fault.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645
  1. /*
  2. * arch/s390/mm/fault.c
  3. *
  4. * S390 version
  5. * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
  6. * Author(s): Hartmut Penner (hp@de.ibm.com)
  7. * Ulrich Weigand (uweigand@de.ibm.com)
  8. *
  9. * Derived from "arch/i386/mm/fault.c"
  10. * Copyright (C) 1995 Linus Torvalds
  11. */
  12. #include <linux/kernel_stat.h>
  13. #include <linux/perf_event.h>
  14. #include <linux/signal.h>
  15. #include <linux/sched.h>
  16. #include <linux/kernel.h>
  17. #include <linux/errno.h>
  18. #include <linux/string.h>
  19. #include <linux/types.h>
  20. #include <linux/ptrace.h>
  21. #include <linux/mman.h>
  22. #include <linux/mm.h>
  23. #include <linux/compat.h>
  24. #include <linux/smp.h>
  25. #include <linux/kdebug.h>
  26. #include <linux/init.h>
  27. #include <linux/console.h>
  28. #include <linux/module.h>
  29. #include <linux/hardirq.h>
  30. #include <linux/kprobes.h>
  31. #include <linux/uaccess.h>
  32. #include <linux/hugetlb.h>
  33. #include <asm/asm-offsets.h>
  34. #include <asm/system.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/irq.h>
  37. #include <asm/mmu_context.h>
  38. #include <asm/compat.h>
  39. #include "../kernel/entry.h"
  40. #ifndef CONFIG_64BIT
  41. #define __FAIL_ADDR_MASK 0x7ffff000
  42. #define __SUBCODE_MASK 0x0200
  43. #define __PF_RES_FIELD 0ULL
  44. #else /* CONFIG_64BIT */
  45. #define __FAIL_ADDR_MASK -4096L
  46. #define __SUBCODE_MASK 0x0600
  47. #define __PF_RES_FIELD 0x8000000000000000ULL
  48. #endif /* CONFIG_64BIT */
  49. #define VM_FAULT_BADCONTEXT 0x010000
  50. #define VM_FAULT_BADMAP 0x020000
  51. #define VM_FAULT_BADACCESS 0x040000
  52. static unsigned long store_indication;
  53. void fault_init(void)
  54. {
  55. if (test_facility(2) && test_facility(75))
  56. store_indication = 0xc00;
  57. }
  58. static inline int notify_page_fault(struct pt_regs *regs)
  59. {
  60. int ret = 0;
  61. /* kprobe_running() needs smp_processor_id() */
  62. if (kprobes_built_in() && !user_mode(regs)) {
  63. preempt_disable();
  64. if (kprobe_running() && kprobe_fault_handler(regs, 14))
  65. ret = 1;
  66. preempt_enable();
  67. }
  68. return ret;
  69. }
  70. /*
  71. * Unlock any spinlocks which will prevent us from getting the
  72. * message out.
  73. */
  74. void bust_spinlocks(int yes)
  75. {
  76. if (yes) {
  77. oops_in_progress = 1;
  78. } else {
  79. int loglevel_save = console_loglevel;
  80. console_unblank();
  81. oops_in_progress = 0;
  82. /*
  83. * OK, the message is on the console. Now we call printk()
  84. * without oops_in_progress set so that printk will give klogd
  85. * a poke. Hold onto your hats...
  86. */
  87. console_loglevel = 15;
  88. printk(" ");
  89. console_loglevel = loglevel_save;
  90. }
  91. }
  92. /*
  93. * Returns the address space associated with the fault.
  94. * Returns 0 for kernel space and 1 for user space.
  95. */
  96. static inline int user_space_fault(unsigned long trans_exc_code)
  97. {
  98. /*
  99. * The lowest two bits of the translation exception
  100. * identification indicate which paging table was used.
  101. */
  102. trans_exc_code &= 3;
  103. if (trans_exc_code == 2)
  104. /* Access via secondary space, set_fs setting decides */
  105. return current->thread.mm_segment.ar4;
  106. if (user_mode == HOME_SPACE_MODE)
  107. /* User space if the access has been done via home space. */
  108. return trans_exc_code == 3;
  109. /*
  110. * If the user space is not the home space the kernel runs in home
  111. * space. Access via secondary space has already been covered,
  112. * access via primary space or access register is from user space
  113. * and access via home space is from the kernel.
