sched.c 224 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. #ifdef CONFIG_SMP
  112. /*
  113. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  114. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  115. */
  116. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  117. {
  118. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  119. }
  120. /*
  121. * Each time a sched group cpu_power is changed,
  122. * we must compute its reciprocal value
  123. */
  124. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  125. {
  126. sg->__cpu_power += val;
  127. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  128. }
  129. #endif
  130. static inline int rt_policy(int policy)
  131. {
  132. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  133. return 1;
  134. return 0;
  135. }
  136. static inline int task_has_rt_policy(struct task_struct *p)
  137. {
  138. return rt_policy(p->policy);
  139. }
  140. /*
  141. * This is the priority-queue data structure of the RT scheduling class:
  142. */
  143. struct rt_prio_array {
  144. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  145. struct list_head queue[MAX_RT_PRIO];
  146. };
  147. struct rt_bandwidth {
  148. /* nests inside the rq lock: */
  149. spinlock_t rt_runtime_lock;
  150. ktime_t rt_period;
  151. u64 rt_runtime;
  152. struct hrtimer rt_period_timer;
  153. };
  154. static struct rt_bandwidth def_rt_bandwidth;
  155. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  156. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  157. {
  158. struct rt_bandwidth *rt_b =
  159. container_of(timer, struct rt_bandwidth, rt_period_timer);
  160. ktime_t now;
  161. int overrun;
  162. int idle = 0;
  163. for (;;) {
  164. now = hrtimer_cb_get_time(timer);
  165. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  166. if (!overrun)
  167. break;
  168. idle = do_sched_rt_period_timer(rt_b, overrun);
  169. }
  170. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  171. }
  172. static
  173. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  174. {
  175. rt_b->rt_period = ns_to_ktime(period);
  176. rt_b->rt_runtime = runtime;
  177. spin_lock_init(&rt_b->rt_runtime_lock);
  178. hrtimer_init(&rt_b->rt_period_timer,
  179. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  180. rt_b->rt_period_timer.function = sched_rt_period_timer;
  181. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  182. }
  183. static inline int rt_bandwidth_enabled(void)
  184. {
  185. return sysctl_sched_rt_runtime >= 0;
  186. }
  187. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  188. {
  189. ktime_t now;
  190. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  191. return;
  192. if (hrtimer_active(&rt_b->rt_period_timer))
  193. return;
  194. spin_lock(&rt_b->rt_runtime_lock);
  195. for (;;) {
  196. if (hrtimer_active(&rt_b->rt_period_timer))
  197. break;
  198. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  199. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  200. hrtimer_start_expires(&rt_b->rt_period_timer,
  201. HRTIMER_MODE_ABS);
  202. }
  203. spin_unlock(&rt_b->rt_runtime_lock);
  204. }
  205. #ifdef CONFIG_RT_GROUP_SCHED
  206. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  207. {
  208. hrtimer_cancel(&rt_b->rt_period_timer);
  209. }
  210. #endif
  211. /*
  212. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  213. * detach_destroy_domains and partition_sched_domains.
  214. */
  215. static DEFINE_MUTEX(sched_domains_mutex);
  216. #ifdef CONFIG_GROUP_SCHED
  217. #include <linux/cgroup.h>
  218. struct cfs_rq;
  219. static LIST_HEAD(task_groups);
  220. /* task group related information */
  221. struct task_group {
  222. #ifdef CONFIG_CGROUP_SCHED
  223. struct cgroup_subsys_state css;
  224. #endif
  225. #ifdef CONFIG_FAIR_GROUP_SCHED
  226. /* schedulable entities of this group on each cpu */
  227. struct sched_entity **se;
  228. /* runqueue "owned" by this group on each cpu */
  229. struct cfs_rq **cfs_rq;
  230. unsigned long shares;
  231. #endif
  232. #ifdef CONFIG_RT_GROUP_SCHED
  233. struct sched_rt_entity **rt_se;
  234. struct rt_rq **rt_rq;
  235. struct rt_bandwidth rt_bandwidth;
  236. #endif
  237. struct rcu_head rcu;
  238. struct list_head list;
  239. struct task_group *parent;
  240. struct list_head siblings;
  241. struct list_head children;
  242. };
  243. #ifdef CONFIG_USER_SCHED
  244. /*
  245. * Root task group.
  246. * Every UID task group (including init_task_group aka UID-0) will
  247. * be a child to this group.
  248. */
  249. struct task_group root_task_group;
  250. #ifdef CONFIG_FAIR_GROUP_SCHED
  251. /* Default task group's sched entity on each cpu */
  252. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  253. /* Default task group's cfs_rq on each cpu */
  254. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  255. #endif /* CONFIG_FAIR_GROUP_SCHED */
  256. #ifdef CONFIG_RT_GROUP_SCHED
  257. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  258. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  259. #endif /* CONFIG_RT_GROUP_SCHED */
  260. #else /* !CONFIG_USER_SCHED */
  261. #define root_task_group init_task_group
  262. #endif /* CONFIG_USER_SCHED */
  263. /* task_group_lock serializes add/remove of task groups and also changes to
  264. * a task group's cpu shares.
  265. */
  266. static DEFINE_SPINLOCK(task_group_lock);
  267. #ifdef CONFIG_FAIR_GROUP_SCHED
  268. #ifdef CONFIG_USER_SCHED
  269. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  270. #else /* !CONFIG_USER_SCHED */
  271. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  272. #endif /* CONFIG_USER_SCHED */
  273. /*
  274. * A weight of 0 or 1 can cause arithmetics problems.
  275. * A weight of a cfs_rq is the sum of weights of which entities
  276. * are queued on this cfs_rq, so a weight of a entity should not be
  277. * too large, so as the shares value of a task group.
  278. * (The default weight is 1024 - so there's no practical
  279. * limitation from this.)
  280. */
  281. #define MIN_SHARES 2
  282. #define MAX_SHARES (1UL << 18)
  283. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  284. #endif
  285. /* Default task group.
  286. * Every task in system belong to this group at bootup.
  287. */
  288. struct task_group init_task_group;
  289. /* return group to which a task belongs */
  290. static inline struct task_group *task_group(struct task_struct *p)
  291. {
  292. struct task_group *tg;
  293. #ifdef CONFIG_USER_SCHED
  294. tg = p->user->tg;
  295. #elif defined(CONFIG_CGROUP_SCHED)
  296. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  297. struct task_group, css);
  298. #else
  299. tg = &init_task_group;
  300. #endif
  301. return tg;
  302. }
  303. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  304. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  305. {
  306. #ifdef CONFIG_FAIR_GROUP_SCHED
  307. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  308. p->se.parent = task_group(p)->se[cpu];
  309. #endif
  310. #ifdef CONFIG_RT_GROUP_SCHED
  311. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  312. p->rt.parent = task_group(p)->rt_se[cpu];
  313. #endif
  314. }
  315. #else
  316. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  317. static inline struct task_group *task_group(struct task_struct *p)
  318. {
  319. return NULL;
  320. }
  321. #endif /* CONFIG_GROUP_SCHED */
  322. /* CFS-related fields in a runqueue */
  323. struct cfs_rq {
  324. struct load_weight load;
  325. unsigned long nr_running;
  326. u64 exec_clock;
  327. u64 min_vruntime;
  328. struct rb_root tasks_timeline;
  329. struct rb_node *rb_leftmost;
  330. struct list_head tasks;
  331. struct list_head *balance_iterator;
  332. /*
  333. * 'curr' points to currently running entity on this cfs_rq.
  334. * It is set to NULL otherwise (i.e when none are currently running).
  335. */
  336. struct sched_entity *curr, *next, *last;
  337. unsigned int nr_spread_over;
  338. #ifdef CONFIG_FAIR_GROUP_SCHED
  339. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  340. /*
  341. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  342. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  343. * (like users, containers etc.)
  344. *
  345. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  346. * list is used during load balance.
  347. */
  348. struct list_head leaf_cfs_rq_list;
  349. struct task_group *tg; /* group that "owns" this runqueue */
  350. #ifdef CONFIG_SMP
  351. /*
  352. * the part of load.weight contributed by tasks
  353. */
  354. unsigned long task_weight;
  355. /*
  356. * h_load = weight * f(tg)
  357. *
  358. * Where f(tg) is the recursive weight fraction assigned to
  359. * this group.
  360. */
  361. unsigned long h_load;
  362. /*
  363. * this cpu's part of tg->shares
  364. */
  365. unsigned long shares;
  366. /*
  367. * load.weight at the time we set shares
  368. */
  369. unsigned long rq_weight;
  370. #endif
  371. #endif
  372. };
  373. /* Real-Time classes' related field in a runqueue: */
  374. struct rt_rq {
  375. struct rt_prio_array active;
  376. unsigned long rt_nr_running;
  377. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  378. int highest_prio; /* highest queued rt task prio */
  379. #endif
  380. #ifdef CONFIG_SMP
  381. unsigned long rt_nr_migratory;
  382. int overloaded;
  383. #endif
  384. int rt_throttled;
  385. u64 rt_time;
  386. u64 rt_runtime;
  387. /* Nests inside the rq lock: */
  388. spinlock_t rt_runtime_lock;
  389. #ifdef CONFIG_RT_GROUP_SCHED
  390. unsigned long rt_nr_boosted;
  391. struct rq *rq;
  392. struct list_head leaf_rt_rq_list;
  393. struct task_group *tg;
  394. struct sched_rt_entity *rt_se;
  395. #endif
  396. };
  397. #ifdef CONFIG_SMP
  398. /*
  399. * We add the notion of a root-domain which will be used to define per-domain
  400. * variables. Each exclusive cpuset essentially defines an island domain by
  401. * fully partitioning the member cpus from any other cpuset. Whenever a new
  402. * exclusive cpuset is created, we also create and attach a new root-domain
  403. * object.
  404. *
  405. */
  406. struct root_domain {
  407. atomic_t refcount;
  408. cpumask_t span;
  409. cpumask_t online;
  410. /*
  411. * The "RT overload" flag: it gets set if a CPU has more than
  412. * one runnable RT task.
  413. */
  414. cpumask_t rto_mask;
  415. atomic_t rto_count;
  416. #ifdef CONFIG_SMP
  417. struct cpupri cpupri;
  418. #endif
  419. };
  420. /*
  421. * By default the system creates a single root-domain with all cpus as
  422. * members (mimicking the global state we have today).
  423. */
  424. static struct root_domain def_root_domain;
  425. #endif
  426. /*
  427. * This is the main, per-CPU runqueue data structure.
  428. *
  429. * Locking rule: those places that want to lock multiple runqueues
  430. * (such as the load balancing or the thread migration code), lock
  431. * acquire operations must be ordered by ascending &runqueue.
  432. */
  433. struct rq {
  434. /* runqueue lock: */
  435. spinlock_t lock;
  436. /*
  437. * nr_running and cpu_load should be in the same cacheline because
  438. * remote CPUs use both these fields when doing load calculation.
  439. */
  440. unsigned long nr_running;
  441. #define CPU_LOAD_IDX_MAX 5
  442. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  443. unsigned char idle_at_tick;
  444. #ifdef CONFIG_NO_HZ
  445. unsigned long last_tick_seen;
  446. unsigned char in_nohz_recently;
  447. #endif
  448. /* capture load from *all* tasks on this cpu: */
  449. struct load_weight load;
  450. unsigned long nr_load_updates;
  451. u64 nr_switches;
  452. struct cfs_rq cfs;
  453. struct rt_rq rt;
  454. #ifdef CONFIG_FAIR_GROUP_SCHED
  455. /* list of leaf cfs_rq on this cpu: */
  456. struct list_head leaf_cfs_rq_list;
  457. #endif
  458. #ifdef CONFIG_RT_GROUP_SCHED
  459. struct list_head leaf_rt_rq_list;
  460. #endif
  461. /*
  462. * This is part of a global counter where only the total sum
  463. * over all CPUs matters. A task can increase this counter on
  464. * one CPU and if it got migrated afterwards it may decrease
  465. * it on another CPU. Always updated under the runqueue lock:
  466. */
  467. unsigned long nr_uninterruptible;
  468. struct task_struct *curr, *idle;
  469. unsigned long next_balance;
  470. struct mm_struct *prev_mm;
  471. u64 clock;
  472. atomic_t nr_iowait;
  473. #ifdef CONFIG_SMP
  474. struct root_domain *rd;
  475. struct sched_domain *sd;
  476. /* For active balancing */
  477. int active_balance;
  478. int push_cpu;
  479. /* cpu of this runqueue: */
  480. int cpu;
  481. int online;
  482. unsigned long avg_load_per_task;
  483. struct task_struct *migration_thread;
  484. struct list_head migration_queue;
  485. #endif
  486. #ifdef CONFIG_SCHED_HRTICK
  487. #ifdef CONFIG_SMP
  488. int hrtick_csd_pending;
  489. struct call_single_data hrtick_csd;
  490. #endif
  491. struct hrtimer hrtick_timer;
  492. #endif
  493. #ifdef CONFIG_SCHEDSTATS
  494. /* latency stats */
  495. struct sched_info rq_sched_info;
  496. /* sys_sched_yield() stats */
  497. unsigned int yld_exp_empty;
  498. unsigned int yld_act_empty;
  499. unsigned int yld_both_empty;
  500. unsigned int yld_count;
  501. /* schedule() stats */
  502. unsigned int sched_switch;
  503. unsigned int sched_count;
  504. unsigned int sched_goidle;
  505. /* try_to_wake_up() stats */
  506. unsigned int ttwu_count;
  507. unsigned int ttwu_local;
  508. /* BKL stats */
  509. unsigned int bkl_count;
  510. #endif
  511. };
  512. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  513. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  514. {
  515. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  516. }
  517. static inline int cpu_of(struct rq *rq)
  518. {
  519. #ifdef CONFIG_SMP
  520. return rq->cpu;
  521. #else
  522. return 0;
  523. #endif
  524. }
  525. /*
  526. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  527. * See detach_destroy_domains: synchronize_sched for details.
  528. *
  529. * The domain tree of any CPU may only be accessed from within
  530. * preempt-disabled sections.
  531. */
  532. #define for_each_domain(cpu, __sd) \
  533. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  534. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  535. #define this_rq() (&__get_cpu_var(runqueues))
  536. #define task_rq(p) cpu_rq(task_cpu(p))
  537. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  538. static inline void update_rq_clock(struct rq *rq)
  539. {
  540. rq->clock = sched_clock_cpu(cpu_of(rq));
  541. }
  542. /*
  543. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  544. */
  545. #ifdef CONFIG_SCHED_DEBUG
  546. # define const_debug __read_mostly
  547. #else
  548. # define const_debug static const
  549. #endif
  550. /**
  551. * runqueue_is_locked
  552. *
  553. * Returns true if the current cpu runqueue is locked.
  554. * This interface allows printk to be called with the runqueue lock
  555. * held and know whether or not it is OK to wake up the klogd.
  556. */
  557. int runqueue_is_locked(void)
  558. {
  559. int cpu = get_cpu();
  560. struct rq *rq = cpu_rq(cpu);
  561. int ret;
  562. ret = spin_is_locked(&rq->lock);
  563. put_cpu();
  564. return ret;
  565. }
  566. /*
  567. * Debugging: various feature bits
  568. */
  569. #define SCHED_FEAT(name, enabled) \
  570. __SCHED_FEAT_##name ,
  571. enum {
  572. #include "sched_features.h"
  573. };
  574. #undef SCHED_FEAT
  575. #define SCHED_FEAT(name, enabled) \
  576. (1UL << __SCHED_FEAT_##name) * enabled |
  577. const_debug unsigned int sysctl_sched_features =
  578. #include "sched_features.h"
  579. 0;
  580. #undef SCHED_FEAT
  581. #ifdef CONFIG_SCHED_DEBUG
  582. #define SCHED_FEAT(name, enabled) \
  583. #name ,
  584. static __read_mostly char *sched_feat_names[] = {
  585. #include "sched_features.h"
  586. NULL
  587. };
  588. #undef SCHED_FEAT
  589. static int sched_feat_show(struct seq_file *m, void *v)
  590. {
  591. int i;
  592. for (i = 0; sched_feat_names[i]; i++) {
  593. if (!(sysctl_sched_features & (1UL << i)))
  594. seq_puts(m, "NO_");
  595. seq_printf(m, "%s ", sched_feat_names[i]);
  596. }
  597. seq_puts(m, "\n");
  598. return 0;
  599. }
  600. static ssize_t
  601. sched_feat_write(struct file *filp, const char __user *ubuf,
  602. size_t cnt, loff_t *ppos)
  603. {
  604. char buf[64];
  605. char *cmp = buf;
  606. int neg = 0;
  607. int i;
  608. if (cnt > 63)
  609. cnt = 63;
  610. if (copy_from_user(&buf, ubuf, cnt))
  611. return -EFAULT;
  612. buf[cnt] = 0;
  613. if (strncmp(buf, "NO_", 3) == 0) {
  614. neg = 1;
  615. cmp += 3;
  616. }
  617. for (i = 0; sched_feat_names[i]; i++) {
  618. int len = strlen(sched_feat_names[i]);
  619. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  620. if (neg)
  621. sysctl_sched_features &= ~(1UL << i);
  622. else
  623. sysctl_sched_features |= (1UL << i);
  624. break;
  625. }
  626. }
  627. if (!sched_feat_names[i])
  628. return -EINVAL;
  629. filp->f_pos += cnt;
  630. return cnt;
  631. }
  632. static int sched_feat_open(struct inode *inode, struct file *filp)
  633. {
  634. return single_open(filp, sched_feat_show, NULL);
  635. }
  636. static struct file_operations sched_feat_fops = {
  637. .open = sched_feat_open,
  638. .write = sched_feat_write,
  639. .read = seq_read,
  640. .llseek = seq_lseek,
  641. .release = single_release,
  642. };
  643. static __init int sched_init_debug(void)
  644. {
  645. debugfs_create_file("sched_features", 0644, NULL, NULL,
  646. &sched_feat_fops);
  647. return 0;
  648. }
  649. late_initcall(sched_init_debug);
  650. #endif
  651. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  652. /*
  653. * Number of tasks to iterate in a single balance run.
  654. * Limited because this is done with IRQs disabled.
  655. */
  656. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  657. /*
  658. * ratelimit for updating the group shares.
  659. * default: 0.25ms
  660. */
  661. unsigned int sysctl_sched_shares_ratelimit = 250000;
  662. /*
  663. * Inject some fuzzyness into changing the per-cpu group shares
  664. * this avoids remote rq-locks at the expense of fairness.
  665. * default: 4
  666. */
  667. unsigned int sysctl_sched_shares_thresh = 4;
  668. /*
  669. * period over which we measure -rt task cpu usage in us.
  670. * default: 1s
  671. */
  672. unsigned int sysctl_sched_rt_period = 1000000;
  673. static __read_mostly int scheduler_running;
  674. /*
  675. * part of the period that we allow rt tasks to run in us.
  676. * default: 0.95s
  677. */
  678. int sysctl_sched_rt_runtime = 950000;
  679. static inline u64 global_rt_period(void)
  680. {
  681. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  682. }
  683. static inline u64 global_rt_runtime(void)
  684. {
  685. if (sysctl_sched_rt_runtime < 0)
  686. return RUNTIME_INF;
  687. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  688. }
  689. #ifndef prepare_arch_switch
  690. # define prepare_arch_switch(next) do { } while (0)
  691. #endif
  692. #ifndef finish_arch_switch
  693. # define finish_arch_switch(prev) do { } while (0)
  694. #endif
  695. static inline int task_current(struct rq *rq, struct task_struct *p)
  696. {
  697. return rq->curr == p;
  698. }
  699. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  700. static inline int task_running(struct rq *rq, struct task_struct *p)
  701. {
  702. return task_current(rq, p);
  703. }
  704. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  705. {
  706. }
  707. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  708. {
  709. #ifdef CONFIG_DEBUG_SPINLOCK
  710. /* this is a valid case when another task releases the spinlock */
  711. rq->lock.owner = current;
  712. #endif
  713. /*
  714. * If we are tracking spinlock dependencies then we have to
  715. * fix up the runqueue lock - which gets 'carried over' from
  716. * prev into current:
  717. */
  718. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  719. spin_unlock_irq(&rq->lock);
  720. }
  721. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  722. static inline int task_running(struct rq *rq, struct task_struct *p)
  723. {
  724. #ifdef CONFIG_SMP
  725. return p->oncpu;
  726. #else
  727. return task_current(rq, p);
  728. #endif
  729. }
  730. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  731. {
  732. #ifdef CONFIG_SMP
  733. /*
  734. * We can optimise this out completely for !SMP, because the
  735. * SMP rebalancing from interrupt is the only thing that cares
  736. * here.
  737. */
  738. next->oncpu = 1;
  739. #endif
  740. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  741. spin_unlock_irq(&rq->lock);
  742. #else
  743. spin_unlock(&rq->lock);
  744. #endif
  745. }
  746. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  747. {
  748. #ifdef CONFIG_SMP
  749. /*
  750. * After ->oncpu is cleared, the task can be moved to a different CPU.
  751. * We must ensure this doesn't happen until the switch is completely
  752. * finished.
  753. */
  754. smp_wmb();
  755. prev->oncpu = 0;
  756. #endif
  757. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  758. local_irq_enable();
  759. #endif
  760. }
  761. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  762. /*
  763. * __task_rq_lock - lock the runqueue a given task resides on.
  764. * Must be called interrupts disabled.
  765. */
  766. static inline struct rq *__task_rq_lock(struct task_struct *p)
  767. __acquires(rq->lock)
  768. {
  769. for (;;) {
  770. struct rq *rq = task_rq(p);
  771. spin_lock(&rq->lock);
  772. if (likely(rq == task_rq(p)))
  773. return rq;
  774. spin_unlock(&rq->lock);
  775. }
  776. }
  777. /*
  778. * task_rq_lock - lock the runqueue a given task resides on and disable
  779. * interrupts. Note the ordering: we can safely lookup the task_rq without
  780. * explicitly disabling preemption.
  781. */
  782. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  783. __acquires(rq->lock)
  784. {
  785. struct rq *rq;
  786. for (;;) {
  787. local_irq_save(*flags);
  788. rq = task_rq(p);
  789. spin_lock(&rq->lock);
  790. if (likely(rq == task_rq(p)))
  791. return rq;
  792. spin_unlock_irqrestore(&rq->lock, *flags);
  793. }
  794. }
  795. void task_rq_unlock_wait(struct task_struct *p)
  796. {
  797. struct rq *rq = task_rq(p);
  798. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  799. spin_unlock_wait(&rq->lock);
  800. }
  801. static void __task_rq_unlock(struct rq *rq)
  802. __releases(rq->lock)
  803. {
  804. spin_unlock(&rq->lock);
  805. }
  806. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  807. __releases(rq->lock)
  808. {
  809. spin_unlock_irqrestore(&rq->lock, *flags);
  810. }
  811. /*
  812. * this_rq_lock - lock this runqueue and disable interrupts.
  813. */
  814. static struct rq *this_rq_lock(void)
  815. __acquires(rq->lock)
  816. {
  817. struct rq *rq;
  818. local_irq_disable();
  819. rq = this_rq();
  820. spin_lock(&rq->lock);
  821. return rq;
  822. }
  823. #ifdef CONFIG_SCHED_HRTICK
  824. /*
  825. * Use HR-timers to deliver accurate preemption points.
  826. *
  827. * Its all a bit involved since we cannot program an hrt while holding the
  828. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  829. * reschedule event.
  830. *
  831. * When we get rescheduled we reprogram the hrtick_timer outside of the
  832. * rq->lock.
  833. */
  834. /*
  835. * Use hrtick when:
  836. * - enabled by features
  837. * - hrtimer is actually high res
  838. */
  839. static inline int hrtick_enabled(struct rq *rq)
  840. {
  841. if (!sched_feat(HRTICK))
  842. return 0;
  843. if (!cpu_active(cpu_of(rq)))
  844. return 0;
  845. return hrtimer_is_hres_active(&rq->hrtick_timer);
  846. }
  847. static void hrtick_clear(struct rq *rq)
  848. {
  849. if (hrtimer_active(&rq->hrtick_timer))
  850. hrtimer_cancel(&rq->hrtick_timer);
  851. }
  852. /*
  853. * High-resolution timer tick.
  854. * Runs from hardirq context with interrupts disabled.
  855. */
  856. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  857. {
  858. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  859. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  860. spin_lock(&rq->lock);
  861. update_rq_clock(rq);
  862. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  863. spin_unlock(&rq->lock);
  864. return HRTIMER_NORESTART;
  865. }
  866. #ifdef CONFIG_SMP
  867. /*
  868. * called from hardirq (IPI) context
  869. */
  870. static void __hrtick_start(void *arg)
  871. {
  872. struct rq *rq = arg;
  873. spin_lock(&rq->lock);
  874. hrtimer_restart(&rq->hrtick_timer);
  875. rq->hrtick_csd_pending = 0;
  876. spin_unlock(&rq->lock);
  877. }
  878. /*
  879. * Called to set the hrtick timer state.
  880. *
  881. * called with rq->lock held and irqs disabled
  882. */
  883. static void hrtick_start(struct rq *rq, u64 delay)
  884. {
  885. struct hrtimer *timer = &rq->hrtick_timer;
  886. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  887. hrtimer_set_expires(timer, time);
  888. if (rq == this_rq()) {
  889. hrtimer_restart(timer);
  890. } else if (!rq->hrtick_csd_pending) {
  891. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  892. rq->hrtick_csd_pending = 1;
  893. }
  894. }
  895. static int
  896. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  897. {
  898. int cpu = (int)(long)hcpu;
  899. switch (action) {
  900. case CPU_UP_CANCELED:
  901. case CPU_UP_CANCELED_FROZEN:
  902. case CPU_DOWN_PREPARE:
  903. case CPU_DOWN_PREPARE_FROZEN:
  904. case CPU_DEAD:
  905. case CPU_DEAD_FROZEN:
  906. hrtick_clear(cpu_rq(cpu));
  907. return NOTIFY_OK;
  908. }
  909. return NOTIFY_DONE;
  910. }
  911. static __init void init_hrtick(void)
  912. {
  913. hotcpu_notifier(hotplug_hrtick, 0);
  914. }
  915. #else
  916. /*
  917. * Called to set the hrtick timer state.
  918. *
  919. * called with rq->lock held and irqs disabled
  920. */
  921. static void hrtick_start(struct rq *rq, u64 delay)
  922. {
  923. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  924. }
  925. static inline void init_hrtick(void)
  926. {
  927. }
  928. #endif /* CONFIG_SMP */
  929. static void init_rq_hrtick(struct rq *rq)
  930. {
  931. #ifdef CONFIG_SMP
  932. rq->hrtick_csd_pending = 0;
  933. rq->hrtick_csd.flags = 0;
  934. rq->hrtick_csd.func = __hrtick_start;
  935. rq->hrtick_csd.info = rq;
  936. #endif
  937. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  938. rq->hrtick_timer.function = hrtick;
  939. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  940. }
  941. #else /* CONFIG_SCHED_HRTICK */
  942. static inline void hrtick_clear(struct rq *rq)
  943. {
  944. }
  945. static inline void init_rq_hrtick(struct rq *rq)
  946. {
  947. }
  948. static inline void init_hrtick(void)
  949. {
  950. }
  951. #endif /* CONFIG_SCHED_HRTICK */
  952. /*
  953. * resched_task - mark a task 'to be rescheduled now'.
  954. *
  955. * On UP this means the setting of the need_resched flag, on SMP it
  956. * might also involve a cross-CPU call to trigger the scheduler on
  957. * the target CPU.
  958. */
  959. #ifdef CONFIG_SMP
  960. #ifndef tsk_is_polling
  961. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  962. #endif
  963. static void resched_task(struct task_struct *p)
  964. {
  965. int cpu;
  966. assert_spin_locked(&task_rq(p)->lock);
  967. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  968. return;
  969. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  970. cpu = task_cpu(p);
  971. if (cpu == smp_processor_id())
  972. return;
  973. /* NEED_RESCHED must be visible before we test polling */
  974. smp_mb();
  975. if (!tsk_is_polling(p))
  976. smp_send_reschedule(cpu);
  977. }
  978. static void resched_cpu(int cpu)
  979. {
  980. struct rq *rq = cpu_rq(cpu);
  981. unsigned long flags;
  982. if (!spin_trylock_irqsave(&rq->lock, flags))
  983. return;
  984. resched_task(cpu_curr(cpu));
  985. spin_unlock_irqrestore(&rq->lock, flags);
  986. }
  987. #ifdef CONFIG_NO_HZ
  988. /*
  989. * When add_timer_on() enqueues a timer into the timer wheel of an
  990. * idle CPU then this timer might expire before the next timer event
  991. * which is scheduled to wake up that CPU. In case of a completely
  992. * idle system the next event might even be infinite time into the
  993. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  994. * leaves the inner idle loop so the newly added timer is taken into
  995. * account when the CPU goes back to idle and evaluates the timer
  996. * wheel for the next timer event.
  997. */
  998. void wake_up_idle_cpu(int cpu)
  999. {
  1000. struct rq *rq = cpu_rq(cpu);
  1001. if (cpu == smp_processor_id())
  1002. return;
  1003. /*
  1004. * This is safe, as this function is called with the timer
  1005. * wheel base lock of (cpu) held. When the CPU is on the way
  1006. * to idle and has not yet set rq->curr to idle then it will
  1007. * be serialized on the timer wheel base lock and take the new
  1008. * timer into account automatically.
  1009. */
  1010. if (rq->curr != rq->idle)
  1011. return;
  1012. /*
  1013. * We can set TIF_RESCHED on the idle task of the other CPU
  1014. * lockless. The worst case is that the other CPU runs the
  1015. * idle task through an additional NOOP schedule()
  1016. */
  1017. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1018. /* NEED_RESCHED must be visible before we test polling */
  1019. smp_mb();
  1020. if (!tsk_is_polling(rq->idle))
  1021. smp_send_reschedule(cpu);
  1022. }
  1023. #endif /* CONFIG_NO_HZ */
  1024. #else /* !CONFIG_SMP */
  1025. static void resched_task(struct task_struct *p)
  1026. {
  1027. assert_spin_locked(&task_rq(p)->lock);
  1028. set_tsk_need_resched(p);
  1029. }
  1030. #endif /* CONFIG_SMP */
  1031. #if BITS_PER_LONG == 32
  1032. # define WMULT_CONST (~0UL)
  1033. #else
  1034. # define WMULT_CONST (1UL << 32)
  1035. #endif
  1036. #define WMULT_SHIFT 32
  1037. /*
  1038. * Shift right and round:
  1039. */
  1040. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1041. /*
  1042. * delta *= weight / lw
  1043. */
  1044. static unsigned long
  1045. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1046. struct load_weight *lw)
  1047. {
  1048. u64 tmp;
  1049. if (!lw->inv_weight) {
  1050. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1051. lw->inv_weight = 1;
  1052. else
  1053. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1054. / (lw->weight+1);
  1055. }
  1056. tmp = (u64)delta_exec * weight;
  1057. /*
  1058. * Check whether we'd overflow the 64-bit multiplication:
  1059. */
  1060. if (unlikely(tmp > WMULT_CONST))
  1061. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1062. WMULT_SHIFT/2);
  1063. else
  1064. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1065. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1066. }
  1067. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1068. {
  1069. lw->weight += inc;
  1070. lw->inv_weight = 0;
  1071. }
  1072. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1073. {
  1074. lw->weight -= dec;
  1075. lw->inv_weight = 0;
  1076. }
  1077. /*
  1078. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1079. * of tasks with abnormal "nice" values across CPUs the contribution that
  1080. * each task makes to its run queue's load is weighted according to its
  1081. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1082. * scaled version of the new time slice allocation that they receive on time
  1083. * slice expiry etc.
  1084. */
  1085. #define WEIGHT_IDLEPRIO 2
  1086. #define WMULT_IDLEPRIO (1 << 31)
  1087. /*
  1088. * Nice levels are multiplicative, with a gentle 10% change for every
  1089. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1090. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1091. * that remained on nice 0.
  1092. *
  1093. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1094. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1095. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1096. * If a task goes up by ~10% and another task goes down by ~10% then
  1097. * the relative distance between them is ~25%.)
  1098. */
  1099. static const int prio_to_weight[40] = {
  1100. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1101. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1102. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1103. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1104. /* 0 */ 1024, 820, 655, 526, 423,
  1105. /* 5 */ 335, 272, 215, 172, 137,
  1106. /* 10 */ 110, 87, 70, 56, 45,
  1107. /* 15 */ 36, 29, 23, 18, 15,
  1108. };
  1109. /*
  1110. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1111. *
  1112. * In cases where the weight does not change often, we can use the
  1113. * precalculated inverse to speed up arithmetics by turning divisions
  1114. * into multiplications:
  1115. */
  1116. static const u32 prio_to_wmult[40] = {
  1117. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1118. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1119. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1120. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1121. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1122. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1123. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1124. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1125. };
  1126. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1127. /*
  1128. * runqueue iterator, to support SMP load-balancing between different
  1129. * scheduling classes, without having to expose their internal data
  1130. * structures to the load-balancing proper:
  1131. */
  1132. struct rq_iterator {
  1133. void *arg;
  1134. struct task_struct *(*start)(void *);
  1135. struct task_struct *(*next)(void *);
  1136. };
  1137. #ifdef CONFIG_SMP
  1138. static unsigned long
  1139. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1140. unsigned long max_load_move, struct sched_domain *sd,
  1141. enum cpu_idle_type idle, int *all_pinned,
  1142. int *this_best_prio, struct rq_iterator *iterator);
  1143. static int
  1144. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1145. struct sched_domain *sd, enum cpu_idle_type idle,
  1146. struct rq_iterator *iterator);
  1147. #endif
  1148. #ifdef CONFIG_CGROUP_CPUACCT
  1149. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1150. #else
  1151. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1152. #endif
  1153. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1154. {
  1155. update_load_add(&rq->load, load);
  1156. }
  1157. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1158. {
  1159. update_load_sub(&rq->load, load);
  1160. }
  1161. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1162. typedef int (*tg_visitor)(struct task_group *, void *);
  1163. /*
  1164. * Iterate the full tree, calling @down when first entering a node and @up when
  1165. * leaving it for the final time.
