ste_dma40.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/slab.h>
  10. #include <linux/dmaengine.h>
  11. #include <linux/platform_device.h>
  12. #include <linux/clk.h>
  13. #include <linux/delay.h>
  14. #include <linux/err.h>
  15. #include <plat/ste_dma40.h>
  16. #include "ste_dma40_ll.h"
  17. #define D40_NAME "dma40"
  18. #define D40_PHY_CHAN -1
  19. /* For masking out/in 2 bit channel positions */
  20. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  21. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  22. /* Maximum iterations taken before giving up suspending a channel */
  23. #define D40_SUSPEND_MAX_IT 500
  24. /* Hardware requirement on LCLA alignment */
  25. #define LCLA_ALIGNMENT 0x40000
  26. /* Max number of links per event group */
  27. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  28. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  29. /* Attempts before giving up to trying to get pages that are aligned */
  30. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  31. /* Bit markings for allocation map */
  32. #define D40_ALLOC_FREE (1 << 31)
  33. #define D40_ALLOC_PHY (1 << 30)
  34. #define D40_ALLOC_LOG_FREE 0
  35. /* Hardware designer of the block */
  36. #define D40_HW_DESIGNER 0x8
  37. /**
  38. * enum 40_command - The different commands and/or statuses.
  39. *
  40. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  41. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  42. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  43. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  44. */
  45. enum d40_command {
  46. D40_DMA_STOP = 0,
  47. D40_DMA_RUN = 1,
  48. D40_DMA_SUSPEND_REQ = 2,
  49. D40_DMA_SUSPENDED = 3
  50. };
  51. /**
  52. * struct d40_lli_pool - Structure for keeping LLIs in memory
  53. *
  54. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  55. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  56. * pre_alloc_lli is used.
  57. * @dma_addr: DMA address, if mapped
  58. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  59. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  60. * one buffer to one buffer.
  61. */
  62. struct d40_lli_pool {
  63. void *base;
  64. int size;
  65. dma_addr_t dma_addr;
  66. /* Space for dst and src, plus an extra for padding */
  67. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  68. };
  69. /**
  70. * struct d40_desc - A descriptor is one DMA job.
  71. *
  72. * @lli_phy: LLI settings for physical channel. Both src and dst=
  73. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  74. * lli_len equals one.
  75. * @lli_log: Same as above but for logical channels.
  76. * @lli_pool: The pool with two entries pre-allocated.
  77. * @lli_len: Number of llis of current descriptor.
  78. * @lli_current: Number of transfered llis.
  79. * @lcla_alloc: Number of LCLA entries allocated.
  80. * @txd: DMA engine struct. Used for among other things for communication
  81. * during a transfer.
  82. * @node: List entry.
  83. * @is_in_client_list: true if the client owns this descriptor.
  84. * the previous one.
  85. *
  86. * This descriptor is used for both logical and physical transfers.
  87. */
  88. struct d40_desc {
  89. /* LLI physical */
  90. struct d40_phy_lli_bidir lli_phy;
  91. /* LLI logical */
  92. struct d40_log_lli_bidir lli_log;
  93. struct d40_lli_pool lli_pool;
  94. int lli_len;
  95. int lli_current;
  96. int lcla_alloc;
  97. struct dma_async_tx_descriptor txd;
  98. struct list_head node;
  99. bool is_in_client_list;
  100. };
  101. /**
  102. * struct d40_lcla_pool - LCLA pool settings and data.
  103. *
  104. * @base: The virtual address of LCLA. 18 bit aligned.
  105. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  106. * This pointer is only there for clean-up on error.
  107. * @pages: The number of pages needed for all physical channels.
  108. * Only used later for clean-up on error
  109. * @lock: Lock to protect the content in this struct.
  110. * @alloc_map: big map over which LCLA entry is own by which job.
  111. */
  112. struct d40_lcla_pool {
  113. void *base;
  114. dma_addr_t dma_addr;
  115. void *base_unaligned;
  116. int pages;
  117. spinlock_t lock;
  118. struct d40_desc **alloc_map;
  119. };
  120. /**
  121. * struct d40_phy_res - struct for handling eventlines mapped to physical
  122. * channels.
  123. *
  124. * @lock: A lock protection this entity.
  125. * @num: The physical channel number of this entity.
  126. * @allocated_src: Bit mapped to show which src event line's are mapped to
  127. * this physical channel. Can also be free or physically allocated.
  128. * @allocated_dst: Same as for src but is dst.
  129. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  130. * event line number.
  131. */
  132. struct d40_phy_res {
  133. spinlock_t lock;
  134. int num;
  135. u32 allocated_src;
  136. u32 allocated_dst;
  137. };
  138. struct d40_base;
  139. /**
  140. * struct d40_chan - Struct that describes a channel.
  141. *
  142. * @lock: A spinlock to protect this struct.
  143. * @log_num: The logical number, if any of this channel.
  144. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  145. * current cookie.
  146. * @pending_tx: The number of pending transfers. Used between interrupt handler
  147. * and tasklet.
  148. * @busy: Set to true when transfer is ongoing on this channel.
  149. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  150. * point is NULL, then the channel is not allocated.
  151. * @chan: DMA engine handle.
  152. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  153. * transfer and call client callback.
  154. * @client: Cliented owned descriptor list.
  155. * @active: Active descriptor.
  156. * @queue: Queued jobs.
  157. * @dma_cfg: The client configuration of this dma channel.
  158. * @configured: whether the dma_cfg configuration is valid
  159. * @base: Pointer to the device instance struct.
  160. * @src_def_cfg: Default cfg register setting for src.
  161. * @dst_def_cfg: Default cfg register setting for dst.
  162. * @log_def: Default logical channel settings.
  163. * @lcla: Space for one dst src pair for logical channel transfers.
  164. * @lcpa: Pointer to dst and src lcpa settings.
  165. *
  166. * This struct can either "be" a logical or a physical channel.
  167. */
  168. struct d40_chan {
  169. spinlock_t lock;
  170. int log_num;
  171. /* ID of the most recent completed transfer */
  172. int completed;
  173. int pending_tx;
  174. bool busy;
  175. struct d40_phy_res *phy_chan;
  176. struct dma_chan chan;
  177. struct tasklet_struct tasklet;
  178. struct list_head client;
  179. struct list_head active;
  180. struct list_head queue;
  181. struct stedma40_chan_cfg dma_cfg;
  182. bool configured;
  183. struct d40_base *base;
  184. /* Default register configurations */
  185. u32 src_def_cfg;
  186. u32 dst_def_cfg;
  187. struct d40_def_lcsp log_def;
  188. struct d40_log_lli_full *lcpa;
  189. /* Runtime reconfiguration */
  190. dma_addr_t runtime_addr;
  191. enum dma_data_direction runtime_direction;
  192. };
  193. /**
  194. * struct d40_base - The big global struct, one for each probe'd instance.
  195. *
  196. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  197. * @execmd_lock: Lock for execute command usage since several channels share
  198. * the same physical register.
  199. * @dev: The device structure.
  200. * @virtbase: The virtual base address of the DMA's register.
  201. * @rev: silicon revision detected.
  202. * @clk: Pointer to the DMA clock structure.
  203. * @phy_start: Physical memory start of the DMA registers.
  204. * @phy_size: Size of the DMA register map.
  205. * @irq: The IRQ number.
  206. * @num_phy_chans: The number of physical channels. Read from HW. This
  207. * is the number of available channels for this driver, not counting "Secure
  208. * mode" allocated physical channels.
  209. * @num_log_chans: The number of logical channels. Calculated from
  210. * num_phy_chans.
  211. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  212. * @dma_slave: dma_device channels that can do only do slave transfers.
  213. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  214. * @log_chans: Room for all possible logical channels in system.
  215. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  216. * to log_chans entries.
  217. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  218. * to phy_chans entries.
  219. * @plat_data: Pointer to provided platform_data which is the driver
  220. * configuration.
  221. * @phy_res: Vector containing all physical channels.
  222. * @lcla_pool: lcla pool settings and data.
  223. * @lcpa_base: The virtual mapped address of LCPA.
  224. * @phy_lcpa: The physical address of the LCPA.
  225. * @lcpa_size: The size of the LCPA area.
  226. * @desc_slab: cache for descriptors.
  227. */
  228. struct d40_base {
  229. spinlock_t interrupt_lock;
  230. spinlock_t execmd_lock;
  231. struct device *dev;
  232. void __iomem *virtbase;
  233. u8 rev:4;
  234. struct clk *clk;
  235. phys_addr_t phy_start;
  236. resource_size_t phy_size;
  237. int irq;
  238. int num_phy_chans;
  239. int num_log_chans;
  240. struct dma_device dma_both;
  241. struct dma_device dma_slave;
  242. struct dma_device dma_memcpy;
  243. struct d40_chan *phy_chans;
  244. struct d40_chan *log_chans;
  245. struct d40_chan **lookup_log_chans;
  246. struct d40_chan **lookup_phy_chans;
  247. struct stedma40_platform_data *plat_data;
  248. /* Physical half channels */
  249. struct d40_phy_res *phy_res;
  250. struct d40_lcla_pool lcla_pool;
  251. void *lcpa_base;
  252. dma_addr_t phy_lcpa;
  253. resource_size_t lcpa_size;
  254. struct kmem_cache *desc_slab;
  255. };
  256. /**
  257. * struct d40_interrupt_lookup - lookup table for interrupt handler
  258. *
  259. * @src: Interrupt mask register.
  260. * @clr: Interrupt clear register.
  261. * @is_error: true if this is an error interrupt.
  262. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  263. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  264. */
  265. struct d40_interrupt_lookup {
  266. u32 src;
  267. u32 clr;
  268. bool is_error;
  269. int offset;
  270. };
  271. /**
  272. * struct d40_reg_val - simple lookup struct
  273. *
  274. * @reg: The register.
  275. * @val: The value that belongs to the register in reg.
