i915_gem.c 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable);
  43. static int i915_gem_phys_pwrite(struct drm_device *dev,
  44. struct drm_i915_gem_object *obj,
  45. struct drm_i915_gem_pwrite *args,
  46. struct drm_file *file);
  47. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  48. struct drm_i915_gem_object *obj);
  49. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  50. struct drm_i915_fence_reg *fence,
  51. bool enable);
  52. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  53. struct shrink_control *sc);
  54. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  55. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  56. {
  57. if (obj->tiling_mode)
  58. i915_gem_release_mmap(obj);
  59. /* As we do not have an associated fence register, we will force
  60. * a tiling change if we ever need to acquire one.
  61. */
  62. obj->fence_dirty = false;
  63. obj->fence_reg = I915_FENCE_REG_NONE;
  64. }
  65. /* some bookkeeping */
  66. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  67. size_t size)
  68. {
  69. dev_priv->mm.object_count++;
  70. dev_priv->mm.object_memory += size;
  71. }
  72. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  73. size_t size)
  74. {
  75. dev_priv->mm.object_count--;
  76. dev_priv->mm.object_memory -= size;
  77. }
  78. static int
  79. i915_gem_wait_for_error(struct drm_device *dev)
  80. {
  81. struct drm_i915_private *dev_priv = dev->dev_private;
  82. struct completion *x = &dev_priv->error_completion;
  83. unsigned long flags;
  84. int ret;
  85. if (!atomic_read(&dev_priv->mm.wedged))
  86. return 0;
  87. ret = wait_for_completion_interruptible(x);
  88. if (ret)
  89. return ret;
  90. if (atomic_read(&dev_priv->mm.wedged)) {
  91. /* GPU is hung, bump the completion count to account for
  92. * the token we just consumed so that we never hit zero and
  93. * end up waiting upon a subsequent completion event that
  94. * will never happen.
  95. */
  96. spin_lock_irqsave(&x->wait.lock, flags);
  97. x->done++;
  98. spin_unlock_irqrestore(&x->wait.lock, flags);
  99. }
  100. return 0;
  101. }
  102. int i915_mutex_lock_interruptible(struct drm_device *dev)
  103. {
  104. int ret;
  105. ret = i915_gem_wait_for_error(dev);
  106. if (ret)
  107. return ret;
  108. ret = mutex_lock_interruptible(&dev->struct_mutex);
  109. if (ret)
  110. return ret;
  111. WARN_ON(i915_verify_lists(dev));
  112. return 0;
  113. }
  114. static inline bool
  115. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  116. {
  117. return !obj->active;
  118. }
  119. int
  120. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  121. struct drm_file *file)
  122. {
  123. struct drm_i915_gem_init *args = data;
  124. if (drm_core_check_feature(dev, DRIVER_MODESET))
  125. return -ENODEV;
  126. if (args->gtt_start >= args->gtt_end ||
  127. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  128. return -EINVAL;
  129. /* GEM with user mode setting was never supported on ilk and later. */
  130. if (INTEL_INFO(dev)->gen >= 5)
  131. return -ENODEV;
  132. mutex_lock(&dev->struct_mutex);
  133. i915_gem_init_global_gtt(dev, args->gtt_start,
  134. args->gtt_end, args->gtt_end);
  135. mutex_unlock(&dev->struct_mutex);
  136. return 0;
  137. }
  138. int
  139. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  140. struct drm_file *file)
  141. {
  142. struct drm_i915_private *dev_priv = dev->dev_private;
  143. struct drm_i915_gem_get_aperture *args = data;
  144. struct drm_i915_gem_object *obj;
  145. size_t pinned;
  146. pinned = 0;
  147. mutex_lock(&dev->struct_mutex);
  148. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
  149. if (obj->pin_count)
  150. pinned += obj->gtt_space->size;
  151. mutex_unlock(&dev->struct_mutex);
  152. args->aper_size = dev_priv->mm.gtt_total;
  153. args->aper_available_size = args->aper_size - pinned;
  154. return 0;
  155. }
  156. static int
  157. i915_gem_create(struct drm_file *file,
  158. struct drm_device *dev,
  159. uint64_t size,
  160. uint32_t *handle_p)
  161. {
  162. struct drm_i915_gem_object *obj;
  163. int ret;
  164. u32 handle;
  165. size = roundup(size, PAGE_SIZE);
  166. if (size == 0)
  167. return -EINVAL;
  168. /* Allocate the new object */
  169. obj = i915_gem_alloc_object(dev, size);
  170. if (obj == NULL)
  171. return -ENOMEM;
  172. ret = drm_gem_handle_create(file, &obj->base, &handle);
  173. if (ret) {
  174. drm_gem_object_release(&obj->base);
  175. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  176. kfree(obj);
  177. return ret;
  178. }
  179. /* drop reference from allocate - handle holds it now */
  180. drm_gem_object_unreference(&obj->base);
  181. trace_i915_gem_object_create(obj);
  182. *handle_p = handle;
  183. return 0;
  184. }
  185. int
  186. i915_gem_dumb_create(struct drm_file *file,
  187. struct drm_device *dev,
  188. struct drm_mode_create_dumb *args)
  189. {
  190. /* have to work out size/pitch and return them */
  191. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  192. args->size = args->pitch * args->height;
  193. return i915_gem_create(file, dev,
  194. args->size, &args->handle);
  195. }
  196. int i915_gem_dumb_destroy(struct drm_file *file,
  197. struct drm_device *dev,
  198. uint32_t handle)
  199. {
  200. return drm_gem_handle_delete(file, handle);
  201. }
  202. /**
  203. * Creates a new mm object and returns a handle to it.
  204. */
  205. int
  206. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  207. struct drm_file *file)
  208. {
  209. struct drm_i915_gem_create *args = data;
  210. return i915_gem_create(file, dev,
  211. args->size, &args->handle);
  212. }
  213. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  214. {
  215. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  216. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  217. obj->tiling_mode != I915_TILING_NONE;
  218. }
  219. static inline int
  220. __copy_to_user_swizzled(char __user *cpu_vaddr,
  221. const char *gpu_vaddr, int gpu_offset,
  222. int length)
  223. {
  224. int ret, cpu_offset = 0;
  225. while (length > 0) {
  226. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  227. int this_length = min(cacheline_end - gpu_offset, length);
  228. int swizzled_gpu_offset = gpu_offset ^ 64;
  229. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  230. gpu_vaddr + swizzled_gpu_offset,
  231. this_length);
  232. if (ret)
  233. return ret + length;
  234. cpu_offset += this_length;
  235. gpu_offset += this_length;
  236. length -= this_length;
  237. }
  238. return 0;
  239. }
  240. static inline int
  241. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  242. const char __user *cpu_vaddr,
  243. int length)
  244. {
  245. int ret, cpu_offset = 0;
  246. while (length > 0) {
  247. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  248. int this_length = min(cacheline_end - gpu_offset, length);
  249. int swizzled_gpu_offset = gpu_offset ^ 64;
  250. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  251. cpu_vaddr + cpu_offset,
  252. this_length);
  253. if (ret)
  254. return ret + length;
  255. cpu_offset += this_length;
  256. gpu_offset += this_length;
  257. length -= this_length;
  258. }
  259. return 0;
  260. }
  261. /* Per-page copy function for the shmem pread fastpath.
  262. * Flushes invalid cachelines before reading the target if
  263. * needs_clflush is set. */
  264. static int
  265. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  266. char __user *user_data,
  267. bool page_do_bit17_swizzling, bool needs_clflush)
  268. {
  269. char *vaddr;
  270. int ret;
  271. if (unlikely(page_do_bit17_swizzling))
  272. return -EINVAL;
  273. vaddr = kmap_atomic(page);
  274. if (needs_clflush)
  275. drm_clflush_virt_range(vaddr + shmem_page_offset,
  276. page_length);
  277. ret = __copy_to_user_inatomic(user_data,
  278. vaddr + shmem_page_offset,
  279. page_length);
  280. kunmap_atomic(vaddr);
  281. return ret;
  282. }
  283. static void
  284. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  285. bool swizzled)
  286. {
  287. if (unlikely(swizzled)) {
  288. unsigned long start = (unsigned long) addr;
  289. unsigned long end = (unsigned long) addr + length;
  290. /* For swizzling simply ensure that we always flush both
  291. * channels. Lame, but simple and it works. Swizzled
  292. * pwrite/pread is far from a hotpath - current userspace
  293. * doesn't use it at all. */
  294. start = round_down(start, 128);
  295. end = round_up(end, 128);
  296. drm_clflush_virt_range((void *)start, end - start);
  297. } else {
  298. drm_clflush_virt_range(addr, length);
  299. }
  300. }
  301. /* Only difference to the fast-path function is that this can handle bit17
  302. * and uses non-atomic copy and kmap functions. */
  303. static int
  304. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  305. char __user *user_data,
  306. bool page_do_bit17_swizzling, bool needs_clflush)
  307. {
  308. char *vaddr;
  309. int ret;
  310. vaddr = kmap(page);
  311. if (needs_clflush)
  312. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  313. page_length,
  314. page_do_bit17_swizzling);
  315. if (page_do_bit17_swizzling)
  316. ret = __copy_to_user_swizzled(user_data,
  317. vaddr, shmem_page_offset,
  318. page_length);
  319. else
  320. ret = __copy_to_user(user_data,
  321. vaddr + shmem_page_offset,
  322. page_length);
  323. kunmap(page);
  324. return ret;
  325. }
  326. static int
  327. i915_gem_shmem_pread(struct drm_device *dev,
  328. struct drm_i915_gem_object *obj,
  329. struct drm_i915_gem_pread *args,
  330. struct drm_file *file)
  331. {
  332. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  333. char __user *user_data;
  334. ssize_t remain;
  335. loff_t offset;
  336. int shmem_page_offset, page_length, ret = 0;
  337. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  338. int hit_slowpath = 0;
  339. int prefaulted = 0;
  340. int needs_clflush = 0;
  341. int release_page;
  342. user_data = (char __user *) (uintptr_t) args->data_ptr;
  343. remain = args->size;
  344. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  345. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  346. /* If we're not in the cpu read domain, set ourself into the gtt
  347. * read domain and manually flush cachelines (if required). This
  348. * optimizes for the case when the gpu will dirty the data
  349. * anyway again before the next pread happens. */
  350. if (obj->cache_level == I915_CACHE_NONE)
  351. needs_clflush = 1;
  352. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  353. if (ret)
  354. return ret;
  355. }
  356. offset = args->offset;
  357. while (remain > 0) {
  358. struct page *page;
  359. /* Operation in this page
  360. *
  361. * shmem_page_offset = offset within page in shmem file
  362. * page_length = bytes to copy for this page
  363. */
  364. shmem_page_offset = offset_in_page(offset);
  365. page_length = remain;
  366. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  367. page_length = PAGE_SIZE - shmem_page_offset;
  368. if (obj->pages) {
  369. page = obj->pages[offset >> PAGE_SHIFT];
  370. release_page = 0;
  371. } else {
  372. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  373. if (IS_ERR(page)) {
  374. ret = PTR_ERR(page);
  375. goto out;
  376. }
  377. release_page = 1;
  378. }
  379. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  380. (page_to_phys(page) & (1 << 17)) != 0;
  381. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  382. user_data, page_do_bit17_swizzling,
  383. needs_clflush);
  384. if (ret == 0)
  385. goto next_page;
  386. hit_slowpath = 1;
  387. page_cache_get(page);
  388. mutex_unlock(&dev->struct_mutex);
  389. if (!prefaulted) {
  390. ret = fault_in_multipages_writeable(user_data, remain);
  391. /* Userspace is tricking us, but we've already clobbered
  392. * its pages with the prefault and promised to write the
  393. * data up to the first fault. Hence ignore any errors
  394. * and just continue. */
  395. (void)ret;
  396. prefaulted = 1;
  397. }
  398. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  399. user_data, page_do_bit17_swizzling,
  400. needs_clflush);
  401. mutex_lock(&dev->struct_mutex);
  402. page_cache_release(page);
  403. next_page:
  404. mark_page_accessed(page);
  405. if (release_page)
  406. page_cache_release(page);
  407. if (ret) {
  408. ret = -EFAULT;
  409. goto out;
  410. }
  411. remain -= page_length;
  412. user_data += page_length;
  413. offset += page_length;
  414. }
  415. out:
  416. if (hit_slowpath) {
  417. /* Fixup: Kill any reinstated backing storage pages */
  418. if (obj->madv == __I915_MADV_PURGED)
  419. i915_gem_object_truncate(obj);
  420. }
  421. return ret;
  422. }
  423. /**
  424. * Reads data from the object referenced by handle.
  425. *
  426. * On error, the contents of *data are undefined.
  427. */
  428. int
  429. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  430. struct drm_file *file)
  431. {
  432. struct drm_i915_gem_pread *args = data;
  433. struct drm_i915_gem_object *obj;
  434. int ret = 0;
  435. if (args->size == 0)
  436. return 0;
  437. if (!access_ok(VERIFY_WRITE,
  438. (char __user *)(uintptr_t)args->data_ptr,
  439. args->size))
  440. return -EFAULT;
  441. ret = i915_mutex_lock_interruptible(dev);
  442. if (ret)
  443. return ret;
  444. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  445. if (&obj->base == NULL) {
  446. ret = -ENOENT;
  447. goto unlock;
  448. }
  449. /* Bounds check source. */
  450. if (args->offset > obj->base.size ||
  451. args->size > obj->base.size - args->offset) {
  452. ret = -EINVAL;
  453. goto out;
  454. }
  455. trace_i915_gem_object_pread(obj, args->offset, args->size);
  456. ret = i915_gem_shmem_pread(dev, obj, args, file);
  457. out:
  458. drm_gem_object_unreference(&obj->base);
  459. unlock:
  460. mutex_unlock(&dev->struct_mutex);
  461. return ret;
  462. }
  463. /* This is the fast write path which cannot handle
  464. * page faults in the source data
  465. */
  466. static inline int
  467. fast_user_write(struct io_mapping *mapping,
  468. loff_t page_base, int page_offset,
  469. char __user *user_data,
  470. int length)
  471. {
  472. void __iomem *vaddr_atomic;
  473. void *vaddr;
  474. unsigned long unwritten;
  475. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  476. /* We can use the cpu mem copy function because this is X86. */
  477. vaddr = (void __force*)vaddr_atomic + page_offset;
  478. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  479. user_data, length);
  480. io_mapping_unmap_atomic(vaddr_atomic);
  481. return unwritten;
  482. }
  483. /**
  484. * This is the fast pwrite path, where we copy the data directly from the
  485. * user into the GTT, uncached.