  1166. */
  1167. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1168. {
  1169. struct task_group *parent, *child;
  1170. int ret;
  1171. rcu_read_lock();
  1172. parent = &root_task_group;
  1173. down:
  1174. ret = (*down)(parent, data);
  1175. if (ret)
  1176. goto out_unlock;
  1177. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1178. parent = child;
  1179. goto down;
  1180. up:
  1181. continue;
  1182. }
  1183. ret = (*up)(parent, data);
  1184. if (ret)
  1185. goto out_unlock;
  1186. child = parent;
  1187. parent = parent->parent;
  1188. if (parent)
  1189. goto up;
  1190. out_unlock:
  1191. rcu_read_unlock();
  1192. return ret;
  1193. }
  1194. static int tg_nop(struct task_group *tg, void *data)
  1195. {
  1196. return 0;
  1197. }
  1198. #endif
  1199. #ifdef CONFIG_SMP
  1200. static unsigned long source_load(int cpu, int type);
  1201. static unsigned long target_load(int cpu, int type);
  1202. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1203. static unsigned long cpu_avg_load_per_task(int cpu)
  1204. {
  1205. struct rq *rq = cpu_rq(cpu);
  1206. if (rq->nr_running)
  1207. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1208. else
  1209. rq->avg_load_per_task = 0;
  1210. return rq->avg_load_per_task;
  1211. }
  1212. #ifdef CONFIG_FAIR_GROUP_SCHED
  1213. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1214. /*
  1215. * Calculate and set the cpu's group shares.
  1216. */
  1217. static void
  1218. update_group_shares_cpu(struct task_group *tg, int cpu,
  1219. unsigned long sd_shares, unsigned long sd_rq_weight)
  1220. {
  1221. unsigned long shares;
  1222. unsigned long rq_weight;
  1223. if (!tg->se[cpu])
  1224. return;
  1225. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1226. /*
  1227. * \Sum shares * rq_weight
  1228. * shares = -----------------------
  1229. * \Sum rq_weight
  1230. *
  1231. */
  1232. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1233. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1234. if (abs(shares - tg->se[cpu]->load.weight) >
  1235. sysctl_sched_shares_thresh) {
  1236. struct rq *rq = cpu_rq(cpu);
  1237. unsigned long flags;
  1238. spin_lock_irqsave(&rq->lock, flags);
  1239. tg->cfs_rq[cpu]->shares = shares;
  1240. __set_se_shares(tg->se[cpu], shares);
  1241. spin_unlock_irqrestore(&rq->lock, flags);
  1242. }
  1243. }
  1244. /*
  1245. * Re-compute the task group their per cpu shares over the given domain.
  1246. * This needs to be done in a bottom-up fashion because the rq weight of a
  1247. * parent group depends on the shares of its child groups.
  1248. */
  1249. static int tg_shares_up(struct task_group *tg, void *data)
  1250. {
  1251. unsigned long weight, rq_weight = 0;
  1252. unsigned long shares = 0;
  1253. struct sched_domain *sd = data;
  1254. int i;
  1255. for_each_cpu_mask(i, sd->span) {
  1256. /*
  1257. * If there are currently no tasks on the cpu pretend there
  1258. * is one of average load so that when a new task gets to
  1259. * run here it will not get delayed by group starvation.
  1260. */
  1261. weight = tg->cfs_rq[i]->load.weight;
  1262. if (!weight)
  1263. weight = NICE_0_LOAD;
  1264. tg->cfs_rq[i]->rq_weight = weight;
  1265. rq_weight += weight;
  1266. shares += tg->cfs_rq[i]->shares;
  1267. }
  1268. if ((!shares && rq_weight) || shares > tg->shares)
  1269. shares = tg->shares;
  1270. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1271. shares = tg->shares;
  1272. for_each_cpu_mask(i, sd->span)
  1273. update_group_shares_cpu(tg, i, shares, rq_weight);
  1274. return 0;
  1275. }
  1276. /*
  1277. * Compute the cpu's hierarchical load factor for each task group.
  1278. * This needs to be done in a top-down fashion because the load of a child
  1279. * group is a fraction of its parents load.
  1280. */
  1281. static int tg_load_down(struct task_group *tg, void *data)
  1282. {
  1283. unsigned long load;
  1284. long cpu = (long)data;
  1285. if (!tg->parent) {
  1286. load = cpu_rq(cpu)->load.weight;
  1287. } else {
  1288. load = tg->parent->cfs_rq[cpu]->h_load;
  1289. load *= tg->cfs_rq[cpu]->shares;
  1290. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1291. }
  1292. tg->cfs_rq[cpu]->h_load = load;
  1293. return 0;
  1294. }
  1295. static void update_shares(struct sched_domain *sd)
  1296. {
  1297. u64 now = cpu_clock(raw_smp_processor_id());
  1298. s64 elapsed = now - sd->last_update;
  1299. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1300. sd->last_update = now;
  1301. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1302. }
  1303. }
  1304. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1305. {
  1306. spin_unlock(&rq->lock);
  1307. update_shares(sd);
  1308. spin_lock(&rq->lock);
  1309. }
  1310. static void update_h_load(long cpu)
  1311. {
  1312. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1313. }
  1314. #else
  1315. static inline void update_shares(struct sched_domain *sd)
  1316. {
  1317. }
  1318. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1319. {
  1320. }
  1321. #endif
  1322. #endif
  1323. #ifdef CONFIG_FAIR_GROUP_SCHED
  1324. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1325. {
  1326. #ifdef CONFIG_SMP
  1327. cfs_rq->shares = shares;
  1328. #endif
  1329. }
  1330. #endif
  1331. #include "sched_stats.h"
  1332. #include "sched_idletask.c"
  1333. #include "sched_fair.c"
  1334. #include "sched_rt.c"
  1335. #ifdef CONFIG_SCHED_DEBUG
  1336. # include "sched_debug.c"
  1337. #endif
  1338. #define sched_class_highest (&rt_sched_class)
  1339. #define for_each_class(class) \
  1340. for (class = sched_class_highest; class; class = class->next)
  1341. static void inc_nr_running(struct rq *rq)
  1342. {
  1343. rq->nr_running++;
  1344. }
  1345. static void dec_nr_running(struct rq *rq)
  1346. {
  1347. rq->nr_running--;
  1348. }
  1349. static void set_load_weight(struct task_struct *p)
  1350. {
  1351. if (task_has_rt_policy(p)) {
  1352. p->se.load.weight = prio_to_weight[0] * 2;
  1353. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1354. return;
  1355. }
  1356. /*
  1357. * SCHED_IDLE tasks get minimal weight:
  1358. */
  1359. if (p->policy == SCHED_IDLE) {
  1360. p->se.load.weight = WEIGHT_IDLEPRIO;
  1361. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1362. return;
  1363. }
  1364. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1365. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1366. }
  1367. static void update_avg(u64 *avg, u64 sample)
  1368. {
  1369. s64 diff = sample - *avg;
  1370. *avg += diff >> 3;
  1371. }
  1372. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1373. {
  1374. sched_info_queued(p);
  1375. p->sched_class->enqueue_task(rq, p, wakeup);
  1376. p->se.on_rq = 1;
  1377. }
  1378. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1379. {
  1380. if (sleep && p->se.last_wakeup) {
  1381. update_avg(&p->se.avg_overlap,
  1382. p->se.sum_exec_runtime - p->se.last_wakeup);
  1383. p->se.last_wakeup = 0;
  1384. }
  1385. sched_info_dequeued(p);
  1386. p->sched_class->dequeue_task(rq, p, sleep);
  1387. p->se.on_rq = 0;
  1388. }
  1389. /*
  1390. * __normal_prio - return the priority that is based on the static prio
  1391. */
  1392. static inline int __normal_prio(struct task_struct *p)
  1393. {
  1394. return p->static_prio;
  1395. }
  1396. /*
  1397. * Calculate the expected normal priority: i.e. priority
  1398. * without taking RT-inheritance into account. Might be
  1399. * boosted by interactivity modifiers. Changes upon fork,
  1400. * setprio syscalls, and whenever the interactivity
  1401. * estimator recalculates.
  1402. */
  1403. static inline int normal_prio(struct task_struct *p)
  1404. {
  1405. int prio;
  1406. if (task_has_rt_policy(p))
  1407. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1408. else
  1409. prio = __normal_prio(p);
  1410. return prio;
  1411. }
  1412. /*
  1413. * Calculate the current priority, i.e. the priority
  1414. * taken into account by the scheduler. This value might
  1415. * be boosted by RT tasks, or might be boosted by
  1416. * interactivity modifiers. Will be RT if the task got
  1417. * RT-boosted. If not then it returns p->normal_prio.
  1418. */
  1419. static int effective_prio(struct task_struct *p)
  1420. {
  1421. p->normal_prio = normal_prio(p);
  1422. /*
  1423. * If we are RT tasks or we were boosted to RT priority,
  1424. * keep the priority unchanged. Otherwise, update priority
  1425. * to the normal priority:
  1426. */
  1427. if (!rt_prio(p->prio))
  1428. return p->normal_prio;
  1429. return p->prio;
  1430. }
  1431. /*
  1432. * activate_task - move a task to the runqueue.
  1433. */
  1434. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1435. {
  1436. if (task_contributes_to_load(p))
  1437. rq->nr_uninterruptible--;
  1438. enqueue_task(rq, p, wakeup);
  1439. inc_nr_running(rq);
  1440. }
  1441. /*
  1442. * deactivate_task - remove a task from the runqueue.
  1443. */
  1444. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1445. {
  1446. if (task_contributes_to_load(p))
  1447. rq->nr_uninterruptible++;
  1448. dequeue_task(rq, p, sleep);
  1449. dec_nr_running(rq);
  1450. }
  1451. /**
  1452. * task_curr - is this task currently executing on a CPU?
  1453. * @p: the task in question.
  1454. */
  1455. inline int task_curr(const struct task_struct *p)
  1456. {
  1457. return cpu_curr(task_cpu(p)) == p;
  1458. }
  1459. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1460. {
  1461. set_task_rq(p, cpu);
  1462. #ifdef CONFIG_SMP
  1463. /*
  1464. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1465. * successfuly executed on another CPU. We must ensure that updates of
  1466. * per-task data have been completed by this moment.
  1467. */
  1468. smp_wmb();
  1469. task_thread_info(p)->cpu = cpu;
  1470. #endif
  1471. }
  1472. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1473. const struct sched_class *prev_class,
  1474. int oldprio, int running)
  1475. {
  1476. if (prev_class != p->sched_class) {
  1477. if (prev_class->switched_from)
  1478. prev_class->switched_from(rq, p, running);
  1479. p->sched_class->switched_to(rq, p, running);
  1480. } else
  1481. p->sched_class->prio_changed(rq, p, oldprio, running);
  1482. }
  1483. #ifdef CONFIG_SMP
  1484. /* Used instead of source_load when we know the type == 0 */
  1485. static unsigned long weighted_cpuload(const int cpu)
  1486. {
  1487. return cpu_rq(cpu)->load.weight;
  1488. }
  1489. /*
  1490. * Is this task likely cache-hot:
  1491. */
  1492. static int
  1493. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1494. {
  1495. s64 delta;
  1496. /*
  1497. * Buddy candidates are cache hot:
  1498. */
  1499. if (sched_feat(CACHE_HOT_BUDDY) &&
  1500. (&p->se == cfs_rq_of(&p->se)->next ||
  1501. &p->se == cfs_rq_of(&p->se)->last))
  1502. return 1;
  1503. if (p->sched_class != &fair_sched_class)
  1504. return 0;
  1505. if (sysctl_sched_migration_cost == -1)
  1506. return 1;
  1507. if (sysctl_sched_migration_cost == 0)
  1508. return 0;
  1509. delta = now - p->se.exec_start;
  1510. return delta < (s64)sysctl_sched_migration_cost;
  1511. }
  1512. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1513. {
  1514. int old_cpu = task_cpu(p);
  1515. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1516. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1517. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1518. u64 clock_offset;
  1519. clock_offset = old_rq->clock - new_rq->clock;
  1520. #ifdef CONFIG_SCHEDSTATS
  1521. if (p->se.wait_start)
  1522. p->se.wait_start -= clock_offset;
  1523. if (p->se.sleep_start)
  1524. p->se.sleep_start -= clock_offset;
  1525. if (p->se.block_start)
  1526. p->se.block_start -= clock_offset;
  1527. if (old_cpu != new_cpu) {
  1528. schedstat_inc(p, se.nr_migrations);
  1529. if (task_hot(p, old_rq->clock, NULL))
  1530. schedstat_inc(p, se.nr_forced2_migrations);
  1531. }
  1532. #endif
  1533. p->se.vruntime -= old_cfsrq->min_vruntime -
  1534. new_cfsrq->min_vruntime;
  1535. __set_task_cpu(p, new_cpu);
  1536. }
  1537. struct migration_req {
  1538. struct list_head list;
  1539. struct task_struct *task;
  1540. int dest_cpu;
  1541. struct completion done;
  1542. };
  1543. /*
  1544. * The task's runqueue lock must be held.
  1545. * Returns true if you have to wait for migration thread.
  1546. */
  1547. static int
  1548. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1549. {
  1550. struct rq *rq = task_rq(p);
  1551. /*
  1552. * If the task is not on a runqueue (and not running), then
  1553. * it is sufficient to simply update the task's cpu field.
  1554. */
  1555. if (!p->se.on_rq && !task_running(rq, p)) {
  1556. set_task_cpu(p, dest_cpu);
  1557. return 0;
  1558. }
  1559. init_completion(&req->done);
  1560. req->task = p;
  1561. req->dest_cpu = dest_cpu;
  1562. list_add(&req->list, &rq->migration_queue);
  1563. return 1;
  1564. }
  1565. /*
  1566. * wait_task_inactive - wait for a thread to unschedule.
  1567. *
  1568. * If @match_state is nonzero, it's the @p->state value just checked and
  1569. * not expected to change. If it changes, i.e. @p might have woken up,
  1570. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1571. * we return a positive number (its total switch count). If a second call
  1572. * a short while later returns the same number, the caller can be sure that
  1573. * @p has remained unscheduled the whole time.
  1574. *
  1575. * The caller must ensure that the task *will* unschedule sometime soon,
  1576. * else this function might spin for a *long* time. This function can't
  1577. * be called with interrupts off, or it may introduce deadlock with
  1578. * smp_call_function() if an IPI is sent by the same process we are
  1579. * waiting to become inactive.
  1580. */
  1581. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1582. {
  1583. unsigned long flags;
  1584. int running, on_rq;
  1585. unsigned long ncsw;
  1586. struct rq *rq;
  1587. for (;;) {
  1588. /*
  1589. * We do the initial early heuristics without holding
  1590. * any task-queue locks at all. We'll only try to get
  1591. * the runqueue lock when things look like they will
  1592. * work out!
  1593. */
  1594. rq = task_rq(p);
  1595. /*
  1596. * If the task is actively running on another CPU
  1597. * still, just relax and busy-wait without holding
  1598. * any locks.
  1599. *
  1600. * NOTE! Since we don't hold any locks, it's not
  1601. * even sure that "rq" stays as the right runqueue!
  1602. * But we don't care, since "task_running()" will
  1603. * return false if the runqueue has changed and p
  1604. * is actually now running somewhere else!
  1605. */
  1606. while (task_running(rq, p)) {
  1607. if (match_state && unlikely(p->state != match_state))
  1608. return 0;
  1609. cpu_relax();
  1610. }
  1611. /*
  1612. * Ok, time to look more closely! We need the rq
  1613. * lock now, to be *sure*. If we're wrong, we'll
  1614. * just go back and repeat.
  1615. */
  1616. rq = task_rq_lock(p, &flags);
  1617. trace_sched_wait_task(rq, p);
  1618. running = task_running(rq, p);
  1619. on_rq = p->se.on_rq;
  1620. ncsw = 0;
  1621. if (!match_state || p->state == match_state)
  1622. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1623. task_rq_unlock(rq, &flags);
  1624. /*
  1625. * If it changed from the expected state, bail out now.
  1626. */
  1627. if (unlikely(!ncsw))
  1628. break;
  1629. /*
  1630. * Was it really running after all now that we
  1631. * checked with the proper locks actually held?
  1632. *
  1633. * Oops. Go back and try again..
  1634. */
  1635. if (unlikely(running)) {
  1636. cpu_relax();
  1637. continue;
  1638. }
  1639. /*
  1640. * It's not enough that it's not actively running,
  1641. * it must be off the runqueue _entirely_, and not
  1642. * preempted!
  1643. *
  1644. * So if it wa still runnable (but just not actively
  1645. * running right now), it's preempted, and we should
  1646. * yield - it could be a while.
  1647. */
  1648. if (unlikely(on_rq)) {
  1649. schedule_timeout_uninterruptible(1);
  1650. continue;
  1651. }
  1652. /*
  1653. * Ahh, all good. It wasn't running, and it wasn't
  1654. * runnable, which means that it will never become
  1655. * running in the future either. We're all done!
  1656. */
  1657. break;
  1658. }
  1659. return ncsw;
  1660. }
  1661. /***
  1662. * kick_process - kick a running thread to enter/exit the kernel
  1663. * @p: the to-be-kicked thread
  1664. *
  1665. * Cause a process which is running on another CPU to enter
  1666. * kernel-mode, without any delay. (to get signals handled.)
  1667. *
  1668. * NOTE: this function doesnt have to take the runqueue lock,
  1669. * because all it wants to ensure is that the remote task enters
  1670. * the kernel. If the IPI races and the task has been migrated
  1671. * to another CPU then no harm is done and the purpose has been
  1672. * achieved as well.
  1673. */
  1674. void kick_process(struct task_struct *p)
  1675. {
  1676. int cpu;
  1677. preempt_disable();
  1678. cpu = task_cpu(p);
  1679. if ((cpu != smp_processor_id()) && task_curr(p))
  1680. smp_send_reschedule(cpu);
  1681. preempt_enable();
  1682. }
  1683. /*
  1684. * Return a low guess at the load of a migration-source cpu weighted
  1685. * according to the scheduling class and "nice" value.
  1686. *
  1687. * We want to under-estimate the load of migration sources, to
  1688. * balance conservatively.
  1689. */
  1690. static unsigned long source_load(int cpu, int type)
  1691. {
  1692. struct rq *rq = cpu_rq(cpu);
  1693. unsigned long total = weighted_cpuload(cpu);
  1694. if (type == 0 || !sched_feat(LB_BIAS))
  1695. return total;
  1696. return min(rq->cpu_load[type-1], total);
  1697. }
  1698. /*
  1699. * Return a high guess at the load of a migration-target cpu weighted
  1700. * according to the scheduling class and "nice" value.
  1701. */
  1702. static unsigned long target_load(int cpu, int type)
  1703. {
  1704. struct rq *rq = cpu_rq(cpu);
  1705. unsigned long total = weighted_cpuload(cpu);
  1706. if (type == 0 || !sched_feat(LB_BIAS))
  1707. return total;
  1708. return max(rq->cpu_load[type-1], total);
  1709. }
  1710. /*
  1711. * find_idlest_group finds and returns the least busy CPU group within the
  1712. * domain.
  1713. */
  1714. static struct sched_group *
  1715. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1716. {
  1717. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1718. unsigned long min_load = ULONG_MAX, this_load = 0;
  1719. int load_idx = sd->forkexec_idx;
  1720. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1721. do {
  1722. unsigned long load, avg_load;
  1723. int local_group;
  1724. int i;
  1725. /* Skip over this group if it has no CPUs allowed */
  1726. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1727. continue;
  1728. local_group = cpu_isset(this_cpu, group->cpumask);
  1729. /* Tally up the load of all CPUs in the group */
  1730. avg_load = 0;
  1731. for_each_cpu_mask_nr(i, group->cpumask) {
  1732. /* Bias balancing toward cpus of our domain */
  1733. if (local_group)
  1734. load = source_load(i, load_idx);
  1735. else
  1736. load = target_load(i, load_idx);
  1737. avg_load += load;
  1738. }
  1739. /* Adjust by relative CPU power of the group */
  1740. avg_load = sg_div_cpu_power(group,
  1741. avg_load * SCHED_LOAD_SCALE);
  1742. if (local_group) {
  1743. this_load = avg_load;
  1744. this = group;
  1745. } else if (avg_load < min_load) {
  1746. min_load = avg_load;
  1747. idlest = group;
  1748. }
  1749. } while (group = group->next, group != sd->groups);
  1750. if (!idlest || 100*this_load < imbalance*min_load)
  1751. return NULL;
  1752. return idlest;
  1753. }
  1754. /*
  1755. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1756. */
  1757. static int
  1758. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1759. cpumask_t *tmp)
  1760. {
  1761. unsigned long load, min_load = ULONG_MAX;
  1762. int idlest = -1;
  1763. int i;
  1764. /* Traverse only the allowed CPUs */
  1765. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1766. for_each_cpu_mask_nr(i, *tmp) {
  1767. load = weighted_cpuload(i);
  1768. if (load < min_load || (load == min_load && i == this_cpu)) {
  1769. min_load = load;
  1770. idlest = i;
  1771. }
  1772. }
  1773. return idlest;
  1774. }
  1775. /*
  1776. * sched_balance_self: balance the current task (running on cpu) in domains
  1777. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1778. * SD_BALANCE_EXEC.
  1779. *
  1780. * Balance, ie. select the least loaded group.
  1781. *
  1782. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1783. *
  1784. * preempt must be disabled.
  1785. */
  1786. static int sched_balance_self(int cpu, int flag)
  1787. {
  1788. struct task_struct *t = current;
  1789. struct sched_domain *tmp, *sd = NULL;
  1790. for_each_domain(cpu, tmp) {
  1791. /*
  1792. * If power savings logic is enabled for a domain, stop there.
  1793. */
  1794. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1795. break;
  1796. if (tmp->flags & flag)
  1797. sd = tmp;
  1798. }
  1799. if (sd)
  1800. update_shares(sd);
  1801. while (sd) {
  1802. cpumask_t span, tmpmask;
  1803. struct sched_group *group;
  1804. int new_cpu, weight;
  1805. if (!(sd->flags & flag)) {
  1806. sd = sd->child;
  1807. continue;
  1808. }
  1809. span = sd->span;
  1810. group = find_idlest_group(sd, t, cpu);
  1811. if (!group) {
  1812. sd = sd->child;
  1813. continue;
  1814. }
  1815. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1816. if (new_cpu == -1 || new_cpu == cpu) {
  1817. /* Now try balancing at a lower domain level of cpu */
  1818. sd = sd->child;
  1819. continue;
  1820. }
  1821. /* Now try balancing at a lower domain level of new_cpu */
  1822. cpu = new_cpu;
  1823. sd = NULL;
  1824. weight = cpus_weight(span);
  1825. for_each_domain(cpu, tmp) {
  1826. if (weight <= cpus_weight(tmp->span))
  1827. break;
  1828. if (tmp->flags & flag)
  1829. sd = tmp;
  1830. }
  1831. /* while loop will break here if sd == NULL */
  1832. }
  1833. return cpu;
  1834. }
  1835. #endif /* CONFIG_SMP */
  1836. /***
  1837. * try_to_wake_up - wake up a thread
  1838. * @p: the to-be-woken-up thread
  1839. * @state: the mask of task states that can be woken
  1840. * @sync: do a synchronous wakeup?
  1841. *
  1842. * Put it on the run-queue if it's not already there. The "current"
  1843. * thread is always on the run-queue (except when the actual
  1844. * re-schedule is in progress), and as such you're allowed to do
  1845. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1846. * runnable without the overhead of this.
  1847. *
  1848. * returns failure only if the task is already active.
  1849. */
  1850. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1851. {
  1852. int cpu, orig_cpu, this_cpu, success = 0;
  1853. unsigned long flags;
  1854. long old_state;
  1855. struct rq *rq;
  1856. if (!sched_feat(SYNC_WAKEUPS))
  1857. sync = 0;
  1858. #ifdef CONFIG_SMP
  1859. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1860. struct sched_domain *sd;
  1861. this_cpu = raw_smp_processor_id();
  1862. cpu = task_cpu(p);
  1863. for_each_domain(this_cpu, sd) {
  1864. if (cpu_isset(cpu, sd->span)) {
  1865. update_shares(sd);
  1866. break;
  1867. }
  1868. }
  1869. }
  1870. #endif
  1871. smp_wmb();
  1872. rq = task_rq_lock(p, &flags);
  1873. old_state = p->state;
  1874. if (!(old_state & state))
  1875. goto out;
  1876. if (p->se.on_rq)
  1877. goto out_running;
  1878. cpu = task_cpu(p);
  1879. orig_cpu = cpu;
  1880. this_cpu = smp_processor_id();
  1881. #ifdef CONFIG_SMP
  1882. if (unlikely(task_running(rq, p)))
  1883. goto out_activate;
  1884. cpu = p->sched_class->select_task_rq(p, sync);
  1885. if (cpu != orig_cpu) {
  1886. set_task_cpu(p, cpu);
  1887. task_rq_unlock(rq, &flags);
  1888. /* might preempt at this point */
  1889. rq = task_rq_lock(p, &flags);
  1890. old_state = p->state;
  1891. if (!(old_state & state))
  1892. goto out;
  1893. if (p->se.on_rq)
  1894. goto out_running;
  1895. this_cpu = smp_processor_id();
  1896. cpu = task_cpu(p);
  1897. }
  1898. #ifdef CONFIG_SCHEDSTATS
  1899. schedstat_inc(rq, ttwu_count);
  1900. if (cpu == this_cpu)
  1901. schedstat_inc(rq, ttwu_local);
  1902. else {
  1903. struct sched_domain *sd;
  1904. for_each_domain(this_cpu, sd) {
  1905. if (cpu_isset(cpu, sd->span)) {
  1906. schedstat_inc(sd, ttwu_wake_remote);
  1907. break;
  1908. }
  1909. }
  1910. }
  1911. #endif /* CONFIG_SCHEDSTATS */
  1912. out_activate:
  1913. #endif /* CONFIG_SMP */
  1914. schedstat_inc(p, se.nr_wakeups);
  1915. if (sync)
  1916. schedstat_inc(p, se.nr_wakeups_sync);
  1917. if (orig_cpu != cpu)
  1918. schedstat_inc(p, se.nr_wakeups_migrate);
  1919. if (cpu == this_cpu)
  1920. schedstat_inc(p, se.nr_wakeups_local);
  1921. else
  1922. schedstat_inc(p, se.nr_wakeups_remote);
  1923. update_rq_clock(rq);
  1924. activate_task(rq, p, 1);
  1925. success = 1;
  1926. out_running:
  1927. trace_sched_wakeup(rq, p);
  1928. check_preempt_curr(rq, p, sync);
  1929. p->state = TASK_RUNNING;
  1930. #ifdef CONFIG_SMP
  1931. if (p->sched_class->task_wake_up)
  1932. p->sched_class->task_wake_up(rq, p);
  1933. #endif
  1934. out:
  1935. current->se.last_wakeup = current->se.sum_exec_runtime;
  1936. task_rq_unlock(rq, &flags);
  1937. return success;
  1938. }
  1939. int wake_up_process(struct task_struct *p)
  1940. {
  1941. return try_to_wake_up(p, TASK_ALL, 0);
  1942. }
  1943. EXPORT_SYMBOL(wake_up_process);
  1944. int wake_up_state(struct task_struct *p, unsigned int state)
  1945. {
  1946. return try_to_wake_up(p, state, 0);
  1947. }
  1948. /*
  1949. * Perform scheduler related setup for a newly forked process p.
  1950. * p is forked by current.
  1951. *
  1952. * __sched_fork() is basic setup used by init_idle() too:
  1953. */
  1954. static void __sched_fork(struct task_struct *p)
  1955. {
  1956. p->se.exec_start = 0;
  1957. p->se.sum_exec_runtime = 0;
  1958. p->se.prev_sum_exec_runtime = 0;
  1959. p->se.last_wakeup = 0;
  1960. p->se.avg_overlap = 0;
  1961. #ifdef CONFIG_SCHEDSTATS
  1962. p->se.wait_start = 0;
  1963. p->se.sum_sleep_runtime = 0;
  1964. p->se.sleep_start = 0;
  1965. p->se.block_start = 0;
  1966. p->se.sleep_max = 0;
  1967. p->se.block_max = 0;
  1968. p->se.exec_max = 0;
  1969. p->se.slice_max = 0;
  1970. p->se.wait_max = 0;
  1971. #endif
  1972. INIT_LIST_HEAD(&p->rt.run_list);
  1973. p->se.on_rq = 0;
  1974. INIT_LIST_HEAD(&p->se.group_node);
  1975. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1976. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1977. #endif
  1978. /*
  1979. * We mark the process as running here, but have not actually
  1980. * inserted it onto the runqueue yet. This guarantees that
  1981. * nobody will actually run it, and a signal or other external
  1982. * event cannot wake it up and insert it on the runqueue either.
  1983. */
  1984. p->state = TASK_RUNNING;
  1985. }
  1986. /*
  1987. * fork()/clone()-time setup:
  1988. */
  1989. void sched_fork(struct task_struct *p, int clone_flags)
  1990. {
  1991. int cpu = get_cpu();
  1992. __sched_fork(p);
  1993. #ifdef CONFIG_SMP
  1994. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1995. #endif
  1996. set_task_cpu(p, cpu);
  1997. /*
  1998. * Make sure we do not leak PI boosting priority to the child:
  1999. */
  2000. p->prio = current->normal_prio;
  2001. if (!rt_prio(p->prio))
  2002. p->sched_class = &fair_sched_class;
  2003. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2004. if (likely(sched_info_on()))
  2005. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2006. #endif
  2007. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2008. p->oncpu = 0;
  2009. #endif
  2010. #ifdef CONFIG_PREEMPT
  2011. /* Want to start with kernel preemption disabled. */
  2012. task_thread_info(p)->preempt_count = 1;
  2013. #endif
  2014. put_cpu();
  2015. }
  2016. /*
  2017. * wake_up_new_task - wake up a newly created task for the first time.
  2018. *
  2019. * This function will do some initial scheduler statistics housekeeping
  2020. * that must be done for every newly created context, then puts the task
  2021. * on the runqueue and wakes it.
  2022. */
  2023. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2024. {
  2025. unsigned long flags;
  2026. struct rq *rq;
  2027. rq = task_rq_lock(p, &flags);
  2028. BUG_ON(p->state != TASK_RUNNING);
  2029. update_rq_clock(rq);
  2030. p->prio = effective_prio(p);
  2031. if (!p->sched_class->task_new || !current->se.on_rq) {
  2032. activate_task(rq, p, 0);
  2033. } else {
  2034. /*
  2035. * Let the scheduling class do new task startup
  2036. * management (if any):
  2037. */
  2038. p->sched_class->task_new(rq, p);
  2039. inc_nr_running(rq);
  2040. }
  2041. trace_sched_wakeup_new(rq, p);
  2042. check_preempt_curr(rq, p, 0);
  2043. #ifdef CONFIG_SMP
  2044. if (p->sched_class->task_wake_up)
  2045. p->sched_class->task_wake_up(rq, p);
  2046. #endif
  2047. task_rq_unlock(rq, &flags);
  2048. }
  2049. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2050. /**
  2051. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2052. * @notifier: notifier struct to register
  2053. */
  2054. void preempt_notifier_register(struct preempt_notifier *notifier)
  2055. {
  2056. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2057. }
  2058. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2059. /**
  2060. * preempt_notifier_unregister - no longer interested in preemption notifications
  2061. * @notifier: notifier struct to unregister
  2062. *
  2063. * This is safe to call from within a preemption notifier.
  2064. */
  2065. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2066. {
  2067. hlist_del(&notifier->link);
  2068. }
  2069. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2070. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2071. {
  2072. struct preempt_notifier *notifier;
  2073. struct hlist_node *node;
  2074. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2075. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2076. }
  2077. static void
  2078. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2079. struct task_struct *next)
  2080. {
  2081. struct preempt_notifier *notifier;
  2082. struct hlist_node *node;
  2083. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2084. notifier->ops->sched_out(notifier, next);
  2085. }
  2086. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2087. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2088. {
  2089. }
  2090. static void
  2091. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2092. struct task_struct *next)
  2093. {
  2094. }
  2095. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2096. /**
  2097. * prepare_task_switch - prepare to switch tasks
  2098. * @rq: the runqueue preparing to switch
  2099. * @prev: the current task that is being switched out
  2100. * @next: the task we are going to switch to.
  2101. *
  2102. * This is called with the rq lock held and interrupts off. It must
  2103. * be paired with a subsequent finish_task_switch after the context
  2104. * switch.
  2105. *
  2106. * prepare_task_switch sets up locking and calls architecture specific
  2107. * hooks.
  2108. */
  2109. static inline void
  2110. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2111. struct task_struct *next)
  2112. {
  2113. fire_sched_out_preempt_notifiers(prev, next);
  2114. prepare_lock_switch(rq, next);
  2115. prepare_arch_switch(next);
  2116. }
  2117. /**
  2118. * finish_task_switch - clean up after a task-switch
  2119. * @rq: runqueue associated with task-switch
  2120. * @prev: the thread we just switched away from.
  2121. *
  2122. * finish_task_switch must be called after the context switch, paired
  2123. * with a prepare_task_switch call before the context switch.
  2124. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2125. * and do any other architecture-specific cleanup actions.
  2126. *
  2127. * Note that we may have delayed dropping an mm in context_switch(). If
  2128. * so, we finish that here outside of the runqueue lock. (Doing it
  2129. * with the lock held can cause deadlocks; see schedule() for
  2130. * details.)
  2131. */
  2132. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2133. __releases(rq->lock)
  2134. {
  2135. struct mm_struct *mm = rq->prev_mm;
  2136. long prev_state;
  2137. rq->prev_mm = NULL;
  2138. /*
  2139. * A task struct has one reference for the use as "current".
  2140. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2141. * schedule one last time. The schedule call will never return, and
  2142. * the scheduled task must drop that reference.
