROL_LOCKED |
  921. FEATURE_CONTROL_VMXON_ENABLED))
  922. == FEATURE_CONTROL_LOCKED;
  923. /* locked but not enabled */
  924. }
  925. static void hardware_enable(void *garbage)
  926. {
  927. int cpu = raw_smp_processor_id();
  928. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  929. u64 old;
  930. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  931. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  932. if ((old & (FEATURE_CONTROL_LOCKED |
  933. FEATURE_CONTROL_VMXON_ENABLED))
  934. != (FEATURE_CONTROL_LOCKED |
  935. FEATURE_CONTROL_VMXON_ENABLED))
  936. /* enable and lock */
  937. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  938. FEATURE_CONTROL_LOCKED |
  939. FEATURE_CONTROL_VMXON_ENABLED);
  940. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  941. asm volatile (ASM_VMX_VMXON_RAX
  942. : : "a"(&phys_addr), "m"(phys_addr)
  943. : "memory", "cc");
  944. }
  945. static void vmclear_local_vcpus(void)
  946. {
  947. int cpu = raw_smp_processor_id();
  948. struct vcpu_vmx *vmx, *n;
  949. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  950. local_vcpus_link)
  951. __vcpu_clear(vmx);
  952. }
  953. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  954. * tricks.
  955. */
  956. static void kvm_cpu_vmxoff(void)
  957. {
  958. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  959. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  960. }
  961. static void hardware_disable(void *garbage)
  962. {
  963. vmclear_local_vcpus();
  964. kvm_cpu_vmxoff();
  965. }
  966. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  967. u32 msr, u32 *result)
  968. {
  969. u32 vmx_msr_low, vmx_msr_high;
  970. u32 ctl = ctl_min | ctl_opt;
  971. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  972. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  973. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  974. /* Ensure minimum (required) set of control bits are supported. */
  975. if (ctl_min & ~ctl)
  976. return -EIO;
  977. *result = ctl;
  978. return 0;
  979. }
  980. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  981. {
  982. u32 vmx_msr_low, vmx_msr_high;
  983. u32 min, opt, min2, opt2;
  984. u32 _pin_based_exec_control = 0;
  985. u32 _cpu_based_exec_control = 0;
  986. u32 _cpu_based_2nd_exec_control = 0;
  987. u32 _vmexit_control = 0;
  988. u32 _vmentry_control = 0;
  989. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  990. opt = PIN_BASED_VIRTUAL_NMIS;
  991. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  992. &_pin_based_exec_control) < 0)
  993. return -EIO;
  994. min = CPU_BASED_HLT_EXITING |
  995. #ifdef CONFIG_X86_64
  996. CPU_BASED_CR8_LOAD_EXITING |
  997. CPU_BASED_CR8_STORE_EXITING |
  998. #endif
  999. CPU_BASED_CR3_LOAD_EXITING |
  1000. CPU_BASED_CR3_STORE_EXITING |
  1001. CPU_BASED_USE_IO_BITMAPS |
  1002. CPU_BASED_MOV_DR_EXITING |
  1003. CPU_BASED_USE_TSC_OFFSETING |
  1004. CPU_BASED_INVLPG_EXITING;
  1005. opt = CPU_BASED_TPR_SHADOW |
  1006. CPU_BASED_USE_MSR_BITMAPS |
  1007. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1008. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1009. &_cpu_based_exec_control) < 0)
  1010. return -EIO;
  1011. #ifdef CONFIG_X86_64
  1012. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1013. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1014. ~CPU_BASED_CR8_STORE_EXITING;
  1015. #endif
  1016. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1017. min2 = 0;
  1018. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1019. SECONDARY_EXEC_WBINVD_EXITING |
  1020. SECONDARY_EXEC_ENABLE_VPID |
  1021. SECONDARY_EXEC_ENABLE_EPT;
  1022. if (adjust_vmx_controls(min2, opt2,
  1023. MSR_IA32_VMX_PROCBASED_CTLS2,
  1024. &_cpu_based_2nd_exec_control) < 0)
  1025. return -EIO;
  1026. }
  1027. #ifndef CONFIG_X86_64
  1028. if (!(_cpu_based_2nd_exec_control &
  1029. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1030. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1031. #endif
  1032. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1033. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1034. enabled */
  1035. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1036. CPU_BASED_CR3_STORE_EXITING |
  1037. CPU_BASED_INVLPG_EXITING);
  1038. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1039. &_cpu_based_exec_control) < 0)
  1040. return -EIO;
  1041. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1042. vmx_capability.ept, vmx_capability.vpid);
  1043. }
  1044. min = 0;
  1045. #ifdef CONFIG_X86_64
  1046. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1047. #endif
  1048. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1049. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1050. &_vmexit_control) < 0)
  1051. return -EIO;
  1052. min = 0;
  1053. opt = VM_ENTRY_LOAD_IA32_PAT;
  1054. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1055. &_vmentry_control) < 0)
  1056. return -EIO;
  1057. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1058. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1059. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1060. return -EIO;
  1061. #ifdef CONFIG_X86_64
  1062. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1063. if (vmx_msr_high & (1u<<16))
  1064. return -EIO;
  1065. #endif
  1066. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1067. if (((vmx_msr_high >> 18) & 15) != 6)
  1068. return -EIO;
  1069. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1070. vmcs_conf->order = get_order(vmcs_config.size);
  1071. vmcs_conf->revision_id = vmx_msr_low;
  1072. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1073. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1074. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1075. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1076. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1077. return 0;
  1078. }
  1079. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1080. {
  1081. int node = cpu_to_node(cpu);
  1082. struct page *pages;
  1083. struct vmcs *vmcs;
  1084. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1085. if (!pages)
  1086. return NULL;
  1087. vmcs = page_address(pages);
  1088. memset(vmcs, 0, vmcs_config.size);
  1089. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1090. return vmcs;
  1091. }
  1092. static struct vmcs *alloc_vmcs(void)
  1093. {
  1094. return alloc_vmcs_cpu(raw_smp_processor_id());
  1095. }
  1096. static void free_vmcs(struct vmcs *vmcs)
  1097. {
  1098. free_pages((unsigned long)vmcs, vmcs_config.order);
  1099. }
  1100. static void free_kvm_area(void)
  1101. {
  1102. int cpu;
  1103. for_each_online_cpu(cpu)
  1104. free_vmcs(per_cpu(vmxarea, cpu));
  1105. }
  1106. static __init int alloc_kvm_area(void)
  1107. {
  1108. int cpu;
  1109. for_each_online_cpu(cpu) {
  1110. struct vmcs *vmcs;
  1111. vmcs = alloc_vmcs_cpu(cpu);
  1112. if (!vmcs) {
  1113. free_kvm_area();
  1114. return -ENOMEM;
  1115. }
  1116. per_cpu(vmxarea, cpu) = vmcs;
  1117. }
  1118. return 0;
  1119. }
  1120. static __init int hardware_setup(void)
  1121. {
  1122. if (setup_vmcs_config(&vmcs_config) < 0)
  1123. return -EIO;
  1124. if (boot_cpu_has(X86_FEATURE_NX))
  1125. kvm_enable_efer_bits(EFER_NX);
  1126. if (!cpu_has_vmx_vpid())
  1127. enable_vpid = 0;
  1128. if (!cpu_has_vmx_ept())
  1129. enable_ept = 0;
  1130. if (!cpu_has_vmx_flexpriority())
  1131. flexpriority_enabled = 0;
  1132. if (!cpu_has_vmx_tpr_shadow())
  1133. kvm_x86_ops->update_cr8_intercept = NULL;
  1134. return alloc_kvm_area();
  1135. }
  1136. static __exit void hardware_unsetup(void)
  1137. {
  1138. free_kvm_area();
  1139. }
  1140. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1141. {
  1142. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1143. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1144. vmcs_write16(sf->selector, save->selector);
  1145. vmcs_writel(sf->base, save->base);
  1146. vmcs_write32(sf->limit, save->limit);
  1147. vmcs_write32(sf->ar_bytes, save->ar);
  1148. } else {
  1149. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1150. << AR_DPL_SHIFT;
  1151. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1152. }
  1153. }
  1154. static void enter_pmode(struct kvm_vcpu *vcpu)
  1155. {
  1156. unsigned long flags;
  1157. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1158. vmx->emulation_required = 1;
  1159. vcpu->arch.rmode.active = 0;
  1160. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1161. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1162. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1163. flags = vmcs_readl(GUEST_RFLAGS);
  1164. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1165. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1166. vmcs_writel(GUEST_RFLAGS, flags);
  1167. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1168. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1169. update_exception_bitmap(vcpu);
  1170. if (emulate_invalid_guest_state)
  1171. return;
  1172. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1173. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1174. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1175. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1176. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1177. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1178. vmcs_write16(GUEST_CS_SELECTOR,
  1179. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1180. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1181. }
  1182. static gva_t rmode_tss_base(struct kvm *kvm)
  1183. {
  1184. if (!kvm->arch.tss_addr) {
  1185. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1186. kvm->memslots[0].npages - 3;
  1187. return base_gfn << PAGE_SHIFT;
  1188. }
  1189. return kvm->arch.tss_addr;
  1190. }
  1191. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1192. {
  1193. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1194. save->selector = vmcs_read16(sf->selector);
  1195. save->base = vmcs_readl(sf->base);
  1196. save->limit = vmcs_read32(sf->limit);
  1197. save->ar = vmcs_read32(sf->ar_bytes);
  1198. vmcs_write16(sf->selector, save->base >> 4);
  1199. vmcs_write32(sf->base, save->base & 0xfffff);
  1200. vmcs_write32(sf->limit, 0xffff);