  114. */
  115. return trans_exc_code != 3;
  116. }
  117. static inline void report_user_fault(struct pt_regs *regs, long int_code,
  118. int signr, unsigned long address)
  119. {
  120. if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
  121. return;
  122. if (!unhandled_signal(current, signr))
  123. return;
  124. if (!printk_ratelimit())
  125. return;
  126. printk("User process fault: interruption code 0x%lX ", int_code);
  127. print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN);
  128. printk("\n");
  129. printk("failing address: %lX\n", address);
  130. show_regs(regs);
  131. }
  132. /*
  133. * Send SIGSEGV to task. This is an external routine
  134. * to keep the stack usage of do_page_fault small.
  135. */
  136. static noinline void do_sigsegv(struct pt_regs *regs, long int_code,
  137. int si_code, unsigned long trans_exc_code)
  138. {
  139. struct siginfo si;
  140. unsigned long address;
  141. address = trans_exc_code & __FAIL_ADDR_MASK;
  142. current->thread.prot_addr = address;
  143. current->thread.trap_no = int_code;
  144. report_user_fault(regs, int_code, SIGSEGV, address);
  145. si.si_signo = SIGSEGV;
  146. si.si_code = si_code;
  147. si.si_addr = (void __user *) address;
  148. force_sig_info(SIGSEGV, &si, current);
  149. }
  150. static noinline void do_no_context(struct pt_regs *regs, long int_code,
  151. unsigned long trans_exc_code)
  152. {
  153. const struct exception_table_entry *fixup;
  154. unsigned long address;
  155. /* Are we prepared to handle this kernel fault? */
  156. fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
  157. if (fixup) {
  158. regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE;
  159. return;
  160. }
  161. /*
  162. * Oops. The kernel tried to access some bad page. We'll have to
  163. * terminate things with extreme prejudice.
  164. */
  165. address = trans_exc_code & __FAIL_ADDR_MASK;
  166. if (!user_space_fault(trans_exc_code))
  167. printk(KERN_ALERT "Unable to handle kernel pointer dereference"
  168. " at virtual kernel address %p\n", (void *)address);
  169. else
  170. printk(KERN_ALERT "Unable to handle kernel paging request"
  171. " at virtual user address %p\n", (void *)address);
  172. die("Oops", regs, int_code);
  173. do_exit(SIGKILL);
  174. }
  175. static noinline void do_low_address(struct pt_regs *regs, long int_code,
  176. unsigned long trans_exc_code)
  177. {
  178. /* Low-address protection hit in kernel mode means
  179. NULL pointer write access in kernel mode. */
  180. if (regs->psw.mask & PSW_MASK_PSTATE) {
  181. /* Low-address protection hit in user mode 'cannot happen'. */
  182. die ("Low-address protection", regs, int_code);
  183. do_exit(SIGKILL);
  184. }
  185. do_no_context(regs, int_code, trans_exc_code);
  186. }
  187. static noinline void do_sigbus(struct pt_regs *regs, long int_code,
  188. unsigned long trans_exc_code)
  189. {
  190. struct task_struct *tsk = current;
  191. unsigned long address;
  192. struct siginfo si;
  193. /*
  194. * Send a sigbus, regardless of whether we were in kernel
  195. * or user mode.
  196. */
  197. address = trans_exc_code & __FAIL_ADDR_MASK;
  198. tsk->thread.prot_addr = address;
  199. tsk->thread.trap_no = int_code;
  200. si.si_signo = SIGBUS;
  201. si.si_errno = 0;
  202. si.si_code = BUS_ADRERR;
  203. si.si_addr = (void __user *) address;
  204. force_sig_info(SIGBUS, &si, tsk);
  205. }
  206. static noinline void do_fault_error(struct pt_regs *regs, long int_code,
  207. unsigned long trans_exc_code, int fault)
  208. {
  209. int si_code;
  210. switch (fault) {
  211. case VM_FAULT_BADACCESS:
  212. case VM_FAULT_BADMAP:
  213. /* Bad memory access. Check if it is kernel or user space. */
  214. if (regs->psw.mask & PSW_MASK_PSTATE) {
  215. /* User mode accesses just cause a SIGSEGV */
  216. si_code = (fault == VM_FAULT_BADMAP) ?