  276. */
  277. struct d40_reg_val {
  278. unsigned int reg;
  279. unsigned int val;
  280. };
  281. static struct device *chan2dev(struct d40_chan *d40c)
  282. {
  283. return &d40c->chan.dev->device;
  284. }
  285. static bool chan_is_physical(struct d40_chan *chan)
  286. {
  287. return chan->log_num == D40_PHY_CHAN;
  288. }
  289. static bool chan_is_logical(struct d40_chan *chan)
  290. {
  291. return !chan_is_physical(chan);
  292. }
  293. static void __iomem *chan_base(struct d40_chan *chan)
  294. {
  295. return chan->base->virtbase + D40_DREG_PCBASE +
  296. chan->phy_chan->num * D40_DREG_PCDELTA;
  297. }
  298. #define d40_err(dev, format, arg...) \
  299. dev_err(dev, "[%s] " format, __func__, ## arg)
  300. #define chan_err(d40c, format, arg...) \
  301. d40_err(chan2dev(d40c), format, ## arg)
  302. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  303. int lli_len, bool is_log)
  304. {
  305. u32 align;
  306. void *base;
  307. if (is_log)
  308. align = sizeof(struct d40_log_lli);
  309. else
  310. align = sizeof(struct d40_phy_lli);
  311. if (lli_len == 1) {
  312. base = d40d->lli_pool.pre_alloc_lli;
  313. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  314. d40d->lli_pool.base = NULL;
  315. } else {
  316. d40d->lli_pool.size = lli_len * 2 * align;
  317. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  318. d40d->lli_pool.base = base;
  319. if (d40d->lli_pool.base == NULL)
  320. return -ENOMEM;
  321. }
  322. if (is_log) {
  323. d40d->lli_log.src = PTR_ALIGN(base, align);
  324. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  325. d40d->lli_pool.dma_addr = 0;
  326. } else {
  327. d40d->lli_phy.src = PTR_ALIGN(base, align);
  328. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  329. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  330. d40d->lli_phy.src,
  331. d40d->lli_pool.size,
  332. DMA_TO_DEVICE);
  333. if (dma_mapping_error(d40c->base->dev,
  334. d40d->lli_pool.dma_addr)) {
  335. kfree(d40d->lli_pool.base);
  336. d40d->lli_pool.base = NULL;
  337. d40d->lli_pool.dma_addr = 0;
  338. return -ENOMEM;
  339. }
  340. }
  341. return 0;
  342. }
  343. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  344. {
  345. if (d40d->lli_pool.dma_addr)
  346. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  347. d40d->lli_pool.size, DMA_TO_DEVICE);
  348. kfree(d40d->lli_pool.base);
  349. d40d->lli_pool.base = NULL;
  350. d40d->lli_pool.size = 0;
  351. d40d->lli_log.src = NULL;
  352. d40d->lli_log.dst = NULL;
  353. d40d->lli_phy.src = NULL;
  354. d40d->lli_phy.dst = NULL;
  355. }
  356. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  357. struct d40_desc *d40d)
  358. {
  359. unsigned long flags;
  360. int i;
  361. int ret = -EINVAL;
  362. int p;
  363. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  364. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  365. /*
  366. * Allocate both src and dst at the same time, therefore the half
  367. * start on 1 since 0 can't be used since zero is used as end marker.
  368. */
  369. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  370. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  371. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  372. d40d->lcla_alloc++;
  373. ret = i;
  374. break;
  375. }
  376. }
  377. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  378. return ret;
  379. }
  380. static int d40_lcla_free_all(struct d40_chan *d40c,
  381. struct d40_desc *d40d)
  382. {
  383. unsigned long flags;
  384. int i;
  385. int ret = -EINVAL;
  386. if (chan_is_physical(d40c))
  387. return 0;
  388. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  389. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  390. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  391. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  392. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  393. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  394. d40d->lcla_alloc--;
  395. if (d40d->lcla_alloc == 0) {
  396. ret = 0;
  397. break;
  398. }
  399. }
  400. }
  401. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  402. return ret;
  403. }
  404. static void d40_desc_remove(struct d40_desc *d40d)
  405. {
  406. list_del(&d40d->node);
  407. }
  408. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  409. {
  410. struct d40_desc *desc = NULL;
  411. if (!list_empty(&d40c->client)) {
  412. struct d40_desc *d;
  413. struct d40_desc *_d;
  414. list_for_each_entry_safe(d, _d, &d40c->client, node)
  415. if (async_tx_test_ack(&d->txd)) {
  416. d40_pool_lli_free(d40c, d);
  417. d40_desc_remove(d);
  418. desc = d;
  419. memset(desc, 0, sizeof(*desc));
  420. break;
  421. }
  422. }
  423. if (!desc)
  424. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  425. if (desc)
  426. INIT_LIST_HEAD(&desc->node);
  427. return desc;
  428. }
  429. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  430. {
  431. d40_pool_lli_free(d40c, d40d);
  432. d40_lcla_free_all(d40c, d40d);
  433. kmem_cache_free(d40c->base->desc_slab, d40d);
  434. }
  435. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  436. {
  437. list_add_tail(&desc->node, &d40c->active);
  438. }
  439. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  440. {
  441. int curr_lcla = -EINVAL, next_lcla;
  442. if (chan_is_physical(d40c)) {
  443. d40_phy_lli_write(d40c->base->virtbase,
  444. d40c->phy_chan->num,
  445. d40d->lli_phy.dst,
  446. d40d->lli_phy.src);
  447. d40d->lli_current = d40d->lli_len;
  448. } else {
  449. if ((d40d->lli_len - d40d->lli_current) > 1)
  450. curr_lcla = d40_lcla_alloc_one(d40c, d40d);
  451. d40_log_lli_lcpa_write(d40c->lcpa,
  452. &d40d->lli_log.dst[d40d->lli_current],
  453. &d40d->lli_log.src[d40d->lli_current],
  454. curr_lcla);
  455. d40d->lli_current++;
  456. for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
  457. unsigned int lcla_offset = d40c->phy_chan->num * 1024 +
  458. 8 * curr_lcla * 2;
  459. struct d40_lcla_pool *pool = &d40c->base->lcla_pool;
  460. struct d40_log_lli *lcla = pool->base + lcla_offset;
  461. if (d40d->lli_current + 1 < d40d->lli_len)
  462. next_lcla = d40_lcla_alloc_one(d40c, d40d);
  463. else
  464. next_lcla = -EINVAL;
  465. d40_log_lli_lcla_write(lcla,
  466. &d40d->lli_log.dst[d40d->lli_current],
  467. &d40d->lli_log.src[d40d->lli_current],
  468. next_lcla);
  469. dma_sync_single_range_for_device(d40c->base->dev,
  470. pool->dma_addr, lcla_offset,
  471. 2 * sizeof(struct d40_log_lli),
  472. DMA_TO_DEVICE);
  473. curr_lcla = next_lcla;
  474. if (curr_lcla == -EINVAL) {
  475. d40d->lli_current++;
  476. break;
  477. }
  478. }
  479. }
  480. }
  481. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  482. {
  483. struct d40_desc *d;
  484. if (list_empty(&d40c->active))
  485. return NULL;
  486. d = list_first_entry(&d40c->active,
  487. struct d40_desc,
  488. node);
  489. return d;
  490. }
  491. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  492. {
  493. list_add_tail(&desc->node, &d40c->queue);
  494. }
  495. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  496. {
  497. struct d40_desc *d;
  498. if (list_empty(&d40c->queue))
  499. return NULL;
  500. d = list_first_entry(&d40c->queue,
  501. struct d40_desc,
  502. node);
  503. return d;
  504. }
  505. static int d40_psize_2_burst_size(bool is_log, int psize)
  506. {
  507. if (is_log) {
  508. if (psize == STEDMA40_PSIZE_LOG_1)
  509. return 1;
  510. } else {
  511. if (psize == STEDMA40_PSIZE_PHY_1)
  512. return 1;
  513. }
  514. return 2 << psize;
  515. }
  516. /*
  517. * The dma only supports transmitting packages up to
  518. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  519. * dma elements required to send the entire sg list
  520. */
  521. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  522. {
  523. int dmalen;
  524. u32 max_w = max(data_width1, data_width2);
  525. u32 min_w = min(data_width1, data_width2);
  526. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  527. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  528. seg_max -= (1 << max_w);
  529. if (!IS_ALIGNED(size, 1 << max_w))
  530. return -EINVAL;
  531. if (size <= seg_max)
  532. dmalen = 1;
  533. else {
  534. dmalen = size / seg_max;
  535. if (dmalen * seg_max < size)
  536. dmalen++;
  537. }
  538. return dmalen;
  539. }
  540. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  541. u32 data_width1, u32 data_width2)
  542. {
  543. struct scatterlist *sg;
  544. int i;
  545. int len = 0;
  546. int ret;
  547. for_each_sg(sgl, sg, sg_len, i) {
  548. ret = d40_size_2_dmalen(sg_dma_len(sg),
  549. data_width1, data_width2);
  550. if (ret < 0)
  551. return ret;
  552. len += ret;
  553. }
  554. return len;
  555. }
  556. /* Support functions for logical channels */
  557. static int d40_channel_execute_command(struct d40_chan *d40c,
  558. enum d40_command command)
  559. {
  560. u32 status;
  561. int i;
  562. void __iomem *active_reg;
  563. int ret = 0;
  564. unsigned long flags;
  565. u32 wmask;
  566. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  567. if (d40c->phy_chan->num % 2 == 0)
  568. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  569. else
  570. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  571. if (command == D40_DMA_SUSPEND_REQ) {
  572. status = (readl(active_reg) &
  573. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  574. D40_CHAN_POS(d40c->phy_chan->num);
  575. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  576. goto done;
  577. }
  578. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  579. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  580. active_reg);
  581. if (command == D40_DMA_SUSPEND_REQ) {
  582. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  583. status = (readl(active_reg) &
  584. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  585. D40_CHAN_POS(d40c->phy_chan->num);
  586. cpu_relax();
  587. /*
  588. * Reduce the number of bus accesses while
  589. * waiting for the DMA to suspend.
  590. */
  591. udelay(3);
  592. if (status == D40_DMA_STOP ||
  593. status == D40_DMA_SUSPENDED)
  594. break;
  595. }
  596. if (i == D40_SUSPEND_MAX_IT) {
  597. chan_err(d40c,
  598. "unable to suspend the chl %d (log: %d) status %x\n",
  599. d40c->phy_chan->num, d40c->log_num,
  600. status);
  601. dump_stack();
  602. ret = -EBUSY;
  603. }
  604. }
  605. done:
  606. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  607. return ret;
  608. }
  609. static void d40_term_all(struct d40_chan *d40c)
  610. {
  611. struct d40_desc *d40d;
  612. /* Release active descriptors */
  613. while ((d40d = d40_first_active_get(d40c))) {
  614. d40_desc_remove(d40d);
  615. d40_desc_free(d40c, d40d);
  616. }
  617. /* Release queued descriptors waiting for transfer */
  618. while ((d40d = d40_first_queued(d40c))) {
  619. d40_desc_remove(d40d);
  620. d40_desc_free(d40c, d40d);
  621. }
  622. d40c->pending_tx = 0;
  623. d40c->busy = false;
  624. }
  625. static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
  626. u32 event, int reg)
  627. {
  628. void __iomem *addr = chan_base(d40c) + reg;
  629. int tries;
  630. if (!enable) {
  631. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  632. | ~D40_EVENTLINE_MASK(event), addr);
  633. return;
  634. }
  635. /*
  636. * The hardware sometimes doesn't register the enable when src and dst
  637. * event lines are active on the same logical channel. Retry to ensure
  638. * it does. Usually only one retry is sufficient.