  486. */
  487. static int
  488. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  489. struct drm_i915_gem_object *obj,
  490. struct drm_i915_gem_pwrite *args,
  491. struct drm_file *file)
  492. {
  493. drm_i915_private_t *dev_priv = dev->dev_private;
  494. ssize_t remain;
  495. loff_t offset, page_base;
  496. char __user *user_data;
  497. int page_offset, page_length, ret;
  498. ret = i915_gem_object_pin(obj, 0, true);
  499. if (ret)
  500. goto out;
  501. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  502. if (ret)
  503. goto out_unpin;
  504. ret = i915_gem_object_put_fence(obj);
  505. if (ret)
  506. goto out_unpin;
  507. user_data = (char __user *) (uintptr_t) args->data_ptr;
  508. remain = args->size;
  509. offset = obj->gtt_offset + args->offset;
  510. while (remain > 0) {
  511. /* Operation in this page
  512. *
  513. * page_base = page offset within aperture
  514. * page_offset = offset within page
  515. * page_length = bytes to copy for this page
  516. */
  517. page_base = offset & PAGE_MASK;
  518. page_offset = offset_in_page(offset);
  519. page_length = remain;
  520. if ((page_offset + remain) > PAGE_SIZE)
  521. page_length = PAGE_SIZE - page_offset;
  522. /* If we get a fault while copying data, then (presumably) our
  523. * source page isn't available. Return the error and we'll
  524. * retry in the slow path.
  525. */
  526. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  527. page_offset, user_data, page_length)) {
  528. ret = -EFAULT;
  529. goto out_unpin;
  530. }
  531. remain -= page_length;
  532. user_data += page_length;
  533. offset += page_length;
  534. }
  535. out_unpin:
  536. i915_gem_object_unpin(obj);
  537. out:
  538. return ret;
  539. }
  540. /* Per-page copy function for the shmem pwrite fastpath.
  541. * Flushes invalid cachelines before writing to the target if
  542. * needs_clflush_before is set and flushes out any written cachelines after
  543. * writing if needs_clflush is set. */
  544. static int
  545. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  546. char __user *user_data,
  547. bool page_do_bit17_swizzling,
  548. bool needs_clflush_before,
  549. bool needs_clflush_after)
  550. {
  551. char *vaddr;
  552. int ret;
  553. if (unlikely(page_do_bit17_swizzling))
  554. return -EINVAL;
  555. vaddr = kmap_atomic(page);
  556. if (needs_clflush_before)
  557. drm_clflush_virt_range(vaddr + shmem_page_offset,
  558. page_length);
  559. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  560. user_data,
  561. page_length);
  562. if (needs_clflush_after)
  563. drm_clflush_virt_range(vaddr + shmem_page_offset,
  564. page_length);
  565. kunmap_atomic(vaddr);
  566. return ret;
  567. }
  568. /* Only difference to the fast-path function is that this can handle bit17
  569. * and uses non-atomic copy and kmap functions. */
  570. static int
  571. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  572. char __user *user_data,
  573. bool page_do_bit17_swizzling,
  574. bool needs_clflush_before,
  575. bool needs_clflush_after)
  576. {
  577. char *vaddr;
  578. int ret;
  579. vaddr = kmap(page);
  580. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  581. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  582. page_length,
  583. page_do_bit17_swizzling);
  584. if (page_do_bit17_swizzling)
  585. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  586. user_data,
  587. page_length);
  588. else
  589. ret = __copy_from_user(vaddr + shmem_page_offset,
  590. user_data,
  591. page_length);
  592. if (needs_clflush_after)
  593. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  594. page_length,
  595. page_do_bit17_swizzling);
  596. kunmap(page);
  597. return ret;
  598. }
  599. static int
  600. i915_gem_shmem_pwrite(struct drm_device *dev,
  601. struct drm_i915_gem_object *obj,
  602. struct drm_i915_gem_pwrite *args,
  603. struct drm_file *file)
  604. {
  605. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  606. ssize_t remain;
  607. loff_t offset;
  608. char __user *user_data;
  609. int shmem_page_offset, page_length, ret = 0;
  610. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  611. int hit_slowpath = 0;
  612. int needs_clflush_after = 0;
  613. int needs_clflush_before = 0;
  614. int release_page;
  615. user_data = (char __user *) (uintptr_t) args->data_ptr;
  616. remain = args->size;
  617. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  618. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  619. /* If we're not in the cpu write domain, set ourself into the gtt
  620. * write domain and manually flush cachelines (if required). This
  621. * optimizes for the case when the gpu will use the data
  622. * right away and we therefore have to clflush anyway. */
  623. if (obj->cache_level == I915_CACHE_NONE)
  624. needs_clflush_after = 1;
  625. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  626. if (ret)
  627. return ret;
  628. }
  629. /* Same trick applies for invalidate partially written cachelines before
  630. * writing. */
  631. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  632. && obj->cache_level == I915_CACHE_NONE)
  633. needs_clflush_before = 1;
  634. offset = args->offset;
  635. obj->dirty = 1;
  636. while (remain > 0) {
  637. struct page *page;
  638. int partial_cacheline_write;
  639. /* Operation in this page
  640. *
  641. * shmem_page_offset = offset within page in shmem file
  642. * page_length = bytes to copy for this page
  643. */
  644. shmem_page_offset = offset_in_page(offset);
  645. page_length = remain;
  646. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  647. page_length = PAGE_SIZE - shmem_page_offset;
  648. /* If we don't overwrite a cacheline completely we need to be
  649. * careful to have up-to-date data by first clflushing. Don't
  650. * overcomplicate things and flush the entire patch. */
  651. partial_cacheline_write = needs_clflush_before &&
  652. ((shmem_page_offset | page_length)
  653. & (boot_cpu_data.x86_clflush_size - 1));
  654. if (obj->pages) {
  655. page = obj->pages[offset >> PAGE_SHIFT];
  656. release_page = 0;
  657. } else {
  658. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  659. if (IS_ERR(page)) {
  660. ret = PTR_ERR(page);
  661. goto out;
  662. }
  663. release_page = 1;
  664. }
  665. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  666. (page_to_phys(page) & (1 << 17)) != 0;
  667. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  668. user_data, page_do_bit17_swizzling,
  669. partial_cacheline_write,
  670. needs_clflush_after);
  671. if (ret == 0)
  672. goto next_page;
  673. hit_slowpath = 1;
  674. page_cache_get(page);
  675. mutex_unlock(&dev->struct_mutex);
  676. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  677. user_data, page_do_bit17_swizzling,
  678. partial_cacheline_write,
  679. needs_clflush_after);
  680. mutex_lock(&dev->struct_mutex);
  681. page_cache_release(page);
  682. next_page:
  683. set_page_dirty(page);
  684. mark_page_accessed(page);
  685. if (release_page)
  686. page_cache_release(page);
  687. if (ret) {
  688. ret = -EFAULT;
  689. goto out;
  690. }
  691. remain -= page_length;
  692. user_data += page_length;
  693. offset += page_length;
  694. }
  695. out:
  696. if (hit_slowpath) {
  697. /* Fixup: Kill any reinstated backing storage pages */
  698. if (obj->madv == __I915_MADV_PURGED)
  699. i915_gem_object_truncate(obj);
  700. /* and flush dirty cachelines in case the object isn't in the cpu write
  701. * domain anymore. */
  702. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  703. i915_gem_clflush_object(obj);
  704. intel_gtt_chipset_flush();
  705. }
  706. }
  707. if (needs_clflush_after)
  708. intel_gtt_chipset_flush();
  709. return ret;
  710. }
  711. /**
  712. * Writes data to the object referenced by handle.
  713. *
  714. * On error, the contents of the buffer that were to be modified are undefined.
  715. */
  716. int
  717. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  718. struct drm_file *file)
  719. {
  720. struct drm_i915_gem_pwrite *args = data;
  721. struct drm_i915_gem_object *obj;
  722. int ret;
  723. if (args->size == 0)
  724. return 0;
  725. if (!access_ok(VERIFY_READ,
  726. (char __user *)(uintptr_t)args->data_ptr,
  727. args->size))
  728. return -EFAULT;
  729. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  730. args->size);
  731. if (ret)
  732. return -EFAULT;
  733. ret = i915_mutex_lock_interruptible(dev);
  734. if (ret)
  735. return ret;
  736. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  737. if (&obj->base == NULL) {
  738. ret = -ENOENT;
  739. goto unlock;
  740. }
  741. /* Bounds check destination. */
  742. if (args->offset > obj->base.size ||
  743. args->size > obj->base.size - args->offset) {
  744. ret = -EINVAL;
  745. goto out;
  746. }
  747. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  748. ret = -EFAULT;
  749. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  750. * it would end up going through the fenced access, and we'll get
  751. * different detiling behavior between reading and writing.
  752. * pread/pwrite currently are reading and writing from the CPU
  753. * perspective, requiring manual detiling by the client.
  754. */
  755. if (obj->phys_obj) {
  756. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  757. goto out;
  758. }
  759. if (obj->gtt_space &&
  760. obj->cache_level == I915_CACHE_NONE &&
  761. obj->tiling_mode == I915_TILING_NONE &&
  762. obj->map_and_fenceable &&
  763. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  764. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  765. /* Note that the gtt paths might fail with non-page-backed user
  766. * pointers (e.g. gtt mappings when moving data between
  767. * textures). Fallback to the shmem path in that case. */
  768. }
  769. if (ret == -EFAULT)
  770. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  771. out:
  772. drm_gem_object_unreference(&obj->base);
  773. unlock:
  774. mutex_unlock(&dev->struct_mutex);
  775. return ret;
  776. }
  777. /**
  778. * Called when user space prepares to use an object with the CPU, either
  779. * through the mmap ioctl's mapping or a GTT mapping.
  780. */
  781. int
  782. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  783. struct drm_file *file)
  784. {
  785. struct drm_i915_gem_set_domain *args = data;
  786. struct drm_i915_gem_object *obj;
  787. uint32_t read_domains = args->read_domains;
  788. uint32_t write_domain = args->write_domain;
  789. int ret;
  790. /* Only handle setting domains to types used by the CPU. */
  791. if (write_domain & I915_GEM_GPU_DOMAINS)
  792. return -EINVAL;
  793. if (read_domains & I915_GEM_GPU_DOMAINS)
  794. return -EINVAL;
  795. /* Having something in the write domain implies it's in the read
  796. * domain, and only that read domain. Enforce that in the request.
  797. */
  798. if (write_domain != 0 && read_domains != write_domain)
  799. return -EINVAL;
  800. ret = i915_mutex_lock_interruptible(dev);
  801. if (ret)
  802. return ret;
  803. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  804. if (&obj->base == NULL) {
  805. ret = -ENOENT;
  806. goto unlock;
  807. }
  808. if (read_domains & I915_GEM_DOMAIN_GTT) {
  809. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  810. /* Silently promote "you're not bound, there was nothing to do"
  811. * to success, since the client was just asking us to
  812. * make sure everything was done.
  813. */
  814. if (ret == -EINVAL)
  815. ret = 0;
  816. } else {
  817. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  818. }
  819. drm_gem_object_unreference(&obj->base);
  820. unlock:
  821. mutex_unlock(&dev->struct_mutex);
  822. return ret;
  823. }
  824. /**
  825. * Called when user space has done writes to this buffer
  826. */
  827. int
  828. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  829. struct drm_file *file)
  830. {
  831. struct drm_i915_gem_sw_finish *args = data;
  832. struct drm_i915_gem_object *obj;
  833. int ret = 0;
  834. ret = i915_mutex_lock_interruptible(dev);
  835. if (ret)
  836. return ret;
  837. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  838. if (&obj->base == NULL) {
  839. ret = -ENOENT;
  840. goto unlock;
  841. }
  842. /* Pinned buffers may be scanout, so flush the cache */
  843. if (obj->pin_count)
  844. i915_gem_object_flush_cpu_write_domain(obj);
  845. drm_gem_object_unreference(&obj->base);
  846. unlock:
  847. mutex_unlock(&dev->struct_mutex);
  848. return ret;
  849. }
  850. /**
  851. * Maps the contents of an object, returning the address it is mapped
  852. * into.
  853. *
  854. * While the mapping holds a reference on the contents of the object, it doesn't
  855. * imply a ref on the object itself.
  856. */
  857. int
  858. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  859. struct drm_file *file)
  860. {
  861. struct drm_i915_gem_mmap *args = data;
  862. struct drm_gem_object *obj;
  863. unsigned long addr;
  864. obj = drm_gem_object_lookup(dev, file, args->handle);
  865. if (obj == NULL)
  866. return -ENOENT;
  867. down_write(&current->mm->mmap_sem);
  868. addr = do_mmap(obj->filp, 0, args->size,
  869. PROT_READ | PROT_WRITE, MAP_SHARED,
  870. args->offset);
  871. up_write(&current->mm->mmap_sem);
  872. drm_gem_object_unreference_unlocked(obj);
  873. if (IS_ERR((void *)addr))
  874. return addr;
  875. args->addr_ptr = (uint64_t) addr;
  876. return 0;
  877. }
  878. /**
  879. * i915_gem_fault - fault a page into the GTT
  880. * vma: VMA in question
  881. * vmf: fault info
  882. *
  883. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  884. * from userspace. The fault handler takes care of binding the object to
  885. * the GTT (if needed), allocating and programming a fence register (again,
  886. * only if needed based on whether the old reg is still valid or the object
  887. * is tiled) and inserting a new PTE into the faulting process.