  217. SEGV_MAPERR : SEGV_ACCERR;
  218. do_sigsegv(regs, int_code, si_code, trans_exc_code);
  219. return;
  220. }
  221. case VM_FAULT_BADCONTEXT:
  222. do_no_context(regs, int_code, trans_exc_code);
  223. break;
  224. default: /* fault & VM_FAULT_ERROR */
  225. if (fault & VM_FAULT_OOM) {
  226. if (!(regs->psw.mask & PSW_MASK_PSTATE))
  227. do_no_context(regs, int_code, trans_exc_code);
  228. else
  229. pagefault_out_of_memory();
  230. } else if (fault & VM_FAULT_SIGBUS) {
  231. /* Kernel mode? Handle exceptions or die */
  232. if (!(regs->psw.mask & PSW_MASK_PSTATE))
  233. do_no_context(regs, int_code, trans_exc_code);
  234. else
  235. do_sigbus(regs, int_code, trans_exc_code);
  236. } else
  237. BUG();
  238. break;
  239. }
  240. }
  241. /*
  242. * This routine handles page faults. It determines the address,
  243. * and the problem, and then passes it off to one of the appropriate
  244. * routines.
  245. *
  246. * interruption code (int_code):
  247. * 04 Protection -> Write-Protection (suprression)
  248. * 10 Segment translation -> Not present (nullification)
  249. * 11 Page translation -> Not present (nullification)
  250. * 3b Region third trans. -> Not present (nullification)
  251. */
  252. static inline int do_exception(struct pt_regs *regs, int access,
  253. unsigned long trans_exc_code)
  254. {
  255. struct task_struct *tsk;
  256. struct mm_struct *mm;
  257. struct vm_area_struct *vma;
  258. unsigned long address;
  259. unsigned int flags;
  260. int fault;
  261. if (notify_page_fault(regs))
  262. return 0;
  263. tsk = current;
  264. mm = tsk->mm;
  265. /*
  266. * Verify that the fault happened in user space, that
  267. * we are not in an interrupt and that there is a
  268. * user context.
  269. */
  270. fault = VM_FAULT_BADCONTEXT;
  271. if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
  272. goto out;
  273. address = trans_exc_code & __FAIL_ADDR_MASK;
  274. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
  275. flags = FAULT_FLAG_ALLOW_RETRY;
  276. if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
  277. flags |= FAULT_FLAG_WRITE;
  278. retry:
  279. down_read(&mm->mmap_sem);
  280. fault = VM_FAULT_BADMAP;
  281. vma = find_vma(mm, address);
  282. if (!vma)
  283. goto out_up;
  284. if (unlikely(vma->vm_start > address)) {
  285. if (!(vma->vm_flags & VM_GROWSDOWN))
  286. goto out_up;
  287. if (expand_stack(vma, address))
  288. goto out_up;
  289. }
  290. /*
  291. * Ok, we have a good vm_area for this memory access, so
  292. * we can handle it..
  293. */
  294. fault = VM_FAULT_BADACCESS;
  295. if (unlikely(!(vma->vm_flags & access)))
  296. goto out_up;
  297. if (is_vm_hugetlb_page(vma))
  298. address &= HPAGE_MASK;
  299. /*
  300. * If for any reason at all we couldn't handle the fault,
  301. * make sure we exit gracefully rather than endlessly redo
  302. * the fault.
  303. */
  304. fault = handle_mm_fault(mm, vma, address, flags);
  305. if (unlikely(fault & VM_FAULT_ERROR))
  306. goto out_up;
  307. /*
  308. * Major/minor page fault accounting is only done on the
  309. * initial attempt. If we go through a retry, it is extremely
  310. * likely that the page will be found in page cache at that point.
  311. */
  312. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  313. if (fault & VM_FAULT_MAJOR) {
  314. tsk->maj_flt++;
  315. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
  316. regs, address);
  317. } else {
  318. tsk->min_flt++;
  319. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
  320. regs, address);
  321. }
  322. if (fault & VM_FAULT_RETRY) {
  323. /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
  324. * of starvation. */
  325. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  326. goto retry;
  327. }
  328. }
  329. /*
  330. * The instruction that caused the program check will
  331. * be repeated. Don't signal single step via SIGTRAP.
  332. */
  333. clear_tsk_thread_flag(tsk, TIF_PER_TRAP);
  334. fault = 0;
  335. out_up:
  336. up_read(&mm->mmap_sem);
  337. out:
  338. return fault;
  339. }
  340. void __kprobes do_protection_exception(struct pt_regs *regs, long pgm_int_code,
  341. unsigned long trans_exc_code)
  342. {
  343. int fault;
  344. /* Protection exception is suppressing, decrement psw address. */
  345. regs->psw.addr -= (pgm_int_code >> 16);
  346. /*
  347. * Check for low-address protection. This needs to be treated
  348. * as a special case because the translation exception code
  349. * field is not guaranteed to contain valid data in this case.