  2143. * The test for TASK_DEAD must occur while the runqueue locks are
  2144. * still held, otherwise prev could be scheduled on another cpu, die
  2145. * there before we look at prev->state, and then the reference would
  2146. * be dropped twice.
  2147. * Manfred Spraul <manfred@colorfullife.com>
  2148. */
  2149. prev_state = prev->state;
  2150. finish_arch_switch(prev);
  2151. finish_lock_switch(rq, prev);
  2152. #ifdef CONFIG_SMP
  2153. if (current->sched_class->post_schedule)
  2154. current->sched_class->post_schedule(rq);
  2155. #endif
  2156. fire_sched_in_preempt_notifiers(current);
  2157. if (mm)
  2158. mmdrop(mm);
  2159. if (unlikely(prev_state == TASK_DEAD)) {
  2160. /*
  2161. * Remove function-return probe instances associated with this
  2162. * task and put them back on the free list.
  2163. */
  2164. kprobe_flush_task(prev);
  2165. put_task_struct(prev);
  2166. }
  2167. }
  2168. /**
  2169. * schedule_tail - first thing a freshly forked thread must call.
  2170. * @prev: the thread we just switched away from.
  2171. */
  2172. asmlinkage void schedule_tail(struct task_struct *prev)
  2173. __releases(rq->lock)
  2174. {
  2175. struct rq *rq = this_rq();
  2176. finish_task_switch(rq, prev);
  2177. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2178. /* In this case, finish_task_switch does not reenable preemption */
  2179. preempt_enable();
  2180. #endif
  2181. if (current->set_child_tid)
  2182. put_user(task_pid_vnr(current), current->set_child_tid);
  2183. }
  2184. /*
  2185. * context_switch - switch to the new MM and the new
  2186. * thread's register state.
  2187. */
  2188. static inline void
  2189. context_switch(struct rq *rq, struct task_struct *prev,
  2190. struct task_struct *next)
  2191. {
  2192. struct mm_struct *mm, *oldmm;
  2193. prepare_task_switch(rq, prev, next);
  2194. trace_sched_switch(rq, prev, next);
  2195. mm = next->mm;
  2196. oldmm = prev->active_mm;
  2197. /*
  2198. * For paravirt, this is coupled with an exit in switch_to to
  2199. * combine the page table reload and the switch backend into
  2200. * one hypercall.
  2201. */
  2202. arch_enter_lazy_cpu_mode();
  2203. if (unlikely(!mm)) {
  2204. next->active_mm = oldmm;
  2205. atomic_inc(&oldmm->mm_count);
  2206. enter_lazy_tlb(oldmm, next);
  2207. } else
  2208. switch_mm(oldmm, mm, next);
  2209. if (unlikely(!prev->mm)) {
  2210. prev->active_mm = NULL;
  2211. rq->prev_mm = oldmm;
  2212. }
  2213. /*
  2214. * Since the runqueue lock will be released by the next
  2215. * task (which is an invalid locking op but in the case
  2216. * of the scheduler it's an obvious special-case), so we
  2217. * do an early lockdep release here:
  2218. */
  2219. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2220. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2221. #endif
  2222. /* Here we just switch the register state and the stack. */
  2223. switch_to(prev, next, prev);
  2224. barrier();
  2225. /*
  2226. * this_rq must be evaluated again because prev may have moved
  2227. * CPUs since it called schedule(), thus the 'rq' on its stack
  2228. * frame will be invalid.
  2229. */
  2230. finish_task_switch(this_rq(), prev);
  2231. }
  2232. /*
  2233. * nr_running, nr_uninterruptible and nr_context_switches:
  2234. *
  2235. * externally visible scheduler statistics: current number of runnable
  2236. * threads, current number of uninterruptible-sleeping threads, total
  2237. * number of context switches performed since bootup.
  2238. */
  2239. unsigned long nr_running(void)
  2240. {
  2241. unsigned long i, sum = 0;
  2242. for_each_online_cpu(i)
  2243. sum += cpu_rq(i)->nr_running;
  2244. return sum;
  2245. }
  2246. unsigned long nr_uninterruptible(void)
  2247. {
  2248. unsigned long i, sum = 0;
  2249. for_each_possible_cpu(i)
  2250. sum += cpu_rq(i)->nr_uninterruptible;
  2251. /*
  2252. * Since we read the counters lockless, it might be slightly
  2253. * inaccurate. Do not allow it to go below zero though:
  2254. */
  2255. if (unlikely((long)sum < 0))
  2256. sum = 0;
  2257. return sum;
  2258. }
  2259. unsigned long long nr_context_switches(void)
  2260. {
  2261. int i;
  2262. unsigned long long sum = 0;
  2263. for_each_possible_cpu(i)
  2264. sum += cpu_rq(i)->nr_switches;
  2265. return sum;
  2266. }
  2267. unsigned long nr_iowait(void)
  2268. {
  2269. unsigned long i, sum = 0;
  2270. for_each_possible_cpu(i)
  2271. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2272. return sum;
  2273. }
  2274. unsigned long nr_active(void)
  2275. {
  2276. unsigned long i, running = 0, uninterruptible = 0;
  2277. for_each_online_cpu(i) {
  2278. running += cpu_rq(i)->nr_running;
  2279. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2280. }
  2281. if (unlikely((long)uninterruptible < 0))
  2282. uninterruptible = 0;
  2283. return running + uninterruptible;
  2284. }
  2285. /*
  2286. * Update rq->cpu_load[] statistics. This function is usually called every
  2287. * scheduler tick (TICK_NSEC).
  2288. */
  2289. static void update_cpu_load(struct rq *this_rq)
  2290. {
  2291. unsigned long this_load = this_rq->load.weight;
  2292. int i, scale;
  2293. this_rq->nr_load_updates++;
  2294. /* Update our load: */
  2295. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2296. unsigned long old_load, new_load;
  2297. /* scale is effectively 1 << i now, and >> i divides by scale */
  2298. old_load = this_rq->cpu_load[i];
  2299. new_load = this_load;
  2300. /*
  2301. * Round up the averaging division if load is increasing. This
  2302. * prevents us from getting stuck on 9 if the load is 10, for
  2303. * example.
  2304. */
  2305. if (new_load > old_load)
  2306. new_load += scale-1;
  2307. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2308. }
  2309. }
  2310. #ifdef CONFIG_SMP
  2311. /*
  2312. * double_rq_lock - safely lock two runqueues
  2313. *
  2314. * Note this does not disable interrupts like task_rq_lock,
  2315. * you need to do so manually before calling.
  2316. */
  2317. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2318. __acquires(rq1->lock)
  2319. __acquires(rq2->lock)
  2320. {
  2321. BUG_ON(!irqs_disabled());
  2322. if (rq1 == rq2) {
  2323. spin_lock(&rq1->lock);
  2324. __acquire(rq2->lock); /* Fake it out ;) */
  2325. } else {
  2326. if (rq1 < rq2) {
  2327. spin_lock(&rq1->lock);
  2328. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2329. } else {
  2330. spin_lock(&rq2->lock);
  2331. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2332. }
  2333. }
  2334. update_rq_clock(rq1);
  2335. update_rq_clock(rq2);
  2336. }
  2337. /*
  2338. * double_rq_unlock - safely unlock two runqueues
  2339. *
  2340. * Note this does not restore interrupts like task_rq_unlock,
  2341. * you need to do so manually after calling.
  2342. */
  2343. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2344. __releases(rq1->lock)
  2345. __releases(rq2->lock)
  2346. {
  2347. spin_unlock(&rq1->lock);
  2348. if (rq1 != rq2)
  2349. spin_unlock(&rq2->lock);
  2350. else
  2351. __release(rq2->lock);
  2352. }
  2353. /*
  2354. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2355. */
  2356. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2357. __releases(this_rq->lock)
  2358. __acquires(busiest->lock)
  2359. __acquires(this_rq->lock)
  2360. {
  2361. int ret = 0;
  2362. if (unlikely(!irqs_disabled())) {
  2363. /* printk() doesn't work good under rq->lock */
  2364. spin_unlock(&this_rq->lock);
  2365. BUG_ON(1);
  2366. }
  2367. if (unlikely(!spin_trylock(&busiest->lock))) {
  2368. if (busiest < this_rq) {
  2369. spin_unlock(&this_rq->lock);
  2370. spin_lock(&busiest->lock);
  2371. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  2372. ret = 1;
  2373. } else
  2374. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  2375. }
  2376. return ret;
  2377. }
  2378. static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  2379. __releases(busiest->lock)
  2380. {
  2381. spin_unlock(&busiest->lock);
  2382. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  2383. }
  2384. /*
  2385. * If dest_cpu is allowed for this process, migrate the task to it.
  2386. * This is accomplished by forcing the cpu_allowed mask to only
  2387. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2388. * the cpu_allowed mask is restored.
  2389. */
  2390. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2391. {
  2392. struct migration_req req;
  2393. unsigned long flags;
  2394. struct rq *rq;
  2395. rq = task_rq_lock(p, &flags);
  2396. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2397. || unlikely(!cpu_active(dest_cpu)))
  2398. goto out;
  2399. trace_sched_migrate_task(rq, p, dest_cpu);
  2400. /* force the process onto the specified CPU */
  2401. if (migrate_task(p, dest_cpu, &req)) {
  2402. /* Need to wait for migration thread (might exit: take ref). */
  2403. struct task_struct *mt = rq->migration_thread;
  2404. get_task_struct(mt);
  2405. task_rq_unlock(rq, &flags);
  2406. wake_up_process(mt);
  2407. put_task_struct(mt);
  2408. wait_for_completion(&req.done);
  2409. return;
  2410. }
  2411. out:
  2412. task_rq_unlock(rq, &flags);
  2413. }
  2414. /*
  2415. * sched_exec - execve() is a valuable balancing opportunity, because at
  2416. * this point the task has the smallest effective memory and cache footprint.
  2417. */
  2418. void sched_exec(void)
  2419. {
  2420. int new_cpu, this_cpu = get_cpu();
  2421. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2422. put_cpu();
  2423. if (new_cpu != this_cpu)
  2424. sched_migrate_task(current, new_cpu);
  2425. }
  2426. /*
  2427. * pull_task - move a task from a remote runqueue to the local runqueue.
  2428. * Both runqueues must be locked.
  2429. */
  2430. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2431. struct rq *this_rq, int this_cpu)
  2432. {
  2433. deactivate_task(src_rq, p, 0);
  2434. set_task_cpu(p, this_cpu);
  2435. activate_task(this_rq, p, 0);
  2436. /*
  2437. * Note that idle threads have a prio of MAX_PRIO, for this test
  2438. * to be always true for them.
  2439. */
  2440. check_preempt_curr(this_rq, p, 0);
  2441. }
  2442. /*
  2443. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2444. */
  2445. static
  2446. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2447. struct sched_domain *sd, enum cpu_idle_type idle,
  2448. int *all_pinned)
  2449. {
  2450. /*
  2451. * We do not migrate tasks that are:
  2452. * 1) running (obviously), or
  2453. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2454. * 3) are cache-hot on their current CPU.
  2455. */
  2456. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2457. schedstat_inc(p, se.nr_failed_migrations_affine);
  2458. return 0;
  2459. }
  2460. *all_pinned = 0;
  2461. if (task_running(rq, p)) {
  2462. schedstat_inc(p, se.nr_failed_migrations_running);
  2463. return 0;
  2464. }
  2465. /*
  2466. * Aggressive migration if:
  2467. * 1) task is cache cold, or
  2468. * 2) too many balance attempts have failed.
  2469. */
  2470. if (!task_hot(p, rq->clock, sd) ||
  2471. sd->nr_balance_failed > sd->cache_nice_tries) {
  2472. #ifdef CONFIG_SCHEDSTATS
  2473. if (task_hot(p, rq->clock, sd)) {
  2474. schedstat_inc(sd, lb_hot_gained[idle]);
  2475. schedstat_inc(p, se.nr_forced_migrations);
  2476. }
  2477. #endif
  2478. return 1;
  2479. }
  2480. if (task_hot(p, rq->clock, sd)) {
  2481. schedstat_inc(p, se.nr_failed_migrations_hot);
  2482. return 0;
  2483. }
  2484. return 1;
  2485. }
  2486. static unsigned long
  2487. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2488. unsigned long max_load_move, struct sched_domain *sd,
  2489. enum cpu_idle_type idle, int *all_pinned,
  2490. int *this_best_prio, struct rq_iterator *iterator)
  2491. {
  2492. int loops = 0, pulled = 0, pinned = 0;
  2493. struct task_struct *p;
  2494. long rem_load_move = max_load_move;
  2495. if (max_load_move == 0)
  2496. goto out;
  2497. pinned = 1;
  2498. /*
  2499. * Start the load-balancing iterator:
  2500. */
  2501. p = iterator->start(iterator->arg);
  2502. next:
  2503. if (!p || loops++ > sysctl_sched_nr_migrate)
  2504. goto out;
  2505. if ((p->se.load.weight >> 1) > rem_load_move ||
  2506. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2507. p = iterator->next(iterator->arg);
  2508. goto next;
  2509. }
  2510. pull_task(busiest, p, this_rq, this_cpu);
  2511. pulled++;
  2512. rem_load_move -= p->se.load.weight;
  2513. /*
  2514. * We only want to steal up to the prescribed amount of weighted load.
  2515. */
  2516. if (rem_load_move > 0) {
  2517. if (p->prio < *this_best_prio)
  2518. *this_best_prio = p->prio;
  2519. p = iterator->next(iterator->arg);
  2520. goto next;
  2521. }
  2522. out:
  2523. /*
  2524. * Right now, this is one of only two places pull_task() is called,
  2525. * so we can safely collect pull_task() stats here rather than
  2526. * inside pull_task().
  2527. */
  2528. schedstat_add(sd, lb_gained[idle], pulled);
  2529. if (all_pinned)
  2530. *all_pinned = pinned;
  2531. return max_load_move - rem_load_move;
  2532. }
  2533. /*
  2534. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2535. * this_rq, as part of a balancing operation within domain "sd".
  2536. * Returns 1 if successful and 0 otherwise.
  2537. *
  2538. * Called with both runqueues locked.
  2539. */
  2540. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2541. unsigned long max_load_move,
  2542. struct sched_domain *sd, enum cpu_idle_type idle,
  2543. int *all_pinned)
  2544. {
  2545. const struct sched_class *class = sched_class_highest;
  2546. unsigned long total_load_moved = 0;
  2547. int this_best_prio = this_rq->curr->prio;
  2548. do {
  2549. total_load_moved +=
  2550. class->load_balance(this_rq, this_cpu, busiest,
  2551. max_load_move - total_load_moved,
  2552. sd, idle, all_pinned, &this_best_prio);
  2553. class = class->next;
  2554. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2555. break;
  2556. } while (class && max_load_move > total_load_moved);
  2557. return total_load_moved > 0;
  2558. }
  2559. static int
  2560. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2561. struct sched_domain *sd, enum cpu_idle_type idle,
  2562. struct rq_iterator *iterator)
  2563. {
  2564. struct task_struct *p = iterator->start(iterator->arg);
  2565. int pinned = 0;
  2566. while (p) {
  2567. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2568. pull_task(busiest, p, this_rq, this_cpu);
  2569. /*
  2570. * Right now, this is only the second place pull_task()
  2571. * is called, so we can safely collect pull_task()
  2572. * stats here rather than inside pull_task().
  2573. */
  2574. schedstat_inc(sd, lb_gained[idle]);
  2575. return 1;
  2576. }
  2577. p = iterator->next(iterator->arg);
  2578. }
  2579. return 0;
  2580. }
  2581. /*
  2582. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2583. * part of active balancing operations within "domain".
  2584. * Returns 1 if successful and 0 otherwise.
  2585. *
  2586. * Called with both runqueues locked.
  2587. */
  2588. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2589. struct sched_domain *sd, enum cpu_idle_type idle)
  2590. {
  2591. const struct sched_class *class;
  2592. for (class = sched_class_highest; class; class = class->next)
  2593. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2594. return 1;
  2595. return 0;
  2596. }
  2597. /*
  2598. * find_busiest_group finds and returns the busiest CPU group within the
  2599. * domain. It calculates and returns the amount of weighted load which
  2600. * should be moved to restore balance via the imbalance parameter.
  2601. */
  2602. static struct sched_group *
  2603. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2604. unsigned long *imbalance, enum cpu_idle_type idle,
  2605. int *sd_idle, const cpumask_t *cpus, int *balance)
  2606. {
  2607. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2608. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2609. unsigned long max_pull;
  2610. unsigned long busiest_load_per_task, busiest_nr_running;
  2611. unsigned long this_load_per_task, this_nr_running;
  2612. int load_idx, group_imb = 0;
  2613. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2614. int power_savings_balance = 1;
  2615. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2616. unsigned long min_nr_running = ULONG_MAX;
  2617. struct sched_group *group_min = NULL, *group_leader = NULL;
  2618. #endif
  2619. max_load = this_load = total_load = total_pwr = 0;
  2620. busiest_load_per_task = busiest_nr_running = 0;
  2621. this_load_per_task = this_nr_running = 0;
  2622. if (idle == CPU_NOT_IDLE)
  2623. load_idx = sd->busy_idx;
  2624. else if (idle == CPU_NEWLY_IDLE)
  2625. load_idx = sd->newidle_idx;
  2626. else
  2627. load_idx = sd->idle_idx;
  2628. do {
  2629. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2630. int local_group;
  2631. int i;
  2632. int __group_imb = 0;
  2633. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2634. unsigned long sum_nr_running, sum_weighted_load;
  2635. unsigned long sum_avg_load_per_task;
  2636. unsigned long avg_load_per_task;
  2637. local_group = cpu_isset(this_cpu, group->cpumask);
  2638. if (local_group)
  2639. balance_cpu = first_cpu(group->cpumask);
  2640. /* Tally up the load of all CPUs in the group */
  2641. sum_weighted_load = sum_nr_running = avg_load = 0;
  2642. sum_avg_load_per_task = avg_load_per_task = 0;
  2643. max_cpu_load = 0;
  2644. min_cpu_load = ~0UL;
  2645. for_each_cpu_mask_nr(i, group->cpumask) {
  2646. struct rq *rq;
  2647. if (!cpu_isset(i, *cpus))
  2648. continue;
  2649. rq = cpu_rq(i);
  2650. if (*sd_idle && rq->nr_running)
  2651. *sd_idle = 0;
  2652. /* Bias balancing toward cpus of our domain */
  2653. if (local_group) {
  2654. if (idle_cpu(i) && !first_idle_cpu) {
  2655. first_idle_cpu = 1;
  2656. balance_cpu = i;
  2657. }
  2658. load = target_load(i, load_idx);
  2659. } else {
  2660. load = source_load(i, load_idx);
  2661. if (load > max_cpu_load)
  2662. max_cpu_load = load;
  2663. if (min_cpu_load > load)
  2664. min_cpu_load = load;
  2665. }
  2666. avg_load += load;
  2667. sum_nr_running += rq->nr_running;
  2668. sum_weighted_load += weighted_cpuload(i);
  2669. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2670. }
  2671. /*
  2672. * First idle cpu or the first cpu(busiest) in this sched group
  2673. * is eligible for doing load balancing at this and above
  2674. * domains. In the newly idle case, we will allow all the cpu's
  2675. * to do the newly idle load balance.
  2676. */
  2677. if (idle != CPU_NEWLY_IDLE && local_group &&
  2678. balance_cpu != this_cpu && balance) {
  2679. *balance = 0;
  2680. goto ret;
  2681. }
  2682. total_load += avg_load;
  2683. total_pwr += group->__cpu_power;
  2684. /* Adjust by relative CPU power of the group */
  2685. avg_load = sg_div_cpu_power(group,
  2686. avg_load * SCHED_LOAD_SCALE);
  2687. /*
  2688. * Consider the group unbalanced when the imbalance is larger
  2689. * than the average weight of two tasks.
  2690. *
  2691. * APZ: with cgroup the avg task weight can vary wildly and
  2692. * might not be a suitable number - should we keep a
  2693. * normalized nr_running number somewhere that negates
  2694. * the hierarchy?
  2695. */
  2696. avg_load_per_task = sg_div_cpu_power(group,
  2697. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2698. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2699. __group_imb = 1;
  2700. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2701. if (local_group) {
  2702. this_load = avg_load;
  2703. this = group;
  2704. this_nr_running = sum_nr_running;
  2705. this_load_per_task = sum_weighted_load;
  2706. } else if (avg_load > max_load &&
  2707. (sum_nr_running > group_capacity || __group_imb)) {
  2708. max_load = avg_load;
  2709. busiest = group;
  2710. busiest_nr_running = sum_nr_running;
  2711. busiest_load_per_task = sum_weighted_load;
  2712. group_imb = __group_imb;
  2713. }
  2714. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2715. /*
  2716. * Busy processors will not participate in power savings
  2717. * balance.
  2718. */
  2719. if (idle == CPU_NOT_IDLE ||
  2720. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2721. goto group_next;
  2722. /*
  2723. * If the local group is idle or completely loaded
  2724. * no need to do power savings balance at this domain
  2725. */
  2726. if (local_group && (this_nr_running >= group_capacity ||
  2727. !this_nr_running))
  2728. power_savings_balance = 0;
  2729. /*
  2730. * If a group is already running at full capacity or idle,
  2731. * don't include that group in power savings calculations
  2732. */
  2733. if (!power_savings_balance || sum_nr_running >= group_capacity
  2734. || !sum_nr_running)
  2735. goto group_next;
  2736. /*
  2737. * Calculate the group which has the least non-idle load.
  2738. * This is the group from where we need to pick up the load
  2739. * for saving power
  2740. */
  2741. if ((sum_nr_running < min_nr_running) ||
  2742. (sum_nr_running == min_nr_running &&
  2743. first_cpu(group->cpumask) <
  2744. first_cpu(group_min->cpumask))) {
  2745. group_min = group;
  2746. min_nr_running = sum_nr_running;
  2747. min_load_per_task = sum_weighted_load /
  2748. sum_nr_running;
  2749. }
  2750. /*
  2751. * Calculate the group which is almost near its
  2752. * capacity but still has some space to pick up some load
  2753. * from other group and save more power
  2754. */
  2755. if (sum_nr_running <= group_capacity - 1) {
  2756. if (sum_nr_running > leader_nr_running ||
  2757. (sum_nr_running == leader_nr_running &&
  2758. first_cpu(group->cpumask) >
  2759. first_cpu(group_leader->cpumask))) {
  2760. group_leader = group;
  2761. leader_nr_running = sum_nr_running;
  2762. }
  2763. }
  2764. group_next:
  2765. #endif
  2766. group = group->next;
  2767. } while (group != sd->groups);
  2768. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2769. goto out_balanced;
  2770. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2771. if (this_load >= avg_load ||
  2772. 100*max_load <= sd->imbalance_pct*this_load)
  2773. goto out_balanced;
  2774. busiest_load_per_task /= busiest_nr_running;
  2775. if (group_imb)
  2776. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2777. /*
  2778. * We're trying to get all the cpus to the average_load, so we don't
  2779. * want to push ourselves above the average load, nor do we wish to
  2780. * reduce the max loaded cpu below the average load, as either of these
  2781. * actions would just result in more rebalancing later, and ping-pong
  2782. * tasks around. Thus we look for the minimum possible imbalance.
  2783. * Negative imbalances (*we* are more loaded than anyone else) will
  2784. * be counted as no imbalance for these purposes -- we can't fix that
  2785. * by pulling tasks to us. Be careful of negative numbers as they'll
  2786. * appear as very large values with unsigned longs.
  2787. */
  2788. if (max_load <= busiest_load_per_task)
  2789. goto out_balanced;
  2790. /*
  2791. * In the presence of smp nice balancing, certain scenarios can have
  2792. * max load less than avg load(as we skip the groups at or below
  2793. * its cpu_power, while calculating max_load..)
  2794. */
  2795. if (max_load < avg_load) {
  2796. *imbalance = 0;
  2797. goto small_imbalance;
  2798. }
  2799. /* Don't want to pull so many tasks that a group would go idle */
  2800. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2801. /* How much load to actually move to equalise the imbalance */
  2802. *imbalance = min(max_pull * busiest->__cpu_power,
  2803. (avg_load - this_load) * this->__cpu_power)
  2804. / SCHED_LOAD_SCALE;
  2805. /*
  2806. * if *imbalance is less than the average load per runnable task
  2807. * there is no gaurantee that any tasks will be moved so we'll have
  2808. * a think about bumping its value to force at least one task to be
  2809. * moved
  2810. */
  2811. if (*imbalance < busiest_load_per_task) {
  2812. unsigned long tmp, pwr_now, pwr_move;
  2813. unsigned int imbn;
  2814. small_imbalance:
  2815. pwr_move = pwr_now = 0;
  2816. imbn = 2;
  2817. if (this_nr_running) {
  2818. this_load_per_task /= this_nr_running;
  2819. if (busiest_load_per_task > this_load_per_task)
  2820. imbn = 1;
  2821. } else
  2822. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2823. if (max_load - this_load + busiest_load_per_task >=
  2824. busiest_load_per_task * imbn) {
  2825. *imbalance = busiest_load_per_task;
  2826. return busiest;
  2827. }
  2828. /*
  2829. * OK, we don't have enough imbalance to justify moving tasks,
  2830. * however we may be able to increase total CPU power used by
  2831. * moving them.
  2832. */
  2833. pwr_now += busiest->__cpu_power *
  2834. min(busiest_load_per_task, max_load);
  2835. pwr_now += this->__cpu_power *
  2836. min(this_load_per_task, this_load);
  2837. pwr_now /= SCHED_LOAD_SCALE;
  2838. /* Amount of load we'd subtract */
  2839. tmp = sg_div_cpu_power(busiest,
  2840. busiest_load_per_task * SCHED_LOAD_SCALE);
  2841. if (max_load > tmp)
  2842. pwr_move += busiest->__cpu_power *
  2843. min(busiest_load_per_task, max_load - tmp);
  2844. /* Amount of load we'd add */
  2845. if (max_load * busiest->__cpu_power <
  2846. busiest_load_per_task * SCHED_LOAD_SCALE)
  2847. tmp = sg_div_cpu_power(this,
  2848. max_load * busiest->__cpu_power);
  2849. else
  2850. tmp = sg_div_cpu_power(this,
  2851. busiest_load_per_task * SCHED_LOAD_SCALE);
  2852. pwr_move += this->__cpu_power *
  2853. min(this_load_per_task, this_load + tmp);
  2854. pwr_move /= SCHED_LOAD_SCALE;
  2855. /* Move if we gain throughput */
  2856. if (pwr_move > pwr_now)
  2857. *imbalance = busiest_load_per_task;
  2858. }
  2859. return busiest;
  2860. out_balanced:
  2861. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2862. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2863. goto ret;
  2864. if (this == group_leader && group_leader != group_min) {
  2865. *imbalance = min_load_per_task;
  2866. return group_min;
  2867. }
  2868. #endif
  2869. ret:
  2870. *imbalance = 0;
  2871. return NULL;
  2872. }
  2873. /*
  2874. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2875. */
  2876. static struct rq *
  2877. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2878. unsigned long imbalance, const cpumask_t *cpus)
  2879. {
  2880. struct rq *busiest = NULL, *rq;
  2881. unsigned long max_load = 0;
  2882. int i;
  2883. for_each_cpu_mask_nr(i, group->cpumask) {
  2884. unsigned long wl;
  2885. if (!cpu_isset(i, *cpus))
  2886. continue;
  2887. rq = cpu_rq(i);
  2888. wl = weighted_cpuload(i);
  2889. if (rq->nr_running == 1 && wl > imbalance)
  2890. continue;
  2891. if (wl > max_load) {
  2892. max_load = wl;
  2893. busiest = rq;
  2894. }
  2895. }
  2896. return busiest;
  2897. }
  2898. /*
  2899. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2900. * so long as it is large enough.
  2901. */
  2902. #define MAX_PINNED_INTERVAL 512
  2903. /*
  2904. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2905. * tasks if there is an imbalance.
  2906. */
  2907. static int load_balance(int this_cpu, struct rq *this_rq,
  2908. struct sched_domain *sd, enum cpu_idle_type idle,
  2909. int *balance, cpumask_t *cpus)
  2910. {
  2911. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2912. struct sched_group *group;
  2913. unsigned long imbalance;
  2914. struct rq *busiest;
  2915. unsigned long flags;
  2916. cpus_setall(*cpus);
  2917. /*
  2918. * When power savings policy is enabled for the parent domain, idle
  2919. * sibling can pick up load irrespective of busy siblings. In this case,
  2920. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2921. * portraying it as CPU_NOT_IDLE.
  2922. */
  2923. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2924. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2925. sd_idle = 1;
  2926. schedstat_inc(sd, lb_count[idle]);
  2927. redo:
  2928. update_shares(sd);
  2929. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2930. cpus, balance);
  2931. if (*balance == 0)
  2932. goto out_balanced;
  2933. if (!group) {
  2934. schedstat_inc(sd, lb_nobusyg[idle]);
  2935. goto out_balanced;
  2936. }
  2937. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2938. if (!busiest) {
  2939. schedstat_inc(sd, lb_nobusyq[idle]);
  2940. goto out_balanced;
  2941. }
  2942. BUG_ON(busiest == this_rq);
  2943. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2944. ld_moved = 0;
  2945. if (busiest->nr_running > 1) {
  2946. /*
  2947. * Attempt to move tasks. If find_busiest_group has found
  2948. * an imbalance but busiest->nr_running <= 1, the group is
  2949. * still unbalanced. ld_moved simply stays zero, so it is
  2950. * correctly treated as an imbalance.
  2951. */
  2952. local_irq_save(flags);
  2953. double_rq_lock(this_rq, busiest);
  2954. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2955. imbalance, sd, idle, &all_pinned);
  2956. double_rq_unlock(this_rq, busiest);
  2957. local_irq_restore(flags);
  2958. /*
  2959. * some other cpu did the load balance for us.
  2960. */
  2961. if (ld_moved && this_cpu != smp_processor_id())
  2962. resched_cpu(this_cpu);
  2963. /* All tasks on this runqueue were pinned by CPU affinity */
  2964. if (unlikely(all_pinned)) {
  2965. cpu_clear(cpu_of(busiest), *cpus);
  2966. if (!cpus_empty(*cpus))
  2967. goto redo;
  2968. goto out_balanced;
  2969. }
  2970. }
  2971. if (!ld_moved) {
  2972. schedstat_inc(sd, lb_failed[idle]);
  2973. sd->nr_balance_failed++;
  2974. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2975. spin_lock_irqsave(&busiest->lock, flags);
  2976. /* don't kick the migration_thread, if the curr
  2977. * task on busiest cpu can't be moved to this_cpu
  2978. */
  2979. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2980. spin_unlock_irqrestore(&busiest->lock, flags);
  2981. all_pinned = 1;
  2982. goto out_one_pinned;
  2983. }
  2984. if (!busiest->active_balance) {
  2985. busiest->active_balance = 1;
  2986. busiest->push_cpu = this_cpu;
  2987. active_balance = 1;
  2988. }
  2989. spin_unlock_irqrestore(&busiest->lock, flags);
  2990. if (active_balance)
  2991. wake_up_process(busiest->migration_thread);
  2992. /*
  2993. * We've kicked active balancing, reset the failure
  2994. * counter.
  2995. */
  2996. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2997. }
  2998. } else
  2999. sd->nr_balance_failed = 0;
  3000. if (likely(!active_balance)) {
  3001. /* We were unbalanced, so reset the balancing interval */
  3002. sd->balance_interval = sd->min_interval;
  3003. } else {
  3004. /*
  3005. * If we've begun active balancing, start to back off. This
  3006. * case may not be covered by the all_pinned logic if there
  3007. * is only 1 task on the busy runqueue (because we don't call
  3008. * move_tasks).
  3009. */
  3010. if (sd->balance_interval < sd->max_interval)
  3011. sd->balance_interval *= 2;
  3012. }
  3013. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3014. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3015. ld_moved = -1;
  3016. goto out;
  3017. out_balanced:
  3018. schedstat_inc(sd, lb_balanced[idle]);
  3019. sd->nr_balance_failed = 0;
  3020. out_one_pinned:
  3021. /* tune up the balancing interval */
  3022. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3023. (sd->balance_interval < sd->max_interval))
  3024. sd->balance_interval *= 2;
  3025. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3026. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3027. ld_moved = -1;
  3028. else
  3029. ld_moved = 0;
  3030. out:
  3031. if (ld_moved)
  3032. update_shares(sd);
  3033. return ld_moved;
  3034. }
  3035. /*
  3036. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3037. * tasks if there is an imbalance.
  3038. *
  3039. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3040. * this_rq is locked.
  3041. */
  3042. static int
  3043. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3044. cpumask_t *cpus)
  3045. {
  3046. struct sched_group *group;
  3047. struct rq *busiest = NULL;
  3048. unsigned long imbalance;
  3049. int ld_moved = 0;
  3050. int sd_idle = 0;
  3051. int all_pinned = 0;
  3052. cpus_setall(*cpus);
  3053. /*
  3054. * When power savings policy is enabled for the parent domain, idle
  3055. * sibling can pick up load irrespective of busy siblings. In this case,
  3056. * let the state of idle sibling percolate up as IDLE, instead of
  3057. * portraying it as CPU_NOT_IDLE.