  888. *
  889. * Note that the faulting process may involve evicting existing objects
  890. * from the GTT and/or fence registers to make room. So performance may
  891. * suffer if the GTT working set is large or there are few fence registers
  892. * left.
  893. */
  894. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  895. {
  896. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  897. struct drm_device *dev = obj->base.dev;
  898. drm_i915_private_t *dev_priv = dev->dev_private;
  899. pgoff_t page_offset;
  900. unsigned long pfn;
  901. int ret = 0;
  902. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  903. /* We don't use vmf->pgoff since that has the fake offset */
  904. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  905. PAGE_SHIFT;
  906. ret = i915_mutex_lock_interruptible(dev);
  907. if (ret)
  908. goto out;
  909. trace_i915_gem_object_fault(obj, page_offset, true, write);
  910. /* Now bind it into the GTT if needed */
  911. if (!obj->map_and_fenceable) {
  912. ret = i915_gem_object_unbind(obj);
  913. if (ret)
  914. goto unlock;
  915. }
  916. if (!obj->gtt_space) {
  917. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  918. if (ret)
  919. goto unlock;
  920. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  921. if (ret)
  922. goto unlock;
  923. }
  924. if (!obj->has_global_gtt_mapping)
  925. i915_gem_gtt_bind_object(obj, obj->cache_level);
  926. ret = i915_gem_object_get_fence(obj);
  927. if (ret)
  928. goto unlock;
  929. if (i915_gem_object_is_inactive(obj))
  930. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  931. obj->fault_mappable = true;
  932. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  933. page_offset;
  934. /* Finally, remap it using the new GTT offset */
  935. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  936. unlock:
  937. mutex_unlock(&dev->struct_mutex);
  938. out:
  939. switch (ret) {
  940. case -EIO:
  941. case -EAGAIN:
  942. /* Give the error handler a chance to run and move the
  943. * objects off the GPU active list. Next time we service the
  944. * fault, we should be able to transition the page into the
  945. * GTT without touching the GPU (and so avoid further
  946. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  947. * with coherency, just lost writes.
  948. */
  949. set_need_resched();
  950. case 0:
  951. case -ERESTARTSYS:
  952. case -EINTR:
  953. return VM_FAULT_NOPAGE;
  954. case -ENOMEM:
  955. return VM_FAULT_OOM;
  956. default:
  957. return VM_FAULT_SIGBUS;
  958. }
  959. }
  960. /**
  961. * i915_gem_release_mmap - remove physical page mappings
  962. * @obj: obj in question
  963. *
  964. * Preserve the reservation of the mmapping with the DRM core code, but
  965. * relinquish ownership of the pages back to the system.
  966. *
  967. * It is vital that we remove the page mapping if we have mapped a tiled
  968. * object through the GTT and then lose the fence register due to
  969. * resource pressure. Similarly if the object has been moved out of the
  970. * aperture, than pages mapped into userspace must be revoked. Removing the
  971. * mapping will then trigger a page fault on the next user access, allowing
  972. * fixup by i915_gem_fault().
  973. */
  974. void
  975. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  976. {
  977. if (!obj->fault_mappable)
  978. return;
  979. if (obj->base.dev->dev_mapping)
  980. unmap_mapping_range(obj->base.dev->dev_mapping,
  981. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  982. obj->base.size, 1);
  983. obj->fault_mappable = false;
  984. }
  985. static uint32_t
  986. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  987. {
  988. uint32_t gtt_size;
  989. if (INTEL_INFO(dev)->gen >= 4 ||
  990. tiling_mode == I915_TILING_NONE)
  991. return size;
  992. /* Previous chips need a power-of-two fence region when tiling */
  993. if (INTEL_INFO(dev)->gen == 3)
  994. gtt_size = 1024*1024;
  995. else
  996. gtt_size = 512*1024;
  997. while (gtt_size < size)
  998. gtt_size <<= 1;
  999. return gtt_size;
  1000. }
  1001. /**
  1002. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1003. * @obj: object to check
  1004. *
  1005. * Return the required GTT alignment for an object, taking into account
  1006. * potential fence register mapping.
  1007. */
  1008. static uint32_t
  1009. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1010. uint32_t size,
  1011. int tiling_mode)
  1012. {
  1013. /*
  1014. * Minimum alignment is 4k (GTT page size), but might be greater
  1015. * if a fence register is needed for the object.
  1016. */
  1017. if (INTEL_INFO(dev)->gen >= 4 ||
  1018. tiling_mode == I915_TILING_NONE)
  1019. return 4096;
  1020. /*
  1021. * Previous chips need to be aligned to the size of the smallest
  1022. * fence register that can contain the object.
  1023. */
  1024. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1025. }
  1026. /**
  1027. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1028. * unfenced object
  1029. * @dev: the device
  1030. * @size: size of the object
  1031. * @tiling_mode: tiling mode of the object
  1032. *
  1033. * Return the required GTT alignment for an object, only taking into account
  1034. * unfenced tiled surface requirements.
  1035. */
  1036. uint32_t
  1037. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1038. uint32_t size,
  1039. int tiling_mode)
  1040. {
  1041. /*
  1042. * Minimum alignment is 4k (GTT page size) for sane hw.
  1043. */
  1044. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1045. tiling_mode == I915_TILING_NONE)
  1046. return 4096;
  1047. /* Previous hardware however needs to be aligned to a power-of-two
  1048. * tile height. The simplest method for determining this is to reuse
  1049. * the power-of-tile object size.
  1050. */
  1051. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1052. }
  1053. int
  1054. i915_gem_mmap_gtt(struct drm_file *file,
  1055. struct drm_device *dev,
  1056. uint32_t handle,
  1057. uint64_t *offset)
  1058. {
  1059. struct drm_i915_private *dev_priv = dev->dev_private;
  1060. struct drm_i915_gem_object *obj;
  1061. int ret;
  1062. ret = i915_mutex_lock_interruptible(dev);
  1063. if (ret)
  1064. return ret;
  1065. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1066. if (&obj->base == NULL) {
  1067. ret = -ENOENT;
  1068. goto unlock;
  1069. }
  1070. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1071. ret = -E2BIG;
  1072. goto out;
  1073. }
  1074. if (obj->madv != I915_MADV_WILLNEED) {
  1075. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1076. ret = -EINVAL;
  1077. goto out;
  1078. }
  1079. if (!obj->base.map_list.map) {
  1080. ret = drm_gem_create_mmap_offset(&obj->base);
  1081. if (ret)
  1082. goto out;
  1083. }
  1084. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1085. out:
  1086. drm_gem_object_unreference(&obj->base);
  1087. unlock:
  1088. mutex_unlock(&dev->struct_mutex);
  1089. return ret;
  1090. }
  1091. /**
  1092. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1093. * @dev: DRM device
  1094. * @data: GTT mapping ioctl data
  1095. * @file: GEM object info
  1096. *
  1097. * Simply returns the fake offset to userspace so it can mmap it.
  1098. * The mmap call will end up in drm_gem_mmap(), which will set things
  1099. * up so we can get faults in the handler above.
  1100. *
  1101. * The fault handler will take care of binding the object into the GTT
  1102. * (since it may have been evicted to make room for something), allocating
  1103. * a fence register, and mapping the appropriate aperture address into
  1104. * userspace.
  1105. */
  1106. int
  1107. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1108. struct drm_file *file)
  1109. {
  1110. struct drm_i915_gem_mmap_gtt *args = data;
  1111. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1112. }
  1113. static int
  1114. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1115. gfp_t gfpmask)
  1116. {
  1117. int page_count, i;
  1118. struct address_space *mapping;
  1119. struct inode *inode;
  1120. struct page *page;
  1121. /* Get the list of pages out of our struct file. They'll be pinned
  1122. * at this point until we release them.
  1123. */
  1124. page_count = obj->base.size / PAGE_SIZE;
  1125. BUG_ON(obj->pages != NULL);
  1126. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1127. if (obj->pages == NULL)
  1128. return -ENOMEM;
  1129. inode = obj->base.filp->f_path.dentry->d_inode;
  1130. mapping = inode->i_mapping;
  1131. gfpmask |= mapping_gfp_mask(mapping);
  1132. for (i = 0; i < page_count; i++) {
  1133. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1134. if (IS_ERR(page))
  1135. goto err_pages;
  1136. obj->pages[i] = page;
  1137. }
  1138. if (i915_gem_object_needs_bit17_swizzle(obj))
  1139. i915_gem_object_do_bit_17_swizzle(obj);
  1140. return 0;
  1141. err_pages:
  1142. while (i--)
  1143. page_cache_release(obj->pages[i]);
  1144. drm_free_large(obj->pages);
  1145. obj->pages = NULL;
  1146. return PTR_ERR(page);
  1147. }
  1148. static void
  1149. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1150. {
  1151. int page_count = obj->base.size / PAGE_SIZE;
  1152. int i;
  1153. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1154. if (i915_gem_object_needs_bit17_swizzle(obj))
  1155. i915_gem_object_save_bit_17_swizzle(obj);
  1156. if (obj->madv == I915_MADV_DONTNEED)
  1157. obj->dirty = 0;
  1158. for (i = 0; i < page_count; i++) {
  1159. if (obj->dirty)
  1160. set_page_dirty(obj->pages[i]);
  1161. if (obj->madv == I915_MADV_WILLNEED)
  1162. mark_page_accessed(obj->pages[i]);
  1163. page_cache_release(obj->pages[i]);
  1164. }
  1165. obj->dirty = 0;
  1166. drm_free_large(obj->pages);
  1167. obj->pages = NULL;
  1168. }
  1169. void
  1170. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1171. struct intel_ring_buffer *ring,
  1172. u32 seqno)
  1173. {
  1174. struct drm_device *dev = obj->base.dev;
  1175. struct drm_i915_private *dev_priv = dev->dev_private;
  1176. BUG_ON(ring == NULL);
  1177. obj->ring = ring;
  1178. /* Add a reference if we're newly entering the active list. */
  1179. if (!obj->active) {
  1180. drm_gem_object_reference(&obj->base);
  1181. obj->active = 1;
  1182. }
  1183. /* Move from whatever list we were on to the tail of execution. */
  1184. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1185. list_move_tail(&obj->ring_list, &ring->active_list);
  1186. obj->last_rendering_seqno = seqno;
  1187. if (obj->fenced_gpu_access) {
  1188. obj->last_fenced_seqno = seqno;
  1189. /* Bump MRU to take account of the delayed flush */
  1190. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1191. struct drm_i915_fence_reg *reg;
  1192. reg = &dev_priv->fence_regs[obj->fence_reg];
  1193. list_move_tail(&reg->lru_list,
  1194. &dev_priv->mm.fence_list);
  1195. }
  1196. }
  1197. }
  1198. static void
  1199. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1200. {
  1201. list_del_init(&obj->ring_list);
  1202. obj->last_rendering_seqno = 0;
  1203. obj->last_fenced_seqno = 0;
  1204. }
  1205. static void
  1206. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1207. {
  1208. struct drm_device *dev = obj->base.dev;
  1209. drm_i915_private_t *dev_priv = dev->dev_private;
  1210. BUG_ON(!obj->active);
  1211. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1212. i915_gem_object_move_off_active(obj);
  1213. }
  1214. static void
  1215. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1216. {
  1217. struct drm_device *dev = obj->base.dev;
  1218. struct drm_i915_private *dev_priv = dev->dev_private;
  1219. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1220. BUG_ON(!list_empty(&obj->gpu_write_list));
  1221. BUG_ON(!obj->active);
  1222. obj->ring = NULL;
  1223. i915_gem_object_move_off_active(obj);
  1224. obj->fenced_gpu_access = false;
  1225. obj->active = 0;
  1226. obj->pending_gpu_write = false;
  1227. drm_gem_object_unreference(&obj->base);
  1228. WARN_ON(i915_verify_lists(dev));
  1229. }
  1230. /* Immediately discard the backing storage */
  1231. static void
  1232. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1233. {
  1234. struct inode *inode;
  1235. /* Our goal here is to return as much of the memory as
  1236. * is possible back to the system as we are called from OOM.
  1237. * To do this we must instruct the shmfs to drop all of its
  1238. * backing pages, *now*.
  1239. */
  1240. inode = obj->base.filp->f_path.dentry->d_inode;
  1241. shmem_truncate_range(inode, 0, (loff_t)-1);
  1242. if (obj->base.map_list.map)
  1243. drm_gem_free_mmap_offset(&obj->base);
  1244. obj->madv = __I915_MADV_PURGED;
  1245. }
  1246. static inline int
  1247. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1248. {
  1249. return obj->madv == I915_MADV_DONTNEED;
  1250. }
  1251. static void
  1252. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1253. uint32_t flush_domains)
  1254. {
  1255. struct drm_i915_gem_object *obj, *next;
  1256. list_for_each_entry_safe(obj, next,
  1257. &ring->gpu_write_list,
  1258. gpu_write_list) {
  1259. if (obj->base.write_domain & flush_domains) {
  1260. uint32_t old_write_domain = obj->base.write_domain;
  1261. obj->base.write_domain = 0;
  1262. list_del_init(&obj->gpu_write_list);
  1263. i915_gem_object_move_to_active(obj, ring,
  1264. i915_gem_next_request_seqno(ring));
  1265. trace_i915_gem_object_change_domain(obj,
  1266. obj->base.read_domains,
  1267. old_write_domain);
  1268. }
  1269. }
  1270. }
  1271. static u32
  1272. i915_gem_get_seqno(struct drm_device *dev)
  1273. {
  1274. drm_i915_private_t *dev_priv = dev->dev_private;
  1275. u32 seqno = dev_priv->next_seqno;
  1276. /* reserve 0 for non-seqno */
  1277. if (++dev_priv->next_seqno == 0)
  1278. dev_priv->next_seqno = 1;
  1279. return seqno;
  1280. }
  1281. u32
  1282. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1283. {
  1284. if (ring->outstanding_lazy_request == 0)
  1285. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1286. return ring->outstanding_lazy_request;
  1287. }
  1288. int
  1289. i915_add_request(struct intel_ring_buffer *ring,
  1290. struct drm_file *file,
  1291. struct drm_i915_gem_request *request)
  1292. {
  1293. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1294. uint32_t seqno;
  1295. u32 request_ring_position;
  1296. int was_empty;
  1297. int ret;
  1298. BUG_ON(request == NULL);
  1299. seqno = i915_gem_next_request_seqno(ring);
  1300. /* Record the position of the start of the request so that
  1301. * should we detect the updated seqno part-way through the
  1302. * GPU processing the request, we never over-estimate the
  1303. * position of the head.
