intel_display.c 274 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. int min, max;
  47. } intel_range_t;
  48. typedef struct {
  49. int dot_limit;
  50. int p2_slow, p2_fast;
  51. } intel_p2_t;
  52. #define INTEL_P2_NUM 2
  53. typedef struct intel_limit intel_limit_t;
  54. struct intel_limit {
  55. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  56. intel_p2_t p2;
  57. };
  58. /* FDI */
  59. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  60. int
  61. intel_pch_rawclk(struct drm_device *dev)
  62. {
  63. struct drm_i915_private *dev_priv = dev->dev_private;
  64. WARN_ON(!HAS_PCH_SPLIT(dev));
  65. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  66. }
  67. static inline u32 /* units of 100MHz */
  68. intel_fdi_link_freq(struct drm_device *dev)
  69. {
  70. if (IS_GEN5(dev)) {
  71. struct drm_i915_private *dev_priv = dev->dev_private;
  72. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  73. } else
  74. return 27;
  75. }
  76. static const intel_limit_t intel_limits_i8xx_dvo = {
  77. .dot = { .min = 25000, .max = 350000 },
  78. .vco = { .min = 930000, .max = 1400000 },
  79. .n = { .min = 3, .max = 16 },
  80. .m = { .min = 96, .max = 140 },
  81. .m1 = { .min = 18, .max = 26 },
  82. .m2 = { .min = 6, .max = 16 },
  83. .p = { .min = 4, .max = 128 },
  84. .p1 = { .min = 2, .max = 33 },
  85. .p2 = { .dot_limit = 165000,
  86. .p2_slow = 4, .p2_fast = 2 },
  87. };
  88. static const intel_limit_t intel_limits_i8xx_lvds = {
  89. .dot = { .min = 25000, .max = 350000 },
  90. .vco = { .min = 930000, .max = 1400000 },
  91. .n = { .min = 3, .max = 16 },
  92. .m = { .min = 96, .max = 140 },
  93. .m1 = { .min = 18, .max = 26 },
  94. .m2 = { .min = 6, .max = 16 },
  95. .p = { .min = 4, .max = 128 },
  96. .p1 = { .min = 1, .max = 6 },
  97. .p2 = { .dot_limit = 165000,
  98. .p2_slow = 14, .p2_fast = 7 },
  99. };
  100. static const intel_limit_t intel_limits_i9xx_sdvo = {
  101. .dot = { .min = 20000, .max = 400000 },
  102. .vco = { .min = 1400000, .max = 2800000 },
  103. .n = { .min = 1, .max = 6 },
  104. .m = { .min = 70, .max = 120 },
  105. .m1 = { .min = 8, .max = 18 },
  106. .m2 = { .min = 3, .max = 7 },
  107. .p = { .min = 5, .max = 80 },
  108. .p1 = { .min = 1, .max = 8 },
  109. .p2 = { .dot_limit = 200000,
  110. .p2_slow = 10, .p2_fast = 5 },
  111. };
  112. static const intel_limit_t intel_limits_i9xx_lvds = {
  113. .dot = { .min = 20000, .max = 400000 },
  114. .vco = { .min = 1400000, .max = 2800000 },
  115. .n = { .min = 1, .max = 6 },
  116. .m = { .min = 70, .max = 120 },
  117. .m1 = { .min = 8, .max = 18 },
  118. .m2 = { .min = 3, .max = 7 },
  119. .p = { .min = 7, .max = 98 },
  120. .p1 = { .min = 1, .max = 8 },
  121. .p2 = { .dot_limit = 112000,
  122. .p2_slow = 14, .p2_fast = 7 },
  123. };
  124. static const intel_limit_t intel_limits_g4x_sdvo = {
  125. .dot = { .min = 25000, .max = 270000 },
  126. .vco = { .min = 1750000, .max = 3500000},
  127. .n = { .min = 1, .max = 4 },
  128. .m = { .min = 104, .max = 138 },
  129. .m1 = { .min = 17, .max = 23 },
  130. .m2 = { .min = 5, .max = 11 },
  131. .p = { .min = 10, .max = 30 },
  132. .p1 = { .min = 1, .max = 3},
  133. .p2 = { .dot_limit = 270000,
  134. .p2_slow = 10,
  135. .p2_fast = 10
  136. },
  137. };
  138. static const intel_limit_t intel_limits_g4x_hdmi = {
  139. .dot = { .min = 22000, .max = 400000 },
  140. .vco = { .min = 1750000, .max = 3500000},
  141. .n = { .min = 1, .max = 4 },
  142. .m = { .min = 104, .max = 138 },
  143. .m1 = { .min = 16, .max = 23 },
  144. .m2 = { .min = 5, .max = 11 },
  145. .p = { .min = 5, .max = 80 },
  146. .p1 = { .min = 1, .max = 8},
  147. .p2 = { .dot_limit = 165000,
  148. .p2_slow = 10, .p2_fast = 5 },
  149. };
  150. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  151. .dot = { .min = 20000, .max = 115000 },
  152. .vco = { .min = 1750000, .max = 3500000 },
  153. .n = { .min = 1, .max = 3 },
  154. .m = { .min = 104, .max = 138 },
  155. .m1 = { .min = 17, .max = 23 },
  156. .m2 = { .min = 5, .max = 11 },
  157. .p = { .min = 28, .max = 112 },
  158. .p1 = { .min = 2, .max = 8 },
  159. .p2 = { .dot_limit = 0,
  160. .p2_slow = 14, .p2_fast = 14
  161. },
  162. };
  163. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  164. .dot = { .min = 80000, .max = 224000 },
  165. .vco = { .min = 1750000, .max = 3500000 },
  166. .n = { .min = 1, .max = 3 },
  167. .m = { .min = 104, .max = 138 },
  168. .m1 = { .min = 17, .max = 23 },
  169. .m2 = { .min = 5, .max = 11 },
  170. .p = { .min = 14, .max = 42 },
  171. .p1 = { .min = 2, .max = 6 },
  172. .p2 = { .dot_limit = 0,
  173. .p2_slow = 7, .p2_fast = 7
  174. },
  175. };
  176. static const intel_limit_t intel_limits_pineview_sdvo = {
  177. .dot = { .min = 20000, .max = 400000},
  178. .vco = { .min = 1700000, .max = 3500000 },
  179. /* Pineview's Ncounter is a ring counter */
  180. .n = { .min = 3, .max = 6 },
  181. .m = { .min = 2, .max = 256 },
  182. /* Pineview only has one combined m divider, which we treat as m2. */
  183. .m1 = { .min = 0, .max = 0 },
  184. .m2 = { .min = 0, .max = 254 },
  185. .p = { .min = 5, .max = 80 },
  186. .p1 = { .min = 1, .max = 8 },
  187. .p2 = { .dot_limit = 200000,
  188. .p2_slow = 10, .p2_fast = 5 },
  189. };
  190. static const intel_limit_t intel_limits_pineview_lvds = {
  191. .dot = { .min = 20000, .max = 400000 },
  192. .vco = { .min = 1700000, .max = 3500000 },
  193. .n = { .min = 3, .max = 6 },
  194. .m = { .min = 2, .max = 256 },
  195. .m1 = { .min = 0, .max = 0 },
  196. .m2 = { .min = 0, .max = 254 },
  197. .p = { .min = 7, .max = 112 },
  198. .p1 = { .min = 1, .max = 8 },
  199. .p2 = { .dot_limit = 112000,
  200. .p2_slow = 14, .p2_fast = 14 },
  201. };
  202. /* Ironlake / Sandybridge
  203. *
  204. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  205. * the range value for them is (actual_value - 2).
  206. */
  207. static const intel_limit_t intel_limits_ironlake_dac = {
  208. .dot = { .min = 25000, .max = 350000 },
  209. .vco = { .min = 1760000, .max = 3510000 },
  210. .n = { .min = 1, .max = 5 },
  211. .m = { .min = 79, .max = 127 },
  212. .m1 = { .min = 12, .max = 22 },
  213. .m2 = { .min = 5, .max = 9 },
  214. .p = { .min = 5, .max = 80 },
  215. .p1 = { .min = 1, .max = 8 },
  216. .p2 = { .dot_limit = 225000,
  217. .p2_slow = 10, .p2_fast = 5 },
  218. };
  219. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  220. .dot = { .min = 25000, .max = 350000 },
  221. .vco = { .min = 1760000, .max = 3510000 },
  222. .n = { .min = 1, .max = 3 },
  223. .m = { .min = 79, .max = 118 },
  224. .m1 = { .min = 12, .max = 22 },
  225. .m2 = { .min = 5, .max = 9 },
  226. .p = { .min = 28, .max = 112 },
  227. .p1 = { .min = 2, .max = 8 },
  228. .p2 = { .dot_limit = 225000,
  229. .p2_slow = 14, .p2_fast = 14 },
  230. };
  231. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  232. .dot = { .min = 25000, .max = 350000 },
  233. .vco = { .min = 1760000, .max = 3510000 },
  234. .n = { .min = 1, .max = 3 },
  235. .m = { .min = 79, .max = 127 },
  236. .m1 = { .min = 12, .max = 22 },
  237. .m2 = { .min = 5, .max = 9 },
  238. .p = { .min = 14, .max = 56 },
  239. .p1 = { .min = 2, .max = 8 },
  240. .p2 = { .dot_limit = 225000,
  241. .p2_slow = 7, .p2_fast = 7 },
  242. };
  243. /* LVDS 100mhz refclk limits. */
  244. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  245. .dot = { .min = 25000, .max = 350000 },
  246. .vco = { .min = 1760000, .max = 3510000 },
  247. .n = { .min = 1, .max = 2 },
  248. .m = { .min = 79, .max = 126 },
  249. .m1 = { .min = 12, .max = 22 },
  250. .m2 = { .min = 5, .max = 9 },
  251. .p = { .min = 28, .max = 112 },
  252. .p1 = { .min = 2, .max = 8 },
  253. .p2 = { .dot_limit = 225000,
  254. .p2_slow = 14, .p2_fast = 14 },
  255. };
  256. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  257. .dot = { .min = 25000, .max = 350000 },
  258. .vco = { .min = 1760000, .max = 3510000 },
  259. .n = { .min = 1, .max = 3 },
  260. .m = { .min = 79, .max = 126 },
  261. .m1 = { .min = 12, .max = 22 },
  262. .m2 = { .min = 5, .max = 9 },
  263. .p = { .min = 14, .max = 42 },
  264. .p1 = { .min = 2, .max = 6 },
  265. .p2 = { .dot_limit = 225000,
  266. .p2_slow = 7, .p2_fast = 7 },
  267. };
  268. static const intel_limit_t intel_limits_vlv_dac = {
  269. .dot = { .min = 25000, .max = 270000 },
  270. .vco = { .min = 4000000, .max = 6000000 },
  271. .n = { .min = 1, .max = 7 },
  272. .m = { .min = 22, .max = 450 }, /* guess */
  273. .m1 = { .min = 2, .max = 3 },
  274. .m2 = { .min = 11, .max = 156 },
  275. .p = { .min = 10, .max = 30 },
  276. .p1 = { .min = 1, .max = 3 },
  277. .p2 = { .dot_limit = 270000,
  278. .p2_slow = 2, .p2_fast = 20 },
  279. };
  280. static const intel_limit_t intel_limits_vlv_hdmi = {
  281. .dot = { .min = 25000, .max = 270000 },
  282. .vco = { .min = 4000000, .max = 6000000 },
  283. .n = { .min = 1, .max = 7 },
  284. .m = { .min = 60, .max = 300 }, /* guess */
  285. .m1 = { .min = 2, .max = 3 },
  286. .m2 = { .min = 11, .max = 156 },
  287. .p = { .min = 10, .max = 30 },
  288. .p1 = { .min = 2, .max = 3 },
  289. .p2 = { .dot_limit = 270000,
  290. .p2_slow = 2, .p2_fast = 20 },
  291. };
  292. static const intel_limit_t intel_limits_vlv_dp = {
  293. .dot = { .min = 25000, .max = 270000 },
  294. .vco = { .min = 4000000, .max = 6000000 },
  295. .n = { .min = 1, .max = 7 },
  296. .m = { .min = 22, .max = 450 },
  297. .m1 = { .min = 2, .max = 3 },
  298. .m2 = { .min = 11, .max = 156 },
  299. .p = { .min = 10, .max = 30 },
  300. .p1 = { .min = 1, .max = 3 },
  301. .p2 = { .dot_limit = 270000,
  302. .p2_slow = 2, .p2_fast = 20 },
  303. };
  304. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  305. int refclk)
  306. {
  307. struct drm_device *dev = crtc->dev;
  308. const intel_limit_t *limit;
  309. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  310. if (intel_is_dual_link_lvds(dev)) {
  311. if (refclk == 100000)
  312. limit = &intel_limits_ironlake_dual_lvds_100m;
  313. else
  314. limit = &intel_limits_ironlake_dual_lvds;
  315. } else {
  316. if (refclk == 100000)
  317. limit = &intel_limits_ironlake_single_lvds_100m;
  318. else
  319. limit = &intel_limits_ironlake_single_lvds;
  320. }
  321. } else
  322. limit = &intel_limits_ironlake_dac;
  323. return limit;
  324. }
  325. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  326. {
  327. struct drm_device *dev = crtc->dev;
  328. const intel_limit_t *limit;
  329. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  330. if (intel_is_dual_link_lvds(dev))
  331. limit = &intel_limits_g4x_dual_channel_lvds;
  332. else
  333. limit = &intel_limits_g4x_single_channel_lvds;
  334. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  335. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  336. limit = &intel_limits_g4x_hdmi;
  337. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  338. limit = &intel_limits_g4x_sdvo;
  339. } else /* The option is for other outputs */
  340. limit = &intel_limits_i9xx_sdvo;
  341. return limit;
  342. }
  343. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  344. {
  345. struct drm_device *dev = crtc->dev;
  346. const intel_limit_t *limit;
  347. if (HAS_PCH_SPLIT(dev))
  348. limit = intel_ironlake_limit(crtc, refclk);
  349. else if (IS_G4X(dev)) {
  350. limit = intel_g4x_limit(crtc);
  351. } else if (IS_PINEVIEW(dev)) {
  352. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  353. limit = &intel_limits_pineview_lvds;
  354. else
  355. limit = &intel_limits_pineview_sdvo;
  356. } else if (IS_VALLEYVIEW(dev)) {
  357. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  358. limit = &intel_limits_vlv_dac;
  359. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  360. limit = &intel_limits_vlv_hdmi;
  361. else
  362. limit = &intel_limits_vlv_dp;
  363. } else if (!IS_GEN2(dev)) {
  364. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  365. limit = &intel_limits_i9xx_lvds;
  366. else
  367. limit = &intel_limits_i9xx_sdvo;
  368. } else {
  369. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  370. limit = &intel_limits_i8xx_lvds;
  371. else
  372. limit = &intel_limits_i8xx_dvo;
  373. }
  374. return limit;
  375. }
  376. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  377. static void pineview_clock(int refclk, intel_clock_t *clock)
  378. {
  379. clock->m = clock->m2 + 2;
  380. clock->p = clock->p1 * clock->p2;
  381. clock->vco = refclk * clock->m / clock->n;
  382. clock->dot = clock->vco / clock->p;
  383. }
  384. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  385. {
  386. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  387. }
  388. static void i9xx_clock(int refclk, intel_clock_t *clock)
  389. {
  390. clock->m = i9xx_dpll_compute_m(clock);
  391. clock->p = clock->p1 * clock->p2;
  392. clock->vco = refclk * clock->m / (clock->n + 2);
  393. clock->dot = clock->vco / clock->p;
  394. }
  395. /**
  396. * Returns whether any output on the specified pipe is of the specified type
  397. */
  398. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  399. {
  400. struct drm_device *dev = crtc->dev;
  401. struct intel_encoder *encoder;
  402. for_each_encoder_on_crtc(dev, crtc, encoder)
  403. if (encoder->type == type)
  404. return true;
  405. return false;
  406. }
  407. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  408. /**
  409. * Returns whether the given set of divisors are valid for a given refclk with
  410. * the given connectors.
  411. */
  412. static bool intel_PLL_is_valid(struct drm_device *dev,
  413. const intel_limit_t *limit,
  414. const intel_clock_t *clock)
  415. {
  416. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  417. INTELPllInvalid("p1 out of range\n");
  418. if (clock->p < limit->p.min || limit->p.max < clock->p)
  419. INTELPllInvalid("p out of range\n");
  420. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  421. INTELPllInvalid("m2 out of range\n");
  422. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  423. INTELPllInvalid("m1 out of range\n");
  424. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  425. INTELPllInvalid("m1 <= m2\n");
  426. if (clock->m < limit->m.min || limit->m.max < clock->m)
  427. INTELPllInvalid("m out of range\n");
  428. if (clock->n < limit->n.min || limit->n.max < clock->n)
  429. INTELPllInvalid("n out of range\n");
  430. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  431. INTELPllInvalid("vco out of range\n");
  432. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  433. * connector, etc., rather than just a single range.
  434. */
  435. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  436. INTELPllInvalid("dot out of range\n");
  437. return true;
  438. }
  439. static bool
  440. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  441. int target, int refclk, intel_clock_t *match_clock,
  442. intel_clock_t *best_clock)
  443. {
  444. struct drm_device *dev = crtc->dev;
  445. intel_clock_t clock;
  446. int err = target;
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  448. /*
  449. * For LVDS just rely on its current settings for dual-channel.
  450. * We haven't figured out how to reliably set up different
  451. * single/dual channel state, if we even can.
  452. */
  453. if (intel_is_dual_link_lvds(dev))
  454. clock.p2 = limit->p2.p2_fast;
  455. else
  456. clock.p2 = limit->p2.p2_slow;
  457. } else {
  458. if (target < limit->p2.dot_limit)
  459. clock.p2 = limit->p2.p2_slow;
  460. else
  461. clock.p2 = limit->p2.p2_fast;
  462. }
  463. memset(best_clock, 0, sizeof(*best_clock));
  464. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  465. clock.m1++) {
  466. for (clock.m2 = limit->m2.min;
  467. clock.m2 <= limit->m2.max; clock.m2++) {
  468. if (clock.m2 >= clock.m1)
  469. break;
  470. for (clock.n = limit->n.min;
  471. clock.n <= limit->n.max; clock.n++) {
  472. for (clock.p1 = limit->p1.min;
  473. clock.p1 <= limit->p1.max; clock.p1++) {
  474. int this_err;
  475. i9xx_clock(refclk, &clock);
  476. if (!intel_PLL_is_valid(dev, limit,
  477. &clock))
  478. continue;
  479. if (match_clock &&
  480. clock.p != match_clock->p)
  481. continue;
  482. this_err = abs(clock.dot - target);
  483. if (this_err < err) {
  484. *best_clock = clock;
  485. err = this_err;
  486. }
  487. }
  488. }
  489. }
  490. }
  491. return (err != target);
  492. }
  493. static bool
  494. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  495. int target, int refclk, intel_clock_t *match_clock,
  496. intel_clock_t *best_clock)
  497. {
  498. struct drm_device *dev = crtc->dev;
  499. intel_clock_t clock;
  500. int err = target;
  501. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  502. /*
  503. * For LVDS just rely on its current settings for dual-channel.
  504. * We haven't figured out how to reliably set up different
  505. * single/dual channel state, if we even can.
  506. */
  507. if (intel_is_dual_link_lvds(dev))
  508. clock.p2 = limit->p2.p2_fast;
  509. else
  510. clock.p2 = limit->p2.p2_slow;
  511. } else {
  512. if (target < limit->p2.dot_limit)
  513. clock.p2 = limit->p2.p2_slow;
  514. else
  515. clock.p2 = limit->p2.p2_fast;
  516. }
  517. memset(best_clock, 0, sizeof(*best_clock));
  518. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  519. clock.m1++) {
  520. for (clock.m2 = limit->m2.min;
  521. clock.m2 <= limit->m2.max; clock.m2++) {
  522. for (clock.n = limit->n.min;
  523. clock.n <= limit->n.max; clock.n++) {
  524. for (clock.p1 = limit->p1.min;
  525. clock.p1 <= limit->p1.max; clock.p1++) {
  526. int this_err;
  527. pineview_clock(refclk, &clock);
  528. if (!intel_PLL_is_valid(dev, limit,
  529. &clock))
  530. continue;
  531. if (match_clock &&
  532. clock.p != match_clock->p)
  533. continue;
  534. this_err = abs(clock.dot - target);
  535. if (this_err < err) {
  536. *best_clock = clock;
  537. err = this_err;
  538. }
  539. }
  540. }
  541. }
  542. }
  543. return (err != target);
  544. }
  545. static bool
  546. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  547. int target, int refclk, intel_clock_t *match_clock,
  548. intel_clock_t *best_clock)
  549. {
  550. struct drm_device *dev = crtc->dev;
  551. intel_clock_t clock;
  552. int max_n;
  553. bool found;
  554. /* approximately equals target * 0.00585 */
  555. int err_most = (target >> 8) + (target >> 9);
  556. found = false;
  557. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  558. if (intel_is_dual_link_lvds(dev))
  559. clock.p2 = limit->p2.p2_fast;
  560. else
  561. clock.p2 = limit->p2.p2_slow;
  562. } else {
  563. if (target < limit->p2.dot_limit)
  564. clock.p2 = limit->p2.p2_slow;
  565. else
  566. clock.p2 = limit->p2.p2_fast;
  567. }
  568. memset(best_clock, 0, sizeof(*best_clock));
  569. max_n = limit->n.max;
  570. /* based on hardware requirement, prefer smaller n to precision */
  571. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  572. /* based on hardware requirement, prefere larger m1,m2 */
  573. for (clock.m1 = limit->m1.max;
  574. clock.m1 >= limit->m1.min; clock.m1--) {
  575. for (clock.m2 = limit->m2.max;
  576. clock.m2 >= limit->m2.min; clock.m2--) {
  577. for (clock.p1 = limit->p1.max;
  578. clock.p1 >= limit->p1.min; clock.p1--) {
  579. int this_err;
  580. i9xx_clock(refclk, &clock);
  581. if (!intel_PLL_is_valid(dev, limit,
  582. &clock))
  583. continue;
  584. this_err = abs(clock.dot - target);
  585. if (this_err < err_most) {
  586. *best_clock = clock;
  587. err_most = this_err;
  588. max_n = clock.n;
  589. found = true;
  590. }
  591. }
  592. }
  593. }
  594. }
  595. return found;
  596. }
  597. static bool
  598. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  599. int target, int refclk, intel_clock_t *match_clock,
  600. intel_clock_t *best_clock)
  601. {
  602. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  603. u32 m, n, fastclk;
  604. u32 updrate, minupdate, fracbits, p;
  605. unsigned long bestppm, ppm, absppm;
  606. int dotclk, flag;
  607. flag = 0;
  608. dotclk = target * 1000;
  609. bestppm = 1000000;
  610. ppm = absppm = 0;
  611. fastclk = dotclk / (2*100);
  612. updrate = 0;
  613. minupdate = 19200;
  614. fracbits = 1;
  615. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  616. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  617. /* based on hardware requirement, prefer smaller n to precision */
  618. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  619. updrate = refclk / n;
  620. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  621. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  622. if (p2 > 10)
  623. p2 = p2 - 1;
  624. p = p1 * p2;
  625. /* based on hardware requirement, prefer bigger m1,m2 values */
  626. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  627. m2 = (((2*(fastclk * p * n / m1 )) +
  628. refclk) / (2*refclk));
  629. m = m1 * m2;
  630. vco = updrate * m;
  631. if (vco >= limit->vco.min && vco < limit->vco.max) {
  632. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  633. absppm = (ppm > 0) ? ppm : (-ppm);
  634. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  635. bestppm = 0;
  636. flag = 1;
  637. }
  638. if (absppm < bestppm - 10) {
  639. bestppm = absppm;
  640. flag = 1;
  641. }
  642. if (flag) {
  643. bestn = n;
  644. bestm1 = m1;
  645. bestm2 = m2;
  646. bestp1 = p1;
  647. bestp2 = p2;
  648. flag = 0;
  649. }
  650. }
  651. }
  652. }
  653. }
  654. }
  655. best_clock->n = bestn;
  656. best_clock->m1 = bestm1;
  657. best_clock->m2 = bestm2;
  658. best_clock->p1 = bestp1;
  659. best_clock->p2 = bestp2;
  660. return true;
  661. }
  662. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  663. enum pipe pipe)
  664. {
  665. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  666. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  667. return intel_crtc->config.cpu_transcoder;
  668. }
  669. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  670. {
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. u32 frame, frame_reg = PIPEFRAME(pipe);
  673. frame = I915_READ(frame_reg);
  674. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  675. DRM_DEBUG_KMS("vblank wait timed out\n");
  676. }
  677. /**
  678. * intel_wait_for_vblank - wait for vblank on a given pipe
  679. * @dev: drm device
  680. * @pipe: pipe to wait for
  681. *
  682. * Wait for vblank to occur on a given pipe. Needed for various bits of
  683. * mode setting code.
  684. */
  685. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  686. {
  687. struct drm_i915_private *dev_priv = dev->dev_private;
  688. int pipestat_reg = PIPESTAT(pipe);
  689. if (INTEL_INFO(dev)->gen >= 5) {
  690. ironlake_wait_for_vblank(dev, pipe);
  691. return;
  692. }
  693. /* Clear existing vblank status. Note this will clear any other
  694. * sticky status fields as well.
  695. *
  696. * This races with i915_driver_irq_handler() with the result
  697. * that either function could miss a vblank event. Here it is not
  698. * fatal, as we will either wait upon the next vblank interrupt or
  699. * timeout. Generally speaking intel_wait_for_vblank() is only
  700. * called during modeset at which time the GPU should be idle and
  701. * should *not* be performing page flips and thus not waiting on
  702. * vblanks...
  703. * Currently, the result of us stealing a vblank from the irq
  704. * handler is that a single frame will be skipped during swapbuffers.
  705. */
  706. I915_WRITE(pipestat_reg,
  707. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  708. /* Wait for vblank interrupt bit to set */
  709. if (wait_for(I915_READ(pipestat_reg) &
  710. PIPE_VBLANK_INTERRUPT_STATUS,
  711. 50))
  712. DRM_DEBUG_KMS("vblank wait timed out\n");
  713. }
  714. /*
  715. * intel_wait_for_pipe_off - wait for pipe to turn off
  716. * @dev: drm device
  717. * @pipe: pipe to wait for
  718. *
  719. * After disabling a pipe, we can't wait for vblank in the usual way,
  720. * spinning on the vblank interrupt status bit, since we won't actually
  721. * see an interrupt when the pipe is disabled.
  722. *
  723. * On Gen4 and above:
  724. * wait for the pipe register state bit to turn off
  725. *
  726. * Otherwise:
  727. * wait for the display line value to settle (it usually
  728. * ends up stopping at the start of the next frame).
  729. *
  730. */
  731. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  732. {
  733. struct drm_i915_private *dev_priv = dev->dev_private;
  734. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  735. pipe);
  736. if (INTEL_INFO(dev)->gen >= 4) {
  737. int reg = PIPECONF(cpu_transcoder);
  738. /* Wait for the Pipe State to go off */
  739. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  740. 100))
  741. WARN(1, "pipe_off wait timed out\n");
  742. } else {
  743. u32 last_line, line_mask;
  744. int reg = PIPEDSL(pipe);
  745. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  746. if (IS_GEN2(dev))
  747. line_mask = DSL_LINEMASK_GEN2;
  748. else
  749. line_mask = DSL_LINEMASK_GEN3;
  750. /* Wait for the display line to settle */
  751. do {
  752. last_line = I915_READ(reg) & line_mask;
  753. mdelay(5);
  754. } while (((I915_READ(reg) & line_mask) != last_line) &&
  755. time_after(timeout, jiffies));
  756. if (time_after(jiffies, timeout))
  757. WARN(1, "pipe_off wait timed out\n");
  758. }
  759. }
  760. /*
  761. * ibx_digital_port_connected - is the specified port connected?
  762. * @dev_priv: i915 private structure
  763. * @port: the port to test
  764. *
  765. * Returns true if @port is connected, false otherwise.
  766. */
  767. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  768. struct intel_digital_port *port)
  769. {
  770. u32 bit;
  771. if (HAS_PCH_IBX(dev_priv->dev)) {
  772. switch(port->port) {
  773. case PORT_B:
  774. bit = SDE_PORTB_HOTPLUG;
  775. break;
  776. case PORT_C:
  777. bit = SDE_PORTC_HOTPLUG;
  778. break;
  779. case PORT_D:
  780. bit = SDE_PORTD_HOTPLUG;
  781. break;
  782. default:
  783. return true;
  784. }
  785. } else {
  786. switch(port->port) {
  787. case PORT_B:
  788. bit = SDE_PORTB_HOTPLUG_CPT;
  789. break;
  790. case PORT_C:
  791. bit = SDE_PORTC_HOTPLUG_CPT;
  792. break;
  793. case PORT_D:
  794. bit = SDE_PORTD_HOTPLUG_CPT;
  795. break;
  796. default:
  797. return true;
  798. }
  799. }
  800. return I915_READ(SDEISR) & bit;
  801. }
  802. static const char *state_string(bool enabled)
  803. {
  804. return enabled ? "on" : "off";
  805. }
  806. /* Only for pre-ILK configs */
  807. static void assert_pll(struct drm_i915_private *dev_priv,
  808. enum pipe pipe, bool state)
  809. {
  810. int reg;
  811. u32 val;
  812. bool cur_state;
  813. reg = DPLL(pipe);
  814. val = I915_READ(reg);
  815. cur_state = !!(val & DPLL_VCO_ENABLE);
  816. WARN(cur_state != state,
  817. "PLL state assertion failure (expected %s, current %s)\n",
  818. state_string(state), state_string(cur_state));
  819. }
  820. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  821. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  822. static struct intel_shared_dpll *
  823. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  824. {
  825. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  826. if (crtc->config.shared_dpll < 0)
  827. return NULL;
  828. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  829. }
  830. /* For ILK+ */
  831. static void assert_shared_dpll(struct drm_i915_private *dev_priv,
  832. struct intel_shared_dpll *pll,
  833. bool state)
  834. {
  835. bool cur_state;
  836. struct intel_dpll_hw_state hw_state;
  837. if (HAS_PCH_LPT(dev_priv->dev)) {
  838. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  839. return;
  840. }
  841. if (WARN (!pll,
  842. "asserting DPLL %s with no DPLL\n", state_string(state)))
  843. return;
  844. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  845. WARN(cur_state != state,
  846. "%s assertion failure (expected %s, current %s)\n",
  847. pll->name, state_string(state), state_string(cur_state));
  848. }
  849. #define assert_shared_dpll_enabled(d, p) assert_shared_dpll(d, p, true)
  850. #define assert_shared_dpll_disabled(d, p) assert_shared_dpll(d, p, false)
  851. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  852. enum pipe pipe, bool state)
  853. {
  854. int reg;
  855. u32 val;
  856. bool cur_state;
  857. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  858. pipe);
  859. if (HAS_DDI(dev_priv->dev)) {
  860. /* DDI does not have a specific FDI_TX register */
  861. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  862. val = I915_READ(reg);
  863. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  864. } else {
  865. reg = FDI_TX_CTL(pipe);
  866. val = I915_READ(reg);
  867. cur_state = !!(val & FDI_TX_ENABLE);
  868. }
  869. WARN(cur_state != state,
  870. "FDI TX state assertion failure (expected %s, current %s)\n",
  871. state_string(state), state_string(cur_state));
  872. }
  873. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  874. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  875. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  876. enum pipe pipe, bool state)
  877. {
  878. int reg;
  879. u32 val;
  880. bool cur_state;
  881. reg = FDI_RX_CTL(pipe);
  882. val = I915_READ(reg);
  883. cur_state = !!(val & FDI_RX_ENABLE);
  884. WARN(cur_state != state,
  885. "FDI RX state assertion failure (expected %s, current %s)\n",
  886. state_string(state), state_string(cur_state));
  887. }
  888. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  889. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  890. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  891. enum pipe pipe)
  892. {
  893. int reg;
  894. u32 val;
  895. /* ILK FDI PLL is always enabled */
  896. if (dev_priv->info->gen == 5)
  897. return;
  898. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  899. if (HAS_DDI(dev_priv->dev))
  900. return;
  901. reg = FDI_TX_CTL(pipe);
  902. val = I915_READ(reg);
  903. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  904. }
  905. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  906. enum pipe pipe)
  907. {
  908. int reg;
  909. u32 val;
  910. reg = FDI_RX_CTL(pipe);
  911. val = I915_READ(reg);
  912. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  913. }
  914. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  915. enum pipe pipe)
  916. {
  917. int pp_reg, lvds_reg;
  918. u32 val;
  919. enum pipe panel_pipe = PIPE_A;
  920. bool locked = true;
  921. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  922. pp_reg = PCH_PP_CONTROL;
  923. lvds_reg = PCH_LVDS;
  924. } else {
  925. pp_reg = PP_CONTROL;
  926. lvds_reg = LVDS;
  927. }
  928. val = I915_READ(pp_reg);
  929. if (!(val & PANEL_POWER_ON) ||
  930. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  931. locked = false;
  932. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  933. panel_pipe = PIPE_B;
  934. WARN(panel_pipe == pipe && locked,
  935. "panel assertion failure, pipe %c regs locked\n",
  936. pipe_name(pipe));
  937. }
  938. void assert_pipe(struct drm_i915_private *dev_priv,
  939. enum pipe pipe, bool state)
  940. {
  941. int reg;
  942. u32 val;
  943. bool cur_state;
  944. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  945. pipe);
  946. /* if we need the pipe A quirk it must be always on */
  947. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  948. state = true;
  949. if (!intel_display_power_enabled(dev_priv->dev,
  950. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  951. cur_state = false;
  952. } else {
  953. reg = PIPECONF(cpu_transcoder);
  954. val = I915_READ(reg);
  955. cur_state = !!(val & PIPECONF_ENABLE);
  956. }
  957. WARN(cur_state != state,
  958. "pipe %c assertion failure (expected %s, current %s)\n",
  959. pipe_name(pipe), state_string(state), state_string(cur_state));
  960. }
  961. static void assert_plane(struct drm_i915_private *dev_priv,
  962. enum plane plane, bool state)
  963. {
  964. int reg;
  965. u32 val;
  966. bool cur_state;
  967. reg = DSPCNTR(plane);
  968. val = I915_READ(reg);
  969. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  970. WARN(cur_state != state,
  971. "plane %c assertion failure (expected %s, current %s)\n",
  972. plane_name(plane), state_string(state), state_string(cur_state));
  973. }
  974. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  975. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  976. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  977. enum pipe pipe)
  978. {
  979. struct drm_device *dev = dev_priv->dev;
  980. int reg, i;
  981. u32 val;
  982. int cur_pipe;
  983. /* Primary planes are fixed to pipes on gen4+ */
  984. if (INTEL_INFO(dev)->gen >= 4) {
  985. reg = DSPCNTR(pipe);
  986. val = I915_READ(reg);
  987. WARN((val & DISPLAY_PLANE_ENABLE),
  988. "plane %c assertion failure, should be disabled but not\n",
  989. plane_name(pipe));
  990. return;
  991. }
  992. /* Need to check both planes against the pipe */
  993. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  994. reg = DSPCNTR(i);
  995. val = I915_READ(reg);
  996. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  997. DISPPLANE_SEL_PIPE_SHIFT;
  998. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  999. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1000. plane_name(i), pipe_name(pipe));
  1001. }
  1002. }
  1003. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1004. enum pipe pipe)
  1005. {
  1006. struct drm_device *dev = dev_priv->dev;
  1007. int reg, i;
  1008. u32 val;
  1009. if (IS_VALLEYVIEW(dev)) {
  1010. for (i = 0; i < dev_priv->num_plane; i++) {
  1011. reg = SPCNTR(pipe, i);
  1012. val = I915_READ(reg);
  1013. WARN((val & SP_ENABLE),
  1014. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1015. sprite_name(pipe, i), pipe_name(pipe));
  1016. }
  1017. } else if (INTEL_INFO(dev)->gen >= 7) {
  1018. reg = SPRCTL(pipe);
  1019. val = I915_READ(reg);
  1020. WARN((val & SPRITE_ENABLE),
  1021. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1022. plane_name(pipe), pipe_name(pipe));
  1023. } else if (INTEL_INFO(dev)->gen >= 5) {
  1024. reg = DVSCNTR(pipe);
  1025. val = I915_READ(reg);
  1026. WARN((val & DVS_ENABLE),
  1027. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1028. plane_name(pipe), pipe_name(pipe));
  1029. }
  1030. }
  1031. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1032. {
  1033. u32 val;
  1034. bool enabled;
  1035. if (HAS_PCH_LPT(dev_priv->dev)) {
  1036. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1037. return;
  1038. }
  1039. val = I915_READ(PCH_DREF_CONTROL);
  1040. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1041. DREF_SUPERSPREAD_SOURCE_MASK));
  1042. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1043. }
  1044. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1045. enum pipe pipe)
  1046. {
  1047. int reg;
  1048. u32 val;
  1049. bool enabled;
  1050. reg = PCH_TRANSCONF(pipe);
  1051. val = I915_READ(reg);
  1052. enabled = !!(val & TRANS_ENABLE);
  1053. WARN(enabled,
  1054. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1055. pipe_name(pipe));
  1056. }
  1057. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1058. enum pipe pipe, u32 port_sel, u32 val)
  1059. {
  1060. if ((val & DP_PORT_EN) == 0)
  1061. return false;
  1062. if (HAS_PCH_CPT(dev_priv->dev)) {
  1063. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1064. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1065. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1066. return false;
  1067. } else {
  1068. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1069. return false;
  1070. }
  1071. return true;
  1072. }
  1073. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1074. enum pipe pipe, u32 val)
  1075. {
  1076. if ((val & SDVO_ENABLE) == 0)
  1077. return false;
  1078. if (HAS_PCH_CPT(dev_priv->dev)) {
  1079. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1080. return false;
  1081. } else {
  1082. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1083. return false;
  1084. }
  1085. return true;
  1086. }
  1087. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1088. enum pipe pipe, u32 val)
  1089. {
  1090. if ((val & LVDS_PORT_EN) == 0)
  1091. return false;
  1092. if (HAS_PCH_CPT(dev_priv->dev)) {
  1093. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1094. return false;
  1095. } else {
  1096. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1097. return false;
  1098. }
  1099. return true;
  1100. }
  1101. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1102. enum pipe pipe, u32 val)
  1103. {
  1104. if ((val & ADPA_DAC_ENABLE) == 0)
  1105. return false;
  1106. if (HAS_PCH_CPT(dev_priv->dev)) {
  1107. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1108. return false;
  1109. } else {
  1110. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1111. return false;
  1112. }
  1113. return true;
  1114. }
  1115. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1116. enum pipe pipe, int reg, u32 port_sel)
  1117. {
  1118. u32 val = I915_READ(reg);
  1119. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1120. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1121. reg, pipe_name(pipe));
  1122. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1123. && (val & DP_PIPEB_SELECT),
  1124. "IBX PCH dp port still using transcoder B\n");
  1125. }
  1126. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1127. enum pipe pipe, int reg)
  1128. {
  1129. u32 val = I915_READ(reg);
  1130. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1131. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1132. reg, pipe_name(pipe));
  1133. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1134. && (val & SDVO_PIPE_B_SELECT),
  1135. "IBX PCH hdmi port still using transcoder B\n");
  1136. }
  1137. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1138. enum pipe pipe)
  1139. {
  1140. int reg;
  1141. u32 val;
  1142. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1143. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1144. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1145. reg = PCH_ADPA;
  1146. val = I915_READ(reg);
  1147. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1148. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1149. pipe_name(pipe));
  1150. reg = PCH_LVDS;
  1151. val = I915_READ(reg);
  1152. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1153. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1154. pipe_name(pipe));
  1155. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1156. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1157. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1158. }
  1159. /**
  1160. * intel_enable_pll - enable a PLL
  1161. * @dev_priv: i915 private structure
  1162. * @pipe: pipe PLL to enable
  1163. *
  1164. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1165. * make sure the PLL reg is writable first though, since the panel write
  1166. * protect mechanism may be enabled.
