intel_display.c 259 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. int min, max;
  47. } intel_range_t;
  48. typedef struct {
  49. int dot_limit;
  50. int p2_slow, p2_fast;
  51. } intel_p2_t;
  52. #define INTEL_P2_NUM 2
  53. typedef struct intel_limit intel_limit_t;
  54. struct intel_limit {
  55. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  56. intel_p2_t p2;
  57. /**
  58. * find_pll() - Find the best values for the PLL
  59. * @limit: limits for the PLL
  60. * @crtc: current CRTC
  61. * @target: target frequency in kHz
  62. * @refclk: reference clock frequency in kHz
  63. * @match_clock: if provided, @best_clock P divider must
  64. * match the P divider from @match_clock
  65. * used for LVDS downclocking
  66. * @best_clock: best PLL values found
  67. *
  68. * Returns true on success, false on failure.
  69. */
  70. bool (*find_pll)(const intel_limit_t *limit,
  71. struct drm_crtc *crtc,
  72. int target, int refclk,
  73. intel_clock_t *match_clock,
  74. intel_clock_t *best_clock);
  75. };
  76. /* FDI */
  77. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  78. int
  79. intel_pch_rawclk(struct drm_device *dev)
  80. {
  81. struct drm_i915_private *dev_priv = dev->dev_private;
  82. WARN_ON(!HAS_PCH_SPLIT(dev));
  83. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  84. }
  85. static bool
  86. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  87. int target, int refclk, intel_clock_t *match_clock,
  88. intel_clock_t *best_clock);
  89. static bool
  90. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  91. int target, int refclk, intel_clock_t *match_clock,
  92. intel_clock_t *best_clock);
  93. static bool
  94. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  95. int target, int refclk, intel_clock_t *match_clock,
  96. intel_clock_t *best_clock);
  97. static inline u32 /* units of 100MHz */
  98. intel_fdi_link_freq(struct drm_device *dev)
  99. {
  100. if (IS_GEN5(dev)) {
  101. struct drm_i915_private *dev_priv = dev->dev_private;
  102. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  103. } else
  104. return 27;
  105. }
  106. static const intel_limit_t intel_limits_i8xx_dvo = {
  107. .dot = { .min = 25000, .max = 350000 },
  108. .vco = { .min = 930000, .max = 1400000 },
  109. .n = { .min = 3, .max = 16 },
  110. .m = { .min = 96, .max = 140 },
  111. .m1 = { .min = 18, .max = 26 },
  112. .m2 = { .min = 6, .max = 16 },
  113. .p = { .min = 4, .max = 128 },
  114. .p1 = { .min = 2, .max = 33 },
  115. .p2 = { .dot_limit = 165000,
  116. .p2_slow = 4, .p2_fast = 2 },
  117. .find_pll = intel_find_best_PLL,
  118. };
  119. static const intel_limit_t intel_limits_i8xx_lvds = {
  120. .dot = { .min = 25000, .max = 350000 },
  121. .vco = { .min = 930000, .max = 1400000 },
  122. .n = { .min = 3, .max = 16 },
  123. .m = { .min = 96, .max = 140 },
  124. .m1 = { .min = 18, .max = 26 },
  125. .m2 = { .min = 6, .max = 16 },
  126. .p = { .min = 4, .max = 128 },
  127. .p1 = { .min = 1, .max = 6 },
  128. .p2 = { .dot_limit = 165000,
  129. .p2_slow = 14, .p2_fast = 7 },
  130. .find_pll = intel_find_best_PLL,
  131. };
  132. static const intel_limit_t intel_limits_i9xx_sdvo = {
  133. .dot = { .min = 20000, .max = 400000 },
  134. .vco = { .min = 1400000, .max = 2800000 },
  135. .n = { .min = 1, .max = 6 },
  136. .m = { .min = 70, .max = 120 },
  137. .m1 = { .min = 8, .max = 18 },
  138. .m2 = { .min = 3, .max = 7 },
  139. .p = { .min = 5, .max = 80 },
  140. .p1 = { .min = 1, .max = 8 },
  141. .p2 = { .dot_limit = 200000,
  142. .p2_slow = 10, .p2_fast = 5 },
  143. .find_pll = intel_find_best_PLL,
  144. };
  145. static const intel_limit_t intel_limits_i9xx_lvds = {
  146. .dot = { .min = 20000, .max = 400000 },
  147. .vco = { .min = 1400000, .max = 2800000 },
  148. .n = { .min = 1, .max = 6 },
  149. .m = { .min = 70, .max = 120 },
  150. .m1 = { .min = 8, .max = 18 },
  151. .m2 = { .min = 3, .max = 7 },
  152. .p = { .min = 7, .max = 98 },
  153. .p1 = { .min = 1, .max = 8 },
  154. .p2 = { .dot_limit = 112000,
  155. .p2_slow = 14, .p2_fast = 7 },
  156. .find_pll = intel_find_best_PLL,
  157. };
  158. static const intel_limit_t intel_limits_g4x_sdvo = {
  159. .dot = { .min = 25000, .max = 270000 },
  160. .vco = { .min = 1750000, .max = 3500000},
  161. .n = { .min = 1, .max = 4 },
  162. .m = { .min = 104, .max = 138 },
  163. .m1 = { .min = 17, .max = 23 },
  164. .m2 = { .min = 5, .max = 11 },
  165. .p = { .min = 10, .max = 30 },
  166. .p1 = { .min = 1, .max = 3},
  167. .p2 = { .dot_limit = 270000,
  168. .p2_slow = 10,
  169. .p2_fast = 10
  170. },
  171. .find_pll = intel_g4x_find_best_PLL,
  172. };
  173. static const intel_limit_t intel_limits_g4x_hdmi = {
  174. .dot = { .min = 22000, .max = 400000 },
  175. .vco = { .min = 1750000, .max = 3500000},
  176. .n = { .min = 1, .max = 4 },
  177. .m = { .min = 104, .max = 138 },
  178. .m1 = { .min = 16, .max = 23 },
  179. .m2 = { .min = 5, .max = 11 },
  180. .p = { .min = 5, .max = 80 },
  181. .p1 = { .min = 1, .max = 8},
  182. .p2 = { .dot_limit = 165000,
  183. .p2_slow = 10, .p2_fast = 5 },
  184. .find_pll = intel_g4x_find_best_PLL,
  185. };
  186. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  187. .dot = { .min = 20000, .max = 115000 },
  188. .vco = { .min = 1750000, .max = 3500000 },
  189. .n = { .min = 1, .max = 3 },
  190. .m = { .min = 104, .max = 138 },
  191. .m1 = { .min = 17, .max = 23 },
  192. .m2 = { .min = 5, .max = 11 },
  193. .p = { .min = 28, .max = 112 },
  194. .p1 = { .min = 2, .max = 8 },
  195. .p2 = { .dot_limit = 0,
  196. .p2_slow = 14, .p2_fast = 14
  197. },
  198. .find_pll = intel_g4x_find_best_PLL,
  199. };
  200. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  201. .dot = { .min = 80000, .max = 224000 },
  202. .vco = { .min = 1750000, .max = 3500000 },
  203. .n = { .min = 1, .max = 3 },
  204. .m = { .min = 104, .max = 138 },
  205. .m1 = { .min = 17, .max = 23 },
  206. .m2 = { .min = 5, .max = 11 },
  207. .p = { .min = 14, .max = 42 },
  208. .p1 = { .min = 2, .max = 6 },
  209. .p2 = { .dot_limit = 0,
  210. .p2_slow = 7, .p2_fast = 7
  211. },
  212. .find_pll = intel_g4x_find_best_PLL,
  213. };
  214. static const intel_limit_t intel_limits_pineview_sdvo = {
  215. .dot = { .min = 20000, .max = 400000},
  216. .vco = { .min = 1700000, .max = 3500000 },
  217. /* Pineview's Ncounter is a ring counter */
  218. .n = { .min = 3, .max = 6 },
  219. .m = { .min = 2, .max = 256 },
  220. /* Pineview only has one combined m divider, which we treat as m2. */
  221. .m1 = { .min = 0, .max = 0 },
  222. .m2 = { .min = 0, .max = 254 },
  223. .p = { .min = 5, .max = 80 },
  224. .p1 = { .min = 1, .max = 8 },
  225. .p2 = { .dot_limit = 200000,
  226. .p2_slow = 10, .p2_fast = 5 },
  227. .find_pll = intel_find_best_PLL,
  228. };
  229. static const intel_limit_t intel_limits_pineview_lvds = {
  230. .dot = { .min = 20000, .max = 400000 },
  231. .vco = { .min = 1700000, .max = 3500000 },
  232. .n = { .min = 3, .max = 6 },
  233. .m = { .min = 2, .max = 256 },
  234. .m1 = { .min = 0, .max = 0 },
  235. .m2 = { .min = 0, .max = 254 },
  236. .p = { .min = 7, .max = 112 },
  237. .p1 = { .min = 1, .max = 8 },
  238. .p2 = { .dot_limit = 112000,
  239. .p2_slow = 14, .p2_fast = 14 },
  240. .find_pll = intel_find_best_PLL,
  241. };
  242. /* Ironlake / Sandybridge
  243. *
  244. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  245. * the range value for them is (actual_value - 2).
  246. */
  247. static const intel_limit_t intel_limits_ironlake_dac = {
  248. .dot = { .min = 25000, .max = 350000 },
  249. .vco = { .min = 1760000, .max = 3510000 },
  250. .n = { .min = 1, .max = 5 },
  251. .m = { .min = 79, .max = 127 },
  252. .m1 = { .min = 12, .max = 22 },
  253. .m2 = { .min = 5, .max = 9 },
  254. .p = { .min = 5, .max = 80 },
  255. .p1 = { .min = 1, .max = 8 },
  256. .p2 = { .dot_limit = 225000,
  257. .p2_slow = 10, .p2_fast = 5 },
  258. .find_pll = intel_g4x_find_best_PLL,
  259. };
  260. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  261. .dot = { .min = 25000, .max = 350000 },
  262. .vco = { .min = 1760000, .max = 3510000 },
  263. .n = { .min = 1, .max = 3 },
  264. .m = { .min = 79, .max = 118 },
  265. .m1 = { .min = 12, .max = 22 },
  266. .m2 = { .min = 5, .max = 9 },
  267. .p = { .min = 28, .max = 112 },
  268. .p1 = { .min = 2, .max = 8 },
  269. .p2 = { .dot_limit = 225000,
  270. .p2_slow = 14, .p2_fast = 14 },
  271. .find_pll = intel_g4x_find_best_PLL,
  272. };
  273. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  274. .dot = { .min = 25000, .max = 350000 },
  275. .vco = { .min = 1760000, .max = 3510000 },
  276. .n = { .min = 1, .max = 3 },
  277. .m = { .min = 79, .max = 127 },
  278. .m1 = { .min = 12, .max = 22 },
  279. .m2 = { .min = 5, .max = 9 },
  280. .p = { .min = 14, .max = 56 },
  281. .p1 = { .min = 2, .max = 8 },
  282. .p2 = { .dot_limit = 225000,
  283. .p2_slow = 7, .p2_fast = 7 },
  284. .find_pll = intel_g4x_find_best_PLL,
  285. };
  286. /* LVDS 100mhz refclk limits. */
  287. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  288. .dot = { .min = 25000, .max = 350000 },
  289. .vco = { .min = 1760000, .max = 3510000 },
  290. .n = { .min = 1, .max = 2 },
  291. .m = { .min = 79, .max = 126 },
  292. .m1 = { .min = 12, .max = 22 },
  293. .m2 = { .min = 5, .max = 9 },
  294. .p = { .min = 28, .max = 112 },
  295. .p1 = { .min = 2, .max = 8 },
  296. .p2 = { .dot_limit = 225000,
  297. .p2_slow = 14, .p2_fast = 14 },
  298. .find_pll = intel_g4x_find_best_PLL,
  299. };
  300. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  301. .dot = { .min = 25000, .max = 350000 },
  302. .vco = { .min = 1760000, .max = 3510000 },
  303. .n = { .min = 1, .max = 3 },
  304. .m = { .min = 79, .max = 126 },
  305. .m1 = { .min = 12, .max = 22 },
  306. .m2 = { .min = 5, .max = 9 },
  307. .p = { .min = 14, .max = 42 },
  308. .p1 = { .min = 2, .max = 6 },
  309. .p2 = { .dot_limit = 225000,
  310. .p2_slow = 7, .p2_fast = 7 },
  311. .find_pll = intel_g4x_find_best_PLL,
  312. };
  313. static const intel_limit_t intel_limits_vlv_dac = {
  314. .dot = { .min = 25000, .max = 270000 },
  315. .vco = { .min = 4000000, .max = 6000000 },
  316. .n = { .min = 1, .max = 7 },
  317. .m = { .min = 22, .max = 450 }, /* guess */
  318. .m1 = { .min = 2, .max = 3 },
  319. .m2 = { .min = 11, .max = 156 },
  320. .p = { .min = 10, .max = 30 },
  321. .p1 = { .min = 1, .max = 3 },
  322. .p2 = { .dot_limit = 270000,
  323. .p2_slow = 2, .p2_fast = 20 },
  324. .find_pll = intel_vlv_find_best_pll,
  325. };
  326. static const intel_limit_t intel_limits_vlv_hdmi = {
  327. .dot = { .min = 25000, .max = 270000 },
  328. .vco = { .min = 4000000, .max = 6000000 },
  329. .n = { .min = 1, .max = 7 },
  330. .m = { .min = 60, .max = 300 }, /* guess */
  331. .m1 = { .min = 2, .max = 3 },
  332. .m2 = { .min = 11, .max = 156 },
  333. .p = { .min = 10, .max = 30 },
  334. .p1 = { .min = 2, .max = 3 },
  335. .p2 = { .dot_limit = 270000,
  336. .p2_slow = 2, .p2_fast = 20 },
  337. .find_pll = intel_vlv_find_best_pll,
  338. };
  339. static const intel_limit_t intel_limits_vlv_dp = {
  340. .dot = { .min = 25000, .max = 270000 },
  341. .vco = { .min = 4000000, .max = 6000000 },
  342. .n = { .min = 1, .max = 7 },
  343. .m = { .min = 22, .max = 450 },
  344. .m1 = { .min = 2, .max = 3 },
  345. .m2 = { .min = 11, .max = 156 },
  346. .p = { .min = 10, .max = 30 },
  347. .p1 = { .min = 1, .max = 3 },
  348. .p2 = { .dot_limit = 270000,
  349. .p2_slow = 2, .p2_fast = 20 },
  350. .find_pll = intel_vlv_find_best_pll,
  351. };
  352. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  353. {
  354. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  355. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  356. DRM_ERROR("DPIO idle wait timed out\n");
  357. return 0;
  358. }
  359. I915_WRITE(DPIO_REG, reg);
  360. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  361. DPIO_BYTE);
  362. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  363. DRM_ERROR("DPIO read wait timed out\n");
  364. return 0;
  365. }
  366. return I915_READ(DPIO_DATA);
  367. }
  368. void intel_dpio_write(struct drm_i915_private *dev_priv, int reg, u32 val)
  369. {
  370. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  371. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  372. DRM_ERROR("DPIO idle wait timed out\n");
  373. return;
  374. }
  375. I915_WRITE(DPIO_DATA, val);
  376. I915_WRITE(DPIO_REG, reg);
  377. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  378. DPIO_BYTE);
  379. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  380. DRM_ERROR("DPIO write wait timed out\n");
  381. }
  382. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  383. int refclk)
  384. {
  385. struct drm_device *dev = crtc->dev;
  386. const intel_limit_t *limit;
  387. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  388. if (intel_is_dual_link_lvds(dev)) {
  389. if (refclk == 100000)
  390. limit = &intel_limits_ironlake_dual_lvds_100m;
  391. else
  392. limit = &intel_limits_ironlake_dual_lvds;
  393. } else {
  394. if (refclk == 100000)
  395. limit = &intel_limits_ironlake_single_lvds_100m;
  396. else
  397. limit = &intel_limits_ironlake_single_lvds;
  398. }
  399. } else
  400. limit = &intel_limits_ironlake_dac;
  401. return limit;
  402. }
  403. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  404. {
  405. struct drm_device *dev = crtc->dev;
  406. const intel_limit_t *limit;
  407. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  408. if (intel_is_dual_link_lvds(dev))
  409. limit = &intel_limits_g4x_dual_channel_lvds;
  410. else
  411. limit = &intel_limits_g4x_single_channel_lvds;
  412. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  413. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  414. limit = &intel_limits_g4x_hdmi;
  415. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  416. limit = &intel_limits_g4x_sdvo;
  417. } else /* The option is for other outputs */
  418. limit = &intel_limits_i9xx_sdvo;
  419. return limit;
  420. }
  421. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  422. {
  423. struct drm_device *dev = crtc->dev;
  424. const intel_limit_t *limit;
  425. if (HAS_PCH_SPLIT(dev))
  426. limit = intel_ironlake_limit(crtc, refclk);
  427. else if (IS_G4X(dev)) {
  428. limit = intel_g4x_limit(crtc);
  429. } else if (IS_PINEVIEW(dev)) {
  430. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  431. limit = &intel_limits_pineview_lvds;
  432. else
  433. limit = &intel_limits_pineview_sdvo;
  434. } else if (IS_VALLEYVIEW(dev)) {
  435. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  436. limit = &intel_limits_vlv_dac;
  437. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  438. limit = &intel_limits_vlv_hdmi;
  439. else
  440. limit = &intel_limits_vlv_dp;
  441. } else if (!IS_GEN2(dev)) {
  442. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  443. limit = &intel_limits_i9xx_lvds;
  444. else
  445. limit = &intel_limits_i9xx_sdvo;
  446. } else {
  447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  448. limit = &intel_limits_i8xx_lvds;
  449. else
  450. limit = &intel_limits_i8xx_dvo;
  451. }
  452. return limit;
  453. }
  454. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  455. static void pineview_clock(int refclk, intel_clock_t *clock)
  456. {
  457. clock->m = clock->m2 + 2;
  458. clock->p = clock->p1 * clock->p2;
  459. clock->vco = refclk * clock->m / clock->n;
  460. clock->dot = clock->vco / clock->p;
  461. }
  462. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  463. {
  464. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  465. }
  466. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  467. {
  468. if (IS_PINEVIEW(dev)) {
  469. pineview_clock(refclk, clock);
  470. return;
  471. }
  472. clock->m = i9xx_dpll_compute_m(clock);
  473. clock->p = clock->p1 * clock->p2;
  474. clock->vco = refclk * clock->m / (clock->n + 2);
  475. clock->dot = clock->vco / clock->p;
  476. }
  477. /**
  478. * Returns whether any output on the specified pipe is of the specified type
  479. */
  480. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  481. {
  482. struct drm_device *dev = crtc->dev;
  483. struct intel_encoder *encoder;
  484. for_each_encoder_on_crtc(dev, crtc, encoder)
  485. if (encoder->type == type)
  486. return true;
  487. return false;
  488. }
  489. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  490. /**
  491. * Returns whether the given set of divisors are valid for a given refclk with
  492. * the given connectors.
  493. */
  494. static bool intel_PLL_is_valid(struct drm_device *dev,
  495. const intel_limit_t *limit,
  496. const intel_clock_t *clock)
  497. {
  498. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  499. INTELPllInvalid("p1 out of range\n");
  500. if (clock->p < limit->p.min || limit->p.max < clock->p)
  501. INTELPllInvalid("p out of range\n");
  502. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  503. INTELPllInvalid("m2 out of range\n");
  504. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  505. INTELPllInvalid("m1 out of range\n");
  506. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  507. INTELPllInvalid("m1 <= m2\n");
  508. if (clock->m < limit->m.min || limit->m.max < clock->m)
  509. INTELPllInvalid("m out of range\n");
  510. if (clock->n < limit->n.min || limit->n.max < clock->n)
  511. INTELPllInvalid("n out of range\n");
  512. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  513. INTELPllInvalid("vco out of range\n");
  514. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  515. * connector, etc., rather than just a single range.
  516. */
  517. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  518. INTELPllInvalid("dot out of range\n");
  519. return true;
  520. }
  521. static bool
  522. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  523. int target, int refclk, intel_clock_t *match_clock,
  524. intel_clock_t *best_clock)
  525. {
  526. struct drm_device *dev = crtc->dev;
  527. intel_clock_t clock;
  528. int err = target;
  529. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  530. /*
  531. * For LVDS just rely on its current settings for dual-channel.
  532. * We haven't figured out how to reliably set up different
  533. * single/dual channel state, if we even can.
  534. */
  535. if (intel_is_dual_link_lvds(dev))
  536. clock.p2 = limit->p2.p2_fast;
  537. else
  538. clock.p2 = limit->p2.p2_slow;
  539. } else {
  540. if (target < limit->p2.dot_limit)
  541. clock.p2 = limit->p2.p2_slow;
  542. else
  543. clock.p2 = limit->p2.p2_fast;
  544. }
  545. memset(best_clock, 0, sizeof(*best_clock));
  546. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  547. clock.m1++) {
  548. for (clock.m2 = limit->m2.min;
  549. clock.m2 <= limit->m2.max; clock.m2++) {
  550. /* m1 is always 0 in Pineview */
  551. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  552. break;
  553. for (clock.n = limit->n.min;
  554. clock.n <= limit->n.max; clock.n++) {
  555. for (clock.p1 = limit->p1.min;
  556. clock.p1 <= limit->p1.max; clock.p1++) {
  557. int this_err;
  558. intel_clock(dev, refclk, &clock);
  559. if (!intel_PLL_is_valid(dev, limit,
  560. &clock))
  561. continue;
  562. if (match_clock &&
  563. clock.p != match_clock->p)
  564. continue;
  565. this_err = abs(clock.dot - target);
  566. if (this_err < err) {
  567. *best_clock = clock;
  568. err = this_err;
  569. }
  570. }
  571. }
  572. }
  573. }
  574. return (err != target);
  575. }
  576. static bool
  577. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  578. int target, int refclk, intel_clock_t *match_clock,
  579. intel_clock_t *best_clock)
  580. {
  581. struct drm_device *dev = crtc->dev;
  582. intel_clock_t clock;
  583. int max_n;
  584. bool found;
  585. /* approximately equals target * 0.00585 */
  586. int err_most = (target >> 8) + (target >> 9);
  587. found = false;
  588. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  589. int lvds_reg;
  590. if (HAS_PCH_SPLIT(dev))
  591. lvds_reg = PCH_LVDS;
  592. else
  593. lvds_reg = LVDS;
  594. if (intel_is_dual_link_lvds(dev))
  595. clock.p2 = limit->p2.p2_fast;
  596. else
  597. clock.p2 = limit->p2.p2_slow;
  598. } else {
  599. if (target < limit->p2.dot_limit)
  600. clock.p2 = limit->p2.p2_slow;
  601. else
  602. clock.p2 = limit->p2.p2_fast;
  603. }
  604. memset(best_clock, 0, sizeof(*best_clock));
  605. max_n = limit->n.max;
  606. /* based on hardware requirement, prefer smaller n to precision */
  607. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  608. /* based on hardware requirement, prefere larger m1,m2 */
  609. for (clock.m1 = limit->m1.max;
  610. clock.m1 >= limit->m1.min; clock.m1--) {
  611. for (clock.m2 = limit->m2.max;
  612. clock.m2 >= limit->m2.min; clock.m2--) {
  613. for (clock.p1 = limit->p1.max;
  614. clock.p1 >= limit->p1.min; clock.p1--) {
  615. int this_err;
  616. intel_clock(dev, refclk, &clock);
  617. if (!intel_PLL_is_valid(dev, limit,
  618. &clock))
  619. continue;
  620. this_err = abs(clock.dot - target);
  621. if (this_err < err_most) {
  622. *best_clock = clock;
  623. err_most = this_err;
  624. max_n = clock.n;
  625. found = true;
  626. }
  627. }
  628. }
  629. }
  630. }
  631. return found;
  632. }
  633. static bool
  634. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  635. int target, int refclk, intel_clock_t *match_clock,
  636. intel_clock_t *best_clock)
  637. {
  638. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  639. u32 m, n, fastclk;
  640. u32 updrate, minupdate, fracbits, p;
  641. unsigned long bestppm, ppm, absppm;
  642. int dotclk, flag;
  643. flag = 0;
  644. dotclk = target * 1000;
  645. bestppm = 1000000;
  646. ppm = absppm = 0;
  647. fastclk = dotclk / (2*100);
  648. updrate = 0;
  649. minupdate = 19200;
  650. fracbits = 1;
  651. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  652. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  653. /* based on hardware requirement, prefer smaller n to precision */
  654. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  655. updrate = refclk / n;
  656. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  657. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  658. if (p2 > 10)
  659. p2 = p2 - 1;
  660. p = p1 * p2;
  661. /* based on hardware requirement, prefer bigger m1,m2 values */
  662. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  663. m2 = (((2*(fastclk * p * n / m1 )) +
  664. refclk) / (2*refclk));
  665. m = m1 * m2;
  666. vco = updrate * m;
  667. if (vco >= limit->vco.min && vco < limit->vco.max) {
  668. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  669. absppm = (ppm > 0) ? ppm : (-ppm);
  670. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  671. bestppm = 0;
  672. flag = 1;
  673. }
  674. if (absppm < bestppm - 10) {
  675. bestppm = absppm;
  676. flag = 1;
  677. }
  678. if (flag) {
  679. bestn = n;
  680. bestm1 = m1;
  681. bestm2 = m2;
  682. bestp1 = p1;
  683. bestp2 = p2;
  684. flag = 0;
  685. }
  686. }
  687. }
  688. }
  689. }
  690. }
  691. best_clock->n = bestn;
  692. best_clock->m1 = bestm1;
  693. best_clock->m2 = bestm2;
  694. best_clock->p1 = bestp1;
  695. best_clock->p2 = bestp2;
  696. return true;
  697. }
  698. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  699. enum pipe pipe)
  700. {
  701. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  702. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  703. return intel_crtc->config.cpu_transcoder;
  704. }
  705. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  706. {
  707. struct drm_i915_private *dev_priv = dev->dev_private;
  708. u32 frame, frame_reg = PIPEFRAME(pipe);
  709. frame = I915_READ(frame_reg);
  710. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  711. DRM_DEBUG_KMS("vblank wait timed out\n");
  712. }
  713. /**
  714. * intel_wait_for_vblank - wait for vblank on a given pipe
  715. * @dev: drm device
  716. * @pipe: pipe to wait for
  717. *
  718. * Wait for vblank to occur on a given pipe. Needed for various bits of
  719. * mode setting code.