  1304. */
  1305. request_ring_position = intel_ring_get_tail(ring);
  1306. ret = ring->add_request(ring, &seqno);
  1307. if (ret)
  1308. return ret;
  1309. trace_i915_gem_request_add(ring, seqno);
  1310. request->seqno = seqno;
  1311. request->ring = ring;
  1312. request->tail = request_ring_position;
  1313. request->emitted_jiffies = jiffies;
  1314. was_empty = list_empty(&ring->request_list);
  1315. list_add_tail(&request->list, &ring->request_list);
  1316. if (file) {
  1317. struct drm_i915_file_private *file_priv = file->driver_priv;
  1318. spin_lock(&file_priv->mm.lock);
  1319. request->file_priv = file_priv;
  1320. list_add_tail(&request->client_list,
  1321. &file_priv->mm.request_list);
  1322. spin_unlock(&file_priv->mm.lock);
  1323. }
  1324. ring->outstanding_lazy_request = 0;
  1325. if (!dev_priv->mm.suspended) {
  1326. if (i915_enable_hangcheck) {
  1327. mod_timer(&dev_priv->hangcheck_timer,
  1328. jiffies +
  1329. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1330. }
  1331. if (was_empty)
  1332. queue_delayed_work(dev_priv->wq,
  1333. &dev_priv->mm.retire_work, HZ);
  1334. }
  1335. return 0;
  1336. }
  1337. static inline void
  1338. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1339. {
  1340. struct drm_i915_file_private *file_priv = request->file_priv;
  1341. if (!file_priv)
  1342. return;
  1343. spin_lock(&file_priv->mm.lock);
  1344. if (request->file_priv) {
  1345. list_del(&request->client_list);
  1346. request->file_priv = NULL;
  1347. }
  1348. spin_unlock(&file_priv->mm.lock);
  1349. }
  1350. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1351. struct intel_ring_buffer *ring)
  1352. {
  1353. while (!list_empty(&ring->request_list)) {
  1354. struct drm_i915_gem_request *request;
  1355. request = list_first_entry(&ring->request_list,
  1356. struct drm_i915_gem_request,
  1357. list);
  1358. list_del(&request->list);
  1359. i915_gem_request_remove_from_client(request);
  1360. kfree(request);
  1361. }
  1362. while (!list_empty(&ring->active_list)) {
  1363. struct drm_i915_gem_object *obj;
  1364. obj = list_first_entry(&ring->active_list,
  1365. struct drm_i915_gem_object,
  1366. ring_list);
  1367. obj->base.write_domain = 0;
  1368. list_del_init(&obj->gpu_write_list);
  1369. i915_gem_object_move_to_inactive(obj);
  1370. }
  1371. }
  1372. static void i915_gem_reset_fences(struct drm_device *dev)
  1373. {
  1374. struct drm_i915_private *dev_priv = dev->dev_private;
  1375. int i;
  1376. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1377. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1378. i915_gem_write_fence(dev, i, NULL);
  1379. if (reg->obj)
  1380. i915_gem_object_fence_lost(reg->obj);
  1381. reg->pin_count = 0;
  1382. reg->obj = NULL;
  1383. INIT_LIST_HEAD(&reg->lru_list);
  1384. }
  1385. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1386. }
  1387. void i915_gem_reset(struct drm_device *dev)
  1388. {
  1389. struct drm_i915_private *dev_priv = dev->dev_private;
  1390. struct drm_i915_gem_object *obj;
  1391. int i;
  1392. for (i = 0; i < I915_NUM_RINGS; i++)
  1393. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1394. /* Remove anything from the flushing lists. The GPU cache is likely
  1395. * to be lost on reset along with the data, so simply move the
  1396. * lost bo to the inactive list.
  1397. */
  1398. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1399. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1400. struct drm_i915_gem_object,
  1401. mm_list);
  1402. obj->base.write_domain = 0;
  1403. list_del_init(&obj->gpu_write_list);
  1404. i915_gem_object_move_to_inactive(obj);
  1405. }
  1406. /* Move everything out of the GPU domains to ensure we do any
  1407. * necessary invalidation upon reuse.
  1408. */
  1409. list_for_each_entry(obj,
  1410. &dev_priv->mm.inactive_list,
  1411. mm_list)
  1412. {
  1413. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1414. }
  1415. /* The fence registers are invalidated so clear them out */
  1416. i915_gem_reset_fences(dev);
  1417. }
  1418. /**
  1419. * This function clears the request list as sequence numbers are passed.
  1420. */
  1421. void
  1422. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1423. {
  1424. uint32_t seqno;
  1425. int i;
  1426. if (list_empty(&ring->request_list))
  1427. return;
  1428. WARN_ON(i915_verify_lists(ring->dev));
  1429. seqno = ring->get_seqno(ring);
  1430. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1431. if (seqno >= ring->sync_seqno[i])
  1432. ring->sync_seqno[i] = 0;
  1433. while (!list_empty(&ring->request_list)) {
  1434. struct drm_i915_gem_request *request;
  1435. request = list_first_entry(&ring->request_list,
  1436. struct drm_i915_gem_request,
  1437. list);
  1438. if (!i915_seqno_passed(seqno, request->seqno))
  1439. break;
  1440. trace_i915_gem_request_retire(ring, request->seqno);
  1441. /* We know the GPU must have read the request to have
  1442. * sent us the seqno + interrupt, so use the position
  1443. * of tail of the request to update the last known position
  1444. * of the GPU head.
  1445. */
  1446. ring->last_retired_head = request->tail;
  1447. list_del(&request->list);
  1448. i915_gem_request_remove_from_client(request);
  1449. kfree(request);
  1450. }
  1451. /* Move any buffers on the active list that are no longer referenced
  1452. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1453. */
  1454. while (!list_empty(&ring->active_list)) {
  1455. struct drm_i915_gem_object *obj;
  1456. obj = list_first_entry(&ring->active_list,
  1457. struct drm_i915_gem_object,
  1458. ring_list);
  1459. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1460. break;
  1461. if (obj->base.write_domain != 0)
  1462. i915_gem_object_move_to_flushing(obj);
  1463. else
  1464. i915_gem_object_move_to_inactive(obj);
  1465. }
  1466. if (unlikely(ring->trace_irq_seqno &&
  1467. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1468. ring->irq_put(ring);
  1469. ring->trace_irq_seqno = 0;
  1470. }
  1471. WARN_ON(i915_verify_lists(ring->dev));
  1472. }
  1473. void
  1474. i915_gem_retire_requests(struct drm_device *dev)
  1475. {
  1476. drm_i915_private_t *dev_priv = dev->dev_private;
  1477. int i;
  1478. for (i = 0; i < I915_NUM_RINGS; i++)
  1479. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1480. }
  1481. static void
  1482. i915_gem_retire_work_handler(struct work_struct *work)
  1483. {
  1484. drm_i915_private_t *dev_priv;
  1485. struct drm_device *dev;
  1486. bool idle;
  1487. int i;
  1488. dev_priv = container_of(work, drm_i915_private_t,
  1489. mm.retire_work.work);
  1490. dev = dev_priv->dev;
  1491. /* Come back later if the device is busy... */
  1492. if (!mutex_trylock(&dev->struct_mutex)) {
  1493. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1494. return;
  1495. }
  1496. i915_gem_retire_requests(dev);
  1497. /* Send a periodic flush down the ring so we don't hold onto GEM
  1498. * objects indefinitely.
  1499. */
  1500. idle = true;
  1501. for (i = 0; i < I915_NUM_RINGS; i++) {
  1502. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1503. if (!list_empty(&ring->gpu_write_list)) {
  1504. struct drm_i915_gem_request *request;
  1505. int ret;
  1506. ret = i915_gem_flush_ring(ring,
  1507. 0, I915_GEM_GPU_DOMAINS);
  1508. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1509. if (ret || request == NULL ||
  1510. i915_add_request(ring, NULL, request))
  1511. kfree(request);
  1512. }
  1513. idle &= list_empty(&ring->request_list);
  1514. }
  1515. if (!dev_priv->mm.suspended && !idle)
  1516. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1517. mutex_unlock(&dev->struct_mutex);
  1518. }
  1519. /**
  1520. * Waits for a sequence number to be signaled, and cleans up the
  1521. * request and object lists appropriately for that event.
  1522. */
  1523. int
  1524. i915_wait_request(struct intel_ring_buffer *ring,
  1525. uint32_t seqno)
  1526. {
  1527. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1528. int ret = 0;
  1529. BUG_ON(seqno == 0);
  1530. if (atomic_read(&dev_priv->mm.wedged)) {
  1531. struct completion *x = &dev_priv->error_completion;
  1532. bool recovery_complete;
  1533. unsigned long flags;
  1534. /* Give the error handler a chance to run. */
  1535. spin_lock_irqsave(&x->wait.lock, flags);
  1536. recovery_complete = x->done > 0;
  1537. spin_unlock_irqrestore(&x->wait.lock, flags);
  1538. return recovery_complete ? -EIO : -EAGAIN;
  1539. }
  1540. if (seqno == ring->outstanding_lazy_request) {
  1541. struct drm_i915_gem_request *request;
  1542. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1543. if (request == NULL)
  1544. return -ENOMEM;
  1545. ret = i915_add_request(ring, NULL, request);
  1546. if (ret) {
  1547. kfree(request);
  1548. return ret;
  1549. }
  1550. seqno = request->seqno;
  1551. }
  1552. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1553. trace_i915_gem_request_wait_begin(ring, seqno);
  1554. if (ring->irq_get(ring)) {
  1555. if (dev_priv->mm.interruptible)
  1556. ret = wait_event_interruptible(ring->irq_queue,
  1557. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1558. || atomic_read(&dev_priv->mm.wedged));
  1559. else
  1560. wait_event(ring->irq_queue,
  1561. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1562. || atomic_read(&dev_priv->mm.wedged));
  1563. ring->irq_put(ring);
  1564. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  1565. seqno) ||
  1566. atomic_read(&dev_priv->mm.wedged), 3000))
  1567. ret = -EBUSY;
  1568. trace_i915_gem_request_wait_end(ring, seqno);
  1569. }
  1570. if (atomic_read(&dev_priv->mm.wedged))
  1571. ret = -EAGAIN;
  1572. return ret;
  1573. }
  1574. /**
  1575. * Ensures that all rendering to the object has completed and the object is
  1576. * safe to unbind from the GTT or access from the CPU.
  1577. */
  1578. int
  1579. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1580. {
  1581. int ret;
  1582. /* This function only exists to support waiting for existing rendering,
  1583. * not for emitting required flushes.
  1584. */
  1585. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1586. /* If there is rendering queued on the buffer being evicted, wait for
  1587. * it.
  1588. */
  1589. if (obj->active) {
  1590. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1591. if (ret)
  1592. return ret;
  1593. i915_gem_retire_requests_ring(obj->ring);
  1594. }
  1595. return 0;
  1596. }
  1597. /**
  1598. * i915_gem_object_sync - sync an object to a ring.
  1599. *
  1600. * @obj: object which may be in use on another ring.
  1601. * @to: ring we wish to use the object on. May be NULL.
  1602. *
  1603. * This code is meant to abstract object synchronization with the GPU.
  1604. * Calling with NULL implies synchronizing the object with the CPU
  1605. * rather than a particular GPU ring.
  1606. *
  1607. * Returns 0 if successful, else propagates up the lower layer error.
  1608. */
  1609. int
  1610. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1611. struct intel_ring_buffer *to)
  1612. {
  1613. struct intel_ring_buffer *from = obj->ring;
  1614. u32 seqno;
  1615. int ret, idx;
  1616. if (from == NULL || to == from)
  1617. return 0;
  1618. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1619. return i915_gem_object_wait_rendering(obj);
  1620. idx = intel_ring_sync_index(from, to);
  1621. seqno = obj->last_rendering_seqno;
  1622. if (seqno <= from->sync_seqno[idx])
  1623. return 0;
  1624. if (seqno == from->outstanding_lazy_request) {
  1625. struct drm_i915_gem_request *request;
  1626. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1627. if (request == NULL)
  1628. return -ENOMEM;
  1629. ret = i915_add_request(from, NULL, request);
  1630. if (ret) {
  1631. kfree(request);
  1632. return ret;
  1633. }
  1634. seqno = request->seqno;
  1635. }
  1636. ret = to->sync_to(to, from, seqno);
  1637. if (!ret)
  1638. from->sync_seqno[idx] = seqno;
  1639. return ret;
  1640. }
  1641. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1642. {
  1643. u32 old_write_domain, old_read_domains;
  1644. /* Act a barrier for all accesses through the GTT */
  1645. mb();
  1646. /* Force a pagefault for domain tracking on next user access */
  1647. i915_gem_release_mmap(obj);
  1648. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1649. return;
  1650. old_read_domains = obj->base.read_domains;
  1651. old_write_domain = obj->base.write_domain;
  1652. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1653. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1654. trace_i915_gem_object_change_domain(obj,
  1655. old_read_domains,
  1656. old_write_domain);
  1657. }
  1658. /**
  1659. * Unbinds an object from the GTT aperture.
  1660. */
  1661. int
  1662. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1663. {
  1664. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1665. int ret = 0;
  1666. if (obj->gtt_space == NULL)
  1667. return 0;
  1668. if (obj->pin_count != 0) {
  1669. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1670. return -EINVAL;
  1671. }
  1672. ret = i915_gem_object_finish_gpu(obj);
  1673. if (ret)
  1674. return ret;
  1675. /* Continue on if we fail due to EIO, the GPU is hung so we
  1676. * should be safe and we need to cleanup or else we might
  1677. * cause memory corruption through use-after-free.