  350. */
  351. if (unlikely(!(trans_exc_code & 4))) {
  352. do_low_address(regs, pgm_int_code, trans_exc_code);
  353. return;
  354. }
  355. fault = do_exception(regs, VM_WRITE, trans_exc_code);
  356. if (unlikely(fault))
  357. do_fault_error(regs, 4, trans_exc_code, fault);
  358. }
  359. void __kprobes do_dat_exception(struct pt_regs *regs, long pgm_int_code,
  360. unsigned long trans_exc_code)
  361. {
  362. int access, fault;
  363. access = VM_READ | VM_EXEC | VM_WRITE;
  364. fault = do_exception(regs, access, trans_exc_code);
  365. if (unlikely(fault))
  366. do_fault_error(regs, pgm_int_code & 255, trans_exc_code, fault);
  367. }
  368. #ifdef CONFIG_64BIT
  369. void __kprobes do_asce_exception(struct pt_regs *regs, long pgm_int_code,
  370. unsigned long trans_exc_code)
  371. {
  372. struct mm_struct *mm = current->mm;
  373. struct vm_area_struct *vma;
  374. if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
  375. goto no_context;
  376. down_read(&mm->mmap_sem);
  377. vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK);
  378. up_read(&mm->mmap_sem);
  379. if (vma) {
  380. update_mm(mm, current);
  381. return;
  382. }
  383. /* User mode accesses just cause a SIGSEGV */
  384. if (regs->psw.mask & PSW_MASK_PSTATE) {
  385. do_sigsegv(regs, pgm_int_code, SEGV_MAPERR, trans_exc_code);
  386. return;
  387. }
  388. no_context:
  389. do_no_context(regs, pgm_int_code, trans_exc_code);
  390. }
  391. #endif
  392. int __handle_fault(unsigned long uaddr, unsigned long pgm_int_code, int write)
  393. {
  394. struct pt_regs regs;
  395. int access, fault;
  396. regs.psw.mask = psw_kernel_bits;
  397. if (!irqs_disabled())
  398. regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT;
  399. regs.psw.addr = (unsigned long) __builtin_return_address(0);
  400. regs.psw.addr |= PSW_ADDR_AMODE;
  401. uaddr &= PAGE_MASK;
  402. access = write ? VM_WRITE : VM_READ;
  403. fault = do_exception(&regs, access, uaddr | 2);
  404. if (unlikely(fault)) {
  405. if (fault & VM_FAULT_OOM)
  406. return -EFAULT;
  407. else if (fault & VM_FAULT_SIGBUS)
  408. do_sigbus(&regs, pgm_int_code, uaddr);
  409. }
  410. return fault ? -EFAULT : 0;
  411. }
  412. #ifdef CONFIG_PFAULT
  413. /*
  414. * 'pfault' pseudo page faults routines.
  415. */
  416. static int pfault_disable;
  417. static int __init nopfault(char *str)
  418. {
  419. pfault_disable = 1;
  420. return 1;
  421. }
  422. __setup("nopfault", nopfault);
  423. struct pfault_refbk {
  424. u16 refdiagc;
  425. u16 reffcode;
  426. u16 refdwlen;
  427. u16 refversn;
  428. u64 refgaddr;
  429. u64 refselmk;
  430. u64 refcmpmk;
  431. u64 reserved;
  432. } __attribute__ ((packed, aligned(8)));
  433. int pfault_init(void)
  434. {
  435. struct pfault_refbk refbk = {
  436. .refdiagc = 0x258,
  437. .reffcode = 0,
  438. .refdwlen = 5,
  439. .refversn = 2,
  440. .refgaddr = __LC_CURRENT_PID,
  441. .refselmk = 1ULL << 48,
  442. .refcmpmk = 1ULL << 48,
  443. .reserved = __PF_RES_FIELD };
  444. int rc;
  445. if (!MACHINE_IS_VM || pfault_disable)
  446. return -1;
  447. asm volatile(
  448. " diag %1,%0,0x258\n"
  449. "0: j 2f\n"
  450. "1: la %0,8\n"
  451. "2:\n"
  452. EX_TABLE(0b,1b)
  453. : "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
  454. return rc;
  455. }
  456. void pfault_fini(void)
  457. {
  458. struct pfault_refbk refbk = {
  459. .refdiagc = 0x258,
  460. .reffcode = 1,
  461. .refdwlen = 5,
  462. .refversn = 2,
  463. };
  464. if (!MACHINE_IS_VM || pfault_disable)
  465. return;
  466. asm volatile(
  467. " diag %0,0,0x258\n"
  468. "0:\n"
  469. EX_TABLE(0b,0b)
  470. : : "a" (&refbk), "m" (refbk) : "cc");
  471. }
  472. static DEFINE_SPINLOCK(pfault_lock);
  473. static LIST_HEAD(pfault_list);
  474. static void pfault_interrupt(unsigned int ext_int_code,
  475. unsigned int param32, unsigned long param64)
  476. {
  477. struct task_struct *tsk;
  478. __u16 subcode;
  479. pid_t pid;
  480. /*
  481. * Get the external interruption subcode & pfault
  482. * initial/completion signal bit. VM stores this
  483. * in the 'cpu address' field associated with the
  484. * external interrupt.