  1167. *
  1168. * Note! This is for pre-ILK only.
  1169. *
  1170. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1171. */
  1172. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1173. {
  1174. int reg;
  1175. u32 val;
  1176. assert_pipe_disabled(dev_priv, pipe);
  1177. /* No really, not for ILK+ */
  1178. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1179. /* PLL is protected by panel, make sure we can write it */
  1180. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1181. assert_panel_unlocked(dev_priv, pipe);
  1182. reg = DPLL(pipe);
  1183. val = I915_READ(reg);
  1184. val |= DPLL_VCO_ENABLE;
  1185. /* We do this three times for luck */
  1186. I915_WRITE(reg, val);
  1187. POSTING_READ(reg);
  1188. udelay(150); /* wait for warmup */
  1189. I915_WRITE(reg, val);
  1190. POSTING_READ(reg);
  1191. udelay(150); /* wait for warmup */
  1192. I915_WRITE(reg, val);
  1193. POSTING_READ(reg);
  1194. udelay(150); /* wait for warmup */
  1195. }
  1196. /**
  1197. * intel_disable_pll - disable a PLL
  1198. * @dev_priv: i915 private structure
  1199. * @pipe: pipe PLL to disable
  1200. *
  1201. * Disable the PLL for @pipe, making sure the pipe is off first.
  1202. *
  1203. * Note! This is for pre-ILK only.
  1204. */
  1205. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1206. {
  1207. int reg;
  1208. u32 val;
  1209. /* Don't disable pipe A or pipe A PLLs if needed */
  1210. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1211. return;
  1212. /* Make sure the pipe isn't still relying on us */
  1213. assert_pipe_disabled(dev_priv, pipe);
  1214. reg = DPLL(pipe);
  1215. val = I915_READ(reg);
  1216. val &= ~DPLL_VCO_ENABLE;
  1217. I915_WRITE(reg, val);
  1218. POSTING_READ(reg);
  1219. }
  1220. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1221. {
  1222. u32 port_mask;
  1223. if (!port)
  1224. port_mask = DPLL_PORTB_READY_MASK;
  1225. else
  1226. port_mask = DPLL_PORTC_READY_MASK;
  1227. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1228. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1229. 'B' + port, I915_READ(DPLL(0)));
  1230. }
  1231. /**
  1232. * ironlake_enable_shared_dpll - enable PCH PLL
  1233. * @dev_priv: i915 private structure
  1234. * @pipe: pipe PLL to enable
  1235. *
  1236. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1237. * drives the transcoder clock.
  1238. */
  1239. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1240. {
  1241. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1242. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1243. /* PCH PLLs only available on ILK, SNB and IVB */
  1244. BUG_ON(dev_priv->info->gen < 5);
  1245. if (WARN_ON(pll == NULL))
  1246. return;
  1247. if (WARN_ON(pll->refcount == 0))
  1248. return;
  1249. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1250. pll->name, pll->active, pll->on,
  1251. crtc->base.base.id);
  1252. if (pll->active++) {
  1253. WARN_ON(!pll->on);
  1254. assert_shared_dpll_enabled(dev_priv, pll);
  1255. return;
  1256. }
  1257. WARN_ON(pll->on);
  1258. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1259. pll->enable(dev_priv, pll);
  1260. pll->on = true;
  1261. }
  1262. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1263. {
  1264. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1265. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1266. /* PCH only available on ILK+ */
  1267. BUG_ON(dev_priv->info->gen < 5);
  1268. if (WARN_ON(pll == NULL))
  1269. return;
  1270. if (WARN_ON(pll->refcount == 0))
  1271. return;
  1272. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1273. pll->name, pll->active, pll->on,
  1274. crtc->base.base.id);
  1275. if (WARN_ON(pll->active == 0)) {
  1276. assert_shared_dpll_disabled(dev_priv, pll);
  1277. return;
  1278. }
  1279. assert_shared_dpll_enabled(dev_priv, pll);
  1280. WARN_ON(!pll->on);
  1281. if (--pll->active)
  1282. return;
  1283. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1284. pll->disable(dev_priv, pll);
  1285. pll->on = false;
  1286. }
  1287. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1288. enum pipe pipe)
  1289. {
  1290. struct drm_device *dev = dev_priv->dev;
  1291. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1292. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1293. uint32_t reg, val, pipeconf_val;
  1294. /* PCH only available on ILK+ */
  1295. BUG_ON(dev_priv->info->gen < 5);
  1296. /* Make sure PCH DPLL is enabled */
  1297. assert_shared_dpll_enabled(dev_priv,
  1298. intel_crtc_to_shared_dpll(intel_crtc));
  1299. /* FDI must be feeding us bits for PCH ports */
  1300. assert_fdi_tx_enabled(dev_priv, pipe);
  1301. assert_fdi_rx_enabled(dev_priv, pipe);
  1302. if (HAS_PCH_CPT(dev)) {
  1303. /* Workaround: Set the timing override bit before enabling the
  1304. * pch transcoder. */
  1305. reg = TRANS_CHICKEN2(pipe);
  1306. val = I915_READ(reg);
  1307. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1308. I915_WRITE(reg, val);
  1309. }
  1310. reg = PCH_TRANSCONF(pipe);
  1311. val = I915_READ(reg);
  1312. pipeconf_val = I915_READ(PIPECONF(pipe));
  1313. if (HAS_PCH_IBX(dev_priv->dev)) {
  1314. /*
  1315. * make the BPC in transcoder be consistent with
  1316. * that in pipeconf reg.
  1317. */
  1318. val &= ~PIPECONF_BPC_MASK;
  1319. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1320. }
  1321. val &= ~TRANS_INTERLACE_MASK;
  1322. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1323. if (HAS_PCH_IBX(dev_priv->dev) &&
  1324. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1325. val |= TRANS_LEGACY_INTERLACED_ILK;
  1326. else
  1327. val |= TRANS_INTERLACED;
  1328. else
  1329. val |= TRANS_PROGRESSIVE;
  1330. I915_WRITE(reg, val | TRANS_ENABLE);
  1331. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1332. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1333. }
  1334. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1335. enum transcoder cpu_transcoder)
  1336. {
  1337. u32 val, pipeconf_val;
  1338. /* PCH only available on ILK+ */
  1339. BUG_ON(dev_priv->info->gen < 5);
  1340. /* FDI must be feeding us bits for PCH ports */
  1341. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1342. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1343. /* Workaround: set timing override bit. */
  1344. val = I915_READ(_TRANSA_CHICKEN2);
  1345. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1346. I915_WRITE(_TRANSA_CHICKEN2, val);
  1347. val = TRANS_ENABLE;
  1348. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1349. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1350. PIPECONF_INTERLACED_ILK)
  1351. val |= TRANS_INTERLACED;
  1352. else
  1353. val |= TRANS_PROGRESSIVE;
  1354. I915_WRITE(LPT_TRANSCONF, val);
  1355. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1356. DRM_ERROR("Failed to enable PCH transcoder\n");
  1357. }
  1358. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1359. enum pipe pipe)
  1360. {
  1361. struct drm_device *dev = dev_priv->dev;
  1362. uint32_t reg, val;
  1363. /* FDI relies on the transcoder */
  1364. assert_fdi_tx_disabled(dev_priv, pipe);
  1365. assert_fdi_rx_disabled(dev_priv, pipe);
  1366. /* Ports must be off as well */
  1367. assert_pch_ports_disabled(dev_priv, pipe);
  1368. reg = PCH_TRANSCONF(pipe);
  1369. val = I915_READ(reg);
  1370. val &= ~TRANS_ENABLE;
  1371. I915_WRITE(reg, val);
  1372. /* wait for PCH transcoder off, transcoder state */
  1373. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1374. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1375. if (!HAS_PCH_IBX(dev)) {
  1376. /* Workaround: Clear the timing override chicken bit again. */
  1377. reg = TRANS_CHICKEN2(pipe);
  1378. val = I915_READ(reg);
  1379. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1380. I915_WRITE(reg, val);
  1381. }
  1382. }
  1383. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1384. {
  1385. u32 val;
  1386. val = I915_READ(LPT_TRANSCONF);
  1387. val &= ~TRANS_ENABLE;
  1388. I915_WRITE(LPT_TRANSCONF, val);
  1389. /* wait for PCH transcoder off, transcoder state */
  1390. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1391. DRM_ERROR("Failed to disable PCH transcoder\n");
  1392. /* Workaround: clear timing override bit. */
  1393. val = I915_READ(_TRANSA_CHICKEN2);
  1394. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1395. I915_WRITE(_TRANSA_CHICKEN2, val);
  1396. }
  1397. /**
  1398. * intel_enable_pipe - enable a pipe, asserting requirements
  1399. * @dev_priv: i915 private structure
  1400. * @pipe: pipe to enable
  1401. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1402. *
  1403. * Enable @pipe, making sure that various hardware specific requirements
  1404. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1405. *
  1406. * @pipe should be %PIPE_A or %PIPE_B.
  1407. *
  1408. * Will wait until the pipe is actually running (i.e. first vblank) before
  1409. * returning.
  1410. */
  1411. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1412. bool pch_port)
  1413. {
  1414. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1415. pipe);
  1416. enum pipe pch_transcoder;
  1417. int reg;
  1418. u32 val;
  1419. assert_planes_disabled(dev_priv, pipe);
  1420. assert_sprites_disabled(dev_priv, pipe);
  1421. if (HAS_PCH_LPT(dev_priv->dev))
  1422. pch_transcoder = TRANSCODER_A;
  1423. else
  1424. pch_transcoder = pipe;
  1425. /*
  1426. * A pipe without a PLL won't actually be able to drive bits from
  1427. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1428. * need the check.
  1429. */
  1430. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1431. assert_pll_enabled(dev_priv, pipe);
  1432. else {
  1433. if (pch_port) {
  1434. /* if driving the PCH, we need FDI enabled */
  1435. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1436. assert_fdi_tx_pll_enabled(dev_priv,
  1437. (enum pipe) cpu_transcoder);
  1438. }
  1439. /* FIXME: assert CPU port conditions for SNB+ */
  1440. }
  1441. reg = PIPECONF(cpu_transcoder);
  1442. val = I915_READ(reg);
  1443. if (val & PIPECONF_ENABLE)
  1444. return;
  1445. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1446. intel_wait_for_vblank(dev_priv->dev, pipe);
  1447. }
  1448. /**
  1449. * intel_disable_pipe - disable a pipe, asserting requirements
  1450. * @dev_priv: i915 private structure
  1451. * @pipe: pipe to disable
  1452. *
  1453. * Disable @pipe, making sure that various hardware specific requirements
  1454. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1455. *
  1456. * @pipe should be %PIPE_A or %PIPE_B.
  1457. *
  1458. * Will wait until the pipe has shut down before returning.
  1459. */
  1460. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1461. enum pipe pipe)
  1462. {
  1463. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1464. pipe);
  1465. int reg;
  1466. u32 val;
  1467. /*
  1468. * Make sure planes won't keep trying to pump pixels to us,
  1469. * or we might hang the display.
  1470. */
  1471. assert_planes_disabled(dev_priv, pipe);
  1472. assert_sprites_disabled(dev_priv, pipe);
  1473. /* Don't disable pipe A or pipe A PLLs if needed */
  1474. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1475. return;
  1476. reg = PIPECONF(cpu_transcoder);
  1477. val = I915_READ(reg);
  1478. if ((val & PIPECONF_ENABLE) == 0)
  1479. return;
  1480. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1481. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1482. }
  1483. /*
  1484. * Plane regs are double buffered, going from enabled->disabled needs a
  1485. * trigger in order to latch. The display address reg provides this.
  1486. */
  1487. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1488. enum plane plane)
  1489. {
  1490. if (dev_priv->info->gen >= 4)
  1491. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1492. else
  1493. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1494. }
  1495. /**
  1496. * intel_enable_plane - enable a display plane on a given pipe
  1497. * @dev_priv: i915 private structure
  1498. * @plane: plane to enable
  1499. * @pipe: pipe being fed
  1500. *
  1501. * Enable @plane on @pipe, making sure that @pipe is running first.
  1502. */
  1503. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1504. enum plane plane, enum pipe pipe)
  1505. {
  1506. int reg;
  1507. u32 val;
  1508. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1509. assert_pipe_enabled(dev_priv, pipe);
  1510. reg = DSPCNTR(plane);
  1511. val = I915_READ(reg);
  1512. if (val & DISPLAY_PLANE_ENABLE)
  1513. return;
  1514. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1515. intel_flush_display_plane(dev_priv, plane);
  1516. intel_wait_for_vblank(dev_priv->dev, pipe);
  1517. }
  1518. /**
  1519. * intel_disable_plane - disable a display plane
  1520. * @dev_priv: i915 private structure
  1521. * @plane: plane to disable
  1522. * @pipe: pipe consuming the data
  1523. *
  1524. * Disable @plane; should be an independent operation.
  1525. */
  1526. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1527. enum plane plane, enum pipe pipe)
  1528. {
  1529. int reg;
  1530. u32 val;
  1531. reg = DSPCNTR(plane);
  1532. val = I915_READ(reg);
  1533. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1534. return;
  1535. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1536. intel_flush_display_plane(dev_priv, plane);
  1537. intel_wait_for_vblank(dev_priv->dev, pipe);
  1538. }
  1539. static bool need_vtd_wa(struct drm_device *dev)
  1540. {
  1541. #ifdef CONFIG_INTEL_IOMMU
  1542. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1543. return true;
  1544. #endif
  1545. return false;
  1546. }
  1547. int
  1548. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1549. struct drm_i915_gem_object *obj,
  1550. struct intel_ring_buffer *pipelined)
  1551. {
  1552. struct drm_i915_private *dev_priv = dev->dev_private;
  1553. u32 alignment;
  1554. int ret;
  1555. switch (obj->tiling_mode) {
  1556. case I915_TILING_NONE:
  1557. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1558. alignment = 128 * 1024;
  1559. else if (INTEL_INFO(dev)->gen >= 4)
  1560. alignment = 4 * 1024;
  1561. else
  1562. alignment = 64 * 1024;
  1563. break;
  1564. case I915_TILING_X:
  1565. /* pin() will align the object as required by fence */
  1566. alignment = 0;
  1567. break;
  1568. case I915_TILING_Y:
  1569. /* Despite that we check this in framebuffer_init userspace can
  1570. * screw us over and change the tiling after the fact. Only
  1571. * pinned buffers can't change their tiling. */
  1572. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1573. return -EINVAL;
  1574. default:
  1575. BUG();
  1576. }
  1577. /* Note that the w/a also requires 64 PTE of padding following the
  1578. * bo. We currently fill all unused PTE with the shadow page and so
  1579. * we should always have valid PTE following the scanout preventing
  1580. * the VT-d warning.
  1581. */
  1582. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1583. alignment = 256 * 1024;
  1584. dev_priv->mm.interruptible = false;
  1585. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1586. if (ret)
  1587. goto err_interruptible;
  1588. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1589. * fence, whereas 965+ only requires a fence if using
  1590. * framebuffer compression. For simplicity, we always install
  1591. * a fence as the cost is not that onerous.
  1592. */
  1593. ret = i915_gem_object_get_fence(obj);
  1594. if (ret)
  1595. goto err_unpin;
  1596. i915_gem_object_pin_fence(obj);
  1597. dev_priv->mm.interruptible = true;
  1598. return 0;
  1599. err_unpin:
  1600. i915_gem_object_unpin(obj);
  1601. err_interruptible:
  1602. dev_priv->mm.interruptible = true;
  1603. return ret;
  1604. }
  1605. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1606. {
  1607. i915_gem_object_unpin_fence(obj);
  1608. i915_gem_object_unpin(obj);
  1609. }
  1610. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1611. * is assumed to be a power-of-two. */
  1612. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1613. unsigned int tiling_mode,
  1614. unsigned int cpp,
  1615. unsigned int pitch)
  1616. {
  1617. if (tiling_mode != I915_TILING_NONE) {
  1618. unsigned int tile_rows, tiles;
  1619. tile_rows = *y / 8;
  1620. *y %= 8;
  1621. tiles = *x / (512/cpp);
  1622. *x %= 512/cpp;
  1623. return tile_rows * pitch * 8 + tiles * 4096;
  1624. } else {
  1625. unsigned int offset;
  1626. offset = *y * pitch + *x * cpp;
  1627. *y = 0;
  1628. *x = (offset & 4095) / cpp;
  1629. return offset & -4096;
  1630. }
  1631. }
  1632. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1633. int x, int y)
  1634. {
  1635. struct drm_device *dev = crtc->dev;
  1636. struct drm_i915_private *dev_priv = dev->dev_private;
  1637. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1638. struct intel_framebuffer *intel_fb;
  1639. struct drm_i915_gem_object *obj;
  1640. int plane = intel_crtc->plane;
  1641. unsigned long linear_offset;
  1642. u32 dspcntr;
  1643. u32 reg;
  1644. switch (plane) {
  1645. case 0:
  1646. case 1:
  1647. break;
  1648. default:
  1649. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1650. return -EINVAL;
  1651. }
  1652. intel_fb = to_intel_framebuffer(fb);
  1653. obj = intel_fb->obj;
  1654. reg = DSPCNTR(plane);
  1655. dspcntr = I915_READ(reg);
  1656. /* Mask out pixel format bits in case we change it */
  1657. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1658. switch (fb->pixel_format) {
  1659. case DRM_FORMAT_C8:
  1660. dspcntr |= DISPPLANE_8BPP;
  1661. break;
  1662. case DRM_FORMAT_XRGB1555:
  1663. case DRM_FORMAT_ARGB1555:
  1664. dspcntr |= DISPPLANE_BGRX555;
  1665. break;
  1666. case DRM_FORMAT_RGB565:
  1667. dspcntr |= DISPPLANE_BGRX565;
  1668. break;
  1669. case DRM_FORMAT_XRGB8888:
  1670. case DRM_FORMAT_ARGB8888:
  1671. dspcntr |= DISPPLANE_BGRX888;
  1672. break;
  1673. case DRM_FORMAT_XBGR8888:
  1674. case DRM_FORMAT_ABGR8888:
  1675. dspcntr |= DISPPLANE_RGBX888;
  1676. break;
  1677. case DRM_FORMAT_XRGB2101010:
  1678. case DRM_FORMAT_ARGB2101010:
  1679. dspcntr |= DISPPLANE_BGRX101010;
  1680. break;
  1681. case DRM_FORMAT_XBGR2101010:
  1682. case DRM_FORMAT_ABGR2101010:
  1683. dspcntr |= DISPPLANE_RGBX101010;
  1684. break;
  1685. default:
  1686. BUG();
  1687. }
  1688. if (INTEL_INFO(dev)->gen >= 4) {
  1689. if (obj->tiling_mode != I915_TILING_NONE)
  1690. dspcntr |= DISPPLANE_TILED;
  1691. else
  1692. dspcntr &= ~DISPPLANE_TILED;
  1693. }
  1694. if (IS_G4X(dev))
  1695. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1696. I915_WRITE(reg, dspcntr);
  1697. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1698. if (INTEL_INFO(dev)->gen >= 4) {
  1699. intel_crtc->dspaddr_offset =
  1700. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1701. fb->bits_per_pixel / 8,
  1702. fb->pitches[0]);
  1703. linear_offset -= intel_crtc->dspaddr_offset;
  1704. } else {
  1705. intel_crtc->dspaddr_offset = linear_offset;
  1706. }
  1707. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1708. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1709. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1710. if (INTEL_INFO(dev)->gen >= 4) {
  1711. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1712. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1713. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1714. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1715. } else
  1716. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1717. POSTING_READ(reg);
  1718. return 0;
  1719. }
  1720. static int ironlake_update_plane(struct drm_crtc *crtc,
  1721. struct drm_framebuffer *fb, int x, int y)
  1722. {
  1723. struct drm_device *dev = crtc->dev;
  1724. struct drm_i915_private *dev_priv = dev->dev_private;
  1725. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1726. struct intel_framebuffer *intel_fb;
  1727. struct drm_i915_gem_object *obj;
  1728. int plane = intel_crtc->plane;
  1729. unsigned long linear_offset;
  1730. u32 dspcntr;
  1731. u32 reg;
  1732. switch (plane) {
  1733. case 0:
  1734. case 1:
  1735. case 2:
  1736. break;
  1737. default:
  1738. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1739. return -EINVAL;
  1740. }
  1741. intel_fb = to_intel_framebuffer(fb);
  1742. obj = intel_fb->obj;
  1743. reg = DSPCNTR(plane);
  1744. dspcntr = I915_READ(reg);
  1745. /* Mask out pixel format bits in case we change it */
  1746. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1747. switch (fb->pixel_format) {
  1748. case DRM_FORMAT_C8:
  1749. dspcntr |= DISPPLANE_8BPP;
  1750. break;
  1751. case DRM_FORMAT_RGB565:
  1752. dspcntr |= DISPPLANE_BGRX565;
  1753. break;
  1754. case DRM_FORMAT_XRGB8888:
  1755. case DRM_FORMAT_ARGB8888:
  1756. dspcntr |= DISPPLANE_BGRX888;
  1757. break;
  1758. case DRM_FORMAT_XBGR8888:
  1759. case DRM_FORMAT_ABGR8888:
  1760. dspcntr |= DISPPLANE_RGBX888;
  1761. break;
  1762. case DRM_FORMAT_XRGB2101010:
  1763. case DRM_FORMAT_ARGB2101010:
  1764. dspcntr |= DISPPLANE_BGRX101010;
  1765. break;
  1766. case DRM_FORMAT_XBGR2101010:
  1767. case DRM_FORMAT_ABGR2101010:
  1768. dspcntr |= DISPPLANE_RGBX101010;
  1769. break;
  1770. default:
  1771. BUG();
  1772. }
  1773. if (obj->tiling_mode != I915_TILING_NONE)
  1774. dspcntr |= DISPPLANE_TILED;
  1775. else
  1776. dspcntr &= ~DISPPLANE_TILED;
  1777. /* must disable */
  1778. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1779. I915_WRITE(reg, dspcntr);
  1780. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1781. intel_crtc->dspaddr_offset =
  1782. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1783. fb->bits_per_pixel / 8,
  1784. fb->pitches[0]);
  1785. linear_offset -= intel_crtc->dspaddr_offset;
  1786. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1787. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1788. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1789. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1790. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1791. if (IS_HASWELL(dev)) {
  1792. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1793. } else {
  1794. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1795. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1796. }
  1797. POSTING_READ(reg);
  1798. return 0;
  1799. }
  1800. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1801. static int
  1802. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1803. int x, int y, enum mode_set_atomic state)
  1804. {
  1805. struct drm_device *dev = crtc->dev;
  1806. struct drm_i915_private *dev_priv = dev->dev_private;
  1807. if (dev_priv->display.disable_fbc)
  1808. dev_priv->display.disable_fbc(dev);
  1809. intel_increase_pllclock(crtc);
  1810. return dev_priv->display.update_plane(crtc, fb, x, y);
  1811. }
  1812. void intel_display_handle_reset(struct drm_device *dev)
  1813. {
  1814. struct drm_i915_private *dev_priv = dev->dev_private;
  1815. struct drm_crtc *crtc;
  1816. /*
  1817. * Flips in the rings have been nuked by the reset,
  1818. * so complete all pending flips so that user space
  1819. * will get its events and not get stuck.
  1820. *
  1821. * Also update the base address of all primary
  1822. * planes to the the last fb to make sure we're
  1823. * showing the correct fb after a reset.
  1824. *
  1825. * Need to make two loops over the crtcs so that we
  1826. * don't try to grab a crtc mutex before the
  1827. * pending_flip_queue really got woken up.
  1828. */
  1829. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1830. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1831. enum plane plane = intel_crtc->plane;
  1832. intel_prepare_page_flip(dev, plane);
  1833. intel_finish_page_flip_plane(dev, plane);
  1834. }
  1835. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1836. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1837. mutex_lock(&crtc->mutex);
  1838. if (intel_crtc->active)
  1839. dev_priv->display.update_plane(crtc, crtc->fb,
  1840. crtc->x, crtc->y);
  1841. mutex_unlock(&crtc->mutex);
  1842. }
  1843. }
  1844. static int
  1845. intel_finish_fb(struct drm_framebuffer *old_fb)
  1846. {
  1847. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1848. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1849. bool was_interruptible = dev_priv->mm.interruptible;
  1850. int ret;
  1851. /* Big Hammer, we also need to ensure that any pending
  1852. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1853. * current scanout is retired before unpinning the old
  1854. * framebuffer.
  1855. *
  1856. * This should only fail upon a hung GPU, in which case we
  1857. * can safely continue.
  1858. */
  1859. dev_priv->mm.interruptible = false;
  1860. ret = i915_gem_object_finish_gpu(obj);
  1861. dev_priv->mm.interruptible = was_interruptible;
  1862. return ret;
  1863. }
  1864. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1865. {
  1866. struct drm_device *dev = crtc->dev;
  1867. struct drm_i915_master_private *master_priv;
  1868. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1869. if (!dev->primary->master)
  1870. return;
  1871. master_priv = dev->primary->master->driver_priv;
  1872. if (!master_priv->sarea_priv)
  1873. return;
  1874. switch (intel_crtc->pipe) {
  1875. case 0:
  1876. master_priv->sarea_priv->pipeA_x = x;
  1877. master_priv->sarea_priv->pipeA_y = y;
  1878. break;
  1879. case 1:
  1880. master_priv->sarea_priv->pipeB_x = x;
  1881. master_priv->sarea_priv->pipeB_y = y;
  1882. break;
  1883. default:
  1884. break;
  1885. }
  1886. }
  1887. static int
  1888. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1889. struct drm_framebuffer *fb)
  1890. {
  1891. struct drm_device *dev = crtc->dev;
  1892. struct drm_i915_private *dev_priv = dev->dev_private;
  1893. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1894. struct drm_framebuffer *old_fb;
  1895. int ret;
  1896. /* no fb bound */
  1897. if (!fb) {
  1898. DRM_ERROR("No FB bound\n");
  1899. return 0;
  1900. }
  1901. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1902. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1903. plane_name(intel_crtc->plane),
  1904. INTEL_INFO(dev)->num_pipes);
  1905. return -EINVAL;
  1906. }
  1907. mutex_lock(&dev->struct_mutex);
  1908. ret = intel_pin_and_fence_fb_obj(dev,
  1909. to_intel_framebuffer(fb)->obj,
  1910. NULL);
  1911. if (ret != 0) {
  1912. mutex_unlock(&dev->struct_mutex);
  1913. DRM_ERROR("pin & fence failed\n");
  1914. return ret;
  1915. }
  1916. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1917. if (ret) {
  1918. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1919. mutex_unlock(&dev->struct_mutex);
  1920. DRM_ERROR("failed to update base address\n");
  1921. return ret;
  1922. }
  1923. old_fb = crtc->fb;
  1924. crtc->fb = fb;
  1925. crtc->x = x;
  1926. crtc->y = y;
  1927. if (old_fb) {
  1928. if (intel_crtc->active && old_fb != fb)
  1929. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1930. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1931. }
  1932. intel_update_fbc(dev);
  1933. mutex_unlock(&dev->struct_mutex);
  1934. intel_crtc_update_sarea_pos(crtc, x, y);
  1935. return 0;
  1936. }
  1937. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1938. {
  1939. struct drm_device *dev = crtc->dev;
  1940. struct drm_i915_private *dev_priv = dev->dev_private;
  1941. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1942. int pipe = intel_crtc->pipe;
  1943. u32 reg, temp;
  1944. /* enable normal train */
  1945. reg = FDI_TX_CTL(pipe);
  1946. temp = I915_READ(reg);
  1947. if (IS_IVYBRIDGE(dev)) {
  1948. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  1949. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  1950. } else {
  1951. temp &= ~FDI_LINK_TRAIN_NONE;
  1952. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  1953. }
  1954. I915_WRITE(reg, temp);
  1955. reg = FDI_RX_CTL(pipe);
  1956. temp = I915_READ(reg);
  1957. if (HAS_PCH_CPT(dev)) {
  1958. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1959. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1960. } else {
  1961. temp &= ~FDI_LINK_TRAIN_NONE;
  1962. temp |= FDI_LINK_TRAIN_NONE;
  1963. }
  1964. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1965. /* wait one idle pattern time */
  1966. POSTING_READ(reg);
  1967. udelay(1000);
  1968. /* IVB wants error correction enabled */
  1969. if (IS_IVYBRIDGE(dev))
  1970. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  1971. FDI_FE_ERRC_ENABLE);
  1972. }
  1973. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  1974. {
  1975. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  1976. }
  1977. static void ivb_modeset_global_resources(struct drm_device *dev)
  1978. {
  1979. struct drm_i915_private *dev_priv = dev->dev_private;
  1980. struct intel_crtc *pipe_B_crtc =
  1981. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  1982. struct intel_crtc *pipe_C_crtc =
  1983. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  1984. uint32_t temp;
  1985. /*
  1986. * When everything is off disable fdi C so that we could enable fdi B
  1987. * with all lanes. Note that we don't care about enabled pipes without
  1988. * an enabled pch encoder.