  720. */
  721. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  722. {
  723. struct drm_i915_private *dev_priv = dev->dev_private;
  724. int pipestat_reg = PIPESTAT(pipe);
  725. if (INTEL_INFO(dev)->gen >= 5) {
  726. ironlake_wait_for_vblank(dev, pipe);
  727. return;
  728. }
  729. /* Clear existing vblank status. Note this will clear any other
  730. * sticky status fields as well.
  731. *
  732. * This races with i915_driver_irq_handler() with the result
  733. * that either function could miss a vblank event. Here it is not
  734. * fatal, as we will either wait upon the next vblank interrupt or
  735. * timeout. Generally speaking intel_wait_for_vblank() is only
  736. * called during modeset at which time the GPU should be idle and
  737. * should *not* be performing page flips and thus not waiting on
  738. * vblanks...
  739. * Currently, the result of us stealing a vblank from the irq
  740. * handler is that a single frame will be skipped during swapbuffers.
  741. */
  742. I915_WRITE(pipestat_reg,
  743. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  744. /* Wait for vblank interrupt bit to set */
  745. if (wait_for(I915_READ(pipestat_reg) &
  746. PIPE_VBLANK_INTERRUPT_STATUS,
  747. 50))
  748. DRM_DEBUG_KMS("vblank wait timed out\n");
  749. }
  750. /*
  751. * intel_wait_for_pipe_off - wait for pipe to turn off
  752. * @dev: drm device
  753. * @pipe: pipe to wait for
  754. *
  755. * After disabling a pipe, we can't wait for vblank in the usual way,
  756. * spinning on the vblank interrupt status bit, since we won't actually
  757. * see an interrupt when the pipe is disabled.
  758. *
  759. * On Gen4 and above:
  760. * wait for the pipe register state bit to turn off
  761. *
  762. * Otherwise:
  763. * wait for the display line value to settle (it usually
  764. * ends up stopping at the start of the next frame).
  765. *
  766. */
  767. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  768. {
  769. struct drm_i915_private *dev_priv = dev->dev_private;
  770. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  771. pipe);
  772. if (INTEL_INFO(dev)->gen >= 4) {
  773. int reg = PIPECONF(cpu_transcoder);
  774. /* Wait for the Pipe State to go off */
  775. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  776. 100))
  777. WARN(1, "pipe_off wait timed out\n");
  778. } else {
  779. u32 last_line, line_mask;
  780. int reg = PIPEDSL(pipe);
  781. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  782. if (IS_GEN2(dev))
  783. line_mask = DSL_LINEMASK_GEN2;
  784. else
  785. line_mask = DSL_LINEMASK_GEN3;
  786. /* Wait for the display line to settle */
  787. do {
  788. last_line = I915_READ(reg) & line_mask;
  789. mdelay(5);
  790. } while (((I915_READ(reg) & line_mask) != last_line) &&
  791. time_after(timeout, jiffies));
  792. if (time_after(jiffies, timeout))
  793. WARN(1, "pipe_off wait timed out\n");
  794. }
  795. }
  796. /*
  797. * ibx_digital_port_connected - is the specified port connected?
  798. * @dev_priv: i915 private structure
  799. * @port: the port to test
  800. *
  801. * Returns true if @port is connected, false otherwise.
  802. */
  803. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  804. struct intel_digital_port *port)
  805. {
  806. u32 bit;
  807. if (HAS_PCH_IBX(dev_priv->dev)) {
  808. switch(port->port) {
  809. case PORT_B:
  810. bit = SDE_PORTB_HOTPLUG;
  811. break;
  812. case PORT_C:
  813. bit = SDE_PORTC_HOTPLUG;
  814. break;
  815. case PORT_D:
  816. bit = SDE_PORTD_HOTPLUG;
  817. break;
  818. default:
  819. return true;
  820. }
  821. } else {
  822. switch(port->port) {
  823. case PORT_B:
  824. bit = SDE_PORTB_HOTPLUG_CPT;
  825. break;
  826. case PORT_C:
  827. bit = SDE_PORTC_HOTPLUG_CPT;
  828. break;
  829. case PORT_D:
  830. bit = SDE_PORTD_HOTPLUG_CPT;
  831. break;
  832. default:
  833. return true;
  834. }
  835. }
  836. return I915_READ(SDEISR) & bit;
  837. }
  838. static const char *state_string(bool enabled)
  839. {
  840. return enabled ? "on" : "off";
  841. }
  842. /* Only for pre-ILK configs */
  843. static void assert_pll(struct drm_i915_private *dev_priv,
  844. enum pipe pipe, bool state)
  845. {
  846. int reg;
  847. u32 val;
  848. bool cur_state;
  849. reg = DPLL(pipe);
  850. val = I915_READ(reg);
  851. cur_state = !!(val & DPLL_VCO_ENABLE);
  852. WARN(cur_state != state,
  853. "PLL state assertion failure (expected %s, current %s)\n",
  854. state_string(state), state_string(cur_state));
  855. }
  856. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  857. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  858. /* For ILK+ */
  859. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  860. struct intel_pch_pll *pll,
  861. struct intel_crtc *crtc,
  862. bool state)
  863. {
  864. u32 val;
  865. bool cur_state;
  866. if (HAS_PCH_LPT(dev_priv->dev)) {
  867. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  868. return;
  869. }
  870. if (WARN (!pll,
  871. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  872. return;
  873. val = I915_READ(pll->pll_reg);
  874. cur_state = !!(val & DPLL_VCO_ENABLE);
  875. WARN(cur_state != state,
  876. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  877. pll->pll_reg, state_string(state), state_string(cur_state), val);
  878. /* Make sure the selected PLL is correctly attached to the transcoder */
  879. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  880. u32 pch_dpll;
  881. pch_dpll = I915_READ(PCH_DPLL_SEL);
  882. cur_state = pll->pll_reg == _PCH_DPLL_B;
  883. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  884. "PLL[%d] not attached to this transcoder %c: %08x\n",
  885. cur_state, pipe_name(crtc->pipe), pch_dpll)) {
  886. cur_state = !!(val >> (4*crtc->pipe + 3));
  887. WARN(cur_state != state,
  888. "PLL[%d] not %s on this transcoder %c: %08x\n",
  889. pll->pll_reg == _PCH_DPLL_B,
  890. state_string(state),
  891. pipe_name(crtc->pipe),
  892. val);
  893. }
  894. }
  895. }
  896. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  897. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  898. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  899. enum pipe pipe, bool state)
  900. {
  901. int reg;
  902. u32 val;
  903. bool cur_state;
  904. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  905. pipe);
  906. if (HAS_DDI(dev_priv->dev)) {
  907. /* DDI does not have a specific FDI_TX register */
  908. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  909. val = I915_READ(reg);
  910. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  911. } else {
  912. reg = FDI_TX_CTL(pipe);
  913. val = I915_READ(reg);
  914. cur_state = !!(val & FDI_TX_ENABLE);
  915. }
  916. WARN(cur_state != state,
  917. "FDI TX state assertion failure (expected %s, current %s)\n",
  918. state_string(state), state_string(cur_state));
  919. }
  920. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  921. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  922. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  923. enum pipe pipe, bool state)
  924. {
  925. int reg;
  926. u32 val;
  927. bool cur_state;
  928. reg = FDI_RX_CTL(pipe);
  929. val = I915_READ(reg);
  930. cur_state = !!(val & FDI_RX_ENABLE);
  931. WARN(cur_state != state,
  932. "FDI RX state assertion failure (expected %s, current %s)\n",
  933. state_string(state), state_string(cur_state));
  934. }
  935. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  936. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  937. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  938. enum pipe pipe)
  939. {
  940. int reg;
  941. u32 val;
  942. /* ILK FDI PLL is always enabled */
  943. if (dev_priv->info->gen == 5)
  944. return;
  945. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  946. if (HAS_DDI(dev_priv->dev))
  947. return;
  948. reg = FDI_TX_CTL(pipe);
  949. val = I915_READ(reg);
  950. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  951. }
  952. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  953. enum pipe pipe)
  954. {
  955. int reg;
  956. u32 val;
  957. reg = FDI_RX_CTL(pipe);
  958. val = I915_READ(reg);
  959. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  960. }
  961. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  962. enum pipe pipe)
  963. {
  964. int pp_reg, lvds_reg;
  965. u32 val;
  966. enum pipe panel_pipe = PIPE_A;
  967. bool locked = true;
  968. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  969. pp_reg = PCH_PP_CONTROL;
  970. lvds_reg = PCH_LVDS;
  971. } else {
  972. pp_reg = PP_CONTROL;
  973. lvds_reg = LVDS;
  974. }
  975. val = I915_READ(pp_reg);
  976. if (!(val & PANEL_POWER_ON) ||
  977. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  978. locked = false;
  979. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  980. panel_pipe = PIPE_B;
  981. WARN(panel_pipe == pipe && locked,
  982. "panel assertion failure, pipe %c regs locked\n",
  983. pipe_name(pipe));
  984. }
  985. void assert_pipe(struct drm_i915_private *dev_priv,
  986. enum pipe pipe, bool state)
  987. {
  988. int reg;
  989. u32 val;
  990. bool cur_state;
  991. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  992. pipe);
  993. /* if we need the pipe A quirk it must be always on */
  994. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  995. state = true;
  996. if (!intel_using_power_well(dev_priv->dev) &&
  997. cpu_transcoder != TRANSCODER_EDP) {
  998. cur_state = false;
  999. } else {
  1000. reg = PIPECONF(cpu_transcoder);
  1001. val = I915_READ(reg);
  1002. cur_state = !!(val & PIPECONF_ENABLE);
  1003. }
  1004. WARN(cur_state != state,
  1005. "pipe %c assertion failure (expected %s, current %s)\n",
  1006. pipe_name(pipe), state_string(state), state_string(cur_state));
  1007. }
  1008. static void assert_plane(struct drm_i915_private *dev_priv,
  1009. enum plane plane, bool state)
  1010. {
  1011. int reg;
  1012. u32 val;
  1013. bool cur_state;
  1014. reg = DSPCNTR(plane);
  1015. val = I915_READ(reg);
  1016. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1017. WARN(cur_state != state,
  1018. "plane %c assertion failure (expected %s, current %s)\n",
  1019. plane_name(plane), state_string(state), state_string(cur_state));
  1020. }
  1021. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1022. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1023. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1024. enum pipe pipe)
  1025. {
  1026. int reg, i;
  1027. u32 val;
  1028. int cur_pipe;
  1029. /* Planes are fixed to pipes on ILK+ */
  1030. if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
  1031. reg = DSPCNTR(pipe);
  1032. val = I915_READ(reg);
  1033. WARN((val & DISPLAY_PLANE_ENABLE),
  1034. "plane %c assertion failure, should be disabled but not\n",
  1035. plane_name(pipe));
  1036. return;
  1037. }
  1038. /* Need to check both planes against the pipe */
  1039. for (i = 0; i < 2; i++) {
  1040. reg = DSPCNTR(i);
  1041. val = I915_READ(reg);
  1042. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1043. DISPPLANE_SEL_PIPE_SHIFT;
  1044. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1045. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1046. plane_name(i), pipe_name(pipe));
  1047. }
  1048. }
  1049. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1050. enum pipe pipe)
  1051. {
  1052. int reg, i;
  1053. u32 val;
  1054. if (!IS_VALLEYVIEW(dev_priv->dev))
  1055. return;
  1056. /* Need to check both planes against the pipe */
  1057. for (i = 0; i < dev_priv->num_plane; i++) {
  1058. reg = SPCNTR(pipe, i);
  1059. val = I915_READ(reg);
  1060. WARN((val & SP_ENABLE),
  1061. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1062. sprite_name(pipe, i), pipe_name(pipe));
  1063. }
  1064. }
  1065. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1066. {
  1067. u32 val;
  1068. bool enabled;
  1069. if (HAS_PCH_LPT(dev_priv->dev)) {
  1070. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1071. return;
  1072. }
  1073. val = I915_READ(PCH_DREF_CONTROL);
  1074. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1075. DREF_SUPERSPREAD_SOURCE_MASK));
  1076. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1077. }
  1078. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1079. enum pipe pipe)
  1080. {
  1081. int reg;
  1082. u32 val;
  1083. bool enabled;
  1084. reg = TRANSCONF(pipe);
  1085. val = I915_READ(reg);
  1086. enabled = !!(val & TRANS_ENABLE);
  1087. WARN(enabled,
  1088. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1089. pipe_name(pipe));
  1090. }
  1091. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1092. enum pipe pipe, u32 port_sel, u32 val)
  1093. {
  1094. if ((val & DP_PORT_EN) == 0)
  1095. return false;
  1096. if (HAS_PCH_CPT(dev_priv->dev)) {
  1097. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1098. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1099. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1100. return false;
  1101. } else {
  1102. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1103. return false;
  1104. }
  1105. return true;
  1106. }
  1107. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1108. enum pipe pipe, u32 val)
  1109. {
  1110. if ((val & SDVO_ENABLE) == 0)
  1111. return false;
  1112. if (HAS_PCH_CPT(dev_priv->dev)) {
  1113. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1114. return false;
  1115. } else {
  1116. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1117. return false;
  1118. }
  1119. return true;
  1120. }
  1121. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1122. enum pipe pipe, u32 val)
  1123. {
  1124. if ((val & LVDS_PORT_EN) == 0)
  1125. return false;
  1126. if (HAS_PCH_CPT(dev_priv->dev)) {
  1127. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1128. return false;
  1129. } else {
  1130. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1131. return false;
  1132. }
  1133. return true;
  1134. }
  1135. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1136. enum pipe pipe, u32 val)
  1137. {
  1138. if ((val & ADPA_DAC_ENABLE) == 0)
  1139. return false;
  1140. if (HAS_PCH_CPT(dev_priv->dev)) {
  1141. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1142. return false;
  1143. } else {
  1144. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1145. return false;
  1146. }
  1147. return true;
  1148. }
  1149. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1150. enum pipe pipe, int reg, u32 port_sel)
  1151. {
  1152. u32 val = I915_READ(reg);
  1153. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1154. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1155. reg, pipe_name(pipe));
  1156. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1157. && (val & DP_PIPEB_SELECT),
  1158. "IBX PCH dp port still using transcoder B\n");
  1159. }
  1160. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1161. enum pipe pipe, int reg)
  1162. {
  1163. u32 val = I915_READ(reg);
  1164. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1165. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1166. reg, pipe_name(pipe));
  1167. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1168. && (val & SDVO_PIPE_B_SELECT),
  1169. "IBX PCH hdmi port still using transcoder B\n");
  1170. }
  1171. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1172. enum pipe pipe)
  1173. {
  1174. int reg;
  1175. u32 val;
  1176. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1177. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1178. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1179. reg = PCH_ADPA;
  1180. val = I915_READ(reg);
  1181. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1182. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1183. pipe_name(pipe));
  1184. reg = PCH_LVDS;
  1185. val = I915_READ(reg);
  1186. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1187. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1188. pipe_name(pipe));
  1189. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1190. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1191. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1192. }
  1193. /**
  1194. * intel_enable_pll - enable a PLL
  1195. * @dev_priv: i915 private structure
  1196. * @pipe: pipe PLL to enable
  1197. *
  1198. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1199. * make sure the PLL reg is writable first though, since the panel write
  1200. * protect mechanism may be enabled.
  1201. *
  1202. * Note! This is for pre-ILK only.
  1203. *
  1204. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1205. */
  1206. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1207. {
  1208. int reg;
  1209. u32 val;
  1210. assert_pipe_disabled(dev_priv, pipe);
  1211. /* No really, not for ILK+ */
  1212. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1213. /* PLL is protected by panel, make sure we can write it */
  1214. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1215. assert_panel_unlocked(dev_priv, pipe);
  1216. reg = DPLL(pipe);
  1217. val = I915_READ(reg);
  1218. val |= DPLL_VCO_ENABLE;
  1219. /* We do this three times for luck */
  1220. I915_WRITE(reg, val);
  1221. POSTING_READ(reg);
  1222. udelay(150); /* wait for warmup */
  1223. I915_WRITE(reg, val);
  1224. POSTING_READ(reg);
  1225. udelay(150); /* wait for warmup */
  1226. I915_WRITE(reg, val);
  1227. POSTING_READ(reg);
  1228. udelay(150); /* wait for warmup */
  1229. }
  1230. /**
  1231. * intel_disable_pll - disable a PLL
  1232. * @dev_priv: i915 private structure
  1233. * @pipe: pipe PLL to disable
  1234. *
  1235. * Disable the PLL for @pipe, making sure the pipe is off first.
  1236. *
  1237. * Note! This is for pre-ILK only.
  1238. */
  1239. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1240. {
  1241. int reg;
  1242. u32 val;
  1243. /* Don't disable pipe A or pipe A PLLs if needed */
  1244. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1245. return;
  1246. /* Make sure the pipe isn't still relying on us */
  1247. assert_pipe_disabled(dev_priv, pipe);
  1248. reg = DPLL(pipe);
  1249. val = I915_READ(reg);
  1250. val &= ~DPLL_VCO_ENABLE;
  1251. I915_WRITE(reg, val);
  1252. POSTING_READ(reg);
  1253. }
  1254. /* SBI access */
  1255. static void
  1256. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
  1257. enum intel_sbi_destination destination)
  1258. {
  1259. u32 tmp;
  1260. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1261. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1262. 100)) {
  1263. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1264. return;
  1265. }
  1266. I915_WRITE(SBI_ADDR, (reg << 16));
  1267. I915_WRITE(SBI_DATA, value);
  1268. if (destination == SBI_ICLK)
  1269. tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
  1270. else
  1271. tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
  1272. I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
  1273. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1274. 100)) {
  1275. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1276. return;
  1277. }
  1278. }
  1279. static u32
  1280. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
  1281. enum intel_sbi_destination destination)
  1282. {
  1283. u32 value = 0;
  1284. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1285. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1286. 100)) {
  1287. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1288. return 0;
  1289. }
  1290. I915_WRITE(SBI_ADDR, (reg << 16));
  1291. if (destination == SBI_ICLK)
  1292. value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
  1293. else
  1294. value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
  1295. I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
  1296. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1297. 100)) {
  1298. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1299. return 0;
  1300. }
  1301. return I915_READ(SBI_DATA);
  1302. }
  1303. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1304. {
  1305. u32 port_mask;
  1306. if (!port)
  1307. port_mask = DPLL_PORTB_READY_MASK;
  1308. else
  1309. port_mask = DPLL_PORTC_READY_MASK;
  1310. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1311. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1312. 'B' + port, I915_READ(DPLL(0)));
  1313. }
  1314. /**
  1315. * ironlake_enable_pch_pll - enable PCH PLL
  1316. * @dev_priv: i915 private structure
  1317. * @pipe: pipe PLL to enable
  1318. *
  1319. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1320. * drives the transcoder clock.
  1321. */
  1322. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1323. {
  1324. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1325. struct intel_pch_pll *pll;
  1326. int reg;
  1327. u32 val;
  1328. /* PCH PLLs only available on ILK, SNB and IVB */
  1329. BUG_ON(dev_priv->info->gen < 5);
  1330. pll = intel_crtc->pch_pll;
  1331. if (pll == NULL)
  1332. return;
  1333. if (WARN_ON(pll->refcount == 0))
  1334. return;
  1335. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1336. pll->pll_reg, pll->active, pll->on,
  1337. intel_crtc->base.base.id);
  1338. /* PCH refclock must be enabled first */
  1339. assert_pch_refclk_enabled(dev_priv);
  1340. if (pll->active++ && pll->on) {
  1341. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1342. return;
  1343. }
  1344. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1345. reg = pll->pll_reg;
  1346. val = I915_READ(reg);
  1347. val |= DPLL_VCO_ENABLE;
  1348. I915_WRITE(reg, val);
  1349. POSTING_READ(reg);
  1350. udelay(200);
  1351. pll->on = true;
  1352. }
  1353. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1354. {
  1355. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1356. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1357. int reg;
  1358. u32 val;
  1359. /* PCH only available on ILK+ */
  1360. BUG_ON(dev_priv->info->gen < 5);
  1361. if (pll == NULL)
  1362. return;
  1363. if (WARN_ON(pll->refcount == 0))
  1364. return;
  1365. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1366. pll->pll_reg, pll->active, pll->on,
  1367. intel_crtc->base.base.id);
  1368. if (WARN_ON(pll->active == 0)) {
  1369. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1370. return;
  1371. }
  1372. if (--pll->active) {
  1373. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1374. return;
  1375. }
  1376. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1377. /* Make sure transcoder isn't still depending on us */
  1378. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1379. reg = pll->pll_reg;
  1380. val = I915_READ(reg);
  1381. val &= ~DPLL_VCO_ENABLE;
  1382. I915_WRITE(reg, val);
  1383. POSTING_READ(reg);
  1384. udelay(200);
  1385. pll->on = false;
  1386. }
  1387. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1388. enum pipe pipe)
  1389. {
  1390. struct drm_device *dev = dev_priv->dev;
  1391. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1392. uint32_t reg, val, pipeconf_val;
  1393. /* PCH only available on ILK+ */
  1394. BUG_ON(dev_priv->info->gen < 5);
  1395. /* Make sure PCH DPLL is enabled */
  1396. assert_pch_pll_enabled(dev_priv,
  1397. to_intel_crtc(crtc)->pch_pll,
  1398. to_intel_crtc(crtc));
  1399. /* FDI must be feeding us bits for PCH ports */
  1400. assert_fdi_tx_enabled(dev_priv, pipe);
  1401. assert_fdi_rx_enabled(dev_priv, pipe);
  1402. if (HAS_PCH_CPT(dev)) {
  1403. /* Workaround: Set the timing override bit before enabling the
  1404. * pch transcoder. */
  1405. reg = TRANS_CHICKEN2(pipe);
  1406. val = I915_READ(reg);
  1407. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1408. I915_WRITE(reg, val);
  1409. }
  1410. reg = TRANSCONF(pipe);
  1411. val = I915_READ(reg);
  1412. pipeconf_val = I915_READ(PIPECONF(pipe));
  1413. if (HAS_PCH_IBX(dev_priv->dev)) {
  1414. /*
  1415. * make the BPC in transcoder be consistent with
  1416. * that in pipeconf reg.