  1201. vmcs_write32(sf->ar_bytes, 0xf3);
  1202. }
  1203. static void enter_rmode(struct kvm_vcpu *vcpu)
  1204. {
  1205. unsigned long flags;
  1206. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1207. vmx->emulation_required = 1;
  1208. vcpu->arch.rmode.active = 1;
  1209. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1210. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1211. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1212. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1213. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1214. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1215. flags = vmcs_readl(GUEST_RFLAGS);
  1216. vcpu->arch.rmode.save_iopl
  1217. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1218. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1219. vmcs_writel(GUEST_RFLAGS, flags);
  1220. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1221. update_exception_bitmap(vcpu);
  1222. if (emulate_invalid_guest_state)
  1223. goto continue_rmode;
  1224. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1225. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1226. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1227. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1228. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1229. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1230. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1231. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1232. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1233. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1234. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1235. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1236. continue_rmode:
  1237. kvm_mmu_reset_context(vcpu);
  1238. init_rmode(vcpu->kvm);
  1239. }
  1240. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1241. {
  1242. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1243. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1244. vcpu->arch.shadow_efer = efer;
  1245. if (!msr)
  1246. return;
  1247. if (efer & EFER_LMA) {
  1248. vmcs_write32(VM_ENTRY_CONTROLS,
  1249. vmcs_read32(VM_ENTRY_CONTROLS) |
  1250. VM_ENTRY_IA32E_MODE);
  1251. msr->data = efer;
  1252. } else {
  1253. vmcs_write32(VM_ENTRY_CONTROLS,
  1254. vmcs_read32(VM_ENTRY_CONTROLS) &
  1255. ~VM_ENTRY_IA32E_MODE);
  1256. msr->data = efer & ~EFER_LME;
  1257. }
  1258. setup_msrs(vmx);
  1259. }
  1260. #ifdef CONFIG_X86_64
  1261. static void enter_lmode(struct kvm_vcpu *vcpu)
  1262. {
  1263. u32 guest_tr_ar;
  1264. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1265. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1266. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1267. __func__);
  1268. vmcs_write32(GUEST_TR_AR_BYTES,
  1269. (guest_tr_ar & ~AR_TYPE_MASK)
  1270. | AR_TYPE_BUSY_64_TSS);
  1271. }
  1272. vcpu->arch.shadow_efer |= EFER_LMA;
  1273. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1274. }
  1275. static void exit_lmode(struct kvm_vcpu *vcpu)
  1276. {
  1277. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1278. vmcs_write32(VM_ENTRY_CONTROLS,
  1279. vmcs_read32(VM_ENTRY_CONTROLS)
  1280. & ~VM_ENTRY_IA32E_MODE);
  1281. }
  1282. #endif
  1283. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1284. {
  1285. vpid_sync_vcpu_all(to_vmx(vcpu));
  1286. if (enable_ept)
  1287. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1288. }
  1289. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1290. {
  1291. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1292. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1293. }
  1294. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1295. {
  1296. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1297. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1298. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1299. return;
  1300. }
  1301. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1302. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1303. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1304. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1305. }
  1306. }
  1307. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1308. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1309. unsigned long cr0,
  1310. struct kvm_vcpu *vcpu)
  1311. {
  1312. if (!(cr0 & X86_CR0_PG)) {
  1313. /* From paging/starting to nonpaging */
  1314. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1315. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1316. (CPU_BASED_CR3_LOAD_EXITING |
  1317. CPU_BASED_CR3_STORE_EXITING));
  1318. vcpu->arch.cr0 = cr0;
  1319. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1320. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1321. *hw_cr0 &= ~X86_CR0_WP;
  1322. } else if (!is_paging(vcpu)) {
  1323. /* From nonpaging to paging */
  1324. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1325. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1326. ~(CPU_BASED_CR3_LOAD_EXITING |
  1327. CPU_BASED_CR3_STORE_EXITING));
  1328. vcpu->arch.cr0 = cr0;
  1329. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1330. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1331. *hw_cr0 &= ~X86_CR0_WP;
  1332. }
  1333. }
  1334. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1335. struct kvm_vcpu *vcpu)
  1336. {
  1337. if (!is_paging(vcpu)) {
  1338. *hw_cr4 &= ~X86_CR4_PAE;
  1339. *hw_cr4 |= X86_CR4_PSE;
  1340. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1341. *hw_cr4 &= ~X86_CR4_PAE;
  1342. }
  1343. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1344. {
  1345. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1346. KVM_VM_CR0_ALWAYS_ON;
  1347. vmx_fpu_deactivate(vcpu);
  1348. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1349. enter_pmode(vcpu);
  1350. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1351. enter_rmode(vcpu);
  1352. #ifdef CONFIG_X86_64
  1353. if (vcpu->arch.shadow_efer & EFER_LME) {
  1354. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1355. enter_lmode(vcpu);
  1356. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1357. exit_lmode(vcpu);
  1358. }
  1359. #endif
  1360. if (enable_ept)
  1361. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1362. vmcs_writel(CR0_READ_SHADOW, cr0);
  1363. vmcs_writel(GUEST_CR0, hw_cr0);
  1364. vcpu->arch.cr0 = cr0;
  1365. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1366. vmx_fpu_activate(vcpu);
  1367. }
  1368. static u64 construct_eptp(unsigned long root_hpa)
  1369. {
  1370. u64 eptp;
  1371. /* TODO write the value reading from MSR */
  1372. eptp = VMX_EPT_DEFAULT_MT |
  1373. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1374. eptp |= (root_hpa & PAGE_MASK);
  1375. return eptp;
  1376. }
  1377. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1378. {
  1379. unsigned long guest_cr3;
  1380. u64 eptp;
  1381. guest_cr3 = cr3;
  1382. if (enable_ept) {
  1383. eptp = construct_eptp(cr3);
  1384. vmcs_write64(EPT_POINTER, eptp);
  1385. ept_sync_context(eptp);
  1386. ept_load_pdptrs(vcpu);
  1387. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1388. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1389. }
  1390. vmx_flush_tlb(vcpu);
  1391. vmcs_writel(GUEST_CR3, guest_cr3);
  1392. if (vcpu->arch.cr0 & X86_CR0_PE)
  1393. vmx_fpu_deactivate(vcpu);
  1394. }
  1395. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1396. {
  1397. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1398. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1399. vcpu->arch.cr4 = cr4;
  1400. if (enable_ept)
  1401. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1402. vmcs_writel(CR4_READ_SHADOW, cr4);
  1403. vmcs_writel(GUEST_CR4, hw_cr4);
  1404. }
  1405. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1406. {
  1407. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1408. return vmcs_readl(sf->base);
  1409. }
  1410. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1411. struct kvm_segment *var, int seg)
  1412. {
  1413. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1414. u32 ar;
  1415. var->base = vmcs_readl(sf->base);
  1416. var->limit = vmcs_read32(sf->limit);
  1417. var->selector = vmcs_read16(sf->selector);
  1418. ar = vmcs_read32(sf->ar_bytes);
  1419. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1420. ar = 0;
  1421. var->type = ar & 15;
  1422. var->s = (ar >> 4) & 1;
  1423. var->dpl = (ar >> 5) & 3;
  1424. var->present = (ar >> 7) & 1;
  1425. var->avl = (ar >> 12) & 1;
  1426. var->l = (ar >> 13) & 1;
  1427. var->db = (ar >> 14) & 1;
  1428. var->g = (ar >> 15) & 1;
  1429. var->unusable = (ar >> 16) & 1;
  1430. }
  1431. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1432. {
  1433. struct kvm_segment kvm_seg;
  1434. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1435. return 0;
  1436. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1437. return 3;
  1438. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1439. return kvm_seg.selector & 3;
  1440. }
  1441. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1442. {
  1443. u32 ar;
  1444. if (var->unusable)
  1445. ar = 1 << 16;
  1446. else {
  1447. ar = var->type & 15;
  1448. ar |= (var->s & 1) << 4;
  1449. ar |= (var->dpl & 3) << 5;
  1450. ar |= (var->present & 1) << 7;
  1451. ar |= (var->avl & 1) << 12;
  1452. ar |= (var->l & 1) << 13;
  1453. ar |= (var->db & 1) << 14;
  1454. ar |= (var->g & 1) << 15;
  1455. }
  1456. if (ar == 0) /* a 0 value means unusable */
  1457. ar = AR_UNUSABLE_MASK;
  1458. return ar;
  1459. }
  1460. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1461. struct kvm_segment *var, int seg)
  1462. {
  1463. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1464. u32 ar;
  1465. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1466. vcpu->arch.rmode.tr.selector = var->selector;
  1467. vcpu->arch.rmode.tr.base = var->base;
  1468. vcpu->arch.rmode.tr.limit = var->limit;
  1469. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1470. return;
  1471. }
  1472. vmcs_writel(sf->base, var->base);
  1473. vmcs_write32(sf->limit, var->limit);
  1474. vmcs_write16(sf->selector, var->selector);
  1475. if (vcpu->arch.rmode.active && var->s) {
  1476. /*
  1477. * Hack real-mode segments into vm86 compatibility.