  1989. */
  1990. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  1991. !pipe_has_enabled_pch(pipe_C_crtc)) {
  1992. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  1993. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  1994. temp = I915_READ(SOUTH_CHICKEN1);
  1995. temp &= ~FDI_BC_BIFURCATION_SELECT;
  1996. DRM_DEBUG_KMS("disabling fdi C rx\n");
  1997. I915_WRITE(SOUTH_CHICKEN1, temp);
  1998. }
  1999. }
  2000. /* The FDI link training functions for ILK/Ibexpeak. */
  2001. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2002. {
  2003. struct drm_device *dev = crtc->dev;
  2004. struct drm_i915_private *dev_priv = dev->dev_private;
  2005. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2006. int pipe = intel_crtc->pipe;
  2007. int plane = intel_crtc->plane;
  2008. u32 reg, temp, tries;
  2009. /* FDI needs bits from pipe & plane first */
  2010. assert_pipe_enabled(dev_priv, pipe);
  2011. assert_plane_enabled(dev_priv, plane);
  2012. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2013. for train result */
  2014. reg = FDI_RX_IMR(pipe);
  2015. temp = I915_READ(reg);
  2016. temp &= ~FDI_RX_SYMBOL_LOCK;
  2017. temp &= ~FDI_RX_BIT_LOCK;
  2018. I915_WRITE(reg, temp);
  2019. I915_READ(reg);
  2020. udelay(150);
  2021. /* enable CPU FDI TX and PCH FDI RX */
  2022. reg = FDI_TX_CTL(pipe);
  2023. temp = I915_READ(reg);
  2024. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2025. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2026. temp &= ~FDI_LINK_TRAIN_NONE;
  2027. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2028. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2029. reg = FDI_RX_CTL(pipe);
  2030. temp = I915_READ(reg);
  2031. temp &= ~FDI_LINK_TRAIN_NONE;
  2032. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2033. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2034. POSTING_READ(reg);
  2035. udelay(150);
  2036. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2037. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2038. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2039. FDI_RX_PHASE_SYNC_POINTER_EN);
  2040. reg = FDI_RX_IIR(pipe);
  2041. for (tries = 0; tries < 5; tries++) {
  2042. temp = I915_READ(reg);
  2043. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2044. if ((temp & FDI_RX_BIT_LOCK)) {
  2045. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2046. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2047. break;
  2048. }
  2049. }
  2050. if (tries == 5)
  2051. DRM_ERROR("FDI train 1 fail!\n");
  2052. /* Train 2 */
  2053. reg = FDI_TX_CTL(pipe);
  2054. temp = I915_READ(reg);
  2055. temp &= ~FDI_LINK_TRAIN_NONE;
  2056. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2057. I915_WRITE(reg, temp);
  2058. reg = FDI_RX_CTL(pipe);
  2059. temp = I915_READ(reg);
  2060. temp &= ~FDI_LINK_TRAIN_NONE;
  2061. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2062. I915_WRITE(reg, temp);
  2063. POSTING_READ(reg);
  2064. udelay(150);
  2065. reg = FDI_RX_IIR(pipe);
  2066. for (tries = 0; tries < 5; tries++) {
  2067. temp = I915_READ(reg);
  2068. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2069. if (temp & FDI_RX_SYMBOL_LOCK) {
  2070. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2071. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2072. break;
  2073. }
  2074. }
  2075. if (tries == 5)
  2076. DRM_ERROR("FDI train 2 fail!\n");
  2077. DRM_DEBUG_KMS("FDI train done\n");
  2078. }
  2079. static const int snb_b_fdi_train_param[] = {
  2080. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2081. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2082. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2083. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2084. };
  2085. /* The FDI link training functions for SNB/Cougarpoint. */
  2086. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2087. {
  2088. struct drm_device *dev = crtc->dev;
  2089. struct drm_i915_private *dev_priv = dev->dev_private;
  2090. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2091. int pipe = intel_crtc->pipe;
  2092. u32 reg, temp, i, retry;
  2093. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2094. for train result */
  2095. reg = FDI_RX_IMR(pipe);
  2096. temp = I915_READ(reg);
  2097. temp &= ~FDI_RX_SYMBOL_LOCK;
  2098. temp &= ~FDI_RX_BIT_LOCK;
  2099. I915_WRITE(reg, temp);
  2100. POSTING_READ(reg);
  2101. udelay(150);
  2102. /* enable CPU FDI TX and PCH FDI RX */
  2103. reg = FDI_TX_CTL(pipe);
  2104. temp = I915_READ(reg);
  2105. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2106. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2107. temp &= ~FDI_LINK_TRAIN_NONE;
  2108. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2109. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2110. /* SNB-B */
  2111. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2112. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2113. I915_WRITE(FDI_RX_MISC(pipe),
  2114. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2115. reg = FDI_RX_CTL(pipe);
  2116. temp = I915_READ(reg);
  2117. if (HAS_PCH_CPT(dev)) {
  2118. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2119. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2120. } else {
  2121. temp &= ~FDI_LINK_TRAIN_NONE;
  2122. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2123. }
  2124. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2125. POSTING_READ(reg);
  2126. udelay(150);
  2127. for (i = 0; i < 4; i++) {
  2128. reg = FDI_TX_CTL(pipe);
  2129. temp = I915_READ(reg);
  2130. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2131. temp |= snb_b_fdi_train_param[i];
  2132. I915_WRITE(reg, temp);
  2133. POSTING_READ(reg);
  2134. udelay(500);
  2135. for (retry = 0; retry < 5; retry++) {
  2136. reg = FDI_RX_IIR(pipe);
  2137. temp = I915_READ(reg);
  2138. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2139. if (temp & FDI_RX_BIT_LOCK) {
  2140. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2141. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2142. break;
  2143. }
  2144. udelay(50);
  2145. }
  2146. if (retry < 5)
  2147. break;
  2148. }
  2149. if (i == 4)
  2150. DRM_ERROR("FDI train 1 fail!\n");
  2151. /* Train 2 */
  2152. reg = FDI_TX_CTL(pipe);
  2153. temp = I915_READ(reg);
  2154. temp &= ~FDI_LINK_TRAIN_NONE;
  2155. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2156. if (IS_GEN6(dev)) {
  2157. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2158. /* SNB-B */
  2159. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2160. }
  2161. I915_WRITE(reg, temp);
  2162. reg = FDI_RX_CTL(pipe);
  2163. temp = I915_READ(reg);
  2164. if (HAS_PCH_CPT(dev)) {
  2165. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2166. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2167. } else {
  2168. temp &= ~FDI_LINK_TRAIN_NONE;
  2169. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2170. }
  2171. I915_WRITE(reg, temp);
  2172. POSTING_READ(reg);
  2173. udelay(150);
  2174. for (i = 0; i < 4; i++) {
  2175. reg = FDI_TX_CTL(pipe);
  2176. temp = I915_READ(reg);
  2177. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2178. temp |= snb_b_fdi_train_param[i];
  2179. I915_WRITE(reg, temp);
  2180. POSTING_READ(reg);
  2181. udelay(500);
  2182. for (retry = 0; retry < 5; retry++) {
  2183. reg = FDI_RX_IIR(pipe);
  2184. temp = I915_READ(reg);
  2185. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2186. if (temp & FDI_RX_SYMBOL_LOCK) {
  2187. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2188. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2189. break;
  2190. }
  2191. udelay(50);
  2192. }
  2193. if (retry < 5)
  2194. break;
  2195. }
  2196. if (i == 4)
  2197. DRM_ERROR("FDI train 2 fail!\n");
  2198. DRM_DEBUG_KMS("FDI train done.\n");
  2199. }
  2200. /* Manual link training for Ivy Bridge A0 parts */
  2201. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2202. {
  2203. struct drm_device *dev = crtc->dev;
  2204. struct drm_i915_private *dev_priv = dev->dev_private;
  2205. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2206. int pipe = intel_crtc->pipe;
  2207. u32 reg, temp, i;
  2208. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2209. for train result */
  2210. reg = FDI_RX_IMR(pipe);
  2211. temp = I915_READ(reg);
  2212. temp &= ~FDI_RX_SYMBOL_LOCK;
  2213. temp &= ~FDI_RX_BIT_LOCK;
  2214. I915_WRITE(reg, temp);
  2215. POSTING_READ(reg);
  2216. udelay(150);
  2217. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2218. I915_READ(FDI_RX_IIR(pipe)));
  2219. /* enable CPU FDI TX and PCH FDI RX */
  2220. reg = FDI_TX_CTL(pipe);
  2221. temp = I915_READ(reg);
  2222. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2223. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2224. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2225. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2226. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2227. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2228. temp |= FDI_COMPOSITE_SYNC;
  2229. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2230. I915_WRITE(FDI_RX_MISC(pipe),
  2231. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2232. reg = FDI_RX_CTL(pipe);
  2233. temp = I915_READ(reg);
  2234. temp &= ~FDI_LINK_TRAIN_AUTO;
  2235. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2236. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2237. temp |= FDI_COMPOSITE_SYNC;
  2238. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2239. POSTING_READ(reg);
  2240. udelay(150);
  2241. for (i = 0; i < 4; i++) {
  2242. reg = FDI_TX_CTL(pipe);
  2243. temp = I915_READ(reg);
  2244. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2245. temp |= snb_b_fdi_train_param[i];
  2246. I915_WRITE(reg, temp);
  2247. POSTING_READ(reg);
  2248. udelay(500);
  2249. reg = FDI_RX_IIR(pipe);
  2250. temp = I915_READ(reg);
  2251. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2252. if (temp & FDI_RX_BIT_LOCK ||
  2253. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2254. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2255. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2256. break;
  2257. }
  2258. }
  2259. if (i == 4)
  2260. DRM_ERROR("FDI train 1 fail!\n");
  2261. /* Train 2 */
  2262. reg = FDI_TX_CTL(pipe);
  2263. temp = I915_READ(reg);
  2264. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2265. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2266. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2267. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2268. I915_WRITE(reg, temp);
  2269. reg = FDI_RX_CTL(pipe);
  2270. temp = I915_READ(reg);
  2271. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2272. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2273. I915_WRITE(reg, temp);
  2274. POSTING_READ(reg);
  2275. udelay(150);
  2276. for (i = 0; i < 4; i++) {
  2277. reg = FDI_TX_CTL(pipe);
  2278. temp = I915_READ(reg);
  2279. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2280. temp |= snb_b_fdi_train_param[i];
  2281. I915_WRITE(reg, temp);
  2282. POSTING_READ(reg);
  2283. udelay(500);
  2284. reg = FDI_RX_IIR(pipe);
  2285. temp = I915_READ(reg);
  2286. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2287. if (temp & FDI_RX_SYMBOL_LOCK) {
  2288. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2289. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2290. break;
  2291. }
  2292. }
  2293. if (i == 4)
  2294. DRM_ERROR("FDI train 2 fail!\n");
  2295. DRM_DEBUG_KMS("FDI train done.\n");
  2296. }
  2297. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2298. {
  2299. struct drm_device *dev = intel_crtc->base.dev;
  2300. struct drm_i915_private *dev_priv = dev->dev_private;
  2301. int pipe = intel_crtc->pipe;
  2302. u32 reg, temp;
  2303. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2304. reg = FDI_RX_CTL(pipe);
  2305. temp = I915_READ(reg);
  2306. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2307. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2308. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2309. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2310. POSTING_READ(reg);
  2311. udelay(200);
  2312. /* Switch from Rawclk to PCDclk */
  2313. temp = I915_READ(reg);
  2314. I915_WRITE(reg, temp | FDI_PCDCLK);
  2315. POSTING_READ(reg);
  2316. udelay(200);
  2317. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2318. reg = FDI_TX_CTL(pipe);
  2319. temp = I915_READ(reg);
  2320. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2321. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2322. POSTING_READ(reg);
  2323. udelay(100);
  2324. }
  2325. }
  2326. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2327. {
  2328. struct drm_device *dev = intel_crtc->base.dev;
  2329. struct drm_i915_private *dev_priv = dev->dev_private;
  2330. int pipe = intel_crtc->pipe;
  2331. u32 reg, temp;
  2332. /* Switch from PCDclk to Rawclk */
  2333. reg = FDI_RX_CTL(pipe);
  2334. temp = I915_READ(reg);
  2335. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2336. /* Disable CPU FDI TX PLL */
  2337. reg = FDI_TX_CTL(pipe);
  2338. temp = I915_READ(reg);
  2339. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2340. POSTING_READ(reg);
  2341. udelay(100);
  2342. reg = FDI_RX_CTL(pipe);
  2343. temp = I915_READ(reg);
  2344. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2345. /* Wait for the clocks to turn off. */
  2346. POSTING_READ(reg);
  2347. udelay(100);
  2348. }
  2349. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2350. {
  2351. struct drm_device *dev = crtc->dev;
  2352. struct drm_i915_private *dev_priv = dev->dev_private;
  2353. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2354. int pipe = intel_crtc->pipe;
  2355. u32 reg, temp;
  2356. /* disable CPU FDI tx and PCH FDI rx */
  2357. reg = FDI_TX_CTL(pipe);
  2358. temp = I915_READ(reg);
  2359. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2360. POSTING_READ(reg);
  2361. reg = FDI_RX_CTL(pipe);
  2362. temp = I915_READ(reg);
  2363. temp &= ~(0x7 << 16);
  2364. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2365. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2366. POSTING_READ(reg);
  2367. udelay(100);
  2368. /* Ironlake workaround, disable clock pointer after downing FDI */
  2369. if (HAS_PCH_IBX(dev)) {
  2370. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2371. }
  2372. /* still set train pattern 1 */
  2373. reg = FDI_TX_CTL(pipe);
  2374. temp = I915_READ(reg);
  2375. temp &= ~FDI_LINK_TRAIN_NONE;
  2376. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2377. I915_WRITE(reg, temp);
  2378. reg = FDI_RX_CTL(pipe);
  2379. temp = I915_READ(reg);
  2380. if (HAS_PCH_CPT(dev)) {
  2381. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2382. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2383. } else {
  2384. temp &= ~FDI_LINK_TRAIN_NONE;
  2385. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2386. }
  2387. /* BPC in FDI rx is consistent with that in PIPECONF */
  2388. temp &= ~(0x07 << 16);
  2389. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2390. I915_WRITE(reg, temp);
  2391. POSTING_READ(reg);
  2392. udelay(100);
  2393. }
  2394. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2395. {
  2396. struct drm_device *dev = crtc->dev;
  2397. struct drm_i915_private *dev_priv = dev->dev_private;
  2398. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2399. unsigned long flags;
  2400. bool pending;
  2401. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2402. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2403. return false;
  2404. spin_lock_irqsave(&dev->event_lock, flags);
  2405. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2406. spin_unlock_irqrestore(&dev->event_lock, flags);
  2407. return pending;
  2408. }
  2409. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2410. {
  2411. struct drm_device *dev = crtc->dev;
  2412. struct drm_i915_private *dev_priv = dev->dev_private;
  2413. if (crtc->fb == NULL)
  2414. return;
  2415. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2416. wait_event(dev_priv->pending_flip_queue,
  2417. !intel_crtc_has_pending_flip(crtc));
  2418. mutex_lock(&dev->struct_mutex);
  2419. intel_finish_fb(crtc->fb);
  2420. mutex_unlock(&dev->struct_mutex);
  2421. }
  2422. /* Program iCLKIP clock to the desired frequency */
  2423. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2424. {
  2425. struct drm_device *dev = crtc->dev;
  2426. struct drm_i915_private *dev_priv = dev->dev_private;
  2427. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2428. u32 temp;
  2429. mutex_lock(&dev_priv->dpio_lock);
  2430. /* It is necessary to ungate the pixclk gate prior to programming
  2431. * the divisors, and gate it back when it is done.
  2432. */
  2433. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2434. /* Disable SSCCTL */
  2435. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2436. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2437. SBI_SSCCTL_DISABLE,
  2438. SBI_ICLK);
  2439. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2440. if (crtc->mode.clock == 20000) {
  2441. auxdiv = 1;
  2442. divsel = 0x41;
  2443. phaseinc = 0x20;
  2444. } else {
  2445. /* The iCLK virtual clock root frequency is in MHz,
  2446. * but the crtc->mode.clock in in KHz. To get the divisors,
  2447. * it is necessary to divide one by another, so we
  2448. * convert the virtual clock precision to KHz here for higher
  2449. * precision.
  2450. */
  2451. u32 iclk_virtual_root_freq = 172800 * 1000;
  2452. u32 iclk_pi_range = 64;
  2453. u32 desired_divisor, msb_divisor_value, pi_value;
  2454. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2455. msb_divisor_value = desired_divisor / iclk_pi_range;
  2456. pi_value = desired_divisor % iclk_pi_range;
  2457. auxdiv = 0;
  2458. divsel = msb_divisor_value - 2;
  2459. phaseinc = pi_value;
  2460. }
  2461. /* This should not happen with any sane values */
  2462. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2463. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2464. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2465. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2466. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2467. crtc->mode.clock,
  2468. auxdiv,
  2469. divsel,
  2470. phasedir,
  2471. phaseinc);
  2472. /* Program SSCDIVINTPHASE6 */
  2473. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2474. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2475. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2476. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2477. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2478. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2479. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2480. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2481. /* Program SSCAUXDIV */
  2482. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2483. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2484. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2485. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2486. /* Enable modulator and associated divider */
  2487. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2488. temp &= ~SBI_SSCCTL_DISABLE;
  2489. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2490. /* Wait for initialization time */
  2491. udelay(24);
  2492. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2493. mutex_unlock(&dev_priv->dpio_lock);
  2494. }
  2495. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2496. enum pipe pch_transcoder)
  2497. {
  2498. struct drm_device *dev = crtc->base.dev;
  2499. struct drm_i915_private *dev_priv = dev->dev_private;
  2500. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2501. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2502. I915_READ(HTOTAL(cpu_transcoder)));
  2503. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2504. I915_READ(HBLANK(cpu_transcoder)));
  2505. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2506. I915_READ(HSYNC(cpu_transcoder)));
  2507. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2508. I915_READ(VTOTAL(cpu_transcoder)));
  2509. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2510. I915_READ(VBLANK(cpu_transcoder)));
  2511. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2512. I915_READ(VSYNC(cpu_transcoder)));
  2513. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2514. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2515. }
  2516. /*
  2517. * Enable PCH resources required for PCH ports:
  2518. * - PCH PLLs
  2519. * - FDI training & RX/TX
  2520. * - update transcoder timings
  2521. * - DP transcoding bits
  2522. * - transcoder
  2523. */
  2524. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2525. {
  2526. struct drm_device *dev = crtc->dev;
  2527. struct drm_i915_private *dev_priv = dev->dev_private;
  2528. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2529. int pipe = intel_crtc->pipe;
  2530. u32 reg, temp;
  2531. assert_pch_transcoder_disabled(dev_priv, pipe);
  2532. /* Write the TU size bits before fdi link training, so that error
  2533. * detection works. */
  2534. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2535. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2536. /* For PCH output, training FDI link */
  2537. dev_priv->display.fdi_link_train(crtc);
  2538. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2539. * transcoder, and we actually should do this to not upset any PCH
  2540. * transcoder that already use the clock when we share it.
  2541. *
  2542. * Note that enable_shared_dpll tries to do the right thing, but
  2543. * get_shared_dpll unconditionally resets the pll - we need that to have
  2544. * the right LVDS enable sequence. */
  2545. ironlake_enable_shared_dpll(intel_crtc);
  2546. if (HAS_PCH_CPT(dev)) {
  2547. u32 sel;
  2548. temp = I915_READ(PCH_DPLL_SEL);
  2549. temp |= TRANS_DPLL_ENABLE(pipe);
  2550. sel = TRANS_DPLLB_SEL(pipe);
  2551. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2552. temp |= sel;
  2553. else
  2554. temp &= ~sel;
  2555. I915_WRITE(PCH_DPLL_SEL, temp);
  2556. }
  2557. /* set transcoder timing, panel must allow it */
  2558. assert_panel_unlocked(dev_priv, pipe);
  2559. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2560. intel_fdi_normal_train(crtc);
  2561. /* For PCH DP, enable TRANS_DP_CTL */
  2562. if (HAS_PCH_CPT(dev) &&
  2563. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2564. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2565. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2566. reg = TRANS_DP_CTL(pipe);
  2567. temp = I915_READ(reg);
  2568. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2569. TRANS_DP_SYNC_MASK |
  2570. TRANS_DP_BPC_MASK);
  2571. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2572. TRANS_DP_ENH_FRAMING);
  2573. temp |= bpc << 9; /* same format but at 11:9 */
  2574. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2575. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2576. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2577. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2578. switch (intel_trans_dp_port_sel(crtc)) {
  2579. case PCH_DP_B:
  2580. temp |= TRANS_DP_PORT_SEL_B;
  2581. break;
  2582. case PCH_DP_C:
  2583. temp |= TRANS_DP_PORT_SEL_C;
  2584. break;
  2585. case PCH_DP_D:
  2586. temp |= TRANS_DP_PORT_SEL_D;
  2587. break;
  2588. default:
  2589. BUG();
  2590. }
  2591. I915_WRITE(reg, temp);
  2592. }
  2593. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2594. }
  2595. static void lpt_pch_enable(struct drm_crtc *crtc)
  2596. {
  2597. struct drm_device *dev = crtc->dev;
  2598. struct drm_i915_private *dev_priv = dev->dev_private;
  2599. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2600. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2601. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2602. lpt_program_iclkip(crtc);
  2603. /* Set transcoder timing. */
  2604. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2605. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2606. }
  2607. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2608. {
  2609. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2610. if (pll == NULL)
  2611. return;
  2612. if (pll->refcount == 0) {
  2613. WARN(1, "bad %s refcount\n", pll->name);
  2614. return;
  2615. }
  2616. if (--pll->refcount == 0) {
  2617. WARN_ON(pll->on);
  2618. WARN_ON(pll->active);
  2619. }
  2620. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2621. }
  2622. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc, u32 dpll, u32 fp)
  2623. {
  2624. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2625. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2626. enum intel_dpll_id i;
  2627. if (pll) {
  2628. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2629. crtc->base.base.id, pll->name);
  2630. intel_put_shared_dpll(crtc);
  2631. }
  2632. if (HAS_PCH_IBX(dev_priv->dev)) {
  2633. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2634. i = crtc->pipe;
  2635. pll = &dev_priv->shared_dplls[i];
  2636. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2637. crtc->base.base.id, pll->name);
  2638. goto found;
  2639. }
  2640. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2641. pll = &dev_priv->shared_dplls[i];
  2642. /* Only want to check enabled timings first */
  2643. if (pll->refcount == 0)
  2644. continue;
  2645. if (dpll == (I915_READ(PCH_DPLL(pll->id)) & 0x7fffffff) &&
  2646. fp == I915_READ(PCH_FP0(pll->id))) {
  2647. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2648. crtc->base.base.id,
  2649. pll->name, pll->refcount, pll->active);
  2650. goto found;
  2651. }
  2652. }
  2653. /* Ok no matching timings, maybe there's a free one? */
  2654. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2655. pll = &dev_priv->shared_dplls[i];
  2656. if (pll->refcount == 0) {
  2657. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2658. crtc->base.base.id, pll->name);
  2659. goto found;
  2660. }
  2661. }
  2662. return NULL;
  2663. found:
  2664. crtc->config.shared_dpll = i;
  2665. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2666. pipe_name(crtc->pipe));
  2667. if (pll->active == 0) {
  2668. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2669. sizeof(pll->hw_state));
  2670. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2671. WARN_ON(pll->on);
  2672. assert_shared_dpll_disabled(dev_priv, pll);
  2673. /* Wait for the clocks to stabilize before rewriting the regs */
  2674. I915_WRITE(PCH_DPLL(pll->id), dpll & ~DPLL_VCO_ENABLE);
  2675. POSTING_READ(PCH_DPLL(pll->id));
  2676. udelay(150);
  2677. I915_WRITE(PCH_FP0(pll->id), fp);
  2678. I915_WRITE(PCH_DPLL(pll->id), dpll & ~DPLL_VCO_ENABLE);
  2679. }
  2680. pll->refcount++;
  2681. return pll;
  2682. }
  2683. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2684. {
  2685. struct drm_i915_private *dev_priv = dev->dev_private;
  2686. int dslreg = PIPEDSL(pipe);
  2687. u32 temp;
  2688. temp = I915_READ(dslreg);
  2689. udelay(500);
  2690. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2691. if (wait_for(I915_READ(dslreg) != temp, 5))
  2692. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2693. }
  2694. }
  2695. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2696. {
  2697. struct drm_device *dev = crtc->base.dev;
  2698. struct drm_i915_private *dev_priv = dev->dev_private;
  2699. int pipe = crtc->pipe;
  2700. if (crtc->config.pch_pfit.size) {
  2701. /* Force use of hard-coded filter coefficients
  2702. * as some pre-programmed values are broken,
  2703. * e.g. x201.
  2704. */
  2705. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2706. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2707. PF_PIPE_SEL_IVB(pipe));
  2708. else
  2709. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2710. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2711. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2712. }
  2713. }
  2714. static void intel_enable_planes(struct drm_crtc *crtc)
  2715. {
  2716. struct drm_device *dev = crtc->dev;
  2717. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2718. struct intel_plane *intel_plane;
  2719. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2720. if (intel_plane->pipe == pipe)
  2721. intel_plane_restore(&intel_plane->base);
  2722. }
  2723. static void intel_disable_planes(struct drm_crtc *crtc)
  2724. {
  2725. struct drm_device *dev = crtc->dev;
  2726. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2727. struct intel_plane *intel_plane;
  2728. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2729. if (intel_plane->pipe == pipe)
  2730. intel_plane_disable(&intel_plane->base);
  2731. }
  2732. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2733. {
  2734. struct drm_device *dev = crtc->dev;
  2735. struct drm_i915_private *dev_priv = dev->dev_private;
  2736. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2737. struct intel_encoder *encoder;
  2738. int pipe = intel_crtc->pipe;
  2739. int plane = intel_crtc->plane;
  2740. u32 temp;
  2741. WARN_ON(!crtc->enabled);
  2742. if (intel_crtc->active)
  2743. return;
  2744. intel_crtc->active = true;
  2745. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2746. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2747. intel_update_watermarks(dev);
  2748. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2749. temp = I915_READ(PCH_LVDS);
  2750. if ((temp & LVDS_PORT_EN) == 0)
  2751. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2752. }
  2753. if (intel_crtc->config.has_pch_encoder) {
  2754. /* Note: FDI PLL enabling _must_ be done before we enable the
  2755. * cpu pipes, hence this is separate from all the other fdi/pch
  2756. * enabling. */
  2757. ironlake_fdi_pll_enable(intel_crtc);
  2758. } else {
  2759. assert_fdi_tx_disabled(dev_priv, pipe);
  2760. assert_fdi_rx_disabled(dev_priv, pipe);
  2761. }
  2762. for_each_encoder_on_crtc(dev, crtc, encoder)
  2763. if (encoder->pre_enable)
  2764. encoder->pre_enable(encoder);
  2765. /* Enable panel fitting for LVDS */
  2766. ironlake_pfit_enable(intel_crtc);
  2767. /*
  2768. * On ILK+ LUT must be loaded before the pipe is running but with
  2769. * clocks enabled
  2770. */
  2771. intel_crtc_load_lut(crtc);
  2772. intel_enable_pipe(dev_priv, pipe,
  2773. intel_crtc->config.has_pch_encoder);
  2774. intel_enable_plane(dev_priv, plane, pipe);
  2775. intel_enable_planes(crtc);
  2776. intel_crtc_update_cursor(crtc, true);
  2777. if (intel_crtc->config.has_pch_encoder)
  2778. ironlake_pch_enable(crtc);
  2779. mutex_lock(&dev->struct_mutex);
  2780. intel_update_fbc(dev);
  2781. mutex_unlock(&dev->struct_mutex);
  2782. for_each_encoder_on_crtc(dev, crtc, encoder)
  2783. encoder->enable(encoder);
  2784. if (HAS_PCH_CPT(dev))
  2785. cpt_verify_modeset(dev, intel_crtc->pipe);
  2786. /*
  2787. * There seems to be a race in PCH platform hw (at least on some
  2788. * outputs) where an enabled pipe still completes any pageflip right
  2789. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2790. * as the first vblank happend, everything works as expected. Hence just
  2791. * wait for one vblank before returning to avoid strange things
  2792. * happening.
  2793. */
  2794. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2795. }
  2796. /* IPS only exists on ULT machines and is tied to pipe A. */
  2797. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2798. {
  2799. return IS_ULT(crtc->base.dev) && crtc->pipe == PIPE_A;
  2800. }
  2801. static void hsw_enable_ips(struct intel_crtc *crtc)
  2802. {
  2803. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2804. if (!crtc->config.ips_enabled)
  2805. return;
  2806. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2807. * We guarantee that the plane is enabled by calling intel_enable_ips
  2808. * only after intel_enable_plane. And intel_enable_plane already waits
  2809. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2810. assert_plane_enabled(dev_priv, crtc->plane);
  2811. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2812. }
  2813. static void hsw_disable_ips(struct intel_crtc *crtc)
  2814. {
  2815. struct drm_device *dev = crtc->base.dev;
  2816. struct drm_i915_private *dev_priv = dev->dev_private;
  2817. if (!crtc->config.ips_enabled)
  2818. return;
  2819. assert_plane_enabled(dev_priv, crtc->plane);
  2820. I915_WRITE(IPS_CTL, 0);
  2821. /* We need to wait for a vblank before we can disable the plane. */
  2822. intel_wait_for_vblank(dev, crtc->pipe);
  2823. }
  2824. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2825. {
  2826. struct drm_device *dev = crtc->dev;
  2827. struct drm_i915_private *dev_priv = dev->dev_private;
  2828. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2829. struct intel_encoder *encoder;
  2830. int pipe = intel_crtc->pipe;
  2831. int plane = intel_crtc->plane;
  2832. WARN_ON(!crtc->enabled);
  2833. if (intel_crtc->active)
  2834. return;
  2835. intel_crtc->active = true;
  2836. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2837. if (intel_crtc->config.has_pch_encoder)
  2838. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2839. intel_update_watermarks(dev);
  2840. if (intel_crtc->config.has_pch_encoder)
  2841. dev_priv->display.fdi_link_train(crtc);
  2842. for_each_encoder_on_crtc(dev, crtc, encoder)
  2843. if (encoder->pre_enable)
  2844. encoder->pre_enable(encoder);
  2845. intel_ddi_enable_pipe_clock(intel_crtc);
  2846. /* Enable panel fitting for eDP */
  2847. ironlake_pfit_enable(intel_crtc);
  2848. /*
  2849. * On ILK+ LUT must be loaded before the pipe is running but with
  2850. * clocks enabled
  2851. */
  2852. intel_crtc_load_lut(crtc);
  2853. intel_ddi_set_pipe_settings(crtc);
  2854. intel_ddi_enable_transcoder_func(crtc);
  2855. intel_enable_pipe(dev_priv, pipe,
  2856. intel_crtc->config.has_pch_encoder);
  2857. intel_enable_plane(dev_priv, plane, pipe);
  2858. intel_enable_planes(crtc);
  2859. intel_crtc_update_cursor(crtc, true);
  2860. hsw_enable_ips(intel_crtc);
  2861. if (intel_crtc->config.has_pch_encoder)
  2862. lpt_pch_enable(crtc);
  2863. mutex_lock(&dev->struct_mutex);
  2864. intel_update_fbc(dev);
  2865. mutex_unlock(&dev->struct_mutex);
  2866. for_each_encoder_on_crtc(dev, crtc, encoder)
  2867. encoder->enable(encoder);
  2868. /*
  2869. * There seems to be a race in PCH platform hw (at least on some
  2870. * outputs) where an enabled pipe still completes any pageflip right
  2871. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2872. * as the first vblank happend, everything works as expected. Hence just
  2873. * wait for one vblank before returning to avoid strange things
  2874. * happening.
  2875. */
  2876. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2877. }
  2878. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2879. {
  2880. struct drm_device *dev = crtc->base.dev;
  2881. struct drm_i915_private *dev_priv = dev->dev_private;
  2882. int pipe = crtc->pipe;
  2883. /* To avoid upsetting the power well on haswell only disable the pfit if
  2884. * it's in use. The hw state code will make sure we get this right. */
  2885. if (crtc->config.pch_pfit.size) {
  2886. I915_WRITE(PF_CTL(pipe), 0);
  2887. I915_WRITE(PF_WIN_POS(pipe), 0);
  2888. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2889. }
  2890. }
  2891. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2892. {
  2893. struct drm_device *dev = crtc->dev;
  2894. struct drm_i915_private *dev_priv = dev->dev_private;
  2895. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2896. struct intel_encoder *encoder;
  2897. int pipe = intel_crtc->pipe;
  2898. int plane = intel_crtc->plane;
  2899. u32 reg, temp;
  2900. if (!intel_crtc->active)
  2901. return;
  2902. for_each_encoder_on_crtc(dev, crtc, encoder)
  2903. encoder->disable(encoder);
  2904. intel_crtc_wait_for_pending_flips(crtc);
  2905. drm_vblank_off(dev, pipe);
  2906. if (dev_priv->cfb_plane == plane)
  2907. intel_disable_fbc(dev);
  2908. intel_crtc_update_cursor(crtc, false);
  2909. intel_disable_planes(crtc);
  2910. intel_disable_plane(dev_priv, plane, pipe);
  2911. if (intel_crtc->config.has_pch_encoder)
  2912. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2913. intel_disable_pipe(dev_priv, pipe);
  2914. ironlake_pfit_disable(intel_crtc);
  2915. for_each_encoder_on_crtc(dev, crtc, encoder)
  2916. if (encoder->post_disable)
  2917. encoder->post_disable(encoder);
  2918. if (intel_crtc->config.has_pch_encoder) {
  2919. ironlake_fdi_disable(crtc);
  2920. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2921. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2922. if (HAS_PCH_CPT(dev)) {
  2923. /* disable TRANS_DP_CTL */
  2924. reg = TRANS_DP_CTL(pipe);
  2925. temp = I915_READ(reg);
  2926. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  2927. TRANS_DP_PORT_SEL_MASK);
  2928. temp |= TRANS_DP_PORT_SEL_NONE;
  2929. I915_WRITE(reg, temp);
  2930. /* disable DPLL_SEL */
  2931. temp = I915_READ(PCH_DPLL_SEL);
  2932. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  2933. I915_WRITE(PCH_DPLL_SEL, temp);
  2934. }
  2935. /* disable PCH DPLL */
  2936. intel_disable_shared_dpll(intel_crtc);
  2937. ironlake_fdi_pll_disable(intel_crtc);
  2938. }
  2939. intel_crtc->active = false;
  2940. intel_update_watermarks(dev);
  2941. mutex_lock(&dev->struct_mutex);
  2942. intel_update_fbc(dev);
  2943. mutex_unlock(&dev->struct_mutex);
  2944. }
  2945. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2946. {
  2947. struct drm_device *dev = crtc->dev;
  2948. struct drm_i915_private *dev_priv = dev->dev_private;
  2949. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2950. struct intel_encoder *encoder;
  2951. int pipe = intel_crtc->pipe;
  2952. int plane = intel_crtc->plane;
  2953. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2954. if (!intel_crtc->active)
  2955. return;
  2956. for_each_encoder_on_crtc(dev, crtc, encoder)
  2957. encoder->disable(encoder);
  2958. intel_crtc_wait_for_pending_flips(crtc);
  2959. drm_vblank_off(dev, pipe);
  2960. /* FBC must be disabled before disabling the plane on HSW. */
  2961. if (dev_priv->cfb_plane == plane)
  2962. intel_disable_fbc(dev);
  2963. hsw_disable_ips(intel_crtc);
  2964. intel_crtc_update_cursor(crtc, false);
  2965. intel_disable_planes(crtc);
  2966. intel_disable_plane(dev_priv, plane, pipe);
  2967. if (intel_crtc->config.has_pch_encoder)
  2968. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  2969. intel_disable_pipe(dev_priv, pipe);
  2970. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  2971. ironlake_pfit_disable(intel_crtc);
  2972. intel_ddi_disable_pipe_clock(intel_crtc);
  2973. for_each_encoder_on_crtc(dev, crtc, encoder)
  2974. if (encoder->post_disable)
  2975. encoder->post_disable(encoder);
  2976. if (intel_crtc->config.has_pch_encoder) {
  2977. lpt_disable_pch_transcoder(dev_priv);
  2978. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2979. intel_ddi_fdi_disable(crtc);
  2980. }
  2981. intel_crtc->active = false;
  2982. intel_update_watermarks(dev);
  2983. mutex_lock(&dev->struct_mutex);
  2984. intel_update_fbc(dev);
  2985. mutex_unlock(&dev->struct_mutex);
  2986. }
  2987. static void ironlake_crtc_off(struct drm_crtc *crtc)
  2988. {
  2989. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2990. intel_put_shared_dpll(intel_crtc);
  2991. }
  2992. static void haswell_crtc_off(struct drm_crtc *crtc)
  2993. {
  2994. intel_ddi_put_crtc_pll(crtc);
  2995. }
  2996. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2997. {
  2998. if (!enable && intel_crtc->overlay) {
  2999. struct drm_device *dev = intel_crtc->base.dev;
  3000. struct drm_i915_private *dev_priv = dev->dev_private;
  3001. mutex_lock(&dev->struct_mutex);
  3002. dev_priv->mm.interruptible = false;
  3003. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3004. dev_priv->mm.interruptible = true;
  3005. mutex_unlock(&dev->struct_mutex);
  3006. }
  3007. /* Let userspace switch the overlay on again. In most cases userspace
  3008. * has to recompute where to put it anyway.
  3009. */
  3010. }
  3011. /**
  3012. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3013. * cursor plane briefly if not already running after enabling the display
  3014. * plane.
  3015. * This workaround avoids occasional blank screens when self refresh is
  3016. * enabled.
  3017. */
  3018. static void
  3019. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3020. {
  3021. u32 cntl = I915_READ(CURCNTR(pipe));
  3022. if ((cntl & CURSOR_MODE) == 0) {
  3023. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3024. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3025. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3026. intel_wait_for_vblank(dev_priv->dev, pipe);
  3027. I915_WRITE(CURCNTR(pipe), cntl);
  3028. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3029. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3030. }
  3031. }
  3032. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3033. {
  3034. struct drm_device *dev = crtc->base.dev;
  3035. struct drm_i915_private *dev_priv = dev->dev_private;
  3036. struct intel_crtc_config *pipe_config = &crtc->config;
  3037. if (!crtc->config.gmch_pfit.control)
  3038. return;
  3039. /*
  3040. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3041. * according to register description and PRM.