  3058. */
  3059. if (sd->flags & SD_SHARE_CPUPOWER &&
  3060. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3061. sd_idle = 1;
  3062. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3063. redo:
  3064. update_shares_locked(this_rq, sd);
  3065. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3066. &sd_idle, cpus, NULL);
  3067. if (!group) {
  3068. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3069. goto out_balanced;
  3070. }
  3071. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3072. if (!busiest) {
  3073. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3074. goto out_balanced;
  3075. }
  3076. BUG_ON(busiest == this_rq);
  3077. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3078. ld_moved = 0;
  3079. if (busiest->nr_running > 1) {
  3080. /* Attempt to move tasks */
  3081. double_lock_balance(this_rq, busiest);
  3082. /* this_rq->clock is already updated */
  3083. update_rq_clock(busiest);
  3084. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3085. imbalance, sd, CPU_NEWLY_IDLE,
  3086. &all_pinned);
  3087. double_unlock_balance(this_rq, busiest);
  3088. if (unlikely(all_pinned)) {
  3089. cpu_clear(cpu_of(busiest), *cpus);
  3090. if (!cpus_empty(*cpus))
  3091. goto redo;
  3092. }
  3093. }
  3094. if (!ld_moved) {
  3095. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3096. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3097. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3098. return -1;
  3099. } else
  3100. sd->nr_balance_failed = 0;
  3101. update_shares_locked(this_rq, sd);
  3102. return ld_moved;
  3103. out_balanced:
  3104. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3105. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3106. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3107. return -1;
  3108. sd->nr_balance_failed = 0;
  3109. return 0;
  3110. }
  3111. /*
  3112. * idle_balance is called by schedule() if this_cpu is about to become
  3113. * idle. Attempts to pull tasks from other CPUs.
  3114. */
  3115. static void idle_balance(int this_cpu, struct rq *this_rq)
  3116. {
  3117. struct sched_domain *sd;
  3118. int pulled_task = -1;
  3119. unsigned long next_balance = jiffies + HZ;
  3120. cpumask_t tmpmask;
  3121. for_each_domain(this_cpu, sd) {
  3122. unsigned long interval;
  3123. if (!(sd->flags & SD_LOAD_BALANCE))
  3124. continue;
  3125. if (sd->flags & SD_BALANCE_NEWIDLE)
  3126. /* If we've pulled tasks over stop searching: */
  3127. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3128. sd, &tmpmask);
  3129. interval = msecs_to_jiffies(sd->balance_interval);
  3130. if (time_after(next_balance, sd->last_balance + interval))
  3131. next_balance = sd->last_balance + interval;
  3132. if (pulled_task)
  3133. break;
  3134. }
  3135. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3136. /*
  3137. * We are going idle. next_balance may be set based on
  3138. * a busy processor. So reset next_balance.
  3139. */
  3140. this_rq->next_balance = next_balance;
  3141. }
  3142. }
  3143. /*
  3144. * active_load_balance is run by migration threads. It pushes running tasks
  3145. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3146. * running on each physical CPU where possible, and avoids physical /
  3147. * logical imbalances.
  3148. *
  3149. * Called with busiest_rq locked.
  3150. */
  3151. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3152. {
  3153. int target_cpu = busiest_rq->push_cpu;
  3154. struct sched_domain *sd;
  3155. struct rq *target_rq;
  3156. /* Is there any task to move? */
  3157. if (busiest_rq->nr_running <= 1)
  3158. return;
  3159. target_rq = cpu_rq(target_cpu);
  3160. /*
  3161. * This condition is "impossible", if it occurs
  3162. * we need to fix it. Originally reported by
  3163. * Bjorn Helgaas on a 128-cpu setup.
  3164. */
  3165. BUG_ON(busiest_rq == target_rq);
  3166. /* move a task from busiest_rq to target_rq */
  3167. double_lock_balance(busiest_rq, target_rq);
  3168. update_rq_clock(busiest_rq);
  3169. update_rq_clock(target_rq);
  3170. /* Search for an sd spanning us and the target CPU. */
  3171. for_each_domain(target_cpu, sd) {
  3172. if ((sd->flags & SD_LOAD_BALANCE) &&
  3173. cpu_isset(busiest_cpu, sd->span))
  3174. break;
  3175. }
  3176. if (likely(sd)) {
  3177. schedstat_inc(sd, alb_count);
  3178. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3179. sd, CPU_IDLE))
  3180. schedstat_inc(sd, alb_pushed);
  3181. else
  3182. schedstat_inc(sd, alb_failed);
  3183. }
  3184. double_unlock_balance(busiest_rq, target_rq);
  3185. }
  3186. #ifdef CONFIG_NO_HZ
  3187. static struct {
  3188. atomic_t load_balancer;
  3189. cpumask_t cpu_mask;
  3190. } nohz ____cacheline_aligned = {
  3191. .load_balancer = ATOMIC_INIT(-1),
  3192. .cpu_mask = CPU_MASK_NONE,
  3193. };
  3194. /*
  3195. * This routine will try to nominate the ilb (idle load balancing)
  3196. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3197. * load balancing on behalf of all those cpus. If all the cpus in the system
  3198. * go into this tickless mode, then there will be no ilb owner (as there is
  3199. * no need for one) and all the cpus will sleep till the next wakeup event
  3200. * arrives...
  3201. *
  3202. * For the ilb owner, tick is not stopped. And this tick will be used
  3203. * for idle load balancing. ilb owner will still be part of
  3204. * nohz.cpu_mask..
  3205. *
  3206. * While stopping the tick, this cpu will become the ilb owner if there
  3207. * is no other owner. And will be the owner till that cpu becomes busy
  3208. * or if all cpus in the system stop their ticks at which point
  3209. * there is no need for ilb owner.
  3210. *
  3211. * When the ilb owner becomes busy, it nominates another owner, during the
  3212. * next busy scheduler_tick()
  3213. */
  3214. int select_nohz_load_balancer(int stop_tick)
  3215. {
  3216. int cpu = smp_processor_id();
  3217. if (stop_tick) {
  3218. cpu_set(cpu, nohz.cpu_mask);
  3219. cpu_rq(cpu)->in_nohz_recently = 1;
  3220. /*
  3221. * If we are going offline and still the leader, give up!
  3222. */
  3223. if (!cpu_active(cpu) &&
  3224. atomic_read(&nohz.load_balancer) == cpu) {
  3225. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3226. BUG();
  3227. return 0;
  3228. }
  3229. /* time for ilb owner also to sleep */
  3230. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3231. if (atomic_read(&nohz.load_balancer) == cpu)
  3232. atomic_set(&nohz.load_balancer, -1);
  3233. return 0;
  3234. }
  3235. if (atomic_read(&nohz.load_balancer) == -1) {
  3236. /* make me the ilb owner */
  3237. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3238. return 1;
  3239. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3240. return 1;
  3241. } else {
  3242. if (!cpu_isset(cpu, nohz.cpu_mask))
  3243. return 0;
  3244. cpu_clear(cpu, nohz.cpu_mask);
  3245. if (atomic_read(&nohz.load_balancer) == cpu)
  3246. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3247. BUG();
  3248. }
  3249. return 0;
  3250. }
  3251. #endif
  3252. static DEFINE_SPINLOCK(balancing);
  3253. /*
  3254. * It checks each scheduling domain to see if it is due to be balanced,
  3255. * and initiates a balancing operation if so.
  3256. *
  3257. * Balancing parameters are set up in arch_init_sched_domains.
  3258. */
  3259. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3260. {
  3261. int balance = 1;
  3262. struct rq *rq = cpu_rq(cpu);
  3263. unsigned long interval;
  3264. struct sched_domain *sd;
  3265. /* Earliest time when we have to do rebalance again */
  3266. unsigned long next_balance = jiffies + 60*HZ;
  3267. int update_next_balance = 0;
  3268. int need_serialize;
  3269. cpumask_t tmp;
  3270. for_each_domain(cpu, sd) {
  3271. if (!(sd->flags & SD_LOAD_BALANCE))
  3272. continue;
  3273. interval = sd->balance_interval;
  3274. if (idle != CPU_IDLE)
  3275. interval *= sd->busy_factor;
  3276. /* scale ms to jiffies */
  3277. interval = msecs_to_jiffies(interval);
  3278. if (unlikely(!interval))
  3279. interval = 1;
  3280. if (interval > HZ*NR_CPUS/10)
  3281. interval = HZ*NR_CPUS/10;
  3282. need_serialize = sd->flags & SD_SERIALIZE;
  3283. if (need_serialize) {
  3284. if (!spin_trylock(&balancing))
  3285. goto out;
  3286. }
  3287. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3288. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3289. /*
  3290. * We've pulled tasks over so either we're no
  3291. * longer idle, or one of our SMT siblings is
  3292. * not idle.
  3293. */
  3294. idle = CPU_NOT_IDLE;
  3295. }
  3296. sd->last_balance = jiffies;
  3297. }
  3298. if (need_serialize)
  3299. spin_unlock(&balancing);
  3300. out:
  3301. if (time_after(next_balance, sd->last_balance + interval)) {
  3302. next_balance = sd->last_balance + interval;
  3303. update_next_balance = 1;
  3304. }
  3305. /*
  3306. * Stop the load balance at this level. There is another
  3307. * CPU in our sched group which is doing load balancing more
  3308. * actively.
  3309. */
  3310. if (!balance)
  3311. break;
  3312. }
  3313. /*
  3314. * next_balance will be updated only when there is a need.
  3315. * When the cpu is attached to null domain for ex, it will not be
  3316. * updated.
  3317. */
  3318. if (likely(update_next_balance))
  3319. rq->next_balance = next_balance;
  3320. }
  3321. /*
  3322. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3323. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3324. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3325. */
  3326. static void run_rebalance_domains(struct softirq_action *h)
  3327. {
  3328. int this_cpu = smp_processor_id();
  3329. struct rq *this_rq = cpu_rq(this_cpu);
  3330. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3331. CPU_IDLE : CPU_NOT_IDLE;
  3332. rebalance_domains(this_cpu, idle);
  3333. #ifdef CONFIG_NO_HZ
  3334. /*
  3335. * If this cpu is the owner for idle load balancing, then do the
  3336. * balancing on behalf of the other idle cpus whose ticks are
  3337. * stopped.
  3338. */
  3339. if (this_rq->idle_at_tick &&
  3340. atomic_read(&nohz.load_balancer) == this_cpu) {
  3341. cpumask_t cpus = nohz.cpu_mask;
  3342. struct rq *rq;
  3343. int balance_cpu;
  3344. cpu_clear(this_cpu, cpus);
  3345. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3346. /*
  3347. * If this cpu gets work to do, stop the load balancing
  3348. * work being done for other cpus. Next load
  3349. * balancing owner will pick it up.
  3350. */
  3351. if (need_resched())
  3352. break;
  3353. rebalance_domains(balance_cpu, CPU_IDLE);
  3354. rq = cpu_rq(balance_cpu);
  3355. if (time_after(this_rq->next_balance, rq->next_balance))
  3356. this_rq->next_balance = rq->next_balance;
  3357. }
  3358. }
  3359. #endif
  3360. }
  3361. /*
  3362. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3363. *
  3364. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3365. * idle load balancing owner or decide to stop the periodic load balancing,
  3366. * if the whole system is idle.
  3367. */
  3368. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3369. {
  3370. #ifdef CONFIG_NO_HZ
  3371. /*
  3372. * If we were in the nohz mode recently and busy at the current
  3373. * scheduler tick, then check if we need to nominate new idle
  3374. * load balancer.
  3375. */
  3376. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3377. rq->in_nohz_recently = 0;
  3378. if (atomic_read(&nohz.load_balancer) == cpu) {
  3379. cpu_clear(cpu, nohz.cpu_mask);
  3380. atomic_set(&nohz.load_balancer, -1);
  3381. }
  3382. if (atomic_read(&nohz.load_balancer) == -1) {
  3383. /*
  3384. * simple selection for now: Nominate the
  3385. * first cpu in the nohz list to be the next
  3386. * ilb owner.
  3387. *
  3388. * TBD: Traverse the sched domains and nominate
  3389. * the nearest cpu in the nohz.cpu_mask.
  3390. */
  3391. int ilb = first_cpu(nohz.cpu_mask);
  3392. if (ilb < nr_cpu_ids)
  3393. resched_cpu(ilb);
  3394. }
  3395. }
  3396. /*
  3397. * If this cpu is idle and doing idle load balancing for all the
  3398. * cpus with ticks stopped, is it time for that to stop?
  3399. */
  3400. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3401. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3402. resched_cpu(cpu);
  3403. return;
  3404. }
  3405. /*
  3406. * If this cpu is idle and the idle load balancing is done by
  3407. * someone else, then no need raise the SCHED_SOFTIRQ
  3408. */
  3409. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3410. cpu_isset(cpu, nohz.cpu_mask))
  3411. return;
  3412. #endif
  3413. if (time_after_eq(jiffies, rq->next_balance))
  3414. raise_softirq(SCHED_SOFTIRQ);
  3415. }
  3416. #else /* CONFIG_SMP */
  3417. /*
  3418. * on UP we do not need to balance between CPUs:
  3419. */
  3420. static inline void idle_balance(int cpu, struct rq *rq)
  3421. {
  3422. }
  3423. #endif
  3424. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3425. EXPORT_PER_CPU_SYMBOL(kstat);
  3426. /*
  3427. * Return any ns on the sched_clock that have not yet been banked in
  3428. * @p in case that task is currently running.
  3429. */
  3430. unsigned long long task_delta_exec(struct task_struct *p)
  3431. {
  3432. unsigned long flags;
  3433. struct rq *rq;
  3434. u64 ns = 0;
  3435. rq = task_rq_lock(p, &flags);
  3436. if (task_current(rq, p)) {
  3437. u64 delta_exec;
  3438. update_rq_clock(rq);
  3439. delta_exec = rq->clock - p->se.exec_start;
  3440. if ((s64)delta_exec > 0)
  3441. ns = delta_exec;
  3442. }
  3443. task_rq_unlock(rq, &flags);
  3444. return ns;
  3445. }
  3446. /*
  3447. * Account user cpu time to a process.
  3448. * @p: the process that the cpu time gets accounted to
  3449. * @cputime: the cpu time spent in user space since the last update
  3450. */
  3451. void account_user_time(struct task_struct *p, cputime_t cputime)
  3452. {
  3453. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3454. cputime64_t tmp;
  3455. p->utime = cputime_add(p->utime, cputime);
  3456. account_group_user_time(p, cputime);
  3457. /* Add user time to cpustat. */
  3458. tmp = cputime_to_cputime64(cputime);
  3459. if (TASK_NICE(p) > 0)
  3460. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3461. else
  3462. cpustat->user = cputime64_add(cpustat->user, tmp);
  3463. /* Account for user time used */
  3464. acct_update_integrals(p);
  3465. }
  3466. /*
  3467. * Account guest cpu time to a process.
  3468. * @p: the process that the cpu time gets accounted to
  3469. * @cputime: the cpu time spent in virtual machine since the last update
  3470. */
  3471. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3472. {
  3473. cputime64_t tmp;
  3474. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3475. tmp = cputime_to_cputime64(cputime);
  3476. p->utime = cputime_add(p->utime, cputime);
  3477. account_group_user_time(p, cputime);
  3478. p->gtime = cputime_add(p->gtime, cputime);
  3479. cpustat->user = cputime64_add(cpustat->user, tmp);
  3480. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3481. }
  3482. /*
  3483. * Account scaled user cpu time to a process.
  3484. * @p: the process that the cpu time gets accounted to
  3485. * @cputime: the cpu time spent in user space since the last update
  3486. */
  3487. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3488. {
  3489. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3490. }
  3491. /*
  3492. * Account system cpu time to a process.
  3493. * @p: the process that the cpu time gets accounted to
  3494. * @hardirq_offset: the offset to subtract from hardirq_count()
  3495. * @cputime: the cpu time spent in kernel space since the last update
  3496. */
  3497. void account_system_time(struct task_struct *p, int hardirq_offset,
  3498. cputime_t cputime)
  3499. {
  3500. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3501. struct rq *rq = this_rq();
  3502. cputime64_t tmp;
  3503. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3504. account_guest_time(p, cputime);
  3505. return;
  3506. }
  3507. p->stime = cputime_add(p->stime, cputime);
  3508. account_group_system_time(p, cputime);
  3509. /* Add system time to cpustat. */
  3510. tmp = cputime_to_cputime64(cputime);
  3511. if (hardirq_count() - hardirq_offset)
  3512. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3513. else if (softirq_count())
  3514. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3515. else if (p != rq->idle)
  3516. cpustat->system = cputime64_add(cpustat->system, tmp);
  3517. else if (atomic_read(&rq->nr_iowait) > 0)
  3518. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3519. else
  3520. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3521. /* Account for system time used */
  3522. acct_update_integrals(p);
  3523. }
  3524. /*
  3525. * Account scaled system cpu time to a process.
  3526. * @p: the process that the cpu time gets accounted to
  3527. * @hardirq_offset: the offset to subtract from hardirq_count()
  3528. * @cputime: the cpu time spent in kernel space since the last update
  3529. */
  3530. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3531. {
  3532. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3533. }
  3534. /*
  3535. * Account for involuntary wait time.
  3536. * @p: the process from which the cpu time has been stolen
  3537. * @steal: the cpu time spent in involuntary wait
  3538. */
  3539. void account_steal_time(struct task_struct *p, cputime_t steal)
  3540. {
  3541. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3542. cputime64_t tmp = cputime_to_cputime64(steal);
  3543. struct rq *rq = this_rq();
  3544. if (p == rq->idle) {
  3545. p->stime = cputime_add(p->stime, steal);
  3546. account_group_system_time(p, steal);
  3547. if (atomic_read(&rq->nr_iowait) > 0)
  3548. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3549. else
  3550. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3551. } else
  3552. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3553. }
  3554. /*
  3555. * Use precise platform statistics if available:
  3556. */
  3557. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3558. cputime_t task_utime(struct task_struct *p)
  3559. {
  3560. return p->utime;
  3561. }
  3562. cputime_t task_stime(struct task_struct *p)
  3563. {
  3564. return p->stime;
  3565. }
  3566. #else
  3567. cputime_t task_utime(struct task_struct *p)
  3568. {
  3569. clock_t utime = cputime_to_clock_t(p->utime),
  3570. total = utime + cputime_to_clock_t(p->stime);
  3571. u64 temp;
  3572. /*
  3573. * Use CFS's precise accounting:
  3574. */
  3575. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3576. if (total) {
  3577. temp *= utime;
  3578. do_div(temp, total);
  3579. }
  3580. utime = (clock_t)temp;
  3581. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3582. return p->prev_utime;
  3583. }
  3584. cputime_t task_stime(struct task_struct *p)
  3585. {
  3586. clock_t stime;
  3587. /*
  3588. * Use CFS's precise accounting. (we subtract utime from
  3589. * the total, to make sure the total observed by userspace
  3590. * grows monotonically - apps rely on that):
  3591. */
  3592. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3593. cputime_to_clock_t(task_utime(p));
  3594. if (stime >= 0)
  3595. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3596. return p->prev_stime;
  3597. }
  3598. #endif
  3599. inline cputime_t task_gtime(struct task_struct *p)
  3600. {
  3601. return p->gtime;
  3602. }
  3603. /*
  3604. * This function gets called by the timer code, with HZ frequency.
  3605. * We call it with interrupts disabled.
  3606. *
  3607. * It also gets called by the fork code, when changing the parent's
  3608. * timeslices.
  3609. */
  3610. void scheduler_tick(void)
  3611. {
  3612. int cpu = smp_processor_id();
  3613. struct rq *rq = cpu_rq(cpu);
  3614. struct task_struct *curr = rq->curr;
  3615. sched_clock_tick();
  3616. spin_lock(&rq->lock);
  3617. update_rq_clock(rq);
  3618. update_cpu_load(rq);
  3619. curr->sched_class->task_tick(rq, curr, 0);
  3620. spin_unlock(&rq->lock);
  3621. #ifdef CONFIG_SMP
  3622. rq->idle_at_tick = idle_cpu(cpu);
  3623. trigger_load_balance(rq, cpu);
  3624. #endif
  3625. }
  3626. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3627. defined(CONFIG_PREEMPT_TRACER))
  3628. static inline unsigned long get_parent_ip(unsigned long addr)
  3629. {
  3630. if (in_lock_functions(addr)) {
  3631. addr = CALLER_ADDR2;
  3632. if (in_lock_functions(addr))
  3633. addr = CALLER_ADDR3;
  3634. }
  3635. return addr;
  3636. }
  3637. void __kprobes add_preempt_count(int val)
  3638. {
  3639. #ifdef CONFIG_DEBUG_PREEMPT
  3640. /*
  3641. * Underflow?
  3642. */
  3643. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3644. return;
  3645. #endif
  3646. preempt_count() += val;
  3647. #ifdef CONFIG_DEBUG_PREEMPT
  3648. /*
  3649. * Spinlock count overflowing soon?
  3650. */
  3651. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3652. PREEMPT_MASK - 10);
  3653. #endif
  3654. if (preempt_count() == val)
  3655. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3656. }
  3657. EXPORT_SYMBOL(add_preempt_count);
  3658. void __kprobes sub_preempt_count(int val)
  3659. {
  3660. #ifdef CONFIG_DEBUG_PREEMPT
  3661. /*
  3662. * Underflow?
  3663. */
  3664. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3665. return;
  3666. /*
  3667. * Is the spinlock portion underflowing?
  3668. */
  3669. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3670. !(preempt_count() & PREEMPT_MASK)))
  3671. return;
  3672. #endif
  3673. if (preempt_count() == val)
  3674. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3675. preempt_count() -= val;
  3676. }
  3677. EXPORT_SYMBOL(sub_preempt_count);
  3678. #endif
  3679. /*
  3680. * Print scheduling while atomic bug:
  3681. */
  3682. static noinline void __schedule_bug(struct task_struct *prev)
  3683. {
  3684. struct pt_regs *regs = get_irq_regs();
  3685. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3686. prev->comm, prev->pid, preempt_count());
  3687. debug_show_held_locks(prev);
  3688. print_modules();
  3689. if (irqs_disabled())
  3690. print_irqtrace_events(prev);
  3691. if (regs)
  3692. show_regs(regs);
  3693. else
  3694. dump_stack();
  3695. }
  3696. /*
  3697. * Various schedule()-time debugging checks and statistics:
  3698. */
  3699. static inline void schedule_debug(struct task_struct *prev)
  3700. {
  3701. /*
  3702. * Test if we are atomic. Since do_exit() needs to call into
  3703. * schedule() atomically, we ignore that path for now.
  3704. * Otherwise, whine if we are scheduling when we should not be.
  3705. */
  3706. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3707. __schedule_bug(prev);
  3708. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3709. schedstat_inc(this_rq(), sched_count);
  3710. #ifdef CONFIG_SCHEDSTATS
  3711. if (unlikely(prev->lock_depth >= 0)) {
  3712. schedstat_inc(this_rq(), bkl_count);
  3713. schedstat_inc(prev, sched_info.bkl_count);
  3714. }
  3715. #endif
  3716. }
  3717. /*
  3718. * Pick up the highest-prio task:
  3719. */
  3720. static inline struct task_struct *
  3721. pick_next_task(struct rq *rq, struct task_struct *prev)
  3722. {
  3723. const struct sched_class *class;
  3724. struct task_struct *p;
  3725. /*
  3726. * Optimization: we know that if all tasks are in
  3727. * the fair class we can call that function directly:
  3728. */
  3729. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3730. p = fair_sched_class.pick_next_task(rq);
  3731. if (likely(p))
  3732. return p;
  3733. }
  3734. class = sched_class_highest;
  3735. for ( ; ; ) {
  3736. p = class->pick_next_task(rq);
  3737. if (p)
  3738. return p;
  3739. /*
  3740. * Will never be NULL as the idle class always
  3741. * returns a non-NULL p:
  3742. */
  3743. class = class->next;
  3744. }
  3745. }
  3746. /*
  3747. * schedule() is the main scheduler function.
  3748. */
  3749. asmlinkage void __sched schedule(void)
  3750. {
  3751. struct task_struct *prev, *next;
  3752. unsigned long *switch_count;
  3753. struct rq *rq;
  3754. int cpu;
  3755. need_resched:
  3756. preempt_disable();
  3757. cpu = smp_processor_id();
  3758. rq = cpu_rq(cpu);
  3759. rcu_qsctr_inc(cpu);
  3760. prev = rq->curr;
  3761. switch_count = &prev->nivcsw;
  3762. release_kernel_lock(prev);
  3763. need_resched_nonpreemptible:
  3764. schedule_debug(prev);
  3765. if (sched_feat(HRTICK))
  3766. hrtick_clear(rq);
  3767. spin_lock_irq(&rq->lock);
  3768. update_rq_clock(rq);
  3769. clear_tsk_need_resched(prev);
  3770. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3771. if (unlikely(signal_pending_state(prev->state, prev)))
  3772. prev->state = TASK_RUNNING;
  3773. else
  3774. deactivate_task(rq, prev, 1);
  3775. switch_count = &prev->nvcsw;
  3776. }
  3777. #ifdef CONFIG_SMP
  3778. if (prev->sched_class->pre_schedule)
  3779. prev->sched_class->pre_schedule(rq, prev);
  3780. #endif
  3781. if (unlikely(!rq->nr_running))
  3782. idle_balance(cpu, rq);
  3783. prev->sched_class->put_prev_task(rq, prev);
  3784. next = pick_next_task(rq, prev);
  3785. if (likely(prev != next)) {
  3786. sched_info_switch(prev, next);
  3787. rq->nr_switches++;
  3788. rq->curr = next;
  3789. ++*switch_count;
  3790. context_switch(rq, prev, next); /* unlocks the rq */
  3791. /*
  3792. * the context switch might have flipped the stack from under
  3793. * us, hence refresh the local variables.
  3794. */
  3795. cpu = smp_processor_id();
  3796. rq = cpu_rq(cpu);
  3797. } else
  3798. spin_unlock_irq(&rq->lock);
  3799. if (unlikely(reacquire_kernel_lock(current) < 0))
  3800. goto need_resched_nonpreemptible;
  3801. preempt_enable_no_resched();
  3802. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3803. goto need_resched;
  3804. }
  3805. EXPORT_SYMBOL(schedule);
  3806. #ifdef CONFIG_PREEMPT
  3807. /*
  3808. * this is the entry point to schedule() from in-kernel preemption
  3809. * off of preempt_enable. Kernel preemptions off return from interrupt
  3810. * occur there and call schedule directly.
  3811. */
  3812. asmlinkage void __sched preempt_schedule(void)
  3813. {
  3814. struct thread_info *ti = current_thread_info();
  3815. /*
  3816. * If there is a non-zero preempt_count or interrupts are disabled,
  3817. * we do not want to preempt the current task. Just return..
  3818. */
  3819. if (likely(ti->preempt_count || irqs_disabled()))
  3820. return;
  3821. do {
  3822. add_preempt_count(PREEMPT_ACTIVE);
  3823. schedule();
  3824. sub_preempt_count(PREEMPT_ACTIVE);
  3825. /*
  3826. * Check again in case we missed a preemption opportunity
  3827. * between schedule and now.
  3828. */
  3829. barrier();
  3830. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3831. }
  3832. EXPORT_SYMBOL(preempt_schedule);
  3833. /*
  3834. * this is the entry point to schedule() from kernel preemption
  3835. * off of irq context.
  3836. * Note, that this is called and return with irqs disabled. This will
  3837. * protect us against recursive calling from irq.
  3838. */
  3839. asmlinkage void __sched preempt_schedule_irq(void)
  3840. {
  3841. struct thread_info *ti = current_thread_info();
  3842. /* Catch callers which need to be fixed */
  3843. BUG_ON(ti->preempt_count || !irqs_disabled());
  3844. do {
  3845. add_preempt_count(PREEMPT_ACTIVE);
  3846. local_irq_enable();
  3847. schedule();
  3848. local_irq_disable();
  3849. sub_preempt_count(PREEMPT_ACTIVE);
  3850. /*
  3851. * Check again in case we missed a preemption opportunity
  3852. * between schedule and now.
  3853. */
  3854. barrier();
  3855. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3856. }
  3857. #endif /* CONFIG_PREEMPT */
  3858. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3859. void *key)
  3860. {
  3861. return try_to_wake_up(curr->private, mode, sync);
  3862. }
  3863. EXPORT_SYMBOL(default_wake_function);
  3864. /*
  3865. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3866. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3867. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3868. *
  3869. * There are circumstances in which we can try to wake a task which has already
  3870. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3871. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3872. */
  3873. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3874. int nr_exclusive, int sync, void *key)
  3875. {
  3876. wait_queue_t *curr, *next;
  3877. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3878. unsigned flags = curr->flags;
  3879. if (curr->func(curr, mode, sync, key) &&
  3880. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3881. break;
  3882. }
  3883. }
  3884. /**
  3885. * __wake_up - wake up threads blocked on a waitqueue.
  3886. * @q: the waitqueue
  3887. * @mode: which threads
  3888. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3889. * @key: is directly passed to the wakeup function
  3890. */
  3891. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3892. int nr_exclusive, void *key)
  3893. {
  3894. unsigned long flags;
  3895. spin_lock_irqsave(&q->lock, flags);
  3896. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3897. spin_unlock_irqrestore(&q->lock, flags);
  3898. }
  3899. EXPORT_SYMBOL(__wake_up);
  3900. /*
  3901. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3902. */
  3903. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3904. {
  3905. __wake_up_common(q, mode, 1, 0, NULL);
  3906. }
  3907. /**
  3908. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3909. * @q: the waitqueue
  3910. * @mode: which threads
  3911. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3912. *
  3913. * The sync wakeup differs that the waker knows that it will schedule
  3914. * away soon, so while the target thread will be woken up, it will not
  3915. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3916. * with each other. This can prevent needless bouncing between CPUs.
  3917. *
  3918. * On UP it can prevent extra preemption.
  3919. */
  3920. void
  3921. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3922. {
  3923. unsigned long flags;
  3924. int sync = 1;
  3925. if (unlikely(!q))
  3926. return;
  3927. if (unlikely(!nr_exclusive))
  3928. sync = 0;
  3929. spin_lock_irqsave(&q->lock, flags);
  3930. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3931. spin_unlock_irqrestore(&q->lock, flags);
  3932. }
  3933. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3934. /**
  3935. * complete: - signals a single thread waiting on this completion
  3936. * @x: holds the state of this particular completion
  3937. *
  3938. * This will wake up a single thread waiting on this completion. Threads will be
  3939. * awakened in the same order in which they were queued.
  3940. *
  3941. * See also complete_all(), wait_for_completion() and related routines.
  3942. */
  3943. void complete(struct completion *x)
  3944. {
  3945. unsigned long flags;
  3946. spin_lock_irqsave(&x->wait.lock, flags);
  3947. x->done++;
  3948. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3949. spin_unlock_irqrestore(&x->wait.lock, flags);
  3950. }
  3951. EXPORT_SYMBOL(complete);
  3952. /**
  3953. * complete_all: - signals all threads waiting on this completion
  3954. * @x: holds the state of this particular completion
  3955. *
  3956. * This will wake up all threads waiting on this particular completion event.
  3957. */
  3958. void complete_all(struct completion *x)
  3959. {
  3960. unsigned long flags;
  3961. spin_lock_irqsave(&x->wait.lock, flags);
  3962. x->done += UINT_MAX/2;
  3963. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3964. spin_unlock_irqrestore(&x->wait.lock, flags);
  3965. }
  3966. EXPORT_SYMBOL(complete_all);
  3967. static inline long __sched
  3968. do_wait_for_common(struct completion *x, long timeout, int state)
  3969. {
  3970. if (!x->done) {
  3971. DECLARE_WAITQUEUE(wait, current);
  3972. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3973. __add_wait_queue_tail(&x->wait, &wait);
  3974. do {
  3975. if (signal_pending_state(state, current)) {
  3976. timeout = -ERESTARTSYS;
  3977. break;
  3978. }
  3979. __set_current_state(state);
  3980. spin_unlock_irq(&x->wait.lock);
  3981. timeout = schedule_timeout(timeout);
  3982. spin_lock_irq(&x->wait.lock);
  3983. } while (!x->done && timeout);
  3984. __remove_wait_queue(&x->wait, &wait);
  3985. if (!x->done)
  3986. return timeout;
  3987. }
  3988. x->done--;
  3989. return timeout ?: 1;
  3990. }
  3991. static long __sched
  3992. wait_for_common(struct completion *x, long timeout, int state)
  3993. {
  3994. might_sleep();
  3995. spin_lock_irq(&x->wait.lock);
  3996. timeout = do_wait_for_common(x, timeout, state);
  3997. spin_unlock_irq(&x->wait.lock);
  3998. return timeout;
  3999. }
  4000. /**
  4001. * wait_for_completion: - waits for completion of a task
  4002. * @x: holds the state of this particular completion
  4003. *
  4004. * This waits to be signaled for completion of a specific task. It is NOT
  4005. * interruptible and there is no timeout.
  4006. *
  4007. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4008. * and interrupt capability. Also see complete().
  4009. */
  4010. void __sched wait_for_completion(struct completion *x)
  4011. {
  4012. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4013. }
  4014. EXPORT_SYMBOL(wait_for_completion);
  4015. /**
  4016. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4017. * @x: holds the state of this particular completion
  4018. * @timeout: timeout value in jiffies
  4019. *
  4020. * This waits for either a completion of a specific task to be signaled or for a
  4021. * specified timeout to expire. The timeout is in jiffies. It is not
  4022. * interruptible.
  4023. */
  4024. unsigned long __sched
  4025. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4026. {
  4027. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4028. }
  4029. EXPORT_SYMBOL(wait_for_completion_timeout);
  4030. /**
  4031. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4032. * @x: holds the state of this particular completion
  4033. *
  4034. * This waits for completion of a specific task to be signaled. It is
  4035. * interruptible.
  4036. */
  4037. int __sched wait_for_completion_interruptible(struct completion *x)
  4038. {
  4039. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4040. if (t == -ERESTARTSYS)
  4041. return t;
  4042. return 0;
  4043. }
  4044. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4045. /**
  4046. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4047. * @x: holds the state of this particular completion
  4048. * @timeout: timeout value in jiffies
  4049. *
  4050. * This waits for either a completion of a specific task to be signaled or for a
  4051. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4052. */
  4053. unsigned long __sched
  4054. wait_for_completion_interruptible_timeout(struct completion *x,
  4055. unsigned long timeout)
  4056. {
  4057. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4058. }
  4059. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4060. /**
  4061. * wait_for_completion_killable: - waits for completion of a task (killable)
  4062. * @x: holds the state of this particular completion
  4063. *
  4064. * This waits to be signaled for completion of a specific task. It can be
  4065. * interrupted by a kill signal.