  639. */
  640. tries = 100;
  641. while (--tries) {
  642. writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  643. | ~D40_EVENTLINE_MASK(event), addr);
  644. if (readl(addr) & D40_EVENTLINE_MASK(event))
  645. break;
  646. }
  647. if (tries != 99)
  648. dev_dbg(chan2dev(d40c),
  649. "[%s] workaround enable S%cLNK (%d tries)\n",
  650. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  651. 100 - tries);
  652. WARN_ON(!tries);
  653. }
  654. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  655. {
  656. unsigned long flags;
  657. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  658. /* Enable event line connected to device (or memcpy) */
  659. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  660. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  661. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  662. __d40_config_set_event(d40c, do_enable, event,
  663. D40_CHAN_REG_SSLNK);
  664. }
  665. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  666. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  667. __d40_config_set_event(d40c, do_enable, event,
  668. D40_CHAN_REG_SDLNK);
  669. }
  670. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  671. }
  672. static u32 d40_chan_has_events(struct d40_chan *d40c)
  673. {
  674. void __iomem *chanbase = chan_base(d40c);
  675. u32 val;
  676. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  677. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  678. return val;
  679. }
  680. static u32 d40_get_prmo(struct d40_chan *d40c)
  681. {
  682. static const unsigned int phy_map[] = {
  683. [STEDMA40_PCHAN_BASIC_MODE]
  684. = D40_DREG_PRMO_PCHAN_BASIC,
  685. [STEDMA40_PCHAN_MODULO_MODE]
  686. = D40_DREG_PRMO_PCHAN_MODULO,
  687. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  688. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  689. };
  690. static const unsigned int log_map[] = {
  691. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  692. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  693. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  694. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  695. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  696. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  697. };
  698. if (chan_is_physical(d40c))
  699. return phy_map[d40c->dma_cfg.mode_opt];
  700. else
  701. return log_map[d40c->dma_cfg.mode_opt];
  702. }
  703. static void d40_config_write(struct d40_chan *d40c)
  704. {
  705. u32 addr_base;
  706. u32 var;
  707. /* Odd addresses are even addresses + 4 */
  708. addr_base = (d40c->phy_chan->num % 2) * 4;
  709. /* Setup channel mode to logical or physical */
  710. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  711. D40_CHAN_POS(d40c->phy_chan->num);
  712. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  713. /* Setup operational mode option register */
  714. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  715. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  716. if (chan_is_logical(d40c)) {
  717. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  718. & D40_SREG_ELEM_LOG_LIDX_MASK;
  719. void __iomem *chanbase = chan_base(d40c);
  720. /* Set default config for CFG reg */
  721. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  722. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  723. /* Set LIDX for lcla */
  724. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  725. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  726. }
  727. }
  728. static u32 d40_residue(struct d40_chan *d40c)
  729. {
  730. u32 num_elt;
  731. if (chan_is_logical(d40c))
  732. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  733. >> D40_MEM_LCSP2_ECNT_POS;
  734. else {
  735. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  736. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  737. >> D40_SREG_ELEM_PHY_ECNT_POS;
  738. }
  739. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  740. }
  741. static bool d40_tx_is_linked(struct d40_chan *d40c)
  742. {
  743. bool is_link;
  744. if (chan_is_logical(d40c))
  745. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  746. else
  747. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  748. & D40_SREG_LNK_PHYS_LNK_MASK;
  749. return is_link;
  750. }
  751. static int d40_pause(struct dma_chan *chan)
  752. {
  753. struct d40_chan *d40c =
  754. container_of(chan, struct d40_chan, chan);
  755. int res = 0;
  756. unsigned long flags;
  757. if (!d40c->busy)
  758. return 0;
  759. spin_lock_irqsave(&d40c->lock, flags);
  760. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  761. if (res == 0) {
  762. if (chan_is_logical(d40c)) {
  763. d40_config_set_event(d40c, false);
  764. /* Resume the other logical channels if any */
  765. if (d40_chan_has_events(d40c))
  766. res = d40_channel_execute_command(d40c,
  767. D40_DMA_RUN);
  768. }
  769. }
  770. spin_unlock_irqrestore(&d40c->lock, flags);
  771. return res;
  772. }
  773. static int d40_resume(struct dma_chan *chan)
  774. {
  775. struct d40_chan *d40c =
  776. container_of(chan, struct d40_chan, chan);
  777. int res = 0;
  778. unsigned long flags;
  779. if (!d40c->busy)
  780. return 0;
  781. spin_lock_irqsave(&d40c->lock, flags);
  782. if (d40c->base->rev == 0)
  783. if (chan_is_logical(d40c)) {
  784. res = d40_channel_execute_command(d40c,
  785. D40_DMA_SUSPEND_REQ);
  786. goto no_suspend;
  787. }
  788. /* If bytes left to transfer or linked tx resume job */
  789. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  790. if (chan_is_logical(d40c))
  791. d40_config_set_event(d40c, true);
  792. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  793. }
  794. no_suspend:
  795. spin_unlock_irqrestore(&d40c->lock, flags);
  796. return res;
  797. }
  798. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  799. {
  800. struct d40_chan *d40c = container_of(tx->chan,
  801. struct d40_chan,
  802. chan);
  803. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  804. unsigned long flags;
  805. spin_lock_irqsave(&d40c->lock, flags);
  806. d40c->chan.cookie++;
  807. if (d40c->chan.cookie < 0)
  808. d40c->chan.cookie = 1;
  809. d40d->txd.cookie = d40c->chan.cookie;
  810. d40_desc_queue(d40c, d40d);
  811. spin_unlock_irqrestore(&d40c->lock, flags);
  812. return tx->cookie;
  813. }
  814. static int d40_start(struct d40_chan *d40c)
  815. {
  816. if (d40c->base->rev == 0) {
  817. int err;
  818. if (chan_is_logical(d40c)) {
  819. err = d40_channel_execute_command(d40c,
  820. D40_DMA_SUSPEND_REQ);
  821. if (err)
  822. return err;
  823. }
  824. }
  825. if (chan_is_logical(d40c))
  826. d40_config_set_event(d40c, true);
  827. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  828. }
  829. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  830. {
  831. struct d40_desc *d40d;
  832. int err;
  833. /* Start queued jobs, if any */
  834. d40d = d40_first_queued(d40c);
  835. if (d40d != NULL) {
  836. d40c->busy = true;
  837. /* Remove from queue */
  838. d40_desc_remove(d40d);
  839. /* Add to active queue */
  840. d40_desc_submit(d40c, d40d);
  841. /* Initiate DMA job */
  842. d40_desc_load(d40c, d40d);
  843. /* Start dma job */
  844. err = d40_start(d40c);
  845. if (err)
  846. return NULL;
  847. }
  848. return d40d;
  849. }
  850. /* called from interrupt context */
  851. static void dma_tc_handle(struct d40_chan *d40c)
  852. {
  853. struct d40_desc *d40d;
  854. /* Get first active entry from list */
  855. d40d = d40_first_active_get(d40c);
  856. if (d40d == NULL)
  857. return;
  858. d40_lcla_free_all(d40c, d40d);
  859. if (d40d->lli_current < d40d->lli_len) {
  860. d40_desc_load(d40c, d40d);
  861. /* Start dma job */
  862. (void) d40_start(d40c);
  863. return;
  864. }
  865. if (d40_queue_start(d40c) == NULL)
  866. d40c->busy = false;
  867. d40c->pending_tx++;
  868. tasklet_schedule(&d40c->tasklet);
  869. }
  870. static void dma_tasklet(unsigned long data)
  871. {
  872. struct d40_chan *d40c = (struct d40_chan *) data;
  873. struct d40_desc *d40d;
  874. unsigned long flags;
  875. dma_async_tx_callback callback;
  876. void *callback_param;
  877. spin_lock_irqsave(&d40c->lock, flags);
  878. /* Get first active entry from list */
  879. d40d = d40_first_active_get(d40c);
  880. if (d40d == NULL)
  881. goto err;
  882. d40c->completed = d40d->txd.cookie;
  883. /*
  884. * If terminating a channel pending_tx is set to zero.
  885. * This prevents any finished active jobs to return to the client.