  3042. */
  3043. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3044. assert_pipe_disabled(dev_priv, crtc->pipe);
  3045. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3046. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3047. /* Border color in case we don't scale up to the full screen. Black by
  3048. * default, change to something else for debugging. */
  3049. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3050. }
  3051. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3052. {
  3053. struct drm_device *dev = crtc->dev;
  3054. struct drm_i915_private *dev_priv = dev->dev_private;
  3055. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3056. struct intel_encoder *encoder;
  3057. int pipe = intel_crtc->pipe;
  3058. int plane = intel_crtc->plane;
  3059. WARN_ON(!crtc->enabled);
  3060. if (intel_crtc->active)
  3061. return;
  3062. intel_crtc->active = true;
  3063. intel_update_watermarks(dev);
  3064. mutex_lock(&dev_priv->dpio_lock);
  3065. for_each_encoder_on_crtc(dev, crtc, encoder)
  3066. if (encoder->pre_pll_enable)
  3067. encoder->pre_pll_enable(encoder);
  3068. intel_enable_pll(dev_priv, pipe);
  3069. for_each_encoder_on_crtc(dev, crtc, encoder)
  3070. if (encoder->pre_enable)
  3071. encoder->pre_enable(encoder);
  3072. /* VLV wants encoder enabling _before_ the pipe is up. */
  3073. for_each_encoder_on_crtc(dev, crtc, encoder)
  3074. encoder->enable(encoder);
  3075. /* Enable panel fitting for eDP */
  3076. i9xx_pfit_enable(intel_crtc);
  3077. intel_crtc_load_lut(crtc);
  3078. intel_enable_pipe(dev_priv, pipe, false);
  3079. intel_enable_plane(dev_priv, plane, pipe);
  3080. intel_enable_planes(crtc);
  3081. intel_crtc_update_cursor(crtc, true);
  3082. intel_update_fbc(dev);
  3083. mutex_unlock(&dev_priv->dpio_lock);
  3084. }
  3085. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3086. {
  3087. struct drm_device *dev = crtc->dev;
  3088. struct drm_i915_private *dev_priv = dev->dev_private;
  3089. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3090. struct intel_encoder *encoder;
  3091. int pipe = intel_crtc->pipe;
  3092. int plane = intel_crtc->plane;
  3093. WARN_ON(!crtc->enabled);
  3094. if (intel_crtc->active)
  3095. return;
  3096. intel_crtc->active = true;
  3097. intel_update_watermarks(dev);
  3098. intel_enable_pll(dev_priv, pipe);
  3099. for_each_encoder_on_crtc(dev, crtc, encoder)
  3100. if (encoder->pre_enable)
  3101. encoder->pre_enable(encoder);
  3102. /* Enable panel fitting for LVDS */
  3103. i9xx_pfit_enable(intel_crtc);
  3104. intel_crtc_load_lut(crtc);
  3105. intel_enable_pipe(dev_priv, pipe, false);
  3106. intel_enable_plane(dev_priv, plane, pipe);
  3107. intel_enable_planes(crtc);
  3108. /* The fixup needs to happen before cursor is enabled */
  3109. if (IS_G4X(dev))
  3110. g4x_fixup_plane(dev_priv, pipe);
  3111. intel_crtc_update_cursor(crtc, true);
  3112. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3113. intel_crtc_dpms_overlay(intel_crtc, true);
  3114. intel_update_fbc(dev);
  3115. for_each_encoder_on_crtc(dev, crtc, encoder)
  3116. encoder->enable(encoder);
  3117. }
  3118. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3119. {
  3120. struct drm_device *dev = crtc->base.dev;
  3121. struct drm_i915_private *dev_priv = dev->dev_private;
  3122. if (!crtc->config.gmch_pfit.control)
  3123. return;
  3124. assert_pipe_disabled(dev_priv, crtc->pipe);
  3125. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3126. I915_READ(PFIT_CONTROL));
  3127. I915_WRITE(PFIT_CONTROL, 0);
  3128. }
  3129. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3130. {
  3131. struct drm_device *dev = crtc->dev;
  3132. struct drm_i915_private *dev_priv = dev->dev_private;
  3133. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3134. struct intel_encoder *encoder;
  3135. int pipe = intel_crtc->pipe;
  3136. int plane = intel_crtc->plane;
  3137. if (!intel_crtc->active)
  3138. return;
  3139. for_each_encoder_on_crtc(dev, crtc, encoder)
  3140. encoder->disable(encoder);
  3141. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3142. intel_crtc_wait_for_pending_flips(crtc);
  3143. drm_vblank_off(dev, pipe);
  3144. if (dev_priv->cfb_plane == plane)
  3145. intel_disable_fbc(dev);
  3146. intel_crtc_dpms_overlay(intel_crtc, false);
  3147. intel_crtc_update_cursor(crtc, false);
  3148. intel_disable_planes(crtc);
  3149. intel_disable_plane(dev_priv, plane, pipe);
  3150. intel_disable_pipe(dev_priv, pipe);
  3151. i9xx_pfit_disable(intel_crtc);
  3152. for_each_encoder_on_crtc(dev, crtc, encoder)
  3153. if (encoder->post_disable)
  3154. encoder->post_disable(encoder);
  3155. intel_disable_pll(dev_priv, pipe);
  3156. intel_crtc->active = false;
  3157. intel_update_fbc(dev);
  3158. intel_update_watermarks(dev);
  3159. }
  3160. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3161. {
  3162. }
  3163. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3164. bool enabled)
  3165. {
  3166. struct drm_device *dev = crtc->dev;
  3167. struct drm_i915_master_private *master_priv;
  3168. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3169. int pipe = intel_crtc->pipe;
  3170. if (!dev->primary->master)
  3171. return;
  3172. master_priv = dev->primary->master->driver_priv;
  3173. if (!master_priv->sarea_priv)
  3174. return;
  3175. switch (pipe) {
  3176. case 0:
  3177. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3178. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3179. break;
  3180. case 1:
  3181. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3182. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3183. break;
  3184. default:
  3185. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3186. break;
  3187. }
  3188. }
  3189. /**
  3190. * Sets the power management mode of the pipe and plane.
  3191. */
  3192. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3193. {
  3194. struct drm_device *dev = crtc->dev;
  3195. struct drm_i915_private *dev_priv = dev->dev_private;
  3196. struct intel_encoder *intel_encoder;
  3197. bool enable = false;
  3198. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3199. enable |= intel_encoder->connectors_active;
  3200. if (enable)
  3201. dev_priv->display.crtc_enable(crtc);
  3202. else
  3203. dev_priv->display.crtc_disable(crtc);
  3204. intel_crtc_update_sarea(crtc, enable);
  3205. }
  3206. static void intel_crtc_disable(struct drm_crtc *crtc)
  3207. {
  3208. struct drm_device *dev = crtc->dev;
  3209. struct drm_connector *connector;
  3210. struct drm_i915_private *dev_priv = dev->dev_private;
  3211. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3212. /* crtc should still be enabled when we disable it. */
  3213. WARN_ON(!crtc->enabled);
  3214. dev_priv->display.crtc_disable(crtc);
  3215. intel_crtc->eld_vld = false;
  3216. intel_crtc_update_sarea(crtc, false);
  3217. dev_priv->display.off(crtc);
  3218. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3219. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3220. if (crtc->fb) {
  3221. mutex_lock(&dev->struct_mutex);
  3222. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3223. mutex_unlock(&dev->struct_mutex);
  3224. crtc->fb = NULL;
  3225. }
  3226. /* Update computed state. */
  3227. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3228. if (!connector->encoder || !connector->encoder->crtc)
  3229. continue;
  3230. if (connector->encoder->crtc != crtc)
  3231. continue;
  3232. connector->dpms = DRM_MODE_DPMS_OFF;
  3233. to_intel_encoder(connector->encoder)->connectors_active = false;
  3234. }
  3235. }
  3236. void intel_modeset_disable(struct drm_device *dev)
  3237. {
  3238. struct drm_crtc *crtc;
  3239. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3240. if (crtc->enabled)
  3241. intel_crtc_disable(crtc);
  3242. }
  3243. }
  3244. void intel_encoder_destroy(struct drm_encoder *encoder)
  3245. {
  3246. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3247. drm_encoder_cleanup(encoder);
  3248. kfree(intel_encoder);
  3249. }
  3250. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3251. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3252. * state of the entire output pipe. */
  3253. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3254. {
  3255. if (mode == DRM_MODE_DPMS_ON) {
  3256. encoder->connectors_active = true;
  3257. intel_crtc_update_dpms(encoder->base.crtc);
  3258. } else {
  3259. encoder->connectors_active = false;
  3260. intel_crtc_update_dpms(encoder->base.crtc);
  3261. }
  3262. }
  3263. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3264. * internal consistency). */
  3265. static void intel_connector_check_state(struct intel_connector *connector)
  3266. {
  3267. if (connector->get_hw_state(connector)) {
  3268. struct intel_encoder *encoder = connector->encoder;
  3269. struct drm_crtc *crtc;
  3270. bool encoder_enabled;
  3271. enum pipe pipe;
  3272. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3273. connector->base.base.id,
  3274. drm_get_connector_name(&connector->base));
  3275. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3276. "wrong connector dpms state\n");
  3277. WARN(connector->base.encoder != &encoder->base,
  3278. "active connector not linked to encoder\n");
  3279. WARN(!encoder->connectors_active,
  3280. "encoder->connectors_active not set\n");
  3281. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3282. WARN(!encoder_enabled, "encoder not enabled\n");
  3283. if (WARN_ON(!encoder->base.crtc))
  3284. return;
  3285. crtc = encoder->base.crtc;
  3286. WARN(!crtc->enabled, "crtc not enabled\n");
  3287. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3288. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3289. "encoder active on the wrong pipe\n");
  3290. }
  3291. }
  3292. /* Even simpler default implementation, if there's really no special case to
  3293. * consider. */
  3294. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3295. {
  3296. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3297. /* All the simple cases only support two dpms states. */
  3298. if (mode != DRM_MODE_DPMS_ON)
  3299. mode = DRM_MODE_DPMS_OFF;
  3300. if (mode == connector->dpms)
  3301. return;
  3302. connector->dpms = mode;
  3303. /* Only need to change hw state when actually enabled */
  3304. if (encoder->base.crtc)
  3305. intel_encoder_dpms(encoder, mode);
  3306. else
  3307. WARN_ON(encoder->connectors_active != false);
  3308. intel_modeset_check_state(connector->dev);
  3309. }
  3310. /* Simple connector->get_hw_state implementation for encoders that support only
  3311. * one connector and no cloning and hence the encoder state determines the state
  3312. * of the connector. */
  3313. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3314. {
  3315. enum pipe pipe = 0;
  3316. struct intel_encoder *encoder = connector->encoder;
  3317. return encoder->get_hw_state(encoder, &pipe);
  3318. }
  3319. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3320. struct intel_crtc_config *pipe_config)
  3321. {
  3322. struct drm_i915_private *dev_priv = dev->dev_private;
  3323. struct intel_crtc *pipe_B_crtc =
  3324. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3325. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3326. pipe_name(pipe), pipe_config->fdi_lanes);
  3327. if (pipe_config->fdi_lanes > 4) {
  3328. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3329. pipe_name(pipe), pipe_config->fdi_lanes);
  3330. return false;
  3331. }
  3332. if (IS_HASWELL(dev)) {
  3333. if (pipe_config->fdi_lanes > 2) {
  3334. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3335. pipe_config->fdi_lanes);
  3336. return false;
  3337. } else {
  3338. return true;
  3339. }
  3340. }
  3341. if (INTEL_INFO(dev)->num_pipes == 2)
  3342. return true;
  3343. /* Ivybridge 3 pipe is really complicated */
  3344. switch (pipe) {
  3345. case PIPE_A:
  3346. return true;
  3347. case PIPE_B:
  3348. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3349. pipe_config->fdi_lanes > 2) {
  3350. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3351. pipe_name(pipe), pipe_config->fdi_lanes);
  3352. return false;
  3353. }
  3354. return true;
  3355. case PIPE_C:
  3356. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3357. pipe_B_crtc->config.fdi_lanes <= 2) {
  3358. if (pipe_config->fdi_lanes > 2) {
  3359. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3360. pipe_name(pipe), pipe_config->fdi_lanes);
  3361. return false;
  3362. }
  3363. } else {
  3364. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3365. return false;
  3366. }
  3367. return true;
  3368. default:
  3369. BUG();
  3370. }
  3371. }
  3372. #define RETRY 1
  3373. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3374. struct intel_crtc_config *pipe_config)
  3375. {
  3376. struct drm_device *dev = intel_crtc->base.dev;
  3377. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3378. int lane, link_bw, fdi_dotclock;
  3379. bool setup_ok, needs_recompute = false;
  3380. retry:
  3381. /* FDI is a binary signal running at ~2.7GHz, encoding
  3382. * each output octet as 10 bits. The actual frequency
  3383. * is stored as a divider into a 100MHz clock, and the
  3384. * mode pixel clock is stored in units of 1KHz.
  3385. * Hence the bw of each lane in terms of the mode signal
  3386. * is:
  3387. */
  3388. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3389. fdi_dotclock = adjusted_mode->clock;
  3390. fdi_dotclock /= pipe_config->pixel_multiplier;
  3391. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3392. pipe_config->pipe_bpp);
  3393. pipe_config->fdi_lanes = lane;
  3394. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3395. link_bw, &pipe_config->fdi_m_n);
  3396. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3397. intel_crtc->pipe, pipe_config);
  3398. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3399. pipe_config->pipe_bpp -= 2*3;
  3400. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3401. pipe_config->pipe_bpp);
  3402. needs_recompute = true;
  3403. pipe_config->bw_constrained = true;
  3404. goto retry;
  3405. }
  3406. if (needs_recompute)
  3407. return RETRY;
  3408. return setup_ok ? 0 : -EINVAL;
  3409. }
  3410. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3411. struct intel_crtc_config *pipe_config)
  3412. {
  3413. pipe_config->ips_enabled = i915_enable_ips &&
  3414. hsw_crtc_supports_ips(crtc) &&
  3415. pipe_config->pipe_bpp == 24;
  3416. }
  3417. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3418. struct intel_crtc_config *pipe_config)
  3419. {
  3420. struct drm_device *dev = crtc->base.dev;
  3421. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3422. if (HAS_PCH_SPLIT(dev)) {
  3423. /* FDI link clock is fixed at 2.7G */
  3424. if (pipe_config->requested_mode.clock * 3
  3425. > IRONLAKE_FDI_FREQ * 4)
  3426. return -EINVAL;
  3427. }
  3428. /* All interlaced capable intel hw wants timings in frames. Note though
  3429. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3430. * timings, so we need to be careful not to clobber these.*/
  3431. if (!pipe_config->timings_set)
  3432. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3433. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3434. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3435. */
  3436. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3437. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3438. return -EINVAL;
  3439. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3440. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3441. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3442. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3443. * for lvds. */
  3444. pipe_config->pipe_bpp = 8*3;
  3445. }
  3446. if (IS_HASWELL(dev))
  3447. hsw_compute_ips_config(crtc, pipe_config);
  3448. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3449. * clock survives for now. */
  3450. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3451. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3452. if (pipe_config->has_pch_encoder)
  3453. return ironlake_fdi_compute_config(crtc, pipe_config);
  3454. return 0;
  3455. }
  3456. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3457. {
  3458. return 400000; /* FIXME */
  3459. }
  3460. static int i945_get_display_clock_speed(struct drm_device *dev)
  3461. {
  3462. return 400000;
  3463. }
  3464. static int i915_get_display_clock_speed(struct drm_device *dev)
  3465. {
  3466. return 333000;
  3467. }
  3468. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3469. {
  3470. return 200000;
  3471. }
  3472. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3473. {
  3474. u16 gcfgc = 0;
  3475. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3476. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3477. return 133000;
  3478. else {
  3479. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3480. case GC_DISPLAY_CLOCK_333_MHZ:
  3481. return 333000;
  3482. default:
  3483. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3484. return 190000;
  3485. }
  3486. }
  3487. }
  3488. static int i865_get_display_clock_speed(struct drm_device *dev)
  3489. {
  3490. return 266000;
  3491. }
  3492. static int i855_get_display_clock_speed(struct drm_device *dev)
  3493. {
  3494. u16 hpllcc = 0;
  3495. /* Assume that the hardware is in the high speed state. This
  3496. * should be the default.
  3497. */
  3498. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3499. case GC_CLOCK_133_200:
  3500. case GC_CLOCK_100_200:
  3501. return 200000;
  3502. case GC_CLOCK_166_250:
  3503. return 250000;
  3504. case GC_CLOCK_100_133:
  3505. return 133000;
  3506. }
  3507. /* Shouldn't happen */
  3508. return 0;
  3509. }
  3510. static int i830_get_display_clock_speed(struct drm_device *dev)
  3511. {
  3512. return 133000;
  3513. }
  3514. static void
  3515. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3516. {
  3517. while (*num > DATA_LINK_M_N_MASK ||
  3518. *den > DATA_LINK_M_N_MASK) {
  3519. *num >>= 1;
  3520. *den >>= 1;
  3521. }
  3522. }
  3523. static void compute_m_n(unsigned int m, unsigned int n,
  3524. uint32_t *ret_m, uint32_t *ret_n)
  3525. {
  3526. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3527. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3528. intel_reduce_m_n_ratio(ret_m, ret_n);
  3529. }
  3530. void
  3531. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3532. int pixel_clock, int link_clock,
  3533. struct intel_link_m_n *m_n)
  3534. {
  3535. m_n->tu = 64;
  3536. compute_m_n(bits_per_pixel * pixel_clock,
  3537. link_clock * nlanes * 8,
  3538. &m_n->gmch_m, &m_n->gmch_n);
  3539. compute_m_n(pixel_clock, link_clock,
  3540. &m_n->link_m, &m_n->link_n);
  3541. }
  3542. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3543. {
  3544. if (i915_panel_use_ssc >= 0)
  3545. return i915_panel_use_ssc != 0;
  3546. return dev_priv->vbt.lvds_use_ssc
  3547. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3548. }
  3549. static int vlv_get_refclk(struct drm_crtc *crtc)
  3550. {
  3551. struct drm_device *dev = crtc->dev;
  3552. struct drm_i915_private *dev_priv = dev->dev_private;
  3553. int refclk = 27000; /* for DP & HDMI */
  3554. return 100000; /* only one validated so far */
  3555. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3556. refclk = 96000;
  3557. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3558. if (intel_panel_use_ssc(dev_priv))
  3559. refclk = 100000;
  3560. else
  3561. refclk = 96000;
  3562. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3563. refclk = 100000;
  3564. }
  3565. return refclk;
  3566. }
  3567. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3568. {
  3569. struct drm_device *dev = crtc->dev;
  3570. struct drm_i915_private *dev_priv = dev->dev_private;
  3571. int refclk;
  3572. if (IS_VALLEYVIEW(dev)) {
  3573. refclk = vlv_get_refclk(crtc);
  3574. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3575. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3576. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3577. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3578. refclk / 1000);
  3579. } else if (!IS_GEN2(dev)) {
  3580. refclk = 96000;
  3581. } else {
  3582. refclk = 48000;
  3583. }
  3584. return refclk;
  3585. }
  3586. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3587. {
  3588. return (1 << dpll->n) << 16 | dpll->m2;
  3589. }
  3590. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3591. {
  3592. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3593. }
  3594. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3595. intel_clock_t *reduced_clock)
  3596. {
  3597. struct drm_device *dev = crtc->base.dev;
  3598. struct drm_i915_private *dev_priv = dev->dev_private;
  3599. int pipe = crtc->pipe;
  3600. u32 fp, fp2 = 0;
  3601. if (IS_PINEVIEW(dev)) {
  3602. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3603. if (reduced_clock)
  3604. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3605. } else {
  3606. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3607. if (reduced_clock)
  3608. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3609. }
  3610. I915_WRITE(FP0(pipe), fp);
  3611. crtc->lowfreq_avail = false;
  3612. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3613. reduced_clock && i915_powersave) {
  3614. I915_WRITE(FP1(pipe), fp2);
  3615. crtc->lowfreq_avail = true;
  3616. } else {
  3617. I915_WRITE(FP1(pipe), fp);
  3618. }
  3619. }
  3620. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3621. {
  3622. u32 reg_val;
  3623. /*
  3624. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3625. * and set it to a reasonable value instead.
  3626. */
  3627. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3628. reg_val &= 0xffffff00;
  3629. reg_val |= 0x00000030;
  3630. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3631. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3632. reg_val &= 0x8cffffff;
  3633. reg_val = 0x8c000000;
  3634. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3635. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3636. reg_val &= 0xffffff00;
  3637. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3638. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3639. reg_val &= 0x00ffffff;
  3640. reg_val |= 0xb0000000;
  3641. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3642. }
  3643. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3644. struct intel_link_m_n *m_n)
  3645. {
  3646. struct drm_device *dev = crtc->base.dev;
  3647. struct drm_i915_private *dev_priv = dev->dev_private;
  3648. int pipe = crtc->pipe;
  3649. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3650. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3651. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3652. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3653. }
  3654. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3655. struct intel_link_m_n *m_n)
  3656. {
  3657. struct drm_device *dev = crtc->base.dev;
  3658. struct drm_i915_private *dev_priv = dev->dev_private;
  3659. int pipe = crtc->pipe;
  3660. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3661. if (INTEL_INFO(dev)->gen >= 5) {
  3662. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3663. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3664. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3665. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3666. } else {
  3667. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3668. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3669. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3670. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3671. }
  3672. }
  3673. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3674. {
  3675. if (crtc->config.has_pch_encoder)
  3676. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3677. else
  3678. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3679. }
  3680. static void vlv_update_pll(struct intel_crtc *crtc)
  3681. {
  3682. struct drm_device *dev = crtc->base.dev;
  3683. struct drm_i915_private *dev_priv = dev->dev_private;
  3684. struct intel_encoder *encoder;
  3685. int pipe = crtc->pipe;
  3686. u32 dpll, mdiv;
  3687. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3688. bool is_hdmi;
  3689. u32 coreclk, reg_val, dpll_md;
  3690. mutex_lock(&dev_priv->dpio_lock);
  3691. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3692. bestn = crtc->config.dpll.n;
  3693. bestm1 = crtc->config.dpll.m1;
  3694. bestm2 = crtc->config.dpll.m2;
  3695. bestp1 = crtc->config.dpll.p1;
  3696. bestp2 = crtc->config.dpll.p2;
  3697. /* See eDP HDMI DPIO driver vbios notes doc */
  3698. /* PLL B needs special handling */
  3699. if (pipe)
  3700. vlv_pllb_recal_opamp(dev_priv);
  3701. /* Set up Tx target for periodic Rcomp update */
  3702. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3703. /* Disable target IRef on PLL */
  3704. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3705. reg_val &= 0x00ffffff;
  3706. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3707. /* Disable fast lock */
  3708. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3709. /* Set idtafcrecal before PLL is enabled */
  3710. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3711. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3712. mdiv |= ((bestn << DPIO_N_SHIFT));
  3713. mdiv |= (1 << DPIO_K_SHIFT);
  3714. /*
  3715. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3716. * but we don't support that).
  3717. * Note: don't use the DAC post divider as it seems unstable.
  3718. */
  3719. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3720. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3721. mdiv |= DPIO_ENABLE_CALIBRATION;
  3722. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3723. /* Set HBR and RBR LPF coefficients */
  3724. if (crtc->config.port_clock == 162000 ||
  3725. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3726. vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3727. 0x005f0021);
  3728. else
  3729. vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3730. 0x00d0000f);
  3731. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3732. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3733. /* Use SSC source */
  3734. if (!pipe)
  3735. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3736. 0x0df40000);
  3737. else
  3738. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3739. 0x0df70000);
  3740. } else { /* HDMI or VGA */
  3741. /* Use bend source */
  3742. if (!pipe)
  3743. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3744. 0x0df70000);
  3745. else
  3746. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3747. 0x0df40000);
  3748. }
  3749. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3750. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3751. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3752. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3753. coreclk |= 0x01000000;
  3754. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3755. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3756. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3757. if (encoder->pre_pll_enable)
  3758. encoder->pre_pll_enable(encoder);
  3759. /* Enable DPIO clock input */
  3760. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3761. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3762. if (pipe)
  3763. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3764. dpll |= DPLL_VCO_ENABLE;
  3765. I915_WRITE(DPLL(pipe), dpll);
  3766. POSTING_READ(DPLL(pipe));
  3767. udelay(150);
  3768. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3769. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3770. dpll_md = (crtc->config.pixel_multiplier - 1)
  3771. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3772. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3773. POSTING_READ(DPLL_MD(pipe));
  3774. if (crtc->config.has_dp_encoder)
  3775. intel_dp_set_m_n(crtc);
  3776. mutex_unlock(&dev_priv->dpio_lock);
  3777. }
  3778. static void i9xx_update_pll(struct intel_crtc *crtc,
  3779. intel_clock_t *reduced_clock,
  3780. int num_connectors)
  3781. {
  3782. struct drm_device *dev = crtc->base.dev;
  3783. struct drm_i915_private *dev_priv = dev->dev_private;
  3784. struct intel_encoder *encoder;
  3785. int pipe = crtc->pipe;
  3786. u32 dpll;
  3787. bool is_sdvo;
  3788. struct dpll *clock = &crtc->config.dpll;
  3789. i9xx_update_pll_dividers(crtc, reduced_clock);
  3790. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3791. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3792. dpll = DPLL_VGA_MODE_DIS;
  3793. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3794. dpll |= DPLLB_MODE_LVDS;
  3795. else
  3796. dpll |= DPLLB_MODE_DAC_SERIAL;
  3797. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3798. dpll |= (crtc->config.pixel_multiplier - 1)
  3799. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3800. }
  3801. if (is_sdvo)
  3802. dpll |= DPLL_DVO_HIGH_SPEED;
  3803. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3804. dpll |= DPLL_DVO_HIGH_SPEED;
  3805. /* compute bitmask from p1 value */
  3806. if (IS_PINEVIEW(dev))
  3807. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3808. else {
  3809. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3810. if (IS_G4X(dev) && reduced_clock)
  3811. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3812. }
  3813. switch (clock->p2) {
  3814. case 5:
  3815. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3816. break;
  3817. case 7:
  3818. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3819. break;
  3820. case 10:
  3821. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3822. break;
  3823. case 14:
  3824. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3825. break;
  3826. }
  3827. if (INTEL_INFO(dev)->gen >= 4)
  3828. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3829. if (crtc->config.sdvo_tv_clock)
  3830. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3831. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3832. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3833. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3834. else
  3835. dpll |= PLL_REF_INPUT_DREFCLK;
  3836. dpll |= DPLL_VCO_ENABLE;
  3837. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3838. POSTING_READ(DPLL(pipe));
  3839. udelay(150);
  3840. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3841. if (encoder->pre_pll_enable)
  3842. encoder->pre_pll_enable(encoder);
  3843. if (crtc->config.has_dp_encoder)
  3844. intel_dp_set_m_n(crtc);
  3845. I915_WRITE(DPLL(pipe), dpll);
  3846. /* Wait for the clocks to stabilize. */
  3847. POSTING_READ(DPLL(pipe));
  3848. udelay(150);
  3849. if (INTEL_INFO(dev)->gen >= 4) {
  3850. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3851. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3852. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3853. } else {
  3854. /* The pixel multiplier can only be updated once the
  3855. * DPLL is enabled and the clocks are stable.
  3856. *
  3857. * So write it again.
  3858. */
  3859. I915_WRITE(DPLL(pipe), dpll);
  3860. }
  3861. }
  3862. static void i8xx_update_pll(struct intel_crtc *crtc,
  3863. intel_clock_t *reduced_clock,
  3864. int num_connectors)
  3865. {
  3866. struct drm_device *dev = crtc->base.dev;
  3867. struct drm_i915_private *dev_priv = dev->dev_private;
  3868. struct intel_encoder *encoder;
  3869. int pipe = crtc->pipe;
  3870. u32 dpll;
  3871. struct dpll *clock = &crtc->config.dpll;
  3872. i9xx_update_pll_dividers(crtc, reduced_clock);
  3873. dpll = DPLL_VGA_MODE_DIS;
  3874. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3875. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3876. } else {
  3877. if (clock->p1 == 2)
  3878. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3879. else
  3880. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3881. if (clock->p2 == 4)
  3882. dpll |= PLL_P2_DIVIDE_BY_4;
  3883. }
  3884. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3885. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3886. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3887. else
  3888. dpll |= PLL_REF_INPUT_DREFCLK;
  3889. dpll |= DPLL_VCO_ENABLE;
  3890. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3891. POSTING_READ(DPLL(pipe));
  3892. udelay(150);
  3893. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3894. if (encoder->pre_pll_enable)
  3895. encoder->pre_pll_enable(encoder);
  3896. I915_WRITE(DPLL(pipe), dpll);
  3897. /* Wait for the clocks to stabilize. */
  3898. POSTING_READ(DPLL(pipe));
  3899. udelay(150);
  3900. /* The pixel multiplier can only be updated once the
  3901. * DPLL is enabled and the clocks are stable.
  3902. *
  3903. * So write it again.
  3904. */
  3905. I915_WRITE(DPLL(pipe), dpll);
  3906. }
  3907. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3908. {
  3909. struct drm_device *dev = intel_crtc->base.dev;
  3910. struct drm_i915_private *dev_priv = dev->dev_private;
  3911. enum pipe pipe = intel_crtc->pipe;
  3912. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3913. struct drm_display_mode *adjusted_mode =
  3914. &intel_crtc->config.adjusted_mode;
  3915. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3916. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3917. /* We need to be careful not to changed the adjusted mode, for otherwise
  3918. * the hw state checker will get angry at the mismatch. */
  3919. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3920. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3921. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3922. /* the chip adds 2 halflines automatically */
  3923. crtc_vtotal -= 1;
  3924. crtc_vblank_end -= 1;
  3925. vsyncshift = adjusted_mode->crtc_hsync_start
  3926. - adjusted_mode->crtc_htotal / 2;
  3927. } else {
  3928. vsyncshift = 0;
  3929. }
  3930. if (INTEL_INFO(dev)->gen > 3)
  3931. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3932. I915_WRITE(HTOTAL(cpu_transcoder),
  3933. (adjusted_mode->crtc_hdisplay - 1) |
  3934. ((adjusted_mode->crtc_htotal - 1) << 16));
  3935. I915_WRITE(HBLANK(cpu_transcoder),
  3936. (adjusted_mode->crtc_hblank_start - 1) |
  3937. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3938. I915_WRITE(HSYNC(cpu_transcoder),
  3939. (adjusted_mode->crtc_hsync_start - 1) |
  3940. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3941. I915_WRITE(VTOTAL(cpu_transcoder),
  3942. (adjusted_mode->crtc_vdisplay - 1) |
  3943. ((crtc_vtotal - 1) << 16));
  3944. I915_WRITE(VBLANK(cpu_transcoder),
  3945. (adjusted_mode->crtc_vblank_start - 1) |
  3946. ((crtc_vblank_end - 1) << 16));
  3947. I915_WRITE(VSYNC(cpu_transcoder),
  3948. (adjusted_mode->crtc_vsync_start - 1) |
  3949. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3950. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3951. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3952. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3953. * bits. */
  3954. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3955. (pipe == PIPE_B || pipe == PIPE_C))
  3956. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3957. /* pipesrc controls the size that is scaled from, which should
  3958. * always be the user's requested size.
  3959. */
  3960. I915_WRITE(PIPESRC(pipe),
  3961. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3962. }
  3963. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3964. struct intel_crtc_config *pipe_config)
  3965. {
  3966. struct drm_device *dev = crtc->base.dev;
  3967. struct drm_i915_private *dev_priv = dev->dev_private;
  3968. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3969. uint32_t tmp;
  3970. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3971. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3972. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3973. tmp = I915_READ(HBLANK(cpu_transcoder));
  3974. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3975. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3976. tmp = I915_READ(HSYNC(cpu_transcoder));
  3977. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  3978. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  3979. tmp = I915_READ(VTOTAL(cpu_transcoder));
  3980. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  3981. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  3982. tmp = I915_READ(VBLANK(cpu_transcoder));
  3983. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  3984. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  3985. tmp = I915_READ(VSYNC(cpu_transcoder));
  3986. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  3987. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  3988. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  3989. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  3990. pipe_config->adjusted_mode.crtc_vtotal += 1;
  3991. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  3992. }
  3993. tmp = I915_READ(PIPESRC(crtc->pipe));
  3994. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  3995. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  3996. }
  3997. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  3998. {
  3999. struct drm_device *dev = intel_crtc->base.dev;
  4000. struct drm_i915_private *dev_priv = dev->dev_private;
  4001. uint32_t pipeconf;
  4002. pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
  4003. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4004. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4005. * core speed.
  4006. *
  4007. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4008. * pipe == 0 check?
  4009. */
  4010. if (intel_crtc->config.requested_mode.clock >
  4011. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4012. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4013. else
  4014. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4015. }
  4016. /* only g4x and later have fancy bpc/dither controls */
  4017. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4018. pipeconf &= ~(PIPECONF_BPC_MASK |
  4019. PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4020. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4021. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4022. pipeconf |= PIPECONF_DITHER_EN |
  4023. PIPECONF_DITHER_TYPE_SP;
  4024. switch (intel_crtc->config.pipe_bpp) {
  4025. case 18:
  4026. pipeconf |= PIPECONF_6BPC;
  4027. break;
  4028. case 24:
  4029. pipeconf |= PIPECONF_8BPC;
  4030. break;
  4031. case 30:
  4032. pipeconf |= PIPECONF_10BPC;
  4033. break;
  4034. default:
  4035. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4036. BUG();
  4037. }
  4038. }
  4039. if (HAS_PIPE_CXSR(dev)) {
  4040. if (intel_crtc->lowfreq_avail) {
  4041. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4042. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4043. } else {
  4044. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4045. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4046. }
  4047. }
  4048. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4049. if (!IS_GEN2(dev) &&
  4050. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4051. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4052. else
  4053. pipeconf |= PIPECONF_PROGRESSIVE;
  4054. if (IS_VALLEYVIEW(dev)) {
  4055. if (intel_crtc->config.limited_color_range)
  4056. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4057. else
  4058. pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
  4059. }
  4060. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4061. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4062. }
  4063. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4064. int x, int y,
  4065. struct drm_framebuffer *fb)
  4066. {
  4067. struct drm_device *dev = crtc->dev;
  4068. struct drm_i915_private *dev_priv = dev->dev_private;
  4069. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4070. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4071. int pipe = intel_crtc->pipe;
  4072. int plane = intel_crtc->plane;
  4073. int refclk, num_connectors = 0;
  4074. intel_clock_t clock, reduced_clock;
  4075. u32 dspcntr;
  4076. bool ok, has_reduced_clock = false;
  4077. bool is_lvds = false;
  4078. struct intel_encoder *encoder;
  4079. const intel_limit_t *limit;
  4080. int ret;
  4081. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4082. switch (encoder->type) {
  4083. case INTEL_OUTPUT_LVDS:
  4084. is_lvds = true;
  4085. break;
  4086. }
  4087. num_connectors++;
  4088. }
  4089. refclk = i9xx_get_refclk(crtc, num_connectors);
  4090. /*
  4091. * Returns a set of divisors for the desired target clock with the given
  4092. * refclk, or FALSE. The returned values represent the clock equation:
  4093. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4094. */
  4095. limit = intel_limit(crtc, refclk);
  4096. ok = dev_priv->display.find_dpll(limit, crtc,
  4097. intel_crtc->config.port_clock,
  4098. refclk, NULL, &clock);
  4099. if (!ok && !intel_crtc->config.clock_set) {
  4100. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4101. return -EINVAL;
  4102. }
  4103. /* Ensure that the cursor is valid for the new mode before changing... */
  4104. intel_crtc_update_cursor(crtc, true);
  4105. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4106. /*
  4107. * Ensure we match the reduced clock's P to the target clock.
  4108. * If the clocks don't match, we can't switch the display clock
  4109. * by using the FP0/FP1. In such case we will disable the LVDS
  4110. * downclock feature.
  4111. */
  4112. has_reduced_clock =
  4113. dev_priv->display.find_dpll(limit, crtc,
  4114. dev_priv->lvds_downclock,
  4115. refclk, &clock,
  4116. &reduced_clock);
  4117. }
  4118. /* Compat-code for transition, will disappear. */
  4119. if (!intel_crtc->config.clock_set) {
  4120. intel_crtc->config.dpll.n = clock.n;
  4121. intel_crtc->config.dpll.m1 = clock.m1;
  4122. intel_crtc->config.dpll.m2 = clock.m2;
  4123. intel_crtc->config.dpll.p1 = clock.p1;
  4124. intel_crtc->config.dpll.p2 = clock.p2;
  4125. }
  4126. if (IS_GEN2(dev))
  4127. i8xx_update_pll(intel_crtc,
  4128. has_reduced_clock ? &reduced_clock : NULL,
  4129. num_connectors);
  4130. else if (IS_VALLEYVIEW(dev))
  4131. vlv_update_pll(intel_crtc);
  4132. else
  4133. i9xx_update_pll(intel_crtc,
  4134. has_reduced_clock ? &reduced_clock : NULL,
  4135. num_connectors);
  4136. /* Set up the display plane register */
  4137. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4138. if (!IS_VALLEYVIEW(dev)) {
  4139. if (pipe == 0)
  4140. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4141. else
  4142. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4143. }
  4144. intel_set_pipe_timings(intel_crtc);
  4145. /* pipesrc and dspsize control the size that is scaled from,
  4146. * which should always be the user's requested size.