  1478. */
  1479. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1480. vmcs_writel(sf->base, 0xf0000);
  1481. ar = 0xf3;
  1482. } else
  1483. ar = vmx_segment_access_rights(var);
  1484. vmcs_write32(sf->ar_bytes, ar);
  1485. }
  1486. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1487. {
  1488. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1489. *db = (ar >> 14) & 1;
  1490. *l = (ar >> 13) & 1;
  1491. }
  1492. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1493. {
  1494. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1495. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1496. }
  1497. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1498. {
  1499. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1500. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1501. }
  1502. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1503. {
  1504. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1505. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1506. }
  1507. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1508. {
  1509. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1510. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1511. }
  1512. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1513. {
  1514. struct kvm_segment var;
  1515. u32 ar;
  1516. vmx_get_segment(vcpu, &var, seg);
  1517. ar = vmx_segment_access_rights(&var);
  1518. if (var.base != (var.selector << 4))
  1519. return false;
  1520. if (var.limit != 0xffff)
  1521. return false;
  1522. if (ar != 0xf3)
  1523. return false;
  1524. return true;
  1525. }
  1526. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1527. {
  1528. struct kvm_segment cs;
  1529. unsigned int cs_rpl;
  1530. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1531. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1532. if (cs.unusable)
  1533. return false;
  1534. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1535. return false;
  1536. if (!cs.s)
  1537. return false;
  1538. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1539. if (cs.dpl > cs_rpl)
  1540. return false;
  1541. } else {
  1542. if (cs.dpl != cs_rpl)
  1543. return false;
  1544. }
  1545. if (!cs.present)
  1546. return false;
  1547. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1548. return true;
  1549. }
  1550. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1551. {
  1552. struct kvm_segment ss;
  1553. unsigned int ss_rpl;
  1554. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1555. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1556. if (ss.unusable)
  1557. return true;
  1558. if (ss.type != 3 && ss.type != 7)
  1559. return false;
  1560. if (!ss.s)
  1561. return false;
  1562. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1563. return false;
  1564. if (!ss.present)
  1565. return false;
  1566. return true;
  1567. }
  1568. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1569. {
  1570. struct kvm_segment var;
  1571. unsigned int rpl;
  1572. vmx_get_segment(vcpu, &var, seg);
  1573. rpl = var.selector & SELECTOR_RPL_MASK;
  1574. if (var.unusable)
  1575. return true;
  1576. if (!var.s)
  1577. return false;
  1578. if (!var.present)
  1579. return false;
  1580. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1581. if (var.dpl < rpl) /* DPL < RPL */
  1582. return false;
  1583. }
  1584. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1585. * rights flags
  1586. */
  1587. return true;
  1588. }
  1589. static bool tr_valid(struct kvm_vcpu *vcpu)
  1590. {
  1591. struct kvm_segment tr;
  1592. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1593. if (tr.unusable)
  1594. return false;
  1595. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1596. return false;
  1597. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1598. return false;
  1599. if (!tr.present)
  1600. return false;
  1601. return true;
  1602. }
  1603. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1604. {
  1605. struct kvm_segment ldtr;
  1606. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1607. if (ldtr.unusable)
  1608. return true;
  1609. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1610. return false;
  1611. if (ldtr.type != 2)
  1612. return false;
  1613. if (!ldtr.present)
  1614. return false;
  1615. return true;
  1616. }
  1617. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1618. {
  1619. struct kvm_segment cs, ss;
  1620. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1621. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1622. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1623. (ss.selector & SELECTOR_RPL_MASK));
  1624. }
  1625. /*
  1626. * Check if guest state is valid. Returns true if valid, false if
  1627. * not.
  1628. * We assume that registers are always usable
  1629. */
  1630. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1631. {
  1632. /* real mode guest state checks */
  1633. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1634. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1635. return false;
  1636. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1637. return false;
  1638. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1639. return false;
  1640. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1641. return false;
  1642. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1643. return false;
  1644. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1645. return false;
  1646. } else {
  1647. /* protected mode guest state checks */
  1648. if (!cs_ss_rpl_check(vcpu))
  1649. return false;
  1650. if (!code_segment_valid(vcpu))
  1651. return false;
  1652. if (!stack_segment_valid(vcpu))
  1653. return false;
  1654. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1655. return false;
  1656. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1657. return false;
  1658. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1659. return false;
  1660. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1661. return false;
  1662. if (!tr_valid(vcpu))
  1663. return false;
  1664. if (!ldtr_valid(vcpu))
  1665. return false;
  1666. }
  1667. /* TODO:
  1668. * - Add checks on RIP
  1669. * - Add checks on RFLAGS
  1670. */
  1671. return true;
  1672. }
  1673. static int init_rmode_tss(struct kvm *kvm)
  1674. {
  1675. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1676. u16 data = 0;
  1677. int ret = 0;
  1678. int r;
  1679. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1680. if (r < 0)
  1681. goto out;
  1682. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1683. r = kvm_write_guest_page(kvm, fn++, &data,
  1684. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1685. if (r < 0)
  1686. goto out;
  1687. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1688. if (r < 0)
  1689. goto out;
  1690. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1691. if (r < 0)
  1692. goto out;
  1693. data = ~0;
  1694. r = kvm_write_guest_page(kvm, fn, &data,
  1695. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1696. sizeof(u8));
  1697. if (r < 0)
  1698. goto out;
  1699. ret = 1;
  1700. out:
  1701. return ret;
  1702. }
  1703. static int init_rmode_identity_map(struct kvm *kvm)
  1704. {
  1705. int i, r, ret;
  1706. pfn_t identity_map_pfn;
  1707. u32 tmp;
  1708. if (!enable_ept)
  1709. return 1;
  1710. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1711. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1712. "haven't been allocated!\n");
  1713. return 0;
  1714. }
  1715. if (likely(kvm->arch.ept_identity_pagetable_done))
  1716. return 1;
  1717. ret = 0;
  1718. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1719. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1720. if (r < 0)
  1721. goto out;
  1722. /* Set up identity-mapping pagetable for EPT in real mode */
  1723. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1724. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1725. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1726. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1727. &tmp, i * sizeof(tmp), sizeof(tmp));
  1728. if (r < 0)
  1729. goto out;
  1730. }
  1731. kvm->arch.ept_identity_pagetable_done = true;
  1732. ret = 1;
  1733. out:
  1734. return ret;
  1735. }
  1736. static void seg_setup(int seg)
  1737. {
  1738. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1739. vmcs_write16(sf->selector, 0);
  1740. vmcs_writel(sf->base, 0);
  1741. vmcs_write32(sf->limit, 0xffff);
  1742. vmcs_write32(sf->ar_bytes, 0xf3);
  1743. }
  1744. static int alloc_apic_access_page(struct kvm *kvm)
  1745. {
  1746. struct kvm_userspace_memory_region kvm_userspace_mem;
  1747. int r = 0;
  1748. down_write(&kvm->slots_lock);
  1749. if (kvm->arch.apic_access_page)
  1750. goto out;
  1751. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1752. kvm_userspace_mem.flags = 0;
  1753. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1754. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1755. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1756. if (r)
  1757. goto out;
  1758. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1759. out:
  1760. up_write(&kvm->slots_lock);
  1761. return r;
  1762. }
  1763. static int alloc_identity_pagetable(struct kvm *kvm)
  1764. {
  1765. struct kvm_userspace_memory_region kvm_userspace_mem;
  1766. int r = 0;
  1767. down_write(&kvm->slots_lock);
  1768. if (kvm->arch.ept_identity_pagetable)
  1769. goto out;
  1770. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1771. kvm_userspace_mem.flags = 0;
  1772. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1773. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1774. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1775. if (r)
  1776. goto out;
  1777. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1778. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1779. out:
  1780. up_write(&kvm->slots_lock);
  1781. return r;
  1782. }
  1783. static void allocate_vpid(struct vcpu_vmx *vmx)
  1784. {
  1785. int vpid;
  1786. vmx->vpid = 0;
  1787. if (!enable_vpid)
  1788. return;
  1789. spin_lock(&vmx_vpid_lock);
  1790. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1791. if (vpid < VMX_NR_VPIDS) {
  1792. vmx->vpid = vpid;
  1793. __set_bit(vpid, vmx_vpid_bitmap);
  1794. }
  1795. spin_unlock(&vmx_vpid_lock);
  1796. }
  1797. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1798. {
  1799. int f = sizeof(unsigned long);
  1800. if (!cpu_has_vmx_msr_bitmap())
  1801. return;
  1802. /*
  1803. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1804. * have the write-low and read-high bitmap offsets the wrong way round.