  886. */
  887. if (d40c->pending_tx == 0) {
  888. spin_unlock_irqrestore(&d40c->lock, flags);
  889. return;
  890. }
  891. /* Callback to client */
  892. callback = d40d->txd.callback;
  893. callback_param = d40d->txd.callback_param;
  894. if (async_tx_test_ack(&d40d->txd)) {
  895. d40_pool_lli_free(d40c, d40d);
  896. d40_desc_remove(d40d);
  897. d40_desc_free(d40c, d40d);
  898. } else {
  899. if (!d40d->is_in_client_list) {
  900. d40_desc_remove(d40d);
  901. d40_lcla_free_all(d40c, d40d);
  902. list_add_tail(&d40d->node, &d40c->client);
  903. d40d->is_in_client_list = true;
  904. }
  905. }
  906. d40c->pending_tx--;
  907. if (d40c->pending_tx)
  908. tasklet_schedule(&d40c->tasklet);
  909. spin_unlock_irqrestore(&d40c->lock, flags);
  910. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  911. callback(callback_param);
  912. return;
  913. err:
  914. /* Rescue manouver if receiving double interrupts */
  915. if (d40c->pending_tx > 0)
  916. d40c->pending_tx--;
  917. spin_unlock_irqrestore(&d40c->lock, flags);
  918. }
  919. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  920. {
  921. static const struct d40_interrupt_lookup il[] = {
  922. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  923. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  924. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  925. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  926. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  927. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  928. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  929. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  930. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  931. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  932. };
  933. int i;
  934. u32 regs[ARRAY_SIZE(il)];
  935. u32 idx;
  936. u32 row;
  937. long chan = -1;
  938. struct d40_chan *d40c;
  939. unsigned long flags;
  940. struct d40_base *base = data;
  941. spin_lock_irqsave(&base->interrupt_lock, flags);
  942. /* Read interrupt status of both logical and physical channels */
  943. for (i = 0; i < ARRAY_SIZE(il); i++)
  944. regs[i] = readl(base->virtbase + il[i].src);
  945. for (;;) {
  946. chan = find_next_bit((unsigned long *)regs,
  947. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  948. /* No more set bits found? */
  949. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  950. break;
  951. row = chan / BITS_PER_LONG;
  952. idx = chan & (BITS_PER_LONG - 1);
  953. /* ACK interrupt */
  954. writel(1 << idx, base->virtbase + il[row].clr);
  955. if (il[row].offset == D40_PHY_CHAN)
  956. d40c = base->lookup_phy_chans[idx];
  957. else
  958. d40c = base->lookup_log_chans[il[row].offset + idx];
  959. spin_lock(&d40c->lock);
  960. if (!il[row].is_error)
  961. dma_tc_handle(d40c);
  962. else
  963. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  964. chan, il[row].offset, idx);
  965. spin_unlock(&d40c->lock);
  966. }
  967. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  968. return IRQ_HANDLED;
  969. }
  970. static int d40_validate_conf(struct d40_chan *d40c,
  971. struct stedma40_chan_cfg *conf)
  972. {
  973. int res = 0;
  974. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  975. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  976. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  977. if (!conf->dir) {
  978. chan_err(d40c, "Invalid direction.\n");
  979. res = -EINVAL;
  980. }
  981. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  982. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  983. d40c->runtime_addr == 0) {
  984. chan_err(d40c, "Invalid TX channel address (%d)\n",
  985. conf->dst_dev_type);
  986. res = -EINVAL;
  987. }
  988. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  989. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  990. d40c->runtime_addr == 0) {
  991. chan_err(d40c, "Invalid RX channel address (%d)\n",
  992. conf->src_dev_type);
  993. res = -EINVAL;
  994. }
  995. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  996. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  997. chan_err(d40c, "Invalid dst\n");
  998. res = -EINVAL;
  999. }
  1000. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1001. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1002. chan_err(d40c, "Invalid src\n");
  1003. res = -EINVAL;
  1004. }
  1005. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1006. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1007. chan_err(d40c, "No event line\n");
  1008. res = -EINVAL;
  1009. }
  1010. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1011. (src_event_group != dst_event_group)) {
  1012. chan_err(d40c, "Invalid event group\n");
  1013. res = -EINVAL;
  1014. }
  1015. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1016. /*
  1017. * DMAC HW supports it. Will be added to this driver,
  1018. * in case any dma client requires it.
  1019. */
  1020. chan_err(d40c, "periph to periph not supported\n");
  1021. res = -EINVAL;
  1022. }
  1023. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1024. (1 << conf->src_info.data_width) !=
  1025. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1026. (1 << conf->dst_info.data_width)) {
  1027. /*
  1028. * The DMAC hardware only supports
  1029. * src (burst x width) == dst (burst x width)
  1030. */
  1031. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1032. res = -EINVAL;
  1033. }
  1034. return res;
  1035. }
  1036. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1037. int log_event_line, bool is_log)
  1038. {
  1039. unsigned long flags;
  1040. spin_lock_irqsave(&phy->lock, flags);
  1041. if (!is_log) {
  1042. /* Physical interrupts are masked per physical full channel */
  1043. if (phy->allocated_src == D40_ALLOC_FREE &&
  1044. phy->allocated_dst == D40_ALLOC_FREE) {
  1045. phy->allocated_dst = D40_ALLOC_PHY;
  1046. phy->allocated_src = D40_ALLOC_PHY;
  1047. goto found;
  1048. } else
  1049. goto not_found;
  1050. }
  1051. /* Logical channel */
  1052. if (is_src) {
  1053. if (phy->allocated_src == D40_ALLOC_PHY)
  1054. goto not_found;
  1055. if (phy->allocated_src == D40_ALLOC_FREE)
  1056. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1057. if (!(phy->allocated_src & (1 << log_event_line))) {
  1058. phy->allocated_src |= 1 << log_event_line;
  1059. goto found;
  1060. } else
  1061. goto not_found;
  1062. } else {
  1063. if (phy->allocated_dst == D40_ALLOC_PHY)
  1064. goto not_found;
  1065. if (phy->allocated_dst == D40_ALLOC_FREE)
  1066. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1067. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1068. phy->allocated_dst |= 1 << log_event_line;
  1069. goto found;
  1070. } else
  1071. goto not_found;
  1072. }
  1073. not_found:
  1074. spin_unlock_irqrestore(&phy->lock, flags);
  1075. return false;
  1076. found:
  1077. spin_unlock_irqrestore(&phy->lock, flags);
  1078. return true;
  1079. }
  1080. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1081. int log_event_line)
  1082. {
  1083. unsigned long flags;
  1084. bool is_free = false;
  1085. spin_lock_irqsave(&phy->lock, flags);
  1086. if (!log_event_line) {
  1087. phy->allocated_dst = D40_ALLOC_FREE;
  1088. phy->allocated_src = D40_ALLOC_FREE;
  1089. is_free = true;
  1090. goto out;
  1091. }
  1092. /* Logical channel */
  1093. if (is_src) {
  1094. phy->allocated_src &= ~(1 << log_event_line);
  1095. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1096. phy->allocated_src = D40_ALLOC_FREE;
  1097. } else {
  1098. phy->allocated_dst &= ~(1 << log_event_line);
  1099. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1100. phy->allocated_dst = D40_ALLOC_FREE;
  1101. }
  1102. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1103. D40_ALLOC_FREE);
  1104. out:
  1105. spin_unlock_irqrestore(&phy->lock, flags);
  1106. return is_free;
  1107. }
  1108. static int d40_allocate_channel(struct d40_chan *d40c)
  1109. {
  1110. int dev_type;
  1111. int event_group;
  1112. int event_line;
  1113. struct d40_phy_res *phys;
  1114. int i;
  1115. int j;
  1116. int log_num;
  1117. bool is_src;
  1118. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1119. phys = d40c->base->phy_res;
  1120. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1121. dev_type = d40c->dma_cfg.src_dev_type;
  1122. log_num = 2 * dev_type;
  1123. is_src = true;
  1124. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1125. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1126. /* dst event lines are used for logical memcpy */
  1127. dev_type = d40c->dma_cfg.dst_dev_type;
  1128. log_num = 2 * dev_type + 1;
  1129. is_src = false;
  1130. } else
  1131. return -EINVAL;
  1132. event_group = D40_TYPE_TO_GROUP(dev_type);
  1133. event_line = D40_TYPE_TO_EVENT(dev_type);
  1134. if (!is_log) {
  1135. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1136. /* Find physical half channel */
  1137. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1138. if (d40_alloc_mask_set(&phys[i], is_src,
  1139. 0, is_log))
  1140. goto found_phy;
  1141. }
  1142. } else
  1143. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1144. int phy_num = j + event_group * 2;
  1145. for (i = phy_num; i < phy_num + 2; i++) {
  1146. if (d40_alloc_mask_set(&phys[i],
  1147. is_src,
  1148. 0,
  1149. is_log))
  1150. goto found_phy;
  1151. }
  1152. }
  1153. return -EINVAL;
  1154. found_phy:
  1155. d40c->phy_chan = &phys[i];
  1156. d40c->log_num = D40_PHY_CHAN;
  1157. goto out;
  1158. }
  1159. if (dev_type == -1)
  1160. return -EINVAL;
  1161. /* Find logical channel */
  1162. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1163. int phy_num = j + event_group * 2;
  1164. /*
  1165. * Spread logical channels across all available physical rather
  1166. * than pack every logical channel at the first available phy
  1167. * channels.
  1168. */
  1169. if (is_src) {
  1170. for (i = phy_num; i < phy_num + 2; i++) {
  1171. if (d40_alloc_mask_set(&phys[i], is_src,
  1172. event_line, is_log))
  1173. goto found_log;
  1174. }
  1175. } else {
  1176. for (i = phy_num + 1; i >= phy_num; i--) {
  1177. if (d40_alloc_mask_set(&phys[i], is_src,
  1178. event_line, is_log))
  1179. goto found_log;
  1180. }
  1181. }
  1182. }
  1183. return -EINVAL;
  1184. found_log:
  1185. d40c->phy_chan = &phys[i];
  1186. d40c->log_num = log_num;
  1187. out:
  1188. if (is_log)
  1189. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1190. else
  1191. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1192. return 0;
  1193. }
  1194. static int d40_config_memcpy(struct d40_chan *d40c)
  1195. {
  1196. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1197. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1198. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1199. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1200. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1201. memcpy[d40c->chan.chan_id];
  1202. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1203. dma_has_cap(DMA_SLAVE, cap)) {
  1204. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1205. } else {
  1206. chan_err(d40c, "No memcpy\n");
  1207. return -EINVAL;
  1208. }
  1209. return 0;
  1210. }
  1211. static int d40_free_dma(struct d40_chan *d40c)
  1212. {
  1213. int res = 0;
  1214. u32 event;
  1215. struct d40_phy_res *phy = d40c->phy_chan;
  1216. bool is_src;
  1217. struct d40_desc *d;
  1218. struct d40_desc *_d;
  1219. /* Terminate all queued and active transfers */
  1220. d40_term_all(d40c);
  1221. /* Release client owned descriptors */
  1222. if (!list_empty(&d40c->client))
  1223. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1224. d40_pool_lli_free(d40c, d);
  1225. d40_desc_remove(d);
  1226. d40_desc_free(d40c, d);
  1227. }
  1228. if (phy == NULL) {
  1229. chan_err(d40c, "phy == null\n");
  1230. return -EINVAL;
  1231. }
  1232. if (phy->allocated_src == D40_ALLOC_FREE &&
  1233. phy->allocated_dst == D40_ALLOC_FREE) {
  1234. chan_err(d40c, "channel already free\n");
  1235. return -EINVAL;
  1236. }
  1237. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1238. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1239. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1240. is_src = false;
  1241. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1242. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1243. is_src = true;
  1244. } else {
  1245. chan_err(d40c, "Unknown direction\n");
  1246. return -EINVAL;
  1247. }
  1248. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1249. if (res) {
  1250. chan_err(d40c, "suspend failed\n");
  1251. return res;
  1252. }
  1253. if (chan_is_logical(d40c)) {
  1254. /* Release logical channel, deactivate the event line */
  1255. d40_config_set_event(d40c, false);
  1256. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1257. /*
  1258. * Check if there are more logical allocation
  1259. * on this phy channel.