  4147. */
  4148. I915_WRITE(DSPSIZE(plane),
  4149. ((mode->vdisplay - 1) << 16) |
  4150. (mode->hdisplay - 1));
  4151. I915_WRITE(DSPPOS(plane), 0);
  4152. i9xx_set_pipeconf(intel_crtc);
  4153. I915_WRITE(DSPCNTR(plane), dspcntr);
  4154. POSTING_READ(DSPCNTR(plane));
  4155. ret = intel_pipe_set_base(crtc, x, y, fb);
  4156. intel_update_watermarks(dev);
  4157. return ret;
  4158. }
  4159. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4160. struct intel_crtc_config *pipe_config)
  4161. {
  4162. struct drm_device *dev = crtc->base.dev;
  4163. struct drm_i915_private *dev_priv = dev->dev_private;
  4164. uint32_t tmp;
  4165. tmp = I915_READ(PFIT_CONTROL);
  4166. if (INTEL_INFO(dev)->gen < 4) {
  4167. if (crtc->pipe != PIPE_B)
  4168. return;
  4169. /* gen2/3 store dither state in pfit control, needs to match */
  4170. pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
  4171. } else {
  4172. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4173. return;
  4174. }
  4175. if (!(tmp & PFIT_ENABLE))
  4176. return;
  4177. pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
  4178. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4179. if (INTEL_INFO(dev)->gen < 5)
  4180. pipe_config->gmch_pfit.lvds_border_bits =
  4181. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4182. }
  4183. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4184. struct intel_crtc_config *pipe_config)
  4185. {
  4186. struct drm_device *dev = crtc->base.dev;
  4187. struct drm_i915_private *dev_priv = dev->dev_private;
  4188. uint32_t tmp;
  4189. pipe_config->cpu_transcoder = crtc->pipe;
  4190. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4191. tmp = I915_READ(PIPECONF(crtc->pipe));
  4192. if (!(tmp & PIPECONF_ENABLE))
  4193. return false;
  4194. intel_get_pipe_timings(crtc, pipe_config);
  4195. i9xx_get_pfit_config(crtc, pipe_config);
  4196. if (INTEL_INFO(dev)->gen >= 4) {
  4197. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4198. pipe_config->pixel_multiplier =
  4199. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4200. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4201. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4202. tmp = I915_READ(DPLL(crtc->pipe));
  4203. pipe_config->pixel_multiplier =
  4204. ((tmp & SDVO_MULTIPLIER_MASK)
  4205. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4206. } else {
  4207. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4208. * port and will be fixed up in the encoder->get_config
  4209. * function. */
  4210. pipe_config->pixel_multiplier = 1;
  4211. }
  4212. return true;
  4213. }
  4214. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4215. {
  4216. struct drm_i915_private *dev_priv = dev->dev_private;
  4217. struct drm_mode_config *mode_config = &dev->mode_config;
  4218. struct intel_encoder *encoder;
  4219. u32 val, final;
  4220. bool has_lvds = false;
  4221. bool has_cpu_edp = false;
  4222. bool has_panel = false;
  4223. bool has_ck505 = false;
  4224. bool can_ssc = false;
  4225. /* We need to take the global config into account */
  4226. list_for_each_entry(encoder, &mode_config->encoder_list,
  4227. base.head) {
  4228. switch (encoder->type) {
  4229. case INTEL_OUTPUT_LVDS:
  4230. has_panel = true;
  4231. has_lvds = true;
  4232. break;
  4233. case INTEL_OUTPUT_EDP:
  4234. has_panel = true;
  4235. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4236. has_cpu_edp = true;
  4237. break;
  4238. }
  4239. }
  4240. if (HAS_PCH_IBX(dev)) {
  4241. has_ck505 = dev_priv->vbt.display_clock_mode;
  4242. can_ssc = has_ck505;
  4243. } else {
  4244. has_ck505 = false;
  4245. can_ssc = true;
  4246. }
  4247. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4248. has_panel, has_lvds, has_ck505);
  4249. /* Ironlake: try to setup display ref clock before DPLL
  4250. * enabling. This is only under driver's control after
  4251. * PCH B stepping, previous chipset stepping should be
  4252. * ignoring this setting.
  4253. */
  4254. val = I915_READ(PCH_DREF_CONTROL);
  4255. /* As we must carefully and slowly disable/enable each source in turn,
  4256. * compute the final state we want first and check if we need to
  4257. * make any changes at all.
  4258. */
  4259. final = val;
  4260. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4261. if (has_ck505)
  4262. final |= DREF_NONSPREAD_CK505_ENABLE;
  4263. else
  4264. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4265. final &= ~DREF_SSC_SOURCE_MASK;
  4266. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4267. final &= ~DREF_SSC1_ENABLE;
  4268. if (has_panel) {
  4269. final |= DREF_SSC_SOURCE_ENABLE;
  4270. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4271. final |= DREF_SSC1_ENABLE;
  4272. if (has_cpu_edp) {
  4273. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4274. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4275. else
  4276. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4277. } else
  4278. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4279. } else {
  4280. final |= DREF_SSC_SOURCE_DISABLE;
  4281. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4282. }
  4283. if (final == val)
  4284. return;
  4285. /* Always enable nonspread source */
  4286. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4287. if (has_ck505)
  4288. val |= DREF_NONSPREAD_CK505_ENABLE;
  4289. else
  4290. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4291. if (has_panel) {
  4292. val &= ~DREF_SSC_SOURCE_MASK;
  4293. val |= DREF_SSC_SOURCE_ENABLE;
  4294. /* SSC must be turned on before enabling the CPU output */
  4295. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4296. DRM_DEBUG_KMS("Using SSC on panel\n");
  4297. val |= DREF_SSC1_ENABLE;
  4298. } else
  4299. val &= ~DREF_SSC1_ENABLE;
  4300. /* Get SSC going before enabling the outputs */
  4301. I915_WRITE(PCH_DREF_CONTROL, val);
  4302. POSTING_READ(PCH_DREF_CONTROL);
  4303. udelay(200);
  4304. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4305. /* Enable CPU source on CPU attached eDP */
  4306. if (has_cpu_edp) {
  4307. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4308. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4309. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4310. }
  4311. else
  4312. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4313. } else
  4314. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4315. I915_WRITE(PCH_DREF_CONTROL, val);
  4316. POSTING_READ(PCH_DREF_CONTROL);
  4317. udelay(200);
  4318. } else {
  4319. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4320. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4321. /* Turn off CPU output */
  4322. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4323. I915_WRITE(PCH_DREF_CONTROL, val);
  4324. POSTING_READ(PCH_DREF_CONTROL);
  4325. udelay(200);
  4326. /* Turn off the SSC source */
  4327. val &= ~DREF_SSC_SOURCE_MASK;
  4328. val |= DREF_SSC_SOURCE_DISABLE;
  4329. /* Turn off SSC1 */
  4330. val &= ~DREF_SSC1_ENABLE;
  4331. I915_WRITE(PCH_DREF_CONTROL, val);
  4332. POSTING_READ(PCH_DREF_CONTROL);
  4333. udelay(200);
  4334. }
  4335. BUG_ON(val != final);
  4336. }
  4337. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4338. static void lpt_init_pch_refclk(struct drm_device *dev)
  4339. {
  4340. struct drm_i915_private *dev_priv = dev->dev_private;
  4341. struct drm_mode_config *mode_config = &dev->mode_config;
  4342. struct intel_encoder *encoder;
  4343. bool has_vga = false;
  4344. bool is_sdv = false;
  4345. u32 tmp;
  4346. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4347. switch (encoder->type) {
  4348. case INTEL_OUTPUT_ANALOG:
  4349. has_vga = true;
  4350. break;
  4351. }
  4352. }
  4353. if (!has_vga)
  4354. return;
  4355. mutex_lock(&dev_priv->dpio_lock);
  4356. /* XXX: Rip out SDV support once Haswell ships for real. */
  4357. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4358. is_sdv = true;
  4359. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4360. tmp &= ~SBI_SSCCTL_DISABLE;
  4361. tmp |= SBI_SSCCTL_PATHALT;
  4362. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4363. udelay(24);
  4364. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4365. tmp &= ~SBI_SSCCTL_PATHALT;
  4366. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4367. if (!is_sdv) {
  4368. tmp = I915_READ(SOUTH_CHICKEN2);
  4369. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4370. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4371. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4372. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4373. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4374. tmp = I915_READ(SOUTH_CHICKEN2);
  4375. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4376. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4377. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4378. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4379. 100))
  4380. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4381. }
  4382. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4383. tmp &= ~(0xFF << 24);
  4384. tmp |= (0x12 << 24);
  4385. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4386. if (is_sdv) {
  4387. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4388. tmp |= 0x7FFF;
  4389. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4390. }
  4391. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4392. tmp |= (1 << 11);
  4393. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4394. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4395. tmp |= (1 << 11);
  4396. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4397. if (is_sdv) {
  4398. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4399. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4400. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4401. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4402. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4403. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4404. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4405. tmp |= (0x3F << 8);
  4406. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4407. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4408. tmp |= (0x3F << 8);
  4409. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4410. }
  4411. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4412. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4413. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4414. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4415. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4416. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4417. if (!is_sdv) {
  4418. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4419. tmp &= ~(7 << 13);
  4420. tmp |= (5 << 13);
  4421. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4422. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4423. tmp &= ~(7 << 13);
  4424. tmp |= (5 << 13);
  4425. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4426. }
  4427. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4428. tmp &= ~0xFF;
  4429. tmp |= 0x1C;
  4430. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4431. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4432. tmp &= ~0xFF;
  4433. tmp |= 0x1C;
  4434. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4435. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4436. tmp &= ~(0xFF << 16);
  4437. tmp |= (0x1C << 16);
  4438. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4439. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4440. tmp &= ~(0xFF << 16);
  4441. tmp |= (0x1C << 16);
  4442. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4443. if (!is_sdv) {
  4444. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4445. tmp |= (1 << 27);
  4446. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4447. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4448. tmp |= (1 << 27);
  4449. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4450. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4451. tmp &= ~(0xF << 28);
  4452. tmp |= (4 << 28);
  4453. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4454. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4455. tmp &= ~(0xF << 28);
  4456. tmp |= (4 << 28);
  4457. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4458. }
  4459. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4460. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4461. tmp |= SBI_DBUFF0_ENABLE;
  4462. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4463. mutex_unlock(&dev_priv->dpio_lock);
  4464. }
  4465. /*
  4466. * Initialize reference clocks when the driver loads
  4467. */
  4468. void intel_init_pch_refclk(struct drm_device *dev)
  4469. {
  4470. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4471. ironlake_init_pch_refclk(dev);
  4472. else if (HAS_PCH_LPT(dev))
  4473. lpt_init_pch_refclk(dev);
  4474. }
  4475. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4476. {
  4477. struct drm_device *dev = crtc->dev;
  4478. struct drm_i915_private *dev_priv = dev->dev_private;
  4479. struct intel_encoder *encoder;
  4480. int num_connectors = 0;
  4481. bool is_lvds = false;
  4482. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4483. switch (encoder->type) {
  4484. case INTEL_OUTPUT_LVDS:
  4485. is_lvds = true;
  4486. break;
  4487. }
  4488. num_connectors++;
  4489. }
  4490. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4491. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4492. dev_priv->vbt.lvds_ssc_freq);
  4493. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4494. }
  4495. return 120000;
  4496. }
  4497. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4498. {
  4499. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4500. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4501. int pipe = intel_crtc->pipe;
  4502. uint32_t val;
  4503. val = I915_READ(PIPECONF(pipe));
  4504. val &= ~PIPECONF_BPC_MASK;
  4505. switch (intel_crtc->config.pipe_bpp) {
  4506. case 18:
  4507. val |= PIPECONF_6BPC;
  4508. break;
  4509. case 24:
  4510. val |= PIPECONF_8BPC;
  4511. break;
  4512. case 30:
  4513. val |= PIPECONF_10BPC;
  4514. break;
  4515. case 36:
  4516. val |= PIPECONF_12BPC;
  4517. break;
  4518. default:
  4519. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4520. BUG();
  4521. }
  4522. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4523. if (intel_crtc->config.dither)
  4524. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4525. val &= ~PIPECONF_INTERLACE_MASK;
  4526. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4527. val |= PIPECONF_INTERLACED_ILK;
  4528. else
  4529. val |= PIPECONF_PROGRESSIVE;
  4530. if (intel_crtc->config.limited_color_range)
  4531. val |= PIPECONF_COLOR_RANGE_SELECT;
  4532. else
  4533. val &= ~PIPECONF_COLOR_RANGE_SELECT;
  4534. I915_WRITE(PIPECONF(pipe), val);
  4535. POSTING_READ(PIPECONF(pipe));
  4536. }
  4537. /*
  4538. * Set up the pipe CSC unit.
  4539. *
  4540. * Currently only full range RGB to limited range RGB conversion
  4541. * is supported, but eventually this should handle various
  4542. * RGB<->YCbCr scenarios as well.
  4543. */
  4544. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4545. {
  4546. struct drm_device *dev = crtc->dev;
  4547. struct drm_i915_private *dev_priv = dev->dev_private;
  4548. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4549. int pipe = intel_crtc->pipe;
  4550. uint16_t coeff = 0x7800; /* 1.0 */
  4551. /*
  4552. * TODO: Check what kind of values actually come out of the pipe
  4553. * with these coeff/postoff values and adjust to get the best
  4554. * accuracy. Perhaps we even need to take the bpc value into
  4555. * consideration.
  4556. */
  4557. if (intel_crtc->config.limited_color_range)
  4558. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4559. /*
  4560. * GY/GU and RY/RU should be the other way around according
  4561. * to BSpec, but reality doesn't agree. Just set them up in
  4562. * a way that results in the correct picture.
  4563. */
  4564. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4565. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4566. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4567. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4568. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4569. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4570. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4571. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4572. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4573. if (INTEL_INFO(dev)->gen > 6) {
  4574. uint16_t postoff = 0;
  4575. if (intel_crtc->config.limited_color_range)
  4576. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4577. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4578. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4579. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4580. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4581. } else {
  4582. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4583. if (intel_crtc->config.limited_color_range)
  4584. mode |= CSC_BLACK_SCREEN_OFFSET;
  4585. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4586. }
  4587. }
  4588. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4589. {
  4590. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4591. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4592. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4593. uint32_t val;
  4594. val = I915_READ(PIPECONF(cpu_transcoder));
  4595. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4596. if (intel_crtc->config.dither)
  4597. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4598. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4599. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4600. val |= PIPECONF_INTERLACED_ILK;
  4601. else
  4602. val |= PIPECONF_PROGRESSIVE;
  4603. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4604. POSTING_READ(PIPECONF(cpu_transcoder));
  4605. }
  4606. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4607. intel_clock_t *clock,
  4608. bool *has_reduced_clock,
  4609. intel_clock_t *reduced_clock)
  4610. {
  4611. struct drm_device *dev = crtc->dev;
  4612. struct drm_i915_private *dev_priv = dev->dev_private;
  4613. struct intel_encoder *intel_encoder;
  4614. int refclk;
  4615. const intel_limit_t *limit;
  4616. bool ret, is_lvds = false;
  4617. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4618. switch (intel_encoder->type) {
  4619. case INTEL_OUTPUT_LVDS:
  4620. is_lvds = true;
  4621. break;
  4622. }
  4623. }
  4624. refclk = ironlake_get_refclk(crtc);
  4625. /*
  4626. * Returns a set of divisors for the desired target clock with the given
  4627. * refclk, or FALSE. The returned values represent the clock equation:
  4628. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4629. */
  4630. limit = intel_limit(crtc, refclk);
  4631. ret = dev_priv->display.find_dpll(limit, crtc,
  4632. to_intel_crtc(crtc)->config.port_clock,
  4633. refclk, NULL, clock);
  4634. if (!ret)
  4635. return false;
  4636. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4637. /*
  4638. * Ensure we match the reduced clock's P to the target clock.
  4639. * If the clocks don't match, we can't switch the display clock
  4640. * by using the FP0/FP1. In such case we will disable the LVDS
  4641. * downclock feature.
  4642. */
  4643. *has_reduced_clock =
  4644. dev_priv->display.find_dpll(limit, crtc,
  4645. dev_priv->lvds_downclock,
  4646. refclk, clock,
  4647. reduced_clock);
  4648. }
  4649. return true;
  4650. }
  4651. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4652. {
  4653. struct drm_i915_private *dev_priv = dev->dev_private;
  4654. uint32_t temp;
  4655. temp = I915_READ(SOUTH_CHICKEN1);
  4656. if (temp & FDI_BC_BIFURCATION_SELECT)
  4657. return;
  4658. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4659. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4660. temp |= FDI_BC_BIFURCATION_SELECT;
  4661. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4662. I915_WRITE(SOUTH_CHICKEN1, temp);
  4663. POSTING_READ(SOUTH_CHICKEN1);
  4664. }
  4665. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4666. {
  4667. struct drm_device *dev = intel_crtc->base.dev;
  4668. struct drm_i915_private *dev_priv = dev->dev_private;
  4669. switch (intel_crtc->pipe) {
  4670. case PIPE_A:
  4671. break;
  4672. case PIPE_B:
  4673. if (intel_crtc->config.fdi_lanes > 2)
  4674. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4675. else
  4676. cpt_enable_fdi_bc_bifurcation(dev);
  4677. break;
  4678. case PIPE_C:
  4679. cpt_enable_fdi_bc_bifurcation(dev);
  4680. break;
  4681. default:
  4682. BUG();
  4683. }
  4684. }
  4685. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4686. {
  4687. /*
  4688. * Account for spread spectrum to avoid
  4689. * oversubscribing the link. Max center spread
  4690. * is 2.5%; use 5% for safety's sake.
  4691. */
  4692. u32 bps = target_clock * bpp * 21 / 20;
  4693. return bps / (link_bw * 8) + 1;
  4694. }
  4695. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4696. {
  4697. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4698. }
  4699. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4700. u32 *fp,
  4701. intel_clock_t *reduced_clock, u32 *fp2)
  4702. {
  4703. struct drm_crtc *crtc = &intel_crtc->base;
  4704. struct drm_device *dev = crtc->dev;
  4705. struct drm_i915_private *dev_priv = dev->dev_private;
  4706. struct intel_encoder *intel_encoder;
  4707. uint32_t dpll;
  4708. int factor, num_connectors = 0;
  4709. bool is_lvds = false, is_sdvo = false;
  4710. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4711. switch (intel_encoder->type) {
  4712. case INTEL_OUTPUT_LVDS:
  4713. is_lvds = true;
  4714. break;
  4715. case INTEL_OUTPUT_SDVO:
  4716. case INTEL_OUTPUT_HDMI:
  4717. is_sdvo = true;
  4718. break;
  4719. }
  4720. num_connectors++;
  4721. }
  4722. /* Enable autotuning of the PLL clock (if permissible) */
  4723. factor = 21;
  4724. if (is_lvds) {
  4725. if ((intel_panel_use_ssc(dev_priv) &&
  4726. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4727. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4728. factor = 25;
  4729. } else if (intel_crtc->config.sdvo_tv_clock)
  4730. factor = 20;
  4731. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4732. *fp |= FP_CB_TUNE;
  4733. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4734. *fp2 |= FP_CB_TUNE;
  4735. dpll = 0;
  4736. if (is_lvds)
  4737. dpll |= DPLLB_MODE_LVDS;
  4738. else
  4739. dpll |= DPLLB_MODE_DAC_SERIAL;
  4740. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4741. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4742. if (is_sdvo)
  4743. dpll |= DPLL_DVO_HIGH_SPEED;
  4744. if (intel_crtc->config.has_dp_encoder)
  4745. dpll |= DPLL_DVO_HIGH_SPEED;
  4746. /* compute bitmask from p1 value */
  4747. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4748. /* also FPA1 */
  4749. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4750. switch (intel_crtc->config.dpll.p2) {
  4751. case 5:
  4752. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4753. break;
  4754. case 7:
  4755. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4756. break;
  4757. case 10:
  4758. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4759. break;
  4760. case 14:
  4761. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4762. break;
  4763. }
  4764. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4765. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4766. else
  4767. dpll |= PLL_REF_INPUT_DREFCLK;
  4768. return dpll | DPLL_VCO_ENABLE;
  4769. }
  4770. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4771. int x, int y,
  4772. struct drm_framebuffer *fb)
  4773. {
  4774. struct drm_device *dev = crtc->dev;
  4775. struct drm_i915_private *dev_priv = dev->dev_private;
  4776. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4777. int pipe = intel_crtc->pipe;
  4778. int plane = intel_crtc->plane;
  4779. int num_connectors = 0;
  4780. intel_clock_t clock, reduced_clock;
  4781. u32 dpll = 0, fp = 0, fp2 = 0;
  4782. bool ok, has_reduced_clock = false;
  4783. bool is_lvds = false;
  4784. struct intel_encoder *encoder;
  4785. struct intel_shared_dpll *pll;
  4786. int ret;
  4787. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4788. switch (encoder->type) {
  4789. case INTEL_OUTPUT_LVDS:
  4790. is_lvds = true;
  4791. break;
  4792. }
  4793. num_connectors++;
  4794. }
  4795. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4796. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4797. ok = ironlake_compute_clocks(crtc, &clock,
  4798. &has_reduced_clock, &reduced_clock);
  4799. if (!ok && !intel_crtc->config.clock_set) {
  4800. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4801. return -EINVAL;
  4802. }
  4803. /* Compat-code for transition, will disappear. */
  4804. if (!intel_crtc->config.clock_set) {
  4805. intel_crtc->config.dpll.n = clock.n;
  4806. intel_crtc->config.dpll.m1 = clock.m1;
  4807. intel_crtc->config.dpll.m2 = clock.m2;
  4808. intel_crtc->config.dpll.p1 = clock.p1;
  4809. intel_crtc->config.dpll.p2 = clock.p2;
  4810. }
  4811. /* Ensure that the cursor is valid for the new mode before changing... */
  4812. intel_crtc_update_cursor(crtc, true);
  4813. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4814. if (intel_crtc->config.has_pch_encoder) {
  4815. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4816. if (has_reduced_clock)
  4817. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4818. dpll = ironlake_compute_dpll(intel_crtc,
  4819. &fp, &reduced_clock,
  4820. has_reduced_clock ? &fp2 : NULL);
  4821. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4822. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4823. if (has_reduced_clock)
  4824. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4825. else
  4826. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4827. pll = intel_get_shared_dpll(intel_crtc, dpll, fp);
  4828. if (pll == NULL) {
  4829. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4830. pipe_name(pipe));
  4831. return -EINVAL;
  4832. }
  4833. } else
  4834. intel_put_shared_dpll(intel_crtc);
  4835. if (intel_crtc->config.has_dp_encoder)
  4836. intel_dp_set_m_n(intel_crtc);
  4837. for_each_encoder_on_crtc(dev, crtc, encoder)
  4838. if (encoder->pre_pll_enable)
  4839. encoder->pre_pll_enable(encoder);
  4840. intel_crtc->lowfreq_avail = false;
  4841. if (intel_crtc->config.has_pch_encoder) {
  4842. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4843. I915_WRITE(PCH_DPLL(pll->id), dpll);
  4844. /* Wait for the clocks to stabilize. */
  4845. POSTING_READ(PCH_DPLL(pll->id));
  4846. udelay(150);
  4847. /* The pixel multiplier can only be updated once the
  4848. * DPLL is enabled and the clocks are stable.
  4849. *
  4850. * So write it again.
  4851. */
  4852. I915_WRITE(PCH_DPLL(pll->id), dpll);
  4853. if (is_lvds && has_reduced_clock && i915_powersave) {
  4854. I915_WRITE(PCH_FP1(pll->id), fp2);
  4855. intel_crtc->lowfreq_avail = true;
  4856. } else {
  4857. I915_WRITE(PCH_FP1(pll->id), fp);
  4858. }
  4859. }
  4860. intel_set_pipe_timings(intel_crtc);
  4861. if (intel_crtc->config.has_pch_encoder) {
  4862. intel_cpu_transcoder_set_m_n(intel_crtc,
  4863. &intel_crtc->config.fdi_m_n);
  4864. }
  4865. if (IS_IVYBRIDGE(dev))
  4866. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4867. ironlake_set_pipeconf(crtc);
  4868. /* Set up the display plane register */
  4869. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4870. POSTING_READ(DSPCNTR(plane));
  4871. ret = intel_pipe_set_base(crtc, x, y, fb);
  4872. intel_update_watermarks(dev);
  4873. return ret;
  4874. }
  4875. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4876. struct intel_crtc_config *pipe_config)
  4877. {
  4878. struct drm_device *dev = crtc->base.dev;
  4879. struct drm_i915_private *dev_priv = dev->dev_private;
  4880. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4881. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4882. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4883. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4884. & ~TU_SIZE_MASK;
  4885. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4886. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4887. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4888. }
  4889. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4890. struct intel_crtc_config *pipe_config)
  4891. {
  4892. struct drm_device *dev = crtc->base.dev;
  4893. struct drm_i915_private *dev_priv = dev->dev_private;
  4894. uint32_t tmp;
  4895. tmp = I915_READ(PF_CTL(crtc->pipe));
  4896. if (tmp & PF_ENABLE) {
  4897. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4898. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4899. /* We currently do not free assignements of panel fitters on
  4900. * ivb/hsw (since we don't use the higher upscaling modes which
  4901. * differentiates them) so just WARN about this case for now. */
  4902. if (IS_GEN7(dev)) {
  4903. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  4904. PF_PIPE_SEL_IVB(crtc->pipe));
  4905. }
  4906. }
  4907. }
  4908. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4909. struct intel_crtc_config *pipe_config)
  4910. {
  4911. struct drm_device *dev = crtc->base.dev;
  4912. struct drm_i915_private *dev_priv = dev->dev_private;
  4913. uint32_t tmp;
  4914. pipe_config->cpu_transcoder = crtc->pipe;
  4915. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4916. tmp = I915_READ(PIPECONF(crtc->pipe));
  4917. if (!(tmp & PIPECONF_ENABLE))
  4918. return false;
  4919. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4920. struct intel_shared_dpll *pll;
  4921. pipe_config->has_pch_encoder = true;
  4922. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4923. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4924. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4925. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4926. /* XXX: Can't properly read out the pch dpll pixel multiplier
  4927. * since we don't have state tracking for pch clocks yet. */
  4928. pipe_config->pixel_multiplier = 1;
  4929. if (HAS_PCH_IBX(dev_priv->dev)) {
  4930. pipe_config->shared_dpll = crtc->pipe;
  4931. } else {
  4932. tmp = I915_READ(PCH_DPLL_SEL);
  4933. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  4934. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  4935. else
  4936. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  4937. }
  4938. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  4939. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  4940. &pipe_config->dpll_hw_state));
  4941. } else {
  4942. pipe_config->pixel_multiplier = 1;
  4943. }
  4944. intel_get_pipe_timings(crtc, pipe_config);
  4945. ironlake_get_pfit_config(crtc, pipe_config);
  4946. return true;
  4947. }
  4948. static void haswell_modeset_global_resources(struct drm_device *dev)
  4949. {
  4950. bool enable = false;
  4951. struct intel_crtc *crtc;
  4952. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4953. if (!crtc->base.enabled)
  4954. continue;
  4955. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  4956. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  4957. enable = true;
  4958. }
  4959. intel_set_power_well(dev, enable);
  4960. }
  4961. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4962. int x, int y,
  4963. struct drm_framebuffer *fb)
  4964. {
  4965. struct drm_device *dev = crtc->dev;
  4966. struct drm_i915_private *dev_priv = dev->dev_private;
  4967. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4968. int plane = intel_crtc->plane;
  4969. int ret;
  4970. if (!intel_ddi_pll_mode_set(crtc))
  4971. return -EINVAL;
  4972. /* Ensure that the cursor is valid for the new mode before changing... */
  4973. intel_crtc_update_cursor(crtc, true);
  4974. if (intel_crtc->config.has_dp_encoder)
  4975. intel_dp_set_m_n(intel_crtc);
  4976. intel_crtc->lowfreq_avail = false;
  4977. intel_set_pipe_timings(intel_crtc);
  4978. if (intel_crtc->config.has_pch_encoder) {
  4979. intel_cpu_transcoder_set_m_n(intel_crtc,
  4980. &intel_crtc->config.fdi_m_n);
  4981. }
  4982. haswell_set_pipeconf(crtc);
  4983. intel_set_pipe_csc(crtc);
  4984. /* Set up the display plane register */
  4985. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  4986. POSTING_READ(DSPCNTR(plane));
  4987. ret = intel_pipe_set_base(crtc, x, y, fb);
  4988. intel_update_watermarks(dev);
  4989. return ret;
  4990. }
  4991. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  4992. struct intel_crtc_config *pipe_config)
  4993. {
  4994. struct drm_device *dev = crtc->base.dev;
  4995. struct drm_i915_private *dev_priv = dev->dev_private;
  4996. enum intel_display_power_domain pfit_domain;
  4997. uint32_t tmp;
  4998. pipe_config->cpu_transcoder = crtc->pipe;
  4999. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5000. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5001. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5002. enum pipe trans_edp_pipe;
  5003. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5004. default:
  5005. WARN(1, "unknown pipe linked to edp transcoder\n");
  5006. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5007. case TRANS_DDI_EDP_INPUT_A_ON:
  5008. trans_edp_pipe = PIPE_A;
  5009. break;
  5010. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5011. trans_edp_pipe = PIPE_B;
  5012. break;
  5013. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5014. trans_edp_pipe = PIPE_C;
  5015. break;
  5016. }
  5017. if (trans_edp_pipe == crtc->pipe)
  5018. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5019. }
  5020. if (!intel_display_power_enabled(dev,
  5021. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5022. return false;
  5023. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5024. if (!(tmp & PIPECONF_ENABLE))
  5025. return false;
  5026. /*
  5027. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5028. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5029. * the PCH transcoder is on.
  5030. */
  5031. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5032. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5033. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5034. pipe_config->has_pch_encoder = true;
  5035. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5036. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5037. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5038. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5039. }
  5040. intel_get_pipe_timings(crtc, pipe_config);
  5041. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5042. if (intel_display_power_enabled(dev, pfit_domain))
  5043. ironlake_get_pfit_config(crtc, pipe_config);
  5044. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5045. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5046. pipe_config->pixel_multiplier = 1;
  5047. return true;
  5048. }
  5049. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5050. int x, int y,
  5051. struct drm_framebuffer *fb)
  5052. {
  5053. struct drm_device *dev = crtc->dev;
  5054. struct drm_i915_private *dev_priv = dev->dev_private;
  5055. struct drm_encoder_helper_funcs *encoder_funcs;
  5056. struct intel_encoder *encoder;
  5057. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5058. struct drm_display_mode *adjusted_mode =
  5059. &intel_crtc->config.adjusted_mode;
  5060. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5061. int pipe = intel_crtc->pipe;
  5062. int ret;
  5063. drm_vblank_pre_modeset(dev, pipe);
  5064. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5065. drm_vblank_post_modeset(dev, pipe);
  5066. if (ret != 0)
  5067. return ret;
  5068. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5069. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5070. encoder->base.base.id,
  5071. drm_get_encoder_name(&encoder->base),
  5072. mode->base.id, mode->name);
  5073. if (encoder->mode_set) {
  5074. encoder->mode_set(encoder);
  5075. } else {
  5076. encoder_funcs = encoder->base.helper_private;
  5077. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5078. }
  5079. }
  5080. return 0;
  5081. }
  5082. static bool intel_eld_uptodate(struct drm_connector *connector,
  5083. int reg_eldv, uint32_t bits_eldv,
  5084. int reg_elda, uint32_t bits_elda,
  5085. int reg_edid)
  5086. {
  5087. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5088. uint8_t *eld = connector->eld;
  5089. uint32_t i;
  5090. i = I915_READ(reg_eldv);
  5091. i &= bits_eldv;
  5092. if (!eld[0])
  5093. return !i;
  5094. if (!i)
  5095. return false;
  5096. i = I915_READ(reg_elda);
  5097. i &= ~bits_elda;
  5098. I915_WRITE(reg_elda, i);
  5099. for (i = 0; i < eld[2]; i++)
  5100. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5101. return false;
  5102. return true;
  5103. }
  5104. static void g4x_write_eld(struct drm_connector *connector,
  5105. struct drm_crtc *crtc)
  5106. {
  5107. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5108. uint8_t *eld = connector->eld;
  5109. uint32_t eldv;
  5110. uint32_t len;
  5111. uint32_t i;
  5112. i = I915_READ(G4X_AUD_VID_DID);
  5113. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5114. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5115. else
  5116. eldv = G4X_ELDV_DEVCTG;
  5117. if (intel_eld_uptodate(connector,
  5118. G4X_AUD_CNTL_ST, eldv,
  5119. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5120. G4X_HDMIW_HDMIEDID))
  5121. return;
  5122. i = I915_READ(G4X_AUD_CNTL_ST);
  5123. i &= ~(eldv | G4X_ELD_ADDR);
  5124. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5125. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5126. if (!eld[0])
  5127. return;
  5128. len = min_t(uint8_t, eld[2], len);
  5129. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5130. for (i = 0; i < len; i++)
  5131. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5132. i = I915_READ(G4X_AUD_CNTL_ST);
  5133. i |= eldv;
  5134. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5135. }
  5136. static void haswell_write_eld(struct drm_connector *connector,
  5137. struct drm_crtc *crtc)
  5138. {
  5139. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5140. uint8_t *eld = connector->eld;
  5141. struct drm_device *dev = crtc->dev;
  5142. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5143. uint32_t eldv;
  5144. uint32_t i;
  5145. int len;
  5146. int pipe = to_intel_crtc(crtc)->pipe;
  5147. int tmp;
  5148. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5149. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5150. int aud_config = HSW_AUD_CFG(pipe);
  5151. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5152. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5153. /* Audio output enable */
  5154. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5155. tmp = I915_READ(aud_cntrl_st2);
  5156. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5157. I915_WRITE(aud_cntrl_st2, tmp);
  5158. /* Wait for 1 vertical blank */
  5159. intel_wait_for_vblank(dev, pipe);
  5160. /* Set ELD valid state */
  5161. tmp = I915_READ(aud_cntrl_st2);
  5162. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5163. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5164. I915_WRITE(aud_cntrl_st2, tmp);
  5165. tmp = I915_READ(aud_cntrl_st2);
  5166. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5167. /* Enable HDMI mode */
  5168. tmp = I915_READ(aud_config);
  5169. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5170. /* clear N_programing_enable and N_value_index */
  5171. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5172. I915_WRITE(aud_config, tmp);
  5173. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5174. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5175. intel_crtc->eld_vld = true;
  5176. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5177. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5178. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5179. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5180. } else
  5181. I915_WRITE(aud_config, 0);
  5182. if (intel_eld_uptodate(connector,
  5183. aud_cntrl_st2, eldv,
  5184. aud_cntl_st, IBX_ELD_ADDRESS,
  5185. hdmiw_hdmiedid))
  5186. return;
  5187. i = I915_READ(aud_cntrl_st2);
  5188. i &= ~eldv;
  5189. I915_WRITE(aud_cntrl_st2, i);
  5190. if (!eld[0])
  5191. return;
  5192. i = I915_READ(aud_cntl_st);
  5193. i &= ~IBX_ELD_ADDRESS;
  5194. I915_WRITE(aud_cntl_st, i);
  5195. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5196. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5197. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5198. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5199. for (i = 0; i < len; i++)
  5200. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5201. i = I915_READ(aud_cntrl_st2);
  5202. i |= eldv;
  5203. I915_WRITE(aud_cntrl_st2, i);
  5204. }
  5205. static void ironlake_write_eld(struct drm_connector *connector,
  5206. struct drm_crtc *crtc)
  5207. {
  5208. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5209. uint8_t *eld = connector->eld;
  5210. uint32_t eldv;
  5211. uint32_t i;
  5212. int len;
  5213. int hdmiw_hdmiedid;
  5214. int aud_config;
  5215. int aud_cntl_st;
  5216. int aud_cntrl_st2;
  5217. int pipe = to_intel_crtc(crtc)->pipe;
  5218. if (HAS_PCH_IBX(connector->dev)) {
  5219. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5220. aud_config = IBX_AUD_CFG(pipe);
  5221. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5222. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5223. } else {
  5224. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5225. aud_config = CPT_AUD_CFG(pipe);
  5226. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5227. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5228. }
  5229. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5230. i = I915_READ(aud_cntl_st);
  5231. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5232. if (!i) {
  5233. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5234. /* operate blindly on all ports */
  5235. eldv = IBX_ELD_VALIDB;
  5236. eldv |= IBX_ELD_VALIDB << 4;
  5237. eldv |= IBX_ELD_VALIDB << 8;
  5238. } else {
  5239. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5240. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5241. }
  5242. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5243. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5244. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5245. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5246. } else
  5247. I915_WRITE(aud_config, 0);
  5248. if (intel_eld_uptodate(connector,
  5249. aud_cntrl_st2, eldv,
  5250. aud_cntl_st, IBX_ELD_ADDRESS,
  5251. hdmiw_hdmiedid))
  5252. return;
  5253. i = I915_READ(aud_cntrl_st2);
  5254. i &= ~eldv;
  5255. I915_WRITE(aud_cntrl_st2, i);
  5256. if (!eld[0])
  5257. return;
  5258. i = I915_READ(aud_cntl_st);
  5259. i &= ~IBX_ELD_ADDRESS;
  5260. I915_WRITE(aud_cntl_st, i);
  5261. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5262. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5263. for (i = 0; i < len; i++)
  5264. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5265. i = I915_READ(aud_cntrl_st2);
  5266. i |= eldv;
  5267. I915_WRITE(aud_cntrl_st2, i);
  5268. }
  5269. void intel_write_eld(struct drm_encoder *encoder,
  5270. struct drm_display_mode *mode)
  5271. {
  5272. struct drm_crtc *crtc = encoder->crtc;
  5273. struct drm_connector *connector;
  5274. struct drm_device *dev = encoder->dev;
  5275. struct drm_i915_private *dev_priv = dev->dev_private;
  5276. connector = drm_select_eld(encoder, mode);
  5277. if (!connector)
  5278. return;
  5279. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5280. connector->base.id,
  5281. drm_get_connector_name(connector),
  5282. connector->encoder->base.id,
  5283. drm_get_encoder_name(connector->encoder));
  5284. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5285. if (dev_priv->display.write_eld)
  5286. dev_priv->display.write_eld(connector, crtc);
  5287. }
  5288. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5289. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5290. {
  5291. struct drm_device *dev = crtc->dev;
  5292. struct drm_i915_private *dev_priv = dev->dev_private;
  5293. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5294. enum pipe pipe = intel_crtc->pipe;
  5295. int palreg = PALETTE(pipe);
  5296. int i;
  5297. bool reenable_ips = false;
  5298. /* The clocks have to be on to load the palette. */
  5299. if (!crtc->enabled || !intel_crtc->active)
  5300. return;
  5301. if (!HAS_PCH_SPLIT(dev_priv->dev))
  5302. assert_pll_enabled(dev_priv, pipe);
  5303. /* use legacy palette for Ironlake */
  5304. if (HAS_PCH_SPLIT(dev))
  5305. palreg = LGC_PALETTE(pipe);
  5306. /* Workaround : Do not read or write the pipe palette/gamma data while
  5307. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5308. */
  5309. if (intel_crtc->config.ips_enabled &&
  5310. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5311. GAMMA_MODE_MODE_SPLIT)) {
  5312. hsw_disable_ips(intel_crtc);
  5313. reenable_ips = true;
  5314. }
  5315. for (i = 0; i < 256; i++) {
  5316. I915_WRITE(palreg + 4 * i,
  5317. (intel_crtc->lut_r[i] << 16) |
  5318. (intel_crtc->lut_g[i] << 8) |
  5319. intel_crtc->lut_b[i]);
  5320. }
  5321. if (reenable_ips)
  5322. hsw_enable_ips(intel_crtc);
  5323. }
  5324. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5325. {
  5326. struct drm_device *dev = crtc->dev;
  5327. struct drm_i915_private *dev_priv = dev->dev_private;
  5328. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5329. bool visible = base != 0;
  5330. u32 cntl;
  5331. if (intel_crtc->cursor_visible == visible)
  5332. return;
  5333. cntl = I915_READ(_CURACNTR);
  5334. if (visible) {
  5335. /* On these chipsets we can only modify the base whilst
  5336. * the cursor is disabled.