  1805. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1806. */
  1807. if (msr <= 0x1fff) {
  1808. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1809. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1810. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1811. msr &= 0x1fff;
  1812. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1813. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1814. }
  1815. }
  1816. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1817. {
  1818. if (!longmode_only)
  1819. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1820. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1821. }
  1822. /*
  1823. * Sets up the vmcs for emulated real mode.
  1824. */
  1825. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1826. {
  1827. u32 host_sysenter_cs, msr_low, msr_high;
  1828. u32 junk;
  1829. u64 host_pat, tsc_this, tsc_base;
  1830. unsigned long a;
  1831. struct descriptor_table dt;
  1832. int i;
  1833. unsigned long kvm_vmx_return;
  1834. u32 exec_control;
  1835. /* I/O */
  1836. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1837. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1838. if (cpu_has_vmx_msr_bitmap())
  1839. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1840. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1841. /* Control */
  1842. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1843. vmcs_config.pin_based_exec_ctrl);
  1844. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1845. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1846. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1847. #ifdef CONFIG_X86_64
  1848. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1849. CPU_BASED_CR8_LOAD_EXITING;
  1850. #endif
  1851. }
  1852. if (!enable_ept)
  1853. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1854. CPU_BASED_CR3_LOAD_EXITING |
  1855. CPU_BASED_INVLPG_EXITING;
  1856. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1857. if (cpu_has_secondary_exec_ctrls()) {
  1858. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1859. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1860. exec_control &=
  1861. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1862. if (vmx->vpid == 0)
  1863. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1864. if (!enable_ept)
  1865. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1866. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1867. }
  1868. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1869. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1870. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1871. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1872. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1873. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1874. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1875. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1876. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1877. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1878. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1879. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1880. #ifdef CONFIG_X86_64
  1881. rdmsrl(MSR_FS_BASE, a);
  1882. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1883. rdmsrl(MSR_GS_BASE, a);
  1884. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1885. #else
  1886. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1887. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1888. #endif
  1889. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1890. kvm_get_idt(&dt);
  1891. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1892. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1893. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1894. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1895. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1896. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1897. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1898. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1899. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1900. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1901. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1902. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1903. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1904. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1905. host_pat = msr_low | ((u64) msr_high << 32);
  1906. vmcs_write64(HOST_IA32_PAT, host_pat);
  1907. }
  1908. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1909. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1910. host_pat = msr_low | ((u64) msr_high << 32);
  1911. /* Write the default value follow host pat */
  1912. vmcs_write64(GUEST_IA32_PAT, host_pat);
  1913. /* Keep arch.pat sync with GUEST_IA32_PAT */
  1914. vmx->vcpu.arch.pat = host_pat;
  1915. }
  1916. for (i = 0; i < NR_VMX_MSR; ++i) {
  1917. u32 index = vmx_msr_index[i];
  1918. u32 data_low, data_high;
  1919. u64 data;
  1920. int j = vmx->nmsrs;
  1921. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1922. continue;
  1923. if (wrmsr_safe(index, data_low, data_high) < 0)
  1924. continue;
  1925. data = data_low | ((u64)data_high << 32);
  1926. vmx->host_msrs[j].index = index;
  1927. vmx->host_msrs[j].reserved = 0;
  1928. vmx->host_msrs[j].data = data;
  1929. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1930. ++vmx->nmsrs;
  1931. }
  1932. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1933. /* 22.2.1, 20.8.1 */
  1934. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1935. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1936. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1937. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  1938. rdtscll(tsc_this);
  1939. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  1940. tsc_base = tsc_this;
  1941. guest_write_tsc(0, tsc_base);
  1942. return 0;
  1943. }
  1944. static int init_rmode(struct kvm *kvm)
  1945. {
  1946. if (!init_rmode_tss(kvm))
  1947. return 0;
  1948. if (!init_rmode_identity_map(kvm))
  1949. return 0;
  1950. return 1;
  1951. }
  1952. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1953. {
  1954. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1955. u64 msr;
  1956. int ret;
  1957. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1958. down_read(&vcpu->kvm->slots_lock);
  1959. if (!init_rmode(vmx->vcpu.kvm)) {
  1960. ret = -ENOMEM;
  1961. goto out;
  1962. }
  1963. vmx->vcpu.arch.rmode.active = 0;
  1964. vmx->soft_vnmi_blocked = 0;
  1965. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1966. kvm_set_cr8(&vmx->vcpu, 0);
  1967. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1968. if (vmx->vcpu.vcpu_id == 0)
  1969. msr |= MSR_IA32_APICBASE_BSP;
  1970. kvm_set_apic_base(&vmx->vcpu, msr);
  1971. fx_init(&vmx->vcpu);
  1972. seg_setup(VCPU_SREG_CS);
  1973. /*
  1974. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1975. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1976. */
  1977. if (vmx->vcpu.vcpu_id == 0) {
  1978. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1979. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1980. } else {
  1981. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1982. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1983. }
  1984. seg_setup(VCPU_SREG_DS);
  1985. seg_setup(VCPU_SREG_ES);
  1986. seg_setup(VCPU_SREG_FS);
  1987. seg_setup(VCPU_SREG_GS);
  1988. seg_setup(VCPU_SREG_SS);
  1989. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1990. vmcs_writel(GUEST_TR_BASE, 0);
  1991. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1992. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1993. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1994. vmcs_writel(GUEST_LDTR_BASE, 0);
  1995. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1996. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1997. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1998. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1999. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2000. vmcs_writel(GUEST_RFLAGS, 0x02);
  2001. if (vmx->vcpu.vcpu_id == 0)
  2002. kvm_rip_write(vcpu, 0xfff0);
  2003. else
  2004. kvm_rip_write(vcpu, 0);
  2005. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2006. vmcs_writel(GUEST_DR7, 0x400);
  2007. vmcs_writel(GUEST_GDTR_BASE, 0);
  2008. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2009. vmcs_writel(GUEST_IDTR_BASE, 0);
  2010. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2011. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2012. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2013. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2014. /* Special registers */
  2015. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2016. setup_msrs(vmx);
  2017. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2018. if (cpu_has_vmx_tpr_shadow()) {
  2019. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2020. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2021. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2022. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2023. vmcs_write32(TPR_THRESHOLD, 0);
  2024. }
  2025. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2026. vmcs_write64(APIC_ACCESS_ADDR,
  2027. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2028. if (vmx->vpid != 0)
  2029. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2030. vmx->vcpu.arch.cr0 = 0x60000010;
  2031. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2032. vmx_set_cr4(&vmx->vcpu, 0);
  2033. vmx_set_efer(&vmx->vcpu, 0);
  2034. vmx_fpu_activate(&vmx->vcpu);
  2035. update_exception_bitmap(&vmx->vcpu);
  2036. vpid_sync_vcpu_all(vmx);
  2037. ret = 0;
  2038. /* HACK: Don't enable emulation on guest boot/reset */
  2039. vmx->emulation_required = 0;
  2040. out:
  2041. up_read(&vcpu->kvm->slots_lock);
  2042. return ret;
  2043. }
  2044. void vmx_drop_interrupt_shadow(struct kvm_vcpu *vcpu)
  2045. {
  2046. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2047. GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  2048. }
  2049. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2050. {
  2051. u32 cpu_based_vm_exec_control;
  2052. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2053. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2054. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2055. }
  2056. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2057. {
  2058. u32 cpu_based_vm_exec_control;
  2059. if (!cpu_has_virtual_nmis()) {
  2060. enable_irq_window(vcpu);
  2061. return;
  2062. }
  2063. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2064. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2065. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2066. }
  2067. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  2068. {
  2069. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2070. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2071. ++vcpu->stat.irq_injections;
  2072. if (vcpu->arch.rmode.active) {
  2073. vmx->rmode.irq.pending = true;
  2074. vmx->rmode.irq.vector = irq;
  2075. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2076. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2077. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2078. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2079. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2080. return;
  2081. }
  2082. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2083. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  2084. }
  2085. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2086. {
  2087. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2088. if (!cpu_has_virtual_nmis()) {
  2089. /*
  2090. * Tracking the NMI-blocked state in software is built upon
  2091. * finding the next open IRQ window. This, in turn, depends on
  2092. * well-behaving guests: They have to keep IRQs disabled at
  2093. * least as long as the NMI handler runs. Otherwise we may
  2094. * cause NMI nesting, maybe breaking the guest. But as this is
  2095. * highly unlikely, we can live with the residual risk.