  4066. */
  4067. int __sched wait_for_completion_killable(struct completion *x)
  4068. {
  4069. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4070. if (t == -ERESTARTSYS)
  4071. return t;
  4072. return 0;
  4073. }
  4074. EXPORT_SYMBOL(wait_for_completion_killable);
  4075. /**
  4076. * try_wait_for_completion - try to decrement a completion without blocking
  4077. * @x: completion structure
  4078. *
  4079. * Returns: 0 if a decrement cannot be done without blocking
  4080. * 1 if a decrement succeeded.
  4081. *
  4082. * If a completion is being used as a counting completion,
  4083. * attempt to decrement the counter without blocking. This
  4084. * enables us to avoid waiting if the resource the completion
  4085. * is protecting is not available.
  4086. */
  4087. bool try_wait_for_completion(struct completion *x)
  4088. {
  4089. int ret = 1;
  4090. spin_lock_irq(&x->wait.lock);
  4091. if (!x->done)
  4092. ret = 0;
  4093. else
  4094. x->done--;
  4095. spin_unlock_irq(&x->wait.lock);
  4096. return ret;
  4097. }
  4098. EXPORT_SYMBOL(try_wait_for_completion);
  4099. /**
  4100. * completion_done - Test to see if a completion has any waiters
  4101. * @x: completion structure
  4102. *
  4103. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4104. * 1 if there are no waiters.
  4105. *
  4106. */
  4107. bool completion_done(struct completion *x)
  4108. {
  4109. int ret = 1;
  4110. spin_lock_irq(&x->wait.lock);
  4111. if (!x->done)
  4112. ret = 0;
  4113. spin_unlock_irq(&x->wait.lock);
  4114. return ret;
  4115. }
  4116. EXPORT_SYMBOL(completion_done);
  4117. static long __sched
  4118. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4119. {
  4120. unsigned long flags;
  4121. wait_queue_t wait;
  4122. init_waitqueue_entry(&wait, current);
  4123. __set_current_state(state);
  4124. spin_lock_irqsave(&q->lock, flags);
  4125. __add_wait_queue(q, &wait);
  4126. spin_unlock(&q->lock);
  4127. timeout = schedule_timeout(timeout);
  4128. spin_lock_irq(&q->lock);
  4129. __remove_wait_queue(q, &wait);
  4130. spin_unlock_irqrestore(&q->lock, flags);
  4131. return timeout;
  4132. }
  4133. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4134. {
  4135. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4136. }
  4137. EXPORT_SYMBOL(interruptible_sleep_on);
  4138. long __sched
  4139. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4140. {
  4141. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4142. }
  4143. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4144. void __sched sleep_on(wait_queue_head_t *q)
  4145. {
  4146. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4147. }
  4148. EXPORT_SYMBOL(sleep_on);
  4149. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4150. {
  4151. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4152. }
  4153. EXPORT_SYMBOL(sleep_on_timeout);
  4154. #ifdef CONFIG_RT_MUTEXES
  4155. /*
  4156. * rt_mutex_setprio - set the current priority of a task
  4157. * @p: task
  4158. * @prio: prio value (kernel-internal form)
  4159. *
  4160. * This function changes the 'effective' priority of a task. It does
  4161. * not touch ->normal_prio like __setscheduler().
  4162. *
  4163. * Used by the rt_mutex code to implement priority inheritance logic.
  4164. */
  4165. void rt_mutex_setprio(struct task_struct *p, int prio)
  4166. {
  4167. unsigned long flags;
  4168. int oldprio, on_rq, running;
  4169. struct rq *rq;
  4170. const struct sched_class *prev_class = p->sched_class;
  4171. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4172. rq = task_rq_lock(p, &flags);
  4173. update_rq_clock(rq);
  4174. oldprio = p->prio;
  4175. on_rq = p->se.on_rq;
  4176. running = task_current(rq, p);
  4177. if (on_rq)
  4178. dequeue_task(rq, p, 0);
  4179. if (running)
  4180. p->sched_class->put_prev_task(rq, p);
  4181. if (rt_prio(prio))
  4182. p->sched_class = &rt_sched_class;
  4183. else
  4184. p->sched_class = &fair_sched_class;
  4185. p->prio = prio;
  4186. if (running)
  4187. p->sched_class->set_curr_task(rq);
  4188. if (on_rq) {
  4189. enqueue_task(rq, p, 0);
  4190. check_class_changed(rq, p, prev_class, oldprio, running);
  4191. }
  4192. task_rq_unlock(rq, &flags);
  4193. }
  4194. #endif
  4195. void set_user_nice(struct task_struct *p, long nice)
  4196. {
  4197. int old_prio, delta, on_rq;
  4198. unsigned long flags;
  4199. struct rq *rq;
  4200. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4201. return;
  4202. /*
  4203. * We have to be careful, if called from sys_setpriority(),
  4204. * the task might be in the middle of scheduling on another CPU.
  4205. */
  4206. rq = task_rq_lock(p, &flags);
  4207. update_rq_clock(rq);
  4208. /*
  4209. * The RT priorities are set via sched_setscheduler(), but we still
  4210. * allow the 'normal' nice value to be set - but as expected
  4211. * it wont have any effect on scheduling until the task is
  4212. * SCHED_FIFO/SCHED_RR:
  4213. */
  4214. if (task_has_rt_policy(p)) {
  4215. p->static_prio = NICE_TO_PRIO(nice);
  4216. goto out_unlock;
  4217. }
  4218. on_rq = p->se.on_rq;
  4219. if (on_rq)
  4220. dequeue_task(rq, p, 0);
  4221. p->static_prio = NICE_TO_PRIO(nice);
  4222. set_load_weight(p);
  4223. old_prio = p->prio;
  4224. p->prio = effective_prio(p);
  4225. delta = p->prio - old_prio;
  4226. if (on_rq) {
  4227. enqueue_task(rq, p, 0);
  4228. /*
  4229. * If the task increased its priority or is running and
  4230. * lowered its priority, then reschedule its CPU:
  4231. */
  4232. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4233. resched_task(rq->curr);
  4234. }
  4235. out_unlock:
  4236. task_rq_unlock(rq, &flags);
  4237. }
  4238. EXPORT_SYMBOL(set_user_nice);
  4239. /*
  4240. * can_nice - check if a task can reduce its nice value
  4241. * @p: task
  4242. * @nice: nice value
  4243. */
  4244. int can_nice(const struct task_struct *p, const int nice)
  4245. {
  4246. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4247. int nice_rlim = 20 - nice;
  4248. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4249. capable(CAP_SYS_NICE));
  4250. }
  4251. #ifdef __ARCH_WANT_SYS_NICE
  4252. /*
  4253. * sys_nice - change the priority of the current process.
  4254. * @increment: priority increment
  4255. *
  4256. * sys_setpriority is a more generic, but much slower function that
  4257. * does similar things.
  4258. */
  4259. asmlinkage long sys_nice(int increment)
  4260. {
  4261. long nice, retval;
  4262. /*
  4263. * Setpriority might change our priority at the same moment.
  4264. * We don't have to worry. Conceptually one call occurs first
  4265. * and we have a single winner.
  4266. */
  4267. if (increment < -40)
  4268. increment = -40;
  4269. if (increment > 40)
  4270. increment = 40;
  4271. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4272. if (nice < -20)
  4273. nice = -20;
  4274. if (nice > 19)
  4275. nice = 19;
  4276. if (increment < 0 && !can_nice(current, nice))
  4277. return -EPERM;
  4278. retval = security_task_setnice(current, nice);
  4279. if (retval)
  4280. return retval;
  4281. set_user_nice(current, nice);
  4282. return 0;
  4283. }
  4284. #endif
  4285. /**
  4286. * task_prio - return the priority value of a given task.
  4287. * @p: the task in question.
  4288. *
  4289. * This is the priority value as seen by users in /proc.
  4290. * RT tasks are offset by -200. Normal tasks are centered
  4291. * around 0, value goes from -16 to +15.
  4292. */
  4293. int task_prio(const struct task_struct *p)
  4294. {
  4295. return p->prio - MAX_RT_PRIO;
  4296. }
  4297. /**
  4298. * task_nice - return the nice value of a given task.
  4299. * @p: the task in question.
  4300. */
  4301. int task_nice(const struct task_struct *p)
  4302. {
  4303. return TASK_NICE(p);
  4304. }
  4305. EXPORT_SYMBOL(task_nice);
  4306. /**
  4307. * idle_cpu - is a given cpu idle currently?
  4308. * @cpu: the processor in question.
  4309. */
  4310. int idle_cpu(int cpu)
  4311. {
  4312. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4313. }
  4314. /**
  4315. * idle_task - return the idle task for a given cpu.
  4316. * @cpu: the processor in question.
  4317. */
  4318. struct task_struct *idle_task(int cpu)
  4319. {
  4320. return cpu_rq(cpu)->idle;
  4321. }
  4322. /**
  4323. * find_process_by_pid - find a process with a matching PID value.
  4324. * @pid: the pid in question.
  4325. */
  4326. static struct task_struct *find_process_by_pid(pid_t pid)
  4327. {
  4328. return pid ? find_task_by_vpid(pid) : current;
  4329. }
  4330. /* Actually do priority change: must hold rq lock. */
  4331. static void
  4332. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4333. {
  4334. BUG_ON(p->se.on_rq);
  4335. p->policy = policy;
  4336. switch (p->policy) {
  4337. case SCHED_NORMAL:
  4338. case SCHED_BATCH:
  4339. case SCHED_IDLE:
  4340. p->sched_class = &fair_sched_class;
  4341. break;
  4342. case SCHED_FIFO:
  4343. case SCHED_RR:
  4344. p->sched_class = &rt_sched_class;
  4345. break;
  4346. }
  4347. p->rt_priority = prio;
  4348. p->normal_prio = normal_prio(p);
  4349. /* we are holding p->pi_lock already */
  4350. p->prio = rt_mutex_getprio(p);
  4351. set_load_weight(p);
  4352. }
  4353. static int __sched_setscheduler(struct task_struct *p, int policy,
  4354. struct sched_param *param, bool user)
  4355. {
  4356. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4357. unsigned long flags;
  4358. const struct sched_class *prev_class = p->sched_class;
  4359. struct rq *rq;
  4360. /* may grab non-irq protected spin_locks */
  4361. BUG_ON(in_interrupt());
  4362. recheck:
  4363. /* double check policy once rq lock held */
  4364. if (policy < 0)
  4365. policy = oldpolicy = p->policy;
  4366. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4367. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4368. policy != SCHED_IDLE)
  4369. return -EINVAL;
  4370. /*
  4371. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4372. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4373. * SCHED_BATCH and SCHED_IDLE is 0.
  4374. */
  4375. if (param->sched_priority < 0 ||
  4376. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4377. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4378. return -EINVAL;
  4379. if (rt_policy(policy) != (param->sched_priority != 0))
  4380. return -EINVAL;
  4381. /*
  4382. * Allow unprivileged RT tasks to decrease priority:
  4383. */
  4384. if (user && !capable(CAP_SYS_NICE)) {
  4385. if (rt_policy(policy)) {
  4386. unsigned long rlim_rtprio;
  4387. if (!lock_task_sighand(p, &flags))
  4388. return -ESRCH;
  4389. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4390. unlock_task_sighand(p, &flags);
  4391. /* can't set/change the rt policy */
  4392. if (policy != p->policy && !rlim_rtprio)
  4393. return -EPERM;
  4394. /* can't increase priority */
  4395. if (param->sched_priority > p->rt_priority &&
  4396. param->sched_priority > rlim_rtprio)
  4397. return -EPERM;
  4398. }
  4399. /*
  4400. * Like positive nice levels, dont allow tasks to
  4401. * move out of SCHED_IDLE either:
  4402. */
  4403. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4404. return -EPERM;
  4405. /* can't change other user's priorities */
  4406. if ((current->euid != p->euid) &&
  4407. (current->euid != p->uid))
  4408. return -EPERM;
  4409. }
  4410. if (user) {
  4411. #ifdef CONFIG_RT_GROUP_SCHED
  4412. /*
  4413. * Do not allow realtime tasks into groups that have no runtime
  4414. * assigned.
  4415. */
  4416. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4417. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4418. return -EPERM;
  4419. #endif
  4420. retval = security_task_setscheduler(p, policy, param);
  4421. if (retval)
  4422. return retval;
  4423. }
  4424. /*
  4425. * make sure no PI-waiters arrive (or leave) while we are
  4426. * changing the priority of the task:
  4427. */
  4428. spin_lock_irqsave(&p->pi_lock, flags);
  4429. /*
  4430. * To be able to change p->policy safely, the apropriate
  4431. * runqueue lock must be held.
  4432. */
  4433. rq = __task_rq_lock(p);
  4434. /* recheck policy now with rq lock held */
  4435. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4436. policy = oldpolicy = -1;
  4437. __task_rq_unlock(rq);
  4438. spin_unlock_irqrestore(&p->pi_lock, flags);
  4439. goto recheck;
  4440. }
  4441. update_rq_clock(rq);
  4442. on_rq = p->se.on_rq;
  4443. running = task_current(rq, p);
  4444. if (on_rq)
  4445. deactivate_task(rq, p, 0);
  4446. if (running)
  4447. p->sched_class->put_prev_task(rq, p);
  4448. oldprio = p->prio;
  4449. __setscheduler(rq, p, policy, param->sched_priority);
  4450. if (running)
  4451. p->sched_class->set_curr_task(rq);
  4452. if (on_rq) {
  4453. activate_task(rq, p, 0);
  4454. check_class_changed(rq, p, prev_class, oldprio, running);
  4455. }
  4456. __task_rq_unlock(rq);
  4457. spin_unlock_irqrestore(&p->pi_lock, flags);
  4458. rt_mutex_adjust_pi(p);
  4459. return 0;
  4460. }
  4461. /**
  4462. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4463. * @p: the task in question.
  4464. * @policy: new policy.
  4465. * @param: structure containing the new RT priority.
  4466. *
  4467. * NOTE that the task may be already dead.
  4468. */
  4469. int sched_setscheduler(struct task_struct *p, int policy,
  4470. struct sched_param *param)
  4471. {
  4472. return __sched_setscheduler(p, policy, param, true);
  4473. }
  4474. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4475. /**
  4476. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4477. * @p: the task in question.
  4478. * @policy: new policy.
  4479. * @param: structure containing the new RT priority.
  4480. *
  4481. * Just like sched_setscheduler, only don't bother checking if the
  4482. * current context has permission. For example, this is needed in
  4483. * stop_machine(): we create temporary high priority worker threads,
  4484. * but our caller might not have that capability.
  4485. */
  4486. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4487. struct sched_param *param)
  4488. {
  4489. return __sched_setscheduler(p, policy, param, false);
  4490. }
  4491. static int
  4492. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4493. {
  4494. struct sched_param lparam;
  4495. struct task_struct *p;
  4496. int retval;
  4497. if (!param || pid < 0)
  4498. return -EINVAL;
  4499. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4500. return -EFAULT;
  4501. rcu_read_lock();
  4502. retval = -ESRCH;
  4503. p = find_process_by_pid(pid);
  4504. if (p != NULL)
  4505. retval = sched_setscheduler(p, policy, &lparam);
  4506. rcu_read_unlock();
  4507. return retval;
  4508. }
  4509. /**
  4510. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4511. * @pid: the pid in question.
  4512. * @policy: new policy.
  4513. * @param: structure containing the new RT priority.
  4514. */
  4515. asmlinkage long
  4516. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4517. {
  4518. /* negative values for policy are not valid */
  4519. if (policy < 0)
  4520. return -EINVAL;
  4521. return do_sched_setscheduler(pid, policy, param);
  4522. }
  4523. /**
  4524. * sys_sched_setparam - set/change the RT priority of a thread
  4525. * @pid: the pid in question.
  4526. * @param: structure containing the new RT priority.
  4527. */
  4528. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4529. {
  4530. return do_sched_setscheduler(pid, -1, param);
  4531. }
  4532. /**
  4533. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4534. * @pid: the pid in question.
  4535. */
  4536. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4537. {
  4538. struct task_struct *p;
  4539. int retval;
  4540. if (pid < 0)
  4541. return -EINVAL;
  4542. retval = -ESRCH;
  4543. read_lock(&tasklist_lock);
  4544. p = find_process_by_pid(pid);
  4545. if (p) {
  4546. retval = security_task_getscheduler(p);
  4547. if (!retval)
  4548. retval = p->policy;
  4549. }
  4550. read_unlock(&tasklist_lock);
  4551. return retval;
  4552. }
  4553. /**
  4554. * sys_sched_getscheduler - get the RT priority of a thread
  4555. * @pid: the pid in question.
  4556. * @param: structure containing the RT priority.
  4557. */
  4558. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4559. {
  4560. struct sched_param lp;
  4561. struct task_struct *p;
  4562. int retval;
  4563. if (!param || pid < 0)
  4564. return -EINVAL;
  4565. read_lock(&tasklist_lock);
  4566. p = find_process_by_pid(pid);
  4567. retval = -ESRCH;
  4568. if (!p)
  4569. goto out_unlock;
  4570. retval = security_task_getscheduler(p);
  4571. if (retval)
  4572. goto out_unlock;
  4573. lp.sched_priority = p->rt_priority;
  4574. read_unlock(&tasklist_lock);
  4575. /*
  4576. * This one might sleep, we cannot do it with a spinlock held ...
  4577. */
  4578. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4579. return retval;
  4580. out_unlock:
  4581. read_unlock(&tasklist_lock);
  4582. return retval;
  4583. }
  4584. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4585. {
  4586. cpumask_t cpus_allowed;
  4587. cpumask_t new_mask = *in_mask;
  4588. struct task_struct *p;
  4589. int retval;
  4590. get_online_cpus();
  4591. read_lock(&tasklist_lock);
  4592. p = find_process_by_pid(pid);
  4593. if (!p) {
  4594. read_unlock(&tasklist_lock);
  4595. put_online_cpus();
  4596. return -ESRCH;
  4597. }
  4598. /*
  4599. * It is not safe to call set_cpus_allowed with the
  4600. * tasklist_lock held. We will bump the task_struct's
  4601. * usage count and then drop tasklist_lock.
  4602. */
  4603. get_task_struct(p);
  4604. read_unlock(&tasklist_lock);
  4605. retval = -EPERM;
  4606. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4607. !capable(CAP_SYS_NICE))
  4608. goto out_unlock;
  4609. retval = security_task_setscheduler(p, 0, NULL);
  4610. if (retval)
  4611. goto out_unlock;
  4612. cpuset_cpus_allowed(p, &cpus_allowed);
  4613. cpus_and(new_mask, new_mask, cpus_allowed);
  4614. again:
  4615. retval = set_cpus_allowed_ptr(p, &new_mask);
  4616. if (!retval) {
  4617. cpuset_cpus_allowed(p, &cpus_allowed);
  4618. if (!cpus_subset(new_mask, cpus_allowed)) {
  4619. /*
  4620. * We must have raced with a concurrent cpuset
  4621. * update. Just reset the cpus_allowed to the
  4622. * cpuset's cpus_allowed
  4623. */
  4624. new_mask = cpus_allowed;
  4625. goto again;
  4626. }
  4627. }
  4628. out_unlock:
  4629. put_task_struct(p);
  4630. put_online_cpus();
  4631. return retval;
  4632. }
  4633. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4634. cpumask_t *new_mask)
  4635. {
  4636. if (len < sizeof(cpumask_t)) {
  4637. memset(new_mask, 0, sizeof(cpumask_t));
  4638. } else if (len > sizeof(cpumask_t)) {
  4639. len = sizeof(cpumask_t);
  4640. }
  4641. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4642. }
  4643. /**
  4644. * sys_sched_setaffinity - set the cpu affinity of a process
  4645. * @pid: pid of the process
  4646. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4647. * @user_mask_ptr: user-space pointer to the new cpu mask
  4648. */
  4649. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4650. unsigned long __user *user_mask_ptr)
  4651. {
  4652. cpumask_t new_mask;
  4653. int retval;
  4654. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4655. if (retval)
  4656. return retval;
  4657. return sched_setaffinity(pid, &new_mask);
  4658. }
  4659. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4660. {
  4661. struct task_struct *p;
  4662. int retval;
  4663. get_online_cpus();
  4664. read_lock(&tasklist_lock);
  4665. retval = -ESRCH;
  4666. p = find_process_by_pid(pid);
  4667. if (!p)
  4668. goto out_unlock;
  4669. retval = security_task_getscheduler(p);
  4670. if (retval)
  4671. goto out_unlock;
  4672. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4673. out_unlock:
  4674. read_unlock(&tasklist_lock);
  4675. put_online_cpus();
  4676. return retval;
  4677. }
  4678. /**
  4679. * sys_sched_getaffinity - get the cpu affinity of a process
  4680. * @pid: pid of the process
  4681. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4682. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4683. */
  4684. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4685. unsigned long __user *user_mask_ptr)
  4686. {
  4687. int ret;
  4688. cpumask_t mask;
  4689. if (len < sizeof(cpumask_t))
  4690. return -EINVAL;
  4691. ret = sched_getaffinity(pid, &mask);
  4692. if (ret < 0)
  4693. return ret;
  4694. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4695. return -EFAULT;
  4696. return sizeof(cpumask_t);
  4697. }
  4698. /**
  4699. * sys_sched_yield - yield the current processor to other threads.
  4700. *
  4701. * This function yields the current CPU to other tasks. If there are no
  4702. * other threads running on this CPU then this function will return.
  4703. */
  4704. asmlinkage long sys_sched_yield(void)
  4705. {
  4706. struct rq *rq = this_rq_lock();
  4707. schedstat_inc(rq, yld_count);
  4708. current->sched_class->yield_task(rq);
  4709. /*
  4710. * Since we are going to call schedule() anyway, there's
  4711. * no need to preempt or enable interrupts:
  4712. */
  4713. __release(rq->lock);
  4714. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4715. _raw_spin_unlock(&rq->lock);
  4716. preempt_enable_no_resched();
  4717. schedule();
  4718. return 0;
  4719. }
  4720. static void __cond_resched(void)
  4721. {
  4722. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4723. __might_sleep(__FILE__, __LINE__);
  4724. #endif
  4725. /*
  4726. * The BKS might be reacquired before we have dropped
  4727. * PREEMPT_ACTIVE, which could trigger a second
  4728. * cond_resched() call.
  4729. */
  4730. do {
  4731. add_preempt_count(PREEMPT_ACTIVE);
  4732. schedule();
  4733. sub_preempt_count(PREEMPT_ACTIVE);
  4734. } while (need_resched());
  4735. }
  4736. int __sched _cond_resched(void)
  4737. {
  4738. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4739. system_state == SYSTEM_RUNNING) {
  4740. __cond_resched();
  4741. return 1;
  4742. }
  4743. return 0;
  4744. }
  4745. EXPORT_SYMBOL(_cond_resched);
  4746. /*
  4747. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4748. * call schedule, and on return reacquire the lock.
  4749. *
  4750. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4751. * operations here to prevent schedule() from being called twice (once via
  4752. * spin_unlock(), once by hand).
  4753. */
  4754. int cond_resched_lock(spinlock_t *lock)
  4755. {
  4756. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4757. int ret = 0;
  4758. if (spin_needbreak(lock) || resched) {
  4759. spin_unlock(lock);
  4760. if (resched && need_resched())
  4761. __cond_resched();
  4762. else
  4763. cpu_relax();
  4764. ret = 1;
  4765. spin_lock(lock);
  4766. }
  4767. return ret;
  4768. }
  4769. EXPORT_SYMBOL(cond_resched_lock);
  4770. int __sched cond_resched_softirq(void)
  4771. {
  4772. BUG_ON(!in_softirq());
  4773. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4774. local_bh_enable();
  4775. __cond_resched();
  4776. local_bh_disable();
  4777. return 1;
  4778. }
  4779. return 0;
  4780. }
  4781. EXPORT_SYMBOL(cond_resched_softirq);
  4782. /**
  4783. * yield - yield the current processor to other threads.
  4784. *
  4785. * This is a shortcut for kernel-space yielding - it marks the
  4786. * thread runnable and calls sys_sched_yield().
  4787. */
  4788. void __sched yield(void)
  4789. {
  4790. set_current_state(TASK_RUNNING);
  4791. sys_sched_yield();
  4792. }
  4793. EXPORT_SYMBOL(yield);
  4794. /*
  4795. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4796. * that process accounting knows that this is a task in IO wait state.
  4797. *
  4798. * But don't do that if it is a deliberate, throttling IO wait (this task
  4799. * has set its backing_dev_info: the queue against which it should throttle)
  4800. */
  4801. void __sched io_schedule(void)
  4802. {
  4803. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4804. delayacct_blkio_start();
  4805. atomic_inc(&rq->nr_iowait);
  4806. schedule();
  4807. atomic_dec(&rq->nr_iowait);
  4808. delayacct_blkio_end();
  4809. }
  4810. EXPORT_SYMBOL(io_schedule);
  4811. long __sched io_schedule_timeout(long timeout)
  4812. {
  4813. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4814. long ret;
  4815. delayacct_blkio_start();
  4816. atomic_inc(&rq->nr_iowait);
  4817. ret = schedule_timeout(timeout);
  4818. atomic_dec(&rq->nr_iowait);
  4819. delayacct_blkio_end();
  4820. return ret;
  4821. }
  4822. /**
  4823. * sys_sched_get_priority_max - return maximum RT priority.
  4824. * @policy: scheduling class.
  4825. *
  4826. * this syscall returns the maximum rt_priority that can be used
  4827. * by a given scheduling class.
  4828. */
  4829. asmlinkage long sys_sched_get_priority_max(int policy)
  4830. {
  4831. int ret = -EINVAL;
  4832. switch (policy) {
  4833. case SCHED_FIFO:
  4834. case SCHED_RR:
  4835. ret = MAX_USER_RT_PRIO-1;
  4836. break;
  4837. case SCHED_NORMAL:
  4838. case SCHED_BATCH:
  4839. case SCHED_IDLE:
  4840. ret = 0;
  4841. break;
  4842. }
  4843. return ret;
  4844. }
  4845. /**
  4846. * sys_sched_get_priority_min - return minimum RT priority.
  4847. * @policy: scheduling class.
  4848. *
  4849. * this syscall returns the minimum rt_priority that can be used
  4850. * by a given scheduling class.
  4851. */
  4852. asmlinkage long sys_sched_get_priority_min(int policy)
  4853. {
  4854. int ret = -EINVAL;
  4855. switch (policy) {
  4856. case SCHED_FIFO:
  4857. case SCHED_RR:
  4858. ret = 1;
  4859. break;
  4860. case SCHED_NORMAL:
  4861. case SCHED_BATCH:
  4862. case SCHED_IDLE:
  4863. ret = 0;
  4864. }
  4865. return ret;
  4866. }
  4867. /**
  4868. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4869. * @pid: pid of the process.
  4870. * @interval: userspace pointer to the timeslice value.
  4871. *
  4872. * this syscall writes the default timeslice value of a given process
  4873. * into the user-space timespec buffer. A value of '0' means infinity.
  4874. */
  4875. asmlinkage
  4876. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4877. {
  4878. struct task_struct *p;
  4879. unsigned int time_slice;
  4880. int retval;
  4881. struct timespec t;
  4882. if (pid < 0)
  4883. return -EINVAL;
  4884. retval = -ESRCH;
  4885. read_lock(&tasklist_lock);
  4886. p = find_process_by_pid(pid);
  4887. if (!p)
  4888. goto out_unlock;
  4889. retval = security_task_getscheduler(p);
  4890. if (retval)
  4891. goto out_unlock;
  4892. /*
  4893. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4894. * tasks that are on an otherwise idle runqueue:
  4895. */
  4896. time_slice = 0;
  4897. if (p->policy == SCHED_RR) {
  4898. time_slice = DEF_TIMESLICE;
  4899. } else if (p->policy != SCHED_FIFO) {
  4900. struct sched_entity *se = &p->se;
  4901. unsigned long flags;
  4902. struct rq *rq;
  4903. rq = task_rq_lock(p, &flags);
  4904. if (rq->cfs.load.weight)
  4905. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4906. task_rq_unlock(rq, &flags);
  4907. }
  4908. read_unlock(&tasklist_lock);
  4909. jiffies_to_timespec(time_slice, &t);
  4910. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4911. return retval;
  4912. out_unlock:
  4913. read_unlock(&tasklist_lock);
  4914. return retval;
  4915. }
  4916. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4917. void sched_show_task(struct task_struct *p)
  4918. {
  4919. unsigned long free = 0;
  4920. unsigned state;
  4921. state = p->state ? __ffs(p->state) + 1 : 0;
  4922. printk(KERN_INFO "%-13.13s %c", p->comm,
  4923. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4924. #if BITS_PER_LONG == 32
  4925. if (state == TASK_RUNNING)
  4926. printk(KERN_CONT " running ");
  4927. else
  4928. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4929. #else
  4930. if (state == TASK_RUNNING)
  4931. printk(KERN_CONT " running task ");
  4932. else
  4933. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4934. #endif
  4935. #ifdef CONFIG_DEBUG_STACK_USAGE
  4936. {
  4937. unsigned long *n = end_of_stack(p);
  4938. while (!*n)
  4939. n++;
  4940. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4941. }
  4942. #endif
  4943. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4944. task_pid_nr(p), task_pid_nr(p->real_parent));
  4945. show_stack(p, NULL);
  4946. }
  4947. void show_state_filter(unsigned long state_filter)
  4948. {
  4949. struct task_struct *g, *p;
  4950. #if BITS_PER_LONG == 32
  4951. printk(KERN_INFO
  4952. " task PC stack pid father\n");
  4953. #else
  4954. printk(KERN_INFO
  4955. " task PC stack pid father\n");
  4956. #endif
  4957. read_lock(&tasklist_lock);
  4958. do_each_thread(g, p) {
  4959. /*
  4960. * reset the NMI-timeout, listing all files on a slow
  4961. * console might take alot of time:
  4962. */
  4963. touch_nmi_watchdog();
  4964. if (!state_filter || (p->state & state_filter))
  4965. sched_show_task(p);
  4966. } while_each_thread(g, p);
  4967. touch_all_softlockup_watchdogs();
  4968. #ifdef CONFIG_SCHED_DEBUG
  4969. sysrq_sched_debug_show();
  4970. #endif
  4971. read_unlock(&tasklist_lock);
  4972. /*
  4973. * Only show locks if all tasks are dumped:
  4974. */
  4975. if (state_filter == -1)
  4976. debug_show_all_locks();
  4977. }
  4978. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4979. {
  4980. idle->sched_class = &idle_sched_class;
  4981. }
  4982. /**
  4983. * init_idle - set up an idle thread for a given CPU
  4984. * @idle: task in question
  4985. * @cpu: cpu the idle task belongs to
  4986. *
  4987. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4988. * flag, to make booting more robust.
  4989. */
  4990. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4991. {
  4992. struct rq *rq = cpu_rq(cpu);
  4993. unsigned long flags;
  4994. spin_lock_irqsave(&rq->lock, flags);
  4995. __sched_fork(idle);
  4996. idle->se.exec_start = sched_clock();
  4997. idle->prio = idle->normal_prio = MAX_PRIO;
  4998. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4999. __set_task_cpu(idle, cpu);
  5000. rq->curr = rq->idle = idle;
  5001. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5002. idle->oncpu = 1;
  5003. #endif
  5004. spin_unlock_irqrestore(&rq->lock, flags);
  5005. /* Set the preempt count _outside_ the spinlocks! */
  5006. #if defined(CONFIG_PREEMPT)
  5007. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5008. #else
  5009. task_thread_info(idle)->preempt_count = 0;
  5010. #endif
  5011. /*
  5012. * The idle tasks have their own, simple scheduling class:
  5013. */
  5014. idle->sched_class = &idle_sched_class;
  5015. }
  5016. /*
  5017. * In a system that switches off the HZ timer nohz_cpu_mask
  5018. * indicates which cpus entered this state. This is used
  5019. * in the rcu update to wait only for active cpus. For system
  5020. * which do not switch off the HZ timer nohz_cpu_mask should
  5021. * always be CPU_MASK_NONE.
  5022. */
  5023. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5024. /*
  5025. * Increase the granularity value when there are more CPUs,
  5026. * because with more CPUs the 'effective latency' as visible
  5027. * to users decreases. But the relationship is not linear,
  5028. * so pick a second-best guess by going with the log2 of the
  5029. * number of CPUs.
  5030. *
  5031. * This idea comes from the SD scheduler of Con Kolivas:
  5032. */
  5033. static inline void sched_init_granularity(void)
  5034. {
  5035. unsigned int factor = 1 + ilog2(num_online_cpus());
  5036. const unsigned long limit = 200000000;
  5037. sysctl_sched_min_granularity *= factor;
  5038. if (sysctl_sched_min_granularity > limit)
  5039. sysctl_sched_min_granularity = limit;
  5040. sysctl_sched_latency *= factor;
  5041. if (sysctl_sched_latency > limit)
  5042. sysctl_sched_latency = limit;
  5043. sysctl_sched_wakeup_granularity *= factor;
  5044. sysctl_sched_shares_ratelimit *= factor;
  5045. }
  5046. #ifdef CONFIG_SMP
  5047. /*
  5048. * This is how migration works:
  5049. *
  5050. * 1) we queue a struct migration_req structure in the source CPU's
  5051. * runqueue and wake up that CPU's migration thread.
  5052. * 2) we down() the locked semaphore => thread blocks.
  5053. * 3) migration thread wakes up (implicitly it forces the migrated
  5054. * thread off the CPU)
  5055. * 4) it gets the migration request and checks whether the migrated
  5056. * task is still in the wrong runqueue.
  5057. * 5) if it's in the wrong runqueue then the migration thread removes
  5058. * it and puts it into the right queue.
  5059. * 6) migration thread up()s the semaphore.
  5060. * 7) we wake up and the migration is done.
  5061. */
  5062. /*
  5063. * Change a given task's CPU affinity. Migrate the thread to a
  5064. * proper CPU and schedule it away if the CPU it's executing on
  5065. * is removed from the allowed bitmask.