  5337. */
  5338. I915_WRITE(_CURABASE, base);
  5339. cntl &= ~(CURSOR_FORMAT_MASK);
  5340. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5341. cntl |= CURSOR_ENABLE |
  5342. CURSOR_GAMMA_ENABLE |
  5343. CURSOR_FORMAT_ARGB;
  5344. } else
  5345. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5346. I915_WRITE(_CURACNTR, cntl);
  5347. intel_crtc->cursor_visible = visible;
  5348. }
  5349. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5350. {
  5351. struct drm_device *dev = crtc->dev;
  5352. struct drm_i915_private *dev_priv = dev->dev_private;
  5353. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5354. int pipe = intel_crtc->pipe;
  5355. bool visible = base != 0;
  5356. if (intel_crtc->cursor_visible != visible) {
  5357. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5358. if (base) {
  5359. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5360. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5361. cntl |= pipe << 28; /* Connect to correct pipe */
  5362. } else {
  5363. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5364. cntl |= CURSOR_MODE_DISABLE;
  5365. }
  5366. I915_WRITE(CURCNTR(pipe), cntl);
  5367. intel_crtc->cursor_visible = visible;
  5368. }
  5369. /* and commit changes on next vblank */
  5370. I915_WRITE(CURBASE(pipe), base);
  5371. }
  5372. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5373. {
  5374. struct drm_device *dev = crtc->dev;
  5375. struct drm_i915_private *dev_priv = dev->dev_private;
  5376. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5377. int pipe = intel_crtc->pipe;
  5378. bool visible = base != 0;
  5379. if (intel_crtc->cursor_visible != visible) {
  5380. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5381. if (base) {
  5382. cntl &= ~CURSOR_MODE;
  5383. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5384. } else {
  5385. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5386. cntl |= CURSOR_MODE_DISABLE;
  5387. }
  5388. if (IS_HASWELL(dev))
  5389. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5390. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5391. intel_crtc->cursor_visible = visible;
  5392. }
  5393. /* and commit changes on next vblank */
  5394. I915_WRITE(CURBASE_IVB(pipe), base);
  5395. }
  5396. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5397. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5398. bool on)
  5399. {
  5400. struct drm_device *dev = crtc->dev;
  5401. struct drm_i915_private *dev_priv = dev->dev_private;
  5402. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5403. int pipe = intel_crtc->pipe;
  5404. int x = intel_crtc->cursor_x;
  5405. int y = intel_crtc->cursor_y;
  5406. u32 base, pos;
  5407. bool visible;
  5408. pos = 0;
  5409. if (on && crtc->enabled && crtc->fb) {
  5410. base = intel_crtc->cursor_addr;
  5411. if (x > (int) crtc->fb->width)
  5412. base = 0;
  5413. if (y > (int) crtc->fb->height)
  5414. base = 0;
  5415. } else
  5416. base = 0;
  5417. if (x < 0) {
  5418. if (x + intel_crtc->cursor_width < 0)
  5419. base = 0;
  5420. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5421. x = -x;
  5422. }
  5423. pos |= x << CURSOR_X_SHIFT;
  5424. if (y < 0) {
  5425. if (y + intel_crtc->cursor_height < 0)
  5426. base = 0;
  5427. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5428. y = -y;
  5429. }
  5430. pos |= y << CURSOR_Y_SHIFT;
  5431. visible = base != 0;
  5432. if (!visible && !intel_crtc->cursor_visible)
  5433. return;
  5434. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5435. I915_WRITE(CURPOS_IVB(pipe), pos);
  5436. ivb_update_cursor(crtc, base);
  5437. } else {
  5438. I915_WRITE(CURPOS(pipe), pos);
  5439. if (IS_845G(dev) || IS_I865G(dev))
  5440. i845_update_cursor(crtc, base);
  5441. else
  5442. i9xx_update_cursor(crtc, base);
  5443. }
  5444. }
  5445. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5446. struct drm_file *file,
  5447. uint32_t handle,
  5448. uint32_t width, uint32_t height)
  5449. {
  5450. struct drm_device *dev = crtc->dev;
  5451. struct drm_i915_private *dev_priv = dev->dev_private;
  5452. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5453. struct drm_i915_gem_object *obj;
  5454. uint32_t addr;
  5455. int ret;
  5456. /* if we want to turn off the cursor ignore width and height */
  5457. if (!handle) {
  5458. DRM_DEBUG_KMS("cursor off\n");
  5459. addr = 0;
  5460. obj = NULL;
  5461. mutex_lock(&dev->struct_mutex);
  5462. goto finish;
  5463. }
  5464. /* Currently we only support 64x64 cursors */
  5465. if (width != 64 || height != 64) {
  5466. DRM_ERROR("we currently only support 64x64 cursors\n");
  5467. return -EINVAL;
  5468. }
  5469. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5470. if (&obj->base == NULL)
  5471. return -ENOENT;
  5472. if (obj->base.size < width * height * 4) {
  5473. DRM_ERROR("buffer is to small\n");
  5474. ret = -ENOMEM;
  5475. goto fail;
  5476. }
  5477. /* we only need to pin inside GTT if cursor is non-phy */
  5478. mutex_lock(&dev->struct_mutex);
  5479. if (!dev_priv->info->cursor_needs_physical) {
  5480. unsigned alignment;
  5481. if (obj->tiling_mode) {
  5482. DRM_ERROR("cursor cannot be tiled\n");
  5483. ret = -EINVAL;
  5484. goto fail_locked;
  5485. }
  5486. /* Note that the w/a also requires 2 PTE of padding following
  5487. * the bo. We currently fill all unused PTE with the shadow
  5488. * page and so we should always have valid PTE following the
  5489. * cursor preventing the VT-d warning.
  5490. */
  5491. alignment = 0;
  5492. if (need_vtd_wa(dev))
  5493. alignment = 64*1024;
  5494. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5495. if (ret) {
  5496. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5497. goto fail_locked;
  5498. }
  5499. ret = i915_gem_object_put_fence(obj);
  5500. if (ret) {
  5501. DRM_ERROR("failed to release fence for cursor");
  5502. goto fail_unpin;
  5503. }
  5504. addr = obj->gtt_offset;
  5505. } else {
  5506. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5507. ret = i915_gem_attach_phys_object(dev, obj,
  5508. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5509. align);
  5510. if (ret) {
  5511. DRM_ERROR("failed to attach phys object\n");
  5512. goto fail_locked;
  5513. }
  5514. addr = obj->phys_obj->handle->busaddr;
  5515. }
  5516. if (IS_GEN2(dev))
  5517. I915_WRITE(CURSIZE, (height << 12) | width);
  5518. finish:
  5519. if (intel_crtc->cursor_bo) {
  5520. if (dev_priv->info->cursor_needs_physical) {
  5521. if (intel_crtc->cursor_bo != obj)
  5522. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5523. } else
  5524. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5525. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5526. }
  5527. mutex_unlock(&dev->struct_mutex);
  5528. intel_crtc->cursor_addr = addr;
  5529. intel_crtc->cursor_bo = obj;
  5530. intel_crtc->cursor_width = width;
  5531. intel_crtc->cursor_height = height;
  5532. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5533. return 0;
  5534. fail_unpin:
  5535. i915_gem_object_unpin(obj);
  5536. fail_locked:
  5537. mutex_unlock(&dev->struct_mutex);
  5538. fail:
  5539. drm_gem_object_unreference_unlocked(&obj->base);
  5540. return ret;
  5541. }
  5542. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5543. {
  5544. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5545. intel_crtc->cursor_x = x;
  5546. intel_crtc->cursor_y = y;
  5547. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5548. return 0;
  5549. }
  5550. /** Sets the color ramps on behalf of RandR */
  5551. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5552. u16 blue, int regno)
  5553. {
  5554. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5555. intel_crtc->lut_r[regno] = red >> 8;
  5556. intel_crtc->lut_g[regno] = green >> 8;
  5557. intel_crtc->lut_b[regno] = blue >> 8;
  5558. }
  5559. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5560. u16 *blue, int regno)
  5561. {
  5562. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5563. *red = intel_crtc->lut_r[regno] << 8;
  5564. *green = intel_crtc->lut_g[regno] << 8;
  5565. *blue = intel_crtc->lut_b[regno] << 8;
  5566. }
  5567. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5568. u16 *blue, uint32_t start, uint32_t size)
  5569. {
  5570. int end = (start + size > 256) ? 256 : start + size, i;
  5571. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5572. for (i = start; i < end; i++) {
  5573. intel_crtc->lut_r[i] = red[i] >> 8;
  5574. intel_crtc->lut_g[i] = green[i] >> 8;
  5575. intel_crtc->lut_b[i] = blue[i] >> 8;
  5576. }
  5577. intel_crtc_load_lut(crtc);
  5578. }
  5579. /* VESA 640x480x72Hz mode to set on the pipe */
  5580. static struct drm_display_mode load_detect_mode = {
  5581. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5582. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5583. };
  5584. static struct drm_framebuffer *
  5585. intel_framebuffer_create(struct drm_device *dev,
  5586. struct drm_mode_fb_cmd2 *mode_cmd,
  5587. struct drm_i915_gem_object *obj)
  5588. {
  5589. struct intel_framebuffer *intel_fb;
  5590. int ret;
  5591. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5592. if (!intel_fb) {
  5593. drm_gem_object_unreference_unlocked(&obj->base);
  5594. return ERR_PTR(-ENOMEM);
  5595. }
  5596. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5597. if (ret) {
  5598. drm_gem_object_unreference_unlocked(&obj->base);
  5599. kfree(intel_fb);
  5600. return ERR_PTR(ret);
  5601. }
  5602. return &intel_fb->base;
  5603. }
  5604. static u32
  5605. intel_framebuffer_pitch_for_width(int width, int bpp)
  5606. {
  5607. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5608. return ALIGN(pitch, 64);
  5609. }
  5610. static u32
  5611. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5612. {
  5613. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5614. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5615. }
  5616. static struct drm_framebuffer *
  5617. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5618. struct drm_display_mode *mode,
  5619. int depth, int bpp)
  5620. {
  5621. struct drm_i915_gem_object *obj;
  5622. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5623. obj = i915_gem_alloc_object(dev,
  5624. intel_framebuffer_size_for_mode(mode, bpp));
  5625. if (obj == NULL)
  5626. return ERR_PTR(-ENOMEM);
  5627. mode_cmd.width = mode->hdisplay;
  5628. mode_cmd.height = mode->vdisplay;
  5629. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5630. bpp);
  5631. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5632. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5633. }
  5634. static struct drm_framebuffer *
  5635. mode_fits_in_fbdev(struct drm_device *dev,
  5636. struct drm_display_mode *mode)
  5637. {
  5638. struct drm_i915_private *dev_priv = dev->dev_private;
  5639. struct drm_i915_gem_object *obj;
  5640. struct drm_framebuffer *fb;
  5641. if (dev_priv->fbdev == NULL)
  5642. return NULL;
  5643. obj = dev_priv->fbdev->ifb.obj;
  5644. if (obj == NULL)
  5645. return NULL;
  5646. fb = &dev_priv->fbdev->ifb.base;
  5647. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5648. fb->bits_per_pixel))
  5649. return NULL;
  5650. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5651. return NULL;
  5652. return fb;
  5653. }
  5654. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5655. struct drm_display_mode *mode,
  5656. struct intel_load_detect_pipe *old)
  5657. {
  5658. struct intel_crtc *intel_crtc;
  5659. struct intel_encoder *intel_encoder =
  5660. intel_attached_encoder(connector);
  5661. struct drm_crtc *possible_crtc;
  5662. struct drm_encoder *encoder = &intel_encoder->base;
  5663. struct drm_crtc *crtc = NULL;
  5664. struct drm_device *dev = encoder->dev;
  5665. struct drm_framebuffer *fb;
  5666. int i = -1;
  5667. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5668. connector->base.id, drm_get_connector_name(connector),
  5669. encoder->base.id, drm_get_encoder_name(encoder));
  5670. /*
  5671. * Algorithm gets a little messy:
  5672. *
  5673. * - if the connector already has an assigned crtc, use it (but make
  5674. * sure it's on first)
  5675. *
  5676. * - try to find the first unused crtc that can drive this connector,
  5677. * and use that if we find one
  5678. */
  5679. /* See if we already have a CRTC for this connector */
  5680. if (encoder->crtc) {
  5681. crtc = encoder->crtc;
  5682. mutex_lock(&crtc->mutex);
  5683. old->dpms_mode = connector->dpms;
  5684. old->load_detect_temp = false;
  5685. /* Make sure the crtc and connector are running */
  5686. if (connector->dpms != DRM_MODE_DPMS_ON)
  5687. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5688. return true;
  5689. }
  5690. /* Find an unused one (if possible) */
  5691. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5692. i++;
  5693. if (!(encoder->possible_crtcs & (1 << i)))
  5694. continue;
  5695. if (!possible_crtc->enabled) {
  5696. crtc = possible_crtc;
  5697. break;
  5698. }
  5699. }
  5700. /*
  5701. * If we didn't find an unused CRTC, don't use any.
  5702. */
  5703. if (!crtc) {
  5704. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5705. return false;
  5706. }
  5707. mutex_lock(&crtc->mutex);
  5708. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5709. to_intel_connector(connector)->new_encoder = intel_encoder;
  5710. intel_crtc = to_intel_crtc(crtc);
  5711. old->dpms_mode = connector->dpms;
  5712. old->load_detect_temp = true;
  5713. old->release_fb = NULL;
  5714. if (!mode)
  5715. mode = &load_detect_mode;
  5716. /* We need a framebuffer large enough to accommodate all accesses
  5717. * that the plane may generate whilst we perform load detection.
  5718. * We can not rely on the fbcon either being present (we get called
  5719. * during its initialisation to detect all boot displays, or it may
  5720. * not even exist) or that it is large enough to satisfy the
  5721. * requested mode.
  5722. */
  5723. fb = mode_fits_in_fbdev(dev, mode);
  5724. if (fb == NULL) {
  5725. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5726. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5727. old->release_fb = fb;
  5728. } else
  5729. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5730. if (IS_ERR(fb)) {
  5731. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5732. mutex_unlock(&crtc->mutex);
  5733. return false;
  5734. }
  5735. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5736. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5737. if (old->release_fb)
  5738. old->release_fb->funcs->destroy(old->release_fb);
  5739. mutex_unlock(&crtc->mutex);
  5740. return false;
  5741. }
  5742. /* let the connector get through one full cycle before testing */
  5743. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5744. return true;
  5745. }
  5746. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5747. struct intel_load_detect_pipe *old)
  5748. {
  5749. struct intel_encoder *intel_encoder =
  5750. intel_attached_encoder(connector);
  5751. struct drm_encoder *encoder = &intel_encoder->base;
  5752. struct drm_crtc *crtc = encoder->crtc;
  5753. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5754. connector->base.id, drm_get_connector_name(connector),
  5755. encoder->base.id, drm_get_encoder_name(encoder));
  5756. if (old->load_detect_temp) {
  5757. to_intel_connector(connector)->new_encoder = NULL;
  5758. intel_encoder->new_crtc = NULL;
  5759. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5760. if (old->release_fb) {
  5761. drm_framebuffer_unregister_private(old->release_fb);
  5762. drm_framebuffer_unreference(old->release_fb);
  5763. }
  5764. mutex_unlock(&crtc->mutex);
  5765. return;
  5766. }
  5767. /* Switch crtc and encoder back off if necessary */
  5768. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5769. connector->funcs->dpms(connector, old->dpms_mode);
  5770. mutex_unlock(&crtc->mutex);
  5771. }
  5772. /* Returns the clock of the currently programmed mode of the given pipe. */
  5773. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5774. {
  5775. struct drm_i915_private *dev_priv = dev->dev_private;
  5776. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5777. int pipe = intel_crtc->pipe;
  5778. u32 dpll = I915_READ(DPLL(pipe));
  5779. u32 fp;
  5780. intel_clock_t clock;
  5781. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5782. fp = I915_READ(FP0(pipe));
  5783. else
  5784. fp = I915_READ(FP1(pipe));
  5785. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5786. if (IS_PINEVIEW(dev)) {
  5787. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5788. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5789. } else {
  5790. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5791. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5792. }
  5793. if (!IS_GEN2(dev)) {
  5794. if (IS_PINEVIEW(dev))
  5795. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5796. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5797. else
  5798. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5799. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5800. switch (dpll & DPLL_MODE_MASK) {
  5801. case DPLLB_MODE_DAC_SERIAL:
  5802. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5803. 5 : 10;
  5804. break;
  5805. case DPLLB_MODE_LVDS:
  5806. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5807. 7 : 14;
  5808. break;
  5809. default:
  5810. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5811. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5812. return 0;
  5813. }
  5814. if (IS_PINEVIEW(dev))
  5815. pineview_clock(96000, &clock);
  5816. else
  5817. i9xx_clock(96000, &clock);
  5818. } else {
  5819. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5820. if (is_lvds) {
  5821. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5822. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5823. clock.p2 = 14;
  5824. if ((dpll & PLL_REF_INPUT_MASK) ==
  5825. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5826. /* XXX: might not be 66MHz */
  5827. i9xx_clock(66000, &clock);
  5828. } else
  5829. i9xx_clock(48000, &clock);
  5830. } else {
  5831. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5832. clock.p1 = 2;
  5833. else {
  5834. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5835. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5836. }
  5837. if (dpll & PLL_P2_DIVIDE_BY_4)
  5838. clock.p2 = 4;
  5839. else
  5840. clock.p2 = 2;
  5841. i9xx_clock(48000, &clock);
  5842. }
  5843. }
  5844. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5845. * i830PllIsValid() because it relies on the xf86_config connector
  5846. * configuration being accurate, which it isn't necessarily.
  5847. */
  5848. return clock.dot;
  5849. }
  5850. /** Returns the currently programmed mode of the given pipe. */
  5851. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5852. struct drm_crtc *crtc)
  5853. {
  5854. struct drm_i915_private *dev_priv = dev->dev_private;
  5855. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5856. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5857. struct drm_display_mode *mode;
  5858. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5859. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5860. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5861. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5862. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5863. if (!mode)
  5864. return NULL;
  5865. mode->clock = intel_crtc_clock_get(dev, crtc);
  5866. mode->hdisplay = (htot & 0xffff) + 1;
  5867. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5868. mode->hsync_start = (hsync & 0xffff) + 1;
  5869. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5870. mode->vdisplay = (vtot & 0xffff) + 1;
  5871. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5872. mode->vsync_start = (vsync & 0xffff) + 1;
  5873. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5874. drm_mode_set_name(mode);
  5875. return mode;
  5876. }
  5877. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5878. {
  5879. struct drm_device *dev = crtc->dev;
  5880. drm_i915_private_t *dev_priv = dev->dev_private;
  5881. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5882. int pipe = intel_crtc->pipe;
  5883. int dpll_reg = DPLL(pipe);
  5884. int dpll;
  5885. if (HAS_PCH_SPLIT(dev))
  5886. return;
  5887. if (!dev_priv->lvds_downclock_avail)
  5888. return;
  5889. dpll = I915_READ(dpll_reg);
  5890. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5891. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5892. assert_panel_unlocked(dev_priv, pipe);
  5893. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5894. I915_WRITE(dpll_reg, dpll);
  5895. intel_wait_for_vblank(dev, pipe);
  5896. dpll = I915_READ(dpll_reg);
  5897. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5898. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5899. }
  5900. }
  5901. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5902. {
  5903. struct drm_device *dev = crtc->dev;
  5904. drm_i915_private_t *dev_priv = dev->dev_private;
  5905. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5906. if (HAS_PCH_SPLIT(dev))
  5907. return;
  5908. if (!dev_priv->lvds_downclock_avail)
  5909. return;
  5910. /*
  5911. * Since this is called by a timer, we should never get here in
  5912. * the manual case.
  5913. */
  5914. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5915. int pipe = intel_crtc->pipe;
  5916. int dpll_reg = DPLL(pipe);
  5917. int dpll;
  5918. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5919. assert_panel_unlocked(dev_priv, pipe);
  5920. dpll = I915_READ(dpll_reg);
  5921. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5922. I915_WRITE(dpll_reg, dpll);
  5923. intel_wait_for_vblank(dev, pipe);
  5924. dpll = I915_READ(dpll_reg);
  5925. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5926. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5927. }
  5928. }
  5929. void intel_mark_busy(struct drm_device *dev)
  5930. {
  5931. i915_update_gfx_val(dev->dev_private);
  5932. }
  5933. void intel_mark_idle(struct drm_device *dev)
  5934. {
  5935. struct drm_crtc *crtc;
  5936. if (!i915_powersave)
  5937. return;
  5938. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5939. if (!crtc->fb)
  5940. continue;
  5941. intel_decrease_pllclock(crtc);
  5942. }
  5943. }
  5944. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  5945. struct intel_ring_buffer *ring)
  5946. {
  5947. struct drm_device *dev = obj->base.dev;
  5948. struct drm_crtc *crtc;
  5949. if (!i915_powersave)
  5950. return;
  5951. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5952. if (!crtc->fb)
  5953. continue;
  5954. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  5955. continue;
  5956. intel_increase_pllclock(crtc);
  5957. if (ring && intel_fbc_enabled(dev))
  5958. ring->fbc_dirty = true;
  5959. }
  5960. }
  5961. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5962. {
  5963. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5964. struct drm_device *dev = crtc->dev;
  5965. struct intel_unpin_work *work;
  5966. unsigned long flags;
  5967. spin_lock_irqsave(&dev->event_lock, flags);
  5968. work = intel_crtc->unpin_work;
  5969. intel_crtc->unpin_work = NULL;
  5970. spin_unlock_irqrestore(&dev->event_lock, flags);
  5971. if (work) {
  5972. cancel_work_sync(&work->work);
  5973. kfree(work);
  5974. }
  5975. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  5976. drm_crtc_cleanup(crtc);
  5977. kfree(intel_crtc);
  5978. }
  5979. static void intel_unpin_work_fn(struct work_struct *__work)
  5980. {
  5981. struct intel_unpin_work *work =
  5982. container_of(__work, struct intel_unpin_work, work);
  5983. struct drm_device *dev = work->crtc->dev;
  5984. mutex_lock(&dev->struct_mutex);
  5985. intel_unpin_fb_obj(work->old_fb_obj);
  5986. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5987. drm_gem_object_unreference(&work->old_fb_obj->base);
  5988. intel_update_fbc(dev);
  5989. mutex_unlock(&dev->struct_mutex);
  5990. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5991. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5992. kfree(work);
  5993. }
  5994. static void do_intel_finish_page_flip(struct drm_device *dev,
  5995. struct drm_crtc *crtc)
  5996. {
  5997. drm_i915_private_t *dev_priv = dev->dev_private;
  5998. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5999. struct intel_unpin_work *work;
  6000. unsigned long flags;
  6001. /* Ignore early vblank irqs */
  6002. if (intel_crtc == NULL)
  6003. return;
  6004. spin_lock_irqsave(&dev->event_lock, flags);
  6005. work = intel_crtc->unpin_work;
  6006. /* Ensure we don't miss a work->pending update ... */
  6007. smp_rmb();
  6008. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6009. spin_unlock_irqrestore(&dev->event_lock, flags);
  6010. return;
  6011. }
  6012. /* and that the unpin work is consistent wrt ->pending. */
  6013. smp_rmb();
  6014. intel_crtc->unpin_work = NULL;
  6015. if (work->event)
  6016. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6017. drm_vblank_put(dev, intel_crtc->pipe);
  6018. spin_unlock_irqrestore(&dev->event_lock, flags);
  6019. wake_up_all(&dev_priv->pending_flip_queue);
  6020. queue_work(dev_priv->wq, &work->work);
  6021. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6022. }
  6023. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6024. {
  6025. drm_i915_private_t *dev_priv = dev->dev_private;
  6026. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6027. do_intel_finish_page_flip(dev, crtc);
  6028. }
  6029. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6030. {
  6031. drm_i915_private_t *dev_priv = dev->dev_private;
  6032. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6033. do_intel_finish_page_flip(dev, crtc);
  6034. }
  6035. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6036. {
  6037. drm_i915_private_t *dev_priv = dev->dev_private;
  6038. struct intel_crtc *intel_crtc =
  6039. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6040. unsigned long flags;
  6041. /* NB: An MMIO update of the plane base pointer will also
  6042. * generate a page-flip completion irq, i.e. every modeset
  6043. * is also accompanied by a spurious intel_prepare_page_flip().
  6044. */
  6045. spin_lock_irqsave(&dev->event_lock, flags);
  6046. if (intel_crtc->unpin_work)
  6047. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6048. spin_unlock_irqrestore(&dev->event_lock, flags);
  6049. }
  6050. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6051. {
  6052. /* Ensure that the work item is consistent when activating it ... */
  6053. smp_wmb();
  6054. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6055. /* and that it is marked active as soon as the irq could fire. */
  6056. smp_wmb();
  6057. }
  6058. static int intel_gen2_queue_flip(struct drm_device *dev,
  6059. struct drm_crtc *crtc,
  6060. struct drm_framebuffer *fb,
  6061. struct drm_i915_gem_object *obj)
  6062. {
  6063. struct drm_i915_private *dev_priv = dev->dev_private;
  6064. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6065. u32 flip_mask;
  6066. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6067. int ret;
  6068. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6069. if (ret)
  6070. goto err;
  6071. ret = intel_ring_begin(ring, 6);
  6072. if (ret)
  6073. goto err_unpin;
  6074. /* Can't queue multiple flips, so wait for the previous
  6075. * one to finish before executing the next.
  6076. */
  6077. if (intel_crtc->plane)
  6078. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6079. else
  6080. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6081. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6082. intel_ring_emit(ring, MI_NOOP);
  6083. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6084. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6085. intel_ring_emit(ring, fb->pitches[0]);
  6086. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6087. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6088. intel_mark_page_flip_active(intel_crtc);
  6089. intel_ring_advance(ring);
  6090. return 0;
  6091. err_unpin:
  6092. intel_unpin_fb_obj(obj);
  6093. err:
  6094. return ret;
  6095. }
  6096. static int intel_gen3_queue_flip(struct drm_device *dev,
  6097. struct drm_crtc *crtc,
  6098. struct drm_framebuffer *fb,
  6099. struct drm_i915_gem_object *obj)
  6100. {
  6101. struct drm_i915_private *dev_priv = dev->dev_private;
  6102. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6103. u32 flip_mask;
  6104. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6105. int ret;
  6106. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6107. if (ret)
  6108. goto err;
  6109. ret = intel_ring_begin(ring, 6);
  6110. if (ret)
  6111. goto err_unpin;
  6112. if (intel_crtc->plane)
  6113. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6114. else
  6115. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6116. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6117. intel_ring_emit(ring, MI_NOOP);
  6118. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6119. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6120. intel_ring_emit(ring, fb->pitches[0]);
  6121. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6122. intel_ring_emit(ring, MI_NOOP);
  6123. intel_mark_page_flip_active(intel_crtc);
  6124. intel_ring_advance(ring);
  6125. return 0;
  6126. err_unpin:
  6127. intel_unpin_fb_obj(obj);
  6128. err:
  6129. return ret;
  6130. }
  6131. static int intel_gen4_queue_flip(struct drm_device *dev,
  6132. struct drm_crtc *crtc,
  6133. struct drm_framebuffer *fb,
  6134. struct drm_i915_gem_object *obj)
  6135. {
  6136. struct drm_i915_private *dev_priv = dev->dev_private;
  6137. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6138. uint32_t pf, pipesrc;
  6139. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6140. int ret;
  6141. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6142. if (ret)
  6143. goto err;
  6144. ret = intel_ring_begin(ring, 4);
  6145. if (ret)
  6146. goto err_unpin;
  6147. /* i965+ uses the linear or tiled offsets from the
  6148. * Display Registers (which do not change across a page-flip)
  6149. * so we need only reprogram the base address.
  6150. */
  6151. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6152. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6153. intel_ring_emit(ring, fb->pitches[0]);
  6154. intel_ring_emit(ring,
  6155. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6156. obj->tiling_mode);
  6157. /* XXX Enabling the panel-fitter across page-flip is so far
  6158. * untested on non-native modes, so ignore it for now.
  6159. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6160. */
  6161. pf = 0;
  6162. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6163. intel_ring_emit(ring, pf | pipesrc);
  6164. intel_mark_page_flip_active(intel_crtc);
  6165. intel_ring_advance(ring);
  6166. return 0;
  6167. err_unpin:
  6168. intel_unpin_fb_obj(obj);
  6169. err:
  6170. return ret;
  6171. }
  6172. static int intel_gen6_queue_flip(struct drm_device *dev,
  6173. struct drm_crtc *crtc,
  6174. struct drm_framebuffer *fb,
  6175. struct drm_i915_gem_object *obj)
  6176. {
  6177. struct drm_i915_private *dev_priv = dev->dev_private;
  6178. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6179. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6180. uint32_t pf, pipesrc;
  6181. int ret;
  6182. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6183. if (ret)
  6184. goto err;
  6185. ret = intel_ring_begin(ring, 4);
  6186. if (ret)
  6187. goto err_unpin;
  6188. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6189. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6190. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6191. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6192. /* Contrary to the suggestions in the documentation,
  6193. * "Enable Panel Fitter" does not seem to be required when page
  6194. * flipping with a non-native mode, and worse causes a normal
  6195. * modeset to fail.
  6196. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6197. */
  6198. pf = 0;
  6199. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6200. intel_ring_emit(ring, pf | pipesrc);
  6201. intel_mark_page_flip_active(intel_crtc);
  6202. intel_ring_advance(ring);
  6203. return 0;
  6204. err_unpin:
  6205. intel_unpin_fb_obj(obj);
  6206. err:
  6207. return ret;
  6208. }
  6209. /*
  6210. * On gen7 we currently use the blit ring because (in early silicon at least)
  6211. * the render ring doesn't give us interrpts for page flip completion, which
  6212. * means clients will hang after the first flip is queued. Fortunately the
  6213. * blit ring generates interrupts properly, so use it instead.
  6214. */
  6215. static int intel_gen7_queue_flip(struct drm_device *dev,
  6216. struct drm_crtc *crtc,
  6217. struct drm_framebuffer *fb,
  6218. struct drm_i915_gem_object *obj)
  6219. {
  6220. struct drm_i915_private *dev_priv = dev->dev_private;
  6221. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6222. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6223. uint32_t plane_bit = 0;
  6224. int ret;
  6225. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6226. if (ret)
  6227. goto err;
  6228. switch(intel_crtc->plane) {
  6229. case PLANE_A:
  6230. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6231. break;
  6232. case PLANE_B:
  6233. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6234. break;
  6235. case PLANE_C:
  6236. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6237. break;
  6238. default:
  6239. WARN_ONCE(1, "unknown plane in flip command\n");
  6240. ret = -ENODEV;
  6241. goto err_unpin;
  6242. }
  6243. ret = intel_ring_begin(ring, 4);
  6244. if (ret)
  6245. goto err_unpin;
  6246. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6247. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6248. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6249. intel_ring_emit(ring, (MI_NOOP));
  6250. intel_mark_page_flip_active(intel_crtc);
  6251. intel_ring_advance(ring);
  6252. return 0;
  6253. err_unpin:
  6254. intel_unpin_fb_obj(obj);
  6255. err:
  6256. return ret;
  6257. }
  6258. static int intel_default_queue_flip(struct drm_device *dev,
  6259. struct drm_crtc *crtc,
  6260. struct drm_framebuffer *fb,
  6261. struct drm_i915_gem_object *obj)
  6262. {
  6263. return -ENODEV;
  6264. }
  6265. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6266. struct drm_framebuffer *fb,
  6267. struct drm_pending_vblank_event *event)
  6268. {
  6269. struct drm_device *dev = crtc->dev;
  6270. struct drm_i915_private *dev_priv = dev->dev_private;
  6271. struct drm_framebuffer *old_fb = crtc->fb;
  6272. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6273. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6274. struct intel_unpin_work *work;
  6275. unsigned long flags;
  6276. int ret;
  6277. /* Can't change pixel format via MI display flips. */
  6278. if (fb->pixel_format != crtc->fb->pixel_format)
  6279. return -EINVAL;
  6280. /*
  6281. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6282. * Note that pitch changes could also affect these register.
  6283. */
  6284. if (INTEL_INFO(dev)->gen > 3 &&
  6285. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6286. fb->pitches[0] != crtc->fb->pitches[0]))
  6287. return -EINVAL;
  6288. work = kzalloc(sizeof *work, GFP_KERNEL);
  6289. if (work == NULL)
  6290. return -ENOMEM;
  6291. work->event = event;
  6292. work->crtc = crtc;
  6293. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6294. INIT_WORK(&work->work, intel_unpin_work_fn);
  6295. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6296. if (ret)
  6297. goto free_work;
  6298. /* We borrow the event spin lock for protecting unpin_work */
  6299. spin_lock_irqsave(&dev->event_lock, flags);
  6300. if (intel_crtc->unpin_work) {
  6301. spin_unlock_irqrestore(&dev->event_lock, flags);
  6302. kfree(work);
  6303. drm_vblank_put(dev, intel_crtc->pipe);
  6304. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6305. return -EBUSY;
  6306. }
  6307. intel_crtc->unpin_work = work;
  6308. spin_unlock_irqrestore(&dev->event_lock, flags);
  6309. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6310. flush_workqueue(dev_priv->wq);
  6311. ret = i915_mutex_lock_interruptible(dev);
  6312. if (ret)
  6313. goto cleanup;
  6314. /* Reference the objects for the scheduled work. */
  6315. drm_gem_object_reference(&work->old_fb_obj->base);
  6316. drm_gem_object_reference(&obj->base);
  6317. crtc->fb = fb;
  6318. work->pending_flip_obj = obj;
  6319. work->enable_stall_check = true;
  6320. atomic_inc(&intel_crtc->unpin_work_count);
  6321. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6322. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6323. if (ret)
  6324. goto cleanup_pending;
  6325. intel_disable_fbc(dev);
  6326. intel_mark_fb_busy(obj, NULL);
  6327. mutex_unlock(&dev->struct_mutex);
  6328. trace_i915_flip_request(intel_crtc->plane, obj);
  6329. return 0;
  6330. cleanup_pending:
  6331. atomic_dec(&intel_crtc->unpin_work_count);
  6332. crtc->fb = old_fb;
  6333. drm_gem_object_unreference(&work->old_fb_obj->base);
  6334. drm_gem_object_unreference(&obj->base);
  6335. mutex_unlock(&dev->struct_mutex);
  6336. cleanup:
  6337. spin_lock_irqsave(&dev->event_lock, flags);
  6338. intel_crtc->unpin_work = NULL;
  6339. spin_unlock_irqrestore(&dev->event_lock, flags);
  6340. drm_vblank_put(dev, intel_crtc->pipe);
  6341. free_work:
  6342. kfree(work);
  6343. return ret;
  6344. }
  6345. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6346. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6347. .load_lut = intel_crtc_load_lut,
  6348. };
  6349. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6350. struct drm_crtc *crtc)
  6351. {
  6352. struct drm_device *dev;
  6353. struct drm_crtc *tmp;
  6354. int crtc_mask = 1;
  6355. WARN(!crtc, "checking null crtc?\n");
  6356. dev = crtc->dev;
  6357. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6358. if (tmp == crtc)
  6359. break;
  6360. crtc_mask <<= 1;
  6361. }
  6362. if (encoder->possible_crtcs & crtc_mask)
  6363. return true;
  6364. return false;
  6365. }
  6366. /**
  6367. * intel_modeset_update_staged_output_state
  6368. *
  6369. * Updates the staged output configuration state, e.g. after we've read out the
  6370. * current hw state.