  1417. */
  1418. val &= ~PIPECONF_BPC_MASK;
  1419. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1420. }
  1421. val &= ~TRANS_INTERLACE_MASK;
  1422. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1423. if (HAS_PCH_IBX(dev_priv->dev) &&
  1424. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1425. val |= TRANS_LEGACY_INTERLACED_ILK;
  1426. else
  1427. val |= TRANS_INTERLACED;
  1428. else
  1429. val |= TRANS_PROGRESSIVE;
  1430. I915_WRITE(reg, val | TRANS_ENABLE);
  1431. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1432. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1433. }
  1434. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1435. enum transcoder cpu_transcoder)
  1436. {
  1437. u32 val, pipeconf_val;
  1438. /* PCH only available on ILK+ */
  1439. BUG_ON(dev_priv->info->gen < 5);
  1440. /* FDI must be feeding us bits for PCH ports */
  1441. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1442. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1443. /* Workaround: set timing override bit. */
  1444. val = I915_READ(_TRANSA_CHICKEN2);
  1445. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1446. I915_WRITE(_TRANSA_CHICKEN2, val);
  1447. val = TRANS_ENABLE;
  1448. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1449. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1450. PIPECONF_INTERLACED_ILK)
  1451. val |= TRANS_INTERLACED;
  1452. else
  1453. val |= TRANS_PROGRESSIVE;
  1454. I915_WRITE(TRANSCONF(TRANSCODER_A), val);
  1455. if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
  1456. DRM_ERROR("Failed to enable PCH transcoder\n");
  1457. }
  1458. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1459. enum pipe pipe)
  1460. {
  1461. struct drm_device *dev = dev_priv->dev;
  1462. uint32_t reg, val;
  1463. /* FDI relies on the transcoder */
  1464. assert_fdi_tx_disabled(dev_priv, pipe);
  1465. assert_fdi_rx_disabled(dev_priv, pipe);
  1466. /* Ports must be off as well */
  1467. assert_pch_ports_disabled(dev_priv, pipe);
  1468. reg = TRANSCONF(pipe);
  1469. val = I915_READ(reg);
  1470. val &= ~TRANS_ENABLE;
  1471. I915_WRITE(reg, val);
  1472. /* wait for PCH transcoder off, transcoder state */
  1473. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1474. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1475. if (!HAS_PCH_IBX(dev)) {
  1476. /* Workaround: Clear the timing override chicken bit again. */
  1477. reg = TRANS_CHICKEN2(pipe);
  1478. val = I915_READ(reg);
  1479. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1480. I915_WRITE(reg, val);
  1481. }
  1482. }
  1483. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1484. {
  1485. u32 val;
  1486. val = I915_READ(_TRANSACONF);
  1487. val &= ~TRANS_ENABLE;
  1488. I915_WRITE(_TRANSACONF, val);
  1489. /* wait for PCH transcoder off, transcoder state */
  1490. if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
  1491. DRM_ERROR("Failed to disable PCH transcoder\n");
  1492. /* Workaround: clear timing override bit. */
  1493. val = I915_READ(_TRANSA_CHICKEN2);
  1494. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1495. I915_WRITE(_TRANSA_CHICKEN2, val);
  1496. }
  1497. /**
  1498. * intel_enable_pipe - enable a pipe, asserting requirements
  1499. * @dev_priv: i915 private structure
  1500. * @pipe: pipe to enable
  1501. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1502. *
  1503. * Enable @pipe, making sure that various hardware specific requirements
  1504. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1505. *
  1506. * @pipe should be %PIPE_A or %PIPE_B.
  1507. *
  1508. * Will wait until the pipe is actually running (i.e. first vblank) before
  1509. * returning.
  1510. */
  1511. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1512. bool pch_port)
  1513. {
  1514. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1515. pipe);
  1516. enum pipe pch_transcoder;
  1517. int reg;
  1518. u32 val;
  1519. assert_planes_disabled(dev_priv, pipe);
  1520. assert_sprites_disabled(dev_priv, pipe);
  1521. if (HAS_PCH_LPT(dev_priv->dev))
  1522. pch_transcoder = TRANSCODER_A;
  1523. else
  1524. pch_transcoder = pipe;
  1525. /*
  1526. * A pipe without a PLL won't actually be able to drive bits from
  1527. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1528. * need the check.
  1529. */
  1530. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1531. assert_pll_enabled(dev_priv, pipe);
  1532. else {
  1533. if (pch_port) {
  1534. /* if driving the PCH, we need FDI enabled */
  1535. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1536. assert_fdi_tx_pll_enabled(dev_priv,
  1537. (enum pipe) cpu_transcoder);
  1538. }
  1539. /* FIXME: assert CPU port conditions for SNB+ */
  1540. }
  1541. reg = PIPECONF(cpu_transcoder);
  1542. val = I915_READ(reg);
  1543. if (val & PIPECONF_ENABLE)
  1544. return;
  1545. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1546. intel_wait_for_vblank(dev_priv->dev, pipe);
  1547. }
  1548. /**
  1549. * intel_disable_pipe - disable a pipe, asserting requirements
  1550. * @dev_priv: i915 private structure
  1551. * @pipe: pipe to disable
  1552. *
  1553. * Disable @pipe, making sure that various hardware specific requirements
  1554. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1555. *
  1556. * @pipe should be %PIPE_A or %PIPE_B.
  1557. *
  1558. * Will wait until the pipe has shut down before returning.
  1559. */
  1560. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1561. enum pipe pipe)
  1562. {
  1563. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1564. pipe);
  1565. int reg;
  1566. u32 val;
  1567. /*
  1568. * Make sure planes won't keep trying to pump pixels to us,
  1569. * or we might hang the display.
  1570. */
  1571. assert_planes_disabled(dev_priv, pipe);
  1572. assert_sprites_disabled(dev_priv, pipe);
  1573. /* Don't disable pipe A or pipe A PLLs if needed */
  1574. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1575. return;
  1576. reg = PIPECONF(cpu_transcoder);
  1577. val = I915_READ(reg);
  1578. if ((val & PIPECONF_ENABLE) == 0)
  1579. return;
  1580. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1581. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1582. }
  1583. /*
  1584. * Plane regs are double buffered, going from enabled->disabled needs a
  1585. * trigger in order to latch. The display address reg provides this.
  1586. */
  1587. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1588. enum plane plane)
  1589. {
  1590. if (dev_priv->info->gen >= 4)
  1591. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1592. else
  1593. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1594. }
  1595. /**
  1596. * intel_enable_plane - enable a display plane on a given pipe
  1597. * @dev_priv: i915 private structure
  1598. * @plane: plane to enable
  1599. * @pipe: pipe being fed
  1600. *
  1601. * Enable @plane on @pipe, making sure that @pipe is running first.
  1602. */
  1603. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1604. enum plane plane, enum pipe pipe)
  1605. {
  1606. int reg;
  1607. u32 val;
  1608. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1609. assert_pipe_enabled(dev_priv, pipe);
  1610. reg = DSPCNTR(plane);
  1611. val = I915_READ(reg);
  1612. if (val & DISPLAY_PLANE_ENABLE)
  1613. return;
  1614. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1615. intel_flush_display_plane(dev_priv, plane);
  1616. intel_wait_for_vblank(dev_priv->dev, pipe);
  1617. }
  1618. /**
  1619. * intel_disable_plane - disable a display plane
  1620. * @dev_priv: i915 private structure
  1621. * @plane: plane to disable
  1622. * @pipe: pipe consuming the data
  1623. *
  1624. * Disable @plane; should be an independent operation.
  1625. */
  1626. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1627. enum plane plane, enum pipe pipe)
  1628. {
  1629. int reg;
  1630. u32 val;
  1631. reg = DSPCNTR(plane);
  1632. val = I915_READ(reg);
  1633. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1634. return;
  1635. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1636. intel_flush_display_plane(dev_priv, plane);
  1637. intel_wait_for_vblank(dev_priv->dev, pipe);
  1638. }
  1639. static bool need_vtd_wa(struct drm_device *dev)
  1640. {
  1641. #ifdef CONFIG_INTEL_IOMMU
  1642. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1643. return true;
  1644. #endif
  1645. return false;
  1646. }
  1647. int
  1648. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1649. struct drm_i915_gem_object *obj,
  1650. struct intel_ring_buffer *pipelined)
  1651. {
  1652. struct drm_i915_private *dev_priv = dev->dev_private;
  1653. u32 alignment;
  1654. int ret;
  1655. switch (obj->tiling_mode) {
  1656. case I915_TILING_NONE:
  1657. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1658. alignment = 128 * 1024;
  1659. else if (INTEL_INFO(dev)->gen >= 4)
  1660. alignment = 4 * 1024;
  1661. else
  1662. alignment = 64 * 1024;
  1663. break;
  1664. case I915_TILING_X:
  1665. /* pin() will align the object as required by fence */
  1666. alignment = 0;
  1667. break;
  1668. case I915_TILING_Y:
  1669. /* Despite that we check this in framebuffer_init userspace can
  1670. * screw us over and change the tiling after the fact. Only
  1671. * pinned buffers can't change their tiling. */
  1672. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1673. return -EINVAL;
  1674. default:
  1675. BUG();
  1676. }
  1677. /* Note that the w/a also requires 64 PTE of padding following the
  1678. * bo. We currently fill all unused PTE with the shadow page and so
  1679. * we should always have valid PTE following the scanout preventing
  1680. * the VT-d warning.
  1681. */
  1682. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1683. alignment = 256 * 1024;
  1684. dev_priv->mm.interruptible = false;
  1685. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1686. if (ret)
  1687. goto err_interruptible;
  1688. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1689. * fence, whereas 965+ only requires a fence if using
  1690. * framebuffer compression. For simplicity, we always install
  1691. * a fence as the cost is not that onerous.
  1692. */
  1693. ret = i915_gem_object_get_fence(obj);
  1694. if (ret)
  1695. goto err_unpin;
  1696. i915_gem_object_pin_fence(obj);
  1697. dev_priv->mm.interruptible = true;
  1698. return 0;
  1699. err_unpin:
  1700. i915_gem_object_unpin(obj);
  1701. err_interruptible:
  1702. dev_priv->mm.interruptible = true;
  1703. return ret;
  1704. }
  1705. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1706. {
  1707. i915_gem_object_unpin_fence(obj);
  1708. i915_gem_object_unpin(obj);
  1709. }
  1710. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1711. * is assumed to be a power-of-two. */
  1712. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1713. unsigned int tiling_mode,
  1714. unsigned int cpp,
  1715. unsigned int pitch)
  1716. {
  1717. if (tiling_mode != I915_TILING_NONE) {
  1718. unsigned int tile_rows, tiles;
  1719. tile_rows = *y / 8;
  1720. *y %= 8;
  1721. tiles = *x / (512/cpp);
  1722. *x %= 512/cpp;
  1723. return tile_rows * pitch * 8 + tiles * 4096;
  1724. } else {
  1725. unsigned int offset;
  1726. offset = *y * pitch + *x * cpp;
  1727. *y = 0;
  1728. *x = (offset & 4095) / cpp;
  1729. return offset & -4096;
  1730. }
  1731. }
  1732. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1733. int x, int y)
  1734. {
  1735. struct drm_device *dev = crtc->dev;
  1736. struct drm_i915_private *dev_priv = dev->dev_private;
  1737. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1738. struct intel_framebuffer *intel_fb;
  1739. struct drm_i915_gem_object *obj;
  1740. int plane = intel_crtc->plane;
  1741. unsigned long linear_offset;
  1742. u32 dspcntr;
  1743. u32 reg;
  1744. switch (plane) {
  1745. case 0:
  1746. case 1:
  1747. break;
  1748. default:
  1749. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1750. return -EINVAL;
  1751. }
  1752. intel_fb = to_intel_framebuffer(fb);
  1753. obj = intel_fb->obj;
  1754. reg = DSPCNTR(plane);
  1755. dspcntr = I915_READ(reg);
  1756. /* Mask out pixel format bits in case we change it */
  1757. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1758. switch (fb->pixel_format) {
  1759. case DRM_FORMAT_C8:
  1760. dspcntr |= DISPPLANE_8BPP;
  1761. break;
  1762. case DRM_FORMAT_XRGB1555:
  1763. case DRM_FORMAT_ARGB1555:
  1764. dspcntr |= DISPPLANE_BGRX555;
  1765. break;
  1766. case DRM_FORMAT_RGB565:
  1767. dspcntr |= DISPPLANE_BGRX565;
  1768. break;
  1769. case DRM_FORMAT_XRGB8888:
  1770. case DRM_FORMAT_ARGB8888:
  1771. dspcntr |= DISPPLANE_BGRX888;
  1772. break;
  1773. case DRM_FORMAT_XBGR8888:
  1774. case DRM_FORMAT_ABGR8888:
  1775. dspcntr |= DISPPLANE_RGBX888;
  1776. break;
  1777. case DRM_FORMAT_XRGB2101010:
  1778. case DRM_FORMAT_ARGB2101010:
  1779. dspcntr |= DISPPLANE_BGRX101010;
  1780. break;
  1781. case DRM_FORMAT_XBGR2101010:
  1782. case DRM_FORMAT_ABGR2101010:
  1783. dspcntr |= DISPPLANE_RGBX101010;
  1784. break;
  1785. default:
  1786. BUG();
  1787. }
  1788. if (INTEL_INFO(dev)->gen >= 4) {
  1789. if (obj->tiling_mode != I915_TILING_NONE)
  1790. dspcntr |= DISPPLANE_TILED;
  1791. else
  1792. dspcntr &= ~DISPPLANE_TILED;
  1793. }
  1794. I915_WRITE(reg, dspcntr);
  1795. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1796. if (INTEL_INFO(dev)->gen >= 4) {
  1797. intel_crtc->dspaddr_offset =
  1798. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1799. fb->bits_per_pixel / 8,
  1800. fb->pitches[0]);
  1801. linear_offset -= intel_crtc->dspaddr_offset;
  1802. } else {
  1803. intel_crtc->dspaddr_offset = linear_offset;
  1804. }
  1805. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1806. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1807. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1808. if (INTEL_INFO(dev)->gen >= 4) {
  1809. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1810. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1811. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1812. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1813. } else
  1814. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1815. POSTING_READ(reg);
  1816. return 0;
  1817. }
  1818. static int ironlake_update_plane(struct drm_crtc *crtc,
  1819. struct drm_framebuffer *fb, int x, int y)
  1820. {
  1821. struct drm_device *dev = crtc->dev;
  1822. struct drm_i915_private *dev_priv = dev->dev_private;
  1823. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1824. struct intel_framebuffer *intel_fb;
  1825. struct drm_i915_gem_object *obj;
  1826. int plane = intel_crtc->plane;
  1827. unsigned long linear_offset;
  1828. u32 dspcntr;
  1829. u32 reg;
  1830. switch (plane) {
  1831. case 0:
  1832. case 1:
  1833. case 2:
  1834. break;
  1835. default:
  1836. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1837. return -EINVAL;
  1838. }
  1839. intel_fb = to_intel_framebuffer(fb);
  1840. obj = intel_fb->obj;
  1841. reg = DSPCNTR(plane);
  1842. dspcntr = I915_READ(reg);
  1843. /* Mask out pixel format bits in case we change it */
  1844. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1845. switch (fb->pixel_format) {
  1846. case DRM_FORMAT_C8:
  1847. dspcntr |= DISPPLANE_8BPP;
  1848. break;
  1849. case DRM_FORMAT_RGB565:
  1850. dspcntr |= DISPPLANE_BGRX565;
  1851. break;
  1852. case DRM_FORMAT_XRGB8888:
  1853. case DRM_FORMAT_ARGB8888:
  1854. dspcntr |= DISPPLANE_BGRX888;
  1855. break;
  1856. case DRM_FORMAT_XBGR8888:
  1857. case DRM_FORMAT_ABGR8888:
  1858. dspcntr |= DISPPLANE_RGBX888;
  1859. break;
  1860. case DRM_FORMAT_XRGB2101010:
  1861. case DRM_FORMAT_ARGB2101010:
  1862. dspcntr |= DISPPLANE_BGRX101010;
  1863. break;
  1864. case DRM_FORMAT_XBGR2101010:
  1865. case DRM_FORMAT_ABGR2101010:
  1866. dspcntr |= DISPPLANE_RGBX101010;
  1867. break;
  1868. default:
  1869. BUG();
  1870. }
  1871. if (obj->tiling_mode != I915_TILING_NONE)
  1872. dspcntr |= DISPPLANE_TILED;
  1873. else
  1874. dspcntr &= ~DISPPLANE_TILED;
  1875. /* must disable */
  1876. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1877. I915_WRITE(reg, dspcntr);
  1878. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1879. intel_crtc->dspaddr_offset =
  1880. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1881. fb->bits_per_pixel / 8,
  1882. fb->pitches[0]);
  1883. linear_offset -= intel_crtc->dspaddr_offset;
  1884. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1885. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1886. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1887. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1888. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1889. if (IS_HASWELL(dev)) {
  1890. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1891. } else {
  1892. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1893. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1894. }
  1895. POSTING_READ(reg);
  1896. return 0;
  1897. }
  1898. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1899. static int
  1900. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1901. int x, int y, enum mode_set_atomic state)
  1902. {
  1903. struct drm_device *dev = crtc->dev;
  1904. struct drm_i915_private *dev_priv = dev->dev_private;
  1905. if (dev_priv->display.disable_fbc)
  1906. dev_priv->display.disable_fbc(dev);
  1907. intel_increase_pllclock(crtc);
  1908. return dev_priv->display.update_plane(crtc, fb, x, y);
  1909. }
  1910. void intel_display_handle_reset(struct drm_device *dev)
  1911. {
  1912. struct drm_i915_private *dev_priv = dev->dev_private;
  1913. struct drm_crtc *crtc;
  1914. /*
  1915. * Flips in the rings have been nuked by the reset,
  1916. * so complete all pending flips so that user space
  1917. * will get its events and not get stuck.
  1918. *
  1919. * Also update the base address of all primary
  1920. * planes to the the last fb to make sure we're
  1921. * showing the correct fb after a reset.
  1922. *
  1923. * Need to make two loops over the crtcs so that we
  1924. * don't try to grab a crtc mutex before the
  1925. * pending_flip_queue really got woken up.
  1926. */
  1927. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1928. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1929. enum plane plane = intel_crtc->plane;
  1930. intel_prepare_page_flip(dev, plane);
  1931. intel_finish_page_flip_plane(dev, plane);
  1932. }
  1933. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1934. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1935. mutex_lock(&crtc->mutex);
  1936. if (intel_crtc->active)
  1937. dev_priv->display.update_plane(crtc, crtc->fb,
  1938. crtc->x, crtc->y);
  1939. mutex_unlock(&crtc->mutex);
  1940. }
  1941. }
  1942. static int
  1943. intel_finish_fb(struct drm_framebuffer *old_fb)
  1944. {
  1945. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1946. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1947. bool was_interruptible = dev_priv->mm.interruptible;
  1948. int ret;
  1949. /* Big Hammer, we also need to ensure that any pending
  1950. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1951. * current scanout is retired before unpinning the old
  1952. * framebuffer.
  1953. *
  1954. * This should only fail upon a hung GPU, in which case we
  1955. * can safely continue.