  1260. */
  1261. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1262. /* Resume the other logical channels if any */
  1263. if (d40_chan_has_events(d40c)) {
  1264. res = d40_channel_execute_command(d40c,
  1265. D40_DMA_RUN);
  1266. if (res) {
  1267. chan_err(d40c,
  1268. "Executing RUN command\n");
  1269. return res;
  1270. }
  1271. }
  1272. return 0;
  1273. }
  1274. } else {
  1275. (void) d40_alloc_mask_free(phy, is_src, 0);
  1276. }
  1277. /* Release physical channel */
  1278. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1279. if (res) {
  1280. chan_err(d40c, "Failed to stop channel\n");
  1281. return res;
  1282. }
  1283. d40c->phy_chan = NULL;
  1284. d40c->configured = false;
  1285. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1286. return 0;
  1287. }
  1288. static bool d40_is_paused(struct d40_chan *d40c)
  1289. {
  1290. void __iomem *chanbase = chan_base(d40c);
  1291. bool is_paused = false;
  1292. unsigned long flags;
  1293. void __iomem *active_reg;
  1294. u32 status;
  1295. u32 event;
  1296. spin_lock_irqsave(&d40c->lock, flags);
  1297. if (chan_is_physical(d40c)) {
  1298. if (d40c->phy_chan->num % 2 == 0)
  1299. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1300. else
  1301. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1302. status = (readl(active_reg) &
  1303. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1304. D40_CHAN_POS(d40c->phy_chan->num);
  1305. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1306. is_paused = true;
  1307. goto _exit;
  1308. }
  1309. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1310. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1311. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1312. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1313. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1314. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1315. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1316. } else {
  1317. chan_err(d40c, "Unknown direction\n");
  1318. goto _exit;
  1319. }
  1320. status = (status & D40_EVENTLINE_MASK(event)) >>
  1321. D40_EVENTLINE_POS(event);
  1322. if (status != D40_DMA_RUN)
  1323. is_paused = true;
  1324. _exit:
  1325. spin_unlock_irqrestore(&d40c->lock, flags);
  1326. return is_paused;
  1327. }
  1328. static u32 stedma40_residue(struct dma_chan *chan)
  1329. {
  1330. struct d40_chan *d40c =
  1331. container_of(chan, struct d40_chan, chan);
  1332. u32 bytes_left;
  1333. unsigned long flags;
  1334. spin_lock_irqsave(&d40c->lock, flags);
  1335. bytes_left = d40_residue(d40c);
  1336. spin_unlock_irqrestore(&d40c->lock, flags);
  1337. return bytes_left;
  1338. }
  1339. struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
  1340. struct scatterlist *sgl_dst,
  1341. struct scatterlist *sgl_src,
  1342. unsigned int sgl_len,
  1343. unsigned long dma_flags)
  1344. {
  1345. int res;
  1346. struct d40_desc *d40d;
  1347. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1348. chan);
  1349. unsigned long flags;
  1350. if (d40c->phy_chan == NULL) {
  1351. chan_err(d40c, "Unallocated channel.\n");
  1352. return ERR_PTR(-EINVAL);
  1353. }
  1354. spin_lock_irqsave(&d40c->lock, flags);
  1355. d40d = d40_desc_get(d40c);
  1356. if (d40d == NULL)
  1357. goto err;
  1358. d40d->lli_len = d40_sg_2_dmalen(sgl_dst, sgl_len,
  1359. d40c->dma_cfg.src_info.data_width,
  1360. d40c->dma_cfg.dst_info.data_width);
  1361. if (d40d->lli_len < 0) {
  1362. chan_err(d40c, "Unaligned size\n");
  1363. goto err;
  1364. }
  1365. d40d->lli_current = 0;
  1366. d40d->txd.flags = dma_flags;
  1367. if (chan_is_logical(d40c)) {
  1368. if (d40_pool_lli_alloc(d40c, d40d, d40d->lli_len, true) < 0) {
  1369. chan_err(d40c, "Out of memory\n");
  1370. goto err;
  1371. }
  1372. (void) d40_log_sg_to_lli(sgl_src,
  1373. sgl_len,
  1374. d40d->lli_log.src,
  1375. d40c->log_def.lcsp1,
  1376. d40c->dma_cfg.src_info.data_width,
  1377. d40c->dma_cfg.dst_info.data_width);
  1378. (void) d40_log_sg_to_lli(sgl_dst,
  1379. sgl_len,
  1380. d40d->lli_log.dst,
  1381. d40c->log_def.lcsp3,
  1382. d40c->dma_cfg.dst_info.data_width,
  1383. d40c->dma_cfg.src_info.data_width);
  1384. } else {
  1385. if (d40_pool_lli_alloc(d40c, d40d, d40d->lli_len, false) < 0) {
  1386. chan_err(d40c, "Out of memory\n");
  1387. goto err;
  1388. }
  1389. res = d40_phy_sg_to_lli(sgl_src,
  1390. sgl_len,
  1391. 0,
  1392. d40d->lli_phy.src,
  1393. virt_to_phys(d40d->lli_phy.src),
  1394. d40c->src_def_cfg,
  1395. d40c->dma_cfg.src_info.data_width,
  1396. d40c->dma_cfg.dst_info.data_width,
  1397. d40c->dma_cfg.src_info.psize);
  1398. if (res < 0)
  1399. goto err;
  1400. res = d40_phy_sg_to_lli(sgl_dst,
  1401. sgl_len,
  1402. 0,
  1403. d40d->lli_phy.dst,
  1404. virt_to_phys(d40d->lli_phy.dst),
  1405. d40c->dst_def_cfg,
  1406. d40c->dma_cfg.dst_info.data_width,
  1407. d40c->dma_cfg.src_info.data_width,
  1408. d40c->dma_cfg.dst_info.psize);
  1409. if (res < 0)
  1410. goto err;
  1411. dma_sync_single_for_device(d40c->base->dev,
  1412. d40d->lli_pool.dma_addr,
  1413. d40d->lli_pool.size, DMA_TO_DEVICE);
  1414. }
  1415. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1416. d40d->txd.tx_submit = d40_tx_submit;
  1417. spin_unlock_irqrestore(&d40c->lock, flags);
  1418. return &d40d->txd;
  1419. err:
  1420. if (d40d)
  1421. d40_desc_free(d40c, d40d);
  1422. spin_unlock_irqrestore(&d40c->lock, flags);
  1423. return NULL;
  1424. }
  1425. EXPORT_SYMBOL(stedma40_memcpy_sg);
  1426. bool stedma40_filter(struct dma_chan *chan, void *data)
  1427. {
  1428. struct stedma40_chan_cfg *info = data;
  1429. struct d40_chan *d40c =
  1430. container_of(chan, struct d40_chan, chan);
  1431. int err;
  1432. if (data) {
  1433. err = d40_validate_conf(d40c, info);
  1434. if (!err)
  1435. d40c->dma_cfg = *info;
  1436. } else
  1437. err = d40_config_memcpy(d40c);
  1438. if (!err)
  1439. d40c->configured = true;
  1440. return err == 0;
  1441. }
  1442. EXPORT_SYMBOL(stedma40_filter);
  1443. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1444. {
  1445. bool realtime = d40c->dma_cfg.realtime;
  1446. bool highprio = d40c->dma_cfg.high_priority;
  1447. u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
  1448. u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
  1449. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1450. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1451. u32 bit = 1 << event;
  1452. /* Destination event lines are stored in the upper halfword */
  1453. if (!src)
  1454. bit <<= 16;
  1455. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1456. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1457. }
  1458. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1459. {
  1460. if (d40c->base->rev < 3)
  1461. return;
  1462. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1463. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1464. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1465. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1466. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1467. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  1468. }
  1469. /* DMA ENGINE functions */
  1470. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1471. {
  1472. int err;
  1473. unsigned long flags;
  1474. struct d40_chan *d40c =
  1475. container_of(chan, struct d40_chan, chan);
  1476. bool is_free_phy;
  1477. spin_lock_irqsave(&d40c->lock, flags);
  1478. d40c->completed = chan->cookie = 1;
  1479. /* If no dma configuration is set use default configuration (memcpy) */
  1480. if (!d40c->configured) {
  1481. err = d40_config_memcpy(d40c);
  1482. if (err) {
  1483. chan_err(d40c, "Failed to configure memcpy channel\n");
  1484. goto fail;
  1485. }
  1486. }
  1487. is_free_phy = (d40c->phy_chan == NULL);
  1488. err = d40_allocate_channel(d40c);
  1489. if (err) {
  1490. chan_err(d40c, "Failed to allocate channel\n");
  1491. goto fail;
  1492. }
  1493. /* Fill in basic CFG register values */
  1494. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1495. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1496. d40_set_prio_realtime(d40c);
  1497. if (chan_is_logical(d40c)) {
  1498. d40_log_cfg(&d40c->dma_cfg,
  1499. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1500. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1501. d40c->lcpa = d40c->base->lcpa_base +
  1502. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1503. else
  1504. d40c->lcpa = d40c->base->lcpa_base +
  1505. d40c->dma_cfg.dst_dev_type *
  1506. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1507. }
  1508. /*
  1509. * Only write channel configuration to the DMA if the physical
  1510. * resource is free. In case of multiple logical channels
  1511. * on the same physical resource, only the first write is necessary.