  6371. */
  6372. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6373. {
  6374. struct intel_encoder *encoder;
  6375. struct intel_connector *connector;
  6376. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6377. base.head) {
  6378. connector->new_encoder =
  6379. to_intel_encoder(connector->base.encoder);
  6380. }
  6381. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6382. base.head) {
  6383. encoder->new_crtc =
  6384. to_intel_crtc(encoder->base.crtc);
  6385. }
  6386. }
  6387. /**
  6388. * intel_modeset_commit_output_state
  6389. *
  6390. * This function copies the stage display pipe configuration to the real one.
  6391. */
  6392. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6393. {
  6394. struct intel_encoder *encoder;
  6395. struct intel_connector *connector;
  6396. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6397. base.head) {
  6398. connector->base.encoder = &connector->new_encoder->base;
  6399. }
  6400. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6401. base.head) {
  6402. encoder->base.crtc = &encoder->new_crtc->base;
  6403. }
  6404. }
  6405. static void
  6406. connected_sink_compute_bpp(struct intel_connector * connector,
  6407. struct intel_crtc_config *pipe_config)
  6408. {
  6409. int bpp = pipe_config->pipe_bpp;
  6410. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6411. connector->base.base.id,
  6412. drm_get_connector_name(&connector->base));
  6413. /* Don't use an invalid EDID bpc value */
  6414. if (connector->base.display_info.bpc &&
  6415. connector->base.display_info.bpc * 3 < bpp) {
  6416. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6417. bpp, connector->base.display_info.bpc*3);
  6418. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6419. }
  6420. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6421. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6422. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6423. bpp);
  6424. pipe_config->pipe_bpp = 24;
  6425. }
  6426. }
  6427. static int
  6428. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6429. struct drm_framebuffer *fb,
  6430. struct intel_crtc_config *pipe_config)
  6431. {
  6432. struct drm_device *dev = crtc->base.dev;
  6433. struct intel_connector *connector;
  6434. int bpp;
  6435. switch (fb->pixel_format) {
  6436. case DRM_FORMAT_C8:
  6437. bpp = 8*3; /* since we go through a colormap */
  6438. break;
  6439. case DRM_FORMAT_XRGB1555:
  6440. case DRM_FORMAT_ARGB1555:
  6441. /* checked in intel_framebuffer_init already */
  6442. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6443. return -EINVAL;
  6444. case DRM_FORMAT_RGB565:
  6445. bpp = 6*3; /* min is 18bpp */
  6446. break;
  6447. case DRM_FORMAT_XBGR8888:
  6448. case DRM_FORMAT_ABGR8888:
  6449. /* checked in intel_framebuffer_init already */
  6450. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6451. return -EINVAL;
  6452. case DRM_FORMAT_XRGB8888:
  6453. case DRM_FORMAT_ARGB8888:
  6454. bpp = 8*3;
  6455. break;
  6456. case DRM_FORMAT_XRGB2101010:
  6457. case DRM_FORMAT_ARGB2101010:
  6458. case DRM_FORMAT_XBGR2101010:
  6459. case DRM_FORMAT_ABGR2101010:
  6460. /* checked in intel_framebuffer_init already */
  6461. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6462. return -EINVAL;
  6463. bpp = 10*3;
  6464. break;
  6465. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6466. default:
  6467. DRM_DEBUG_KMS("unsupported depth\n");
  6468. return -EINVAL;
  6469. }
  6470. pipe_config->pipe_bpp = bpp;
  6471. /* Clamp display bpp to EDID value */
  6472. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6473. base.head) {
  6474. if (!connector->new_encoder ||
  6475. connector->new_encoder->new_crtc != crtc)
  6476. continue;
  6477. connected_sink_compute_bpp(connector, pipe_config);
  6478. }
  6479. return bpp;
  6480. }
  6481. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6482. struct intel_crtc_config *pipe_config,
  6483. const char *context)
  6484. {
  6485. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6486. context, pipe_name(crtc->pipe));
  6487. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6488. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6489. pipe_config->pipe_bpp, pipe_config->dither);
  6490. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6491. pipe_config->has_pch_encoder,
  6492. pipe_config->fdi_lanes,
  6493. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6494. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6495. pipe_config->fdi_m_n.tu);
  6496. DRM_DEBUG_KMS("requested mode:\n");
  6497. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6498. DRM_DEBUG_KMS("adjusted mode:\n");
  6499. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6500. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6501. pipe_config->gmch_pfit.control,
  6502. pipe_config->gmch_pfit.pgm_ratios,
  6503. pipe_config->gmch_pfit.lvds_border_bits);
  6504. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6505. pipe_config->pch_pfit.pos,
  6506. pipe_config->pch_pfit.size);
  6507. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6508. }
  6509. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6510. {
  6511. int num_encoders = 0;
  6512. bool uncloneable_encoders = false;
  6513. struct intel_encoder *encoder;
  6514. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6515. base.head) {
  6516. if (&encoder->new_crtc->base != crtc)
  6517. continue;
  6518. num_encoders++;
  6519. if (!encoder->cloneable)
  6520. uncloneable_encoders = true;
  6521. }
  6522. return !(num_encoders > 1 && uncloneable_encoders);
  6523. }
  6524. static struct intel_crtc_config *
  6525. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6526. struct drm_framebuffer *fb,
  6527. struct drm_display_mode *mode)
  6528. {
  6529. struct drm_device *dev = crtc->dev;
  6530. struct drm_encoder_helper_funcs *encoder_funcs;
  6531. struct intel_encoder *encoder;
  6532. struct intel_crtc_config *pipe_config;
  6533. int plane_bpp, ret = -EINVAL;
  6534. bool retry = true;
  6535. if (!check_encoder_cloning(crtc)) {
  6536. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  6537. return ERR_PTR(-EINVAL);
  6538. }
  6539. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6540. if (!pipe_config)
  6541. return ERR_PTR(-ENOMEM);
  6542. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6543. drm_mode_copy(&pipe_config->requested_mode, mode);
  6544. pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
  6545. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  6546. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6547. * plane pixel format and any sink constraints into account. Returns the
  6548. * source plane bpp so that dithering can be selected on mismatches
  6549. * after encoders and crtc also have had their say. */
  6550. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6551. fb, pipe_config);
  6552. if (plane_bpp < 0)
  6553. goto fail;
  6554. encoder_retry:
  6555. /* Ensure the port clock defaults are reset when retrying. */
  6556. pipe_config->port_clock = 0;
  6557. pipe_config->pixel_multiplier = 1;
  6558. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6559. * adjust it according to limitations or connector properties, and also
  6560. * a chance to reject the mode entirely.
  6561. */
  6562. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6563. base.head) {
  6564. if (&encoder->new_crtc->base != crtc)
  6565. continue;
  6566. if (encoder->compute_config) {
  6567. if (!(encoder->compute_config(encoder, pipe_config))) {
  6568. DRM_DEBUG_KMS("Encoder config failure\n");
  6569. goto fail;
  6570. }
  6571. continue;
  6572. }
  6573. encoder_funcs = encoder->base.helper_private;
  6574. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6575. &pipe_config->requested_mode,
  6576. &pipe_config->adjusted_mode))) {
  6577. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6578. goto fail;
  6579. }
  6580. }
  6581. /* Set default port clock if not overwritten by the encoder. Needs to be
  6582. * done afterwards in case the encoder adjusts the mode. */
  6583. if (!pipe_config->port_clock)
  6584. pipe_config->port_clock = pipe_config->adjusted_mode.clock;
  6585. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  6586. if (ret < 0) {
  6587. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6588. goto fail;
  6589. }
  6590. if (ret == RETRY) {
  6591. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6592. ret = -EINVAL;
  6593. goto fail;
  6594. }
  6595. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6596. retry = false;
  6597. goto encoder_retry;
  6598. }
  6599. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6600. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6601. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6602. return pipe_config;
  6603. fail:
  6604. kfree(pipe_config);
  6605. return ERR_PTR(ret);
  6606. }
  6607. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6608. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6609. static void
  6610. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6611. unsigned *prepare_pipes, unsigned *disable_pipes)
  6612. {
  6613. struct intel_crtc *intel_crtc;
  6614. struct drm_device *dev = crtc->dev;
  6615. struct intel_encoder *encoder;
  6616. struct intel_connector *connector;
  6617. struct drm_crtc *tmp_crtc;
  6618. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6619. /* Check which crtcs have changed outputs connected to them, these need
  6620. * to be part of the prepare_pipes mask. We don't (yet) support global
  6621. * modeset across multiple crtcs, so modeset_pipes will only have one
  6622. * bit set at most. */
  6623. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6624. base.head) {
  6625. if (connector->base.encoder == &connector->new_encoder->base)
  6626. continue;
  6627. if (connector->base.encoder) {
  6628. tmp_crtc = connector->base.encoder->crtc;
  6629. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6630. }
  6631. if (connector->new_encoder)
  6632. *prepare_pipes |=
  6633. 1 << connector->new_encoder->new_crtc->pipe;
  6634. }
  6635. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6636. base.head) {
  6637. if (encoder->base.crtc == &encoder->new_crtc->base)
  6638. continue;
  6639. if (encoder->base.crtc) {
  6640. tmp_crtc = encoder->base.crtc;
  6641. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6642. }
  6643. if (encoder->new_crtc)
  6644. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6645. }
  6646. /* Check for any pipes that will be fully disabled ... */
  6647. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6648. base.head) {
  6649. bool used = false;
  6650. /* Don't try to disable disabled crtcs. */
  6651. if (!intel_crtc->base.enabled)
  6652. continue;
  6653. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6654. base.head) {
  6655. if (encoder->new_crtc == intel_crtc)
  6656. used = true;
  6657. }
  6658. if (!used)
  6659. *disable_pipes |= 1 << intel_crtc->pipe;
  6660. }
  6661. /* set_mode is also used to update properties on life display pipes. */
  6662. intel_crtc = to_intel_crtc(crtc);
  6663. if (crtc->enabled)
  6664. *prepare_pipes |= 1 << intel_crtc->pipe;
  6665. /*
  6666. * For simplicity do a full modeset on any pipe where the output routing
  6667. * changed. We could be more clever, but that would require us to be
  6668. * more careful with calling the relevant encoder->mode_set functions.
  6669. */
  6670. if (*prepare_pipes)
  6671. *modeset_pipes = *prepare_pipes;
  6672. /* ... and mask these out. */
  6673. *modeset_pipes &= ~(*disable_pipes);
  6674. *prepare_pipes &= ~(*disable_pipes);
  6675. /*
  6676. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6677. * obies this rule, but the modeset restore mode of
  6678. * intel_modeset_setup_hw_state does not.
  6679. */
  6680. *modeset_pipes &= 1 << intel_crtc->pipe;
  6681. *prepare_pipes &= 1 << intel_crtc->pipe;
  6682. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6683. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6684. }
  6685. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6686. {
  6687. struct drm_encoder *encoder;
  6688. struct drm_device *dev = crtc->dev;
  6689. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6690. if (encoder->crtc == crtc)
  6691. return true;
  6692. return false;
  6693. }
  6694. static void
  6695. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6696. {
  6697. struct intel_encoder *intel_encoder;
  6698. struct intel_crtc *intel_crtc;
  6699. struct drm_connector *connector;
  6700. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6701. base.head) {
  6702. if (!intel_encoder->base.crtc)
  6703. continue;
  6704. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6705. if (prepare_pipes & (1 << intel_crtc->pipe))
  6706. intel_encoder->connectors_active = false;
  6707. }
  6708. intel_modeset_commit_output_state(dev);
  6709. /* Update computed state. */
  6710. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6711. base.head) {
  6712. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6713. }
  6714. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6715. if (!connector->encoder || !connector->encoder->crtc)
  6716. continue;
  6717. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6718. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6719. struct drm_property *dpms_property =
  6720. dev->mode_config.dpms_property;
  6721. connector->dpms = DRM_MODE_DPMS_ON;
  6722. drm_object_property_set_value(&connector->base,
  6723. dpms_property,
  6724. DRM_MODE_DPMS_ON);
  6725. intel_encoder = to_intel_encoder(connector->encoder);
  6726. intel_encoder->connectors_active = true;
  6727. }
  6728. }
  6729. }
  6730. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6731. list_for_each_entry((intel_crtc), \
  6732. &(dev)->mode_config.crtc_list, \
  6733. base.head) \
  6734. if (mask & (1 <<(intel_crtc)->pipe))
  6735. static bool
  6736. intel_pipe_config_compare(struct drm_device *dev,
  6737. struct intel_crtc_config *current_config,
  6738. struct intel_crtc_config *pipe_config)
  6739. {
  6740. #define PIPE_CONF_CHECK_X(name) \
  6741. if (current_config->name != pipe_config->name) { \
  6742. DRM_ERROR("mismatch in " #name " " \
  6743. "(expected 0x%08x, found 0x%08x)\n", \
  6744. current_config->name, \
  6745. pipe_config->name); \
  6746. return false; \
  6747. }
  6748. #define PIPE_CONF_CHECK_I(name) \
  6749. if (current_config->name != pipe_config->name) { \
  6750. DRM_ERROR("mismatch in " #name " " \
  6751. "(expected %i, found %i)\n", \
  6752. current_config->name, \
  6753. pipe_config->name); \
  6754. return false; \
  6755. }
  6756. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6757. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6758. DRM_ERROR("mismatch in " #name " " \
  6759. "(expected %i, found %i)\n", \
  6760. current_config->name & (mask), \
  6761. pipe_config->name & (mask)); \
  6762. return false; \
  6763. }
  6764. #define PIPE_CONF_QUIRK(quirk) \
  6765. ((current_config->quirks | pipe_config->quirks) & (quirk))
  6766. PIPE_CONF_CHECK_I(cpu_transcoder);
  6767. PIPE_CONF_CHECK_I(has_pch_encoder);
  6768. PIPE_CONF_CHECK_I(fdi_lanes);
  6769. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6770. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6771. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6772. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6773. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6774. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6775. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6776. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6777. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6778. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6779. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6780. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6781. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6782. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6783. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6784. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6785. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6786. if (!HAS_PCH_SPLIT(dev))
  6787. PIPE_CONF_CHECK_I(pixel_multiplier);
  6788. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6789. DRM_MODE_FLAG_INTERLACE);
  6790. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  6791. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6792. DRM_MODE_FLAG_PHSYNC);
  6793. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6794. DRM_MODE_FLAG_NHSYNC);
  6795. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6796. DRM_MODE_FLAG_PVSYNC);
  6797. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6798. DRM_MODE_FLAG_NVSYNC);
  6799. }
  6800. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6801. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6802. PIPE_CONF_CHECK_I(gmch_pfit.control);
  6803. /* pfit ratios are autocomputed by the hw on gen4+ */
  6804. if (INTEL_INFO(dev)->gen < 4)
  6805. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  6806. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  6807. PIPE_CONF_CHECK_I(pch_pfit.pos);
  6808. PIPE_CONF_CHECK_I(pch_pfit.size);
  6809. PIPE_CONF_CHECK_I(ips_enabled);
  6810. PIPE_CONF_CHECK_I(shared_dpll);
  6811. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  6812. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  6813. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  6814. #undef PIPE_CONF_CHECK_X
  6815. #undef PIPE_CONF_CHECK_I
  6816. #undef PIPE_CONF_CHECK_FLAGS
  6817. #undef PIPE_CONF_QUIRK
  6818. return true;
  6819. }
  6820. static void
  6821. check_connector_state(struct drm_device *dev)
  6822. {
  6823. struct intel_connector *connector;
  6824. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6825. base.head) {
  6826. /* This also checks the encoder/connector hw state with the
  6827. * ->get_hw_state callbacks. */
  6828. intel_connector_check_state(connector);
  6829. WARN(&connector->new_encoder->base != connector->base.encoder,
  6830. "connector's staged encoder doesn't match current encoder\n");
  6831. }
  6832. }
  6833. static void
  6834. check_encoder_state(struct drm_device *dev)
  6835. {
  6836. struct intel_encoder *encoder;
  6837. struct intel_connector *connector;
  6838. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6839. base.head) {
  6840. bool enabled = false;
  6841. bool active = false;
  6842. enum pipe pipe, tracked_pipe;
  6843. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6844. encoder->base.base.id,
  6845. drm_get_encoder_name(&encoder->base));
  6846. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6847. "encoder's stage crtc doesn't match current crtc\n");
  6848. WARN(encoder->connectors_active && !encoder->base.crtc,
  6849. "encoder's active_connectors set, but no crtc\n");
  6850. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6851. base.head) {
  6852. if (connector->base.encoder != &encoder->base)
  6853. continue;
  6854. enabled = true;
  6855. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6856. active = true;
  6857. }
  6858. WARN(!!encoder->base.crtc != enabled,
  6859. "encoder's enabled state mismatch "
  6860. "(expected %i, found %i)\n",
  6861. !!encoder->base.crtc, enabled);
  6862. WARN(active && !encoder->base.crtc,
  6863. "active encoder with no crtc\n");
  6864. WARN(encoder->connectors_active != active,
  6865. "encoder's computed active state doesn't match tracked active state "
  6866. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6867. active = encoder->get_hw_state(encoder, &pipe);
  6868. WARN(active != encoder->connectors_active,
  6869. "encoder's hw state doesn't match sw tracking "
  6870. "(expected %i, found %i)\n",
  6871. encoder->connectors_active, active);
  6872. if (!encoder->base.crtc)
  6873. continue;
  6874. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6875. WARN(active && pipe != tracked_pipe,
  6876. "active encoder's pipe doesn't match"
  6877. "(expected %i, found %i)\n",
  6878. tracked_pipe, pipe);
  6879. }
  6880. }
  6881. static void
  6882. check_crtc_state(struct drm_device *dev)
  6883. {
  6884. drm_i915_private_t *dev_priv = dev->dev_private;
  6885. struct intel_crtc *crtc;
  6886. struct intel_encoder *encoder;
  6887. struct intel_crtc_config pipe_config;
  6888. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6889. base.head) {
  6890. bool enabled = false;
  6891. bool active = false;
  6892. memset(&pipe_config, 0, sizeof(pipe_config));
  6893. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6894. crtc->base.base.id);
  6895. WARN(crtc->active && !crtc->base.enabled,
  6896. "active crtc, but not enabled in sw tracking\n");
  6897. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6898. base.head) {
  6899. if (encoder->base.crtc != &crtc->base)
  6900. continue;
  6901. enabled = true;
  6902. if (encoder->connectors_active)
  6903. active = true;
  6904. }
  6905. WARN(active != crtc->active,
  6906. "crtc's computed active state doesn't match tracked active state "
  6907. "(expected %i, found %i)\n", active, crtc->active);
  6908. WARN(enabled != crtc->base.enabled,
  6909. "crtc's computed enabled state doesn't match tracked enabled state "
  6910. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6911. active = dev_priv->display.get_pipe_config(crtc,
  6912. &pipe_config);
  6913. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6914. base.head) {
  6915. if (encoder->base.crtc != &crtc->base)
  6916. continue;
  6917. if (encoder->get_config)
  6918. encoder->get_config(encoder, &pipe_config);
  6919. }
  6920. WARN(crtc->active != active,
  6921. "crtc active state doesn't match with hw state "
  6922. "(expected %i, found %i)\n", crtc->active, active);
  6923. if (active &&
  6924. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  6925. WARN(1, "pipe state doesn't match!\n");
  6926. intel_dump_pipe_config(crtc, &pipe_config,
  6927. "[hw state]");
  6928. intel_dump_pipe_config(crtc, &crtc->config,
  6929. "[sw state]");
  6930. }
  6931. }
  6932. }
  6933. static void
  6934. check_shared_dpll_state(struct drm_device *dev)
  6935. {
  6936. drm_i915_private_t *dev_priv = dev->dev_private;
  6937. struct intel_crtc *crtc;
  6938. struct intel_dpll_hw_state dpll_hw_state;
  6939. int i;
  6940. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  6941. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  6942. int enabled_crtcs = 0, active_crtcs = 0;
  6943. bool active;
  6944. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  6945. DRM_DEBUG_KMS("%s\n", pll->name);
  6946. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  6947. WARN(pll->active > pll->refcount,
  6948. "more active pll users than references: %i vs %i\n",
  6949. pll->active, pll->refcount);
  6950. WARN(pll->active && !pll->on,
  6951. "pll in active use but not on in sw tracking\n");
  6952. WARN(pll->on != active,
  6953. "pll on state mismatch (expected %i, found %i)\n",
  6954. pll->on, active);
  6955. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6956. base.head) {
  6957. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  6958. enabled_crtcs++;
  6959. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  6960. active_crtcs++;
  6961. }
  6962. WARN(pll->active != active_crtcs,
  6963. "pll active crtcs mismatch (expected %i, found %i)\n",
  6964. pll->active, active_crtcs);
  6965. WARN(pll->refcount != enabled_crtcs,
  6966. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  6967. pll->refcount, enabled_crtcs);
  6968. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  6969. sizeof(dpll_hw_state)),
  6970. "pll hw state mismatch\n");
  6971. }
  6972. }
  6973. void
  6974. intel_modeset_check_state(struct drm_device *dev)
  6975. {
  6976. check_connector_state(dev);
  6977. check_encoder_state(dev);
  6978. check_crtc_state(dev);
  6979. check_shared_dpll_state(dev);
  6980. }
  6981. static int __intel_set_mode(struct drm_crtc *crtc,
  6982. struct drm_display_mode *mode,
  6983. int x, int y, struct drm_framebuffer *fb)
  6984. {
  6985. struct drm_device *dev = crtc->dev;
  6986. drm_i915_private_t *dev_priv = dev->dev_private;
  6987. struct drm_display_mode *saved_mode, *saved_hwmode;
  6988. struct intel_crtc_config *pipe_config = NULL;
  6989. struct intel_crtc *intel_crtc;
  6990. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6991. int ret = 0;
  6992. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6993. if (!saved_mode)
  6994. return -ENOMEM;
  6995. saved_hwmode = saved_mode + 1;
  6996. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6997. &prepare_pipes, &disable_pipes);
  6998. *saved_hwmode = crtc->hwmode;
  6999. *saved_mode = crtc->mode;
  7000. /* Hack: Because we don't (yet) support global modeset on multiple
  7001. * crtcs, we don't keep track of the new mode for more than one crtc.
  7002. * Hence simply check whether any bit is set in modeset_pipes in all the
  7003. * pieces of code that are not yet converted to deal with mutliple crtcs
  7004. * changing their mode at the same time. */
  7005. if (modeset_pipes) {
  7006. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7007. if (IS_ERR(pipe_config)) {
  7008. ret = PTR_ERR(pipe_config);
  7009. pipe_config = NULL;
  7010. goto out;
  7011. }
  7012. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7013. "[modeset]");
  7014. }
  7015. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7016. intel_crtc_disable(&intel_crtc->base);
  7017. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7018. if (intel_crtc->base.enabled)
  7019. dev_priv->display.crtc_disable(&intel_crtc->base);
  7020. }
  7021. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7022. * to set it here already despite that we pass it down the callchain.
  7023. */
  7024. if (modeset_pipes) {
  7025. crtc->mode = *mode;
  7026. /* mode_set/enable/disable functions rely on a correct pipe
  7027. * config. */
  7028. to_intel_crtc(crtc)->config = *pipe_config;
  7029. }
  7030. /* Only after disabling all output pipelines that will be changed can we
  7031. * update the the output configuration. */
  7032. intel_modeset_update_state(dev, prepare_pipes);
  7033. if (dev_priv->display.modeset_global_resources)
  7034. dev_priv->display.modeset_global_resources(dev);
  7035. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7036. * on the DPLL.
  7037. */
  7038. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7039. ret = intel_crtc_mode_set(&intel_crtc->base,
  7040. x, y, fb);
  7041. if (ret)
  7042. goto done;
  7043. }
  7044. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7045. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7046. dev_priv->display.crtc_enable(&intel_crtc->base);
  7047. if (modeset_pipes) {
  7048. /* Store real post-adjustment hardware mode. */
  7049. crtc->hwmode = pipe_config->adjusted_mode;
  7050. /* Calculate and store various constants which
  7051. * are later needed by vblank and swap-completion
  7052. * timestamping. They are derived from true hwmode.
  7053. */
  7054. drm_calc_timestamping_constants(crtc);
  7055. }
  7056. /* FIXME: add subpixel order */
  7057. done:
  7058. if (ret && crtc->enabled) {
  7059. crtc->hwmode = *saved_hwmode;
  7060. crtc->mode = *saved_mode;
  7061. }
  7062. out:
  7063. kfree(pipe_config);
  7064. kfree(saved_mode);
  7065. return ret;
  7066. }
  7067. int intel_set_mode(struct drm_crtc *crtc,
  7068. struct drm_display_mode *mode,
  7069. int x, int y, struct drm_framebuffer *fb)
  7070. {
  7071. int ret;
  7072. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7073. if (ret == 0)
  7074. intel_modeset_check_state(crtc->dev);
  7075. return ret;
  7076. }
  7077. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7078. {
  7079. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7080. }
  7081. #undef for_each_intel_crtc_masked
  7082. static void intel_set_config_free(struct intel_set_config *config)
  7083. {
  7084. if (!config)
  7085. return;
  7086. kfree(config->save_connector_encoders);
  7087. kfree(config->save_encoder_crtcs);
  7088. kfree(config);
  7089. }
  7090. static int intel_set_config_save_state(struct drm_device *dev,
  7091. struct intel_set_config *config)
  7092. {
  7093. struct drm_encoder *encoder;
  7094. struct drm_connector *connector;
  7095. int count;
  7096. config->save_encoder_crtcs =
  7097. kcalloc(dev->mode_config.num_encoder,
  7098. sizeof(struct drm_crtc *), GFP_KERNEL);
  7099. if (!config->save_encoder_crtcs)
  7100. return -ENOMEM;
  7101. config->save_connector_encoders =
  7102. kcalloc(dev->mode_config.num_connector,
  7103. sizeof(struct drm_encoder *), GFP_KERNEL);
  7104. if (!config->save_connector_encoders)
  7105. return -ENOMEM;
  7106. /* Copy data. Note that driver private data is not affected.
  7107. * Should anything bad happen only the expected state is
  7108. * restored, not the drivers personal bookkeeping.