  1956. */
  1957. dev_priv->mm.interruptible = false;
  1958. ret = i915_gem_object_finish_gpu(obj);
  1959. dev_priv->mm.interruptible = was_interruptible;
  1960. return ret;
  1961. }
  1962. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1963. {
  1964. struct drm_device *dev = crtc->dev;
  1965. struct drm_i915_master_private *master_priv;
  1966. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1967. if (!dev->primary->master)
  1968. return;
  1969. master_priv = dev->primary->master->driver_priv;
  1970. if (!master_priv->sarea_priv)
  1971. return;
  1972. switch (intel_crtc->pipe) {
  1973. case 0:
  1974. master_priv->sarea_priv->pipeA_x = x;
  1975. master_priv->sarea_priv->pipeA_y = y;
  1976. break;
  1977. case 1:
  1978. master_priv->sarea_priv->pipeB_x = x;
  1979. master_priv->sarea_priv->pipeB_y = y;
  1980. break;
  1981. default:
  1982. break;
  1983. }
  1984. }
  1985. static int
  1986. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1987. struct drm_framebuffer *fb)
  1988. {
  1989. struct drm_device *dev = crtc->dev;
  1990. struct drm_i915_private *dev_priv = dev->dev_private;
  1991. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1992. struct drm_framebuffer *old_fb;
  1993. int ret;
  1994. /* no fb bound */
  1995. if (!fb) {
  1996. DRM_ERROR("No FB bound\n");
  1997. return 0;
  1998. }
  1999. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  2000. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  2001. plane_name(intel_crtc->plane),
  2002. INTEL_INFO(dev)->num_pipes);
  2003. return -EINVAL;
  2004. }
  2005. mutex_lock(&dev->struct_mutex);
  2006. ret = intel_pin_and_fence_fb_obj(dev,
  2007. to_intel_framebuffer(fb)->obj,
  2008. NULL);
  2009. if (ret != 0) {
  2010. mutex_unlock(&dev->struct_mutex);
  2011. DRM_ERROR("pin & fence failed\n");
  2012. return ret;
  2013. }
  2014. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2015. if (ret) {
  2016. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2017. mutex_unlock(&dev->struct_mutex);
  2018. DRM_ERROR("failed to update base address\n");
  2019. return ret;
  2020. }
  2021. old_fb = crtc->fb;
  2022. crtc->fb = fb;
  2023. crtc->x = x;
  2024. crtc->y = y;
  2025. if (old_fb) {
  2026. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2027. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2028. }
  2029. intel_update_fbc(dev);
  2030. mutex_unlock(&dev->struct_mutex);
  2031. intel_crtc_update_sarea_pos(crtc, x, y);
  2032. return 0;
  2033. }
  2034. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2035. {
  2036. struct drm_device *dev = crtc->dev;
  2037. struct drm_i915_private *dev_priv = dev->dev_private;
  2038. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2039. int pipe = intel_crtc->pipe;
  2040. u32 reg, temp;
  2041. /* enable normal train */
  2042. reg = FDI_TX_CTL(pipe);
  2043. temp = I915_READ(reg);
  2044. if (IS_IVYBRIDGE(dev)) {
  2045. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2046. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2047. } else {
  2048. temp &= ~FDI_LINK_TRAIN_NONE;
  2049. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2050. }
  2051. I915_WRITE(reg, temp);
  2052. reg = FDI_RX_CTL(pipe);
  2053. temp = I915_READ(reg);
  2054. if (HAS_PCH_CPT(dev)) {
  2055. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2056. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2057. } else {
  2058. temp &= ~FDI_LINK_TRAIN_NONE;
  2059. temp |= FDI_LINK_TRAIN_NONE;
  2060. }
  2061. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2062. /* wait one idle pattern time */
  2063. POSTING_READ(reg);
  2064. udelay(1000);
  2065. /* IVB wants error correction enabled */
  2066. if (IS_IVYBRIDGE(dev))
  2067. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2068. FDI_FE_ERRC_ENABLE);
  2069. }
  2070. static void ivb_modeset_global_resources(struct drm_device *dev)
  2071. {
  2072. struct drm_i915_private *dev_priv = dev->dev_private;
  2073. struct intel_crtc *pipe_B_crtc =
  2074. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2075. struct intel_crtc *pipe_C_crtc =
  2076. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2077. uint32_t temp;
  2078. /* When everything is off disable fdi C so that we could enable fdi B
  2079. * with all lanes. XXX: This misses the case where a pipe is not using
  2080. * any pch resources and so doesn't need any fdi lanes. */
  2081. if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
  2082. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2083. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2084. temp = I915_READ(SOUTH_CHICKEN1);
  2085. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2086. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2087. I915_WRITE(SOUTH_CHICKEN1, temp);
  2088. }
  2089. }
  2090. /* The FDI link training functions for ILK/Ibexpeak. */
  2091. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2092. {
  2093. struct drm_device *dev = crtc->dev;
  2094. struct drm_i915_private *dev_priv = dev->dev_private;
  2095. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2096. int pipe = intel_crtc->pipe;
  2097. int plane = intel_crtc->plane;
  2098. u32 reg, temp, tries;
  2099. /* FDI needs bits from pipe & plane first */
  2100. assert_pipe_enabled(dev_priv, pipe);
  2101. assert_plane_enabled(dev_priv, plane);
  2102. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2103. for train result */
  2104. reg = FDI_RX_IMR(pipe);
  2105. temp = I915_READ(reg);
  2106. temp &= ~FDI_RX_SYMBOL_LOCK;
  2107. temp &= ~FDI_RX_BIT_LOCK;
  2108. I915_WRITE(reg, temp);
  2109. I915_READ(reg);
  2110. udelay(150);
  2111. /* enable CPU FDI TX and PCH FDI RX */
  2112. reg = FDI_TX_CTL(pipe);
  2113. temp = I915_READ(reg);
  2114. temp &= ~(7 << 19);
  2115. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2116. temp &= ~FDI_LINK_TRAIN_NONE;
  2117. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2118. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2119. reg = FDI_RX_CTL(pipe);
  2120. temp = I915_READ(reg);
  2121. temp &= ~FDI_LINK_TRAIN_NONE;
  2122. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2123. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2124. POSTING_READ(reg);
  2125. udelay(150);
  2126. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2127. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2128. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2129. FDI_RX_PHASE_SYNC_POINTER_EN);
  2130. reg = FDI_RX_IIR(pipe);
  2131. for (tries = 0; tries < 5; tries++) {
  2132. temp = I915_READ(reg);
  2133. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2134. if ((temp & FDI_RX_BIT_LOCK)) {
  2135. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2136. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2137. break;
  2138. }
  2139. }
  2140. if (tries == 5)
  2141. DRM_ERROR("FDI train 1 fail!\n");
  2142. /* Train 2 */
  2143. reg = FDI_TX_CTL(pipe);
  2144. temp = I915_READ(reg);
  2145. temp &= ~FDI_LINK_TRAIN_NONE;
  2146. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2147. I915_WRITE(reg, temp);
  2148. reg = FDI_RX_CTL(pipe);
  2149. temp = I915_READ(reg);
  2150. temp &= ~FDI_LINK_TRAIN_NONE;
  2151. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2152. I915_WRITE(reg, temp);
  2153. POSTING_READ(reg);
  2154. udelay(150);
  2155. reg = FDI_RX_IIR(pipe);
  2156. for (tries = 0; tries < 5; tries++) {
  2157. temp = I915_READ(reg);
  2158. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2159. if (temp & FDI_RX_SYMBOL_LOCK) {
  2160. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2161. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2162. break;
  2163. }
  2164. }
  2165. if (tries == 5)
  2166. DRM_ERROR("FDI train 2 fail!\n");
  2167. DRM_DEBUG_KMS("FDI train done\n");
  2168. }
  2169. static const int snb_b_fdi_train_param[] = {
  2170. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2171. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2172. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2173. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2174. };
  2175. /* The FDI link training functions for SNB/Cougarpoint. */
  2176. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2177. {
  2178. struct drm_device *dev = crtc->dev;
  2179. struct drm_i915_private *dev_priv = dev->dev_private;
  2180. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2181. int pipe = intel_crtc->pipe;
  2182. u32 reg, temp, i, retry;
  2183. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2184. for train result */
  2185. reg = FDI_RX_IMR(pipe);
  2186. temp = I915_READ(reg);
  2187. temp &= ~FDI_RX_SYMBOL_LOCK;
  2188. temp &= ~FDI_RX_BIT_LOCK;
  2189. I915_WRITE(reg, temp);
  2190. POSTING_READ(reg);
  2191. udelay(150);
  2192. /* enable CPU FDI TX and PCH FDI RX */
  2193. reg = FDI_TX_CTL(pipe);
  2194. temp = I915_READ(reg);
  2195. temp &= ~(7 << 19);
  2196. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2197. temp &= ~FDI_LINK_TRAIN_NONE;
  2198. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2199. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2200. /* SNB-B */
  2201. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2202. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2203. I915_WRITE(FDI_RX_MISC(pipe),
  2204. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2205. reg = FDI_RX_CTL(pipe);
  2206. temp = I915_READ(reg);
  2207. if (HAS_PCH_CPT(dev)) {
  2208. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2209. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2210. } else {
  2211. temp &= ~FDI_LINK_TRAIN_NONE;
  2212. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2213. }
  2214. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2215. POSTING_READ(reg);
  2216. udelay(150);
  2217. for (i = 0; i < 4; i++) {
  2218. reg = FDI_TX_CTL(pipe);
  2219. temp = I915_READ(reg);
  2220. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2221. temp |= snb_b_fdi_train_param[i];
  2222. I915_WRITE(reg, temp);
  2223. POSTING_READ(reg);
  2224. udelay(500);
  2225. for (retry = 0; retry < 5; retry++) {
  2226. reg = FDI_RX_IIR(pipe);
  2227. temp = I915_READ(reg);
  2228. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2229. if (temp & FDI_RX_BIT_LOCK) {
  2230. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2231. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2232. break;
  2233. }
  2234. udelay(50);
  2235. }
  2236. if (retry < 5)
  2237. break;
  2238. }
  2239. if (i == 4)
  2240. DRM_ERROR("FDI train 1 fail!\n");
  2241. /* Train 2 */
  2242. reg = FDI_TX_CTL(pipe);
  2243. temp = I915_READ(reg);
  2244. temp &= ~FDI_LINK_TRAIN_NONE;
  2245. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2246. if (IS_GEN6(dev)) {
  2247. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2248. /* SNB-B */
  2249. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2250. }
  2251. I915_WRITE(reg, temp);
  2252. reg = FDI_RX_CTL(pipe);
  2253. temp = I915_READ(reg);
  2254. if (HAS_PCH_CPT(dev)) {
  2255. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2256. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2257. } else {
  2258. temp &= ~FDI_LINK_TRAIN_NONE;
  2259. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2260. }
  2261. I915_WRITE(reg, temp);
  2262. POSTING_READ(reg);
  2263. udelay(150);
  2264. for (i = 0; i < 4; i++) {
  2265. reg = FDI_TX_CTL(pipe);
  2266. temp = I915_READ(reg);
  2267. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2268. temp |= snb_b_fdi_train_param[i];
  2269. I915_WRITE(reg, temp);
  2270. POSTING_READ(reg);
  2271. udelay(500);
  2272. for (retry = 0; retry < 5; retry++) {
  2273. reg = FDI_RX_IIR(pipe);
  2274. temp = I915_READ(reg);
  2275. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2276. if (temp & FDI_RX_SYMBOL_LOCK) {
  2277. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2278. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2279. break;
  2280. }
  2281. udelay(50);
  2282. }
  2283. if (retry < 5)
  2284. break;
  2285. }
  2286. if (i == 4)
  2287. DRM_ERROR("FDI train 2 fail!\n");
  2288. DRM_DEBUG_KMS("FDI train done.\n");
  2289. }
  2290. /* Manual link training for Ivy Bridge A0 parts */
  2291. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2292. {
  2293. struct drm_device *dev = crtc->dev;
  2294. struct drm_i915_private *dev_priv = dev->dev_private;
  2295. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2296. int pipe = intel_crtc->pipe;
  2297. u32 reg, temp, i;
  2298. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2299. for train result */
  2300. reg = FDI_RX_IMR(pipe);
  2301. temp = I915_READ(reg);
  2302. temp &= ~FDI_RX_SYMBOL_LOCK;
  2303. temp &= ~FDI_RX_BIT_LOCK;
  2304. I915_WRITE(reg, temp);
  2305. POSTING_READ(reg);
  2306. udelay(150);
  2307. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2308. I915_READ(FDI_RX_IIR(pipe)));
  2309. /* enable CPU FDI TX and PCH FDI RX */
  2310. reg = FDI_TX_CTL(pipe);
  2311. temp = I915_READ(reg);
  2312. temp &= ~(7 << 19);
  2313. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2314. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2315. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2316. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2317. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2318. temp |= FDI_COMPOSITE_SYNC;
  2319. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2320. I915_WRITE(FDI_RX_MISC(pipe),
  2321. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2322. reg = FDI_RX_CTL(pipe);
  2323. temp = I915_READ(reg);
  2324. temp &= ~FDI_LINK_TRAIN_AUTO;
  2325. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2326. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2327. temp |= FDI_COMPOSITE_SYNC;
  2328. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2329. POSTING_READ(reg);
  2330. udelay(150);
  2331. for (i = 0; i < 4; i++) {
  2332. reg = FDI_TX_CTL(pipe);
  2333. temp = I915_READ(reg);
  2334. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2335. temp |= snb_b_fdi_train_param[i];
  2336. I915_WRITE(reg, temp);
  2337. POSTING_READ(reg);
  2338. udelay(500);
  2339. reg = FDI_RX_IIR(pipe);
  2340. temp = I915_READ(reg);
  2341. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2342. if (temp & FDI_RX_BIT_LOCK ||
  2343. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2344. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2345. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2346. break;
  2347. }
  2348. }
  2349. if (i == 4)
  2350. DRM_ERROR("FDI train 1 fail!\n");
  2351. /* Train 2 */
  2352. reg = FDI_TX_CTL(pipe);
  2353. temp = I915_READ(reg);
  2354. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2355. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2356. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2357. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2358. I915_WRITE(reg, temp);
  2359. reg = FDI_RX_CTL(pipe);
  2360. temp = I915_READ(reg);
  2361. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2362. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2363. I915_WRITE(reg, temp);
  2364. POSTING_READ(reg);
  2365. udelay(150);
  2366. for (i = 0; i < 4; i++) {
  2367. reg = FDI_TX_CTL(pipe);
  2368. temp = I915_READ(reg);
  2369. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2370. temp |= snb_b_fdi_train_param[i];
  2371. I915_WRITE(reg, temp);
  2372. POSTING_READ(reg);
  2373. udelay(500);
  2374. reg = FDI_RX_IIR(pipe);
  2375. temp = I915_READ(reg);
  2376. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2377. if (temp & FDI_RX_SYMBOL_LOCK) {
  2378. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2379. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2380. break;
  2381. }
  2382. }
  2383. if (i == 4)
  2384. DRM_ERROR("FDI train 2 fail!\n");
  2385. DRM_DEBUG_KMS("FDI train done.\n");
  2386. }
  2387. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2388. {
  2389. struct drm_device *dev = intel_crtc->base.dev;
  2390. struct drm_i915_private *dev_priv = dev->dev_private;
  2391. int pipe = intel_crtc->pipe;
  2392. u32 reg, temp;
  2393. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2394. reg = FDI_RX_CTL(pipe);
  2395. temp = I915_READ(reg);
  2396. temp &= ~((0x7 << 19) | (0x7 << 16));
  2397. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2398. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2399. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2400. POSTING_READ(reg);
  2401. udelay(200);
  2402. /* Switch from Rawclk to PCDclk */
  2403. temp = I915_READ(reg);
  2404. I915_WRITE(reg, temp | FDI_PCDCLK);
  2405. POSTING_READ(reg);
  2406. udelay(200);
  2407. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2408. reg = FDI_TX_CTL(pipe);
  2409. temp = I915_READ(reg);
  2410. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2411. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2412. POSTING_READ(reg);
  2413. udelay(100);
  2414. }
  2415. }
  2416. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2417. {
  2418. struct drm_device *dev = intel_crtc->base.dev;
  2419. struct drm_i915_private *dev_priv = dev->dev_private;
  2420. int pipe = intel_crtc->pipe;
  2421. u32 reg, temp;
  2422. /* Switch from PCDclk to Rawclk */
  2423. reg = FDI_RX_CTL(pipe);
  2424. temp = I915_READ(reg);
  2425. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2426. /* Disable CPU FDI TX PLL */
  2427. reg = FDI_TX_CTL(pipe);
  2428. temp = I915_READ(reg);
  2429. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2430. POSTING_READ(reg);
  2431. udelay(100);
  2432. reg = FDI_RX_CTL(pipe);
  2433. temp = I915_READ(reg);
  2434. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2435. /* Wait for the clocks to turn off. */
  2436. POSTING_READ(reg);
  2437. udelay(100);
  2438. }
  2439. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2440. {
  2441. struct drm_device *dev = crtc->dev;
  2442. struct drm_i915_private *dev_priv = dev->dev_private;
  2443. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2444. int pipe = intel_crtc->pipe;
  2445. u32 reg, temp;
  2446. /* disable CPU FDI tx and PCH FDI rx */
  2447. reg = FDI_TX_CTL(pipe);
  2448. temp = I915_READ(reg);
  2449. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2450. POSTING_READ(reg);
  2451. reg = FDI_RX_CTL(pipe);
  2452. temp = I915_READ(reg);
  2453. temp &= ~(0x7 << 16);
  2454. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2455. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2456. POSTING_READ(reg);
  2457. udelay(100);
  2458. /* Ironlake workaround, disable clock pointer after downing FDI */
  2459. if (HAS_PCH_IBX(dev)) {
  2460. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2461. }
  2462. /* still set train pattern 1 */
  2463. reg = FDI_TX_CTL(pipe);
  2464. temp = I915_READ(reg);
  2465. temp &= ~FDI_LINK_TRAIN_NONE;
  2466. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2467. I915_WRITE(reg, temp);
  2468. reg = FDI_RX_CTL(pipe);
  2469. temp = I915_READ(reg);
  2470. if (HAS_PCH_CPT(dev)) {
  2471. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2472. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2473. } else {
  2474. temp &= ~FDI_LINK_TRAIN_NONE;
  2475. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2476. }
  2477. /* BPC in FDI rx is consistent with that in PIPECONF */
  2478. temp &= ~(0x07 << 16);
  2479. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2480. I915_WRITE(reg, temp);
  2481. POSTING_READ(reg);
  2482. udelay(100);
  2483. }
  2484. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2485. {
  2486. struct drm_device *dev = crtc->dev;
  2487. struct drm_i915_private *dev_priv = dev->dev_private;
  2488. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2489. unsigned long flags;
  2490. bool pending;
  2491. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2492. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2493. return false;
  2494. spin_lock_irqsave(&dev->event_lock, flags);
  2495. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2496. spin_unlock_irqrestore(&dev->event_lock, flags);
  2497. return pending;
  2498. }
  2499. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2500. {
  2501. struct drm_device *dev = crtc->dev;
  2502. struct drm_i915_private *dev_priv = dev->dev_private;
  2503. if (crtc->fb == NULL)
  2504. return;
  2505. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2506. wait_event(dev_priv->pending_flip_queue,
  2507. !intel_crtc_has_pending_flip(crtc));
  2508. mutex_lock(&dev->struct_mutex);
  2509. intel_finish_fb(crtc->fb);
  2510. mutex_unlock(&dev->struct_mutex);
  2511. }
  2512. /* Program iCLKIP clock to the desired frequency */
  2513. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2514. {
  2515. struct drm_device *dev = crtc->dev;
  2516. struct drm_i915_private *dev_priv = dev->dev_private;
  2517. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2518. u32 temp;
  2519. mutex_lock(&dev_priv->dpio_lock);
  2520. /* It is necessary to ungate the pixclk gate prior to programming
  2521. * the divisors, and gate it back when it is done.
  2522. */
  2523. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2524. /* Disable SSCCTL */
  2525. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2526. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2527. SBI_SSCCTL_DISABLE,
  2528. SBI_ICLK);
  2529. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2530. if (crtc->mode.clock == 20000) {
  2531. auxdiv = 1;
  2532. divsel = 0x41;
  2533. phaseinc = 0x20;
  2534. } else {
  2535. /* The iCLK virtual clock root frequency is in MHz,
  2536. * but the crtc->mode.clock in in KHz. To get the divisors,
  2537. * it is necessary to divide one by another, so we
  2538. * convert the virtual clock precision to KHz here for higher
  2539. * precision.
  2540. */
  2541. u32 iclk_virtual_root_freq = 172800 * 1000;
  2542. u32 iclk_pi_range = 64;
  2543. u32 desired_divisor, msb_divisor_value, pi_value;
  2544. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2545. msb_divisor_value = desired_divisor / iclk_pi_range;
  2546. pi_value = desired_divisor % iclk_pi_range;
  2547. auxdiv = 0;
  2548. divsel = msb_divisor_value - 2;
  2549. phaseinc = pi_value;
  2550. }
  2551. /* This should not happen with any sane values */
  2552. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2553. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2554. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2555. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2556. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2557. crtc->mode.clock,
  2558. auxdiv,
  2559. divsel,
  2560. phasedir,
  2561. phaseinc);
  2562. /* Program SSCDIVINTPHASE6 */
  2563. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2564. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2565. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2566. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2567. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2568. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2569. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2570. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2571. /* Program SSCAUXDIV */
  2572. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2573. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2574. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2575. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2576. /* Enable modulator and associated divider */
  2577. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2578. temp &= ~SBI_SSCCTL_DISABLE;
  2579. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2580. /* Wait for initialization time */
  2581. udelay(24);
  2582. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2583. mutex_unlock(&dev_priv->dpio_lock);
  2584. }
  2585. /*
  2586. * Enable PCH resources required for PCH ports:
  2587. * - PCH PLLs
  2588. * - FDI training & RX/TX
  2589. * - update transcoder timings
  2590. * - DP transcoding bits
  2591. * - transcoder
  2592. */
  2593. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2594. {
  2595. struct drm_device *dev = crtc->dev;
  2596. struct drm_i915_private *dev_priv = dev->dev_private;
  2597. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2598. int pipe = intel_crtc->pipe;
  2599. u32 reg, temp;
  2600. assert_transcoder_disabled(dev_priv, pipe);
  2601. /* Write the TU size bits before fdi link training, so that error
  2602. * detection works. */
  2603. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2604. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2605. /* For PCH output, training FDI link */
  2606. dev_priv->display.fdi_link_train(crtc);
  2607. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2608. * transcoder, and we actually should do this to not upset any PCH
  2609. * transcoder that already use the clock when we share it.
  2610. *
  2611. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2612. * unconditionally resets the pll - we need that to have the right LVDS
  2613. * enable sequence. */
  2614. ironlake_enable_pch_pll(intel_crtc);
  2615. if (HAS_PCH_CPT(dev)) {
  2616. u32 sel;
  2617. temp = I915_READ(PCH_DPLL_SEL);
  2618. switch (pipe) {
  2619. default:
  2620. case 0:
  2621. temp |= TRANSA_DPLL_ENABLE;
  2622. sel = TRANSA_DPLLB_SEL;
  2623. break;
  2624. case 1:
  2625. temp |= TRANSB_DPLL_ENABLE;
  2626. sel = TRANSB_DPLLB_SEL;
  2627. break;
  2628. case 2:
  2629. temp |= TRANSC_DPLL_ENABLE;
  2630. sel = TRANSC_DPLLB_SEL;
  2631. break;
  2632. }
  2633. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2634. temp |= sel;
  2635. else
  2636. temp &= ~sel;
  2637. I915_WRITE(PCH_DPLL_SEL, temp);
  2638. }
  2639. /* set transcoder timing, panel must allow it */
  2640. assert_panel_unlocked(dev_priv, pipe);
  2641. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2642. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2643. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2644. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2645. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2646. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2647. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2648. intel_fdi_normal_train(crtc);
  2649. /* For PCH DP, enable TRANS_DP_CTL */
  2650. if (HAS_PCH_CPT(dev) &&
  2651. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2652. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2653. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2654. reg = TRANS_DP_CTL(pipe);
  2655. temp = I915_READ(reg);
  2656. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2657. TRANS_DP_SYNC_MASK |
  2658. TRANS_DP_BPC_MASK);
  2659. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2660. TRANS_DP_ENH_FRAMING);
  2661. temp |= bpc << 9; /* same format but at 11:9 */
  2662. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2663. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2664. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2665. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2666. switch (intel_trans_dp_port_sel(crtc)) {
  2667. case PCH_DP_B:
  2668. temp |= TRANS_DP_PORT_SEL_B;
  2669. break;
  2670. case PCH_DP_C:
  2671. temp |= TRANS_DP_PORT_SEL_C;
  2672. break;
  2673. case PCH_DP_D:
  2674. temp |= TRANS_DP_PORT_SEL_D;
  2675. break;
  2676. default:
  2677. BUG();
  2678. }
  2679. I915_WRITE(reg, temp);
  2680. }
  2681. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2682. }
  2683. static void lpt_pch_enable(struct drm_crtc *crtc)
  2684. {
  2685. struct drm_device *dev = crtc->dev;
  2686. struct drm_i915_private *dev_priv = dev->dev_private;
  2687. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2688. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2689. assert_transcoder_disabled(dev_priv, TRANSCODER_A);
  2690. lpt_program_iclkip(crtc);
  2691. /* Set transcoder timing. */
  2692. I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
  2693. I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
  2694. I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
  2695. I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
  2696. I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
  2697. I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
  2698. I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2699. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2700. }
  2701. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2702. {
  2703. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2704. if (pll == NULL)
  2705. return;
  2706. if (pll->refcount == 0) {
  2707. WARN(1, "bad PCH PLL refcount\n");
  2708. return;
  2709. }
  2710. --pll->refcount;
  2711. intel_crtc->pch_pll = NULL;
  2712. }
  2713. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2714. {
  2715. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2716. struct intel_pch_pll *pll;
  2717. int i;
  2718. pll = intel_crtc->pch_pll;
  2719. if (pll) {
  2720. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2721. intel_crtc->base.base.id, pll->pll_reg);
  2722. goto prepare;
  2723. }
  2724. if (HAS_PCH_IBX(dev_priv->dev)) {
  2725. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2726. i = intel_crtc->pipe;
  2727. pll = &dev_priv->pch_plls[i];
  2728. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2729. intel_crtc->base.base.id, pll->pll_reg);
  2730. goto found;
  2731. }
  2732. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2733. pll = &dev_priv->pch_plls[i];
  2734. /* Only want to check enabled timings first */
  2735. if (pll->refcount == 0)
  2736. continue;
  2737. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2738. fp == I915_READ(pll->fp0_reg)) {
  2739. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2740. intel_crtc->base.base.id,
  2741. pll->pll_reg, pll->refcount, pll->active);
  2742. goto found;
  2743. }
  2744. }
  2745. /* Ok no matching timings, maybe there's a free one? */
  2746. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2747. pll = &dev_priv->pch_plls[i];
  2748. if (pll->refcount == 0) {
  2749. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2750. intel_crtc->base.base.id, pll->pll_reg);
  2751. goto found;
  2752. }
  2753. }
  2754. return NULL;
  2755. found:
  2756. intel_crtc->pch_pll = pll;
  2757. pll->refcount++;
  2758. DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
  2759. prepare: /* separate function? */
  2760. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2761. /* Wait for the clocks to stabilize before rewriting the regs */
  2762. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2763. POSTING_READ(pll->pll_reg);
  2764. udelay(150);
  2765. I915_WRITE(pll->fp0_reg, fp);
  2766. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2767. pll->on = false;
  2768. return pll;
  2769. }
  2770. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2771. {
  2772. struct drm_i915_private *dev_priv = dev->dev_private;
  2773. int dslreg = PIPEDSL(pipe);
  2774. u32 temp;
  2775. temp = I915_READ(dslreg);
  2776. udelay(500);
  2777. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2778. if (wait_for(I915_READ(dslreg) != temp, 5))
  2779. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2780. }
  2781. }
  2782. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2783. {
  2784. struct drm_device *dev = crtc->dev;
  2785. struct drm_i915_private *dev_priv = dev->dev_private;
  2786. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2787. struct intel_encoder *encoder;
  2788. int pipe = intel_crtc->pipe;
  2789. int plane = intel_crtc->plane;
  2790. u32 temp;
  2791. WARN_ON(!crtc->enabled);
  2792. if (intel_crtc->active)
  2793. return;
  2794. intel_crtc->active = true;
  2795. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2796. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2797. intel_update_watermarks(dev);
  2798. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2799. temp = I915_READ(PCH_LVDS);
  2800. if ((temp & LVDS_PORT_EN) == 0)
  2801. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2802. }
  2803. if (intel_crtc->config.has_pch_encoder) {
  2804. /* Note: FDI PLL enabling _must_ be done before we enable the
  2805. * cpu pipes, hence this is separate from all the other fdi/pch
  2806. * enabling. */
  2807. ironlake_fdi_pll_enable(intel_crtc);
  2808. } else {
  2809. assert_fdi_tx_disabled(dev_priv, pipe);
  2810. assert_fdi_rx_disabled(dev_priv, pipe);
  2811. }
  2812. for_each_encoder_on_crtc(dev, crtc, encoder)
  2813. if (encoder->pre_enable)
  2814. encoder->pre_enable(encoder);
  2815. /* Enable panel fitting for LVDS */
  2816. if (dev_priv->pch_pf_size &&
  2817. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2818. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2819. /* Force use of hard-coded filter coefficients
  2820. * as some pre-programmed values are broken,
  2821. * e.g. x201.
  2822. */
  2823. if (IS_IVYBRIDGE(dev))
  2824. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2825. PF_PIPE_SEL_IVB(pipe));
  2826. else
  2827. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2828. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2829. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2830. }
  2831. /*
  2832. * On ILK+ LUT must be loaded before the pipe is running but with
  2833. * clocks enabled
  2834. */
  2835. intel_crtc_load_lut(crtc);
  2836. intel_enable_pipe(dev_priv, pipe,
  2837. intel_crtc->config.has_pch_encoder);
  2838. intel_enable_plane(dev_priv, plane, pipe);
  2839. if (intel_crtc->config.has_pch_encoder)
  2840. ironlake_pch_enable(crtc);
  2841. mutex_lock(&dev->struct_mutex);
  2842. intel_update_fbc(dev);
  2843. mutex_unlock(&dev->struct_mutex);
  2844. intel_crtc_update_cursor(crtc, true);
  2845. for_each_encoder_on_crtc(dev, crtc, encoder)
  2846. encoder->enable(encoder);
  2847. if (HAS_PCH_CPT(dev))
  2848. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2849. /*
  2850. * There seems to be a race in PCH platform hw (at least on some
  2851. * outputs) where an enabled pipe still completes any pageflip right
  2852. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2853. * as the first vblank happend, everything works as expected. Hence just
  2854. * wait for one vblank before returning to avoid strange things
  2855. * happening.