  1678. */
  1679. i915_gem_object_finish_gtt(obj);
  1680. /* Move the object to the CPU domain to ensure that
  1681. * any possible CPU writes while it's not in the GTT
  1682. * are flushed when we go to remap it.
  1683. */
  1684. if (ret == 0)
  1685. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1686. if (ret == -ERESTARTSYS)
  1687. return ret;
  1688. if (ret) {
  1689. /* In the event of a disaster, abandon all caches and
  1690. * hope for the best.
  1691. */
  1692. i915_gem_clflush_object(obj);
  1693. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1694. }
  1695. /* release the fence reg _after_ flushing */
  1696. ret = i915_gem_object_put_fence(obj);
  1697. if (ret)
  1698. return ret;
  1699. trace_i915_gem_object_unbind(obj);
  1700. if (obj->has_global_gtt_mapping)
  1701. i915_gem_gtt_unbind_object(obj);
  1702. if (obj->has_aliasing_ppgtt_mapping) {
  1703. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1704. obj->has_aliasing_ppgtt_mapping = 0;
  1705. }
  1706. i915_gem_gtt_finish_object(obj);
  1707. i915_gem_object_put_pages_gtt(obj);
  1708. list_del_init(&obj->gtt_list);
  1709. list_del_init(&obj->mm_list);
  1710. /* Avoid an unnecessary call to unbind on rebind. */
  1711. obj->map_and_fenceable = true;
  1712. drm_mm_put_block(obj->gtt_space);
  1713. obj->gtt_space = NULL;
  1714. obj->gtt_offset = 0;
  1715. if (i915_gem_object_is_purgeable(obj))
  1716. i915_gem_object_truncate(obj);
  1717. return ret;
  1718. }
  1719. int
  1720. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1721. uint32_t invalidate_domains,
  1722. uint32_t flush_domains)
  1723. {
  1724. int ret;
  1725. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1726. return 0;
  1727. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1728. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1729. if (ret)
  1730. return ret;
  1731. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1732. i915_gem_process_flushing_list(ring, flush_domains);
  1733. return 0;
  1734. }
  1735. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1736. {
  1737. int ret;
  1738. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1739. return 0;
  1740. if (!list_empty(&ring->gpu_write_list)) {
  1741. ret = i915_gem_flush_ring(ring,
  1742. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1743. if (ret)
  1744. return ret;
  1745. }
  1746. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1747. }
  1748. int i915_gpu_idle(struct drm_device *dev)
  1749. {
  1750. drm_i915_private_t *dev_priv = dev->dev_private;
  1751. int ret, i;
  1752. /* Flush everything onto the inactive list. */
  1753. for (i = 0; i < I915_NUM_RINGS; i++) {
  1754. ret = i915_ring_idle(&dev_priv->ring[i]);
  1755. if (ret)
  1756. return ret;
  1757. }
  1758. return 0;
  1759. }
  1760. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  1761. struct drm_i915_gem_object *obj)
  1762. {
  1763. drm_i915_private_t *dev_priv = dev->dev_private;
  1764. uint64_t val;
  1765. if (obj) {
  1766. u32 size = obj->gtt_space->size;
  1767. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1768. 0xfffff000) << 32;
  1769. val |= obj->gtt_offset & 0xfffff000;
  1770. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1771. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1772. if (obj->tiling_mode == I915_TILING_Y)
  1773. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1774. val |= I965_FENCE_REG_VALID;
  1775. } else
  1776. val = 0;
  1777. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  1778. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  1779. }
  1780. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  1781. struct drm_i915_gem_object *obj)
  1782. {
  1783. drm_i915_private_t *dev_priv = dev->dev_private;
  1784. uint64_t val;
  1785. if (obj) {
  1786. u32 size = obj->gtt_space->size;
  1787. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1788. 0xfffff000) << 32;
  1789. val |= obj->gtt_offset & 0xfffff000;
  1790. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1791. if (obj->tiling_mode == I915_TILING_Y)
  1792. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1793. val |= I965_FENCE_REG_VALID;
  1794. } else
  1795. val = 0;
  1796. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  1797. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  1798. }
  1799. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  1800. struct drm_i915_gem_object *obj)
  1801. {
  1802. drm_i915_private_t *dev_priv = dev->dev_private;
  1803. u32 val;
  1804. if (obj) {
  1805. u32 size = obj->gtt_space->size;
  1806. int pitch_val;
  1807. int tile_width;
  1808. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1809. (size & -size) != size ||
  1810. (obj->gtt_offset & (size - 1)),
  1811. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1812. obj->gtt_offset, obj->map_and_fenceable, size);
  1813. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1814. tile_width = 128;
  1815. else
  1816. tile_width = 512;
  1817. /* Note: pitch better be a power of two tile widths */
  1818. pitch_val = obj->stride / tile_width;
  1819. pitch_val = ffs(pitch_val) - 1;
  1820. val = obj->gtt_offset;
  1821. if (obj->tiling_mode == I915_TILING_Y)
  1822. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1823. val |= I915_FENCE_SIZE_BITS(size);
  1824. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1825. val |= I830_FENCE_REG_VALID;
  1826. } else
  1827. val = 0;
  1828. if (reg < 8)
  1829. reg = FENCE_REG_830_0 + reg * 4;
  1830. else
  1831. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  1832. I915_WRITE(reg, val);
  1833. POSTING_READ(reg);
  1834. }
  1835. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  1836. struct drm_i915_gem_object *obj)
  1837. {
  1838. drm_i915_private_t *dev_priv = dev->dev_private;
  1839. uint32_t val;
  1840. if (obj) {
  1841. u32 size = obj->gtt_space->size;
  1842. uint32_t pitch_val;
  1843. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1844. (size & -size) != size ||
  1845. (obj->gtt_offset & (size - 1)),
  1846. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1847. obj->gtt_offset, size);
  1848. pitch_val = obj->stride / 128;
  1849. pitch_val = ffs(pitch_val) - 1;
  1850. val = obj->gtt_offset;
  1851. if (obj->tiling_mode == I915_TILING_Y)
  1852. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1853. val |= I830_FENCE_SIZE_BITS(size);
  1854. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1855. val |= I830_FENCE_REG_VALID;
  1856. } else
  1857. val = 0;
  1858. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  1859. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  1860. }
  1861. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  1862. struct drm_i915_gem_object *obj)
  1863. {
  1864. switch (INTEL_INFO(dev)->gen) {
  1865. case 7:
  1866. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  1867. case 5:
  1868. case 4: i965_write_fence_reg(dev, reg, obj); break;
  1869. case 3: i915_write_fence_reg(dev, reg, obj); break;
  1870. case 2: i830_write_fence_reg(dev, reg, obj); break;
  1871. default: break;
  1872. }
  1873. }
  1874. static inline int fence_number(struct drm_i915_private *dev_priv,
  1875. struct drm_i915_fence_reg *fence)
  1876. {
  1877. return fence - dev_priv->fence_regs;
  1878. }
  1879. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  1880. struct drm_i915_fence_reg *fence,
  1881. bool enable)
  1882. {
  1883. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1884. int reg = fence_number(dev_priv, fence);
  1885. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  1886. if (enable) {
  1887. obj->fence_reg = reg;
  1888. fence->obj = obj;
  1889. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  1890. } else {
  1891. obj->fence_reg = I915_FENCE_REG_NONE;
  1892. fence->obj = NULL;
  1893. list_del_init(&fence->lru_list);
  1894. }
  1895. }
  1896. static int
  1897. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  1898. {
  1899. int ret;
  1900. if (obj->fenced_gpu_access) {
  1901. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1902. ret = i915_gem_flush_ring(obj->ring,
  1903. 0, obj->base.write_domain);
  1904. if (ret)
  1905. return ret;
  1906. }
  1907. obj->fenced_gpu_access = false;
  1908. }
  1909. if (obj->last_fenced_seqno) {
  1910. ret = i915_wait_request(obj->ring, obj->last_fenced_seqno);
  1911. if (ret)
  1912. return ret;
  1913. obj->last_fenced_seqno = 0;
  1914. }
  1915. /* Ensure that all CPU reads are completed before installing a fence
  1916. * and all writes before removing the fence.
  1917. */
  1918. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1919. mb();
  1920. return 0;
  1921. }
  1922. int
  1923. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1924. {
  1925. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1926. int ret;
  1927. ret = i915_gem_object_flush_fence(obj);
  1928. if (ret)
  1929. return ret;
  1930. if (obj->fence_reg == I915_FENCE_REG_NONE)
  1931. return 0;
  1932. i915_gem_object_update_fence(obj,
  1933. &dev_priv->fence_regs[obj->fence_reg],
  1934. false);
  1935. i915_gem_object_fence_lost(obj);
  1936. return 0;
  1937. }
  1938. static struct drm_i915_fence_reg *
  1939. i915_find_fence_reg(struct drm_device *dev)
  1940. {
  1941. struct drm_i915_private *dev_priv = dev->dev_private;
  1942. struct drm_i915_fence_reg *reg, *avail;
  1943. int i;
  1944. /* First try to find a free reg */
  1945. avail = NULL;
  1946. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1947. reg = &dev_priv->fence_regs[i];
  1948. if (!reg->obj)
  1949. return reg;
  1950. if (!reg->pin_count)
  1951. avail = reg;
  1952. }
  1953. if (avail == NULL)
  1954. return NULL;
  1955. /* None available, try to steal one or wait for a user to finish */
  1956. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  1957. if (reg->pin_count)
  1958. continue;
  1959. return reg;
  1960. }
  1961. return NULL;
  1962. }
  1963. /**
  1964. * i915_gem_object_get_fence - set up fencing for an object
  1965. * @obj: object to map through a fence reg
  1966. *
  1967. * When mapping objects through the GTT, userspace wants to be able to write
  1968. * to them without having to worry about swizzling if the object is tiled.
  1969. * This function walks the fence regs looking for a free one for @obj,
  1970. * stealing one if it can't find any.
  1971. *
  1972. * It then sets up the reg based on the object's properties: address, pitch
  1973. * and tiling format.
  1974. *
  1975. * For an untiled surface, this removes any existing fence.
  1976. */
  1977. int
  1978. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  1979. {
  1980. struct drm_device *dev = obj->base.dev;
  1981. struct drm_i915_private *dev_priv = dev->dev_private;
  1982. bool enable = obj->tiling_mode != I915_TILING_NONE;
  1983. struct drm_i915_fence_reg *reg;
  1984. int ret;
  1985. /* Have we updated the tiling parameters upon the object and so
  1986. * will need to serialise the write to the associated fence register?
  1987. */
  1988. if (obj->fence_dirty) {
  1989. ret = i915_gem_object_flush_fence(obj);
  1990. if (ret)
  1991. return ret;
  1992. }
  1993. /* Just update our place in the LRU if our fence is getting reused. */
  1994. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1995. reg = &dev_priv->fence_regs[obj->fence_reg];
  1996. if (!obj->fence_dirty) {
  1997. list_move_tail(&reg->lru_list,
  1998. &dev_priv->mm.fence_list);
  1999. return 0;
  2000. }
  2001. } else if (enable) {
  2002. reg = i915_find_fence_reg(dev);
  2003. if (reg == NULL)
  2004. return -EDEADLK;
  2005. if (reg->obj) {
  2006. struct drm_i915_gem_object *old = reg->obj;
  2007. ret = i915_gem_object_flush_fence(old);
  2008. if (ret)
  2009. return ret;
  2010. i915_gem_object_fence_lost(old);
  2011. }
  2012. } else
  2013. return 0;
  2014. i915_gem_object_update_fence(obj, reg, enable);
  2015. obj->fence_dirty = false;
  2016. return 0;
  2017. }
  2018. /**
  2019. * Finds free space in the GTT aperture and binds the object there.
  2020. */
  2021. static int
  2022. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2023. unsigned alignment,
  2024. bool map_and_fenceable)
  2025. {
  2026. struct drm_device *dev = obj->base.dev;
  2027. drm_i915_private_t *dev_priv = dev->dev_private;
  2028. struct drm_mm_node *free_space;
  2029. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2030. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2031. bool mappable, fenceable;
  2032. int ret;
  2033. if (obj->madv != I915_MADV_WILLNEED) {
  2034. DRM_ERROR("Attempting to bind a purgeable object\n");
  2035. return -EINVAL;
  2036. }
  2037. fence_size = i915_gem_get_gtt_size(dev,
  2038. obj->base.size,
  2039. obj->tiling_mode);
  2040. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2041. obj->base.size,
  2042. obj->tiling_mode);
  2043. unfenced_alignment =
  2044. i915_gem_get_unfenced_gtt_alignment(dev,
  2045. obj->base.size,
  2046. obj->tiling_mode);
  2047. if (alignment == 0)
  2048. alignment = map_and_fenceable ? fence_alignment :
  2049. unfenced_alignment;
  2050. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2051. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2052. return -EINVAL;
  2053. }
  2054. size = map_and_fenceable ? fence_size : obj->base.size;
  2055. /* If the object is bigger than the entire aperture, reject it early
  2056. * before evicting everything in a vain attempt to find space.
  2057. */
  2058. if (obj->base.size >
  2059. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2060. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2061. return -E2BIG;
  2062. }
  2063. search_free:
  2064. if (map_and_fenceable)
  2065. free_space =
  2066. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2067. size, alignment, 0,
  2068. dev_priv->mm.gtt_mappable_end,
  2069. 0);
  2070. else
  2071. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2072. size, alignment, 0);
  2073. if (free_space != NULL) {
  2074. if (map_and_fenceable)
  2075. obj->gtt_space =
  2076. drm_mm_get_block_range_generic(free_space,
  2077. size, alignment, 0,
  2078. dev_priv->mm.gtt_mappable_end,
  2079. 0);
  2080. else
  2081. obj->gtt_space =
  2082. drm_mm_get_block(free_space, size, alignment);
  2083. }
  2084. if (obj->gtt_space == NULL) {
  2085. /* If the gtt is empty and we're still having trouble
  2086. * fitting our object in, we're out of memory.