  2096. */
  2097. vmx->soft_vnmi_blocked = 1;
  2098. vmx->vnmi_blocked_time = 0;
  2099. }
  2100. ++vcpu->stat.nmi_injections;
  2101. if (vcpu->arch.rmode.active) {
  2102. vmx->rmode.irq.pending = true;
  2103. vmx->rmode.irq.vector = NMI_VECTOR;
  2104. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2105. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2106. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2107. INTR_INFO_VALID_MASK);
  2108. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2109. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2110. return;
  2111. }
  2112. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2113. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2114. }
  2115. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2116. {
  2117. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2118. return 0;
  2119. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2120. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2121. GUEST_INTR_STATE_NMI));
  2122. }
  2123. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2124. {
  2125. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2126. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2127. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2128. }
  2129. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2130. {
  2131. int ret;
  2132. struct kvm_userspace_memory_region tss_mem = {
  2133. .slot = TSS_PRIVATE_MEMSLOT,
  2134. .guest_phys_addr = addr,
  2135. .memory_size = PAGE_SIZE * 3,
  2136. .flags = 0,
  2137. };
  2138. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2139. if (ret)
  2140. return ret;
  2141. kvm->arch.tss_addr = addr;
  2142. return 0;
  2143. }
  2144. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2145. int vec, u32 err_code)
  2146. {
  2147. /*
  2148. * Instruction with address size override prefix opcode 0x67
  2149. * Cause the #SS fault with 0 error code in VM86 mode.
  2150. */
  2151. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2152. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2153. return 1;
  2154. /*
  2155. * Forward all other exceptions that are valid in real mode.
  2156. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2157. * the required debugging infrastructure rework.
  2158. */
  2159. switch (vec) {
  2160. case DB_VECTOR:
  2161. if (vcpu->guest_debug &
  2162. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2163. return 0;
  2164. kvm_queue_exception(vcpu, vec);
  2165. return 1;
  2166. case BP_VECTOR:
  2167. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2168. return 0;
  2169. /* fall through */
  2170. case DE_VECTOR:
  2171. case OF_VECTOR:
  2172. case BR_VECTOR:
  2173. case UD_VECTOR:
  2174. case DF_VECTOR:
  2175. case SS_VECTOR:
  2176. case GP_VECTOR:
  2177. case MF_VECTOR:
  2178. kvm_queue_exception(vcpu, vec);
  2179. return 1;
  2180. }
  2181. return 0;
  2182. }
  2183. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2184. {
  2185. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2186. u32 intr_info, ex_no, error_code;
  2187. unsigned long cr2, rip, dr6;
  2188. u32 vect_info;
  2189. enum emulation_result er;
  2190. vect_info = vmx->idt_vectoring_info;
  2191. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2192. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2193. !is_page_fault(intr_info))
  2194. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2195. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2196. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2197. return 1; /* already handled by vmx_vcpu_run() */
  2198. if (is_no_device(intr_info)) {
  2199. vmx_fpu_activate(vcpu);
  2200. return 1;
  2201. }
  2202. if (is_invalid_opcode(intr_info)) {
  2203. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2204. if (er != EMULATE_DONE)
  2205. kvm_queue_exception(vcpu, UD_VECTOR);
  2206. return 1;
  2207. }
  2208. error_code = 0;
  2209. rip = kvm_rip_read(vcpu);
  2210. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2211. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2212. if (is_page_fault(intr_info)) {
  2213. /* EPT won't cause page fault directly */
  2214. if (enable_ept)
  2215. BUG();
  2216. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2217. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2218. (u32)((u64)cr2 >> 32), handler);
  2219. if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
  2220. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2221. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2222. }
  2223. if (vcpu->arch.rmode.active &&
  2224. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2225. error_code)) {
  2226. if (vcpu->arch.halt_request) {
  2227. vcpu->arch.halt_request = 0;
  2228. return kvm_emulate_halt(vcpu);
  2229. }
  2230. return 1;
  2231. }
  2232. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2233. switch (ex_no) {
  2234. case DB_VECTOR:
  2235. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2236. if (!(vcpu->guest_debug &
  2237. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2238. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2239. kvm_queue_exception(vcpu, DB_VECTOR);
  2240. return 1;
  2241. }
  2242. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2243. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2244. /* fall through */
  2245. case BP_VECTOR:
  2246. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2247. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2248. kvm_run->debug.arch.exception = ex_no;
  2249. break;
  2250. default:
  2251. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2252. kvm_run->ex.exception = ex_no;
  2253. kvm_run->ex.error_code = error_code;
  2254. break;
  2255. }
  2256. return 0;
  2257. }
  2258. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2259. struct kvm_run *kvm_run)
  2260. {
  2261. ++vcpu->stat.irq_exits;
  2262. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2263. return 1;
  2264. }
  2265. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2266. {
  2267. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2268. return 0;
  2269. }
  2270. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2271. {
  2272. unsigned long exit_qualification;
  2273. int size, in, string;
  2274. unsigned port;
  2275. ++vcpu->stat.io_exits;
  2276. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2277. string = (exit_qualification & 16) != 0;
  2278. if (string) {
  2279. if (emulate_instruction(vcpu,
  2280. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2281. return 0;
  2282. return 1;
  2283. }
  2284. size = (exit_qualification & 7) + 1;
  2285. in = (exit_qualification & 8) != 0;
  2286. port = exit_qualification >> 16;
  2287. skip_emulated_instruction(vcpu);
  2288. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2289. }
  2290. static void
  2291. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2292. {
  2293. /*
  2294. * Patch in the VMCALL instruction:
  2295. */
  2296. hypercall[0] = 0x0f;
  2297. hypercall[1] = 0x01;
  2298. hypercall[2] = 0xc1;
  2299. }
  2300. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2301. {
  2302. unsigned long exit_qualification;
  2303. int cr;
  2304. int reg;
  2305. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2306. cr = exit_qualification & 15;
  2307. reg = (exit_qualification >> 8) & 15;
  2308. switch ((exit_qualification >> 4) & 3) {
  2309. case 0: /* mov to cr */
  2310. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2311. (u32)kvm_register_read(vcpu, reg),
  2312. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2313. handler);
  2314. switch (cr) {
  2315. case 0:
  2316. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2317. skip_emulated_instruction(vcpu);
  2318. return 1;
  2319. case 3:
  2320. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2321. skip_emulated_instruction(vcpu);
  2322. return 1;
  2323. case 4:
  2324. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2325. skip_emulated_instruction(vcpu);
  2326. return 1;
  2327. case 8: {
  2328. u8 cr8_prev = kvm_get_cr8(vcpu);
  2329. u8 cr8 = kvm_register_read(vcpu, reg);
  2330. kvm_set_cr8(vcpu, cr8);
  2331. skip_emulated_instruction(vcpu);
  2332. if (irqchip_in_kernel(vcpu->kvm))
  2333. return 1;
  2334. if (cr8_prev <= cr8)
  2335. return 1;
  2336. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2337. return 0;
  2338. }
  2339. };
  2340. break;
  2341. case 2: /* clts */
  2342. vmx_fpu_deactivate(vcpu);
  2343. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2344. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2345. vmx_fpu_activate(vcpu);
  2346. KVMTRACE_0D(CLTS, vcpu, handler);
  2347. skip_emulated_instruction(vcpu);
  2348. return 1;
  2349. case 1: /*mov from cr*/
  2350. switch (cr) {
  2351. case 3:
  2352. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2353. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2354. (u32)kvm_register_read(vcpu, reg),
  2355. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2356. handler);
  2357. skip_emulated_instruction(vcpu);
  2358. return 1;
  2359. case 8:
  2360. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2361. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2362. (u32)kvm_register_read(vcpu, reg), handler);
  2363. skip_emulated_instruction(vcpu);
  2364. return 1;
  2365. }
  2366. break;
  2367. case 3: /* lmsw */
  2368. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2369. skip_emulated_instruction(vcpu);
  2370. return 1;
  2371. default:
  2372. break;
  2373. }
  2374. kvm_run->exit_reason = 0;
  2375. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2376. (int)(exit_qualification >> 4) & 3, cr);
  2377. return 0;
  2378. }
  2379. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2380. {
  2381. unsigned long exit_qualification;
  2382. unsigned long val;
  2383. int dr, reg;
  2384. dr = vmcs_readl(GUEST_DR7);
  2385. if (dr & DR7_GD) {
  2386. /*
  2387. * As the vm-exit takes precedence over the debug trap, we
  2388. * need to emulate the latter, either for the host or the
  2389. * guest debugging itself.