  2856. */
  2857. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2858. }
  2859. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2860. {
  2861. struct drm_device *dev = crtc->dev;
  2862. struct drm_i915_private *dev_priv = dev->dev_private;
  2863. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2864. struct intel_encoder *encoder;
  2865. int pipe = intel_crtc->pipe;
  2866. int plane = intel_crtc->plane;
  2867. WARN_ON(!crtc->enabled);
  2868. if (intel_crtc->active)
  2869. return;
  2870. intel_crtc->active = true;
  2871. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2872. if (intel_crtc->config.has_pch_encoder)
  2873. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2874. intel_update_watermarks(dev);
  2875. if (intel_crtc->config.has_pch_encoder)
  2876. dev_priv->display.fdi_link_train(crtc);
  2877. for_each_encoder_on_crtc(dev, crtc, encoder)
  2878. if (encoder->pre_enable)
  2879. encoder->pre_enable(encoder);
  2880. intel_ddi_enable_pipe_clock(intel_crtc);
  2881. /* Enable panel fitting for eDP */
  2882. if (dev_priv->pch_pf_size &&
  2883. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  2884. /* Force use of hard-coded filter coefficients
  2885. * as some pre-programmed values are broken,
  2886. * e.g. x201.
  2887. */
  2888. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2889. PF_PIPE_SEL_IVB(pipe));
  2890. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2891. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2892. }
  2893. /*
  2894. * On ILK+ LUT must be loaded before the pipe is running but with
  2895. * clocks enabled
  2896. */
  2897. intel_crtc_load_lut(crtc);
  2898. intel_ddi_set_pipe_settings(crtc);
  2899. intel_ddi_enable_transcoder_func(crtc);
  2900. intel_enable_pipe(dev_priv, pipe,
  2901. intel_crtc->config.has_pch_encoder);
  2902. intel_enable_plane(dev_priv, plane, pipe);
  2903. if (intel_crtc->config.has_pch_encoder)
  2904. lpt_pch_enable(crtc);
  2905. mutex_lock(&dev->struct_mutex);
  2906. intel_update_fbc(dev);
  2907. mutex_unlock(&dev->struct_mutex);
  2908. intel_crtc_update_cursor(crtc, true);
  2909. for_each_encoder_on_crtc(dev, crtc, encoder)
  2910. encoder->enable(encoder);
  2911. /*
  2912. * There seems to be a race in PCH platform hw (at least on some
  2913. * outputs) where an enabled pipe still completes any pageflip right
  2914. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2915. * as the first vblank happend, everything works as expected. Hence just
  2916. * wait for one vblank before returning to avoid strange things
  2917. * happening.
  2918. */
  2919. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2920. }
  2921. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2922. {
  2923. struct drm_device *dev = crtc->dev;
  2924. struct drm_i915_private *dev_priv = dev->dev_private;
  2925. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2926. struct intel_encoder *encoder;
  2927. int pipe = intel_crtc->pipe;
  2928. int plane = intel_crtc->plane;
  2929. u32 reg, temp;
  2930. if (!intel_crtc->active)
  2931. return;
  2932. for_each_encoder_on_crtc(dev, crtc, encoder)
  2933. encoder->disable(encoder);
  2934. intel_crtc_wait_for_pending_flips(crtc);
  2935. drm_vblank_off(dev, pipe);
  2936. intel_crtc_update_cursor(crtc, false);
  2937. intel_disable_plane(dev_priv, plane, pipe);
  2938. if (dev_priv->cfb_plane == plane)
  2939. intel_disable_fbc(dev);
  2940. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2941. intel_disable_pipe(dev_priv, pipe);
  2942. /* Disable PF */
  2943. I915_WRITE(PF_CTL(pipe), 0);
  2944. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2945. for_each_encoder_on_crtc(dev, crtc, encoder)
  2946. if (encoder->post_disable)
  2947. encoder->post_disable(encoder);
  2948. ironlake_fdi_disable(crtc);
  2949. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2950. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2951. if (HAS_PCH_CPT(dev)) {
  2952. /* disable TRANS_DP_CTL */
  2953. reg = TRANS_DP_CTL(pipe);
  2954. temp = I915_READ(reg);
  2955. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2956. temp |= TRANS_DP_PORT_SEL_NONE;
  2957. I915_WRITE(reg, temp);
  2958. /* disable DPLL_SEL */
  2959. temp = I915_READ(PCH_DPLL_SEL);
  2960. switch (pipe) {
  2961. case 0:
  2962. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2963. break;
  2964. case 1:
  2965. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2966. break;
  2967. case 2:
  2968. /* C shares PLL A or B */
  2969. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2970. break;
  2971. default:
  2972. BUG(); /* wtf */
  2973. }
  2974. I915_WRITE(PCH_DPLL_SEL, temp);
  2975. }
  2976. /* disable PCH DPLL */
  2977. intel_disable_pch_pll(intel_crtc);
  2978. ironlake_fdi_pll_disable(intel_crtc);
  2979. intel_crtc->active = false;
  2980. intel_update_watermarks(dev);
  2981. mutex_lock(&dev->struct_mutex);
  2982. intel_update_fbc(dev);
  2983. mutex_unlock(&dev->struct_mutex);
  2984. }
  2985. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2986. {
  2987. struct drm_device *dev = crtc->dev;
  2988. struct drm_i915_private *dev_priv = dev->dev_private;
  2989. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2990. struct intel_encoder *encoder;
  2991. int pipe = intel_crtc->pipe;
  2992. int plane = intel_crtc->plane;
  2993. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2994. if (!intel_crtc->active)
  2995. return;
  2996. for_each_encoder_on_crtc(dev, crtc, encoder)
  2997. encoder->disable(encoder);
  2998. intel_crtc_wait_for_pending_flips(crtc);
  2999. drm_vblank_off(dev, pipe);
  3000. intel_crtc_update_cursor(crtc, false);
  3001. intel_disable_plane(dev_priv, plane, pipe);
  3002. if (dev_priv->cfb_plane == plane)
  3003. intel_disable_fbc(dev);
  3004. if (intel_crtc->config.has_pch_encoder)
  3005. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3006. intel_disable_pipe(dev_priv, pipe);
  3007. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3008. /* XXX: Once we have proper panel fitter state tracking implemented with
  3009. * hardware state read/check support we should switch to only disable
  3010. * the panel fitter when we know it's used. */
  3011. if (intel_using_power_well(dev)) {
  3012. I915_WRITE(PF_CTL(pipe), 0);
  3013. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3014. }
  3015. intel_ddi_disable_pipe_clock(intel_crtc);
  3016. for_each_encoder_on_crtc(dev, crtc, encoder)
  3017. if (encoder->post_disable)
  3018. encoder->post_disable(encoder);
  3019. if (intel_crtc->config.has_pch_encoder) {
  3020. lpt_disable_pch_transcoder(dev_priv);
  3021. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3022. intel_ddi_fdi_disable(crtc);
  3023. }
  3024. intel_crtc->active = false;
  3025. intel_update_watermarks(dev);
  3026. mutex_lock(&dev->struct_mutex);
  3027. intel_update_fbc(dev);
  3028. mutex_unlock(&dev->struct_mutex);
  3029. }
  3030. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3031. {
  3032. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3033. intel_put_pch_pll(intel_crtc);
  3034. }
  3035. static void haswell_crtc_off(struct drm_crtc *crtc)
  3036. {
  3037. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3038. /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
  3039. * start using it. */
  3040. intel_crtc->config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  3041. intel_ddi_put_crtc_pll(crtc);
  3042. }
  3043. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3044. {
  3045. if (!enable && intel_crtc->overlay) {
  3046. struct drm_device *dev = intel_crtc->base.dev;
  3047. struct drm_i915_private *dev_priv = dev->dev_private;
  3048. mutex_lock(&dev->struct_mutex);
  3049. dev_priv->mm.interruptible = false;
  3050. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3051. dev_priv->mm.interruptible = true;
  3052. mutex_unlock(&dev->struct_mutex);
  3053. }
  3054. /* Let userspace switch the overlay on again. In most cases userspace
  3055. * has to recompute where to put it anyway.
  3056. */
  3057. }
  3058. /**
  3059. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3060. * cursor plane briefly if not already running after enabling the display
  3061. * plane.
  3062. * This workaround avoids occasional blank screens when self refresh is
  3063. * enabled.
  3064. */
  3065. static void
  3066. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3067. {
  3068. u32 cntl = I915_READ(CURCNTR(pipe));
  3069. if ((cntl & CURSOR_MODE) == 0) {
  3070. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3071. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3072. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3073. intel_wait_for_vblank(dev_priv->dev, pipe);
  3074. I915_WRITE(CURCNTR(pipe), cntl);
  3075. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3076. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3077. }
  3078. }
  3079. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3080. {
  3081. struct drm_device *dev = crtc->dev;
  3082. struct drm_i915_private *dev_priv = dev->dev_private;
  3083. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3084. struct intel_encoder *encoder;
  3085. int pipe = intel_crtc->pipe;
  3086. int plane = intel_crtc->plane;
  3087. WARN_ON(!crtc->enabled);
  3088. if (intel_crtc->active)
  3089. return;
  3090. intel_crtc->active = true;
  3091. intel_update_watermarks(dev);
  3092. mutex_lock(&dev_priv->dpio_lock);
  3093. for_each_encoder_on_crtc(dev, crtc, encoder)
  3094. if (encoder->pre_pll_enable)
  3095. encoder->pre_pll_enable(encoder);
  3096. intel_enable_pll(dev_priv, pipe);
  3097. for_each_encoder_on_crtc(dev, crtc, encoder)
  3098. if (encoder->pre_enable)
  3099. encoder->pre_enable(encoder);
  3100. /* VLV wants encoder enabling _before_ the pipe is up. */
  3101. for_each_encoder_on_crtc(dev, crtc, encoder)
  3102. encoder->enable(encoder);
  3103. intel_enable_pipe(dev_priv, pipe, false);
  3104. intel_enable_plane(dev_priv, plane, pipe);
  3105. intel_crtc_load_lut(crtc);
  3106. intel_update_fbc(dev);
  3107. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3108. intel_crtc_dpms_overlay(intel_crtc, true);
  3109. intel_crtc_update_cursor(crtc, true);
  3110. mutex_unlock(&dev_priv->dpio_lock);
  3111. }
  3112. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3113. {
  3114. struct drm_device *dev = crtc->dev;
  3115. struct drm_i915_private *dev_priv = dev->dev_private;
  3116. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3117. struct intel_encoder *encoder;
  3118. int pipe = intel_crtc->pipe;
  3119. int plane = intel_crtc->plane;
  3120. WARN_ON(!crtc->enabled);
  3121. if (intel_crtc->active)
  3122. return;
  3123. intel_crtc->active = true;
  3124. intel_update_watermarks(dev);
  3125. intel_enable_pll(dev_priv, pipe);
  3126. for_each_encoder_on_crtc(dev, crtc, encoder)
  3127. if (encoder->pre_enable)
  3128. encoder->pre_enable(encoder);
  3129. intel_enable_pipe(dev_priv, pipe, false);
  3130. intel_enable_plane(dev_priv, plane, pipe);
  3131. if (IS_G4X(dev))
  3132. g4x_fixup_plane(dev_priv, pipe);
  3133. intel_crtc_load_lut(crtc);
  3134. intel_update_fbc(dev);
  3135. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3136. intel_crtc_dpms_overlay(intel_crtc, true);
  3137. intel_crtc_update_cursor(crtc, true);
  3138. for_each_encoder_on_crtc(dev, crtc, encoder)
  3139. encoder->enable(encoder);
  3140. }
  3141. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3142. {
  3143. struct drm_device *dev = crtc->base.dev;
  3144. struct drm_i915_private *dev_priv = dev->dev_private;
  3145. enum pipe pipe;
  3146. uint32_t pctl = I915_READ(PFIT_CONTROL);
  3147. assert_pipe_disabled(dev_priv, crtc->pipe);
  3148. if (INTEL_INFO(dev)->gen >= 4)
  3149. pipe = (pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT;
  3150. else
  3151. pipe = PIPE_B;
  3152. if (pipe == crtc->pipe) {
  3153. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", pctl);
  3154. I915_WRITE(PFIT_CONTROL, 0);
  3155. }
  3156. }
  3157. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3158. {
  3159. struct drm_device *dev = crtc->dev;
  3160. struct drm_i915_private *dev_priv = dev->dev_private;
  3161. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3162. struct intel_encoder *encoder;
  3163. int pipe = intel_crtc->pipe;
  3164. int plane = intel_crtc->plane;
  3165. if (!intel_crtc->active)
  3166. return;
  3167. for_each_encoder_on_crtc(dev, crtc, encoder)
  3168. encoder->disable(encoder);
  3169. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3170. intel_crtc_wait_for_pending_flips(crtc);
  3171. drm_vblank_off(dev, pipe);
  3172. intel_crtc_dpms_overlay(intel_crtc, false);
  3173. intel_crtc_update_cursor(crtc, false);
  3174. if (dev_priv->cfb_plane == plane)
  3175. intel_disable_fbc(dev);
  3176. intel_disable_plane(dev_priv, plane, pipe);
  3177. intel_disable_pipe(dev_priv, pipe);
  3178. i9xx_pfit_disable(intel_crtc);
  3179. for_each_encoder_on_crtc(dev, crtc, encoder)
  3180. if (encoder->post_disable)
  3181. encoder->post_disable(encoder);
  3182. intel_disable_pll(dev_priv, pipe);
  3183. intel_crtc->active = false;
  3184. intel_update_fbc(dev);
  3185. intel_update_watermarks(dev);
  3186. }
  3187. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3188. {
  3189. }
  3190. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3191. bool enabled)
  3192. {
  3193. struct drm_device *dev = crtc->dev;
  3194. struct drm_i915_master_private *master_priv;
  3195. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3196. int pipe = intel_crtc->pipe;
  3197. if (!dev->primary->master)
  3198. return;
  3199. master_priv = dev->primary->master->driver_priv;
  3200. if (!master_priv->sarea_priv)
  3201. return;
  3202. switch (pipe) {
  3203. case 0:
  3204. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3205. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3206. break;
  3207. case 1:
  3208. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3209. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3210. break;
  3211. default:
  3212. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3213. break;
  3214. }
  3215. }
  3216. /**
  3217. * Sets the power management mode of the pipe and plane.
  3218. */
  3219. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3220. {
  3221. struct drm_device *dev = crtc->dev;
  3222. struct drm_i915_private *dev_priv = dev->dev_private;
  3223. struct intel_encoder *intel_encoder;
  3224. bool enable = false;
  3225. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3226. enable |= intel_encoder->connectors_active;
  3227. if (enable)
  3228. dev_priv->display.crtc_enable(crtc);
  3229. else
  3230. dev_priv->display.crtc_disable(crtc);
  3231. intel_crtc_update_sarea(crtc, enable);
  3232. }
  3233. static void intel_crtc_disable(struct drm_crtc *crtc)
  3234. {
  3235. struct drm_device *dev = crtc->dev;
  3236. struct drm_connector *connector;
  3237. struct drm_i915_private *dev_priv = dev->dev_private;
  3238. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3239. /* crtc should still be enabled when we disable it. */
  3240. WARN_ON(!crtc->enabled);
  3241. intel_crtc->eld_vld = false;
  3242. dev_priv->display.crtc_disable(crtc);
  3243. intel_crtc_update_sarea(crtc, false);
  3244. dev_priv->display.off(crtc);
  3245. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3246. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3247. if (crtc->fb) {
  3248. mutex_lock(&dev->struct_mutex);
  3249. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3250. mutex_unlock(&dev->struct_mutex);
  3251. crtc->fb = NULL;
  3252. }
  3253. /* Update computed state. */
  3254. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3255. if (!connector->encoder || !connector->encoder->crtc)
  3256. continue;
  3257. if (connector->encoder->crtc != crtc)
  3258. continue;
  3259. connector->dpms = DRM_MODE_DPMS_OFF;
  3260. to_intel_encoder(connector->encoder)->connectors_active = false;
  3261. }
  3262. }
  3263. void intel_modeset_disable(struct drm_device *dev)
  3264. {
  3265. struct drm_crtc *crtc;
  3266. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3267. if (crtc->enabled)
  3268. intel_crtc_disable(crtc);
  3269. }
  3270. }
  3271. void intel_encoder_destroy(struct drm_encoder *encoder)
  3272. {
  3273. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3274. drm_encoder_cleanup(encoder);
  3275. kfree(intel_encoder);
  3276. }
  3277. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3278. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3279. * state of the entire output pipe. */
  3280. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3281. {
  3282. if (mode == DRM_MODE_DPMS_ON) {
  3283. encoder->connectors_active = true;
  3284. intel_crtc_update_dpms(encoder->base.crtc);
  3285. } else {
  3286. encoder->connectors_active = false;
  3287. intel_crtc_update_dpms(encoder->base.crtc);
  3288. }
  3289. }
  3290. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3291. * internal consistency). */
  3292. static void intel_connector_check_state(struct intel_connector *connector)
  3293. {
  3294. if (connector->get_hw_state(connector)) {
  3295. struct intel_encoder *encoder = connector->encoder;
  3296. struct drm_crtc *crtc;
  3297. bool encoder_enabled;
  3298. enum pipe pipe;
  3299. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3300. connector->base.base.id,
  3301. drm_get_connector_name(&connector->base));
  3302. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3303. "wrong connector dpms state\n");
  3304. WARN(connector->base.encoder != &encoder->base,
  3305. "active connector not linked to encoder\n");
  3306. WARN(!encoder->connectors_active,
  3307. "encoder->connectors_active not set\n");
  3308. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3309. WARN(!encoder_enabled, "encoder not enabled\n");
  3310. if (WARN_ON(!encoder->base.crtc))
  3311. return;
  3312. crtc = encoder->base.crtc;
  3313. WARN(!crtc->enabled, "crtc not enabled\n");
  3314. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3315. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3316. "encoder active on the wrong pipe\n");
  3317. }
  3318. }
  3319. /* Even simpler default implementation, if there's really no special case to
  3320. * consider. */
  3321. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3322. {
  3323. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3324. /* All the simple cases only support two dpms states. */
  3325. if (mode != DRM_MODE_DPMS_ON)
  3326. mode = DRM_MODE_DPMS_OFF;
  3327. if (mode == connector->dpms)
  3328. return;
  3329. connector->dpms = mode;
  3330. /* Only need to change hw state when actually enabled */
  3331. if (encoder->base.crtc)
  3332. intel_encoder_dpms(encoder, mode);
  3333. else
  3334. WARN_ON(encoder->connectors_active != false);
  3335. intel_modeset_check_state(connector->dev);
  3336. }
  3337. /* Simple connector->get_hw_state implementation for encoders that support only
  3338. * one connector and no cloning and hence the encoder state determines the state
  3339. * of the connector. */
  3340. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3341. {
  3342. enum pipe pipe = 0;
  3343. struct intel_encoder *encoder = connector->encoder;
  3344. return encoder->get_hw_state(encoder, &pipe);
  3345. }
  3346. static bool intel_crtc_compute_config(struct drm_crtc *crtc,
  3347. struct intel_crtc_config *pipe_config)
  3348. {
  3349. struct drm_device *dev = crtc->dev;
  3350. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3351. if (HAS_PCH_SPLIT(dev)) {
  3352. /* FDI link clock is fixed at 2.7G */
  3353. if (pipe_config->requested_mode.clock * 3
  3354. > IRONLAKE_FDI_FREQ * 4)
  3355. return false;
  3356. }
  3357. /* All interlaced capable intel hw wants timings in frames. Note though
  3358. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3359. * timings, so we need to be careful not to clobber these.*/
  3360. if (!pipe_config->timings_set)
  3361. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3362. /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
  3363. * with a hsync front porch of 0.
  3364. */
  3365. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3366. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3367. return false;
  3368. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3369. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3370. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3371. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3372. * for lvds. */
  3373. pipe_config->pipe_bpp = 8*3;
  3374. }
  3375. return true;
  3376. }
  3377. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3378. {
  3379. return 400000; /* FIXME */
  3380. }
  3381. static int i945_get_display_clock_speed(struct drm_device *dev)
  3382. {
  3383. return 400000;
  3384. }
  3385. static int i915_get_display_clock_speed(struct drm_device *dev)
  3386. {
  3387. return 333000;
  3388. }
  3389. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3390. {
  3391. return 200000;
  3392. }
  3393. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3394. {
  3395. u16 gcfgc = 0;
  3396. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3397. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3398. return 133000;
  3399. else {
  3400. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3401. case GC_DISPLAY_CLOCK_333_MHZ:
  3402. return 333000;
  3403. default:
  3404. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3405. return 190000;
  3406. }
  3407. }
  3408. }
  3409. static int i865_get_display_clock_speed(struct drm_device *dev)
  3410. {
  3411. return 266000;
  3412. }
  3413. static int i855_get_display_clock_speed(struct drm_device *dev)
  3414. {
  3415. u16 hpllcc = 0;
  3416. /* Assume that the hardware is in the high speed state. This
  3417. * should be the default.
  3418. */
  3419. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3420. case GC_CLOCK_133_200:
  3421. case GC_CLOCK_100_200:
  3422. return 200000;
  3423. case GC_CLOCK_166_250:
  3424. return 250000;
  3425. case GC_CLOCK_100_133:
  3426. return 133000;
  3427. }
  3428. /* Shouldn't happen */
  3429. return 0;
  3430. }
  3431. static int i830_get_display_clock_speed(struct drm_device *dev)
  3432. {
  3433. return 133000;
  3434. }
  3435. static void
  3436. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  3437. {
  3438. while (*num > 0xffffff || *den > 0xffffff) {
  3439. *num >>= 1;
  3440. *den >>= 1;
  3441. }
  3442. }
  3443. void
  3444. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3445. int pixel_clock, int link_clock,
  3446. struct intel_link_m_n *m_n)
  3447. {
  3448. m_n->tu = 64;
  3449. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3450. m_n->gmch_n = link_clock * nlanes * 8;
  3451. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3452. m_n->link_m = pixel_clock;
  3453. m_n->link_n = link_clock;
  3454. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3455. }
  3456. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3457. {
  3458. if (i915_panel_use_ssc >= 0)
  3459. return i915_panel_use_ssc != 0;
  3460. return dev_priv->lvds_use_ssc
  3461. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3462. }
  3463. static int vlv_get_refclk(struct drm_crtc *crtc)
  3464. {
  3465. struct drm_device *dev = crtc->dev;
  3466. struct drm_i915_private *dev_priv = dev->dev_private;
  3467. int refclk = 27000; /* for DP & HDMI */
  3468. return 100000; /* only one validated so far */
  3469. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3470. refclk = 96000;
  3471. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3472. if (intel_panel_use_ssc(dev_priv))
  3473. refclk = 100000;
  3474. else
  3475. refclk = 96000;
  3476. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3477. refclk = 100000;
  3478. }
  3479. return refclk;
  3480. }
  3481. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3482. {
  3483. struct drm_device *dev = crtc->dev;
  3484. struct drm_i915_private *dev_priv = dev->dev_private;
  3485. int refclk;
  3486. if (IS_VALLEYVIEW(dev)) {
  3487. refclk = vlv_get_refclk(crtc);
  3488. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3489. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3490. refclk = dev_priv->lvds_ssc_freq * 1000;
  3491. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3492. refclk / 1000);
  3493. } else if (!IS_GEN2(dev)) {
  3494. refclk = 96000;
  3495. } else {
  3496. refclk = 48000;
  3497. }
  3498. return refclk;
  3499. }
  3500. static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc *crtc)
  3501. {
  3502. unsigned dotclock = crtc->config.adjusted_mode.clock;
  3503. struct dpll *clock = &crtc->config.dpll;
  3504. /* SDVO TV has fixed PLL values depend on its clock range,
  3505. this mirrors vbios setting. */
  3506. if (dotclock >= 100000 && dotclock < 140500) {
  3507. clock->p1 = 2;
  3508. clock->p2 = 10;
  3509. clock->n = 3;
  3510. clock->m1 = 16;
  3511. clock->m2 = 8;
  3512. } else if (dotclock >= 140500 && dotclock <= 200000) {
  3513. clock->p1 = 1;
  3514. clock->p2 = 10;
  3515. clock->n = 6;
  3516. clock->m1 = 12;
  3517. clock->m2 = 8;
  3518. }
  3519. crtc->config.clock_set = true;
  3520. }
  3521. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3522. {
  3523. return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
  3524. }
  3525. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3526. {
  3527. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3528. }
  3529. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3530. intel_clock_t *reduced_clock)
  3531. {
  3532. struct drm_device *dev = crtc->base.dev;
  3533. struct drm_i915_private *dev_priv = dev->dev_private;
  3534. int pipe = crtc->pipe;
  3535. u32 fp, fp2 = 0;
  3536. if (IS_PINEVIEW(dev)) {
  3537. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3538. if (reduced_clock)
  3539. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3540. } else {
  3541. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3542. if (reduced_clock)
  3543. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3544. }
  3545. I915_WRITE(FP0(pipe), fp);
  3546. crtc->lowfreq_avail = false;
  3547. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3548. reduced_clock && i915_powersave) {
  3549. I915_WRITE(FP1(pipe), fp2);
  3550. crtc->lowfreq_avail = true;
  3551. } else {
  3552. I915_WRITE(FP1(pipe), fp);
  3553. }
  3554. }
  3555. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3556. {
  3557. u32 reg_val;
  3558. /*
  3559. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3560. * and set it to a reasonable value instead.