  2087. */
  2088. ret = i915_gem_evict_something(dev, size, alignment,
  2089. map_and_fenceable);
  2090. if (ret)
  2091. return ret;
  2092. goto search_free;
  2093. }
  2094. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2095. if (ret) {
  2096. drm_mm_put_block(obj->gtt_space);
  2097. obj->gtt_space = NULL;
  2098. if (ret == -ENOMEM) {
  2099. /* first try to reclaim some memory by clearing the GTT */
  2100. ret = i915_gem_evict_everything(dev, false);
  2101. if (ret) {
  2102. /* now try to shrink everyone else */
  2103. if (gfpmask) {
  2104. gfpmask = 0;
  2105. goto search_free;
  2106. }
  2107. return -ENOMEM;
  2108. }
  2109. goto search_free;
  2110. }
  2111. return ret;
  2112. }
  2113. ret = i915_gem_gtt_prepare_object(obj);
  2114. if (ret) {
  2115. i915_gem_object_put_pages_gtt(obj);
  2116. drm_mm_put_block(obj->gtt_space);
  2117. obj->gtt_space = NULL;
  2118. if (i915_gem_evict_everything(dev, false))
  2119. return ret;
  2120. goto search_free;
  2121. }
  2122. if (!dev_priv->mm.aliasing_ppgtt)
  2123. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2124. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2125. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2126. /* Assert that the object is not currently in any GPU domain. As it
  2127. * wasn't in the GTT, there shouldn't be any way it could have been in
  2128. * a GPU cache
  2129. */
  2130. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2131. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2132. obj->gtt_offset = obj->gtt_space->start;
  2133. fenceable =
  2134. obj->gtt_space->size == fence_size &&
  2135. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2136. mappable =
  2137. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2138. obj->map_and_fenceable = mappable && fenceable;
  2139. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2140. return 0;
  2141. }
  2142. void
  2143. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2144. {
  2145. /* If we don't have a page list set up, then we're not pinned
  2146. * to GPU, and we can ignore the cache flush because it'll happen
  2147. * again at bind time.
  2148. */
  2149. if (obj->pages == NULL)
  2150. return;
  2151. /* If the GPU is snooping the contents of the CPU cache,
  2152. * we do not need to manually clear the CPU cache lines. However,
  2153. * the caches are only snooped when the render cache is
  2154. * flushed/invalidated. As we always have to emit invalidations
  2155. * and flushes when moving into and out of the RENDER domain, correct
  2156. * snooping behaviour occurs naturally as the result of our domain
  2157. * tracking.
  2158. */
  2159. if (obj->cache_level != I915_CACHE_NONE)
  2160. return;
  2161. trace_i915_gem_object_clflush(obj);
  2162. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2163. }
  2164. /** Flushes any GPU write domain for the object if it's dirty. */
  2165. static int
  2166. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2167. {
  2168. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2169. return 0;
  2170. /* Queue the GPU write cache flushing we need. */
  2171. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2172. }
  2173. /** Flushes the GTT write domain for the object if it's dirty. */
  2174. static void
  2175. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2176. {
  2177. uint32_t old_write_domain;
  2178. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2179. return;
  2180. /* No actual flushing is required for the GTT write domain. Writes
  2181. * to it immediately go to main memory as far as we know, so there's
  2182. * no chipset flush. It also doesn't land in render cache.
  2183. *
  2184. * However, we do have to enforce the order so that all writes through
  2185. * the GTT land before any writes to the device, such as updates to
  2186. * the GATT itself.
  2187. */
  2188. wmb();
  2189. old_write_domain = obj->base.write_domain;
  2190. obj->base.write_domain = 0;
  2191. trace_i915_gem_object_change_domain(obj,
  2192. obj->base.read_domains,
  2193. old_write_domain);
  2194. }
  2195. /** Flushes the CPU write domain for the object if it's dirty. */
  2196. static void
  2197. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2198. {
  2199. uint32_t old_write_domain;
  2200. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2201. return;
  2202. i915_gem_clflush_object(obj);
  2203. intel_gtt_chipset_flush();
  2204. old_write_domain = obj->base.write_domain;
  2205. obj->base.write_domain = 0;
  2206. trace_i915_gem_object_change_domain(obj,
  2207. obj->base.read_domains,
  2208. old_write_domain);
  2209. }
  2210. /**
  2211. * Moves a single object to the GTT read, and possibly write domain.
  2212. *
  2213. * This function returns when the move is complete, including waiting on
  2214. * flushes to occur.
  2215. */
  2216. int
  2217. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2218. {
  2219. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2220. uint32_t old_write_domain, old_read_domains;
  2221. int ret;
  2222. /* Not valid to be called on unbound objects. */
  2223. if (obj->gtt_space == NULL)
  2224. return -EINVAL;
  2225. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2226. return 0;
  2227. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2228. if (ret)
  2229. return ret;
  2230. if (obj->pending_gpu_write || write) {
  2231. ret = i915_gem_object_wait_rendering(obj);
  2232. if (ret)
  2233. return ret;
  2234. }
  2235. i915_gem_object_flush_cpu_write_domain(obj);
  2236. old_write_domain = obj->base.write_domain;
  2237. old_read_domains = obj->base.read_domains;
  2238. /* It should now be out of any other write domains, and we can update
  2239. * the domain values for our changes.
  2240. */
  2241. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2242. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2243. if (write) {
  2244. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2245. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2246. obj->dirty = 1;
  2247. }
  2248. trace_i915_gem_object_change_domain(obj,
  2249. old_read_domains,
  2250. old_write_domain);
  2251. /* And bump the LRU for this access */
  2252. if (i915_gem_object_is_inactive(obj))
  2253. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2254. return 0;
  2255. }
  2256. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2257. enum i915_cache_level cache_level)
  2258. {
  2259. struct drm_device *dev = obj->base.dev;
  2260. drm_i915_private_t *dev_priv = dev->dev_private;
  2261. int ret;
  2262. if (obj->cache_level == cache_level)
  2263. return 0;
  2264. if (obj->pin_count) {
  2265. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2266. return -EBUSY;
  2267. }
  2268. if (obj->gtt_space) {
  2269. ret = i915_gem_object_finish_gpu(obj);
  2270. if (ret)
  2271. return ret;
  2272. i915_gem_object_finish_gtt(obj);
  2273. /* Before SandyBridge, you could not use tiling or fence
  2274. * registers with snooped memory, so relinquish any fences
  2275. * currently pointing to our region in the aperture.
  2276. */
  2277. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2278. ret = i915_gem_object_put_fence(obj);
  2279. if (ret)
  2280. return ret;
  2281. }
  2282. if (obj->has_global_gtt_mapping)
  2283. i915_gem_gtt_bind_object(obj, cache_level);
  2284. if (obj->has_aliasing_ppgtt_mapping)
  2285. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2286. obj, cache_level);
  2287. }
  2288. if (cache_level == I915_CACHE_NONE) {
  2289. u32 old_read_domains, old_write_domain;
  2290. /* If we're coming from LLC cached, then we haven't
  2291. * actually been tracking whether the data is in the
  2292. * CPU cache or not, since we only allow one bit set
  2293. * in obj->write_domain and have been skipping the clflushes.
  2294. * Just set it to the CPU cache for now.
  2295. */
  2296. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2297. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2298. old_read_domains = obj->base.read_domains;
  2299. old_write_domain = obj->base.write_domain;
  2300. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2301. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2302. trace_i915_gem_object_change_domain(obj,
  2303. old_read_domains,
  2304. old_write_domain);
  2305. }
  2306. obj->cache_level = cache_level;
  2307. return 0;
  2308. }
  2309. /*
  2310. * Prepare buffer for display plane (scanout, cursors, etc).
  2311. * Can be called from an uninterruptible phase (modesetting) and allows
  2312. * any flushes to be pipelined (for pageflips).
  2313. */
  2314. int
  2315. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2316. u32 alignment,
  2317. struct intel_ring_buffer *pipelined)
  2318. {
  2319. u32 old_read_domains, old_write_domain;
  2320. int ret;
  2321. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2322. if (ret)
  2323. return ret;
  2324. if (pipelined != obj->ring) {
  2325. ret = i915_gem_object_sync(obj, pipelined);
  2326. if (ret)
  2327. return ret;
  2328. }
  2329. /* The display engine is not coherent with the LLC cache on gen6. As
  2330. * a result, we make sure that the pinning that is about to occur is
  2331. * done with uncached PTEs. This is lowest common denominator for all
  2332. * chipsets.
  2333. *
  2334. * However for gen6+, we could do better by using the GFDT bit instead
  2335. * of uncaching, which would allow us to flush all the LLC-cached data
  2336. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2337. */
  2338. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2339. if (ret)
  2340. return ret;
  2341. /* As the user may map the buffer once pinned in the display plane
  2342. * (e.g. libkms for the bootup splash), we have to ensure that we
  2343. * always use map_and_fenceable for all scanout buffers.
  2344. */
  2345. ret = i915_gem_object_pin(obj, alignment, true);
  2346. if (ret)
  2347. return ret;
  2348. i915_gem_object_flush_cpu_write_domain(obj);
  2349. old_write_domain = obj->base.write_domain;
  2350. old_read_domains = obj->base.read_domains;
  2351. /* It should now be out of any other write domains, and we can update
  2352. * the domain values for our changes.
  2353. */
  2354. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2355. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2356. trace_i915_gem_object_change_domain(obj,
  2357. old_read_domains,
  2358. old_write_domain);
  2359. return 0;
  2360. }
  2361. int
  2362. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2363. {
  2364. int ret;
  2365. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2366. return 0;
  2367. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2368. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2369. if (ret)
  2370. return ret;
  2371. }
  2372. ret = i915_gem_object_wait_rendering(obj);
  2373. if (ret)
  2374. return ret;
  2375. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2376. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2377. return 0;
  2378. }
  2379. /**
  2380. * Moves a single object to the CPU read, and possibly write domain.
  2381. *
  2382. * This function returns when the move is complete, including waiting on
  2383. * flushes to occur.
  2384. */
  2385. int
  2386. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2387. {
  2388. uint32_t old_write_domain, old_read_domains;
  2389. int ret;
  2390. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2391. return 0;
  2392. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2393. if (ret)
  2394. return ret;
  2395. if (write || obj->pending_gpu_write) {
  2396. ret = i915_gem_object_wait_rendering(obj);
  2397. if (ret)
  2398. return ret;
  2399. }
  2400. i915_gem_object_flush_gtt_write_domain(obj);
  2401. old_write_domain = obj->base.write_domain;
  2402. old_read_domains = obj->base.read_domains;
  2403. /* Flush the CPU cache if it's still invalid. */
  2404. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2405. i915_gem_clflush_object(obj);
  2406. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2407. }
  2408. /* It should now be out of any other write domains, and we can update
  2409. * the domain values for our changes.
  2410. */
  2411. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2412. /* If we're writing through the CPU, then the GPU read domains will
  2413. * need to be invalidated at next use.
  2414. */
  2415. if (write) {
  2416. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2417. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2418. }
  2419. trace_i915_gem_object_change_domain(obj,
  2420. old_read_domains,
  2421. old_write_domain);
  2422. return 0;
  2423. }
  2424. /* Throttle our rendering by waiting until the ring has completed our requests
  2425. * emitted over 20 msec ago.
  2426. *
  2427. * Note that if we were to use the current jiffies each time around the loop,
  2428. * we wouldn't escape the function with any frames outstanding if the time to
  2429. * render a frame was over 20ms.
  2430. *
  2431. * This should get us reasonable parallelism between CPU and GPU but also
  2432. * relatively low latency when blocking on a particular request to finish.
  2433. */
  2434. static int
  2435. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2436. {
  2437. struct drm_i915_private *dev_priv = dev->dev_private;
  2438. struct drm_i915_file_private *file_priv = file->driver_priv;
  2439. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2440. struct drm_i915_gem_request *request;
  2441. struct intel_ring_buffer *ring = NULL;
  2442. u32 seqno = 0;
  2443. int ret;
  2444. if (atomic_read(&dev_priv->mm.wedged))
  2445. return -EIO;
  2446. spin_lock(&file_priv->mm.lock);
  2447. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2448. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2449. break;
  2450. ring = request->ring;
  2451. seqno = request->seqno;
  2452. }
  2453. spin_unlock(&file_priv->mm.lock);
  2454. if (seqno == 0)
  2455. return 0;
  2456. ret = 0;
  2457. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2458. /* And wait for the seqno passing without holding any locks and
  2459. * causing extra latency for others. This is safe as the irq
  2460. * generation is designed to be run atomically and so is
  2461. * lockless.