  2390. */
  2391. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2392. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2393. kvm_run->debug.arch.dr7 = dr;
  2394. kvm_run->debug.arch.pc =
  2395. vmcs_readl(GUEST_CS_BASE) +
  2396. vmcs_readl(GUEST_RIP);
  2397. kvm_run->debug.arch.exception = DB_VECTOR;
  2398. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2399. return 0;
  2400. } else {
  2401. vcpu->arch.dr7 &= ~DR7_GD;
  2402. vcpu->arch.dr6 |= DR6_BD;
  2403. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2404. kvm_queue_exception(vcpu, DB_VECTOR);
  2405. return 1;
  2406. }
  2407. }
  2408. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2409. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2410. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2411. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2412. switch (dr) {
  2413. case 0 ... 3:
  2414. val = vcpu->arch.db[dr];
  2415. break;
  2416. case 6:
  2417. val = vcpu->arch.dr6;
  2418. break;
  2419. case 7:
  2420. val = vcpu->arch.dr7;
  2421. break;
  2422. default:
  2423. val = 0;
  2424. }
  2425. kvm_register_write(vcpu, reg, val);
  2426. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2427. } else {
  2428. val = vcpu->arch.regs[reg];
  2429. switch (dr) {
  2430. case 0 ... 3:
  2431. vcpu->arch.db[dr] = val;
  2432. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2433. vcpu->arch.eff_db[dr] = val;
  2434. break;
  2435. case 4 ... 5:
  2436. if (vcpu->arch.cr4 & X86_CR4_DE)
  2437. kvm_queue_exception(vcpu, UD_VECTOR);
  2438. break;
  2439. case 6:
  2440. if (val & 0xffffffff00000000ULL) {
  2441. kvm_queue_exception(vcpu, GP_VECTOR);
  2442. break;
  2443. }
  2444. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2445. break;
  2446. case 7:
  2447. if (val & 0xffffffff00000000ULL) {
  2448. kvm_queue_exception(vcpu, GP_VECTOR);
  2449. break;
  2450. }
  2451. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2452. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2453. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2454. vcpu->arch.switch_db_regs =
  2455. (val & DR7_BP_EN_MASK);
  2456. }
  2457. break;
  2458. }
  2459. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
  2460. }
  2461. skip_emulated_instruction(vcpu);
  2462. return 1;
  2463. }
  2464. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2465. {
  2466. kvm_emulate_cpuid(vcpu);
  2467. return 1;
  2468. }
  2469. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2470. {
  2471. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2472. u64 data;
  2473. if (vmx_get_msr(vcpu, ecx, &data)) {
  2474. kvm_inject_gp(vcpu, 0);
  2475. return 1;
  2476. }
  2477. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2478. handler);
  2479. /* FIXME: handling of bits 32:63 of rax, rdx */
  2480. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2481. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2482. skip_emulated_instruction(vcpu);
  2483. return 1;
  2484. }
  2485. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2486. {
  2487. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2488. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2489. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2490. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2491. handler);
  2492. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2493. kvm_inject_gp(vcpu, 0);
  2494. return 1;
  2495. }
  2496. skip_emulated_instruction(vcpu);
  2497. return 1;
  2498. }
  2499. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2500. struct kvm_run *kvm_run)
  2501. {
  2502. return 1;
  2503. }
  2504. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2505. struct kvm_run *kvm_run)
  2506. {
  2507. u32 cpu_based_vm_exec_control;
  2508. /* clear pending irq */
  2509. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2510. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2511. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2512. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2513. ++vcpu->stat.irq_window_exits;
  2514. /*
  2515. * If the user space waits to inject interrupts, exit as soon as
  2516. * possible
  2517. */
  2518. if (!irqchip_in_kernel(vcpu->kvm) &&
  2519. kvm_run->request_interrupt_window &&
  2520. !kvm_cpu_has_interrupt(vcpu)) {
  2521. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2522. return 0;
  2523. }
  2524. return 1;
  2525. }
  2526. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2527. {
  2528. skip_emulated_instruction(vcpu);
  2529. return kvm_emulate_halt(vcpu);
  2530. }
  2531. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2532. {
  2533. skip_emulated_instruction(vcpu);
  2534. kvm_emulate_hypercall(vcpu);
  2535. return 1;
  2536. }
  2537. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2538. {
  2539. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2540. kvm_mmu_invlpg(vcpu, exit_qualification);
  2541. skip_emulated_instruction(vcpu);
  2542. return 1;
  2543. }
  2544. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2545. {
  2546. skip_emulated_instruction(vcpu);
  2547. /* TODO: Add support for VT-d/pass-through device */
  2548. return 1;
  2549. }
  2550. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2551. {
  2552. unsigned long exit_qualification;
  2553. enum emulation_result er;
  2554. unsigned long offset;
  2555. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2556. offset = exit_qualification & 0xffful;
  2557. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2558. if (er != EMULATE_DONE) {
  2559. printk(KERN_ERR
  2560. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2561. offset);
  2562. return -ENOTSUPP;
  2563. }
  2564. return 1;
  2565. }
  2566. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2567. {
  2568. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2569. unsigned long exit_qualification;
  2570. u16 tss_selector;
  2571. int reason, type, idt_v;
  2572. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2573. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2574. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2575. reason = (u32)exit_qualification >> 30;
  2576. if (reason == TASK_SWITCH_GATE && idt_v) {
  2577. switch (type) {
  2578. case INTR_TYPE_NMI_INTR:
  2579. vcpu->arch.nmi_injected = false;
  2580. if (cpu_has_virtual_nmis())
  2581. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2582. GUEST_INTR_STATE_NMI);
  2583. break;
  2584. case INTR_TYPE_EXT_INTR:
  2585. kvm_clear_interrupt_queue(vcpu);
  2586. break;
  2587. case INTR_TYPE_HARD_EXCEPTION:
  2588. case INTR_TYPE_SOFT_EXCEPTION:
  2589. kvm_clear_exception_queue(vcpu);
  2590. break;
  2591. default:
  2592. break;
  2593. }
  2594. }
  2595. tss_selector = exit_qualification;
  2596. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2597. type != INTR_TYPE_EXT_INTR &&
  2598. type != INTR_TYPE_NMI_INTR))
  2599. skip_emulated_instruction(vcpu);
  2600. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2601. return 0;
  2602. /* clear all local breakpoint enable flags */
  2603. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2604. /*
  2605. * TODO: What about debug traps on tss switch?
  2606. * Are we supposed to inject them and update dr6?
  2607. */
  2608. return 1;
  2609. }
  2610. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2611. {
  2612. unsigned long exit_qualification;
  2613. gpa_t gpa;
  2614. int gla_validity;
  2615. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2616. if (exit_qualification & (1 << 6)) {
  2617. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2618. return -ENOTSUPP;
  2619. }
  2620. gla_validity = (exit_qualification >> 7) & 0x3;
  2621. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2622. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2623. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2624. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2625. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2626. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2627. (long unsigned int)exit_qualification);
  2628. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2629. kvm_run->hw.hardware_exit_reason = 0;
  2630. return -ENOTSUPP;
  2631. }
  2632. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2633. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2634. }
  2635. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2636. {
  2637. u32 cpu_based_vm_exec_control;
  2638. /* clear pending NMI */
  2639. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2640. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2641. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2642. ++vcpu->stat.nmi_window_exits;
  2643. return 1;
  2644. }
  2645. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2646. struct kvm_run *kvm_run)
  2647. {
  2648. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2649. enum emulation_result err = EMULATE_DONE;
  2650. preempt_enable();
  2651. local_irq_enable();
  2652. while (!guest_state_valid(vcpu)) {
  2653. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2654. if (err == EMULATE_DO_MMIO)
  2655. break;
  2656. if (err != EMULATE_DONE) {
  2657. kvm_report_emulation_failure(vcpu, "emulation failure");
  2658. return;
  2659. }
  2660. if (signal_pending(current))
  2661. break;
  2662. if (need_resched())
  2663. schedule();
  2664. }
  2665. local_irq_disable();
  2666. preempt_disable();
  2667. vmx->invalid_state_emulation_result = err;
  2668. }
  2669. /*
  2670. * The exit handlers return 1 if the exit was handled fully and guest execution
  2671. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2672. * to be done to userspace and return 0.
  2673. */
  2674. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2675. struct kvm_run *kvm_run) = {
  2676. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2677. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2678. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2679. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2680. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2681. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2682. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2683. [EXIT_REASON_CPUID] = handle_cpuid,
  2684. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2685. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2686. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2687. [EXIT_REASON_HLT] = handle_halt,
  2688. [EXIT_REASON_INVLPG] = handle_invlpg,
  2689. [EXIT_REASON_VMCALL] = handle_vmcall,
  2690. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2691. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2692. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2693. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2694. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2695. };
  2696. static const int kvm_vmx_max_exit_handlers =
  2697. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2698. /*
  2699. * The guest has exited. See if we can fix it or if we need userspace
  2700. * assistance.