  5066. *
  5067. * NOTE: the caller must have a valid reference to the task, the
  5068. * task must not exit() & deallocate itself prematurely. The
  5069. * call is not atomic; no spinlocks may be held.
  5070. */
  5071. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5072. {
  5073. struct migration_req req;
  5074. unsigned long flags;
  5075. struct rq *rq;
  5076. int ret = 0;
  5077. rq = task_rq_lock(p, &flags);
  5078. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5079. ret = -EINVAL;
  5080. goto out;
  5081. }
  5082. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5083. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5084. ret = -EINVAL;
  5085. goto out;
  5086. }
  5087. if (p->sched_class->set_cpus_allowed)
  5088. p->sched_class->set_cpus_allowed(p, new_mask);
  5089. else {
  5090. p->cpus_allowed = *new_mask;
  5091. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5092. }
  5093. /* Can the task run on the task's current CPU? If so, we're done */
  5094. if (cpu_isset(task_cpu(p), *new_mask))
  5095. goto out;
  5096. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5097. /* Need help from migration thread: drop lock and wait. */
  5098. task_rq_unlock(rq, &flags);
  5099. wake_up_process(rq->migration_thread);
  5100. wait_for_completion(&req.done);
  5101. tlb_migrate_finish(p->mm);
  5102. return 0;
  5103. }
  5104. out:
  5105. task_rq_unlock(rq, &flags);
  5106. return ret;
  5107. }
  5108. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5109. /*
  5110. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5111. * this because either it can't run here any more (set_cpus_allowed()
  5112. * away from this CPU, or CPU going down), or because we're
  5113. * attempting to rebalance this task on exec (sched_exec).
  5114. *
  5115. * So we race with normal scheduler movements, but that's OK, as long
  5116. * as the task is no longer on this CPU.
  5117. *
  5118. * Returns non-zero if task was successfully migrated.
  5119. */
  5120. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5121. {
  5122. struct rq *rq_dest, *rq_src;
  5123. int ret = 0, on_rq;
  5124. if (unlikely(!cpu_active(dest_cpu)))
  5125. return ret;
  5126. rq_src = cpu_rq(src_cpu);
  5127. rq_dest = cpu_rq(dest_cpu);
  5128. double_rq_lock(rq_src, rq_dest);
  5129. /* Already moved. */
  5130. if (task_cpu(p) != src_cpu)
  5131. goto done;
  5132. /* Affinity changed (again). */
  5133. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5134. goto fail;
  5135. on_rq = p->se.on_rq;
  5136. if (on_rq)
  5137. deactivate_task(rq_src, p, 0);
  5138. set_task_cpu(p, dest_cpu);
  5139. if (on_rq) {
  5140. activate_task(rq_dest, p, 0);
  5141. check_preempt_curr(rq_dest, p, 0);
  5142. }
  5143. done:
  5144. ret = 1;
  5145. fail:
  5146. double_rq_unlock(rq_src, rq_dest);
  5147. return ret;
  5148. }
  5149. /*
  5150. * migration_thread - this is a highprio system thread that performs
  5151. * thread migration by bumping thread off CPU then 'pushing' onto
  5152. * another runqueue.
  5153. */
  5154. static int migration_thread(void *data)
  5155. {
  5156. int cpu = (long)data;
  5157. struct rq *rq;
  5158. rq = cpu_rq(cpu);
  5159. BUG_ON(rq->migration_thread != current);
  5160. set_current_state(TASK_INTERRUPTIBLE);
  5161. while (!kthread_should_stop()) {
  5162. struct migration_req *req;
  5163. struct list_head *head;
  5164. spin_lock_irq(&rq->lock);
  5165. if (cpu_is_offline(cpu)) {
  5166. spin_unlock_irq(&rq->lock);
  5167. goto wait_to_die;
  5168. }
  5169. if (rq->active_balance) {
  5170. active_load_balance(rq, cpu);
  5171. rq->active_balance = 0;
  5172. }
  5173. head = &rq->migration_queue;
  5174. if (list_empty(head)) {
  5175. spin_unlock_irq(&rq->lock);
  5176. schedule();
  5177. set_current_state(TASK_INTERRUPTIBLE);
  5178. continue;
  5179. }
  5180. req = list_entry(head->next, struct migration_req, list);
  5181. list_del_init(head->next);
  5182. spin_unlock(&rq->lock);
  5183. __migrate_task(req->task, cpu, req->dest_cpu);
  5184. local_irq_enable();
  5185. complete(&req->done);
  5186. }
  5187. __set_current_state(TASK_RUNNING);
  5188. return 0;
  5189. wait_to_die:
  5190. /* Wait for kthread_stop */
  5191. set_current_state(TASK_INTERRUPTIBLE);
  5192. while (!kthread_should_stop()) {
  5193. schedule();
  5194. set_current_state(TASK_INTERRUPTIBLE);
  5195. }
  5196. __set_current_state(TASK_RUNNING);
  5197. return 0;
  5198. }
  5199. #ifdef CONFIG_HOTPLUG_CPU
  5200. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5201. {
  5202. int ret;
  5203. local_irq_disable();
  5204. ret = __migrate_task(p, src_cpu, dest_cpu);
  5205. local_irq_enable();
  5206. return ret;
  5207. }
  5208. /*
  5209. * Figure out where task on dead CPU should go, use force if necessary.
  5210. */
  5211. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5212. {
  5213. unsigned long flags;
  5214. cpumask_t mask;
  5215. struct rq *rq;
  5216. int dest_cpu;
  5217. do {
  5218. /* On same node? */
  5219. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5220. cpus_and(mask, mask, p->cpus_allowed);
  5221. dest_cpu = any_online_cpu(mask);
  5222. /* On any allowed CPU? */
  5223. if (dest_cpu >= nr_cpu_ids)
  5224. dest_cpu = any_online_cpu(p->cpus_allowed);
  5225. /* No more Mr. Nice Guy. */
  5226. if (dest_cpu >= nr_cpu_ids) {
  5227. cpumask_t cpus_allowed;
  5228. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5229. /*
  5230. * Try to stay on the same cpuset, where the
  5231. * current cpuset may be a subset of all cpus.
  5232. * The cpuset_cpus_allowed_locked() variant of
  5233. * cpuset_cpus_allowed() will not block. It must be
  5234. * called within calls to cpuset_lock/cpuset_unlock.
  5235. */
  5236. rq = task_rq_lock(p, &flags);
  5237. p->cpus_allowed = cpus_allowed;
  5238. dest_cpu = any_online_cpu(p->cpus_allowed);
  5239. task_rq_unlock(rq, &flags);
  5240. /*
  5241. * Don't tell them about moving exiting tasks or
  5242. * kernel threads (both mm NULL), since they never
  5243. * leave kernel.
  5244. */
  5245. if (p->mm && printk_ratelimit()) {
  5246. printk(KERN_INFO "process %d (%s) no "
  5247. "longer affine to cpu%d\n",
  5248. task_pid_nr(p), p->comm, dead_cpu);
  5249. }
  5250. }
  5251. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5252. }
  5253. /*
  5254. * While a dead CPU has no uninterruptible tasks queued at this point,
  5255. * it might still have a nonzero ->nr_uninterruptible counter, because
  5256. * for performance reasons the counter is not stricly tracking tasks to
  5257. * their home CPUs. So we just add the counter to another CPU's counter,
  5258. * to keep the global sum constant after CPU-down:
  5259. */
  5260. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5261. {
  5262. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5263. unsigned long flags;
  5264. local_irq_save(flags);
  5265. double_rq_lock(rq_src, rq_dest);
  5266. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5267. rq_src->nr_uninterruptible = 0;
  5268. double_rq_unlock(rq_src, rq_dest);
  5269. local_irq_restore(flags);
  5270. }
  5271. /* Run through task list and migrate tasks from the dead cpu. */
  5272. static void migrate_live_tasks(int src_cpu)
  5273. {
  5274. struct task_struct *p, *t;
  5275. read_lock(&tasklist_lock);
  5276. do_each_thread(t, p) {
  5277. if (p == current)
  5278. continue;
  5279. if (task_cpu(p) == src_cpu)
  5280. move_task_off_dead_cpu(src_cpu, p);
  5281. } while_each_thread(t, p);
  5282. read_unlock(&tasklist_lock);
  5283. }
  5284. /*
  5285. * Schedules idle task to be the next runnable task on current CPU.
  5286. * It does so by boosting its priority to highest possible.
  5287. * Used by CPU offline code.
  5288. */
  5289. void sched_idle_next(void)
  5290. {
  5291. int this_cpu = smp_processor_id();
  5292. struct rq *rq = cpu_rq(this_cpu);
  5293. struct task_struct *p = rq->idle;
  5294. unsigned long flags;
  5295. /* cpu has to be offline */
  5296. BUG_ON(cpu_online(this_cpu));
  5297. /*
  5298. * Strictly not necessary since rest of the CPUs are stopped by now
  5299. * and interrupts disabled on the current cpu.
  5300. */
  5301. spin_lock_irqsave(&rq->lock, flags);
  5302. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5303. update_rq_clock(rq);
  5304. activate_task(rq, p, 0);
  5305. spin_unlock_irqrestore(&rq->lock, flags);
  5306. }
  5307. /*
  5308. * Ensures that the idle task is using init_mm right before its cpu goes
  5309. * offline.
  5310. */
  5311. void idle_task_exit(void)
  5312. {
  5313. struct mm_struct *mm = current->active_mm;
  5314. BUG_ON(cpu_online(smp_processor_id()));
  5315. if (mm != &init_mm)
  5316. switch_mm(mm, &init_mm, current);
  5317. mmdrop(mm);
  5318. }
  5319. /* called under rq->lock with disabled interrupts */
  5320. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5321. {
  5322. struct rq *rq = cpu_rq(dead_cpu);
  5323. /* Must be exiting, otherwise would be on tasklist. */
  5324. BUG_ON(!p->exit_state);
  5325. /* Cannot have done final schedule yet: would have vanished. */
  5326. BUG_ON(p->state == TASK_DEAD);
  5327. get_task_struct(p);
  5328. /*
  5329. * Drop lock around migration; if someone else moves it,
  5330. * that's OK. No task can be added to this CPU, so iteration is
  5331. * fine.
  5332. */
  5333. spin_unlock_irq(&rq->lock);
  5334. move_task_off_dead_cpu(dead_cpu, p);
  5335. spin_lock_irq(&rq->lock);
  5336. put_task_struct(p);
  5337. }
  5338. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5339. static void migrate_dead_tasks(unsigned int dead_cpu)
  5340. {
  5341. struct rq *rq = cpu_rq(dead_cpu);
  5342. struct task_struct *next;
  5343. for ( ; ; ) {
  5344. if (!rq->nr_running)
  5345. break;
  5346. update_rq_clock(rq);
  5347. next = pick_next_task(rq, rq->curr);
  5348. if (!next)
  5349. break;
  5350. next->sched_class->put_prev_task(rq, next);
  5351. migrate_dead(dead_cpu, next);
  5352. }
  5353. }
  5354. #endif /* CONFIG_HOTPLUG_CPU */
  5355. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5356. static struct ctl_table sd_ctl_dir[] = {
  5357. {
  5358. .procname = "sched_domain",
  5359. .mode = 0555,
  5360. },
  5361. {0, },
  5362. };
  5363. static struct ctl_table sd_ctl_root[] = {
  5364. {
  5365. .ctl_name = CTL_KERN,
  5366. .procname = "kernel",
  5367. .mode = 0555,
  5368. .child = sd_ctl_dir,
  5369. },
  5370. {0, },
  5371. };
  5372. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5373. {
  5374. struct ctl_table *entry =
  5375. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5376. return entry;
  5377. }
  5378. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5379. {
  5380. struct ctl_table *entry;
  5381. /*
  5382. * In the intermediate directories, both the child directory and
  5383. * procname are dynamically allocated and could fail but the mode
  5384. * will always be set. In the lowest directory the names are
  5385. * static strings and all have proc handlers.
  5386. */
  5387. for (entry = *tablep; entry->mode; entry++) {
  5388. if (entry->child)
  5389. sd_free_ctl_entry(&entry->child);
  5390. if (entry->proc_handler == NULL)
  5391. kfree(entry->procname);
  5392. }
  5393. kfree(*tablep);
  5394. *tablep = NULL;
  5395. }
  5396. static void
  5397. set_table_entry(struct ctl_table *entry,
  5398. const char *procname, void *data, int maxlen,
  5399. mode_t mode, proc_handler *proc_handler)
  5400. {
  5401. entry->procname = procname;
  5402. entry->data = data;
  5403. entry->maxlen = maxlen;
  5404. entry->mode = mode;
  5405. entry->proc_handler = proc_handler;
  5406. }
  5407. static struct ctl_table *
  5408. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5409. {
  5410. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5411. if (table == NULL)
  5412. return NULL;
  5413. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5414. sizeof(long), 0644, proc_doulongvec_minmax);
  5415. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5416. sizeof(long), 0644, proc_doulongvec_minmax);
  5417. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5418. sizeof(int), 0644, proc_dointvec_minmax);
  5419. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5420. sizeof(int), 0644, proc_dointvec_minmax);
  5421. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5422. sizeof(int), 0644, proc_dointvec_minmax);
  5423. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5424. sizeof(int), 0644, proc_dointvec_minmax);
  5425. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5426. sizeof(int), 0644, proc_dointvec_minmax);
  5427. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5428. sizeof(int), 0644, proc_dointvec_minmax);
  5429. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5430. sizeof(int), 0644, proc_dointvec_minmax);
  5431. set_table_entry(&table[9], "cache_nice_tries",
  5432. &sd->cache_nice_tries,
  5433. sizeof(int), 0644, proc_dointvec_minmax);
  5434. set_table_entry(&table[10], "flags", &sd->flags,
  5435. sizeof(int), 0644, proc_dointvec_minmax);
  5436. set_table_entry(&table[11], "name", sd->name,
  5437. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5438. /* &table[12] is terminator */
  5439. return table;
  5440. }
  5441. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5442. {
  5443. struct ctl_table *entry, *table;
  5444. struct sched_domain *sd;
  5445. int domain_num = 0, i;
  5446. char buf[32];
  5447. for_each_domain(cpu, sd)
  5448. domain_num++;
  5449. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5450. if (table == NULL)
  5451. return NULL;
  5452. i = 0;
  5453. for_each_domain(cpu, sd) {
  5454. snprintf(buf, 32, "domain%d", i);
  5455. entry->procname = kstrdup(buf, GFP_KERNEL);
  5456. entry->mode = 0555;
  5457. entry->child = sd_alloc_ctl_domain_table(sd);
  5458. entry++;
  5459. i++;
  5460. }
  5461. return table;
  5462. }
  5463. static struct ctl_table_header *sd_sysctl_header;
  5464. static void register_sched_domain_sysctl(void)
  5465. {
  5466. int i, cpu_num = num_online_cpus();
  5467. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5468. char buf[32];
  5469. WARN_ON(sd_ctl_dir[0].child);
  5470. sd_ctl_dir[0].child = entry;
  5471. if (entry == NULL)
  5472. return;
  5473. for_each_online_cpu(i) {
  5474. snprintf(buf, 32, "cpu%d", i);
  5475. entry->procname = kstrdup(buf, GFP_KERNEL);
  5476. entry->mode = 0555;
  5477. entry->child = sd_alloc_ctl_cpu_table(i);
  5478. entry++;
  5479. }
  5480. WARN_ON(sd_sysctl_header);
  5481. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5482. }
  5483. /* may be called multiple times per register */
  5484. static void unregister_sched_domain_sysctl(void)
  5485. {
  5486. if (sd_sysctl_header)
  5487. unregister_sysctl_table(sd_sysctl_header);
  5488. sd_sysctl_header = NULL;
  5489. if (sd_ctl_dir[0].child)
  5490. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5491. }
  5492. #else
  5493. static void register_sched_domain_sysctl(void)
  5494. {
  5495. }
  5496. static void unregister_sched_domain_sysctl(void)
  5497. {
  5498. }
  5499. #endif
  5500. static void set_rq_online(struct rq *rq)
  5501. {
  5502. if (!rq->online) {
  5503. const struct sched_class *class;
  5504. cpu_set(rq->cpu, rq->rd->online);
  5505. rq->online = 1;
  5506. for_each_class(class) {
  5507. if (class->rq_online)
  5508. class->rq_online(rq);
  5509. }
  5510. }
  5511. }
  5512. static void set_rq_offline(struct rq *rq)
  5513. {
  5514. if (rq->online) {
  5515. const struct sched_class *class;
  5516. for_each_class(class) {
  5517. if (class->rq_offline)
  5518. class->rq_offline(rq);
  5519. }
  5520. cpu_clear(rq->cpu, rq->rd->online);
  5521. rq->online = 0;
  5522. }
  5523. }
  5524. /*
  5525. * migration_call - callback that gets triggered when a CPU is added.
  5526. * Here we can start up the necessary migration thread for the new CPU.
  5527. */
  5528. static int __cpuinit
  5529. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5530. {
  5531. struct task_struct *p;
  5532. int cpu = (long)hcpu;
  5533. unsigned long flags;
  5534. struct rq *rq;
  5535. switch (action) {
  5536. case CPU_UP_PREPARE:
  5537. case CPU_UP_PREPARE_FROZEN:
  5538. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5539. if (IS_ERR(p))
  5540. return NOTIFY_BAD;
  5541. kthread_bind(p, cpu);
  5542. /* Must be high prio: stop_machine expects to yield to it. */
  5543. rq = task_rq_lock(p, &flags);
  5544. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5545. task_rq_unlock(rq, &flags);
  5546. cpu_rq(cpu)->migration_thread = p;
  5547. break;
  5548. case CPU_ONLINE:
  5549. case CPU_ONLINE_FROZEN:
  5550. /* Strictly unnecessary, as first user will wake it. */
  5551. wake_up_process(cpu_rq(cpu)->migration_thread);
  5552. /* Update our root-domain */
  5553. rq = cpu_rq(cpu);
  5554. spin_lock_irqsave(&rq->lock, flags);
  5555. if (rq->rd) {
  5556. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5557. set_rq_online(rq);
  5558. }
  5559. spin_unlock_irqrestore(&rq->lock, flags);
  5560. break;
  5561. #ifdef CONFIG_HOTPLUG_CPU
  5562. case CPU_UP_CANCELED:
  5563. case CPU_UP_CANCELED_FROZEN:
  5564. if (!cpu_rq(cpu)->migration_thread)
  5565. break;
  5566. /* Unbind it from offline cpu so it can run. Fall thru. */
  5567. kthread_bind(cpu_rq(cpu)->migration_thread,
  5568. any_online_cpu(cpu_online_map));
  5569. kthread_stop(cpu_rq(cpu)->migration_thread);
  5570. cpu_rq(cpu)->migration_thread = NULL;
  5571. break;
  5572. case CPU_DEAD:
  5573. case CPU_DEAD_FROZEN:
  5574. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5575. migrate_live_tasks(cpu);
  5576. rq = cpu_rq(cpu);
  5577. kthread_stop(rq->migration_thread);
  5578. rq->migration_thread = NULL;
  5579. /* Idle task back to normal (off runqueue, low prio) */
  5580. spin_lock_irq(&rq->lock);
  5581. update_rq_clock(rq);
  5582. deactivate_task(rq, rq->idle, 0);
  5583. rq->idle->static_prio = MAX_PRIO;
  5584. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5585. rq->idle->sched_class = &idle_sched_class;
  5586. migrate_dead_tasks(cpu);
  5587. spin_unlock_irq(&rq->lock);
  5588. cpuset_unlock();
  5589. migrate_nr_uninterruptible(rq);
  5590. BUG_ON(rq->nr_running != 0);
  5591. /*
  5592. * No need to migrate the tasks: it was best-effort if
  5593. * they didn't take sched_hotcpu_mutex. Just wake up
  5594. * the requestors.
  5595. */
  5596. spin_lock_irq(&rq->lock);
  5597. while (!list_empty(&rq->migration_queue)) {
  5598. struct migration_req *req;
  5599. req = list_entry(rq->migration_queue.next,
  5600. struct migration_req, list);
  5601. list_del_init(&req->list);
  5602. complete(&req->done);
  5603. }
  5604. spin_unlock_irq(&rq->lock);
  5605. break;
  5606. case CPU_DYING:
  5607. case CPU_DYING_FROZEN:
  5608. /* Update our root-domain */
  5609. rq = cpu_rq(cpu);
  5610. spin_lock_irqsave(&rq->lock, flags);
  5611. if (rq->rd) {
  5612. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5613. set_rq_offline(rq);
  5614. }
  5615. spin_unlock_irqrestore(&rq->lock, flags);
  5616. break;
  5617. #endif
  5618. }
  5619. return NOTIFY_OK;
  5620. }
  5621. /* Register at highest priority so that task migration (migrate_all_tasks)
  5622. * happens before everything else.
  5623. */
  5624. static struct notifier_block __cpuinitdata migration_notifier = {
  5625. .notifier_call = migration_call,
  5626. .priority = 10
  5627. };
  5628. static int __init migration_init(void)
  5629. {
  5630. void *cpu = (void *)(long)smp_processor_id();
  5631. int err;
  5632. /* Start one for the boot CPU: */
  5633. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5634. BUG_ON(err == NOTIFY_BAD);
  5635. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5636. register_cpu_notifier(&migration_notifier);
  5637. return err;
  5638. }
  5639. early_initcall(migration_init);
  5640. #endif
  5641. #ifdef CONFIG_SMP
  5642. #ifdef CONFIG_SCHED_DEBUG
  5643. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5644. cpumask_t *groupmask)
  5645. {
  5646. struct sched_group *group = sd->groups;
  5647. char str[256];
  5648. cpulist_scnprintf(str, sizeof(str), sd->span);
  5649. cpus_clear(*groupmask);
  5650. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5651. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5652. printk("does not load-balance\n");
  5653. if (sd->parent)
  5654. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5655. " has parent");
  5656. return -1;
  5657. }
  5658. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5659. if (!cpu_isset(cpu, sd->span)) {
  5660. printk(KERN_ERR "ERROR: domain->span does not contain "
  5661. "CPU%d\n", cpu);
  5662. }
  5663. if (!cpu_isset(cpu, group->cpumask)) {
  5664. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5665. " CPU%d\n", cpu);
  5666. }
  5667. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5668. do {
  5669. if (!group) {
  5670. printk("\n");
  5671. printk(KERN_ERR "ERROR: group is NULL\n");
  5672. break;
  5673. }
  5674. if (!group->__cpu_power) {
  5675. printk(KERN_CONT "\n");
  5676. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5677. "set\n");
  5678. break;
  5679. }
  5680. if (!cpus_weight(group->cpumask)) {
  5681. printk(KERN_CONT "\n");
  5682. printk(KERN_ERR "ERROR: empty group\n");
  5683. break;
  5684. }
  5685. if (cpus_intersects(*groupmask, group->cpumask)) {
  5686. printk(KERN_CONT "\n");
  5687. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5688. break;
  5689. }
  5690. cpus_or(*groupmask, *groupmask, group->cpumask);
  5691. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5692. printk(KERN_CONT " %s", str);
  5693. group = group->next;
  5694. } while (group != sd->groups);
  5695. printk(KERN_CONT "\n");
  5696. if (!cpus_equal(sd->span, *groupmask))
  5697. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5698. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5699. printk(KERN_ERR "ERROR: parent span is not a superset "
  5700. "of domain->span\n");
  5701. return 0;
  5702. }
  5703. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5704. {
  5705. cpumask_t *groupmask;
  5706. int level = 0;
  5707. if (!sd) {
  5708. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5709. return;
  5710. }
  5711. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5712. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5713. if (!groupmask) {
  5714. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5715. return;
  5716. }
  5717. for (;;) {
  5718. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5719. break;
  5720. level++;
  5721. sd = sd->parent;
  5722. if (!sd)
  5723. break;
  5724. }
  5725. kfree(groupmask);
  5726. }
  5727. #else /* !CONFIG_SCHED_DEBUG */
  5728. # define sched_domain_debug(sd, cpu) do { } while (0)
  5729. #endif /* CONFIG_SCHED_DEBUG */
  5730. static int sd_degenerate(struct sched_domain *sd)
  5731. {
  5732. if (cpus_weight(sd->span) == 1)
  5733. return 1;
  5734. /* Following flags need at least 2 groups */
  5735. if (sd->flags & (SD_LOAD_BALANCE |
  5736. SD_BALANCE_NEWIDLE |
  5737. SD_BALANCE_FORK |
  5738. SD_BALANCE_EXEC |
  5739. SD_SHARE_CPUPOWER |
  5740. SD_SHARE_PKG_RESOURCES)) {
  5741. if (sd->groups != sd->groups->next)
  5742. return 0;
  5743. }
  5744. /* Following flags don't use groups */
  5745. if (sd->flags & (SD_WAKE_IDLE |
  5746. SD_WAKE_AFFINE |
  5747. SD_WAKE_BALANCE))
  5748. return 0;
  5749. return 1;
  5750. }
  5751. static int
  5752. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5753. {
  5754. unsigned long cflags = sd->flags, pflags = parent->flags;
  5755. if (sd_degenerate(parent))
  5756. return 1;
  5757. if (!cpus_equal(sd->span, parent->span))
  5758. return 0;
  5759. /* Does parent contain flags not in child? */
  5760. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5761. if (cflags & SD_WAKE_AFFINE)
  5762. pflags &= ~SD_WAKE_BALANCE;
  5763. /* Flags needing groups don't count if only 1 group in parent */
  5764. if (parent->groups == parent->groups->next) {
  5765. pflags &= ~(SD_LOAD_BALANCE |
  5766. SD_BALANCE_NEWIDLE |
  5767. SD_BALANCE_FORK |
  5768. SD_BALANCE_EXEC |
  5769. SD_SHARE_CPUPOWER |
  5770. SD_SHARE_PKG_RESOURCES);
  5771. }
  5772. if (~cflags & pflags)
  5773. return 0;
  5774. return 1;
  5775. }
  5776. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5777. {
  5778. unsigned long flags;
  5779. spin_lock_irqsave(&rq->lock, flags);
  5780. if (rq->rd) {
  5781. struct root_domain *old_rd = rq->rd;
  5782. if (cpu_isset(rq->cpu, old_rd->online))
  5783. set_rq_offline(rq);
  5784. cpu_clear(rq->cpu, old_rd->span);
  5785. if (atomic_dec_and_test(&old_rd->refcount))
  5786. kfree(old_rd);
  5787. }
  5788. atomic_inc(&rd->refcount);
  5789. rq->rd = rd;
  5790. cpu_set(rq->cpu, rd->span);
  5791. if (cpu_isset(rq->cpu, cpu_online_map))
  5792. set_rq_online(rq);
  5793. spin_unlock_irqrestore(&rq->lock, flags);
  5794. }
  5795. static void init_rootdomain(struct root_domain *rd)
  5796. {
  5797. memset(rd, 0, sizeof(*rd));
  5798. cpus_clear(rd->span);
  5799. cpus_clear(rd->online);
  5800. cpupri_init(&rd->cpupri);
  5801. }
  5802. static void init_defrootdomain(void)
  5803. {
  5804. init_rootdomain(&def_root_domain);
  5805. atomic_set(&def_root_domain.refcount, 1);
  5806. }
  5807. static struct root_domain *alloc_rootdomain(void)
  5808. {
  5809. struct root_domain *rd;
  5810. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5811. if (!rd)
  5812. return NULL;
  5813. init_rootdomain(rd);
  5814. return rd;
  5815. }
  5816. /*
  5817. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5818. * hold the hotplug lock.
  5819. */
  5820. static void
  5821. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5822. {
  5823. struct rq *rq = cpu_rq(cpu);
  5824. struct sched_domain *tmp;
  5825. /* Remove the sched domains which do not contribute to scheduling. */
  5826. for (tmp = sd; tmp; ) {
  5827. struct sched_domain *parent = tmp->parent;
  5828. if (!parent)
  5829. break;
  5830. if (sd_parent_degenerate(tmp, parent)) {
  5831. tmp->parent = parent->parent;
  5832. if (parent->parent)
  5833. parent->parent->child = tmp;
  5834. } else
  5835. tmp = tmp->parent;
  5836. }
  5837. if (sd && sd_degenerate(sd)) {
  5838. sd = sd->parent;
  5839. if (sd)
  5840. sd->child = NULL;
  5841. }
  5842. sched_domain_debug(sd, cpu);
  5843. rq_attach_root(rq, rd);
  5844. rcu_assign_pointer(rq->sd, sd);
  5845. }
  5846. /* cpus with isolated domains */
  5847. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5848. /* Setup the mask of cpus configured for isolated domains */
  5849. static int __init isolated_cpu_setup(char *str)
  5850. {
  5851. static int __initdata ints[NR_CPUS];
  5852. int i;
  5853. str = get_options(str, ARRAY_SIZE(ints), ints);
  5854. cpus_clear(cpu_isolated_map);
  5855. for (i = 1; i <= ints[0]; i++)
  5856. if (ints[i] < NR_CPUS)
  5857. cpu_set(ints[i], cpu_isolated_map);
  5858. return 1;
  5859. }
  5860. __setup("isolcpus=", isolated_cpu_setup);
  5861. /*
  5862. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5863. * to a function which identifies what group(along with sched group) a CPU
  5864. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5865. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5866. *
  5867. * init_sched_build_groups will build a circular linked list of the groups
  5868. * covered by the given span, and will set each group's ->cpumask correctly,
  5869. * and ->cpu_power to 0.
  5870. */
  5871. static void
  5872. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5873. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5874. struct sched_group **sg,
  5875. cpumask_t *tmpmask),
  5876. cpumask_t *covered, cpumask_t *tmpmask)
  5877. {
  5878. struct sched_group *first = NULL, *last = NULL;
  5879. int i;
  5880. cpus_clear(*covered);
  5881. for_each_cpu_mask_nr(i, *span) {
  5882. struct sched_group *sg;
  5883. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5884. int j;
  5885. if (cpu_isset(i, *covered))
  5886. continue;
  5887. cpus_clear(sg->cpumask);
  5888. sg->__cpu_power = 0;
  5889. for_each_cpu_mask_nr(j, *span) {
  5890. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5891. continue;
  5892. cpu_set(j, *covered);
  5893. cpu_set(j, sg->cpumask);
  5894. }
  5895. if (!first)
  5896. first = sg;
  5897. if (last)
  5898. last->next = sg;
  5899. last = sg;
  5900. }
  5901. last->next = first;
  5902. }
  5903. #define SD_NODES_PER_DOMAIN 16
  5904. #ifdef CONFIG_NUMA
  5905. /**
  5906. * find_next_best_node - find the next node to include in a sched_domain
  5907. * @node: node whose sched_domain we're building
  5908. * @used_nodes: nodes already in the sched_domain
  5909. *
  5910. * Find the next node to include in a given scheduling domain. Simply
  5911. * finds the closest node not already in the @used_nodes map.
  5912. *
  5913. * Should use nodemask_t.
  5914. */
  5915. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5916. {
  5917. int i, n, val, min_val, best_node = 0;
  5918. min_val = INT_MAX;
  5919. for (i = 0; i < nr_node_ids; i++) {
  5920. /* Start at @node */
  5921. n = (node + i) % nr_node_ids;
  5922. if (!nr_cpus_node(n))
  5923. continue;
  5924. /* Skip already used nodes */
  5925. if (node_isset(n, *used_nodes))
  5926. continue;
  5927. /* Simple min distance search */
  5928. val = node_distance(node, n);
  5929. if (val < min_val) {
  5930. min_val = val;
  5931. best_node = n;
  5932. }
  5933. }
  5934. node_set(best_node, *used_nodes);
  5935. return best_node;
  5936. }
  5937. /**
  5938. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5939. * @node: node whose cpumask we're constructing
  5940. * @span: resulting cpumask
  5941. *
  5942. * Given a node, construct a good cpumask for its sched_domain to span. It
  5943. * should be one that prevents unnecessary balancing, but also spreads tasks
  5944. * out optimally.
  5945. */
  5946. static void sched_domain_node_span(int node, cpumask_t *span)
  5947. {
  5948. nodemask_t used_nodes;
  5949. node_to_cpumask_ptr(nodemask, node);
  5950. int i;
  5951. cpus_clear(*span);
  5952. nodes_clear(used_nodes);
  5953. cpus_or(*span, *span, *nodemask);
  5954. node_set(node, used_nodes);
  5955. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5956. int next_node = find_next_best_node(node, &used_nodes);
  5957. node_to_cpumask_ptr_next(nodemask, next_node);
  5958. cpus_or(*span, *span, *nodemask);
  5959. }
  5960. }
  5961. #endif /* CONFIG_NUMA */
  5962. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5963. /*
  5964. * SMT sched-domains:
  5965. */
  5966. #ifdef CONFIG_SCHED_SMT
  5967. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5968. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5969. static int
  5970. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5971. cpumask_t *unused)
  5972. {
  5973. if (sg)
  5974. *sg = &per_cpu(sched_group_cpus, cpu);
  5975. return cpu;
  5976. }
  5977. #endif /* CONFIG_SCHED_SMT */
  5978. /*
  5979. * multi-core sched-domains:
  5980. */
  5981. #ifdef CONFIG_SCHED_MC
  5982. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5983. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5984. #endif /* CONFIG_SCHED_MC */
  5985. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5986. static int
  5987. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5988. cpumask_t *mask)
  5989. {
  5990. int group;
  5991. *mask = per_cpu(cpu_sibling_map, cpu);
  5992. cpus_and(*mask, *mask, *cpu_map);
  5993. group = first_cpu(*mask);
  5994. if (sg)
  5995. *sg = &per_cpu(sched_group_core, group);
  5996. return group;
  5997. }
  5998. #elif defined(CONFIG_SCHED_MC)
  5999. static int
  6000. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6001. cpumask_t *unused)
  6002. {
  6003. if (sg)
  6004. *sg = &per_cpu(sched_group_core, cpu);
  6005. return cpu;
  6006. }
  6007. #endif
  6008. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6009. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6010. static int
  6011. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6012. cpumask_t *mask)
  6013. {
  6014. int group;
  6015. #ifdef CONFIG_SCHED_MC
  6016. *mask = cpu_coregroup_map(cpu);
  6017. cpus_and(*mask, *mask, *cpu_map);
  6018. group = first_cpu(*mask);
  6019. #elif defined(CONFIG_SCHED_SMT)
  6020. *mask = per_cpu(cpu_sibling_map, cpu);
  6021. cpus_and(*mask, *mask, *cpu_map);
  6022. group = first_cpu(*mask);
  6023. #else
  6024. group = cpu;
  6025. #endif
  6026. if (sg)
  6027. *sg = &per_cpu(sched_group_phys, group);
  6028. return group;
  6029. }
  6030. #ifdef CONFIG_NUMA
  6031. /*
  6032. * The init_sched_build_groups can't handle what we want to do with node
  6033. * groups, so roll our own. Now each node has its own list of groups which
  6034. * gets dynamically allocated.