  2462. */
  2463. if (ring->irq_get(ring)) {
  2464. ret = wait_event_interruptible(ring->irq_queue,
  2465. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2466. || atomic_read(&dev_priv->mm.wedged));
  2467. ring->irq_put(ring);
  2468. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2469. ret = -EIO;
  2470. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  2471. seqno) ||
  2472. atomic_read(&dev_priv->mm.wedged), 3000)) {
  2473. ret = -EBUSY;
  2474. }
  2475. }
  2476. if (ret == 0)
  2477. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2478. return ret;
  2479. }
  2480. int
  2481. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2482. uint32_t alignment,
  2483. bool map_and_fenceable)
  2484. {
  2485. int ret;
  2486. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2487. if (obj->gtt_space != NULL) {
  2488. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2489. (map_and_fenceable && !obj->map_and_fenceable)) {
  2490. WARN(obj->pin_count,
  2491. "bo is already pinned with incorrect alignment:"
  2492. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2493. " obj->map_and_fenceable=%d\n",
  2494. obj->gtt_offset, alignment,
  2495. map_and_fenceable,
  2496. obj->map_and_fenceable);
  2497. ret = i915_gem_object_unbind(obj);
  2498. if (ret)
  2499. return ret;
  2500. }
  2501. }
  2502. if (obj->gtt_space == NULL) {
  2503. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2504. map_and_fenceable);
  2505. if (ret)
  2506. return ret;
  2507. }
  2508. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2509. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2510. obj->pin_count++;
  2511. obj->pin_mappable |= map_and_fenceable;
  2512. return 0;
  2513. }
  2514. void
  2515. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2516. {
  2517. BUG_ON(obj->pin_count == 0);
  2518. BUG_ON(obj->gtt_space == NULL);
  2519. if (--obj->pin_count == 0)
  2520. obj->pin_mappable = false;
  2521. }
  2522. int
  2523. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2524. struct drm_file *file)
  2525. {
  2526. struct drm_i915_gem_pin *args = data;
  2527. struct drm_i915_gem_object *obj;
  2528. int ret;
  2529. ret = i915_mutex_lock_interruptible(dev);
  2530. if (ret)
  2531. return ret;
  2532. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2533. if (&obj->base == NULL) {
  2534. ret = -ENOENT;
  2535. goto unlock;
  2536. }
  2537. if (obj->madv != I915_MADV_WILLNEED) {
  2538. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2539. ret = -EINVAL;
  2540. goto out;
  2541. }
  2542. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2543. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2544. args->handle);
  2545. ret = -EINVAL;
  2546. goto out;
  2547. }
  2548. obj->user_pin_count++;
  2549. obj->pin_filp = file;
  2550. if (obj->user_pin_count == 1) {
  2551. ret = i915_gem_object_pin(obj, args->alignment, true);
  2552. if (ret)
  2553. goto out;
  2554. }
  2555. /* XXX - flush the CPU caches for pinned objects
  2556. * as the X server doesn't manage domains yet
  2557. */
  2558. i915_gem_object_flush_cpu_write_domain(obj);
  2559. args->offset = obj->gtt_offset;
  2560. out:
  2561. drm_gem_object_unreference(&obj->base);
  2562. unlock:
  2563. mutex_unlock(&dev->struct_mutex);
  2564. return ret;
  2565. }
  2566. int
  2567. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2568. struct drm_file *file)
  2569. {
  2570. struct drm_i915_gem_pin *args = data;
  2571. struct drm_i915_gem_object *obj;
  2572. int ret;
  2573. ret = i915_mutex_lock_interruptible(dev);
  2574. if (ret)
  2575. return ret;
  2576. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2577. if (&obj->base == NULL) {
  2578. ret = -ENOENT;
  2579. goto unlock;
  2580. }
  2581. if (obj->pin_filp != file) {
  2582. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2583. args->handle);
  2584. ret = -EINVAL;
  2585. goto out;
  2586. }
  2587. obj->user_pin_count--;
  2588. if (obj->user_pin_count == 0) {
  2589. obj->pin_filp = NULL;
  2590. i915_gem_object_unpin(obj);
  2591. }
  2592. out:
  2593. drm_gem_object_unreference(&obj->base);
  2594. unlock:
  2595. mutex_unlock(&dev->struct_mutex);
  2596. return ret;
  2597. }
  2598. int
  2599. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2600. struct drm_file *file)
  2601. {
  2602. struct drm_i915_gem_busy *args = data;
  2603. struct drm_i915_gem_object *obj;
  2604. int ret;
  2605. ret = i915_mutex_lock_interruptible(dev);
  2606. if (ret)
  2607. return ret;
  2608. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2609. if (&obj->base == NULL) {
  2610. ret = -ENOENT;
  2611. goto unlock;
  2612. }
  2613. /* Count all active objects as busy, even if they are currently not used
  2614. * by the gpu. Users of this interface expect objects to eventually
  2615. * become non-busy without any further actions, therefore emit any
  2616. * necessary flushes here.
  2617. */
  2618. args->busy = obj->active;
  2619. if (args->busy) {
  2620. /* Unconditionally flush objects, even when the gpu still uses this
  2621. * object. Userspace calling this function indicates that it wants to
  2622. * use this buffer rather sooner than later, so issuing the required
  2623. * flush earlier is beneficial.
  2624. */
  2625. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2626. ret = i915_gem_flush_ring(obj->ring,
  2627. 0, obj->base.write_domain);
  2628. } else if (obj->ring->outstanding_lazy_request ==
  2629. obj->last_rendering_seqno) {
  2630. struct drm_i915_gem_request *request;
  2631. /* This ring is not being cleared by active usage,
  2632. * so emit a request to do so.
  2633. */
  2634. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2635. if (request) {
  2636. ret = i915_add_request(obj->ring, NULL, request);
  2637. if (ret)
  2638. kfree(request);
  2639. } else
  2640. ret = -ENOMEM;
  2641. }
  2642. /* Update the active list for the hardware's current position.
  2643. * Otherwise this only updates on a delayed timer or when irqs
  2644. * are actually unmasked, and our working set ends up being
  2645. * larger than required.
  2646. */
  2647. i915_gem_retire_requests_ring(obj->ring);
  2648. args->busy = obj->active;
  2649. }
  2650. drm_gem_object_unreference(&obj->base);
  2651. unlock:
  2652. mutex_unlock(&dev->struct_mutex);
  2653. return ret;
  2654. }
  2655. int
  2656. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2657. struct drm_file *file_priv)
  2658. {
  2659. return i915_gem_ring_throttle(dev, file_priv);
  2660. }
  2661. int
  2662. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2663. struct drm_file *file_priv)
  2664. {
  2665. struct drm_i915_gem_madvise *args = data;
  2666. struct drm_i915_gem_object *obj;
  2667. int ret;
  2668. switch (args->madv) {
  2669. case I915_MADV_DONTNEED:
  2670. case I915_MADV_WILLNEED:
  2671. break;
  2672. default:
  2673. return -EINVAL;
  2674. }
  2675. ret = i915_mutex_lock_interruptible(dev);
  2676. if (ret)
  2677. return ret;
  2678. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2679. if (&obj->base == NULL) {
  2680. ret = -ENOENT;
  2681. goto unlock;
  2682. }
  2683. if (obj->pin_count) {
  2684. ret = -EINVAL;
  2685. goto out;
  2686. }
  2687. if (obj->madv != __I915_MADV_PURGED)
  2688. obj->madv = args->madv;
  2689. /* if the object is no longer bound, discard its backing storage */
  2690. if (i915_gem_object_is_purgeable(obj) &&
  2691. obj->gtt_space == NULL)
  2692. i915_gem_object_truncate(obj);
  2693. args->retained = obj->madv != __I915_MADV_PURGED;
  2694. out:
  2695. drm_gem_object_unreference(&obj->base);
  2696. unlock:
  2697. mutex_unlock(&dev->struct_mutex);
  2698. return ret;
  2699. }
  2700. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2701. size_t size)
  2702. {
  2703. struct drm_i915_private *dev_priv = dev->dev_private;
  2704. struct drm_i915_gem_object *obj;
  2705. struct address_space *mapping;
  2706. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2707. if (obj == NULL)
  2708. return NULL;
  2709. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2710. kfree(obj);
  2711. return NULL;
  2712. }
  2713. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2714. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2715. i915_gem_info_add_obj(dev_priv, size);
  2716. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2717. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2718. if (HAS_LLC(dev)) {
  2719. /* On some devices, we can have the GPU use the LLC (the CPU
  2720. * cache) for about a 10% performance improvement
  2721. * compared to uncached. Graphics requests other than
  2722. * display scanout are coherent with the CPU in
  2723. * accessing this cache. This means in this mode we
  2724. * don't need to clflush on the CPU side, and on the
  2725. * GPU side we only need to flush internal caches to
  2726. * get data visible to the CPU.
  2727. *
  2728. * However, we maintain the display planes as UC, and so
  2729. * need to rebind when first used as such.
  2730. */
  2731. obj->cache_level = I915_CACHE_LLC;
  2732. } else
  2733. obj->cache_level = I915_CACHE_NONE;
  2734. obj->base.driver_private = NULL;
  2735. obj->fence_reg = I915_FENCE_REG_NONE;
  2736. INIT_LIST_HEAD(&obj->mm_list);
  2737. INIT_LIST_HEAD(&obj->gtt_list);
  2738. INIT_LIST_HEAD(&obj->ring_list);
  2739. INIT_LIST_HEAD(&obj->exec_list);
  2740. INIT_LIST_HEAD(&obj->gpu_write_list);
  2741. obj->madv = I915_MADV_WILLNEED;
  2742. /* Avoid an unnecessary call to unbind on the first bind. */
  2743. obj->map_and_fenceable = true;
  2744. return obj;
  2745. }
  2746. int i915_gem_init_object(struct drm_gem_object *obj)
  2747. {
  2748. BUG();
  2749. return 0;
  2750. }
  2751. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2752. {
  2753. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2754. struct drm_device *dev = obj->base.dev;
  2755. drm_i915_private_t *dev_priv = dev->dev_private;
  2756. trace_i915_gem_object_destroy(obj);
  2757. if (obj->phys_obj)
  2758. i915_gem_detach_phys_object(dev, obj);
  2759. obj->pin_count = 0;
  2760. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  2761. bool was_interruptible;
  2762. was_interruptible = dev_priv->mm.interruptible;
  2763. dev_priv->mm.interruptible = false;
  2764. WARN_ON(i915_gem_object_unbind(obj));
  2765. dev_priv->mm.interruptible = was_interruptible;
  2766. }
  2767. if (obj->base.map_list.map)
  2768. drm_gem_free_mmap_offset(&obj->base);
  2769. drm_gem_object_release(&obj->base);
  2770. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2771. kfree(obj->bit_17);
  2772. kfree(obj);
  2773. }
  2774. int
  2775. i915_gem_idle(struct drm_device *dev)
  2776. {
  2777. drm_i915_private_t *dev_priv = dev->dev_private;
  2778. int ret;
  2779. mutex_lock(&dev->struct_mutex);
  2780. if (dev_priv->mm.suspended) {
  2781. mutex_unlock(&dev->struct_mutex);
  2782. return 0;
  2783. }
  2784. ret = i915_gpu_idle(dev);
  2785. if (ret) {
  2786. mutex_unlock(&dev->struct_mutex);
  2787. return ret;
  2788. }
  2789. i915_gem_retire_requests(dev);
  2790. /* Under UMS, be paranoid and evict. */
  2791. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  2792. i915_gem_evict_everything(dev, false);
  2793. i915_gem_reset_fences(dev);
  2794. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2795. * We need to replace this with a semaphore, or something.
  2796. * And not confound mm.suspended!
  2797. */
  2798. dev_priv->mm.suspended = 1;
  2799. del_timer_sync(&dev_priv->hangcheck_timer);
  2800. i915_kernel_lost_context(dev);
  2801. i915_gem_cleanup_ringbuffer(dev);
  2802. mutex_unlock(&dev->struct_mutex);
  2803. /* Cancel the retire work handler, which should be idle now. */
  2804. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2805. return 0;
  2806. }
  2807. void i915_gem_init_swizzling(struct drm_device *dev)
  2808. {
  2809. drm_i915_private_t *dev_priv = dev->dev_private;
  2810. if (INTEL_INFO(dev)->gen < 5 ||
  2811. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  2812. return;
  2813. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  2814. DISP_TILE_SURFACE_SWIZZLING);
  2815. if (IS_GEN5(dev))
  2816. return;
  2817. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  2818. if (IS_GEN6(dev))
  2819. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  2820. else
  2821. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  2822. }
  2823. void i915_gem_init_ppgtt(struct drm_device *dev)
  2824. {
  2825. drm_i915_private_t *dev_priv = dev->dev_private;
  2826. uint32_t pd_offset;
  2827. struct intel_ring_buffer *ring;
  2828. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  2829. uint32_t __iomem *pd_addr;
  2830. uint32_t pd_entry;
  2831. int i;
  2832. if (!dev_priv->mm.aliasing_ppgtt)
  2833. return;
  2834. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  2835. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  2836. dma_addr_t pt_addr;
  2837. if (dev_priv->mm.gtt->needs_dmar)
  2838. pt_addr = ppgtt->pt_dma_addr[i];
  2839. else
  2840. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  2841. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  2842. pd_entry |= GEN6_PDE_VALID;
  2843. writel(pd_entry, pd_addr + i);
  2844. }
  2845. readl(pd_addr);
  2846. pd_offset = ppgtt->pd_offset;
  2847. pd_offset /= 64; /* in cachelines, */
  2848. pd_offset <<= 16;
  2849. if (INTEL_INFO(dev)->gen == 6) {
  2850. uint32_t ecochk, gab_ctl, ecobits;
  2851. ecobits = I915_READ(GAC_ECO_BITS);
  2852. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  2853. gab_ctl = I915_READ(GAB_CTL);
  2854. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  2855. ecochk = I915_READ(GAM_ECOCHK);
  2856. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  2857. ECOCHK_PPGTT_CACHE64B);
  2858. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  2859. } else if (INTEL_INFO(dev)->gen >= 7) {
  2860. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  2861. /* GFX_MODE is per-ring on gen7+ */
  2862. }
  2863. for (i = 0; i < I915_NUM_RINGS; i++) {
  2864. ring = &dev_priv->ring[i];
  2865. if (INTEL_INFO(dev)->gen >= 7)
  2866. I915_WRITE(RING_MODE_GEN7(ring),
  2867. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  2868. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  2869. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  2870. }
  2871. }
  2872. int
  2873. i915_gem_init_hw(struct drm_device *dev)
  2874. {
  2875. drm_i915_private_t *dev_priv = dev->dev_private;
  2876. int ret;
  2877. i915_gem_init_swizzling(dev);
  2878. ret = intel_init_render_ring_buffer(dev);
  2879. if (ret)
  2880. return ret;
  2881. if (HAS_BSD(dev)) {
  2882. ret = intel_init_bsd_ring_buffer(dev);
  2883. if (ret)
  2884. goto cleanup_render_ring;
  2885. }
  2886. if (HAS_BLT(dev)) {
  2887. ret = intel_init_blt_ring_buffer(dev);
  2888. if (ret)
  2889. goto cleanup_bsd_ring;
  2890. }
  2891. dev_priv->next_seqno = 1;
  2892. i915_gem_init_ppgtt(dev);
  2893. return 0;
  2894. cleanup_bsd_ring:
  2895. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  2896. cleanup_render_ring:
  2897. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  2898. return ret;
  2899. }
  2900. static bool
  2901. intel_enable_ppgtt(struct drm_device *dev)
  2902. {
  2903. if (i915_enable_ppgtt >= 0)
  2904. return i915_enable_ppgtt;
  2905. #ifdef CONFIG_INTEL_IOMMU
  2906. /* Disable ppgtt on SNB if VT-d is on. */
  2907. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  2908. return false;
  2909. #endif
  2910. return true;
  2911. }
  2912. int i915_gem_init(struct drm_device *dev)
  2913. {
  2914. struct drm_i915_private *dev_priv = dev->dev_private;
  2915. unsigned long gtt_size, mappable_size;
  2916. int ret;
  2917. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  2918. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  2919. mutex_lock(&dev->struct_mutex);
  2920. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  2921. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  2922. * aperture accordingly when using aliasing ppgtt. */
  2923. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  2924. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  2925. ret = i915_gem_init_aliasing_ppgtt(dev);
  2926. if (ret) {
  2927. mutex_unlock(&dev->struct_mutex);
  2928. return ret;
  2929. }
  2930. } else {
  2931. /* Let GEM Manage all of the aperture.