  2701. */
  2702. static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2703. {
  2704. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2705. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2706. u32 vectoring_info = vmx->idt_vectoring_info;
  2707. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2708. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2709. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2710. * we just return 0 */
  2711. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2712. if (guest_state_valid(vcpu))
  2713. vmx->emulation_required = 0;
  2714. return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
  2715. }
  2716. /* Access CR3 don't cause VMExit in paging mode, so we need
  2717. * to sync with guest real CR3. */
  2718. if (enable_ept && is_paging(vcpu)) {
  2719. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2720. ept_load_pdptrs(vcpu);
  2721. }
  2722. if (unlikely(vmx->fail)) {
  2723. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2724. kvm_run->fail_entry.hardware_entry_failure_reason
  2725. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2726. return 0;
  2727. }
  2728. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2729. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2730. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2731. exit_reason != EXIT_REASON_TASK_SWITCH))
  2732. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2733. "(0x%x) and exit reason is 0x%x\n",
  2734. __func__, vectoring_info, exit_reason);
  2735. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2736. if (vmx_interrupt_allowed(vcpu)) {
  2737. vmx->soft_vnmi_blocked = 0;
  2738. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2739. vcpu->arch.nmi_pending) {
  2740. /*
  2741. * This CPU don't support us in finding the end of an
  2742. * NMI-blocked window if the guest runs with IRQs
  2743. * disabled. So we pull the trigger after 1 s of
  2744. * futile waiting, but inform the user about this.
  2745. */
  2746. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2747. "state on VCPU %d after 1 s timeout\n",
  2748. __func__, vcpu->vcpu_id);
  2749. vmx->soft_vnmi_blocked = 0;
  2750. }
  2751. }
  2752. if (exit_reason < kvm_vmx_max_exit_handlers
  2753. && kvm_vmx_exit_handlers[exit_reason])
  2754. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2755. else {
  2756. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2757. kvm_run->hw.hardware_exit_reason = exit_reason;
  2758. }
  2759. return 0;
  2760. }
  2761. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2762. {
  2763. if (irr == -1 || tpr < irr) {
  2764. vmcs_write32(TPR_THRESHOLD, 0);
  2765. return;
  2766. }
  2767. vmcs_write32(TPR_THRESHOLD, irr);
  2768. }
  2769. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2770. {
  2771. u32 exit_intr_info;
  2772. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  2773. bool unblock_nmi;
  2774. u8 vector;
  2775. int type;
  2776. bool idtv_info_valid;
  2777. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2778. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2779. if (cpu_has_virtual_nmis()) {
  2780. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2781. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2782. /*
  2783. * SDM 3: 27.7.1.2 (September 2008)
  2784. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2785. * a guest IRET fault.
  2786. * SDM 3: 23.2.2 (September 2008)
  2787. * Bit 12 is undefined in any of the following cases:
  2788. * If the VM exit sets the valid bit in the IDT-vectoring
  2789. * information field.
  2790. * If the VM exit is due to a double fault.
  2791. */
  2792. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  2793. vector != DF_VECTOR && !idtv_info_valid)
  2794. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2795. GUEST_INTR_STATE_NMI);
  2796. } else if (unlikely(vmx->soft_vnmi_blocked))
  2797. vmx->vnmi_blocked_time +=
  2798. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2799. vmx->vcpu.arch.nmi_injected = false;
  2800. kvm_clear_exception_queue(&vmx->vcpu);
  2801. kvm_clear_interrupt_queue(&vmx->vcpu);
  2802. if (!idtv_info_valid)
  2803. return;
  2804. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2805. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2806. switch (type) {
  2807. case INTR_TYPE_NMI_INTR:
  2808. vmx->vcpu.arch.nmi_injected = true;
  2809. /*
  2810. * SDM 3: 27.7.1.2 (September 2008)
  2811. * Clear bit "block by NMI" before VM entry if a NMI
  2812. * delivery faulted.
  2813. */
  2814. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2815. GUEST_INTR_STATE_NMI);
  2816. break;
  2817. case INTR_TYPE_HARD_EXCEPTION:
  2818. case INTR_TYPE_SOFT_EXCEPTION:
  2819. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2820. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2821. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  2822. } else
  2823. kvm_queue_exception(&vmx->vcpu, vector);
  2824. break;
  2825. case INTR_TYPE_EXT_INTR:
  2826. kvm_queue_interrupt(&vmx->vcpu, vector);
  2827. break;
  2828. default:
  2829. break;
  2830. }
  2831. }
  2832. /*
  2833. * Failure to inject an interrupt should give us the information
  2834. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2835. * when fetching the interrupt redirection bitmap in the real-mode
  2836. * tss, this doesn't happen. So we do it ourselves.
  2837. */
  2838. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2839. {
  2840. vmx->rmode.irq.pending = 0;
  2841. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2842. return;
  2843. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2844. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2845. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2846. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2847. return;
  2848. }
  2849. vmx->idt_vectoring_info =
  2850. VECTORING_INFO_VALID_MASK
  2851. | INTR_TYPE_EXT_INTR
  2852. | vmx->rmode.irq.vector;
  2853. }
  2854. #ifdef CONFIG_X86_64
  2855. #define R "r"
  2856. #define Q "q"
  2857. #else
  2858. #define R "e"
  2859. #define Q "l"
  2860. #endif
  2861. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2862. {
  2863. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2864. u32 intr_info;
  2865. /* Record the guest's net vcpu time for enforced NMI injections. */
  2866. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  2867. vmx->entry_time = ktime_get();
  2868. /* Handle invalid guest state instead of entering VMX */
  2869. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2870. handle_invalid_guest_state(vcpu, kvm_run);
  2871. return;
  2872. }
  2873. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2874. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2875. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2876. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2877. /*
  2878. * Loading guest fpu may have cleared host cr0.ts
  2879. */
  2880. vmcs_writel(HOST_CR0, read_cr0());
  2881. set_debugreg(vcpu->arch.dr6, 6);
  2882. asm(
  2883. /* Store host registers */
  2884. "push %%"R"dx; push %%"R"bp;"
  2885. "push %%"R"cx \n\t"
  2886. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2887. "je 1f \n\t"
  2888. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2889. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2890. "1: \n\t"
  2891. /* Check if vmlaunch of vmresume is needed */
  2892. "cmpl $0, %c[launched](%0) \n\t"
  2893. /* Load guest registers. Don't clobber flags. */
  2894. "mov %c[cr2](%0), %%"R"ax \n\t"
  2895. "mov %%"R"ax, %%cr2 \n\t"
  2896. "mov %c[rax](%0), %%"R"ax \n\t"
  2897. "mov %c[rbx](%0), %%"R"bx \n\t"
  2898. "mov %c[rdx](%0), %%"R"dx \n\t"
  2899. "mov %c[rsi](%0), %%"R"si \n\t"
  2900. "mov %c[rdi](%0), %%"R"di \n\t"
  2901. "mov %c[rbp](%0), %%"R"bp \n\t"
  2902. #ifdef CONFIG_X86_64
  2903. "mov %c[r8](%0), %%r8 \n\t"
  2904. "mov %c[r9](%0), %%r9 \n\t"
  2905. "mov %c[r10](%0), %%r10 \n\t"
  2906. "mov %c[r11](%0), %%r11 \n\t"
  2907. "mov %c[r12](%0), %%r12 \n\t"
  2908. "mov %c[r13](%0), %%r13 \n\t"
  2909. "mov %c[r14](%0), %%r14 \n\t"
  2910. "mov %c[r15](%0), %%r15 \n\t"
  2911. #endif
  2912. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2913. /* Enter guest mode */
  2914. "jne .Llaunched \n\t"
  2915. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2916. "jmp .Lkvm_vmx_return \n\t"
  2917. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2918. ".Lkvm_vmx_return: "
  2919. /* Save guest registers, load host registers, keep flags */
  2920. "xchg %0, (%%"R"sp) \n\t"
  2921. "mov %%"R"ax, %c[rax](%0) \n\t"
  2922. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2923. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2924. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2925. "mov %%"R"si, %c[rsi](%0) \n\t"
  2926. "mov %%"R"di, %c[rdi](%0) \n\t"
  2927. "mov %%"R"bp, %c[rbp](%0) \n\t"
  2928. #ifdef CONFIG_X86_64
  2929. "mov %%r8, %c[r8](%0) \n\t"
  2930. "mov %%r9, %c[r9](%0) \n\t"
  2931. "mov %%r10, %c[r10](%0) \n\t"
  2932. "mov %%r11, %c[r11](%0) \n\t"
  2933. "mov %%r12, %c[r12](%0) \n\t"
  2934. "mov %%r13, %c[r13](%0) \n\t"
  2935. "mov %%r14, %c[r14](%0) \n\t"
  2936. "mov %%r15, %c[r15](%0) \n\t"
  2937. #endif
  2938. "mov %%cr2, %%"R"ax \n\t"
  2939. "mov %%"R"ax, %c[cr2](%0) \n\t"
  2940. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  2941. "setbe %c[fail](%0) \n\t"