  1512. */
  1513. if (is_free_phy)
  1514. d40_config_write(d40c);
  1515. fail:
  1516. spin_unlock_irqrestore(&d40c->lock, flags);
  1517. return err;
  1518. }
  1519. static void d40_free_chan_resources(struct dma_chan *chan)
  1520. {
  1521. struct d40_chan *d40c =
  1522. container_of(chan, struct d40_chan, chan);
  1523. int err;
  1524. unsigned long flags;
  1525. if (d40c->phy_chan == NULL) {
  1526. chan_err(d40c, "Cannot free unallocated channel\n");
  1527. return;
  1528. }
  1529. spin_lock_irqsave(&d40c->lock, flags);
  1530. err = d40_free_dma(d40c);
  1531. if (err)
  1532. chan_err(d40c, "Failed to free channel\n");
  1533. spin_unlock_irqrestore(&d40c->lock, flags);
  1534. }
  1535. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1536. dma_addr_t dst,
  1537. dma_addr_t src,
  1538. size_t size,
  1539. unsigned long dma_flags)
  1540. {
  1541. struct scatterlist dst_sg;
  1542. struct scatterlist src_sg;
  1543. sg_init_table(&dst_sg, 1);
  1544. sg_init_table(&src_sg, 1);
  1545. sg_dma_address(&dst_sg) = dst;
  1546. sg_dma_address(&src_sg) = src;
  1547. sg_dma_len(&dst_sg) = size;
  1548. sg_dma_len(&src_sg) = size;
  1549. return stedma40_memcpy_sg(chan, &dst_sg, &src_sg, 1, dma_flags);
  1550. }
  1551. static struct dma_async_tx_descriptor *
  1552. d40_prep_sg(struct dma_chan *chan,
  1553. struct scatterlist *dst_sg, unsigned int dst_nents,
  1554. struct scatterlist *src_sg, unsigned int src_nents,
  1555. unsigned long dma_flags)
  1556. {
  1557. if (dst_nents != src_nents)
  1558. return NULL;
  1559. return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
  1560. }
  1561. static int d40_prep_slave_sg_log(struct d40_desc *d40d,
  1562. struct d40_chan *d40c,
  1563. struct scatterlist *sgl,
  1564. unsigned int sg_len,
  1565. enum dma_data_direction direction,
  1566. unsigned long dma_flags)
  1567. {
  1568. dma_addr_t dev_addr = 0;
  1569. int total_size;
  1570. d40d->lli_len = d40_sg_2_dmalen(sgl, sg_len,
  1571. d40c->dma_cfg.src_info.data_width,
  1572. d40c->dma_cfg.dst_info.data_width);
  1573. if (d40d->lli_len < 0) {
  1574. chan_err(d40c, "Unaligned size\n");
  1575. return -EINVAL;
  1576. }
  1577. if (d40_pool_lli_alloc(d40c, d40d, d40d->lli_len, true) < 0) {
  1578. chan_err(d40c, "Out of memory\n");
  1579. return -ENOMEM;
  1580. }
  1581. d40d->lli_current = 0;
  1582. if (direction == DMA_FROM_DEVICE)
  1583. if (d40c->runtime_addr)
  1584. dev_addr = d40c->runtime_addr;
  1585. else
  1586. dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1587. else if (direction == DMA_TO_DEVICE)
  1588. if (d40c->runtime_addr)
  1589. dev_addr = d40c->runtime_addr;
  1590. else
  1591. dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1592. else
  1593. return -EINVAL;
  1594. total_size = d40_log_sg_to_dev(sgl, sg_len,
  1595. &d40d->lli_log,
  1596. &d40c->log_def,
  1597. d40c->dma_cfg.src_info.data_width,
  1598. d40c->dma_cfg.dst_info.data_width,
  1599. direction,
  1600. dev_addr);
  1601. if (total_size < 0)
  1602. return -EINVAL;
  1603. return 0;
  1604. }
  1605. static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
  1606. struct d40_chan *d40c,
  1607. struct scatterlist *sgl,
  1608. unsigned int sgl_len,
  1609. enum dma_data_direction direction,
  1610. unsigned long dma_flags)
  1611. {
  1612. dma_addr_t src_dev_addr;
  1613. dma_addr_t dst_dev_addr;
  1614. int res;
  1615. d40d->lli_len = d40_sg_2_dmalen(sgl, sgl_len,
  1616. d40c->dma_cfg.src_info.data_width,
  1617. d40c->dma_cfg.dst_info.data_width);
  1618. if (d40d->lli_len < 0) {
  1619. chan_err(d40c, "Unaligned size\n");
  1620. return -EINVAL;
  1621. }
  1622. if (d40_pool_lli_alloc(d40c, d40d, d40d->lli_len, false) < 0) {
  1623. chan_err(d40c, "Out of memory\n");
  1624. return -ENOMEM;
  1625. }
  1626. d40d->lli_current = 0;
  1627. if (direction == DMA_FROM_DEVICE) {
  1628. dst_dev_addr = 0;
  1629. if (d40c->runtime_addr)
  1630. src_dev_addr = d40c->runtime_addr;
  1631. else
  1632. src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1633. } else if (direction == DMA_TO_DEVICE) {
  1634. if (d40c->runtime_addr)
  1635. dst_dev_addr = d40c->runtime_addr;
  1636. else
  1637. dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1638. src_dev_addr = 0;
  1639. } else
  1640. return -EINVAL;
  1641. res = d40_phy_sg_to_lli(sgl,
  1642. sgl_len,
  1643. src_dev_addr,
  1644. d40d->lli_phy.src,
  1645. virt_to_phys(d40d->lli_phy.src),
  1646. d40c->src_def_cfg,
  1647. d40c->dma_cfg.src_info.data_width,
  1648. d40c->dma_cfg.dst_info.data_width,
  1649. d40c->dma_cfg.src_info.psize);
  1650. if (res < 0)
  1651. return res;
  1652. res = d40_phy_sg_to_lli(sgl,
  1653. sgl_len,
  1654. dst_dev_addr,
  1655. d40d->lli_phy.dst,
  1656. virt_to_phys(d40d->lli_phy.dst),
  1657. d40c->dst_def_cfg,
  1658. d40c->dma_cfg.dst_info.data_width,
  1659. d40c->dma_cfg.src_info.data_width,
  1660. d40c->dma_cfg.dst_info.psize);
  1661. if (res < 0)
  1662. return res;
  1663. dma_sync_single_for_device(d40c->base->dev, d40d->lli_pool.dma_addr,
  1664. d40d->lli_pool.size, DMA_TO_DEVICE);
  1665. return 0;
  1666. }
  1667. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1668. struct scatterlist *sgl,
  1669. unsigned int sg_len,
  1670. enum dma_data_direction direction,
  1671. unsigned long dma_flags)
  1672. {
  1673. struct d40_desc *d40d;
  1674. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1675. chan);
  1676. unsigned long flags;
  1677. int err;
  1678. if (d40c->phy_chan == NULL) {
  1679. chan_err(d40c, "Cannot prepare unallocated channel\n");
  1680. return ERR_PTR(-EINVAL);
  1681. }
  1682. spin_lock_irqsave(&d40c->lock, flags);
  1683. d40d = d40_desc_get(d40c);
  1684. if (d40d == NULL)
  1685. goto err;
  1686. if (chan_is_logical(d40c))
  1687. err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
  1688. direction, dma_flags);
  1689. else
  1690. err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
  1691. direction, dma_flags);
  1692. if (err) {
  1693. chan_err(d40c, "Failed to prepare %s slave sg job: %d\n",
  1694. chan_is_logical(d40c) ? "log" : "phy", err);
  1695. goto err;
  1696. }
  1697. d40d->txd.flags = dma_flags;
  1698. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1699. d40d->txd.tx_submit = d40_tx_submit;
  1700. spin_unlock_irqrestore(&d40c->lock, flags);
  1701. return &d40d->txd;
  1702. err:
  1703. if (d40d)
  1704. d40_desc_free(d40c, d40d);
  1705. spin_unlock_irqrestore(&d40c->lock, flags);
  1706. return NULL;
  1707. }
  1708. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1709. dma_cookie_t cookie,
  1710. struct dma_tx_state *txstate)
  1711. {
  1712. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1713. dma_cookie_t last_used;
  1714. dma_cookie_t last_complete;
  1715. int ret;
  1716. if (d40c->phy_chan == NULL) {
  1717. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1718. return -EINVAL;
  1719. }
  1720. last_complete = d40c->completed;
  1721. last_used = chan->cookie;
  1722. if (d40_is_paused(d40c))
  1723. ret = DMA_PAUSED;
  1724. else
  1725. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1726. dma_set_tx_state(txstate, last_complete, last_used,
  1727. stedma40_residue(chan));
  1728. return ret;
  1729. }
  1730. static void d40_issue_pending(struct dma_chan *chan)
  1731. {
  1732. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1733. unsigned long flags;
  1734. if (d40c->phy_chan == NULL) {
  1735. chan_err(d40c, "Channel is not allocated!\n");
  1736. return;
  1737. }
  1738. spin_lock_irqsave(&d40c->lock, flags);
  1739. /* Busy means that pending jobs are already being processed */
  1740. if (!d40c->busy)
  1741. (void) d40_queue_start(d40c);
  1742. spin_unlock_irqrestore(&d40c->lock, flags);
  1743. }
  1744. /* Runtime reconfiguration extension */
  1745. static void d40_set_runtime_config(struct dma_chan *chan,
  1746. struct dma_slave_config *config)
  1747. {
  1748. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1749. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1750. enum dma_slave_buswidth config_addr_width;
  1751. dma_addr_t config_addr;
  1752. u32 config_maxburst;
  1753. enum stedma40_periph_data_width addr_width;
  1754. int psize;
  1755. if (config->direction == DMA_FROM_DEVICE) {
  1756. dma_addr_t dev_addr_rx =
  1757. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1758. config_addr = config->src_addr;
  1759. if (dev_addr_rx)
  1760. dev_dbg(d40c->base->dev,
  1761. "channel has a pre-wired RX address %08x "
  1762. "overriding with %08x\n",
  1763. dev_addr_rx, config_addr);
  1764. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1765. dev_dbg(d40c->base->dev,
  1766. "channel was not configured for peripheral "
  1767. "to memory transfer (%d) overriding\n",
  1768. cfg->dir);
  1769. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1770. config_addr_width = config->src_addr_width;
  1771. config_maxburst = config->src_maxburst;
  1772. } else if (config->direction == DMA_TO_DEVICE) {
  1773. dma_addr_t dev_addr_tx =
  1774. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1775. config_addr = config->dst_addr;
  1776. if (dev_addr_tx)
  1777. dev_dbg(d40c->base->dev,
  1778. "channel has a pre-wired TX address %08x "
  1779. "overriding with %08x\n",
  1780. dev_addr_tx, config_addr);
  1781. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1782. dev_dbg(d40c->base->dev,
  1783. "channel was not configured for memory "
  1784. "to peripheral transfer (%d) overriding\n",
  1785. cfg->dir);
  1786. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1787. config_addr_width = config->dst_addr_width;
  1788. config_maxburst = config->dst_maxburst;
  1789. } else {
  1790. dev_err(d40c->base->dev,
  1791. "unrecognized channel direction %d\n",
  1792. config->direction);
  1793. return;
  1794. }
  1795. switch (config_addr_width) {
  1796. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1797. addr_width = STEDMA40_BYTE_WIDTH;
  1798. break;
  1799. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1800. addr_width = STEDMA40_HALFWORD_WIDTH;
  1801. break;
  1802. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1803. addr_width = STEDMA40_WORD_WIDTH;
  1804. break;
  1805. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1806. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1807. break;
  1808. default:
  1809. dev_err(d40c->base->dev,
  1810. "illegal peripheral address width "
  1811. "requested (%d)\n",
  1812. config->src_addr_width);
  1813. return;
  1814. }
  1815. if (chan_is_logical(d40c)) {
  1816. if (config_maxburst >= 16)
  1817. psize = STEDMA40_PSIZE_LOG_16;
  1818. else if (config_maxburst >= 8)
  1819. psize = STEDMA40_PSIZE_LOG_8;
  1820. else if (config_maxburst >= 4)
  1821. psize = STEDMA40_PSIZE_LOG_4;
  1822. else
  1823. psize = STEDMA40_PSIZE_LOG_1;
  1824. } else {
  1825. if (config_maxburst >= 16)
  1826. psize = STEDMA40_PSIZE_PHY_16;
  1827. else if (config_maxburst >= 8)