  485. */
  486. subcode = ext_int_code >> 16;
  487. if ((subcode & 0xff00) != __SUBCODE_MASK)
  488. return;
  489. kstat_cpu(smp_processor_id()).irqs[EXTINT_PFL]++;
  490. if (subcode & 0x0080) {
  491. /* Get the token (= pid of the affected task). */
  492. pid = sizeof(void *) == 4 ? param32 : param64;
  493. rcu_read_lock();
  494. tsk = find_task_by_pid_ns(pid, &init_pid_ns);
  495. if (tsk)
  496. get_task_struct(tsk);
  497. rcu_read_unlock();
  498. if (!tsk)
  499. return;
  500. } else {
  501. tsk = current;
  502. }
  503. spin_lock(&pfault_lock);
  504. if (subcode & 0x0080) {
  505. /* signal bit is set -> a page has been swapped in by VM */
  506. if (tsk->thread.pfault_wait == 1) {
  507. /* Initial interrupt was faster than the completion
  508. * interrupt. pfault_wait is valid. Set pfault_wait
  509. * back to zero and wake up the process. This can
  510. * safely be done because the task is still sleeping
  511. * and can't produce new pfaults. */
  512. tsk->thread.pfault_wait = 0;
  513. list_del(&tsk->thread.list);
  514. wake_up_process(tsk);
  515. } else {
  516. /* Completion interrupt was faster than initial
  517. * interrupt. Set pfault_wait to -1 so the initial
  518. * interrupt doesn't put the task to sleep. */
  519. tsk->thread.pfault_wait = -1;
  520. }
  521. put_task_struct(tsk);
  522. } else {
  523. /* signal bit not set -> a real page is missing. */
  524. if (tsk->thread.pfault_wait == -1) {
  525. /* Completion interrupt was faster than the initial
  526. * interrupt (pfault_wait == -1). Set pfault_wait
  527. * back to zero and exit. */
  528. tsk->thread.pfault_wait = 0;
  529. } else {
  530. /* Initial interrupt arrived before completion
  531. * interrupt. Let the task sleep. */
  532. tsk->thread.pfault_wait = 1;
  533. list_add(&tsk->thread.list, &pfault_list);
  534. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  535. set_tsk_need_resched(tsk);
  536. }
  537. }
  538. spin_unlock(&pfault_lock);
  539. }
  540. static int __cpuinit pfault_cpu_notify(struct notifier_block *self,
  541. unsigned long action, void *hcpu)
  542. {
  543. struct thread_struct *thread, *next;
  544. struct task_struct *tsk;
  545. switch (action) {
  546. case CPU_DEAD:
  547. case CPU_DEAD_FROZEN:
  548. spin_lock_irq(&pfault_lock);
  549. list_for_each_entry_safe(thread, next, &pfault_list, list) {
  550. thread->pfault_wait = 0;
  551. list_del(&thread->list);
  552. tsk = container_of(thread, struct task_struct, thread);
  553. wake_up_process(tsk);
  554. }
  555. spin_unlock_irq(&pfault_lock);
  556. break;
  557. default:
  558. break;
  559. }
  560. return NOTIFY_OK;
  561. }
  562. static int __init pfault_irq_init(void)
  563. {
  564. int rc;
  565. if (!MACHINE_IS_VM)
  566. return 0;
  567. rc = register_external_interrupt(0x2603, pfault_interrupt);
  568. if (rc)
  569. goto out_extint;
  570. rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
  571. if (rc)
  572. goto out_pfault;
  573. service_subclass_irq_register();
  574. hotcpu_notifier(pfault_cpu_notify, 0);
  575. return 0;
  576. out_pfault:
  577. unregister_external_interrupt(0x2603, pfault_interrupt);
  578. out_extint:
  579. pfault_disable = 1;
  580. return rc;
  581. }
  582. early_initcall(pfault_irq_init);
  583. #endif /* CONFIG_PFAULT */