  2932. *
  2933. * However, leave one page at the end still bound to the scratch
  2934. * page. There are a number of places where the hardware
  2935. * apparently prefetches past the end of the object, and we've
  2936. * seen multiple hangs with the GPU head pointer stuck in a
  2937. * batchbuffer bound at the last page of the aperture. One page
  2938. * should be enough to keep any prefetching inside of the
  2939. * aperture.
  2940. */
  2941. i915_gem_init_global_gtt(dev, 0, mappable_size,
  2942. gtt_size);
  2943. }
  2944. ret = i915_gem_init_hw(dev);
  2945. mutex_unlock(&dev->struct_mutex);
  2946. if (ret) {
  2947. i915_gem_cleanup_aliasing_ppgtt(dev);
  2948. return ret;
  2949. }
  2950. /* Allow hardware batchbuffers unless told otherwise. */
  2951. dev_priv->allow_batchbuffer = 1;
  2952. return 0;
  2953. }
  2954. void
  2955. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  2956. {
  2957. drm_i915_private_t *dev_priv = dev->dev_private;
  2958. int i;
  2959. for (i = 0; i < I915_NUM_RINGS; i++)
  2960. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  2961. }
  2962. int
  2963. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  2964. struct drm_file *file_priv)
  2965. {
  2966. drm_i915_private_t *dev_priv = dev->dev_private;
  2967. int ret, i;
  2968. if (drm_core_check_feature(dev, DRIVER_MODESET))
  2969. return 0;
  2970. if (atomic_read(&dev_priv->mm.wedged)) {
  2971. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  2972. atomic_set(&dev_priv->mm.wedged, 0);
  2973. }
  2974. mutex_lock(&dev->struct_mutex);
  2975. dev_priv->mm.suspended = 0;
  2976. ret = i915_gem_init_hw(dev);
  2977. if (ret != 0) {
  2978. mutex_unlock(&dev->struct_mutex);
  2979. return ret;
  2980. }
  2981. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  2982. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  2983. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  2984. for (i = 0; i < I915_NUM_RINGS; i++) {
  2985. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  2986. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  2987. }
  2988. mutex_unlock(&dev->struct_mutex);
  2989. ret = drm_irq_install(dev);
  2990. if (ret)
  2991. goto cleanup_ringbuffer;
  2992. return 0;
  2993. cleanup_ringbuffer:
  2994. mutex_lock(&dev->struct_mutex);
  2995. i915_gem_cleanup_ringbuffer(dev);
  2996. dev_priv->mm.suspended = 1;
  2997. mutex_unlock(&dev->struct_mutex);
  2998. return ret;
  2999. }
  3000. int
  3001. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3002. struct drm_file *file_priv)
  3003. {
  3004. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3005. return 0;
  3006. drm_irq_uninstall(dev);
  3007. return i915_gem_idle(dev);
  3008. }
  3009. void
  3010. i915_gem_lastclose(struct drm_device *dev)
  3011. {
  3012. int ret;
  3013. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3014. return;
  3015. ret = i915_gem_idle(dev);
  3016. if (ret)
  3017. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3018. }
  3019. static void
  3020. init_ring_lists(struct intel_ring_buffer *ring)
  3021. {
  3022. INIT_LIST_HEAD(&ring->active_list);
  3023. INIT_LIST_HEAD(&ring->request_list);
  3024. INIT_LIST_HEAD(&ring->gpu_write_list);
  3025. }
  3026. void
  3027. i915_gem_load(struct drm_device *dev)
  3028. {
  3029. int i;
  3030. drm_i915_private_t *dev_priv = dev->dev_private;
  3031. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3032. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3033. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3034. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3035. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3036. for (i = 0; i < I915_NUM_RINGS; i++)
  3037. init_ring_lists(&dev_priv->ring[i]);
  3038. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3039. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3040. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3041. i915_gem_retire_work_handler);
  3042. init_completion(&dev_priv->error_completion);
  3043. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3044. if (IS_GEN3(dev)) {
  3045. I915_WRITE(MI_ARB_STATE,
  3046. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3047. }
  3048. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3049. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3050. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3051. dev_priv->fence_reg_start = 3;
  3052. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3053. dev_priv->num_fence_regs = 16;
  3054. else
  3055. dev_priv->num_fence_regs = 8;
  3056. /* Initialize fence registers to zero */
  3057. i915_gem_reset_fences(dev);
  3058. i915_gem_detect_bit_6_swizzle(dev);
  3059. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3060. dev_priv->mm.interruptible = true;
  3061. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3062. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3063. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3064. }
  3065. /*
  3066. * Create a physically contiguous memory object for this object
  3067. * e.g. for cursor + overlay regs
  3068. */
  3069. static int i915_gem_init_phys_object(struct drm_device *dev,
  3070. int id, int size, int align)
  3071. {
  3072. drm_i915_private_t *dev_priv = dev->dev_private;
  3073. struct drm_i915_gem_phys_object *phys_obj;
  3074. int ret;
  3075. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3076. return 0;
  3077. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3078. if (!phys_obj)
  3079. return -ENOMEM;
  3080. phys_obj->id = id;
  3081. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3082. if (!phys_obj->handle) {
  3083. ret = -ENOMEM;
  3084. goto kfree_obj;
  3085. }
  3086. #ifdef CONFIG_X86
  3087. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3088. #endif
  3089. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3090. return 0;
  3091. kfree_obj:
  3092. kfree(phys_obj);
  3093. return ret;
  3094. }
  3095. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3096. {
  3097. drm_i915_private_t *dev_priv = dev->dev_private;
  3098. struct drm_i915_gem_phys_object *phys_obj;
  3099. if (!dev_priv->mm.phys_objs[id - 1])
  3100. return;
  3101. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3102. if (phys_obj->cur_obj) {
  3103. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3104. }
  3105. #ifdef CONFIG_X86
  3106. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3107. #endif
  3108. drm_pci_free(dev, phys_obj->handle);
  3109. kfree(phys_obj);
  3110. dev_priv->mm.phys_objs[id - 1] = NULL;
  3111. }
  3112. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3113. {
  3114. int i;
  3115. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3116. i915_gem_free_phys_object(dev, i);
  3117. }
  3118. void i915_gem_detach_phys_object(struct drm_device *dev,
  3119. struct drm_i915_gem_object *obj)
  3120. {
  3121. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3122. char *vaddr;
  3123. int i;
  3124. int page_count;
  3125. if (!obj->phys_obj)
  3126. return;
  3127. vaddr = obj->phys_obj->handle->vaddr;
  3128. page_count = obj->base.size / PAGE_SIZE;
  3129. for (i = 0; i < page_count; i++) {
  3130. struct page *page = shmem_read_mapping_page(mapping, i);
  3131. if (!IS_ERR(page)) {
  3132. char *dst = kmap_atomic(page);
  3133. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3134. kunmap_atomic(dst);
  3135. drm_clflush_pages(&page, 1);
  3136. set_page_dirty(page);
  3137. mark_page_accessed(page);
  3138. page_cache_release(page);
  3139. }
  3140. }
  3141. intel_gtt_chipset_flush();
  3142. obj->phys_obj->cur_obj = NULL;
  3143. obj->phys_obj = NULL;
  3144. }
  3145. int
  3146. i915_gem_attach_phys_object(struct drm_device *dev,
  3147. struct drm_i915_gem_object *obj,
  3148. int id,
  3149. int align)
  3150. {
  3151. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3152. drm_i915_private_t *dev_priv = dev->dev_private;
  3153. int ret = 0;
  3154. int page_count;
  3155. int i;
  3156. if (id > I915_MAX_PHYS_OBJECT)
  3157. return -EINVAL;
  3158. if (obj->phys_obj) {
  3159. if (obj->phys_obj->id == id)
  3160. return 0;
  3161. i915_gem_detach_phys_object(dev, obj);
  3162. }
  3163. /* create a new object */
  3164. if (!dev_priv->mm.phys_objs[id - 1]) {
  3165. ret = i915_gem_init_phys_object(dev, id,
  3166. obj->base.size, align);
  3167. if (ret) {
  3168. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3169. id, obj->base.size);
  3170. return ret;
  3171. }
  3172. }
  3173. /* bind to the object */
  3174. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3175. obj->phys_obj->cur_obj = obj;
  3176. page_count = obj->base.size / PAGE_SIZE;
  3177. for (i = 0; i < page_count; i++) {
  3178. struct page *page;
  3179. char *dst, *src;
  3180. page = shmem_read_mapping_page(mapping, i);
  3181. if (IS_ERR(page))
  3182. return PTR_ERR(page);
  3183. src = kmap_atomic(page);
  3184. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3185. memcpy(dst, src, PAGE_SIZE);
  3186. kunmap_atomic(src);
  3187. mark_page_accessed(page);
  3188. page_cache_release(page);
  3189. }
  3190. return 0;
  3191. }
  3192. static int
  3193. i915_gem_phys_pwrite(struct drm_device *dev,
  3194. struct drm_i915_gem_object *obj,
  3195. struct drm_i915_gem_pwrite *args,
  3196. struct drm_file *file_priv)
  3197. {
  3198. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3199. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3200. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3201. unsigned long unwritten;
  3202. /* The physical object once assigned is fixed for the lifetime
  3203. * of the obj, so we can safely drop the lock and continue
  3204. * to access vaddr.
  3205. */
  3206. mutex_unlock(&dev->struct_mutex);
  3207. unwritten = copy_from_user(vaddr, user_data, args->size);
  3208. mutex_lock(&dev->struct_mutex);
  3209. if (unwritten)
  3210. return -EFAULT;
  3211. }
  3212. intel_gtt_chipset_flush();
  3213. return 0;
  3214. }
  3215. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3216. {
  3217. struct drm_i915_file_private *file_priv = file->driver_priv;
  3218. /* Clean up our request list when the client is going away, so that
  3219. * later retire_requests won't dereference our soon-to-be-gone
  3220. * file_priv.
  3221. */
  3222. spin_lock(&file_priv->mm.lock);
  3223. while (!list_empty(&file_priv->mm.request_list)) {
  3224. struct drm_i915_gem_request *request;
  3225. request = list_first_entry(&file_priv->mm.request_list,
  3226. struct drm_i915_gem_request,
  3227. client_list);
  3228. list_del(&request->client_list);
  3229. request->file_priv = NULL;
  3230. }
  3231. spin_unlock(&file_priv->mm.lock);
  3232. }
  3233. static int
  3234. i915_gpu_is_active(struct drm_device *dev)
  3235. {
  3236. drm_i915_private_t *dev_priv = dev->dev_private;
  3237. int lists_empty;
  3238. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3239. list_empty(&dev_priv->mm.active_list);
  3240. return !lists_empty;
  3241. }
  3242. static int
  3243. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3244. {
  3245. struct drm_i915_private *dev_priv =
  3246. container_of(shrinker,
  3247. struct drm_i915_private,
  3248. mm.inactive_shrinker);
  3249. struct drm_device *dev = dev_priv->dev;
  3250. struct drm_i915_gem_object *obj, *next;
  3251. int nr_to_scan = sc->nr_to_scan;
  3252. int cnt;
  3253. if (!mutex_trylock(&dev->struct_mutex))
  3254. return 0;
  3255. /* "fast-path" to count number of available objects */
  3256. if (nr_to_scan == 0) {
  3257. cnt = 0;
  3258. list_for_each_entry(obj,
  3259. &dev_priv->mm.inactive_list,
  3260. mm_list)
  3261. cnt++;
  3262. mutex_unlock(&dev->struct_mutex);
  3263. return cnt / 100 * sysctl_vfs_cache_pressure;
  3264. }
  3265. rescan:
  3266. /* first scan for clean buffers */
  3267. i915_gem_retire_requests(dev);
  3268. list_for_each_entry_safe(obj, next,
  3269. &dev_priv->mm.inactive_list,
  3270. mm_list) {
  3271. if (i915_gem_object_is_purgeable(obj)) {
  3272. if (i915_gem_object_unbind(obj) == 0 &&
  3273. --nr_to_scan == 0)
  3274. break;
  3275. }
  3276. }
  3277. /* second pass, evict/count anything still on the inactive list */
  3278. cnt = 0;
  3279. list_for_each_entry_safe(obj, next,
  3280. &dev_priv->mm.inactive_list,
  3281. mm_list) {
  3282. if (nr_to_scan &&
  3283. i915_gem_object_unbind(obj) == 0)
  3284. nr_to_scan--;
  3285. else
  3286. cnt++;
  3287. }
  3288. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3289. /*
  3290. * We are desperate for pages, so as a last resort, wait
  3291. * for the GPU to finish and discard whatever we can.
  3292. * This has a dramatic impact to reduce the number of
  3293. * OOM-killer events whilst running the GPU aggressively.
  3294. */
  3295. if (i915_gpu_idle(dev) == 0)
  3296. goto rescan;
  3297. }
  3298. mutex_unlock(&dev->struct_mutex);
  3299. return cnt / 100 * sysctl_vfs_cache_pressure;
  3300. }