  1828. psize = STEDMA40_PSIZE_PHY_8;
  1829. else if (config_maxburst >= 4)
  1830. psize = STEDMA40_PSIZE_PHY_4;
  1831. else if (config_maxburst >= 2)
  1832. psize = STEDMA40_PSIZE_PHY_2;
  1833. else
  1834. psize = STEDMA40_PSIZE_PHY_1;
  1835. }
  1836. /* Set up all the endpoint configs */
  1837. cfg->src_info.data_width = addr_width;
  1838. cfg->src_info.psize = psize;
  1839. cfg->src_info.big_endian = false;
  1840. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1841. cfg->dst_info.data_width = addr_width;
  1842. cfg->dst_info.psize = psize;
  1843. cfg->dst_info.big_endian = false;
  1844. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1845. /* Fill in register values */
  1846. if (chan_is_logical(d40c))
  1847. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1848. else
  1849. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  1850. &d40c->dst_def_cfg, false);
  1851. /* These settings will take precedence later */
  1852. d40c->runtime_addr = config_addr;
  1853. d40c->runtime_direction = config->direction;
  1854. dev_dbg(d40c->base->dev,
  1855. "configured channel %s for %s, data width %d, "
  1856. "maxburst %d bytes, LE, no flow control\n",
  1857. dma_chan_name(chan),
  1858. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1859. config_addr_width,
  1860. config_maxburst);
  1861. }
  1862. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1863. unsigned long arg)
  1864. {
  1865. unsigned long flags;
  1866. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1867. if (d40c->phy_chan == NULL) {
  1868. chan_err(d40c, "Channel is not allocated!\n");
  1869. return -EINVAL;
  1870. }
  1871. switch (cmd) {
  1872. case DMA_TERMINATE_ALL:
  1873. spin_lock_irqsave(&d40c->lock, flags);
  1874. d40_term_all(d40c);
  1875. spin_unlock_irqrestore(&d40c->lock, flags);
  1876. return 0;
  1877. case DMA_PAUSE:
  1878. return d40_pause(chan);
  1879. case DMA_RESUME:
  1880. return d40_resume(chan);
  1881. case DMA_SLAVE_CONFIG:
  1882. d40_set_runtime_config(chan,
  1883. (struct dma_slave_config *) arg);
  1884. return 0;
  1885. default:
  1886. break;
  1887. }
  1888. /* Other commands are unimplemented */
  1889. return -ENXIO;
  1890. }
  1891. /* Initialization functions */
  1892. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1893. struct d40_chan *chans, int offset,
  1894. int num_chans)
  1895. {
  1896. int i = 0;
  1897. struct d40_chan *d40c;
  1898. INIT_LIST_HEAD(&dma->channels);
  1899. for (i = offset; i < offset + num_chans; i++) {
  1900. d40c = &chans[i];
  1901. d40c->base = base;
  1902. d40c->chan.device = dma;
  1903. spin_lock_init(&d40c->lock);
  1904. d40c->log_num = D40_PHY_CHAN;
  1905. INIT_LIST_HEAD(&d40c->active);
  1906. INIT_LIST_HEAD(&d40c->queue);
  1907. INIT_LIST_HEAD(&d40c->client);
  1908. tasklet_init(&d40c->tasklet, dma_tasklet,
  1909. (unsigned long) d40c);
  1910. list_add_tail(&d40c->chan.device_node,
  1911. &dma->channels);
  1912. }
  1913. }
  1914. static int __init d40_dmaengine_init(struct d40_base *base,
  1915. int num_reserved_chans)
  1916. {
  1917. int err ;
  1918. d40_chan_init(base, &base->dma_slave, base->log_chans,
  1919. 0, base->num_log_chans);
  1920. dma_cap_zero(base->dma_slave.cap_mask);
  1921. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  1922. base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
  1923. base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
  1924. base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
  1925. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  1926. base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
  1927. base->dma_slave.device_tx_status = d40_tx_status;
  1928. base->dma_slave.device_issue_pending = d40_issue_pending;
  1929. base->dma_slave.device_control = d40_control;
  1930. base->dma_slave.dev = base->dev;
  1931. err = dma_async_device_register(&base->dma_slave);
  1932. if (err) {
  1933. d40_err(base->dev, "Failed to register slave channels\n");
  1934. goto failure1;
  1935. }
  1936. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  1937. base->num_log_chans, base->plat_data->memcpy_len);
  1938. dma_cap_zero(base->dma_memcpy.cap_mask);
  1939. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  1940. dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
  1941. base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
  1942. base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
  1943. base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
  1944. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  1945. base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
  1946. base->dma_memcpy.device_tx_status = d40_tx_status;
  1947. base->dma_memcpy.device_issue_pending = d40_issue_pending;
  1948. base->dma_memcpy.device_control = d40_control;
  1949. base->dma_memcpy.dev = base->dev;
  1950. /*
  1951. * This controller can only access address at even
  1952. * 32bit boundaries, i.e. 2^2
  1953. */
  1954. base->dma_memcpy.copy_align = 2;
  1955. err = dma_async_device_register(&base->dma_memcpy);
  1956. if (err) {
  1957. d40_err(base->dev,
  1958. "Failed to regsiter memcpy only channels\n");
  1959. goto failure2;
  1960. }
  1961. d40_chan_init(base, &base->dma_both, base->phy_chans,
  1962. 0, num_reserved_chans);
  1963. dma_cap_zero(base->dma_both.cap_mask);
  1964. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  1965. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  1966. dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
  1967. base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
  1968. base->dma_both.device_free_chan_resources = d40_free_chan_resources;
  1969. base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
  1970. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  1971. base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
  1972. base->dma_both.device_tx_status = d40_tx_status;
  1973. base->dma_both.device_issue_pending = d40_issue_pending;
  1974. base->dma_both.device_control = d40_control;
  1975. base->dma_both.dev = base->dev;
  1976. base->dma_both.copy_align = 2;
  1977. err = dma_async_device_register(&base->dma_both);
  1978. if (err) {
  1979. d40_err(base->dev,
  1980. "Failed to register logical and physical capable channels\n");
  1981. goto failure3;
  1982. }
  1983. return 0;
  1984. failure3:
  1985. dma_async_device_unregister(&base->dma_memcpy);
  1986. failure2:
  1987. dma_async_device_unregister(&base->dma_slave);
  1988. failure1:
  1989. return err;
  1990. }
  1991. /* Initialization functions. */
  1992. static int __init d40_phy_res_init(struct d40_base *base)
  1993. {
  1994. int i;
  1995. int num_phy_chans_avail = 0;
  1996. u32 val[2];
  1997. int odd_even_bit = -2;
  1998. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  1999. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2000. for (i = 0; i < base->num_phy_chans; i++) {
  2001. base->phy_res[i].num = i;
  2002. odd_even_bit += 2 * ((i % 2) == 0);
  2003. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2004. /* Mark security only channels as occupied */
  2005. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2006. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2007. } else {
  2008. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2009. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2010. num_phy_chans_avail++;
  2011. }
  2012. spin_lock_init(&base->phy_res[i].lock);
  2013. }
  2014. /* Mark disabled channels as occupied */
  2015. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2016. int chan = base->plat_data->disabled_channels[i];
  2017. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2018. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2019. num_phy_chans_avail--;
  2020. }
  2021. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2022. num_phy_chans_avail, base->num_phy_chans);
  2023. /* Verify settings extended vs standard */
  2024. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2025. for (i = 0; i < base->num_phy_chans; i++) {
  2026. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2027. (val[0] & 0x3) != 1)
  2028. dev_info(base->dev,
  2029. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2030. __func__, i, val[0] & 0x3);
  2031. val[0] = val[0] >> 2;
  2032. }
  2033. return num_phy_chans_avail;
  2034. }
  2035. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2036. {
  2037. static const struct d40_reg_val dma_id_regs[] = {
  2038. /* Peripheral Id */
  2039. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  2040. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  2041. /*
  2042. * D40_DREG_PERIPHID2 Depends on HW revision:
  2043. * DB8500ed has 0x0008,
  2044. * ? has 0x0018,
  2045. * DB8500v1 has 0x0028
  2046. * DB8500v2 has 0x0038
  2047. */
  2048. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  2049. /* PCell Id */
  2050. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  2051. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  2052. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  2053. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  2054. };
  2055. struct stedma40_platform_data *plat_data;
  2056. struct clk *clk = NULL;
  2057. void __iomem *virtbase = NULL;
  2058. struct resource *res = NULL;
  2059. struct d40_base *base = NULL;
  2060. int num_log_chans = 0;
  2061. int num_phy_chans;
  2062. int i;
  2063. u32 val;
  2064. u32 rev;
  2065. clk = clk_get(&pdev->dev, NULL);
  2066. if (IS_ERR(clk)) {
  2067. d40_err(&pdev->dev, "No matching clock found\n");
  2068. goto failure;
  2069. }
  2070. clk_enable(clk);
  2071. /* Get IO for DMAC base address */
  2072. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2073. if (!res)
  2074. goto failure;
  2075. if (request_mem_region(res->start, resource_size(res),
  2076. D40_NAME " I/O base") == NULL)
  2077. goto failure;
  2078. virtbase = ioremap(res->start, resource_size(res));
  2079. if (!virtbase)
  2080. goto failure;
  2081. /* HW version check */
  2082. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2083. if (dma_id_regs[i].val !=
  2084. readl(virtbase + dma_id_regs[i].reg)) {
  2085. d40_err(&pdev->dev,
  2086. "Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2087. dma_id_regs[i].val,
  2088. dma_id_regs[i].reg,
  2089. readl(virtbase + dma_id_regs[i].reg));
  2090. goto failure;
  2091. }
  2092. }
  2093. /* Get silicon revision and designer */
  2094. val = readl(virtbase + D40_DREG_PERIPHID2);
  2095. if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
  2096. D40_HW_DESIGNER) {
  2097. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2098. val & D40_DREG_PERIPHID2_DESIGNER_MASK,
  2099. D40_HW_DESIGNER);
  2100. goto failure;
  2101. }
  2102. rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
  2103. D40_DREG_PERIPHID2_REV_POS;
  2104. /* The number of physical channels on this HW */
  2105. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2106. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2107. rev, res->start);