  3561. */
  3562. reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
  3563. reg_val &= 0xffffff00;
  3564. reg_val |= 0x00000030;
  3565. intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3566. reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
  3567. reg_val &= 0x8cffffff;
  3568. reg_val = 0x8c000000;
  3569. intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3570. reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
  3571. reg_val &= 0xffffff00;
  3572. intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3573. reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
  3574. reg_val &= 0x00ffffff;
  3575. reg_val |= 0xb0000000;
  3576. intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3577. }
  3578. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3579. {
  3580. if (crtc->config.has_pch_encoder)
  3581. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3582. else
  3583. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3584. }
  3585. static void vlv_update_pll(struct intel_crtc *crtc)
  3586. {
  3587. struct drm_device *dev = crtc->base.dev;
  3588. struct drm_i915_private *dev_priv = dev->dev_private;
  3589. struct drm_display_mode *adjusted_mode =
  3590. &crtc->config.adjusted_mode;
  3591. struct intel_encoder *encoder;
  3592. int pipe = crtc->pipe;
  3593. u32 dpll, mdiv;
  3594. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3595. bool is_hdmi;
  3596. u32 coreclk, reg_val, temp;
  3597. mutex_lock(&dev_priv->dpio_lock);
  3598. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3599. bestn = crtc->config.dpll.n;
  3600. bestm1 = crtc->config.dpll.m1;
  3601. bestm2 = crtc->config.dpll.m2;
  3602. bestp1 = crtc->config.dpll.p1;
  3603. bestp2 = crtc->config.dpll.p2;
  3604. /* See eDP HDMI DPIO driver vbios notes doc */
  3605. /* PLL B needs special handling */
  3606. if (pipe)
  3607. vlv_pllb_recal_opamp(dev_priv);
  3608. /* Set up Tx target for periodic Rcomp update */
  3609. intel_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3610. /* Disable target IRef on PLL */
  3611. reg_val = intel_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3612. reg_val &= 0x00ffffff;
  3613. intel_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3614. /* Disable fast lock */
  3615. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3616. /* Set idtafcrecal before PLL is enabled */
  3617. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3618. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3619. mdiv |= ((bestn << DPIO_N_SHIFT));
  3620. mdiv |= (1 << DPIO_K_SHIFT);
  3621. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI) ||
  3622. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3623. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3624. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3625. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3626. mdiv |= DPIO_ENABLE_CALIBRATION;
  3627. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3628. /* Set HBR and RBR LPF coefficients */
  3629. if (adjusted_mode->clock == 162000 ||
  3630. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3631. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3632. 0x005f0021);
  3633. else
  3634. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3635. 0x00d0000f);
  3636. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3637. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3638. /* Use SSC source */
  3639. if (!pipe)
  3640. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3641. 0x0df40000);
  3642. else
  3643. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3644. 0x0df70000);
  3645. } else { /* HDMI or VGA */
  3646. /* Use bend source */
  3647. if (!pipe)
  3648. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3649. 0x0df70000);
  3650. else
  3651. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3652. 0x0df40000);
  3653. }
  3654. coreclk = intel_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3655. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3656. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3657. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3658. coreclk |= 0x01000000;
  3659. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3660. intel_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3661. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3662. if (encoder->pre_pll_enable)
  3663. encoder->pre_pll_enable(encoder);
  3664. /* Enable DPIO clock input */
  3665. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3666. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3667. if (pipe)
  3668. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3669. dpll |= DPLL_VCO_ENABLE;
  3670. I915_WRITE(DPLL(pipe), dpll);
  3671. POSTING_READ(DPLL(pipe));
  3672. udelay(150);
  3673. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3674. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3675. if (is_hdmi) {
  3676. temp = 0;
  3677. if (crtc->config.pixel_multiplier > 1) {
  3678. temp = (crtc->config.pixel_multiplier - 1)
  3679. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3680. }
  3681. I915_WRITE(DPLL_MD(pipe), temp);
  3682. POSTING_READ(DPLL_MD(pipe));
  3683. }
  3684. if (crtc->config.has_dp_encoder)
  3685. intel_dp_set_m_n(crtc);
  3686. mutex_unlock(&dev_priv->dpio_lock);
  3687. }
  3688. static void i9xx_update_pll(struct intel_crtc *crtc,
  3689. intel_clock_t *reduced_clock,
  3690. int num_connectors)
  3691. {
  3692. struct drm_device *dev = crtc->base.dev;
  3693. struct drm_i915_private *dev_priv = dev->dev_private;
  3694. struct intel_encoder *encoder;
  3695. int pipe = crtc->pipe;
  3696. u32 dpll;
  3697. bool is_sdvo;
  3698. struct dpll *clock = &crtc->config.dpll;
  3699. i9xx_update_pll_dividers(crtc, reduced_clock);
  3700. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3701. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3702. dpll = DPLL_VGA_MODE_DIS;
  3703. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3704. dpll |= DPLLB_MODE_LVDS;
  3705. else
  3706. dpll |= DPLLB_MODE_DAC_SERIAL;
  3707. if (is_sdvo) {
  3708. if ((crtc->config.pixel_multiplier > 1) &&
  3709. (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
  3710. dpll |= (crtc->config.pixel_multiplier - 1)
  3711. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3712. }
  3713. dpll |= DPLL_DVO_HIGH_SPEED;
  3714. }
  3715. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3716. dpll |= DPLL_DVO_HIGH_SPEED;
  3717. /* compute bitmask from p1 value */
  3718. if (IS_PINEVIEW(dev))
  3719. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3720. else {
  3721. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3722. if (IS_G4X(dev) && reduced_clock)
  3723. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3724. }
  3725. switch (clock->p2) {
  3726. case 5:
  3727. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3728. break;
  3729. case 7:
  3730. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3731. break;
  3732. case 10:
  3733. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3734. break;
  3735. case 14:
  3736. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3737. break;
  3738. }
  3739. if (INTEL_INFO(dev)->gen >= 4)
  3740. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3741. if (is_sdvo && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
  3742. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3743. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
  3744. /* XXX: just matching BIOS for now */
  3745. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3746. dpll |= 3;
  3747. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3748. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3749. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3750. else
  3751. dpll |= PLL_REF_INPUT_DREFCLK;
  3752. dpll |= DPLL_VCO_ENABLE;
  3753. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3754. POSTING_READ(DPLL(pipe));
  3755. udelay(150);
  3756. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3757. if (encoder->pre_pll_enable)
  3758. encoder->pre_pll_enable(encoder);
  3759. if (crtc->config.has_dp_encoder)
  3760. intel_dp_set_m_n(crtc);
  3761. I915_WRITE(DPLL(pipe), dpll);
  3762. /* Wait for the clocks to stabilize. */
  3763. POSTING_READ(DPLL(pipe));
  3764. udelay(150);
  3765. if (INTEL_INFO(dev)->gen >= 4) {
  3766. u32 temp = 0;
  3767. if (is_sdvo) {
  3768. temp = 0;
  3769. if (crtc->config.pixel_multiplier > 1) {
  3770. temp = (crtc->config.pixel_multiplier - 1)
  3771. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3772. }
  3773. }
  3774. I915_WRITE(DPLL_MD(pipe), temp);
  3775. } else {
  3776. /* The pixel multiplier can only be updated once the
  3777. * DPLL is enabled and the clocks are stable.
  3778. *
  3779. * So write it again.
  3780. */
  3781. I915_WRITE(DPLL(pipe), dpll);
  3782. }
  3783. }
  3784. static void i8xx_update_pll(struct intel_crtc *crtc,
  3785. struct drm_display_mode *adjusted_mode,
  3786. intel_clock_t *reduced_clock,
  3787. int num_connectors)
  3788. {
  3789. struct drm_device *dev = crtc->base.dev;
  3790. struct drm_i915_private *dev_priv = dev->dev_private;
  3791. struct intel_encoder *encoder;
  3792. int pipe = crtc->pipe;
  3793. u32 dpll;
  3794. struct dpll *clock = &crtc->config.dpll;
  3795. i9xx_update_pll_dividers(crtc, reduced_clock);
  3796. dpll = DPLL_VGA_MODE_DIS;
  3797. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3798. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3799. } else {
  3800. if (clock->p1 == 2)
  3801. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3802. else
  3803. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3804. if (clock->p2 == 4)
  3805. dpll |= PLL_P2_DIVIDE_BY_4;
  3806. }
  3807. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3808. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3809. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3810. else
  3811. dpll |= PLL_REF_INPUT_DREFCLK;
  3812. dpll |= DPLL_VCO_ENABLE;
  3813. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3814. POSTING_READ(DPLL(pipe));
  3815. udelay(150);
  3816. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3817. if (encoder->pre_pll_enable)
  3818. encoder->pre_pll_enable(encoder);
  3819. I915_WRITE(DPLL(pipe), dpll);
  3820. /* Wait for the clocks to stabilize. */
  3821. POSTING_READ(DPLL(pipe));
  3822. udelay(150);
  3823. /* The pixel multiplier can only be updated once the
  3824. * DPLL is enabled and the clocks are stable.
  3825. *
  3826. * So write it again.
  3827. */
  3828. I915_WRITE(DPLL(pipe), dpll);
  3829. }
  3830. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3831. struct drm_display_mode *mode,
  3832. struct drm_display_mode *adjusted_mode)
  3833. {
  3834. struct drm_device *dev = intel_crtc->base.dev;
  3835. struct drm_i915_private *dev_priv = dev->dev_private;
  3836. enum pipe pipe = intel_crtc->pipe;
  3837. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3838. uint32_t vsyncshift;
  3839. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3840. /* the chip adds 2 halflines automatically */
  3841. adjusted_mode->crtc_vtotal -= 1;
  3842. adjusted_mode->crtc_vblank_end -= 1;
  3843. vsyncshift = adjusted_mode->crtc_hsync_start
  3844. - adjusted_mode->crtc_htotal / 2;
  3845. } else {
  3846. vsyncshift = 0;
  3847. }
  3848. if (INTEL_INFO(dev)->gen > 3)
  3849. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3850. I915_WRITE(HTOTAL(cpu_transcoder),
  3851. (adjusted_mode->crtc_hdisplay - 1) |
  3852. ((adjusted_mode->crtc_htotal - 1) << 16));
  3853. I915_WRITE(HBLANK(cpu_transcoder),
  3854. (adjusted_mode->crtc_hblank_start - 1) |
  3855. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3856. I915_WRITE(HSYNC(cpu_transcoder),
  3857. (adjusted_mode->crtc_hsync_start - 1) |
  3858. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3859. I915_WRITE(VTOTAL(cpu_transcoder),
  3860. (adjusted_mode->crtc_vdisplay - 1) |
  3861. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3862. I915_WRITE(VBLANK(cpu_transcoder),
  3863. (adjusted_mode->crtc_vblank_start - 1) |
  3864. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3865. I915_WRITE(VSYNC(cpu_transcoder),
  3866. (adjusted_mode->crtc_vsync_start - 1) |
  3867. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3868. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3869. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3870. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3871. * bits. */
  3872. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3873. (pipe == PIPE_B || pipe == PIPE_C))
  3874. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3875. /* pipesrc controls the size that is scaled from, which should
  3876. * always be the user's requested size.
  3877. */
  3878. I915_WRITE(PIPESRC(pipe),
  3879. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3880. }
  3881. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  3882. {
  3883. struct drm_device *dev = intel_crtc->base.dev;
  3884. struct drm_i915_private *dev_priv = dev->dev_private;
  3885. uint32_t pipeconf;
  3886. pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
  3887. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  3888. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3889. * core speed.
  3890. *
  3891. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3892. * pipe == 0 check?
  3893. */
  3894. if (intel_crtc->config.requested_mode.clock >
  3895. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3896. pipeconf |= PIPECONF_DOUBLE_WIDE;
  3897. else
  3898. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  3899. }
  3900. /* default to 8bpc */
  3901. pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
  3902. if (intel_crtc->config.has_dp_encoder) {
  3903. if (intel_crtc->config.dither) {
  3904. pipeconf |= PIPECONF_6BPC |
  3905. PIPECONF_DITHER_EN |
  3906. PIPECONF_DITHER_TYPE_SP;
  3907. }
  3908. }
  3909. if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(&intel_crtc->base,
  3910. INTEL_OUTPUT_EDP)) {
  3911. if (intel_crtc->config.dither) {
  3912. pipeconf |= PIPECONF_6BPC |
  3913. PIPECONF_ENABLE |
  3914. I965_PIPECONF_ACTIVE;
  3915. }
  3916. }
  3917. if (HAS_PIPE_CXSR(dev)) {
  3918. if (intel_crtc->lowfreq_avail) {
  3919. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3920. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3921. } else {
  3922. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3923. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3924. }
  3925. }
  3926. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  3927. if (!IS_GEN2(dev) &&
  3928. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  3929. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3930. else
  3931. pipeconf |= PIPECONF_PROGRESSIVE;
  3932. if (IS_VALLEYVIEW(dev)) {
  3933. if (intel_crtc->config.limited_color_range)
  3934. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  3935. else
  3936. pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
  3937. }
  3938. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  3939. POSTING_READ(PIPECONF(intel_crtc->pipe));
  3940. }
  3941. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  3942. int x, int y,
  3943. struct drm_framebuffer *fb)
  3944. {
  3945. struct drm_device *dev = crtc->dev;
  3946. struct drm_i915_private *dev_priv = dev->dev_private;
  3947. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3948. struct drm_display_mode *adjusted_mode =
  3949. &intel_crtc->config.adjusted_mode;
  3950. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3951. int pipe = intel_crtc->pipe;
  3952. int plane = intel_crtc->plane;
  3953. int refclk, num_connectors = 0;
  3954. intel_clock_t clock, reduced_clock;
  3955. u32 dspcntr;
  3956. bool ok, has_reduced_clock = false, is_sdvo = false;
  3957. bool is_lvds = false, is_tv = false;
  3958. struct intel_encoder *encoder;
  3959. const intel_limit_t *limit;
  3960. int ret;
  3961. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3962. switch (encoder->type) {
  3963. case INTEL_OUTPUT_LVDS:
  3964. is_lvds = true;
  3965. break;
  3966. case INTEL_OUTPUT_SDVO:
  3967. case INTEL_OUTPUT_HDMI:
  3968. is_sdvo = true;
  3969. if (encoder->needs_tv_clock)
  3970. is_tv = true;
  3971. break;
  3972. case INTEL_OUTPUT_TVOUT:
  3973. is_tv = true;
  3974. break;
  3975. }
  3976. num_connectors++;
  3977. }
  3978. refclk = i9xx_get_refclk(crtc, num_connectors);
  3979. /*
  3980. * Returns a set of divisors for the desired target clock with the given
  3981. * refclk, or FALSE. The returned values represent the clock equation:
  3982. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3983. */
  3984. limit = intel_limit(crtc, refclk);
  3985. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  3986. &clock);
  3987. if (!ok) {
  3988. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3989. return -EINVAL;
  3990. }
  3991. /* Ensure that the cursor is valid for the new mode before changing... */
  3992. intel_crtc_update_cursor(crtc, true);
  3993. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3994. /*
  3995. * Ensure we match the reduced clock's P to the target clock.
  3996. * If the clocks don't match, we can't switch the display clock
  3997. * by using the FP0/FP1. In such case we will disable the LVDS
  3998. * downclock feature.
  3999. */
  4000. has_reduced_clock = limit->find_pll(limit, crtc,
  4001. dev_priv->lvds_downclock,
  4002. refclk,
  4003. &clock,
  4004. &reduced_clock);
  4005. }
  4006. /* Compat-code for transition, will disappear. */
  4007. if (!intel_crtc->config.clock_set) {
  4008. intel_crtc->config.dpll.n = clock.n;
  4009. intel_crtc->config.dpll.m1 = clock.m1;
  4010. intel_crtc->config.dpll.m2 = clock.m2;
  4011. intel_crtc->config.dpll.p1 = clock.p1;
  4012. intel_crtc->config.dpll.p2 = clock.p2;
  4013. }
  4014. if (is_sdvo && is_tv)
  4015. i9xx_adjust_sdvo_tv_clock(intel_crtc);
  4016. if (IS_GEN2(dev))
  4017. i8xx_update_pll(intel_crtc, adjusted_mode,
  4018. has_reduced_clock ? &reduced_clock : NULL,
  4019. num_connectors);
  4020. else if (IS_VALLEYVIEW(dev))
  4021. vlv_update_pll(intel_crtc);
  4022. else
  4023. i9xx_update_pll(intel_crtc,
  4024. has_reduced_clock ? &reduced_clock : NULL,
  4025. num_connectors);
  4026. /* Set up the display plane register */
  4027. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4028. if (!IS_VALLEYVIEW(dev)) {
  4029. if (pipe == 0)
  4030. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4031. else
  4032. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4033. }
  4034. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  4035. drm_mode_debug_printmodeline(mode);
  4036. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4037. /* pipesrc and dspsize control the size that is scaled from,
  4038. * which should always be the user's requested size.
  4039. */
  4040. I915_WRITE(DSPSIZE(plane),
  4041. ((mode->vdisplay - 1) << 16) |
  4042. (mode->hdisplay - 1));
  4043. I915_WRITE(DSPPOS(plane), 0);
  4044. i9xx_set_pipeconf(intel_crtc);
  4045. I915_WRITE(DSPCNTR(plane), dspcntr);
  4046. POSTING_READ(DSPCNTR(plane));
  4047. ret = intel_pipe_set_base(crtc, x, y, fb);
  4048. intel_update_watermarks(dev);
  4049. return ret;
  4050. }
  4051. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4052. struct intel_crtc_config *pipe_config)
  4053. {
  4054. struct drm_device *dev = crtc->base.dev;
  4055. struct drm_i915_private *dev_priv = dev->dev_private;
  4056. uint32_t tmp;
  4057. tmp = I915_READ(PIPECONF(crtc->pipe));
  4058. if (!(tmp & PIPECONF_ENABLE))
  4059. return false;
  4060. return true;
  4061. }
  4062. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4063. {
  4064. struct drm_i915_private *dev_priv = dev->dev_private;
  4065. struct drm_mode_config *mode_config = &dev->mode_config;
  4066. struct intel_encoder *encoder;
  4067. u32 val, final;
  4068. bool has_lvds = false;
  4069. bool has_cpu_edp = false;
  4070. bool has_pch_edp = false;
  4071. bool has_panel = false;
  4072. bool has_ck505 = false;
  4073. bool can_ssc = false;
  4074. /* We need to take the global config into account */
  4075. list_for_each_entry(encoder, &mode_config->encoder_list,
  4076. base.head) {
  4077. switch (encoder->type) {
  4078. case INTEL_OUTPUT_LVDS:
  4079. has_panel = true;
  4080. has_lvds = true;
  4081. break;
  4082. case INTEL_OUTPUT_EDP:
  4083. has_panel = true;
  4084. if (intel_encoder_is_pch_edp(&encoder->base))
  4085. has_pch_edp = true;
  4086. else
  4087. has_cpu_edp = true;
  4088. break;
  4089. }
  4090. }
  4091. if (HAS_PCH_IBX(dev)) {
  4092. has_ck505 = dev_priv->display_clock_mode;
  4093. can_ssc = has_ck505;
  4094. } else {
  4095. has_ck505 = false;
  4096. can_ssc = true;
  4097. }
  4098. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4099. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4100. has_ck505);
  4101. /* Ironlake: try to setup display ref clock before DPLL
  4102. * enabling. This is only under driver's control after
  4103. * PCH B stepping, previous chipset stepping should be
  4104. * ignoring this setting.
  4105. */
  4106. val = I915_READ(PCH_DREF_CONTROL);
  4107. /* As we must carefully and slowly disable/enable each source in turn,
  4108. * compute the final state we want first and check if we need to
  4109. * make any changes at all.