  7109. */
  7110. count = 0;
  7111. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7112. config->save_encoder_crtcs[count++] = encoder->crtc;
  7113. }
  7114. count = 0;
  7115. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7116. config->save_connector_encoders[count++] = connector->encoder;
  7117. }
  7118. return 0;
  7119. }
  7120. static void intel_set_config_restore_state(struct drm_device *dev,
  7121. struct intel_set_config *config)
  7122. {
  7123. struct intel_encoder *encoder;
  7124. struct intel_connector *connector;
  7125. int count;
  7126. count = 0;
  7127. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7128. encoder->new_crtc =
  7129. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7130. }
  7131. count = 0;
  7132. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7133. connector->new_encoder =
  7134. to_intel_encoder(config->save_connector_encoders[count++]);
  7135. }
  7136. }
  7137. static void
  7138. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7139. struct intel_set_config *config)
  7140. {
  7141. /* We should be able to check here if the fb has the same properties
  7142. * and then just flip_or_move it */
  7143. if (set->crtc->fb != set->fb) {
  7144. /* If we have no fb then treat it as a full mode set */
  7145. if (set->crtc->fb == NULL) {
  7146. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  7147. config->mode_changed = true;
  7148. } else if (set->fb == NULL) {
  7149. config->mode_changed = true;
  7150. } else if (set->fb->pixel_format !=
  7151. set->crtc->fb->pixel_format) {
  7152. config->mode_changed = true;
  7153. } else
  7154. config->fb_changed = true;
  7155. }
  7156. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7157. config->fb_changed = true;
  7158. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7159. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7160. drm_mode_debug_printmodeline(&set->crtc->mode);
  7161. drm_mode_debug_printmodeline(set->mode);
  7162. config->mode_changed = true;
  7163. }
  7164. }
  7165. static int
  7166. intel_modeset_stage_output_state(struct drm_device *dev,
  7167. struct drm_mode_set *set,
  7168. struct intel_set_config *config)
  7169. {
  7170. struct drm_crtc *new_crtc;
  7171. struct intel_connector *connector;
  7172. struct intel_encoder *encoder;
  7173. int count, ro;
  7174. /* The upper layers ensure that we either disable a crtc or have a list
  7175. * of connectors. For paranoia, double-check this. */
  7176. WARN_ON(!set->fb && (set->num_connectors != 0));
  7177. WARN_ON(set->fb && (set->num_connectors == 0));
  7178. count = 0;
  7179. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7180. base.head) {
  7181. /* Otherwise traverse passed in connector list and get encoders
  7182. * for them. */
  7183. for (ro = 0; ro < set->num_connectors; ro++) {
  7184. if (set->connectors[ro] == &connector->base) {
  7185. connector->new_encoder = connector->encoder;
  7186. break;
  7187. }
  7188. }
  7189. /* If we disable the crtc, disable all its connectors. Also, if
  7190. * the connector is on the changing crtc but not on the new
  7191. * connector list, disable it. */
  7192. if ((!set->fb || ro == set->num_connectors) &&
  7193. connector->base.encoder &&
  7194. connector->base.encoder->crtc == set->crtc) {
  7195. connector->new_encoder = NULL;
  7196. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7197. connector->base.base.id,
  7198. drm_get_connector_name(&connector->base));
  7199. }
  7200. if (&connector->new_encoder->base != connector->base.encoder) {
  7201. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7202. config->mode_changed = true;
  7203. }
  7204. }
  7205. /* connector->new_encoder is now updated for all connectors. */
  7206. /* Update crtc of enabled connectors. */
  7207. count = 0;
  7208. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7209. base.head) {
  7210. if (!connector->new_encoder)
  7211. continue;
  7212. new_crtc = connector->new_encoder->base.crtc;
  7213. for (ro = 0; ro < set->num_connectors; ro++) {
  7214. if (set->connectors[ro] == &connector->base)
  7215. new_crtc = set->crtc;
  7216. }
  7217. /* Make sure the new CRTC will work with the encoder */
  7218. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7219. new_crtc)) {
  7220. return -EINVAL;
  7221. }
  7222. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7223. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7224. connector->base.base.id,
  7225. drm_get_connector_name(&connector->base),
  7226. new_crtc->base.id);
  7227. }
  7228. /* Check for any encoders that needs to be disabled. */
  7229. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7230. base.head) {
  7231. list_for_each_entry(connector,
  7232. &dev->mode_config.connector_list,
  7233. base.head) {
  7234. if (connector->new_encoder == encoder) {
  7235. WARN_ON(!connector->new_encoder->new_crtc);
  7236. goto next_encoder;
  7237. }
  7238. }
  7239. encoder->new_crtc = NULL;
  7240. next_encoder:
  7241. /* Only now check for crtc changes so we don't miss encoders
  7242. * that will be disabled. */
  7243. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7244. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7245. config->mode_changed = true;
  7246. }
  7247. }
  7248. /* Now we've also updated encoder->new_crtc for all encoders. */
  7249. return 0;
  7250. }
  7251. static int intel_crtc_set_config(struct drm_mode_set *set)
  7252. {
  7253. struct drm_device *dev;
  7254. struct drm_mode_set save_set;
  7255. struct intel_set_config *config;
  7256. int ret;
  7257. BUG_ON(!set);
  7258. BUG_ON(!set->crtc);
  7259. BUG_ON(!set->crtc->helper_private);
  7260. /* Enforce sane interface api - has been abused by the fb helper. */
  7261. BUG_ON(!set->mode && set->fb);
  7262. BUG_ON(set->fb && set->num_connectors == 0);
  7263. if (set->fb) {
  7264. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7265. set->crtc->base.id, set->fb->base.id,
  7266. (int)set->num_connectors, set->x, set->y);
  7267. } else {
  7268. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7269. }
  7270. dev = set->crtc->dev;
  7271. ret = -ENOMEM;
  7272. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7273. if (!config)
  7274. goto out_config;
  7275. ret = intel_set_config_save_state(dev, config);
  7276. if (ret)
  7277. goto out_config;
  7278. save_set.crtc = set->crtc;
  7279. save_set.mode = &set->crtc->mode;
  7280. save_set.x = set->crtc->x;
  7281. save_set.y = set->crtc->y;
  7282. save_set.fb = set->crtc->fb;
  7283. /* Compute whether we need a full modeset, only an fb base update or no
  7284. * change at all. In the future we might also check whether only the
  7285. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7286. * such cases. */
  7287. intel_set_config_compute_mode_changes(set, config);
  7288. ret = intel_modeset_stage_output_state(dev, set, config);
  7289. if (ret)
  7290. goto fail;
  7291. if (config->mode_changed) {
  7292. ret = intel_set_mode(set->crtc, set->mode,
  7293. set->x, set->y, set->fb);
  7294. if (ret) {
  7295. DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
  7296. set->crtc->base.id, ret);
  7297. goto fail;
  7298. }
  7299. } else if (config->fb_changed) {
  7300. intel_crtc_wait_for_pending_flips(set->crtc);
  7301. ret = intel_pipe_set_base(set->crtc,
  7302. set->x, set->y, set->fb);
  7303. }
  7304. intel_set_config_free(config);
  7305. return 0;
  7306. fail:
  7307. intel_set_config_restore_state(dev, config);
  7308. /* Try to restore the config */
  7309. if (config->mode_changed &&
  7310. intel_set_mode(save_set.crtc, save_set.mode,
  7311. save_set.x, save_set.y, save_set.fb))
  7312. DRM_ERROR("failed to restore config after modeset failure\n");
  7313. out_config:
  7314. intel_set_config_free(config);
  7315. return ret;
  7316. }
  7317. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7318. .cursor_set = intel_crtc_cursor_set,
  7319. .cursor_move = intel_crtc_cursor_move,
  7320. .gamma_set = intel_crtc_gamma_set,
  7321. .set_config = intel_crtc_set_config,
  7322. .destroy = intel_crtc_destroy,
  7323. .page_flip = intel_crtc_page_flip,
  7324. };
  7325. static void intel_cpu_pll_init(struct drm_device *dev)
  7326. {
  7327. if (HAS_DDI(dev))
  7328. intel_ddi_pll_init(dev);
  7329. }
  7330. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7331. struct intel_shared_dpll *pll,
  7332. struct intel_dpll_hw_state *hw_state)
  7333. {
  7334. uint32_t val;
  7335. val = I915_READ(PCH_DPLL(pll->id));
  7336. hw_state->dpll = val;
  7337. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7338. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7339. return val & DPLL_VCO_ENABLE;
  7340. }
  7341. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7342. struct intel_shared_dpll *pll)
  7343. {
  7344. uint32_t reg, val;
  7345. /* PCH refclock must be enabled first */
  7346. assert_pch_refclk_enabled(dev_priv);
  7347. reg = PCH_DPLL(pll->id);
  7348. val = I915_READ(reg);
  7349. val |= DPLL_VCO_ENABLE;
  7350. I915_WRITE(reg, val);
  7351. POSTING_READ(reg);
  7352. udelay(200);
  7353. }
  7354. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7355. struct intel_shared_dpll *pll)
  7356. {
  7357. struct drm_device *dev = dev_priv->dev;
  7358. struct intel_crtc *crtc;
  7359. uint32_t reg, val;
  7360. /* Make sure no transcoder isn't still depending on us. */
  7361. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7362. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7363. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7364. }
  7365. reg = PCH_DPLL(pll->id);
  7366. val = I915_READ(reg);
  7367. val &= ~DPLL_VCO_ENABLE;
  7368. I915_WRITE(reg, val);
  7369. POSTING_READ(reg);
  7370. udelay(200);
  7371. }
  7372. static char *ibx_pch_dpll_names[] = {
  7373. "PCH DPLL A",
  7374. "PCH DPLL B",
  7375. };
  7376. static void ibx_pch_dpll_init(struct drm_device *dev)
  7377. {
  7378. struct drm_i915_private *dev_priv = dev->dev_private;
  7379. int i;
  7380. dev_priv->num_shared_dpll = 2;
  7381. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7382. dev_priv->shared_dplls[i].id = i;
  7383. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7384. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7385. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7386. dev_priv->shared_dplls[i].get_hw_state =
  7387. ibx_pch_dpll_get_hw_state;
  7388. }
  7389. }
  7390. static void intel_shared_dpll_init(struct drm_device *dev)
  7391. {
  7392. struct drm_i915_private *dev_priv = dev->dev_private;
  7393. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7394. ibx_pch_dpll_init(dev);
  7395. else
  7396. dev_priv->num_shared_dpll = 0;
  7397. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7398. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7399. dev_priv->num_shared_dpll);
  7400. }
  7401. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7402. {
  7403. drm_i915_private_t *dev_priv = dev->dev_private;
  7404. struct intel_crtc *intel_crtc;
  7405. int i;
  7406. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7407. if (intel_crtc == NULL)
  7408. return;
  7409. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7410. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7411. for (i = 0; i < 256; i++) {
  7412. intel_crtc->lut_r[i] = i;
  7413. intel_crtc->lut_g[i] = i;
  7414. intel_crtc->lut_b[i] = i;
  7415. }
  7416. /* Swap pipes & planes for FBC on pre-965 */
  7417. intel_crtc->pipe = pipe;
  7418. intel_crtc->plane = pipe;
  7419. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7420. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7421. intel_crtc->plane = !pipe;
  7422. }
  7423. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7424. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7425. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7426. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7427. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7428. }
  7429. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7430. struct drm_file *file)
  7431. {
  7432. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7433. struct drm_mode_object *drmmode_obj;
  7434. struct intel_crtc *crtc;
  7435. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7436. return -ENODEV;
  7437. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7438. DRM_MODE_OBJECT_CRTC);
  7439. if (!drmmode_obj) {
  7440. DRM_ERROR("no such CRTC id\n");
  7441. return -EINVAL;
  7442. }
  7443. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7444. pipe_from_crtc_id->pipe = crtc->pipe;
  7445. return 0;
  7446. }
  7447. static int intel_encoder_clones(struct intel_encoder *encoder)
  7448. {
  7449. struct drm_device *dev = encoder->base.dev;
  7450. struct intel_encoder *source_encoder;
  7451. int index_mask = 0;
  7452. int entry = 0;
  7453. list_for_each_entry(source_encoder,
  7454. &dev->mode_config.encoder_list, base.head) {
  7455. if (encoder == source_encoder)
  7456. index_mask |= (1 << entry);
  7457. /* Intel hw has only one MUX where enocoders could be cloned. */
  7458. if (encoder->cloneable && source_encoder->cloneable)
  7459. index_mask |= (1 << entry);
  7460. entry++;
  7461. }
  7462. return index_mask;
  7463. }
  7464. static bool has_edp_a(struct drm_device *dev)
  7465. {
  7466. struct drm_i915_private *dev_priv = dev->dev_private;
  7467. if (!IS_MOBILE(dev))
  7468. return false;
  7469. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7470. return false;
  7471. if (IS_GEN5(dev) &&
  7472. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7473. return false;
  7474. return true;
  7475. }
  7476. static void intel_setup_outputs(struct drm_device *dev)
  7477. {
  7478. struct drm_i915_private *dev_priv = dev->dev_private;
  7479. struct intel_encoder *encoder;
  7480. bool dpd_is_edp = false;
  7481. bool has_lvds;
  7482. has_lvds = intel_lvds_init(dev);
  7483. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  7484. /* disable the panel fitter on everything but LVDS */
  7485. I915_WRITE(PFIT_CONTROL, 0);
  7486. }
  7487. if (!IS_ULT(dev))
  7488. intel_crt_init(dev);
  7489. if (HAS_DDI(dev)) {
  7490. int found;
  7491. /* Haswell uses DDI functions to detect digital outputs */
  7492. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7493. /* DDI A only supports eDP */
  7494. if (found)
  7495. intel_ddi_init(dev, PORT_A);
  7496. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7497. * register */
  7498. found = I915_READ(SFUSE_STRAP);
  7499. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7500. intel_ddi_init(dev, PORT_B);
  7501. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7502. intel_ddi_init(dev, PORT_C);
  7503. if (found & SFUSE_STRAP_DDID_DETECTED)
  7504. intel_ddi_init(dev, PORT_D);
  7505. } else if (HAS_PCH_SPLIT(dev)) {
  7506. int found;
  7507. dpd_is_edp = intel_dpd_is_edp(dev);
  7508. if (has_edp_a(dev))
  7509. intel_dp_init(dev, DP_A, PORT_A);
  7510. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7511. /* PCH SDVOB multiplex with HDMIB */
  7512. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7513. if (!found)
  7514. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7515. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7516. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7517. }
  7518. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7519. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7520. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7521. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7522. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7523. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7524. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7525. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7526. } else if (IS_VALLEYVIEW(dev)) {
  7527. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7528. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7529. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7530. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7531. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7532. PORT_B);
  7533. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7534. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7535. }
  7536. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7537. bool found = false;
  7538. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7539. DRM_DEBUG_KMS("probing SDVOB\n");
  7540. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7541. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7542. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7543. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7544. }
  7545. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7546. intel_dp_init(dev, DP_B, PORT_B);
  7547. }
  7548. /* Before G4X SDVOC doesn't have its own detect register */
  7549. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7550. DRM_DEBUG_KMS("probing SDVOC\n");
  7551. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7552. }
  7553. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7554. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7555. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7556. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7557. }
  7558. if (SUPPORTS_INTEGRATED_DP(dev))
  7559. intel_dp_init(dev, DP_C, PORT_C);
  7560. }
  7561. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7562. (I915_READ(DP_D) & DP_DETECTED))
  7563. intel_dp_init(dev, DP_D, PORT_D);
  7564. } else if (IS_GEN2(dev))
  7565. intel_dvo_init(dev);
  7566. if (SUPPORTS_TV(dev))
  7567. intel_tv_init(dev);
  7568. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7569. encoder->base.possible_crtcs = encoder->crtc_mask;
  7570. encoder->base.possible_clones =
  7571. intel_encoder_clones(encoder);
  7572. }
  7573. intel_init_pch_refclk(dev);
  7574. drm_helper_move_panel_connectors_to_head(dev);
  7575. }
  7576. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7577. {
  7578. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7579. drm_framebuffer_cleanup(fb);
  7580. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7581. kfree(intel_fb);
  7582. }
  7583. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7584. struct drm_file *file,
  7585. unsigned int *handle)
  7586. {
  7587. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7588. struct drm_i915_gem_object *obj = intel_fb->obj;
  7589. return drm_gem_handle_create(file, &obj->base, handle);
  7590. }
  7591. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7592. .destroy = intel_user_framebuffer_destroy,
  7593. .create_handle = intel_user_framebuffer_create_handle,
  7594. };
  7595. int intel_framebuffer_init(struct drm_device *dev,
  7596. struct intel_framebuffer *intel_fb,
  7597. struct drm_mode_fb_cmd2 *mode_cmd,
  7598. struct drm_i915_gem_object *obj)
  7599. {
  7600. int ret;
  7601. if (obj->tiling_mode == I915_TILING_Y) {
  7602. DRM_DEBUG("hardware does not support tiling Y\n");
  7603. return -EINVAL;
  7604. }
  7605. if (mode_cmd->pitches[0] & 63) {
  7606. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7607. mode_cmd->pitches[0]);
  7608. return -EINVAL;
  7609. }
  7610. /* FIXME <= Gen4 stride limits are bit unclear */
  7611. if (mode_cmd->pitches[0] > 32768) {
  7612. DRM_DEBUG("pitch (%d) must be at less than 32768\n",
  7613. mode_cmd->pitches[0]);
  7614. return -EINVAL;
  7615. }
  7616. if (obj->tiling_mode != I915_TILING_NONE &&
  7617. mode_cmd->pitches[0] != obj->stride) {
  7618. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7619. mode_cmd->pitches[0], obj->stride);
  7620. return -EINVAL;
  7621. }
  7622. /* Reject formats not supported by any plane early. */
  7623. switch (mode_cmd->pixel_format) {
  7624. case DRM_FORMAT_C8:
  7625. case DRM_FORMAT_RGB565:
  7626. case DRM_FORMAT_XRGB8888:
  7627. case DRM_FORMAT_ARGB8888:
  7628. break;
  7629. case DRM_FORMAT_XRGB1555:
  7630. case DRM_FORMAT_ARGB1555:
  7631. if (INTEL_INFO(dev)->gen > 3) {
  7632. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7633. return -EINVAL;
  7634. }
  7635. break;
  7636. case DRM_FORMAT_XBGR8888:
  7637. case DRM_FORMAT_ABGR8888:
  7638. case DRM_FORMAT_XRGB2101010:
  7639. case DRM_FORMAT_ARGB2101010:
  7640. case DRM_FORMAT_XBGR2101010:
  7641. case DRM_FORMAT_ABGR2101010:
  7642. if (INTEL_INFO(dev)->gen < 4) {
  7643. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7644. return -EINVAL;
  7645. }
  7646. break;
  7647. case DRM_FORMAT_YUYV:
  7648. case DRM_FORMAT_UYVY:
  7649. case DRM_FORMAT_YVYU:
  7650. case DRM_FORMAT_VYUY:
  7651. if (INTEL_INFO(dev)->gen < 5) {
  7652. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7653. return -EINVAL;
  7654. }
  7655. break;
  7656. default:
  7657. DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7658. return -EINVAL;
  7659. }
  7660. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7661. if (mode_cmd->offsets[0] != 0)
  7662. return -EINVAL;
  7663. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7664. intel_fb->obj = obj;
  7665. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7666. if (ret) {
  7667. DRM_ERROR("framebuffer init failed %d\n", ret);
  7668. return ret;
  7669. }
  7670. return 0;
  7671. }
  7672. static struct drm_framebuffer *
  7673. intel_user_framebuffer_create(struct drm_device *dev,
  7674. struct drm_file *filp,
  7675. struct drm_mode_fb_cmd2 *mode_cmd)
  7676. {
  7677. struct drm_i915_gem_object *obj;
  7678. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7679. mode_cmd->handles[0]));
  7680. if (&obj->base == NULL)
  7681. return ERR_PTR(-ENOENT);
  7682. return intel_framebuffer_create(dev, mode_cmd, obj);
  7683. }
  7684. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7685. .fb_create = intel_user_framebuffer_create,
  7686. .output_poll_changed = intel_fb_output_poll_changed,
  7687. };
  7688. /* Set up chip specific display functions */
  7689. static void intel_init_display(struct drm_device *dev)
  7690. {
  7691. struct drm_i915_private *dev_priv = dev->dev_private;
  7692. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  7693. dev_priv->display.find_dpll = g4x_find_best_dpll;
  7694. else if (IS_VALLEYVIEW(dev))
  7695. dev_priv->display.find_dpll = vlv_find_best_dpll;
  7696. else if (IS_PINEVIEW(dev))
  7697. dev_priv->display.find_dpll = pnv_find_best_dpll;
  7698. else
  7699. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  7700. if (HAS_DDI(dev)) {
  7701. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7702. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7703. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7704. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7705. dev_priv->display.off = haswell_crtc_off;
  7706. dev_priv->display.update_plane = ironlake_update_plane;
  7707. } else if (HAS_PCH_SPLIT(dev)) {
  7708. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7709. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7710. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7711. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7712. dev_priv->display.off = ironlake_crtc_off;
  7713. dev_priv->display.update_plane = ironlake_update_plane;
  7714. } else if (IS_VALLEYVIEW(dev)) {
  7715. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7716. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7717. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7718. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7719. dev_priv->display.off = i9xx_crtc_off;
  7720. dev_priv->display.update_plane = i9xx_update_plane;
  7721. } else {
  7722. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7723. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7724. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7725. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7726. dev_priv->display.off = i9xx_crtc_off;
  7727. dev_priv->display.update_plane = i9xx_update_plane;
  7728. }
  7729. /* Returns the core display clock speed */
  7730. if (IS_VALLEYVIEW(dev))
  7731. dev_priv->display.get_display_clock_speed =
  7732. valleyview_get_display_clock_speed;
  7733. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7734. dev_priv->display.get_display_clock_speed =
  7735. i945_get_display_clock_speed;
  7736. else if (IS_I915G(dev))
  7737. dev_priv->display.get_display_clock_speed =
  7738. i915_get_display_clock_speed;
  7739. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7740. dev_priv->display.get_display_clock_speed =
  7741. i9xx_misc_get_display_clock_speed;
  7742. else if (IS_I915GM(dev))
  7743. dev_priv->display.get_display_clock_speed =
  7744. i915gm_get_display_clock_speed;
  7745. else if (IS_I865G(dev))
  7746. dev_priv->display.get_display_clock_speed =
  7747. i865_get_display_clock_speed;
  7748. else if (IS_I85X(dev))
  7749. dev_priv->display.get_display_clock_speed =
  7750. i855_get_display_clock_speed;
  7751. else /* 852, 830 */
  7752. dev_priv->display.get_display_clock_speed =
  7753. i830_get_display_clock_speed;
  7754. if (HAS_PCH_SPLIT(dev)) {
  7755. if (IS_GEN5(dev)) {
  7756. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7757. dev_priv->display.write_eld = ironlake_write_eld;
  7758. } else if (IS_GEN6(dev)) {
  7759. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7760. dev_priv->display.write_eld = ironlake_write_eld;
  7761. } else if (IS_IVYBRIDGE(dev)) {
  7762. /* FIXME: detect B0+ stepping and use auto training */
  7763. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7764. dev_priv->display.write_eld = ironlake_write_eld;
  7765. dev_priv->display.modeset_global_resources =
  7766. ivb_modeset_global_resources;
  7767. } else if (IS_HASWELL(dev)) {
  7768. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7769. dev_priv->display.write_eld = haswell_write_eld;
  7770. dev_priv->display.modeset_global_resources =
  7771. haswell_modeset_global_resources;
  7772. }
  7773. } else if (IS_G4X(dev)) {
  7774. dev_priv->display.write_eld = g4x_write_eld;
  7775. }
  7776. /* Default just returns -ENODEV to indicate unsupported */
  7777. dev_priv->display.queue_flip = intel_default_queue_flip;
  7778. switch (INTEL_INFO(dev)->gen) {
  7779. case 2:
  7780. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7781. break;
  7782. case 3:
  7783. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7784. break;
  7785. case 4:
  7786. case 5:
  7787. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7788. break;
  7789. case 6:
  7790. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7791. break;
  7792. case 7:
  7793. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7794. break;
  7795. }
  7796. }
  7797. /*
  7798. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7799. * resume, or other times. This quirk makes sure that's the case for
  7800. * affected systems.
  7801. */
  7802. static void quirk_pipea_force(struct drm_device *dev)
  7803. {
  7804. struct drm_i915_private *dev_priv = dev->dev_private;
  7805. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7806. DRM_INFO("applying pipe a force quirk\n");
  7807. }
  7808. /*
  7809. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7810. */
  7811. static void quirk_ssc_force_disable(struct drm_device *dev)
  7812. {
  7813. struct drm_i915_private *dev_priv = dev->dev_private;
  7814. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7815. DRM_INFO("applying lvds SSC disable quirk\n");
  7816. }
  7817. /*
  7818. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7819. * brightness value
  7820. */
  7821. static void quirk_invert_brightness(struct drm_device *dev)
  7822. {
  7823. struct drm_i915_private *dev_priv = dev->dev_private;
  7824. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7825. DRM_INFO("applying inverted panel brightness quirk\n");
  7826. }
  7827. struct intel_quirk {
  7828. int device;
  7829. int subsystem_vendor;
  7830. int subsystem_device;
  7831. void (*hook)(struct drm_device *dev);
  7832. };
  7833. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7834. struct intel_dmi_quirk {
  7835. void (*hook)(struct drm_device *dev);
  7836. const struct dmi_system_id (*dmi_id_list)[];
  7837. };
  7838. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7839. {
  7840. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7841. return 1;
  7842. }
  7843. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7844. {
  7845. .dmi_id_list = &(const struct dmi_system_id[]) {
  7846. {
  7847. .callback = intel_dmi_reverse_brightness,
  7848. .ident = "NCR Corporation",
  7849. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7850. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7851. },
  7852. },
  7853. { } /* terminating entry */
  7854. },
  7855. .hook = quirk_invert_brightness,
  7856. },
  7857. };
  7858. static struct intel_quirk intel_quirks[] = {
  7859. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7860. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7861. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7862. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7863. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7864. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7865. /* 830/845 need to leave pipe A & dpll A up */
  7866. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7867. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7868. /* Lenovo U160 cannot use SSC on LVDS */
  7869. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7870. /* Sony Vaio Y cannot use SSC on LVDS */
  7871. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7872. /* Acer Aspire 5734Z must invert backlight brightness */
  7873. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7874. /* Acer/eMachines G725 */
  7875. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7876. /* Acer/eMachines e725 */
  7877. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7878. /* Acer/Packard Bell NCL20 */
  7879. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7880. /* Acer Aspire 4736Z */
  7881. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7882. };
  7883. static void intel_init_quirks(struct drm_device *dev)
  7884. {
  7885. struct pci_dev *d = dev->pdev;
  7886. int i;
  7887. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7888. struct intel_quirk *q = &intel_quirks[i];
  7889. if (d->device == q->device &&
  7890. (d->subsystem_vendor == q->subsystem_vendor ||
  7891. q->subsystem_vendor == PCI_ANY_ID) &&
  7892. (d->subsystem_device == q->subsystem_device ||
  7893. q->subsystem_device == PCI_ANY_ID))
  7894. q->hook(dev);
  7895. }
  7896. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7897. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7898. intel_dmi_quirks[i].hook(dev);
  7899. }
  7900. }
  7901. /* Disable the VGA plane that we never use */
  7902. static void i915_disable_vga(struct drm_device *dev)
  7903. {
  7904. struct drm_i915_private *dev_priv = dev->dev_private;
  7905. u8 sr1;
  7906. u32 vga_reg = i915_vgacntrl_reg(dev);
  7907. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7908. outb(SR01, VGA_SR_INDEX);
  7909. sr1 = inb(VGA_SR_DATA);
  7910. outb(sr1 | 1<<5, VGA_SR_DATA);
  7911. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7912. udelay(300);
  7913. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7914. POSTING_READ(vga_reg);
  7915. }
  7916. void intel_modeset_init_hw(struct drm_device *dev)
  7917. {
  7918. intel_init_power_well(dev);
  7919. intel_prepare_ddi(dev);
  7920. intel_init_clock_gating(dev);
  7921. mutex_lock(&dev->struct_mutex);
  7922. intel_enable_gt_powersave(dev);
  7923. mutex_unlock(&dev->struct_mutex);
  7924. }
  7925. void intel_modeset_suspend_hw(struct drm_device *dev)
  7926. {
  7927. intel_suspend_hw(dev);
  7928. }
  7929. void intel_modeset_init(struct drm_device *dev)
  7930. {
  7931. struct drm_i915_private *dev_priv = dev->dev_private;
  7932. int i, j, ret;
  7933. drm_mode_config_init(dev);
  7934. dev->mode_config.min_width = 0;
  7935. dev->mode_config.min_height = 0;
  7936. dev->mode_config.preferred_depth = 24;
  7937. dev->mode_config.prefer_shadow = 1;
  7938. dev->mode_config.funcs = &intel_mode_funcs;
  7939. intel_init_quirks(dev);
  7940. intel_init_pm(dev);
  7941. if (INTEL_INFO(dev)->num_pipes == 0)
  7942. return;
  7943. intel_init_display(dev);
  7944. if (IS_GEN2(dev)) {
  7945. dev->mode_config.max_width = 2048;
  7946. dev->mode_config.max_height = 2048;
  7947. } else if (IS_GEN3(dev)) {
  7948. dev->mode_config.max_width = 4096;
  7949. dev->mode_config.max_height = 4096;
  7950. } else {
  7951. dev->mode_config.max_width = 8192;
  7952. dev->mode_config.max_height = 8192;
  7953. }
  7954. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7955. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7956. INTEL_INFO(dev)->num_pipes,
  7957. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7958. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7959. intel_crtc_init(dev, i);
  7960. for (j = 0; j < dev_priv->num_plane; j++) {
  7961. ret = intel_plane_init(dev, i, j);
  7962. if (ret)
  7963. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7964. pipe_name(i), sprite_name(i, j), ret);
  7965. }
  7966. }
  7967. intel_cpu_pll_init(dev);
  7968. intel_shared_dpll_init(dev);
  7969. /* Just disable it once at startup */
  7970. i915_disable_vga(dev);
  7971. intel_setup_outputs(dev);
  7972. /* Just in case the BIOS is doing something questionable. */
  7973. intel_disable_fbc(dev);
  7974. }
  7975. static void
  7976. intel_connector_break_all_links(struct intel_connector *connector)
  7977. {
  7978. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7979. connector->base.encoder = NULL;
  7980. connector->encoder->connectors_active = false;
  7981. connector->encoder->base.crtc = NULL;
  7982. }
  7983. static void intel_enable_pipe_a(struct drm_device *dev)
  7984. {
  7985. struct intel_connector *connector;
  7986. struct drm_connector *crt = NULL;
  7987. struct intel_load_detect_pipe load_detect_temp;
  7988. /* We can't just switch on the pipe A, we need to set things up with a
  7989. * proper mode and output configuration. As a gross hack, enable pipe A
  7990. * by enabling the load detect pipe once. */
  7991. list_for_each_entry(connector,
  7992. &dev->mode_config.connector_list,
  7993. base.head) {
  7994. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7995. crt = &connector->base;
  7996. break;
  7997. }
  7998. }
  7999. if (!crt)
  8000. return;
  8001. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8002. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8003. }
  8004. static bool
  8005. intel_check_plane_mapping(struct intel_crtc *crtc)
  8006. {
  8007. struct drm_device *dev = crtc->base.dev;
  8008. struct drm_i915_private *dev_priv = dev->dev_private;
  8009. u32 reg, val;
  8010. if (INTEL_INFO(dev)->num_pipes == 1)
  8011. return true;
  8012. reg = DSPCNTR(!crtc->plane);
  8013. val = I915_READ(reg);
  8014. if ((val & DISPLAY_PLANE_ENABLE) &&
  8015. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8016. return false;
  8017. return true;
  8018. }
  8019. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8020. {
  8021. struct drm_device *dev = crtc->base.dev;
  8022. struct drm_i915_private *dev_priv = dev->dev_private;
  8023. u32 reg;
  8024. /* Clear any frame start delays used for debugging left by the BIOS */
  8025. reg = PIPECONF(crtc->config.cpu_transcoder);
  8026. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8027. /* We need to sanitize the plane -> pipe mapping first because this will
  8028. * disable the crtc (and hence change the state) if it is wrong. Note
  8029. * that gen4+ has a fixed plane -> pipe mapping. */
  8030. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8031. struct intel_connector *connector;
  8032. bool plane;
  8033. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8034. crtc->base.base.id);
  8035. /* Pipe has the wrong plane attached and the plane is active.
  8036. * Temporarily change the plane mapping and disable everything
  8037. * ... */
  8038. plane = crtc->plane;
  8039. crtc->plane = !plane;
  8040. dev_priv->display.crtc_disable(&crtc->base);
  8041. crtc->plane = plane;
  8042. /* ... and break all links. */
  8043. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8044. base.head) {
  8045. if (connector->encoder->base.crtc != &crtc->base)
  8046. continue;
  8047. intel_connector_break_all_links(connector);
  8048. }
  8049. WARN_ON(crtc->active);
  8050. crtc->base.enabled = false;
  8051. }
  8052. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8053. crtc->pipe == PIPE_A && !crtc->active) {
  8054. /* BIOS forgot to enable pipe A, this mostly happens after
  8055. * resume. Force-enable the pipe to fix this, the update_dpms
  8056. * call below we restore the pipe to the right state, but leave
  8057. * the required bits on. */
  8058. intel_enable_pipe_a(dev);
  8059. }
  8060. /* Adjust the state of the output pipe according to whether we
  8061. * have active connectors/encoders. */
  8062. intel_crtc_update_dpms(&crtc->base);
  8063. if (crtc->active != crtc->base.enabled) {
  8064. struct intel_encoder *encoder;
  8065. /* This can happen either due to bugs in the get_hw_state
  8066. * functions or because the pipe is force-enabled due to the
  8067. * pipe A quirk. */
  8068. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8069. crtc->base.base.id,
  8070. crtc->base.enabled ? "enabled" : "disabled",
  8071. crtc->active ? "enabled" : "disabled");
  8072. crtc->base.enabled = crtc->active;
  8073. /* Because we only establish the connector -> encoder ->
  8074. * crtc links if something is active, this means the
  8075. * crtc is now deactivated. Break the links. connector
  8076. * -> encoder links are only establish when things are
  8077. * actually up, hence no need to break them. */
  8078. WARN_ON(crtc->active);
  8079. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8080. WARN_ON(encoder->connectors_active);
  8081. encoder->base.crtc = NULL;
  8082. }
  8083. }
  8084. }
  8085. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8086. {
  8087. struct intel_connector *connector;
  8088. struct drm_device *dev = encoder->base.dev;
  8089. /* We need to check both for a crtc link (meaning that the
  8090. * encoder is active and trying to read from a pipe) and the
  8091. * pipe itself being active. */
  8092. bool has_active_crtc = encoder->base.crtc &&
  8093. to_intel_crtc(encoder->base.crtc)->active;
  8094. if (encoder->connectors_active && !has_active_crtc) {
  8095. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8096. encoder->base.base.id,
  8097. drm_get_encoder_name(&encoder->base));
  8098. /* Connector is active, but has no active pipe. This is
  8099. * fallout from our resume register restoring. Disable
  8100. * the encoder manually again. */
  8101. if (encoder->base.crtc) {
  8102. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8103. encoder->base.base.id,
  8104. drm_get_encoder_name(&encoder->base));
  8105. encoder->disable(encoder);
  8106. }
  8107. /* Inconsistent output/port/pipe state happens presumably due to
  8108. * a bug in one of the get_hw_state functions. Or someplace else
  8109. * in our code, like the register restore mess on resume. Clamp
  8110. * things to off as a safer default. */
  8111. list_for_each_entry(connector,
  8112. &dev->mode_config.connector_list,
  8113. base.head) {
  8114. if (connector->encoder != encoder)
  8115. continue;
  8116. intel_connector_break_all_links(connector);
  8117. }
  8118. }
  8119. /* Enabled encoders without active connectors will be fixed in
  8120. * the crtc fixup. */
  8121. }
  8122. void i915_redisable_vga(struct drm_device *dev)
  8123. {
  8124. struct drm_i915_private *dev_priv = dev->dev_private;
  8125. u32 vga_reg = i915_vgacntrl_reg(dev);
  8126. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8127. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8128. i915_disable_vga(dev);
  8129. }
  8130. }
  8131. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8132. {
  8133. struct drm_i915_private *dev_priv = dev->dev_private;
  8134. enum pipe pipe;
  8135. struct intel_crtc *crtc;
  8136. struct intel_encoder *encoder;
  8137. struct intel_connector *connector;
  8138. int i;
  8139. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8140. base.head) {
  8141. memset(&crtc->config, 0, sizeof(crtc->config));
  8142. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8143. &crtc->config);
  8144. crtc->base.enabled = crtc->active;
  8145. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8146. crtc->base.base.id,
  8147. crtc->active ? "enabled" : "disabled");
  8148. }
  8149. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8150. if (HAS_DDI(dev))
  8151. intel_ddi_setup_hw_pll_state(dev);
  8152. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8153. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8154. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8155. pll->active = 0;
  8156. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8157. base.head) {
  8158. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8159. pll->active++;
  8160. }
  8161. pll->refcount = pll->active;
  8162. DRM_DEBUG_KMS("%s hw state readout: refcount %i\n",
  8163. pll->name, pll->refcount);
  8164. }
  8165. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8166. base.head) {
  8167. pipe = 0;
  8168. if (encoder->get_hw_state(encoder, &pipe)) {
  8169. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8170. encoder->base.crtc = &crtc->base;
  8171. if (encoder->get_config)
  8172. encoder->get_config(encoder, &crtc->config);
  8173. } else {
  8174. encoder->base.crtc = NULL;
  8175. }
  8176. encoder->connectors_active = false;
  8177. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8178. encoder->base.base.id,
  8179. drm_get_encoder_name(&encoder->base),
  8180. encoder->base.crtc ? "enabled" : "disabled",
  8181. pipe);
  8182. }
  8183. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8184. base.head) {
  8185. if (connector->get_hw_state(connector)) {
  8186. connector->base.dpms = DRM_MODE_DPMS_ON;
  8187. connector->encoder->connectors_active = true;
  8188. connector->base.encoder = &connector->encoder->base;
  8189. } else {
  8190. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8191. connector->base.encoder = NULL;
  8192. }
  8193. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8194. connector->base.base.id,
  8195. drm_get_connector_name(&connector->base),
  8196. connector->base.encoder ? "enabled" : "disabled");
  8197. }
  8198. }
  8199. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8200. * and i915 state tracking structures. */
  8201. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8202. bool force_restore)
  8203. {
  8204. struct drm_i915_private *dev_priv = dev->dev_private;
  8205. enum pipe pipe;
  8206. struct drm_plane *plane;
  8207. struct intel_crtc *crtc;
  8208. struct intel_encoder *encoder;
  8209. intel_modeset_readout_hw_state(dev);
  8210. /* HW state is read out, now we need to sanitize this mess. */
  8211. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8212. base.head) {
  8213. intel_sanitize_encoder(encoder);
  8214. }
  8215. for_each_pipe(pipe) {
  8216. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8217. intel_sanitize_crtc(crtc);
  8218. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8219. }
  8220. if (force_restore) {
  8221. /*
  8222. * We need to use raw interfaces for restoring state to avoid
  8223. * checking (bogus) intermediate states.
  8224. */
  8225. for_each_pipe(pipe) {
  8226. struct drm_crtc *crtc =
  8227. dev_priv->pipe_to_crtc_mapping[pipe];
  8228. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8229. crtc->fb);
  8230. }
  8231. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8232. intel_plane_restore(plane);
  8233. i915_redisable_vga(dev);
  8234. } else {
  8235. intel_modeset_update_staged_output_state(dev);
  8236. }
  8237. intel_modeset_check_state(dev);
  8238. drm_mode_config_reset(dev);
  8239. }
  8240. void intel_modeset_gem_init(struct drm_device *dev)
  8241. {
  8242. intel_modeset_init_hw(dev);
  8243. intel_setup_overlay(dev);
  8244. intel_modeset_setup_hw_state(dev, false);
  8245. }
  8246. void intel_modeset_cleanup(struct drm_device *dev)
  8247. {
  8248. struct drm_i915_private *dev_priv = dev->dev_private;
  8249. struct drm_crtc *crtc;
  8250. struct intel_crtc *intel_crtc;
  8251. /*
  8252. * Interrupts and polling as the first thing to avoid creating havoc.
  8253. * Too much stuff here (turning of rps, connectors, ...) would
  8254. * experience fancy races otherwise.
  8255. */
  8256. drm_irq_uninstall(dev);
  8257. cancel_work_sync(&dev_priv->hotplug_work);
  8258. /*
  8259. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8260. * poll handlers. Hence disable polling after hpd handling is shut down.
  8261. */
  8262. drm_kms_helper_poll_fini(dev);
  8263. mutex_lock(&dev->struct_mutex);
  8264. intel_unregister_dsm_handler();
  8265. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8266. /* Skip inactive CRTCs */
  8267. if (!crtc->fb)
  8268. continue;
  8269. intel_crtc = to_intel_crtc(crtc);
  8270. intel_increase_pllclock(crtc);
  8271. }
  8272. intel_disable_fbc(dev);
  8273. intel_disable_gt_powersave(dev);
  8274. ironlake_teardown_rc6(dev);
  8275. mutex_unlock(&dev->struct_mutex);
  8276. /* flush any delayed tasks or pending work */
  8277. flush_scheduled_work();
  8278. /* destroy backlight, if any, before the connectors */
  8279. intel_panel_destroy_backlight(dev);
  8280. drm_mode_config_cleanup(dev);
  8281. intel_cleanup_overlay(dev);
  8282. }
  8283. /*
  8284. * Return which encoder is currently attached for connector.
  8285. */
  8286. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8287. {
  8288. return &intel_attached_encoder(connector)->base;
  8289. }
  8290. void intel_connector_attach_encoder(struct intel_connector *connector,
  8291. struct intel_encoder *encoder)
  8292. {
  8293. connector->encoder = encoder;
  8294. drm_mode_connector_attach_encoder(&connector->base,
  8295. &encoder->base);
  8296. }
  8297. /*
  8298. * set vga decode state - true == enable VGA decode
  8299. */
  8300. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8301. {
  8302. struct drm_i915_private *dev_priv = dev->dev_private;
  8303. u16 gmch_ctrl;
  8304. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8305. if (state)
  8306. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8307. else
  8308. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8309. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8310. return 0;
  8311. }
  8312. #ifdef CONFIG_DEBUG_FS
  8313. #include <linux/seq_file.h>
  8314. struct intel_display_error_state {
  8315. u32 power_well_driver;
  8316. struct intel_cursor_error_state {
  8317. u32 control;
  8318. u32 position;
  8319. u32 base;
  8320. u32 size;
  8321. } cursor[I915_MAX_PIPES];
  8322. struct intel_pipe_error_state {
  8323. enum transcoder cpu_transcoder;
  8324. u32 conf;
  8325. u32 source;
  8326. u32 htotal;
  8327. u32 hblank;
  8328. u32 hsync;
  8329. u32 vtotal;
  8330. u32 vblank;
  8331. u32 vsync;
  8332. } pipe[I915_MAX_PIPES];
  8333. struct intel_plane_error_state {
  8334. u32 control;
  8335. u32 stride;
  8336. u32 size;
  8337. u32 pos;
  8338. u32 addr;
  8339. u32 surface;
  8340. u32 tile_offset;
  8341. } plane[I915_MAX_PIPES];
  8342. };
  8343. struct intel_display_error_state *
  8344. intel_display_capture_error_state(struct drm_device *dev)
  8345. {
  8346. drm_i915_private_t *dev_priv = dev->dev_private;
  8347. struct intel_display_error_state *error;
  8348. enum transcoder cpu_transcoder;
  8349. int i;
  8350. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8351. if (error == NULL)
  8352. return NULL;
  8353. if (HAS_POWER_WELL(dev))
  8354. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8355. for_each_pipe(i) {
  8356. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8357. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8358. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8359. error->cursor[i].control = I915_READ(CURCNTR(i));
  8360. error->cursor[i].position = I915_READ(CURPOS(i));
  8361. error->cursor[i].base = I915_READ(CURBASE(i));
  8362. } else {
  8363. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8364. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8365. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8366. }
  8367. error->plane[i].control = I915_READ(DSPCNTR(i));
  8368. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8369. if (INTEL_INFO(dev)->gen <= 3) {
  8370. error->plane[i].size = I915_READ(DSPSIZE(i));
  8371. error->plane[i].pos = I915_READ(DSPPOS(i));
  8372. }
  8373. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8374. error->plane[i].addr = I915_READ(DSPADDR(i));
  8375. if (INTEL_INFO(dev)->gen >= 4) {
  8376. error->plane[i].surface = I915_READ(DSPSURF(i));
  8377. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8378. }
  8379. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8380. error->pipe[i].source = I915_READ(PIPESRC(i));
  8381. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8382. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8383. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8384. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8385. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8386. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8387. }
  8388. /* In the code above we read the registers without checking if the power
  8389. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8390. * prevent the next I915_WRITE from detecting it and printing an error
  8391. * message. */
  8392. if (HAS_POWER_WELL(dev))
  8393. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8394. return error;
  8395. }
  8396. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8397. void
  8398. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8399. struct drm_device *dev,
  8400. struct intel_display_error_state *error)
  8401. {
  8402. int i;
  8403. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8404. if (HAS_POWER_WELL(dev))
  8405. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8406. error->power_well_driver);
  8407. for_each_pipe(i) {
  8408. err_printf(m, "Pipe [%d]:\n", i);
  8409. err_printf(m, " CPU transcoder: %c\n",
  8410. transcoder_name(error->pipe[i].cpu_transcoder));
  8411. err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8412. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8413. err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8414. err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8415. err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8416. err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8417. err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8418. err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8419. err_printf(m, "Plane [%d]:\n", i);
  8420. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8421. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8422. if (INTEL_INFO(dev)->gen <= 3) {
  8423. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8424. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8425. }
  8426. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8427. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8428. if (INTEL_INFO(dev)->gen >= 4) {
  8429. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8430. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8431. }
  8432. err_printf(m, "Cursor [%d]:\n", i);
  8433. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8434. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8435. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8436. }
  8437. }
  8438. #endif