  2108. plat_data = pdev->dev.platform_data;
  2109. /* Count the number of logical channels in use */
  2110. for (i = 0; i < plat_data->dev_len; i++)
  2111. if (plat_data->dev_rx[i] != 0)
  2112. num_log_chans++;
  2113. for (i = 0; i < plat_data->dev_len; i++)
  2114. if (plat_data->dev_tx[i] != 0)
  2115. num_log_chans++;
  2116. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2117. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2118. sizeof(struct d40_chan), GFP_KERNEL);
  2119. if (base == NULL) {
  2120. d40_err(&pdev->dev, "Out of memory\n");
  2121. goto failure;
  2122. }
  2123. base->rev = rev;
  2124. base->clk = clk;
  2125. base->num_phy_chans = num_phy_chans;
  2126. base->num_log_chans = num_log_chans;
  2127. base->phy_start = res->start;
  2128. base->phy_size = resource_size(res);
  2129. base->virtbase = virtbase;
  2130. base->plat_data = plat_data;
  2131. base->dev = &pdev->dev;
  2132. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2133. base->log_chans = &base->phy_chans[num_phy_chans];
  2134. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2135. GFP_KERNEL);
  2136. if (!base->phy_res)
  2137. goto failure;
  2138. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2139. sizeof(struct d40_chan *),
  2140. GFP_KERNEL);
  2141. if (!base->lookup_phy_chans)
  2142. goto failure;
  2143. if (num_log_chans + plat_data->memcpy_len) {
  2144. /*
  2145. * The max number of logical channels are event lines for all
  2146. * src devices and dst devices
  2147. */
  2148. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2149. sizeof(struct d40_chan *),
  2150. GFP_KERNEL);
  2151. if (!base->lookup_log_chans)
  2152. goto failure;
  2153. }
  2154. base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
  2155. sizeof(struct d40_desc *) *
  2156. D40_LCLA_LINK_PER_EVENT_GRP,
  2157. GFP_KERNEL);
  2158. if (!base->lcla_pool.alloc_map)
  2159. goto failure;
  2160. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2161. 0, SLAB_HWCACHE_ALIGN,
  2162. NULL);
  2163. if (base->desc_slab == NULL)
  2164. goto failure;
  2165. return base;
  2166. failure:
  2167. if (!IS_ERR(clk)) {
  2168. clk_disable(clk);
  2169. clk_put(clk);
  2170. }
  2171. if (virtbase)
  2172. iounmap(virtbase);
  2173. if (res)
  2174. release_mem_region(res->start,
  2175. resource_size(res));
  2176. if (virtbase)
  2177. iounmap(virtbase);
  2178. if (base) {
  2179. kfree(base->lcla_pool.alloc_map);
  2180. kfree(base->lookup_log_chans);
  2181. kfree(base->lookup_phy_chans);
  2182. kfree(base->phy_res);
  2183. kfree(base);
  2184. }
  2185. return NULL;
  2186. }
  2187. static void __init d40_hw_init(struct d40_base *base)
  2188. {
  2189. static const struct d40_reg_val dma_init_reg[] = {
  2190. /* Clock every part of the DMA block from start */
  2191. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2192. /* Interrupts on all logical channels */
  2193. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2194. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2195. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2196. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2197. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2198. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2199. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2200. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2201. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2202. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2203. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2204. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2205. };
  2206. int i;
  2207. u32 prmseo[2] = {0, 0};
  2208. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2209. u32 pcmis = 0;
  2210. u32 pcicr = 0;
  2211. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2212. writel(dma_init_reg[i].val,
  2213. base->virtbase + dma_init_reg[i].reg);
  2214. /* Configure all our dma channels to default settings */
  2215. for (i = 0; i < base->num_phy_chans; i++) {
  2216. activeo[i % 2] = activeo[i % 2] << 2;
  2217. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2218. == D40_ALLOC_PHY) {
  2219. activeo[i % 2] |= 3;
  2220. continue;
  2221. }
  2222. /* Enable interrupt # */
  2223. pcmis = (pcmis << 1) | 1;
  2224. /* Clear interrupt # */
  2225. pcicr = (pcicr << 1) | 1;
  2226. /* Set channel to physical mode */
  2227. prmseo[i % 2] = prmseo[i % 2] << 2;
  2228. prmseo[i % 2] |= 1;
  2229. }
  2230. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2231. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2232. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2233. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2234. /* Write which interrupt to enable */
  2235. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2236. /* Write which interrupt to clear */
  2237. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2238. }
  2239. static int __init d40_lcla_allocate(struct d40_base *base)
  2240. {
  2241. struct d40_lcla_pool *pool = &base->lcla_pool;
  2242. unsigned long *page_list;
  2243. int i, j;
  2244. int ret = 0;
  2245. /*
  2246. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2247. * To full fill this hardware requirement without wasting 256 kb
  2248. * we allocate pages until we get an aligned one.
  2249. */
  2250. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2251. GFP_KERNEL);
  2252. if (!page_list) {
  2253. ret = -ENOMEM;
  2254. goto failure;
  2255. }
  2256. /* Calculating how many pages that are required */
  2257. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2258. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2259. page_list[i] = __get_free_pages(GFP_KERNEL,
  2260. base->lcla_pool.pages);
  2261. if (!page_list[i]) {
  2262. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2263. base->lcla_pool.pages);
  2264. for (j = 0; j < i; j++)
  2265. free_pages(page_list[j], base->lcla_pool.pages);
  2266. goto failure;
  2267. }
  2268. if ((virt_to_phys((void *)page_list[i]) &
  2269. (LCLA_ALIGNMENT - 1)) == 0)
  2270. break;
  2271. }
  2272. for (j = 0; j < i; j++)
  2273. free_pages(page_list[j], base->lcla_pool.pages);
  2274. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2275. base->lcla_pool.base = (void *)page_list[i];
  2276. } else {
  2277. /*
  2278. * After many attempts and no succees with finding the correct
  2279. * alignment, try with allocating a big buffer.
  2280. */
  2281. dev_warn(base->dev,
  2282. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2283. __func__, base->lcla_pool.pages);
  2284. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2285. base->num_phy_chans +
  2286. LCLA_ALIGNMENT,
  2287. GFP_KERNEL);
  2288. if (!base->lcla_pool.base_unaligned) {
  2289. ret = -ENOMEM;
  2290. goto failure;
  2291. }
  2292. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2293. LCLA_ALIGNMENT);
  2294. }
  2295. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2296. SZ_1K * base->num_phy_chans,
  2297. DMA_TO_DEVICE);
  2298. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2299. pool->dma_addr = 0;
  2300. ret = -ENOMEM;
  2301. goto failure;
  2302. }
  2303. writel(virt_to_phys(base->lcla_pool.base),
  2304. base->virtbase + D40_DREG_LCLA);
  2305. failure:
  2306. kfree(page_list);
  2307. return ret;
  2308. }
  2309. static int __init d40_probe(struct platform_device *pdev)
  2310. {
  2311. int err;
  2312. int ret = -ENOENT;
  2313. struct d40_base *base;
  2314. struct resource *res = NULL;
  2315. int num_reserved_chans;
  2316. u32 val;
  2317. base = d40_hw_detect_init(pdev);
  2318. if (!base)
  2319. goto failure;
  2320. num_reserved_chans = d40_phy_res_init(base);
  2321. platform_set_drvdata(pdev, base);
  2322. spin_lock_init(&base->interrupt_lock);
  2323. spin_lock_init(&base->execmd_lock);
  2324. /* Get IO for logical channel parameter address */
  2325. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2326. if (!res) {
  2327. ret = -ENOENT;
  2328. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2329. goto failure;
  2330. }
  2331. base->lcpa_size = resource_size(res);
  2332. base->phy_lcpa = res->start;
  2333. if (request_mem_region(res->start, resource_size(res),
  2334. D40_NAME " I/O lcpa") == NULL) {
  2335. ret = -EBUSY;
  2336. d40_err(&pdev->dev,
  2337. "Failed to request LCPA region 0x%x-0x%x\n",
  2338. res->start, res->end);
  2339. goto failure;
  2340. }
  2341. /* We make use of ESRAM memory for this. */
  2342. val = readl(base->virtbase + D40_DREG_LCPA);
  2343. if (res->start != val && val != 0) {
  2344. dev_warn(&pdev->dev,
  2345. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2346. __func__, val, res->start);
  2347. } else
  2348. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2349. base->lcpa_base = ioremap(res->start, resource_size(res));
  2350. if (!base->lcpa_base) {
  2351. ret = -ENOMEM;
  2352. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2353. goto failure;
  2354. }
  2355. ret = d40_lcla_allocate(base);
  2356. if (ret) {
  2357. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2358. goto failure;
  2359. }
  2360. spin_lock_init(&base->lcla_pool.lock);
  2361. base->irq = platform_get_irq(pdev, 0);
  2362. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2363. if (ret) {
  2364. d40_err(&pdev->dev, "No IRQ defined\n");
  2365. goto failure;
  2366. }
  2367. err = d40_dmaengine_init(base, num_reserved_chans);
  2368. if (err)
  2369. goto failure;
  2370. d40_hw_init(base);
  2371. dev_info(base->dev, "initialized\n");
  2372. return 0;
  2373. failure:
  2374. if (base) {
  2375. if (base->desc_slab)
  2376. kmem_cache_destroy(base->desc_slab);
  2377. if (base->virtbase)
  2378. iounmap(base->virtbase);
  2379. if (base->lcla_pool.dma_addr)
  2380. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  2381. SZ_1K * base->num_phy_chans,
  2382. DMA_TO_DEVICE);
  2383. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2384. free_pages((unsigned long)base->lcla_pool.base,
  2385. base->lcla_pool.pages);
  2386. kfree(base->lcla_pool.base_unaligned);
  2387. if (base->phy_lcpa)
  2388. release_mem_region(base->phy_lcpa,
  2389. base->lcpa_size);
  2390. if (base->phy_start)
  2391. release_mem_region(base->phy_start,
  2392. base->phy_size);
  2393. if (base->clk) {
  2394. clk_disable(base->clk);
  2395. clk_put(base->clk);
  2396. }
  2397. kfree(base->lcla_pool.alloc_map);
  2398. kfree(base->lookup_log_chans);
  2399. kfree(base->lookup_phy_chans);
  2400. kfree(base->phy_res);
  2401. kfree(base);
  2402. }
  2403. d40_err(&pdev->dev, "probe failed\n");
  2404. return ret;
  2405. }
  2406. static struct platform_driver d40_driver = {
  2407. .driver = {
  2408. .owner = THIS_MODULE,
  2409. .name = D40_NAME,
  2410. },
  2411. };
  2412. static int __init stedma40_init(void)
  2413. {
  2414. return platform_driver_probe(&d40_driver, d40_probe);
  2415. }
  2416. arch_initcall(stedma40_init);