  2942. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2943. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2944. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2945. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  2946. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2947. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2948. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2949. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2950. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2951. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2952. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2953. #ifdef CONFIG_X86_64
  2954. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2955. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2956. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2957. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2958. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2959. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2960. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2961. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2962. #endif
  2963. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2964. : "cc", "memory"
  2965. , R"bx", R"di", R"si"
  2966. #ifdef CONFIG_X86_64
  2967. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2968. #endif
  2969. );
  2970. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2971. vcpu->arch.regs_dirty = 0;
  2972. get_debugreg(vcpu->arch.dr6, 6);
  2973. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2974. if (vmx->rmode.irq.pending)
  2975. fixup_rmode_irq(vmx);
  2976. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2977. vmx->launched = 1;
  2978. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2979. /* We need to handle NMIs before interrupts are enabled */
  2980. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  2981. (intr_info & INTR_INFO_VALID_MASK)) {
  2982. KVMTRACE_0D(NMI, vcpu, handler);
  2983. asm("int $2");
  2984. }
  2985. vmx_complete_interrupts(vmx);
  2986. }
  2987. #undef R
  2988. #undef Q
  2989. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2990. {
  2991. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2992. if (vmx->vmcs) {
  2993. vcpu_clear(vmx);
  2994. free_vmcs(vmx->vmcs);
  2995. vmx->vmcs = NULL;
  2996. }
  2997. }
  2998. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2999. {
  3000. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3001. spin_lock(&vmx_vpid_lock);
  3002. if (vmx->vpid != 0)
  3003. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3004. spin_unlock(&vmx_vpid_lock);
  3005. vmx_free_vmcs(vcpu);
  3006. kfree(vmx->host_msrs);
  3007. kfree(vmx->guest_msrs);
  3008. kvm_vcpu_uninit(vcpu);
  3009. kmem_cache_free(kvm_vcpu_cache, vmx);
  3010. }
  3011. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3012. {
  3013. int err;
  3014. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3015. int cpu;
  3016. if (!vmx)
  3017. return ERR_PTR(-ENOMEM);
  3018. allocate_vpid(vmx);
  3019. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3020. if (err)
  3021. goto free_vcpu;
  3022. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3023. if (!vmx->guest_msrs) {
  3024. err = -ENOMEM;
  3025. goto uninit_vcpu;
  3026. }
  3027. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3028. if (!vmx->host_msrs)
  3029. goto free_guest_msrs;
  3030. vmx->vmcs = alloc_vmcs();
  3031. if (!vmx->vmcs)
  3032. goto free_msrs;
  3033. vmcs_clear(vmx->vmcs);
  3034. cpu = get_cpu();
  3035. vmx_vcpu_load(&vmx->vcpu, cpu);
  3036. err = vmx_vcpu_setup(vmx);
  3037. vmx_vcpu_put(&vmx->vcpu);
  3038. put_cpu();
  3039. if (err)
  3040. goto free_vmcs;
  3041. if (vm_need_virtualize_apic_accesses(kvm))
  3042. if (alloc_apic_access_page(kvm) != 0)
  3043. goto free_vmcs;
  3044. if (enable_ept)
  3045. if (alloc_identity_pagetable(kvm) != 0)
  3046. goto free_vmcs;
  3047. return &vmx->vcpu;
  3048. free_vmcs:
  3049. free_vmcs(vmx->vmcs);
  3050. free_msrs:
  3051. kfree(vmx->host_msrs);
  3052. free_guest_msrs:
  3053. kfree(vmx->guest_msrs);
  3054. uninit_vcpu:
  3055. kvm_vcpu_uninit(&vmx->vcpu);
  3056. free_vcpu:
  3057. kmem_cache_free(kvm_vcpu_cache, vmx);
  3058. return ERR_PTR(err);
  3059. }
  3060. static void __init vmx_check_processor_compat(void *rtn)
  3061. {
  3062. struct vmcs_config vmcs_conf;
  3063. *(int *)rtn = 0;
  3064. if (setup_vmcs_config(&vmcs_conf) < 0)
  3065. *(int *)rtn = -EIO;
  3066. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3067. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3068. smp_processor_id());
  3069. *(int *)rtn = -EIO;
  3070. }
  3071. }
  3072. static int get_ept_level(void)
  3073. {
  3074. return VMX_EPT_DEFAULT_GAW + 1;
  3075. }
  3076. static int vmx_get_mt_mask_shift(void)
  3077. {
  3078. return VMX_EPT_MT_EPTE_SHIFT;
  3079. }
  3080. static struct kvm_x86_ops vmx_x86_ops = {
  3081. .cpu_has_kvm_support = cpu_has_kvm_support,
  3082. .disabled_by_bios = vmx_disabled_by_bios,
  3083. .hardware_setup = hardware_setup,
  3084. .hardware_unsetup = hardware_unsetup,
  3085. .check_processor_compatibility = vmx_check_processor_compat,
  3086. .hardware_enable = hardware_enable,
  3087. .hardware_disable = hardware_disable,
  3088. .cpu_has_accelerated_tpr = report_flexpriority,
  3089. .vcpu_create = vmx_create_vcpu,
  3090. .vcpu_free = vmx_free_vcpu,
  3091. .vcpu_reset = vmx_vcpu_reset,
  3092. .prepare_guest_switch = vmx_save_host_state,
  3093. .vcpu_load = vmx_vcpu_load,
  3094. .vcpu_put = vmx_vcpu_put,
  3095. .set_guest_debug = set_guest_debug,
  3096. .get_msr = vmx_get_msr,
  3097. .set_msr = vmx_set_msr,
  3098. .get_segment_base = vmx_get_segment_base,
  3099. .get_segment = vmx_get_segment,
  3100. .set_segment = vmx_set_segment,
  3101. .get_cpl = vmx_get_cpl,
  3102. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3103. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3104. .set_cr0 = vmx_set_cr0,
  3105. .set_cr3 = vmx_set_cr3,
  3106. .set_cr4 = vmx_set_cr4,
  3107. .set_efer = vmx_set_efer,
  3108. .get_idt = vmx_get_idt,
  3109. .set_idt = vmx_set_idt,
  3110. .get_gdt = vmx_get_gdt,
  3111. .set_gdt = vmx_set_gdt,
  3112. .cache_reg = vmx_cache_reg,
  3113. .get_rflags = vmx_get_rflags,
  3114. .set_rflags = vmx_set_rflags,
  3115. .tlb_flush = vmx_flush_tlb,
  3116. .run = vmx_vcpu_run,
  3117. .handle_exit = vmx_handle_exit,
  3118. .skip_emulated_instruction = skip_emulated_instruction,
  3119. .patch_hypercall = vmx_patch_hypercall,
  3120. .get_irq = vmx_get_irq,
  3121. .set_irq = vmx_inject_irq,
  3122. .set_nmi = vmx_inject_nmi,
  3123. .queue_exception = vmx_queue_exception,
  3124. .interrupt_allowed = vmx_interrupt_allowed,
  3125. .nmi_allowed = vmx_nmi_allowed,
  3126. .enable_nmi_window = enable_nmi_window,
  3127. .enable_irq_window = enable_irq_window,
  3128. .update_cr8_intercept = update_cr8_intercept,
  3129. .drop_interrupt_shadow = vmx_drop_interrupt_shadow,
  3130. .set_tss_addr = vmx_set_tss_addr,
  3131. .get_tdp_level = get_ept_level,
  3132. .get_mt_mask_shift = vmx_get_mt_mask_shift,
  3133. };
  3134. static int __init vmx_init(void)
  3135. {
  3136. int r;
  3137. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3138. if (!vmx_io_bitmap_a)
  3139. return -ENOMEM;
  3140. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3141. if (!vmx_io_bitmap_b) {
  3142. r = -ENOMEM;
  3143. goto out;
  3144. }
  3145. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3146. if (!vmx_msr_bitmap_legacy) {
  3147. r = -ENOMEM;
  3148. goto out1;
  3149. }
  3150. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3151. if (!vmx_msr_bitmap_longmode) {
  3152. r = -ENOMEM;
  3153. goto out2;
  3154. }
  3155. /*
  3156. * Allow direct access to the PC debug port (it is often used for I/O
  3157. * delays, but the vmexits simply slow things down).
  3158. */
  3159. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3160. clear_bit(0x80, vmx_io_bitmap_a);
  3161. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3162. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3163. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3164. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3165. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3166. if (r)
  3167. goto out3;
  3168. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3169. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3170. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3171. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3172. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3173. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3174. if (enable_ept) {
  3175. bypass_guest_pf = 0;
  3176. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3177. VMX_EPT_WRITABLE_MASK);
  3178. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3179. VMX_EPT_EXECUTABLE_MASK,
  3180. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  3181. kvm_enable_tdp();
  3182. } else
  3183. kvm_disable_tdp();
  3184. if (bypass_guest_pf)
  3185. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3186. ept_sync_global();
  3187. return 0;
  3188. out3:
  3189. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3190. out2:
  3191. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3192. out1:
  3193. free_page((unsigned long)vmx_io_bitmap_b);
  3194. out:
  3195. free_page((unsigned long)vmx_io_bitmap_a);
  3196. return r;
  3197. }
  3198. static void __exit vmx_exit(void)
  3199. {
  3200. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3201. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3202. free_page((unsigned long)vmx_io_bitmap_b);
  3203. free_page((unsigned long)vmx_io_bitmap_a);
  3204. kvm_exit();
  3205. }
  3206. module_init(vmx_init)
  3207. module_exit(vmx_exit)