  4110. */
  4111. final = val;
  4112. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4113. if (has_ck505)
  4114. final |= DREF_NONSPREAD_CK505_ENABLE;
  4115. else
  4116. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4117. final &= ~DREF_SSC_SOURCE_MASK;
  4118. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4119. final &= ~DREF_SSC1_ENABLE;
  4120. if (has_panel) {
  4121. final |= DREF_SSC_SOURCE_ENABLE;
  4122. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4123. final |= DREF_SSC1_ENABLE;
  4124. if (has_cpu_edp) {
  4125. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4126. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4127. else
  4128. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4129. } else
  4130. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4131. } else {
  4132. final |= DREF_SSC_SOURCE_DISABLE;
  4133. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4134. }
  4135. if (final == val)
  4136. return;
  4137. /* Always enable nonspread source */
  4138. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4139. if (has_ck505)
  4140. val |= DREF_NONSPREAD_CK505_ENABLE;
  4141. else
  4142. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4143. if (has_panel) {
  4144. val &= ~DREF_SSC_SOURCE_MASK;
  4145. val |= DREF_SSC_SOURCE_ENABLE;
  4146. /* SSC must be turned on before enabling the CPU output */
  4147. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4148. DRM_DEBUG_KMS("Using SSC on panel\n");
  4149. val |= DREF_SSC1_ENABLE;
  4150. } else
  4151. val &= ~DREF_SSC1_ENABLE;
  4152. /* Get SSC going before enabling the outputs */
  4153. I915_WRITE(PCH_DREF_CONTROL, val);
  4154. POSTING_READ(PCH_DREF_CONTROL);
  4155. udelay(200);
  4156. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4157. /* Enable CPU source on CPU attached eDP */
  4158. if (has_cpu_edp) {
  4159. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4160. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4161. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4162. }
  4163. else
  4164. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4165. } else
  4166. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4167. I915_WRITE(PCH_DREF_CONTROL, val);
  4168. POSTING_READ(PCH_DREF_CONTROL);
  4169. udelay(200);
  4170. } else {
  4171. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4172. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4173. /* Turn off CPU output */
  4174. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4175. I915_WRITE(PCH_DREF_CONTROL, val);
  4176. POSTING_READ(PCH_DREF_CONTROL);
  4177. udelay(200);
  4178. /* Turn off the SSC source */
  4179. val &= ~DREF_SSC_SOURCE_MASK;
  4180. val |= DREF_SSC_SOURCE_DISABLE;
  4181. /* Turn off SSC1 */
  4182. val &= ~DREF_SSC1_ENABLE;
  4183. I915_WRITE(PCH_DREF_CONTROL, val);
  4184. POSTING_READ(PCH_DREF_CONTROL);
  4185. udelay(200);
  4186. }
  4187. BUG_ON(val != final);
  4188. }
  4189. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4190. static void lpt_init_pch_refclk(struct drm_device *dev)
  4191. {
  4192. struct drm_i915_private *dev_priv = dev->dev_private;
  4193. struct drm_mode_config *mode_config = &dev->mode_config;
  4194. struct intel_encoder *encoder;
  4195. bool has_vga = false;
  4196. bool is_sdv = false;
  4197. u32 tmp;
  4198. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4199. switch (encoder->type) {
  4200. case INTEL_OUTPUT_ANALOG:
  4201. has_vga = true;
  4202. break;
  4203. }
  4204. }
  4205. if (!has_vga)
  4206. return;
  4207. mutex_lock(&dev_priv->dpio_lock);
  4208. /* XXX: Rip out SDV support once Haswell ships for real. */
  4209. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4210. is_sdv = true;
  4211. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4212. tmp &= ~SBI_SSCCTL_DISABLE;
  4213. tmp |= SBI_SSCCTL_PATHALT;
  4214. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4215. udelay(24);
  4216. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4217. tmp &= ~SBI_SSCCTL_PATHALT;
  4218. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4219. if (!is_sdv) {
  4220. tmp = I915_READ(SOUTH_CHICKEN2);
  4221. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4222. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4223. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4224. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4225. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4226. tmp = I915_READ(SOUTH_CHICKEN2);
  4227. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4228. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4229. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4230. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4231. 100))
  4232. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4233. }
  4234. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4235. tmp &= ~(0xFF << 24);
  4236. tmp |= (0x12 << 24);
  4237. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4238. if (is_sdv) {
  4239. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4240. tmp |= 0x7FFF;
  4241. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4242. }
  4243. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4244. tmp |= (1 << 11);
  4245. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4246. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4247. tmp |= (1 << 11);
  4248. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4249. if (is_sdv) {
  4250. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4251. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4252. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4253. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4254. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4255. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4256. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4257. tmp |= (0x3F << 8);
  4258. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4259. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4260. tmp |= (0x3F << 8);
  4261. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4262. }
  4263. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4264. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4265. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4266. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4267. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4268. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4269. if (!is_sdv) {
  4270. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4271. tmp &= ~(7 << 13);
  4272. tmp |= (5 << 13);
  4273. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4274. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4275. tmp &= ~(7 << 13);
  4276. tmp |= (5 << 13);
  4277. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4278. }
  4279. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4280. tmp &= ~0xFF;
  4281. tmp |= 0x1C;
  4282. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4283. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4284. tmp &= ~0xFF;
  4285. tmp |= 0x1C;
  4286. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4287. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4288. tmp &= ~(0xFF << 16);
  4289. tmp |= (0x1C << 16);
  4290. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4291. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4292. tmp &= ~(0xFF << 16);
  4293. tmp |= (0x1C << 16);
  4294. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4295. if (!is_sdv) {
  4296. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4297. tmp |= (1 << 27);
  4298. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4299. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4300. tmp |= (1 << 27);
  4301. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4302. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4303. tmp &= ~(0xF << 28);
  4304. tmp |= (4 << 28);
  4305. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4306. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4307. tmp &= ~(0xF << 28);
  4308. tmp |= (4 << 28);
  4309. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4310. }
  4311. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4312. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4313. tmp |= SBI_DBUFF0_ENABLE;
  4314. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4315. mutex_unlock(&dev_priv->dpio_lock);
  4316. }
  4317. /*
  4318. * Initialize reference clocks when the driver loads
  4319. */
  4320. void intel_init_pch_refclk(struct drm_device *dev)
  4321. {
  4322. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4323. ironlake_init_pch_refclk(dev);
  4324. else if (HAS_PCH_LPT(dev))
  4325. lpt_init_pch_refclk(dev);
  4326. }
  4327. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4328. {
  4329. struct drm_device *dev = crtc->dev;
  4330. struct drm_i915_private *dev_priv = dev->dev_private;
  4331. struct intel_encoder *encoder;
  4332. struct intel_encoder *edp_encoder = NULL;
  4333. int num_connectors = 0;
  4334. bool is_lvds = false;
  4335. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4336. switch (encoder->type) {
  4337. case INTEL_OUTPUT_LVDS:
  4338. is_lvds = true;
  4339. break;
  4340. case INTEL_OUTPUT_EDP:
  4341. edp_encoder = encoder;
  4342. break;
  4343. }
  4344. num_connectors++;
  4345. }
  4346. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4347. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4348. dev_priv->lvds_ssc_freq);
  4349. return dev_priv->lvds_ssc_freq * 1000;
  4350. }
  4351. return 120000;
  4352. }
  4353. static void ironlake_set_pipeconf(struct drm_crtc *crtc,
  4354. struct drm_display_mode *adjusted_mode)
  4355. {
  4356. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4357. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4358. int pipe = intel_crtc->pipe;
  4359. uint32_t val;
  4360. val = I915_READ(PIPECONF(pipe));
  4361. val &= ~PIPECONF_BPC_MASK;
  4362. switch (intel_crtc->config.pipe_bpp) {
  4363. case 18:
  4364. val |= PIPECONF_6BPC;
  4365. break;
  4366. case 24:
  4367. val |= PIPECONF_8BPC;
  4368. break;
  4369. case 30:
  4370. val |= PIPECONF_10BPC;
  4371. break;
  4372. case 36:
  4373. val |= PIPECONF_12BPC;
  4374. break;
  4375. default:
  4376. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4377. BUG();
  4378. }
  4379. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4380. if (intel_crtc->config.dither)
  4381. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4382. val &= ~PIPECONF_INTERLACE_MASK;
  4383. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4384. val |= PIPECONF_INTERLACED_ILK;
  4385. else
  4386. val |= PIPECONF_PROGRESSIVE;
  4387. if (intel_crtc->config.limited_color_range)
  4388. val |= PIPECONF_COLOR_RANGE_SELECT;
  4389. else
  4390. val &= ~PIPECONF_COLOR_RANGE_SELECT;
  4391. I915_WRITE(PIPECONF(pipe), val);
  4392. POSTING_READ(PIPECONF(pipe));
  4393. }
  4394. /*
  4395. * Set up the pipe CSC unit.
  4396. *
  4397. * Currently only full range RGB to limited range RGB conversion
  4398. * is supported, but eventually this should handle various
  4399. * RGB<->YCbCr scenarios as well.
  4400. */
  4401. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4402. {
  4403. struct drm_device *dev = crtc->dev;
  4404. struct drm_i915_private *dev_priv = dev->dev_private;
  4405. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4406. int pipe = intel_crtc->pipe;
  4407. uint16_t coeff = 0x7800; /* 1.0 */
  4408. /*
  4409. * TODO: Check what kind of values actually come out of the pipe
  4410. * with these coeff/postoff values and adjust to get the best
  4411. * accuracy. Perhaps we even need to take the bpc value into
  4412. * consideration.
  4413. */
  4414. if (intel_crtc->config.limited_color_range)
  4415. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4416. /*
  4417. * GY/GU and RY/RU should be the other way around according
  4418. * to BSpec, but reality doesn't agree. Just set them up in
  4419. * a way that results in the correct picture.
  4420. */
  4421. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4422. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4423. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4424. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4425. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4426. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4427. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4428. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4429. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4430. if (INTEL_INFO(dev)->gen > 6) {
  4431. uint16_t postoff = 0;
  4432. if (intel_crtc->config.limited_color_range)
  4433. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4434. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4435. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4436. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4437. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4438. } else {
  4439. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4440. if (intel_crtc->config.limited_color_range)
  4441. mode |= CSC_BLACK_SCREEN_OFFSET;
  4442. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4443. }
  4444. }
  4445. static void haswell_set_pipeconf(struct drm_crtc *crtc,
  4446. struct drm_display_mode *adjusted_mode)
  4447. {
  4448. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4449. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4450. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4451. uint32_t val;
  4452. val = I915_READ(PIPECONF(cpu_transcoder));
  4453. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4454. if (intel_crtc->config.dither)
  4455. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4456. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4457. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4458. val |= PIPECONF_INTERLACED_ILK;
  4459. else
  4460. val |= PIPECONF_PROGRESSIVE;
  4461. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4462. POSTING_READ(PIPECONF(cpu_transcoder));
  4463. }
  4464. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4465. struct drm_display_mode *adjusted_mode,
  4466. intel_clock_t *clock,
  4467. bool *has_reduced_clock,
  4468. intel_clock_t *reduced_clock)
  4469. {
  4470. struct drm_device *dev = crtc->dev;
  4471. struct drm_i915_private *dev_priv = dev->dev_private;
  4472. struct intel_encoder *intel_encoder;
  4473. int refclk;
  4474. const intel_limit_t *limit;
  4475. bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4476. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4477. switch (intel_encoder->type) {
  4478. case INTEL_OUTPUT_LVDS:
  4479. is_lvds = true;
  4480. break;
  4481. case INTEL_OUTPUT_SDVO:
  4482. case INTEL_OUTPUT_HDMI:
  4483. is_sdvo = true;
  4484. if (intel_encoder->needs_tv_clock)
  4485. is_tv = true;
  4486. break;
  4487. case INTEL_OUTPUT_TVOUT:
  4488. is_tv = true;
  4489. break;
  4490. }
  4491. }
  4492. refclk = ironlake_get_refclk(crtc);
  4493. /*
  4494. * Returns a set of divisors for the desired target clock with the given
  4495. * refclk, or FALSE. The returned values represent the clock equation:
  4496. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4497. */
  4498. limit = intel_limit(crtc, refclk);
  4499. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4500. clock);
  4501. if (!ret)
  4502. return false;
  4503. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4504. /*
  4505. * Ensure we match the reduced clock's P to the target clock.
  4506. * If the clocks don't match, we can't switch the display clock
  4507. * by using the FP0/FP1. In such case we will disable the LVDS
  4508. * downclock feature.
  4509. */
  4510. *has_reduced_clock = limit->find_pll(limit, crtc,
  4511. dev_priv->lvds_downclock,
  4512. refclk,
  4513. clock,
  4514. reduced_clock);
  4515. }
  4516. if (is_sdvo && is_tv)
  4517. i9xx_adjust_sdvo_tv_clock(to_intel_crtc(crtc));
  4518. return true;
  4519. }
  4520. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4521. {
  4522. struct drm_i915_private *dev_priv = dev->dev_private;
  4523. uint32_t temp;
  4524. temp = I915_READ(SOUTH_CHICKEN1);
  4525. if (temp & FDI_BC_BIFURCATION_SELECT)
  4526. return;
  4527. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4528. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4529. temp |= FDI_BC_BIFURCATION_SELECT;
  4530. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4531. I915_WRITE(SOUTH_CHICKEN1, temp);
  4532. POSTING_READ(SOUTH_CHICKEN1);
  4533. }
  4534. static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
  4535. {
  4536. struct drm_device *dev = intel_crtc->base.dev;
  4537. struct drm_i915_private *dev_priv = dev->dev_private;
  4538. struct intel_crtc *pipe_B_crtc =
  4539. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  4540. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  4541. pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
  4542. if (intel_crtc->fdi_lanes > 4) {
  4543. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  4544. pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
  4545. /* Clamp lanes to avoid programming the hw with bogus values. */
  4546. intel_crtc->fdi_lanes = 4;
  4547. return false;
  4548. }
  4549. if (INTEL_INFO(dev)->num_pipes == 2)
  4550. return true;
  4551. switch (intel_crtc->pipe) {
  4552. case PIPE_A:
  4553. return true;
  4554. case PIPE_B:
  4555. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  4556. intel_crtc->fdi_lanes > 2) {
  4557. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  4558. pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
  4559. /* Clamp lanes to avoid programming the hw with bogus values. */
  4560. intel_crtc->fdi_lanes = 2;
  4561. return false;
  4562. }
  4563. if (intel_crtc->fdi_lanes > 2)
  4564. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4565. else
  4566. cpt_enable_fdi_bc_bifurcation(dev);
  4567. return true;
  4568. case PIPE_C:
  4569. if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
  4570. if (intel_crtc->fdi_lanes > 2) {
  4571. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  4572. pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
  4573. /* Clamp lanes to avoid programming the hw with bogus values. */
  4574. intel_crtc->fdi_lanes = 2;
  4575. return false;
  4576. }
  4577. } else {
  4578. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  4579. return false;
  4580. }
  4581. cpt_enable_fdi_bc_bifurcation(dev);
  4582. return true;
  4583. default:
  4584. BUG();
  4585. }
  4586. }
  4587. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4588. {
  4589. /*
  4590. * Account for spread spectrum to avoid
  4591. * oversubscribing the link. Max center spread
  4592. * is 2.5%; use 5% for safety's sake.
  4593. */
  4594. u32 bps = target_clock * bpp * 21 / 20;
  4595. return bps / (link_bw * 8) + 1;
  4596. }
  4597. void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  4598. struct intel_link_m_n *m_n)
  4599. {
  4600. struct drm_device *dev = crtc->base.dev;
  4601. struct drm_i915_private *dev_priv = dev->dev_private;
  4602. int pipe = crtc->pipe;
  4603. I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  4604. I915_WRITE(TRANSDATA_N1(pipe), m_n->gmch_n);
  4605. I915_WRITE(TRANSDPLINK_M1(pipe), m_n->link_m);
  4606. I915_WRITE(TRANSDPLINK_N1(pipe), m_n->link_n);
  4607. }
  4608. void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  4609. struct intel_link_m_n *m_n)
  4610. {
  4611. struct drm_device *dev = crtc->base.dev;
  4612. struct drm_i915_private *dev_priv = dev->dev_private;
  4613. int pipe = crtc->pipe;
  4614. enum transcoder transcoder = crtc->config.cpu_transcoder;
  4615. if (INTEL_INFO(dev)->gen >= 5) {
  4616. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  4617. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  4618. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  4619. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  4620. } else {
  4621. I915_WRITE(PIPE_GMCH_DATA_M(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  4622. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n->gmch_n);
  4623. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n->link_m);
  4624. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n->link_n);
  4625. }
  4626. }
  4627. static void ironlake_fdi_set_m_n(struct drm_crtc *crtc)
  4628. {
  4629. struct drm_device *dev = crtc->dev;
  4630. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4631. struct drm_display_mode *adjusted_mode =
  4632. &intel_crtc->config.adjusted_mode;
  4633. struct intel_link_m_n m_n = {0};
  4634. int target_clock, lane, link_bw;
  4635. /* FDI is a binary signal running at ~2.7GHz, encoding
  4636. * each output octet as 10 bits. The actual frequency
  4637. * is stored as a divider into a 100MHz clock, and the
  4638. * mode pixel clock is stored in units of 1KHz.
  4639. * Hence the bw of each lane in terms of the mode signal
  4640. * is:
  4641. */
  4642. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4643. if (intel_crtc->config.pixel_target_clock)
  4644. target_clock = intel_crtc->config.pixel_target_clock;
  4645. else
  4646. target_clock = adjusted_mode->clock;
  4647. lane = ironlake_get_lanes_required(target_clock, link_bw,
  4648. intel_crtc->config.pipe_bpp);
  4649. intel_crtc->fdi_lanes = lane;
  4650. if (intel_crtc->config.pixel_multiplier > 1)
  4651. link_bw *= intel_crtc->config.pixel_multiplier;
  4652. intel_link_compute_m_n(intel_crtc->config.pipe_bpp, lane, target_clock,
  4653. link_bw, &m_n);
  4654. intel_cpu_transcoder_set_m_n(intel_crtc, &m_n);
  4655. }
  4656. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4657. {
  4658. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4659. }
  4660. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4661. u32 *fp,
  4662. intel_clock_t *reduced_clock, u32 *fp2)
  4663. {
  4664. struct drm_crtc *crtc = &intel_crtc->base;
  4665. struct drm_device *dev = crtc->dev;
  4666. struct drm_i915_private *dev_priv = dev->dev_private;
  4667. struct intel_encoder *intel_encoder;
  4668. uint32_t dpll;
  4669. int factor, num_connectors = 0;
  4670. bool is_lvds = false, is_sdvo = false, is_tv = false;
  4671. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4672. switch (intel_encoder->type) {
  4673. case INTEL_OUTPUT_LVDS:
  4674. is_lvds = true;
  4675. break;
  4676. case INTEL_OUTPUT_SDVO:
  4677. case INTEL_OUTPUT_HDMI:
  4678. is_sdvo = true;
  4679. if (intel_encoder->needs_tv_clock)
  4680. is_tv = true;
  4681. break;
  4682. case INTEL_OUTPUT_TVOUT:
  4683. is_tv = true;
  4684. break;
  4685. }
  4686. num_connectors++;
  4687. }
  4688. /* Enable autotuning of the PLL clock (if permissible) */
  4689. factor = 21;
  4690. if (is_lvds) {
  4691. if ((intel_panel_use_ssc(dev_priv) &&
  4692. dev_priv->lvds_ssc_freq == 100) ||
  4693. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4694. factor = 25;
  4695. } else if (is_sdvo && is_tv)
  4696. factor = 20;
  4697. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4698. *fp |= FP_CB_TUNE;
  4699. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4700. *fp2 |= FP_CB_TUNE;
  4701. dpll = 0;
  4702. if (is_lvds)
  4703. dpll |= DPLLB_MODE_LVDS;
  4704. else
  4705. dpll |= DPLLB_MODE_DAC_SERIAL;
  4706. if (is_sdvo) {
  4707. if (intel_crtc->config.pixel_multiplier > 1) {
  4708. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4709. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4710. }
  4711. dpll |= DPLL_DVO_HIGH_SPEED;
  4712. }
  4713. if (intel_crtc->config.has_dp_encoder)
  4714. dpll |= DPLL_DVO_HIGH_SPEED;
  4715. /* compute bitmask from p1 value */
  4716. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4717. /* also FPA1 */
  4718. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4719. switch (intel_crtc->config.dpll.p2) {
  4720. case 5:
  4721. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4722. break;
  4723. case 7:
  4724. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4725. break;
  4726. case 10:
  4727. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4728. break;
  4729. case 14:
  4730. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4731. break;
  4732. }
  4733. if (is_sdvo && is_tv)
  4734. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4735. else if (is_tv)
  4736. /* XXX: just matching BIOS for now */
  4737. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4738. dpll |= 3;
  4739. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4740. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4741. else
  4742. dpll |= PLL_REF_INPUT_DREFCLK;
  4743. return dpll;
  4744. }
  4745. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4746. int x, int y,
  4747. struct drm_framebuffer *fb)
  4748. {
  4749. struct drm_device *dev = crtc->dev;
  4750. struct drm_i915_private *dev_priv = dev->dev_private;
  4751. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4752. struct drm_display_mode *adjusted_mode =
  4753. &intel_crtc->config.adjusted_mode;
  4754. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4755. int pipe = intel_crtc->pipe;
  4756. int plane = intel_crtc->plane;
  4757. int num_connectors = 0;
  4758. intel_clock_t clock, reduced_clock;
  4759. u32 dpll = 0, fp = 0, fp2 = 0;
  4760. bool ok, has_reduced_clock = false;
  4761. bool is_lvds = false;
  4762. struct intel_encoder *encoder;
  4763. int ret;
  4764. bool fdi_config_ok;
  4765. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4766. switch (encoder->type) {
  4767. case INTEL_OUTPUT_LVDS:
  4768. is_lvds = true;
  4769. break;
  4770. }
  4771. num_connectors++;
  4772. }
  4773. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4774. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4775. intel_crtc->config.cpu_transcoder = pipe;
  4776. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4777. &has_reduced_clock, &reduced_clock);
  4778. if (!ok) {
  4779. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4780. return -EINVAL;
  4781. }
  4782. /* Compat-code for transition, will disappear. */
  4783. if (!intel_crtc->config.clock_set) {
  4784. intel_crtc->config.dpll.n = clock.n;
  4785. intel_crtc->config.dpll.m1 = clock.m1;
  4786. intel_crtc->config.dpll.m2 = clock.m2;
  4787. intel_crtc->config.dpll.p1 = clock.p1;
  4788. intel_crtc->config.dpll.p2 = clock.p2;
  4789. }
  4790. /* Ensure that the cursor is valid for the new mode before changing... */
  4791. intel_crtc_update_cursor(crtc, true);
  4792. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  4793. drm_mode_debug_printmodeline(mode);
  4794. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4795. if (intel_crtc->config.has_pch_encoder) {
  4796. struct intel_pch_pll *pll;
  4797. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4798. if (has_reduced_clock)
  4799. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4800. dpll = ironlake_compute_dpll(intel_crtc,
  4801. &fp, &reduced_clock,
  4802. has_reduced_clock ? &fp2 : NULL);
  4803. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4804. if (pll == NULL) {
  4805. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4806. pipe_name(pipe));
  4807. return -EINVAL;
  4808. }
  4809. } else
  4810. intel_put_pch_pll(intel_crtc);
  4811. if (intel_crtc->config.has_dp_encoder)
  4812. intel_dp_set_m_n(intel_crtc);
  4813. for_each_encoder_on_crtc(dev, crtc, encoder)
  4814. if (encoder->pre_pll_enable)
  4815. encoder->pre_pll_enable(encoder);
  4816. if (intel_crtc->pch_pll) {
  4817. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4818. /* Wait for the clocks to stabilize. */
  4819. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4820. udelay(150);
  4821. /* The pixel multiplier can only be updated once the
  4822. * DPLL is enabled and the clocks are stable.
  4823. *
  4824. * So write it again.
  4825. */
  4826. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4827. }
  4828. intel_crtc->lowfreq_avail = false;
  4829. if (intel_crtc->pch_pll) {
  4830. if (is_lvds && has_reduced_clock && i915_powersave) {
  4831. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4832. intel_crtc->lowfreq_avail = true;
  4833. } else {
  4834. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4835. }
  4836. }
  4837. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4838. /* Note, this also computes intel_crtc->fdi_lanes which is used below in
  4839. * ironlake_check_fdi_lanes. */
  4840. intel_crtc->fdi_lanes = 0;
  4841. if (intel_crtc->config.has_pch_encoder)
  4842. ironlake_fdi_set_m_n(crtc);
  4843. fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
  4844. ironlake_set_pipeconf(crtc, adjusted_mode);
  4845. /* Set up the display plane register */
  4846. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4847. POSTING_READ(DSPCNTR(plane));
  4848. ret = intel_pipe_set_base(crtc, x, y, fb);
  4849. intel_update_watermarks(dev);
  4850. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4851. return fdi_config_ok ? ret : -EINVAL;
  4852. }
  4853. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4854. struct intel_crtc_config *pipe_config)
  4855. {
  4856. struct drm_device *dev = crtc->base.dev;
  4857. struct drm_i915_private *dev_priv = dev->dev_private;
  4858. uint32_t tmp;
  4859. tmp = I915_READ(PIPECONF(crtc->pipe));
  4860. if (!(tmp & PIPECONF_ENABLE))
  4861. return false;
  4862. if (I915_READ(TRANSCONF(crtc->pipe)) & TRANS_ENABLE)
  4863. pipe_config->has_pch_encoder = true;
  4864. return true;
  4865. }
  4866. static void haswell_modeset_global_resources(struct drm_device *dev)
  4867. {
  4868. struct drm_i915_private *dev_priv = dev->dev_private;
  4869. bool enable = false;
  4870. struct intel_crtc *crtc;
  4871. struct intel_encoder *encoder;
  4872. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4873. if (crtc->pipe != PIPE_A && crtc->base.enabled)
  4874. enable = true;
  4875. /* XXX: Should check for edp transcoder here, but thanks to init
  4876. * sequence that's not yet available. Just in case desktop eDP
  4877. * on PORT D is possible on haswell, too. */
  4878. }
  4879. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  4880. base.head) {
  4881. if (encoder->type != INTEL_OUTPUT_EDP &&
  4882. encoder->connectors_active)
  4883. enable = true;
  4884. }
  4885. /* Even the eDP panel fitter is outside the always-on well. */
  4886. if (dev_priv->pch_pf_size)
  4887. enable = true;
  4888. intel_set_power_well(dev, enable);
  4889. }
  4890. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4891. int x, int y,
  4892. struct drm_framebuffer *fb)
  4893. {
  4894. struct drm_device *dev = crtc->dev;
  4895. struct drm_i915_private *dev_priv = dev->dev_private;
  4896. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4897. struct drm_display_mode *adjusted_mode =
  4898. &intel_crtc->config.adjusted_mode;
  4899. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4900. int pipe = intel_crtc->pipe;
  4901. int plane = intel_crtc->plane;
  4902. int num_connectors = 0;
  4903. bool is_cpu_edp = false;
  4904. struct intel_encoder *encoder;
  4905. int ret;
  4906. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4907. switch (encoder->type) {
  4908. case INTEL_OUTPUT_EDP:
  4909. if (!intel_encoder_is_pch_edp(&encoder->base))
  4910. is_cpu_edp = true;
  4911. break;
  4912. }
  4913. num_connectors++;
  4914. }
  4915. if (is_cpu_edp)
  4916. intel_crtc->config.cpu_transcoder = TRANSCODER_EDP;
  4917. else
  4918. intel_crtc->config.cpu_transcoder = pipe;
  4919. /* We are not sure yet this won't happen. */
  4920. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  4921. INTEL_PCH_TYPE(dev));
  4922. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4923. num_connectors, pipe_name(pipe));
  4924. WARN_ON(I915_READ(PIPECONF(intel_crtc->config.cpu_transcoder)) &
  4925. (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
  4926. WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
  4927. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  4928. return -EINVAL;
  4929. /* Ensure that the cursor is valid for the new mode before changing... */
  4930. intel_crtc_update_cursor(crtc, true);
  4931. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  4932. drm_mode_debug_printmodeline(mode);
  4933. if (intel_crtc->config.has_dp_encoder)
  4934. intel_dp_set_m_n(intel_crtc);
  4935. intel_crtc->lowfreq_avail = false;
  4936. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4937. if (intel_crtc->config.has_pch_encoder)
  4938. ironlake_fdi_set_m_n(crtc);
  4939. haswell_set_pipeconf(crtc, adjusted_mode);
  4940. intel_set_pipe_csc(crtc);
  4941. /* Set up the display plane register */
  4942. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  4943. POSTING_READ(DSPCNTR(plane));
  4944. ret = intel_pipe_set_base(crtc, x, y, fb);
  4945. intel_update_watermarks(dev);
  4946. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4947. return ret;
  4948. }
  4949. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  4950. struct intel_crtc_config *pipe_config)
  4951. {
  4952. struct drm_device *dev = crtc->base.dev;
  4953. struct drm_i915_private *dev_priv = dev->dev_private;
  4954. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  4955. uint32_t tmp;
  4956. if (!intel_using_power_well(dev_priv->dev) &&
  4957. cpu_transcoder != TRANSCODER_EDP)
  4958. return false;
  4959. tmp = I915_READ(PIPECONF(cpu_transcoder));
  4960. if (!(tmp & PIPECONF_ENABLE))
  4961. return false;
  4962. /*
  4963. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  4964. * DDI E. So just check whether this pipe is wired to DDI E and whether
  4965. * the PCH transcoder is on.