  6035. */
  6036. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6037. static struct sched_group ***sched_group_nodes_bycpu;
  6038. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6039. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6040. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6041. struct sched_group **sg, cpumask_t *nodemask)
  6042. {
  6043. int group;
  6044. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6045. cpus_and(*nodemask, *nodemask, *cpu_map);
  6046. group = first_cpu(*nodemask);
  6047. if (sg)
  6048. *sg = &per_cpu(sched_group_allnodes, group);
  6049. return group;
  6050. }
  6051. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6052. {
  6053. struct sched_group *sg = group_head;
  6054. int j;
  6055. if (!sg)
  6056. return;
  6057. do {
  6058. for_each_cpu_mask_nr(j, sg->cpumask) {
  6059. struct sched_domain *sd;
  6060. sd = &per_cpu(phys_domains, j);
  6061. if (j != first_cpu(sd->groups->cpumask)) {
  6062. /*
  6063. * Only add "power" once for each
  6064. * physical package.
  6065. */
  6066. continue;
  6067. }
  6068. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6069. }
  6070. sg = sg->next;
  6071. } while (sg != group_head);
  6072. }
  6073. #endif /* CONFIG_NUMA */
  6074. #ifdef CONFIG_NUMA
  6075. /* Free memory allocated for various sched_group structures */
  6076. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6077. {
  6078. int cpu, i;
  6079. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6080. struct sched_group **sched_group_nodes
  6081. = sched_group_nodes_bycpu[cpu];
  6082. if (!sched_group_nodes)
  6083. continue;
  6084. for (i = 0; i < nr_node_ids; i++) {
  6085. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6086. *nodemask = node_to_cpumask(i);
  6087. cpus_and(*nodemask, *nodemask, *cpu_map);
  6088. if (cpus_empty(*nodemask))
  6089. continue;
  6090. if (sg == NULL)
  6091. continue;
  6092. sg = sg->next;
  6093. next_sg:
  6094. oldsg = sg;
  6095. sg = sg->next;
  6096. kfree(oldsg);
  6097. if (oldsg != sched_group_nodes[i])
  6098. goto next_sg;
  6099. }
  6100. kfree(sched_group_nodes);
  6101. sched_group_nodes_bycpu[cpu] = NULL;
  6102. }
  6103. }
  6104. #else /* !CONFIG_NUMA */
  6105. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6106. {
  6107. }
  6108. #endif /* CONFIG_NUMA */
  6109. /*
  6110. * Initialize sched groups cpu_power.
  6111. *
  6112. * cpu_power indicates the capacity of sched group, which is used while
  6113. * distributing the load between different sched groups in a sched domain.
  6114. * Typically cpu_power for all the groups in a sched domain will be same unless
  6115. * there are asymmetries in the topology. If there are asymmetries, group
  6116. * having more cpu_power will pickup more load compared to the group having
  6117. * less cpu_power.
  6118. *
  6119. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6120. * the maximum number of tasks a group can handle in the presence of other idle
  6121. * or lightly loaded groups in the same sched domain.
  6122. */
  6123. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6124. {
  6125. struct sched_domain *child;
  6126. struct sched_group *group;
  6127. WARN_ON(!sd || !sd->groups);
  6128. if (cpu != first_cpu(sd->groups->cpumask))
  6129. return;
  6130. child = sd->child;
  6131. sd->groups->__cpu_power = 0;
  6132. /*
  6133. * For perf policy, if the groups in child domain share resources
  6134. * (for example cores sharing some portions of the cache hierarchy
  6135. * or SMT), then set this domain groups cpu_power such that each group
  6136. * can handle only one task, when there are other idle groups in the
  6137. * same sched domain.
  6138. */
  6139. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6140. (child->flags &
  6141. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6142. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6143. return;
  6144. }
  6145. /*
  6146. * add cpu_power of each child group to this groups cpu_power
  6147. */
  6148. group = child->groups;
  6149. do {
  6150. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6151. group = group->next;
  6152. } while (group != child->groups);
  6153. }
  6154. /*
  6155. * Initializers for schedule domains
  6156. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6157. */
  6158. #ifdef CONFIG_SCHED_DEBUG
  6159. # define SD_INIT_NAME(sd, type) sd->name = #type
  6160. #else
  6161. # define SD_INIT_NAME(sd, type) do { } while (0)
  6162. #endif
  6163. #define SD_INIT(sd, type) sd_init_##type(sd)
  6164. #define SD_INIT_FUNC(type) \
  6165. static noinline void sd_init_##type(struct sched_domain *sd) \
  6166. { \
  6167. memset(sd, 0, sizeof(*sd)); \
  6168. *sd = SD_##type##_INIT; \
  6169. sd->level = SD_LV_##type; \
  6170. SD_INIT_NAME(sd, type); \
  6171. }
  6172. SD_INIT_FUNC(CPU)
  6173. #ifdef CONFIG_NUMA
  6174. SD_INIT_FUNC(ALLNODES)
  6175. SD_INIT_FUNC(NODE)
  6176. #endif
  6177. #ifdef CONFIG_SCHED_SMT
  6178. SD_INIT_FUNC(SIBLING)
  6179. #endif
  6180. #ifdef CONFIG_SCHED_MC
  6181. SD_INIT_FUNC(MC)
  6182. #endif
  6183. /*
  6184. * To minimize stack usage kmalloc room for cpumasks and share the
  6185. * space as the usage in build_sched_domains() dictates. Used only
  6186. * if the amount of space is significant.
  6187. */
  6188. struct allmasks {
  6189. cpumask_t tmpmask; /* make this one first */
  6190. union {
  6191. cpumask_t nodemask;
  6192. cpumask_t this_sibling_map;
  6193. cpumask_t this_core_map;
  6194. };
  6195. cpumask_t send_covered;
  6196. #ifdef CONFIG_NUMA
  6197. cpumask_t domainspan;
  6198. cpumask_t covered;
  6199. cpumask_t notcovered;
  6200. #endif
  6201. };
  6202. #if NR_CPUS > 128
  6203. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6204. static inline void sched_cpumask_alloc(struct allmasks **masks)
  6205. {
  6206. *masks = kmalloc(sizeof(**masks), GFP_KERNEL);
  6207. }
  6208. static inline void sched_cpumask_free(struct allmasks *masks)
  6209. {
  6210. kfree(masks);
  6211. }
  6212. #else
  6213. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6214. static inline void sched_cpumask_alloc(struct allmasks **masks)
  6215. { }
  6216. static inline void sched_cpumask_free(struct allmasks *masks)
  6217. { }
  6218. #endif
  6219. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6220. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6221. static int default_relax_domain_level = -1;
  6222. static int __init setup_relax_domain_level(char *str)
  6223. {
  6224. unsigned long val;
  6225. val = simple_strtoul(str, NULL, 0);
  6226. if (val < SD_LV_MAX)
  6227. default_relax_domain_level = val;
  6228. return 1;
  6229. }
  6230. __setup("relax_domain_level=", setup_relax_domain_level);
  6231. static void set_domain_attribute(struct sched_domain *sd,
  6232. struct sched_domain_attr *attr)
  6233. {
  6234. int request;
  6235. if (!attr || attr->relax_domain_level < 0) {
  6236. if (default_relax_domain_level < 0)
  6237. return;
  6238. else
  6239. request = default_relax_domain_level;
  6240. } else
  6241. request = attr->relax_domain_level;
  6242. if (request < sd->level) {
  6243. /* turn off idle balance on this domain */
  6244. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6245. } else {
  6246. /* turn on idle balance on this domain */
  6247. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6248. }
  6249. }
  6250. /*
  6251. * Build sched domains for a given set of cpus and attach the sched domains
  6252. * to the individual cpus
  6253. */
  6254. static int __build_sched_domains(const cpumask_t *cpu_map,
  6255. struct sched_domain_attr *attr)
  6256. {
  6257. int i;
  6258. struct root_domain *rd;
  6259. SCHED_CPUMASK_DECLARE(allmasks);
  6260. cpumask_t *tmpmask;
  6261. #ifdef CONFIG_NUMA
  6262. struct sched_group **sched_group_nodes = NULL;
  6263. int sd_allnodes = 0;
  6264. /*
  6265. * Allocate the per-node list of sched groups
  6266. */
  6267. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6268. GFP_KERNEL);
  6269. if (!sched_group_nodes) {
  6270. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6271. return -ENOMEM;
  6272. }
  6273. #endif
  6274. rd = alloc_rootdomain();
  6275. if (!rd) {
  6276. printk(KERN_WARNING "Cannot alloc root domain\n");
  6277. #ifdef CONFIG_NUMA
  6278. kfree(sched_group_nodes);
  6279. #endif
  6280. return -ENOMEM;
  6281. }
  6282. /* get space for all scratch cpumask variables */
  6283. sched_cpumask_alloc(&allmasks);
  6284. if (!allmasks) {
  6285. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6286. kfree(rd);
  6287. #ifdef CONFIG_NUMA
  6288. kfree(sched_group_nodes);
  6289. #endif
  6290. return -ENOMEM;
  6291. }
  6292. tmpmask = (cpumask_t *)allmasks;
  6293. #ifdef CONFIG_NUMA
  6294. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6295. #endif
  6296. /*
  6297. * Set up domains for cpus specified by the cpu_map.
  6298. */
  6299. for_each_cpu_mask_nr(i, *cpu_map) {
  6300. struct sched_domain *sd = NULL, *p;
  6301. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6302. *nodemask = node_to_cpumask(cpu_to_node(i));
  6303. cpus_and(*nodemask, *nodemask, *cpu_map);
  6304. #ifdef CONFIG_NUMA
  6305. if (cpus_weight(*cpu_map) >
  6306. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6307. sd = &per_cpu(allnodes_domains, i);
  6308. SD_INIT(sd, ALLNODES);
  6309. set_domain_attribute(sd, attr);
  6310. sd->span = *cpu_map;
  6311. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6312. p = sd;
  6313. sd_allnodes = 1;
  6314. } else
  6315. p = NULL;
  6316. sd = &per_cpu(node_domains, i);
  6317. SD_INIT(sd, NODE);
  6318. set_domain_attribute(sd, attr);
  6319. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6320. sd->parent = p;
  6321. if (p)
  6322. p->child = sd;
  6323. cpus_and(sd->span, sd->span, *cpu_map);
  6324. #endif
  6325. p = sd;
  6326. sd = &per_cpu(phys_domains, i);
  6327. SD_INIT(sd, CPU);
  6328. set_domain_attribute(sd, attr);
  6329. sd->span = *nodemask;
  6330. sd->parent = p;
  6331. if (p)
  6332. p->child = sd;
  6333. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6334. #ifdef CONFIG_SCHED_MC
  6335. p = sd;
  6336. sd = &per_cpu(core_domains, i);
  6337. SD_INIT(sd, MC);
  6338. set_domain_attribute(sd, attr);
  6339. sd->span = cpu_coregroup_map(i);
  6340. cpus_and(sd->span, sd->span, *cpu_map);
  6341. sd->parent = p;
  6342. p->child = sd;
  6343. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6344. #endif
  6345. #ifdef CONFIG_SCHED_SMT
  6346. p = sd;
  6347. sd = &per_cpu(cpu_domains, i);
  6348. SD_INIT(sd, SIBLING);
  6349. set_domain_attribute(sd, attr);
  6350. sd->span = per_cpu(cpu_sibling_map, i);
  6351. cpus_and(sd->span, sd->span, *cpu_map);
  6352. sd->parent = p;
  6353. p->child = sd;
  6354. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6355. #endif
  6356. }
  6357. #ifdef CONFIG_SCHED_SMT
  6358. /* Set up CPU (sibling) groups */
  6359. for_each_cpu_mask_nr(i, *cpu_map) {
  6360. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6361. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6362. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6363. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6364. if (i != first_cpu(*this_sibling_map))
  6365. continue;
  6366. init_sched_build_groups(this_sibling_map, cpu_map,
  6367. &cpu_to_cpu_group,
  6368. send_covered, tmpmask);
  6369. }
  6370. #endif
  6371. #ifdef CONFIG_SCHED_MC
  6372. /* Set up multi-core groups */
  6373. for_each_cpu_mask_nr(i, *cpu_map) {
  6374. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6375. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6376. *this_core_map = cpu_coregroup_map(i);
  6377. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6378. if (i != first_cpu(*this_core_map))
  6379. continue;
  6380. init_sched_build_groups(this_core_map, cpu_map,
  6381. &cpu_to_core_group,
  6382. send_covered, tmpmask);
  6383. }
  6384. #endif
  6385. /* Set up physical groups */
  6386. for (i = 0; i < nr_node_ids; i++) {
  6387. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6388. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6389. *nodemask = node_to_cpumask(i);
  6390. cpus_and(*nodemask, *nodemask, *cpu_map);
  6391. if (cpus_empty(*nodemask))
  6392. continue;
  6393. init_sched_build_groups(nodemask, cpu_map,
  6394. &cpu_to_phys_group,
  6395. send_covered, tmpmask);
  6396. }
  6397. #ifdef CONFIG_NUMA
  6398. /* Set up node groups */
  6399. if (sd_allnodes) {
  6400. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6401. init_sched_build_groups(cpu_map, cpu_map,
  6402. &cpu_to_allnodes_group,
  6403. send_covered, tmpmask);
  6404. }
  6405. for (i = 0; i < nr_node_ids; i++) {
  6406. /* Set up node groups */
  6407. struct sched_group *sg, *prev;
  6408. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6409. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6410. SCHED_CPUMASK_VAR(covered, allmasks);
  6411. int j;
  6412. *nodemask = node_to_cpumask(i);
  6413. cpus_clear(*covered);
  6414. cpus_and(*nodemask, *nodemask, *cpu_map);
  6415. if (cpus_empty(*nodemask)) {
  6416. sched_group_nodes[i] = NULL;
  6417. continue;
  6418. }
  6419. sched_domain_node_span(i, domainspan);
  6420. cpus_and(*domainspan, *domainspan, *cpu_map);
  6421. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6422. if (!sg) {
  6423. printk(KERN_WARNING "Can not alloc domain group for "
  6424. "node %d\n", i);
  6425. goto error;
  6426. }
  6427. sched_group_nodes[i] = sg;
  6428. for_each_cpu_mask_nr(j, *nodemask) {
  6429. struct sched_domain *sd;
  6430. sd = &per_cpu(node_domains, j);
  6431. sd->groups = sg;
  6432. }
  6433. sg->__cpu_power = 0;
  6434. sg->cpumask = *nodemask;
  6435. sg->next = sg;
  6436. cpus_or(*covered, *covered, *nodemask);
  6437. prev = sg;
  6438. for (j = 0; j < nr_node_ids; j++) {
  6439. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6440. int n = (i + j) % nr_node_ids;
  6441. node_to_cpumask_ptr(pnodemask, n);
  6442. cpus_complement(*notcovered, *covered);
  6443. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6444. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6445. if (cpus_empty(*tmpmask))
  6446. break;
  6447. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6448. if (cpus_empty(*tmpmask))
  6449. continue;
  6450. sg = kmalloc_node(sizeof(struct sched_group),
  6451. GFP_KERNEL, i);
  6452. if (!sg) {
  6453. printk(KERN_WARNING
  6454. "Can not alloc domain group for node %d\n", j);
  6455. goto error;
  6456. }
  6457. sg->__cpu_power = 0;
  6458. sg->cpumask = *tmpmask;
  6459. sg->next = prev->next;
  6460. cpus_or(*covered, *covered, *tmpmask);
  6461. prev->next = sg;
  6462. prev = sg;
  6463. }
  6464. }
  6465. #endif
  6466. /* Calculate CPU power for physical packages and nodes */
  6467. #ifdef CONFIG_SCHED_SMT
  6468. for_each_cpu_mask_nr(i, *cpu_map) {
  6469. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6470. init_sched_groups_power(i, sd);
  6471. }
  6472. #endif
  6473. #ifdef CONFIG_SCHED_MC
  6474. for_each_cpu_mask_nr(i, *cpu_map) {
  6475. struct sched_domain *sd = &per_cpu(core_domains, i);
  6476. init_sched_groups_power(i, sd);
  6477. }
  6478. #endif
  6479. for_each_cpu_mask_nr(i, *cpu_map) {
  6480. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6481. init_sched_groups_power(i, sd);
  6482. }
  6483. #ifdef CONFIG_NUMA
  6484. for (i = 0; i < nr_node_ids; i++)
  6485. init_numa_sched_groups_power(sched_group_nodes[i]);
  6486. if (sd_allnodes) {
  6487. struct sched_group *sg;
  6488. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6489. tmpmask);
  6490. init_numa_sched_groups_power(sg);
  6491. }
  6492. #endif
  6493. /* Attach the domains */
  6494. for_each_cpu_mask_nr(i, *cpu_map) {
  6495. struct sched_domain *sd;
  6496. #ifdef CONFIG_SCHED_SMT
  6497. sd = &per_cpu(cpu_domains, i);
  6498. #elif defined(CONFIG_SCHED_MC)
  6499. sd = &per_cpu(core_domains, i);
  6500. #else
  6501. sd = &per_cpu(phys_domains, i);
  6502. #endif
  6503. cpu_attach_domain(sd, rd, i);
  6504. }
  6505. sched_cpumask_free(allmasks);
  6506. return 0;
  6507. #ifdef CONFIG_NUMA
  6508. error:
  6509. free_sched_groups(cpu_map, tmpmask);
  6510. sched_cpumask_free(allmasks);
  6511. kfree(rd);
  6512. return -ENOMEM;
  6513. #endif
  6514. }
  6515. static int build_sched_domains(const cpumask_t *cpu_map)
  6516. {
  6517. return __build_sched_domains(cpu_map, NULL);
  6518. }
  6519. static cpumask_t *doms_cur; /* current sched domains */
  6520. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6521. static struct sched_domain_attr *dattr_cur;
  6522. /* attribues of custom domains in 'doms_cur' */
  6523. /*
  6524. * Special case: If a kmalloc of a doms_cur partition (array of
  6525. * cpumask_t) fails, then fallback to a single sched domain,
  6526. * as determined by the single cpumask_t fallback_doms.
  6527. */
  6528. static cpumask_t fallback_doms;
  6529. void __attribute__((weak)) arch_update_cpu_topology(void)
  6530. {
  6531. }
  6532. /*
  6533. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6534. * For now this just excludes isolated cpus, but could be used to
  6535. * exclude other special cases in the future.
  6536. */
  6537. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6538. {
  6539. int err;
  6540. arch_update_cpu_topology();
  6541. ndoms_cur = 1;
  6542. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6543. if (!doms_cur)
  6544. doms_cur = &fallback_doms;
  6545. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6546. dattr_cur = NULL;
  6547. err = build_sched_domains(doms_cur);
  6548. register_sched_domain_sysctl();
  6549. return err;
  6550. }
  6551. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6552. cpumask_t *tmpmask)
  6553. {
  6554. free_sched_groups(cpu_map, tmpmask);
  6555. }
  6556. /*
  6557. * Detach sched domains from a group of cpus specified in cpu_map
  6558. * These cpus will now be attached to the NULL domain
  6559. */
  6560. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6561. {
  6562. cpumask_t tmpmask;
  6563. int i;
  6564. for_each_cpu_mask_nr(i, *cpu_map)
  6565. cpu_attach_domain(NULL, &def_root_domain, i);
  6566. synchronize_sched();
  6567. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6568. }
  6569. /* handle null as "default" */
  6570. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6571. struct sched_domain_attr *new, int idx_new)
  6572. {
  6573. struct sched_domain_attr tmp;
  6574. /* fast path */
  6575. if (!new && !cur)
  6576. return 1;
  6577. tmp = SD_ATTR_INIT;
  6578. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6579. new ? (new + idx_new) : &tmp,
  6580. sizeof(struct sched_domain_attr));
  6581. }
  6582. /*
  6583. * Partition sched domains as specified by the 'ndoms_new'
  6584. * cpumasks in the array doms_new[] of cpumasks. This compares
  6585. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6586. * It destroys each deleted domain and builds each new domain.
  6587. *
  6588. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6589. * The masks don't intersect (don't overlap.) We should setup one
  6590. * sched domain for each mask. CPUs not in any of the cpumasks will
  6591. * not be load balanced. If the same cpumask appears both in the
  6592. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6593. * it as it is.
  6594. *
  6595. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6596. * ownership of it and will kfree it when done with it. If the caller
  6597. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6598. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6599. * the single partition 'fallback_doms', it also forces the domains
  6600. * to be rebuilt.
  6601. *
  6602. * If doms_new == NULL it will be replaced with cpu_online_map.
  6603. * ndoms_new == 0 is a special case for destroying existing domains,
  6604. * and it will not create the default domain.
  6605. *
  6606. * Call with hotplug lock held
  6607. */
  6608. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6609. struct sched_domain_attr *dattr_new)
  6610. {
  6611. int i, j, n;
  6612. mutex_lock(&sched_domains_mutex);
  6613. /* always unregister in case we don't destroy any domains */
  6614. unregister_sched_domain_sysctl();
  6615. n = doms_new ? ndoms_new : 0;
  6616. /* Destroy deleted domains */
  6617. for (i = 0; i < ndoms_cur; i++) {
  6618. for (j = 0; j < n; j++) {
  6619. if (cpus_equal(doms_cur[i], doms_new[j])
  6620. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6621. goto match1;
  6622. }
  6623. /* no match - a current sched domain not in new doms_new[] */
  6624. detach_destroy_domains(doms_cur + i);
  6625. match1:
  6626. ;
  6627. }
  6628. if (doms_new == NULL) {
  6629. ndoms_cur = 0;
  6630. doms_new = &fallback_doms;
  6631. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6632. WARN_ON_ONCE(dattr_new);
  6633. }
  6634. /* Build new domains */
  6635. for (i = 0; i < ndoms_new; i++) {
  6636. for (j = 0; j < ndoms_cur; j++) {
  6637. if (cpus_equal(doms_new[i], doms_cur[j])
  6638. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6639. goto match2;
  6640. }
  6641. /* no match - add a new doms_new */
  6642. __build_sched_domains(doms_new + i,
  6643. dattr_new ? dattr_new + i : NULL);
  6644. match2:
  6645. ;
  6646. }
  6647. /* Remember the new sched domains */
  6648. if (doms_cur != &fallback_doms)
  6649. kfree(doms_cur);
  6650. kfree(dattr_cur); /* kfree(NULL) is safe */
  6651. doms_cur = doms_new;
  6652. dattr_cur = dattr_new;
  6653. ndoms_cur = ndoms_new;
  6654. register_sched_domain_sysctl();
  6655. mutex_unlock(&sched_domains_mutex);
  6656. }
  6657. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6658. int arch_reinit_sched_domains(void)
  6659. {
  6660. get_online_cpus();
  6661. /* Destroy domains first to force the rebuild */
  6662. partition_sched_domains(0, NULL, NULL);
  6663. rebuild_sched_domains();
  6664. put_online_cpus();
  6665. return 0;
  6666. }
  6667. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6668. {
  6669. int ret;
  6670. if (buf[0] != '0' && buf[0] != '1')
  6671. return -EINVAL;
  6672. if (smt)
  6673. sched_smt_power_savings = (buf[0] == '1');
  6674. else
  6675. sched_mc_power_savings = (buf[0] == '1');
  6676. ret = arch_reinit_sched_domains();
  6677. return ret ? ret : count;
  6678. }
  6679. #ifdef CONFIG_SCHED_MC
  6680. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6681. char *page)
  6682. {
  6683. return sprintf(page, "%u\n", sched_mc_power_savings);
  6684. }
  6685. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6686. const char *buf, size_t count)
  6687. {
  6688. return sched_power_savings_store(buf, count, 0);
  6689. }
  6690. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6691. sched_mc_power_savings_show,
  6692. sched_mc_power_savings_store);
  6693. #endif
  6694. #ifdef CONFIG_SCHED_SMT
  6695. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6696. char *page)
  6697. {
  6698. return sprintf(page, "%u\n", sched_smt_power_savings);
  6699. }
  6700. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6701. const char *buf, size_t count)
  6702. {
  6703. return sched_power_savings_store(buf, count, 1);
  6704. }
  6705. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6706. sched_smt_power_savings_show,
  6707. sched_smt_power_savings_store);
  6708. #endif
  6709. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6710. {
  6711. int err = 0;
  6712. #ifdef CONFIG_SCHED_SMT
  6713. if (smt_capable())
  6714. err = sysfs_create_file(&cls->kset.kobj,
  6715. &attr_sched_smt_power_savings.attr);
  6716. #endif
  6717. #ifdef CONFIG_SCHED_MC
  6718. if (!err && mc_capable())
  6719. err = sysfs_create_file(&cls->kset.kobj,
  6720. &attr_sched_mc_power_savings.attr);
  6721. #endif
  6722. return err;
  6723. }
  6724. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6725. #ifndef CONFIG_CPUSETS
  6726. /*
  6727. * Add online and remove offline CPUs from the scheduler domains.
  6728. * When cpusets are enabled they take over this function.
  6729. */
  6730. static int update_sched_domains(struct notifier_block *nfb,
  6731. unsigned long action, void *hcpu)
  6732. {
  6733. switch (action) {
  6734. case CPU_ONLINE:
  6735. case CPU_ONLINE_FROZEN:
  6736. case CPU_DEAD:
  6737. case CPU_DEAD_FROZEN:
  6738. partition_sched_domains(1, NULL, NULL);
  6739. return NOTIFY_OK;
  6740. default:
  6741. return NOTIFY_DONE;
  6742. }
  6743. }
  6744. #endif
  6745. static int update_runtime(struct notifier_block *nfb,
  6746. unsigned long action, void *hcpu)
  6747. {
  6748. int cpu = (int)(long)hcpu;
  6749. switch (action) {
  6750. case CPU_DOWN_PREPARE:
  6751. case CPU_DOWN_PREPARE_FROZEN:
  6752. disable_runtime(cpu_rq(cpu));
  6753. return NOTIFY_OK;
  6754. case CPU_DOWN_FAILED:
  6755. case CPU_DOWN_FAILED_FROZEN:
  6756. case CPU_ONLINE:
  6757. case CPU_ONLINE_FROZEN:
  6758. enable_runtime(cpu_rq(cpu));
  6759. return NOTIFY_OK;
  6760. default:
  6761. return NOTIFY_DONE;
  6762. }
  6763. }
  6764. void __init sched_init_smp(void)
  6765. {
  6766. cpumask_t non_isolated_cpus;
  6767. #if defined(CONFIG_NUMA)
  6768. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6769. GFP_KERNEL);
  6770. BUG_ON(sched_group_nodes_bycpu == NULL);
  6771. #endif
  6772. get_online_cpus();
  6773. mutex_lock(&sched_domains_mutex);
  6774. arch_init_sched_domains(&cpu_online_map);
  6775. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6776. if (cpus_empty(non_isolated_cpus))
  6777. cpu_set(smp_processor_id(), non_isolated_cpus);
  6778. mutex_unlock(&sched_domains_mutex);
  6779. put_online_cpus();
  6780. #ifndef CONFIG_CPUSETS
  6781. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6782. hotcpu_notifier(update_sched_domains, 0);
  6783. #endif
  6784. /* RT runtime code needs to handle some hotplug events */
  6785. hotcpu_notifier(update_runtime, 0);
  6786. init_hrtick();
  6787. /* Move init over to a non-isolated CPU */
  6788. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6789. BUG();
  6790. sched_init_granularity();
  6791. }
  6792. #else
  6793. void __init sched_init_smp(void)
  6794. {
  6795. sched_init_granularity();
  6796. }
  6797. #endif /* CONFIG_SMP */
  6798. int in_sched_functions(unsigned long addr)
  6799. {
  6800. return in_lock_functions(addr) ||
  6801. (addr >= (unsigned long)__sched_text_start
  6802. && addr < (unsigned long)__sched_text_end);
  6803. }
  6804. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6805. {
  6806. cfs_rq->tasks_timeline = RB_ROOT;
  6807. INIT_LIST_HEAD(&cfs_rq->tasks);
  6808. #ifdef CONFIG_FAIR_GROUP_SCHED
  6809. cfs_rq->rq = rq;
  6810. #endif
  6811. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6812. }
  6813. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6814. {
  6815. struct rt_prio_array *array;
  6816. int i;
  6817. array = &rt_rq->active;
  6818. for (i = 0; i < MAX_RT_PRIO; i++) {
  6819. INIT_LIST_HEAD(array->queue + i);
  6820. __clear_bit(i, array->bitmap);
  6821. }
  6822. /* delimiter for bitsearch: */
  6823. __set_bit(MAX_RT_PRIO, array->bitmap);
  6824. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6825. rt_rq->highest_prio = MAX_RT_PRIO;
  6826. #endif
  6827. #ifdef CONFIG_SMP
  6828. rt_rq->rt_nr_migratory = 0;
  6829. rt_rq->overloaded = 0;
  6830. #endif
  6831. rt_rq->rt_time = 0;
  6832. rt_rq->rt_throttled = 0;
  6833. rt_rq->rt_runtime = 0;
  6834. spin_lock_init(&rt_rq->rt_runtime_lock);
  6835. #ifdef CONFIG_RT_GROUP_SCHED
  6836. rt_rq->rt_nr_boosted = 0;
  6837. rt_rq->rq = rq;
  6838. #endif
  6839. }
  6840. #ifdef CONFIG_FAIR_GROUP_SCHED
  6841. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6842. struct sched_entity *se, int cpu, int add,
  6843. struct sched_entity *parent)
  6844. {
  6845. struct rq *rq = cpu_rq(cpu);
  6846. tg->cfs_rq[cpu] = cfs_rq;
  6847. init_cfs_rq(cfs_rq, rq);
  6848. cfs_rq->tg = tg;
  6849. if (add)
  6850. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6851. tg->se[cpu] = se;
  6852. /* se could be NULL for init_task_group */
  6853. if (!se)
  6854. return;
  6855. if (!parent)
  6856. se->cfs_rq = &rq->cfs;
  6857. else
  6858. se->cfs_rq = parent->my_q;
  6859. se->my_q = cfs_rq;
  6860. se->load.weight = tg->shares;
  6861. se->load.inv_weight = 0;
  6862. se->parent = parent;
  6863. }
  6864. #endif
  6865. #ifdef CONFIG_RT_GROUP_SCHED
  6866. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6867. struct sched_rt_entity *rt_se, int cpu, int add,
  6868. struct sched_rt_entity *parent)
  6869. {
  6870. struct rq *rq = cpu_rq(cpu);
  6871. tg->rt_rq[cpu] = rt_rq;
  6872. init_rt_rq(rt_rq, rq);
  6873. rt_rq->tg = tg;
  6874. rt_rq->rt_se = rt_se;
  6875. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6876. if (add)
  6877. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6878. tg->rt_se[cpu] = rt_se;
  6879. if (!rt_se)
  6880. return;
  6881. if (!parent)
  6882. rt_se->rt_rq = &rq->rt;
  6883. else
  6884. rt_se->rt_rq = parent->my_q;
  6885. rt_se->my_q = rt_rq;
  6886. rt_se->parent = parent;
  6887. INIT_LIST_HEAD(&rt_se->run_list);
  6888. }
  6889. #endif
  6890. void __init sched_init(void)
  6891. {
  6892. int i, j;
  6893. unsigned long alloc_size = 0, ptr;
  6894. #ifdef CONFIG_FAIR_GROUP_SCHED
  6895. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6896. #endif
  6897. #ifdef CONFIG_RT_GROUP_SCHED
  6898. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6899. #endif
  6900. #ifdef CONFIG_USER_SCHED
  6901. alloc_size *= 2;
  6902. #endif
  6903. /*
  6904. * As sched_init() is called before page_alloc is setup,
  6905. * we use alloc_bootmem().
  6906. */
  6907. if (alloc_size) {
  6908. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6909. #ifdef CONFIG_FAIR_GROUP_SCHED
  6910. init_task_group.se = (struct sched_entity **)ptr;
  6911. ptr += nr_cpu_ids * sizeof(void **);
  6912. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6913. ptr += nr_cpu_ids * sizeof(void **);
  6914. #ifdef CONFIG_USER_SCHED
  6915. root_task_group.se = (struct sched_entity **)ptr;
  6916. ptr += nr_cpu_ids * sizeof(void **);
  6917. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6918. ptr += nr_cpu_ids * sizeof(void **);
  6919. #endif /* CONFIG_USER_SCHED */
  6920. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6921. #ifdef CONFIG_RT_GROUP_SCHED
  6922. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6923. ptr += nr_cpu_ids * sizeof(void **);
  6924. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6925. ptr += nr_cpu_ids * sizeof(void **);
  6926. #ifdef CONFIG_USER_SCHED
  6927. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6928. ptr += nr_cpu_ids * sizeof(void **);
  6929. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6930. ptr += nr_cpu_ids * sizeof(void **);
  6931. #endif /* CONFIG_USER_SCHED */
  6932. #endif /* CONFIG_RT_GROUP_SCHED */
  6933. }
  6934. #ifdef CONFIG_SMP
  6935. init_defrootdomain();
  6936. #endif
  6937. init_rt_bandwidth(&def_rt_bandwidth,
  6938. global_rt_period(), global_rt_runtime());
  6939. #ifdef CONFIG_RT_GROUP_SCHED
  6940. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6941. global_rt_period(), global_rt_runtime());
  6942. #ifdef CONFIG_USER_SCHED
  6943. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6944. global_rt_period(), RUNTIME_INF);
  6945. #endif /* CONFIG_USER_SCHED */
  6946. #endif /* CONFIG_RT_GROUP_SCHED */
  6947. #ifdef CONFIG_GROUP_SCHED
  6948. list_add(&init_task_group.list, &task_groups);
  6949. INIT_LIST_HEAD(&init_task_group.children);
  6950. #ifdef CONFIG_USER_SCHED
  6951. INIT_LIST_HEAD(&root_task_group.children);
  6952. init_task_group.parent = &root_task_group;
  6953. list_add(&init_task_group.siblings, &root_task_group.children);
  6954. #endif /* CONFIG_USER_SCHED */
  6955. #endif /* CONFIG_GROUP_SCHED */
  6956. for_each_possible_cpu(i) {
  6957. struct rq *rq;
  6958. rq = cpu_rq(i);
  6959. spin_lock_init(&rq->lock);
  6960. rq->nr_running = 0;
  6961. init_cfs_rq(&rq->cfs, rq);
  6962. init_rt_rq(&rq->rt, rq);
  6963. #ifdef CONFIG_FAIR_GROUP_SCHED
  6964. init_task_group.shares = init_task_group_load;
  6965. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6966. #ifdef CONFIG_CGROUP_SCHED
  6967. /*
  6968. * How much cpu bandwidth does init_task_group get?
  6969. *
  6970. * In case of task-groups formed thr' the cgroup filesystem, it
  6971. * gets 100% of the cpu resources in the system. This overall
  6972. * system cpu resource is divided among the tasks of
  6973. * init_task_group and its child task-groups in a fair manner,
  6974. * based on each entity's (task or task-group's) weight
  6975. * (se->load.weight).
  6976. *
  6977. * In other words, if init_task_group has 10 tasks of weight
  6978. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6979. * then A0's share of the cpu resource is:
  6980. *
  6981. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6982. *
  6983. * We achieve this by letting init_task_group's tasks sit
  6984. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6985. */
  6986. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6987. #elif defined CONFIG_USER_SCHED
  6988. root_task_group.shares = NICE_0_LOAD;
  6989. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6990. /*
  6991. * In case of task-groups formed thr' the user id of tasks,
  6992. * init_task_group represents tasks belonging to root user.
  6993. * Hence it forms a sibling of all subsequent groups formed.
  6994. * In this case, init_task_group gets only a fraction of overall
  6995. * system cpu resource, based on the weight assigned to root
  6996. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6997. * by letting tasks of init_task_group sit in a separate cfs_rq
  6998. * (init_cfs_rq) and having one entity represent this group of
  6999. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7000. */
  7001. init_tg_cfs_entry(&init_task_group,
  7002. &per_cpu(init_cfs_rq, i),
  7003. &per_cpu(init_sched_entity, i), i, 1,
  7004. root_task_group.se[i]);
  7005. #endif
  7006. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7007. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7008. #ifdef CONFIG_RT_GROUP_SCHED
  7009. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7010. #ifdef CONFIG_CGROUP_SCHED
  7011. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7012. #elif defined CONFIG_USER_SCHED
  7013. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7014. init_tg_rt_entry(&init_task_group,
  7015. &per_cpu(init_rt_rq, i),
  7016. &per_cpu(init_sched_rt_entity, i), i, 1,
  7017. root_task_group.rt_se[i]);
  7018. #endif
  7019. #endif
  7020. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7021. rq->cpu_load[j] = 0;
  7022. #ifdef CONFIG_SMP
  7023. rq->sd = NULL;
  7024. rq->rd = NULL;
  7025. rq->active_balance = 0;
  7026. rq->next_balance = jiffies;
  7027. rq->push_cpu = 0;
  7028. rq->cpu = i;
  7029. rq->online = 0;
  7030. rq->migration_thread = NULL;
  7031. INIT_LIST_HEAD(&rq->migration_queue);
  7032. rq_attach_root(rq, &def_root_domain);
  7033. #endif
  7034. init_rq_hrtick(rq);
  7035. atomic_set(&rq->nr_iowait, 0);
  7036. }
  7037. set_load_weight(&init_task);
  7038. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7039. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7040. #endif
  7041. #ifdef CONFIG_SMP
  7042. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7043. #endif
  7044. #ifdef CONFIG_RT_MUTEXES
  7045. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7046. #endif
  7047. /*
  7048. * The boot idle thread does lazy MMU switching as well:
  7049. */
  7050. atomic_inc(&init_mm.mm_count);
  7051. enter_lazy_tlb(&init_mm, current);
  7052. /*
  7053. * Make us the idle thread. Technically, schedule() should not be
  7054. * called from this thread, however somewhere below it might be,
  7055. * but because we are the idle thread, we just pick up running again
  7056. * when this runqueue becomes "idle".
  7057. */
  7058. init_idle(current, smp_processor_id());
  7059. /*
  7060. * During early bootup we pretend to be a normal task:
  7061. */
  7062. current->sched_class = &fair_sched_class;
  7063. scheduler_running = 1;
  7064. }
  7065. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7066. void __might_sleep(char *file, int line)
  7067. {
  7068. #ifdef in_atomic
  7069. static unsigned long prev_jiffy; /* ratelimiting */
  7070. if ((!in_atomic() && !irqs_disabled()) ||
  7071. system_state != SYSTEM_RUNNING || oops_in_progress)
  7072. return;
  7073. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7074. return;
  7075. prev_jiffy = jiffies;
  7076. printk(KERN_ERR
  7077. "BUG: sleeping function called from invalid context at %s:%d\n",
  7078. file, line);
  7079. printk(KERN_ERR
  7080. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7081. in_atomic(), irqs_disabled(),
  7082. current->pid, current->comm);
  7083. debug_show_held_locks(current);
  7084. if (irqs_disabled())
  7085. print_irqtrace_events(current);
  7086. dump_stack();
  7087. #endif
  7088. }
  7089. EXPORT_SYMBOL(__might_sleep);
  7090. #endif
  7091. #ifdef CONFIG_MAGIC_SYSRQ
  7092. static void normalize_task(struct rq *rq, struct task_struct *p)
  7093. {
  7094. int on_rq;
  7095. update_rq_clock(rq);
  7096. on_rq = p->se.on_rq;
  7097. if (on_rq)
  7098. deactivate_task(rq, p, 0);
  7099. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7100. if (on_rq) {
  7101. activate_task(rq, p, 0);
  7102. resched_task(rq->curr);
  7103. }
  7104. }
  7105. void normalize_rt_tasks(void)
  7106. {
  7107. struct task_struct *g, *p;
  7108. unsigned long flags;
  7109. struct rq *rq;
  7110. read_lock_irqsave(&tasklist_lock, flags);
  7111. do_each_thread(g, p) {
  7112. /*
  7113. * Only normalize user tasks:
  7114. */
  7115. if (!p->mm)
  7116. continue;
  7117. p->se.exec_start = 0;
  7118. #ifdef CONFIG_SCHEDSTATS
  7119. p->se.wait_start = 0;
  7120. p->se.sleep_start = 0;
  7121. p->se.block_start = 0;
  7122. #endif
  7123. if (!rt_task(p)) {
  7124. /*
  7125. * Renice negative nice level userspace
  7126. * tasks back to 0:
  7127. */
  7128. if (TASK_NICE(p) < 0 && p->mm)
  7129. set_user_nice(p, 0);
  7130. continue;
  7131. }
  7132. spin_lock(&p->pi_lock);
  7133. rq = __task_rq_lock(p);
  7134. normalize_task(rq, p);
  7135. __task_rq_unlock(rq);
  7136. spin_unlock(&p->pi_lock);
  7137. } while_each_thread(g, p);
  7138. read_unlock_irqrestore(&tasklist_lock, flags);
  7139. }
  7140. #endif /* CONFIG_MAGIC_SYSRQ */
  7141. #ifdef CONFIG_IA64
  7142. /*
  7143. * These functions are only useful for the IA64 MCA handling.
  7144. *
  7145. * They can only be called when the whole system has been
  7146. * stopped - every CPU needs to be quiescent, and no scheduling
  7147. * activity can take place. Using them for anything else would
  7148. * be a serious bug, and as a result, they aren't even visible
  7149. * under any other configuration.
  7150. */
  7151. /**
  7152. * curr_task - return the current task for a given cpu.
  7153. * @cpu: the processor in question.
  7154. *
  7155. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7156. */
  7157. struct task_struct *curr_task(int cpu)
  7158. {
  7159. return cpu_curr(cpu);
  7160. }
  7161. /**
  7162. * set_curr_task - set the current task for a given cpu.
  7163. * @cpu: the processor in question.
  7164. * @p: the task pointer to set.
  7165. *
  7166. * Description: This function must only be used when non-maskable interrupts
  7167. * are serviced on a separate stack. It allows the architecture to switch the
  7168. * notion of the current task on a cpu in a non-blocking manner. This function
  7169. * must be called with all CPU's synchronized, and interrupts disabled, the
  7170. * and caller must save the original value of the current task (see
  7171. * curr_task() above) and restore that value before reenabling interrupts and
  7172. * re-starting the system.
  7173. *
  7174. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7175. */
  7176. void set_curr_task(int cpu, struct task_struct *p)
  7177. {
  7178. cpu_curr(cpu) = p;
  7179. }
  7180. #endif
  7181. #ifdef CONFIG_FAIR_GROUP_SCHED
  7182. static void free_fair_sched_group(struct task_group *tg)
  7183. {
  7184. int i;
  7185. for_each_possible_cpu(i) {
  7186. if (tg->cfs_rq)
  7187. kfree(tg->cfs_rq[i]);
  7188. if (tg->se)
  7189. kfree(tg->se[i]);
  7190. }
  7191. kfree(tg->cfs_rq);
  7192. kfree(tg->se);
  7193. }
  7194. static
  7195. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7196. {
  7197. struct cfs_rq *cfs_rq;
  7198. struct sched_entity *se;
  7199. struct rq *rq;
  7200. int i;
  7201. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7202. if (!tg->cfs_rq)
  7203. goto err;
  7204. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7205. if (!tg->se)
  7206. goto err;
  7207. tg->shares = NICE_0_LOAD;
  7208. for_each_possible_cpu(i) {
  7209. rq = cpu_rq(i);
  7210. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7211. GFP_KERNEL, cpu_to_node(i));
  7212. if (!cfs_rq)
  7213. goto err;
  7214. se = kzalloc_node(sizeof(struct sched_entity),
  7215. GFP_KERNEL, cpu_to_node(i));
  7216. if (!se)
  7217. goto err;
  7218. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7219. }
  7220. return 1;
  7221. err:
  7222. return 0;
  7223. }
  7224. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7225. {
  7226. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7227. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7228. }
  7229. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7230. {
  7231. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7232. }
  7233. #else /* !CONFG_FAIR_GROUP_SCHED */
  7234. static inline void free_fair_sched_group(struct task_group *tg)
  7235. {
  7236. }
  7237. static inline
  7238. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7239. {
  7240. return 1;
  7241. }
  7242. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7243. {
  7244. }
  7245. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7246. {
  7247. }
  7248. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7249. #ifdef CONFIG_RT_GROUP_SCHED
  7250. static void free_rt_sched_group(struct task_group *tg)
  7251. {
  7252. int i;
  7253. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7254. for_each_possible_cpu(i) {
  7255. if (tg->rt_rq)
  7256. kfree(tg->rt_rq[i]);
  7257. if (tg->rt_se)
  7258. kfree(tg->rt_se[i]);
  7259. }
  7260. kfree(tg->rt_rq);
  7261. kfree(tg->rt_se);
  7262. }
  7263. static
  7264. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7265. {
  7266. struct rt_rq *rt_rq;
  7267. struct sched_rt_entity *rt_se;
  7268. struct rq *rq;
  7269. int i;
  7270. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7271. if (!tg->rt_rq)
  7272. goto err;
  7273. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7274. if (!tg->rt_se)
  7275. goto err;
  7276. init_rt_bandwidth(&tg->rt_bandwidth,
  7277. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7278. for_each_possible_cpu(i) {
  7279. rq = cpu_rq(i);
  7280. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7281. GFP_KERNEL, cpu_to_node(i));
  7282. if (!rt_rq)
  7283. goto err;
  7284. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7285. GFP_KERNEL, cpu_to_node(i));
  7286. if (!rt_se)
  7287. goto err;
  7288. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7289. }
  7290. return 1;
  7291. err:
  7292. return 0;
  7293. }
  7294. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7295. {
  7296. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7297. &cpu_rq(cpu)->leaf_rt_rq_list);
  7298. }
  7299. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7300. {
  7301. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7302. }
  7303. #else /* !CONFIG_RT_GROUP_SCHED */
  7304. static inline void free_rt_sched_group(struct task_group *tg)
  7305. {
  7306. }
  7307. static inline
  7308. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7309. {
  7310. return 1;
  7311. }
  7312. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7313. {
  7314. }
  7315. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7316. {
  7317. }
  7318. #endif /* CONFIG_RT_GROUP_SCHED */
  7319. #ifdef CONFIG_GROUP_SCHED
  7320. static void free_sched_group(struct task_group *tg)
  7321. {
  7322. free_fair_sched_group(tg);
  7323. free_rt_sched_group(tg);
  7324. kfree(tg);
  7325. }
  7326. /* allocate runqueue etc for a new task group */
  7327. struct task_group *sched_create_group(struct task_group *parent)
  7328. {
  7329. struct task_group *tg;
  7330. unsigned long flags;
  7331. int i;
  7332. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7333. if (!tg)
  7334. return ERR_PTR(-ENOMEM);
  7335. if (!alloc_fair_sched_group(tg, parent))
  7336. goto err;
  7337. if (!alloc_rt_sched_group(tg, parent))
  7338. goto err;
  7339. spin_lock_irqsave(&task_group_lock, flags);
  7340. for_each_possible_cpu(i) {
  7341. register_fair_sched_group(tg, i);
  7342. register_rt_sched_group(tg, i);
  7343. }
  7344. list_add_rcu(&tg->list, &task_groups);
  7345. WARN_ON(!parent); /* root should already exist */
  7346. tg->parent = parent;
  7347. INIT_LIST_HEAD(&tg->children);
  7348. list_add_rcu(&tg->siblings, &parent->children);
  7349. spin_unlock_irqrestore(&task_group_lock, flags);
  7350. return tg;
  7351. err:
  7352. free_sched_group(tg);
  7353. return ERR_PTR(-ENOMEM);
  7354. }
  7355. /* rcu callback to free various structures associated with a task group */
  7356. static void free_sched_group_rcu(struct rcu_head *rhp)
  7357. {
  7358. /* now it should be safe to free those cfs_rqs */
  7359. free_sched_group(container_of(rhp, struct task_group, rcu));
  7360. }
  7361. /* Destroy runqueue etc associated with a task group */
  7362. void sched_destroy_group(struct task_group *tg)
  7363. {
  7364. unsigned long flags;
  7365. int i;
  7366. spin_lock_irqsave(&task_group_lock, flags);
  7367. for_each_possible_cpu(i) {
  7368. unregister_fair_sched_group(tg, i);
  7369. unregister_rt_sched_group(tg, i);
  7370. }
  7371. list_del_rcu(&tg->list);
  7372. list_del_rcu(&tg->siblings);
  7373. spin_unlock_irqrestore(&task_group_lock, flags);
  7374. /* wait for possible concurrent references to cfs_rqs complete */
  7375. call_rcu(&tg->rcu, free_sched_group_rcu);
  7376. }
  7377. /* change task's runqueue when it moves between groups.
  7378. * The caller of this function should have put the task in its new group
  7379. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7380. * reflect its new group.
  7381. */
  7382. void sched_move_task(struct task_struct *tsk)
  7383. {
  7384. int on_rq, running;
  7385. unsigned long flags;
  7386. struct rq *rq;
  7387. rq = task_rq_lock(tsk, &flags);
  7388. update_rq_clock(rq);
  7389. running = task_current(rq, tsk);
  7390. on_rq = tsk->se.on_rq;
  7391. if (on_rq)
  7392. dequeue_task(rq, tsk, 0);
  7393. if (unlikely(running))
  7394. tsk->sched_class->put_prev_task(rq, tsk);
  7395. set_task_rq(tsk, task_cpu(tsk));
  7396. #ifdef CONFIG_FAIR_GROUP_SCHED
  7397. if (tsk->sched_class->moved_group)
  7398. tsk->sched_class->moved_group(tsk);
  7399. #endif
  7400. if (unlikely(running))
  7401. tsk->sched_class->set_curr_task(rq);
  7402. if (on_rq)
  7403. enqueue_task(rq, tsk, 0);
  7404. task_rq_unlock(rq, &flags);
  7405. }
  7406. #endif /* CONFIG_GROUP_SCHED */
  7407. #ifdef CONFIG_FAIR_GROUP_SCHED
  7408. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7409. {
  7410. struct cfs_rq *cfs_rq = se->cfs_rq;
  7411. int on_rq;
  7412. on_rq = se->on_rq;
  7413. if (on_rq)
  7414. dequeue_entity(cfs_rq, se, 0);
  7415. se->load.weight = shares;
  7416. se->load.inv_weight = 0;
  7417. if (on_rq)
  7418. enqueue_entity(cfs_rq, se, 0);
  7419. }
  7420. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7421. {
  7422. struct cfs_rq *cfs_rq = se->cfs_rq;
  7423. struct rq *rq = cfs_rq->rq;
  7424. unsigned long flags;
  7425. spin_lock_irqsave(&rq->lock, flags);
  7426. __set_se_shares(se, shares);
  7427. spin_unlock_irqrestore(&rq->lock, flags);
  7428. }
  7429. static DEFINE_MUTEX(shares_mutex);
  7430. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7431. {
  7432. int i;
  7433. unsigned long flags;
  7434. /*
  7435. * We can't change the weight of the root cgroup.
  7436. */
  7437. if (!tg->se[0])
  7438. return -EINVAL;
  7439. if (shares < MIN_SHARES)
  7440. shares = MIN_SHARES;
  7441. else if (shares > MAX_SHARES)
  7442. shares = MAX_SHARES;
  7443. mutex_lock(&shares_mutex);
  7444. if (tg->shares == shares)
  7445. goto done;
  7446. spin_lock_irqsave(&task_group_lock, flags);
  7447. for_each_possible_cpu(i)
  7448. unregister_fair_sched_group(tg, i);
  7449. list_del_rcu(&tg->siblings);
  7450. spin_unlock_irqrestore(&task_group_lock, flags);
  7451. /* wait for any ongoing reference to this group to finish */
  7452. synchronize_sched();
  7453. /*
  7454. * Now we are free to modify the group's share on each cpu
  7455. * w/o tripping rebalance_share or load_balance_fair.
  7456. */
  7457. tg->shares = shares;
  7458. for_each_possible_cpu(i) {
  7459. /*
  7460. * force a rebalance
  7461. */
  7462. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7463. set_se_shares(tg->se[i], shares);
  7464. }
  7465. /*
  7466. * Enable load balance activity on this group, by inserting it back on
  7467. * each cpu's rq->leaf_cfs_rq_list.
  7468. */
  7469. spin_lock_irqsave(&task_group_lock, flags);
  7470. for_each_possible_cpu(i)
  7471. register_fair_sched_group(tg, i);
  7472. list_add_rcu(&tg->siblings, &tg->parent->children);
  7473. spin_unlock_irqrestore(&task_group_lock, flags);
  7474. done:
  7475. mutex_unlock(&shares_mutex);
  7476. return 0;
  7477. }
  7478. unsigned long sched_group_shares(struct task_group *tg)
  7479. {
  7480. return tg->shares;
  7481. }
  7482. #endif
  7483. #ifdef CONFIG_RT_GROUP_SCHED
  7484. /*
  7485. * Ensure that the real time constraints are schedulable.
  7486. */
  7487. static DEFINE_MUTEX(rt_constraints_mutex);
  7488. static unsigned long to_ratio(u64 period, u64 runtime)
  7489. {
  7490. if (runtime == RUNTIME_INF)
  7491. return 1ULL << 20;
  7492. return div64_u64(runtime << 20, period);
  7493. }
  7494. /* Must be called with tasklist_lock held */
  7495. static inline int tg_has_rt_tasks(struct task_group *tg)
  7496. {
  7497. struct task_struct *g, *p;
  7498. do_each_thread(g, p) {
  7499. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7500. return 1;
  7501. } while_each_thread(g, p);
  7502. return 0;
  7503. }
  7504. struct rt_schedulable_data {
  7505. struct task_group *tg;
  7506. u64 rt_period;
  7507. u64 rt_runtime;
  7508. };
  7509. static int tg_schedulable(struct task_group *tg, void *data)
  7510. {
  7511. struct rt_schedulable_data *d = data;
  7512. struct task_group *child;
  7513. unsigned long total, sum = 0;
  7514. u64 period, runtime;
  7515. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7516. runtime = tg->rt_bandwidth.rt_runtime;
  7517. if (tg == d->tg) {
  7518. period = d->rt_period;
  7519. runtime = d->rt_runtime;
  7520. }
  7521. /*
  7522. * Cannot have more runtime than the period.
  7523. */
  7524. if (runtime > period && runtime != RUNTIME_INF)
  7525. return -EINVAL;
  7526. /*
  7527. * Ensure we don't starve existing RT tasks.
  7528. */
  7529. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7530. return -EBUSY;
  7531. total = to_ratio(period, runtime);
  7532. /*
  7533. * Nobody can have more than the global setting allows.
  7534. */
  7535. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7536. return -EINVAL;
  7537. /*
  7538. * The sum of our children's runtime should not exceed our own.
  7539. */
  7540. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7541. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7542. runtime = child->rt_bandwidth.rt_runtime;
  7543. if (child == d->tg) {
  7544. period = d->rt_period;
  7545. runtime = d->rt_runtime;
  7546. }
  7547. sum += to_ratio(period, runtime);
  7548. }
  7549. if (sum > total)
  7550. return -EINVAL;
  7551. return 0;
  7552. }
  7553. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7554. {
  7555. struct rt_schedulable_data data = {
  7556. .tg = tg,
  7557. .rt_period = period,
  7558. .rt_runtime = runtime,
  7559. };
  7560. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7561. }
  7562. static int tg_set_bandwidth(struct task_group *tg,
  7563. u64 rt_period, u64 rt_runtime)
  7564. {
  7565. int i, err = 0;
  7566. mutex_lock(&rt_constraints_mutex);
  7567. read_lock(&tasklist_lock);
  7568. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7569. if (err)
  7570. goto unlock;
  7571. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7572. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7573. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7574. for_each_possible_cpu(i) {
  7575. struct rt_rq *rt_rq = tg->rt_rq[i];
  7576. spin_lock(&rt_rq->rt_runtime_lock);
  7577. rt_rq->rt_runtime = rt_runtime;
  7578. spin_unlock(&rt_rq->rt_runtime_lock);
  7579. }
  7580. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7581. unlock:
  7582. read_unlock(&tasklist_lock);
  7583. mutex_unlock(&rt_constraints_mutex);
  7584. return err;
  7585. }
  7586. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7587. {
  7588. u64 rt_runtime, rt_period;
  7589. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7590. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7591. if (rt_runtime_us < 0)
  7592. rt_runtime = RUNTIME_INF;
  7593. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7594. }
  7595. long sched_group_rt_runtime(struct task_group *tg)
  7596. {
  7597. u64 rt_runtime_us;
  7598. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7599. return -1;
  7600. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7601. do_div(rt_runtime_us, NSEC_PER_USEC);
  7602. return rt_runtime_us;
  7603. }
  7604. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7605. {
  7606. u64 rt_runtime, rt_period;
  7607. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7608. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7609. if (rt_period == 0)
  7610. return -EINVAL;
  7611. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7612. }
  7613. long sched_group_rt_period(struct task_group *tg)
  7614. {
  7615. u64 rt_period_us;
  7616. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7617. do_div(rt_period_us, NSEC_PER_USEC);
  7618. return rt_period_us;
  7619. }
  7620. static int sched_rt_global_constraints(void)
  7621. {
  7622. u64 runtime, period;
  7623. int ret = 0;
  7624. if (sysctl_sched_rt_period <= 0)
  7625. return -EINVAL;
  7626. runtime = global_rt_runtime();
  7627. period = global_rt_period();
  7628. /*
  7629. * Sanity check on the sysctl variables.
  7630. */
  7631. if (runtime > period && runtime != RUNTIME_INF)
  7632. return -EINVAL;
  7633. mutex_lock(&rt_constraints_mutex);
  7634. read_lock(&tasklist_lock);
  7635. ret = __rt_schedulable(NULL, 0, 0);
  7636. read_unlock(&tasklist_lock);
  7637. mutex_unlock(&rt_constraints_mutex);
  7638. return ret;
  7639. }
  7640. #else /* !CONFIG_RT_GROUP_SCHED */
  7641. static int sched_rt_global_constraints(void)
  7642. {
  7643. unsigned long flags;
  7644. int i;
  7645. if (sysctl_sched_rt_period <= 0)
  7646. return -EINVAL;
  7647. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7648. for_each_possible_cpu(i) {
  7649. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7650. spin_lock(&rt_rq->rt_runtime_lock);
  7651. rt_rq->rt_runtime = global_rt_runtime();
  7652. spin_unlock(&rt_rq->rt_runtime_lock);
  7653. }
  7654. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7655. return 0;
  7656. }
  7657. #endif /* CONFIG_RT_GROUP_SCHED */
  7658. int sched_rt_handler(struct ctl_table *table, int write,
  7659. struct file *filp, void __user *buffer, size_t *lenp,
  7660. loff_t *ppos)
  7661. {
  7662. int ret;
  7663. int old_period, old_runtime;
  7664. static DEFINE_MUTEX(mutex);
  7665. mutex_lock(&mutex);
  7666. old_period = sysctl_sched_rt_period;
  7667. old_runtime = sysctl_sched_rt_runtime;
  7668. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7669. if (!ret && write) {
  7670. ret = sched_rt_global_constraints();
  7671. if (ret) {
  7672. sysctl_sched_rt_period = old_period;
  7673. sysctl_sched_rt_runtime = old_runtime;
  7674. } else {
  7675. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7676. def_rt_bandwidth.rt_period =
  7677. ns_to_ktime(global_rt_period());
  7678. }
  7679. }
  7680. mutex_unlock(&mutex);
  7681. return ret;
  7682. }
  7683. #ifdef CONFIG_CGROUP_SCHED
  7684. /* return corresponding task_group object of a cgroup */
  7685. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7686. {
  7687. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7688. struct task_group, css);
  7689. }
  7690. static struct cgroup_subsys_state *
  7691. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7692. {
  7693. struct task_group *tg, *parent;
  7694. if (!cgrp->parent) {
  7695. /* This is early initialization for the top cgroup */
  7696. return &init_task_group.css;
  7697. }
  7698. parent = cgroup_tg(cgrp->parent);
  7699. tg = sched_create_group(parent);
  7700. if (IS_ERR(tg))
  7701. return ERR_PTR(-ENOMEM);
  7702. return &tg->css;
  7703. }
  7704. static void
  7705. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7706. {
  7707. struct task_group *tg = cgroup_tg(cgrp);
  7708. sched_destroy_group(tg);
  7709. }
  7710. static int
  7711. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7712. struct task_struct *tsk)
  7713. {
  7714. #ifdef CONFIG_RT_GROUP_SCHED
  7715. /* Don't accept realtime tasks when there is no way for them to run */
  7716. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7717. return -EINVAL;
  7718. #else
  7719. /* We don't support RT-tasks being in separate groups */
  7720. if (tsk->sched_class != &fair_sched_class)
  7721. return -EINVAL;
  7722. #endif
  7723. return 0;
  7724. }
  7725. static void
  7726. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7727. struct cgroup *old_cont, struct task_struct *tsk)
  7728. {
  7729. sched_move_task(tsk);
  7730. }
  7731. #ifdef CONFIG_FAIR_GROUP_SCHED
  7732. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7733. u64 shareval)
  7734. {
  7735. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7736. }
  7737. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7738. {
  7739. struct task_group *tg = cgroup_tg(cgrp);
  7740. return (u64) tg->shares;
  7741. }
  7742. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7743. #ifdef CONFIG_RT_GROUP_SCHED
  7744. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7745. s64 val)
  7746. {
  7747. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7748. }
  7749. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7750. {
  7751. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7752. }
  7753. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7754. u64 rt_period_us)
  7755. {
  7756. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7757. }
  7758. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7759. {
  7760. return sched_group_rt_period(cgroup_tg(cgrp));
  7761. }
  7762. #endif /* CONFIG_RT_GROUP_SCHED */
  7763. static struct cftype cpu_files[] = {
  7764. #ifdef CONFIG_FAIR_GROUP_SCHED
  7765. {
  7766. .name = "shares",
  7767. .read_u64 = cpu_shares_read_u64,
  7768. .write_u64 = cpu_shares_write_u64,
  7769. },
  7770. #endif
  7771. #ifdef CONFIG_RT_GROUP_SCHED
  7772. {
  7773. .name = "rt_runtime_us",
  7774. .read_s64 = cpu_rt_runtime_read,
  7775. .write_s64 = cpu_rt_runtime_write,
  7776. },
  7777. {
  7778. .name = "rt_period_us",
  7779. .read_u64 = cpu_rt_period_read_uint,
  7780. .write_u64 = cpu_rt_period_write_uint,
  7781. },
  7782. #endif
  7783. };
  7784. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7785. {
  7786. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7787. }
  7788. struct cgroup_subsys cpu_cgroup_subsys = {
  7789. .name = "cpu",
  7790. .create = cpu_cgroup_create,
  7791. .destroy = cpu_cgroup_destroy,
  7792. .can_attach = cpu_cgroup_can_attach,
  7793. .attach = cpu_cgroup_attach,
  7794. .populate = cpu_cgroup_populate,
  7795. .subsys_id = cpu_cgroup_subsys_id,
  7796. .early_init = 1,
  7797. };
  7798. #endif /* CONFIG_CGROUP_SCHED */
  7799. #ifdef CONFIG_CGROUP_CPUACCT
  7800. /*
  7801. * CPU accounting code for task groups.
  7802. *
  7803. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7804. * (balbir@in.ibm.com).
  7805. */
  7806. /* track cpu usage of a group of tasks and its child groups */
  7807. struct cpuacct {
  7808. struct cgroup_subsys_state css;
  7809. /* cpuusage holds pointer to a u64-type object on every cpu */
  7810. u64 *cpuusage;
  7811. struct cpuacct *parent;
  7812. };
  7813. struct cgroup_subsys cpuacct_subsys;
  7814. /* return cpu accounting group corresponding to this container */
  7815. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7816. {
  7817. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7818. struct cpuacct, css);
  7819. }
  7820. /* return cpu accounting group to which this task belongs */
  7821. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7822. {
  7823. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7824. struct cpuacct, css);
  7825. }
  7826. /* create a new cpu accounting group */
  7827. static struct cgroup_subsys_state *cpuacct_create(
  7828. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7829. {
  7830. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7831. if (!ca)
  7832. return ERR_PTR(-ENOMEM);
  7833. ca->cpuusage = alloc_percpu(u64);
  7834. if (!ca->cpuusage) {
  7835. kfree(ca);
  7836. return ERR_PTR(-ENOMEM);
  7837. }
  7838. if (cgrp->parent)
  7839. ca->parent = cgroup_ca(cgrp->parent);
  7840. return &ca->css;
  7841. }
  7842. /* destroy an existing cpu accounting group */
  7843. static void
  7844. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7845. {
  7846. struct cpuacct *ca = cgroup_ca(cgrp);
  7847. free_percpu(ca->cpuusage);
  7848. kfree(ca);
  7849. }
  7850. /* return total cpu usage (in nanoseconds) of a group */
  7851. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7852. {
  7853. struct cpuacct *ca = cgroup_ca(cgrp);
  7854. u64 totalcpuusage = 0;
  7855. int i;
  7856. for_each_possible_cpu(i) {
  7857. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7858. /*
  7859. * Take rq->lock to make 64-bit addition safe on 32-bit
  7860. * platforms.
  7861. */
  7862. spin_lock_irq(&cpu_rq(i)->lock);
  7863. totalcpuusage += *cpuusage;
  7864. spin_unlock_irq(&cpu_rq(i)->lock);
  7865. }
  7866. return totalcpuusage;
  7867. }
  7868. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7869. u64 reset)
  7870. {
  7871. struct cpuacct *ca = cgroup_ca(cgrp);
  7872. int err = 0;
  7873. int i;
  7874. if (reset) {
  7875. err = -EINVAL;
  7876. goto out;
  7877. }
  7878. for_each_possible_cpu(i) {
  7879. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7880. spin_lock_irq(&cpu_rq(i)->lock);
  7881. *cpuusage = 0;
  7882. spin_unlock_irq(&cpu_rq(i)->lock);
  7883. }
  7884. out:
  7885. return err;
  7886. }
  7887. static struct cftype files[] = {
  7888. {
  7889. .name = "usage",
  7890. .read_u64 = cpuusage_read,
  7891. .write_u64 = cpuusage_write,
  7892. },
  7893. };
  7894. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7895. {
  7896. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7897. }
  7898. /*
  7899. * charge this task's execution time to its accounting group.
  7900. *
  7901. * called with rq->lock held.
  7902. */
  7903. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7904. {
  7905. struct cpuacct *ca;
  7906. int cpu;
  7907. if (!cpuacct_subsys.active)
  7908. return;
  7909. cpu = task_cpu(tsk);
  7910. ca = task_ca(tsk);
  7911. for (; ca; ca = ca->parent) {
  7912. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  7913. *cpuusage += cputime;
  7914. }
  7915. }
  7916. struct cgroup_subsys cpuacct_subsys = {
  7917. .name = "cpuacct",
  7918. .create = cpuacct_create,
  7919. .destroy = cpuacct_destroy,
  7920. .populate = cpuacct_populate,
  7921. .subsys_id = cpuacct_subsys_id,
  7922. };
  7923. #endif /* CONFIG_CGROUP_CPUACCT */