  4966. */
  4967. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  4968. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  4969. I915_READ(TRANSCONF(PIPE_A)) & TRANS_ENABLE)
  4970. pipe_config->has_pch_encoder = true;
  4971. return true;
  4972. }
  4973. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4974. int x, int y,
  4975. struct drm_framebuffer *fb)
  4976. {
  4977. struct drm_device *dev = crtc->dev;
  4978. struct drm_i915_private *dev_priv = dev->dev_private;
  4979. struct drm_encoder_helper_funcs *encoder_funcs;
  4980. struct intel_encoder *encoder;
  4981. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4982. struct drm_display_mode *adjusted_mode =
  4983. &intel_crtc->config.adjusted_mode;
  4984. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4985. int pipe = intel_crtc->pipe;
  4986. int ret;
  4987. drm_vblank_pre_modeset(dev, pipe);
  4988. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  4989. drm_vblank_post_modeset(dev, pipe);
  4990. if (ret != 0)
  4991. return ret;
  4992. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4993. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  4994. encoder->base.base.id,
  4995. drm_get_encoder_name(&encoder->base),
  4996. mode->base.id, mode->name);
  4997. if (encoder->mode_set) {
  4998. encoder->mode_set(encoder);
  4999. } else {
  5000. encoder_funcs = encoder->base.helper_private;
  5001. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5002. }
  5003. }
  5004. return 0;
  5005. }
  5006. static bool intel_eld_uptodate(struct drm_connector *connector,
  5007. int reg_eldv, uint32_t bits_eldv,
  5008. int reg_elda, uint32_t bits_elda,
  5009. int reg_edid)
  5010. {
  5011. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5012. uint8_t *eld = connector->eld;
  5013. uint32_t i;
  5014. i = I915_READ(reg_eldv);
  5015. i &= bits_eldv;
  5016. if (!eld[0])
  5017. return !i;
  5018. if (!i)
  5019. return false;
  5020. i = I915_READ(reg_elda);
  5021. i &= ~bits_elda;
  5022. I915_WRITE(reg_elda, i);
  5023. for (i = 0; i < eld[2]; i++)
  5024. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5025. return false;
  5026. return true;
  5027. }
  5028. static void g4x_write_eld(struct drm_connector *connector,
  5029. struct drm_crtc *crtc)
  5030. {
  5031. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5032. uint8_t *eld = connector->eld;
  5033. uint32_t eldv;
  5034. uint32_t len;
  5035. uint32_t i;
  5036. i = I915_READ(G4X_AUD_VID_DID);
  5037. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5038. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5039. else
  5040. eldv = G4X_ELDV_DEVCTG;
  5041. if (intel_eld_uptodate(connector,
  5042. G4X_AUD_CNTL_ST, eldv,
  5043. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5044. G4X_HDMIW_HDMIEDID))
  5045. return;
  5046. i = I915_READ(G4X_AUD_CNTL_ST);
  5047. i &= ~(eldv | G4X_ELD_ADDR);
  5048. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5049. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5050. if (!eld[0])
  5051. return;
  5052. len = min_t(uint8_t, eld[2], len);
  5053. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5054. for (i = 0; i < len; i++)
  5055. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5056. i = I915_READ(G4X_AUD_CNTL_ST);
  5057. i |= eldv;
  5058. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5059. }
  5060. static void haswell_write_eld(struct drm_connector *connector,
  5061. struct drm_crtc *crtc)
  5062. {
  5063. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5064. uint8_t *eld = connector->eld;
  5065. struct drm_device *dev = crtc->dev;
  5066. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5067. uint32_t eldv;
  5068. uint32_t i;
  5069. int len;
  5070. int pipe = to_intel_crtc(crtc)->pipe;
  5071. int tmp;
  5072. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5073. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5074. int aud_config = HSW_AUD_CFG(pipe);
  5075. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5076. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5077. /* Audio output enable */
  5078. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5079. tmp = I915_READ(aud_cntrl_st2);
  5080. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5081. I915_WRITE(aud_cntrl_st2, tmp);
  5082. /* Wait for 1 vertical blank */
  5083. intel_wait_for_vblank(dev, pipe);
  5084. /* Set ELD valid state */
  5085. tmp = I915_READ(aud_cntrl_st2);
  5086. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5087. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5088. I915_WRITE(aud_cntrl_st2, tmp);
  5089. tmp = I915_READ(aud_cntrl_st2);
  5090. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5091. /* Enable HDMI mode */
  5092. tmp = I915_READ(aud_config);
  5093. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5094. /* clear N_programing_enable and N_value_index */
  5095. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5096. I915_WRITE(aud_config, tmp);
  5097. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5098. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5099. intel_crtc->eld_vld = true;
  5100. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5101. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5102. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5103. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5104. } else
  5105. I915_WRITE(aud_config, 0);
  5106. if (intel_eld_uptodate(connector,
  5107. aud_cntrl_st2, eldv,
  5108. aud_cntl_st, IBX_ELD_ADDRESS,
  5109. hdmiw_hdmiedid))
  5110. return;
  5111. i = I915_READ(aud_cntrl_st2);
  5112. i &= ~eldv;
  5113. I915_WRITE(aud_cntrl_st2, i);
  5114. if (!eld[0])
  5115. return;
  5116. i = I915_READ(aud_cntl_st);
  5117. i &= ~IBX_ELD_ADDRESS;
  5118. I915_WRITE(aud_cntl_st, i);
  5119. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5120. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5121. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5122. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5123. for (i = 0; i < len; i++)
  5124. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5125. i = I915_READ(aud_cntrl_st2);
  5126. i |= eldv;
  5127. I915_WRITE(aud_cntrl_st2, i);
  5128. }
  5129. static void ironlake_write_eld(struct drm_connector *connector,
  5130. struct drm_crtc *crtc)
  5131. {
  5132. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5133. uint8_t *eld = connector->eld;
  5134. uint32_t eldv;
  5135. uint32_t i;
  5136. int len;
  5137. int hdmiw_hdmiedid;
  5138. int aud_config;
  5139. int aud_cntl_st;
  5140. int aud_cntrl_st2;
  5141. int pipe = to_intel_crtc(crtc)->pipe;
  5142. if (HAS_PCH_IBX(connector->dev)) {
  5143. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5144. aud_config = IBX_AUD_CFG(pipe);
  5145. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5146. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5147. } else {
  5148. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5149. aud_config = CPT_AUD_CFG(pipe);
  5150. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5151. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5152. }
  5153. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5154. i = I915_READ(aud_cntl_st);
  5155. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5156. if (!i) {
  5157. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5158. /* operate blindly on all ports */
  5159. eldv = IBX_ELD_VALIDB;
  5160. eldv |= IBX_ELD_VALIDB << 4;
  5161. eldv |= IBX_ELD_VALIDB << 8;
  5162. } else {
  5163. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5164. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5165. }
  5166. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5167. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5168. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5169. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5170. } else
  5171. I915_WRITE(aud_config, 0);
  5172. if (intel_eld_uptodate(connector,
  5173. aud_cntrl_st2, eldv,
  5174. aud_cntl_st, IBX_ELD_ADDRESS,
  5175. hdmiw_hdmiedid))
  5176. return;
  5177. i = I915_READ(aud_cntrl_st2);
  5178. i &= ~eldv;
  5179. I915_WRITE(aud_cntrl_st2, i);
  5180. if (!eld[0])
  5181. return;
  5182. i = I915_READ(aud_cntl_st);
  5183. i &= ~IBX_ELD_ADDRESS;
  5184. I915_WRITE(aud_cntl_st, i);
  5185. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5186. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5187. for (i = 0; i < len; i++)
  5188. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5189. i = I915_READ(aud_cntrl_st2);
  5190. i |= eldv;
  5191. I915_WRITE(aud_cntrl_st2, i);
  5192. }
  5193. void intel_write_eld(struct drm_encoder *encoder,
  5194. struct drm_display_mode *mode)
  5195. {
  5196. struct drm_crtc *crtc = encoder->crtc;
  5197. struct drm_connector *connector;
  5198. struct drm_device *dev = encoder->dev;
  5199. struct drm_i915_private *dev_priv = dev->dev_private;
  5200. connector = drm_select_eld(encoder, mode);
  5201. if (!connector)
  5202. return;
  5203. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5204. connector->base.id,
  5205. drm_get_connector_name(connector),
  5206. connector->encoder->base.id,
  5207. drm_get_encoder_name(connector->encoder));
  5208. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5209. if (dev_priv->display.write_eld)
  5210. dev_priv->display.write_eld(connector, crtc);
  5211. }
  5212. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5213. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5214. {
  5215. struct drm_device *dev = crtc->dev;
  5216. struct drm_i915_private *dev_priv = dev->dev_private;
  5217. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5218. int palreg = PALETTE(intel_crtc->pipe);
  5219. int i;
  5220. /* The clocks have to be on to load the palette. */
  5221. if (!crtc->enabled || !intel_crtc->active)
  5222. return;
  5223. /* use legacy palette for Ironlake */
  5224. if (HAS_PCH_SPLIT(dev))
  5225. palreg = LGC_PALETTE(intel_crtc->pipe);
  5226. for (i = 0; i < 256; i++) {
  5227. I915_WRITE(palreg + 4 * i,
  5228. (intel_crtc->lut_r[i] << 16) |
  5229. (intel_crtc->lut_g[i] << 8) |
  5230. intel_crtc->lut_b[i]);
  5231. }
  5232. }
  5233. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5234. {
  5235. struct drm_device *dev = crtc->dev;
  5236. struct drm_i915_private *dev_priv = dev->dev_private;
  5237. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5238. bool visible = base != 0;
  5239. u32 cntl;
  5240. if (intel_crtc->cursor_visible == visible)
  5241. return;
  5242. cntl = I915_READ(_CURACNTR);
  5243. if (visible) {
  5244. /* On these chipsets we can only modify the base whilst
  5245. * the cursor is disabled.
  5246. */
  5247. I915_WRITE(_CURABASE, base);
  5248. cntl &= ~(CURSOR_FORMAT_MASK);
  5249. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5250. cntl |= CURSOR_ENABLE |
  5251. CURSOR_GAMMA_ENABLE |
  5252. CURSOR_FORMAT_ARGB;
  5253. } else
  5254. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5255. I915_WRITE(_CURACNTR, cntl);
  5256. intel_crtc->cursor_visible = visible;
  5257. }
  5258. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5259. {
  5260. struct drm_device *dev = crtc->dev;
  5261. struct drm_i915_private *dev_priv = dev->dev_private;
  5262. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5263. int pipe = intel_crtc->pipe;
  5264. bool visible = base != 0;
  5265. if (intel_crtc->cursor_visible != visible) {
  5266. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5267. if (base) {
  5268. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5269. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5270. cntl |= pipe << 28; /* Connect to correct pipe */
  5271. } else {
  5272. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5273. cntl |= CURSOR_MODE_DISABLE;
  5274. }
  5275. I915_WRITE(CURCNTR(pipe), cntl);
  5276. intel_crtc->cursor_visible = visible;
  5277. }
  5278. /* and commit changes on next vblank */
  5279. I915_WRITE(CURBASE(pipe), base);
  5280. }
  5281. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5282. {
  5283. struct drm_device *dev = crtc->dev;
  5284. struct drm_i915_private *dev_priv = dev->dev_private;
  5285. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5286. int pipe = intel_crtc->pipe;
  5287. bool visible = base != 0;
  5288. if (intel_crtc->cursor_visible != visible) {
  5289. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5290. if (base) {
  5291. cntl &= ~CURSOR_MODE;
  5292. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5293. } else {
  5294. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5295. cntl |= CURSOR_MODE_DISABLE;
  5296. }
  5297. if (IS_HASWELL(dev))
  5298. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5299. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5300. intel_crtc->cursor_visible = visible;
  5301. }
  5302. /* and commit changes on next vblank */
  5303. I915_WRITE(CURBASE_IVB(pipe), base);
  5304. }
  5305. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5306. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5307. bool on)
  5308. {
  5309. struct drm_device *dev = crtc->dev;
  5310. struct drm_i915_private *dev_priv = dev->dev_private;
  5311. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5312. int pipe = intel_crtc->pipe;
  5313. int x = intel_crtc->cursor_x;
  5314. int y = intel_crtc->cursor_y;
  5315. u32 base, pos;
  5316. bool visible;
  5317. pos = 0;
  5318. if (on && crtc->enabled && crtc->fb) {
  5319. base = intel_crtc->cursor_addr;
  5320. if (x > (int) crtc->fb->width)
  5321. base = 0;
  5322. if (y > (int) crtc->fb->height)
  5323. base = 0;
  5324. } else
  5325. base = 0;
  5326. if (x < 0) {
  5327. if (x + intel_crtc->cursor_width < 0)
  5328. base = 0;
  5329. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5330. x = -x;
  5331. }
  5332. pos |= x << CURSOR_X_SHIFT;
  5333. if (y < 0) {
  5334. if (y + intel_crtc->cursor_height < 0)
  5335. base = 0;
  5336. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5337. y = -y;
  5338. }
  5339. pos |= y << CURSOR_Y_SHIFT;
  5340. visible = base != 0;
  5341. if (!visible && !intel_crtc->cursor_visible)
  5342. return;
  5343. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5344. I915_WRITE(CURPOS_IVB(pipe), pos);
  5345. ivb_update_cursor(crtc, base);
  5346. } else {
  5347. I915_WRITE(CURPOS(pipe), pos);
  5348. if (IS_845G(dev) || IS_I865G(dev))
  5349. i845_update_cursor(crtc, base);
  5350. else
  5351. i9xx_update_cursor(crtc, base);
  5352. }
  5353. }
  5354. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5355. struct drm_file *file,
  5356. uint32_t handle,
  5357. uint32_t width, uint32_t height)
  5358. {
  5359. struct drm_device *dev = crtc->dev;
  5360. struct drm_i915_private *dev_priv = dev->dev_private;
  5361. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5362. struct drm_i915_gem_object *obj;
  5363. uint32_t addr;
  5364. int ret;
  5365. /* if we want to turn off the cursor ignore width and height */
  5366. if (!handle) {
  5367. DRM_DEBUG_KMS("cursor off\n");
  5368. addr = 0;
  5369. obj = NULL;
  5370. mutex_lock(&dev->struct_mutex);
  5371. goto finish;
  5372. }
  5373. /* Currently we only support 64x64 cursors */
  5374. if (width != 64 || height != 64) {
  5375. DRM_ERROR("we currently only support 64x64 cursors\n");
  5376. return -EINVAL;
  5377. }
  5378. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5379. if (&obj->base == NULL)
  5380. return -ENOENT;
  5381. if (obj->base.size < width * height * 4) {
  5382. DRM_ERROR("buffer is to small\n");
  5383. ret = -ENOMEM;
  5384. goto fail;
  5385. }
  5386. /* we only need to pin inside GTT if cursor is non-phy */
  5387. mutex_lock(&dev->struct_mutex);
  5388. if (!dev_priv->info->cursor_needs_physical) {
  5389. unsigned alignment;
  5390. if (obj->tiling_mode) {
  5391. DRM_ERROR("cursor cannot be tiled\n");
  5392. ret = -EINVAL;
  5393. goto fail_locked;
  5394. }
  5395. /* Note that the w/a also requires 2 PTE of padding following
  5396. * the bo. We currently fill all unused PTE with the shadow
  5397. * page and so we should always have valid PTE following the
  5398. * cursor preventing the VT-d warning.
  5399. */
  5400. alignment = 0;
  5401. if (need_vtd_wa(dev))
  5402. alignment = 64*1024;
  5403. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5404. if (ret) {
  5405. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5406. goto fail_locked;
  5407. }
  5408. ret = i915_gem_object_put_fence(obj);
  5409. if (ret) {
  5410. DRM_ERROR("failed to release fence for cursor");
  5411. goto fail_unpin;
  5412. }
  5413. addr = obj->gtt_offset;
  5414. } else {
  5415. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5416. ret = i915_gem_attach_phys_object(dev, obj,
  5417. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5418. align);
  5419. if (ret) {
  5420. DRM_ERROR("failed to attach phys object\n");
  5421. goto fail_locked;
  5422. }
  5423. addr = obj->phys_obj->handle->busaddr;
  5424. }
  5425. if (IS_GEN2(dev))
  5426. I915_WRITE(CURSIZE, (height << 12) | width);
  5427. finish:
  5428. if (intel_crtc->cursor_bo) {
  5429. if (dev_priv->info->cursor_needs_physical) {
  5430. if (intel_crtc->cursor_bo != obj)
  5431. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5432. } else
  5433. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5434. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5435. }
  5436. mutex_unlock(&dev->struct_mutex);
  5437. intel_crtc->cursor_addr = addr;
  5438. intel_crtc->cursor_bo = obj;
  5439. intel_crtc->cursor_width = width;
  5440. intel_crtc->cursor_height = height;
  5441. intel_crtc_update_cursor(crtc, true);
  5442. return 0;
  5443. fail_unpin:
  5444. i915_gem_object_unpin(obj);
  5445. fail_locked:
  5446. mutex_unlock(&dev->struct_mutex);
  5447. fail:
  5448. drm_gem_object_unreference_unlocked(&obj->base);
  5449. return ret;
  5450. }
  5451. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5452. {
  5453. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5454. intel_crtc->cursor_x = x;
  5455. intel_crtc->cursor_y = y;
  5456. intel_crtc_update_cursor(crtc, true);
  5457. return 0;
  5458. }
  5459. /** Sets the color ramps on behalf of RandR */
  5460. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5461. u16 blue, int regno)
  5462. {
  5463. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5464. intel_crtc->lut_r[regno] = red >> 8;
  5465. intel_crtc->lut_g[regno] = green >> 8;
  5466. intel_crtc->lut_b[regno] = blue >> 8;
  5467. }
  5468. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5469. u16 *blue, int regno)
  5470. {
  5471. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5472. *red = intel_crtc->lut_r[regno] << 8;
  5473. *green = intel_crtc->lut_g[regno] << 8;
  5474. *blue = intel_crtc->lut_b[regno] << 8;
  5475. }
  5476. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5477. u16 *blue, uint32_t start, uint32_t size)
  5478. {
  5479. int end = (start + size > 256) ? 256 : start + size, i;
  5480. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5481. for (i = start; i < end; i++) {
  5482. intel_crtc->lut_r[i] = red[i] >> 8;
  5483. intel_crtc->lut_g[i] = green[i] >> 8;
  5484. intel_crtc->lut_b[i] = blue[i] >> 8;
  5485. }
  5486. intel_crtc_load_lut(crtc);
  5487. }
  5488. /* VESA 640x480x72Hz mode to set on the pipe */
  5489. static struct drm_display_mode load_detect_mode = {
  5490. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5491. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5492. };
  5493. static struct drm_framebuffer *
  5494. intel_framebuffer_create(struct drm_device *dev,
  5495. struct drm_mode_fb_cmd2 *mode_cmd,
  5496. struct drm_i915_gem_object *obj)
  5497. {
  5498. struct intel_framebuffer *intel_fb;
  5499. int ret;
  5500. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5501. if (!intel_fb) {
  5502. drm_gem_object_unreference_unlocked(&obj->base);
  5503. return ERR_PTR(-ENOMEM);
  5504. }
  5505. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5506. if (ret) {
  5507. drm_gem_object_unreference_unlocked(&obj->base);
  5508. kfree(intel_fb);
  5509. return ERR_PTR(ret);
  5510. }
  5511. return &intel_fb->base;
  5512. }
  5513. static u32
  5514. intel_framebuffer_pitch_for_width(int width, int bpp)
  5515. {
  5516. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5517. return ALIGN(pitch, 64);
  5518. }
  5519. static u32
  5520. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5521. {
  5522. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5523. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5524. }
  5525. static struct drm_framebuffer *
  5526. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5527. struct drm_display_mode *mode,
  5528. int depth, int bpp)
  5529. {
  5530. struct drm_i915_gem_object *obj;
  5531. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5532. obj = i915_gem_alloc_object(dev,
  5533. intel_framebuffer_size_for_mode(mode, bpp));
  5534. if (obj == NULL)
  5535. return ERR_PTR(-ENOMEM);
  5536. mode_cmd.width = mode->hdisplay;
  5537. mode_cmd.height = mode->vdisplay;
  5538. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5539. bpp);
  5540. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5541. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5542. }
  5543. static struct drm_framebuffer *
  5544. mode_fits_in_fbdev(struct drm_device *dev,
  5545. struct drm_display_mode *mode)
  5546. {
  5547. struct drm_i915_private *dev_priv = dev->dev_private;
  5548. struct drm_i915_gem_object *obj;
  5549. struct drm_framebuffer *fb;
  5550. if (dev_priv->fbdev == NULL)
  5551. return NULL;
  5552. obj = dev_priv->fbdev->ifb.obj;
  5553. if (obj == NULL)
  5554. return NULL;
  5555. fb = &dev_priv->fbdev->ifb.base;
  5556. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5557. fb->bits_per_pixel))
  5558. return NULL;
  5559. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5560. return NULL;
  5561. return fb;
  5562. }
  5563. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5564. struct drm_display_mode *mode,
  5565. struct intel_load_detect_pipe *old)
  5566. {
  5567. struct intel_crtc *intel_crtc;
  5568. struct intel_encoder *intel_encoder =
  5569. intel_attached_encoder(connector);
  5570. struct drm_crtc *possible_crtc;
  5571. struct drm_encoder *encoder = &intel_encoder->base;
  5572. struct drm_crtc *crtc = NULL;
  5573. struct drm_device *dev = encoder->dev;
  5574. struct drm_framebuffer *fb;
  5575. int i = -1;
  5576. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5577. connector->base.id, drm_get_connector_name(connector),
  5578. encoder->base.id, drm_get_encoder_name(encoder));
  5579. /*
  5580. * Algorithm gets a little messy:
  5581. *
  5582. * - if the connector already has an assigned crtc, use it (but make
  5583. * sure it's on first)
  5584. *
  5585. * - try to find the first unused crtc that can drive this connector,
  5586. * and use that if we find one
  5587. */
  5588. /* See if we already have a CRTC for this connector */
  5589. if (encoder->crtc) {
  5590. crtc = encoder->crtc;
  5591. mutex_lock(&crtc->mutex);
  5592. old->dpms_mode = connector->dpms;
  5593. old->load_detect_temp = false;
  5594. /* Make sure the crtc and connector are running */
  5595. if (connector->dpms != DRM_MODE_DPMS_ON)
  5596. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5597. return true;
  5598. }
  5599. /* Find an unused one (if possible) */
  5600. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5601. i++;
  5602. if (!(encoder->possible_crtcs & (1 << i)))
  5603. continue;
  5604. if (!possible_crtc->enabled) {
  5605. crtc = possible_crtc;
  5606. break;
  5607. }
  5608. }
  5609. /*
  5610. * If we didn't find an unused CRTC, don't use any.
  5611. */
  5612. if (!crtc) {
  5613. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5614. return false;
  5615. }
  5616. mutex_lock(&crtc->mutex);
  5617. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5618. to_intel_connector(connector)->new_encoder = intel_encoder;
  5619. intel_crtc = to_intel_crtc(crtc);
  5620. old->dpms_mode = connector->dpms;
  5621. old->load_detect_temp = true;
  5622. old->release_fb = NULL;
  5623. if (!mode)
  5624. mode = &load_detect_mode;
  5625. /* We need a framebuffer large enough to accommodate all accesses
  5626. * that the plane may generate whilst we perform load detection.
  5627. * We can not rely on the fbcon either being present (we get called
  5628. * during its initialisation to detect all boot displays, or it may
  5629. * not even exist) or that it is large enough to satisfy the
  5630. * requested mode.
  5631. */
  5632. fb = mode_fits_in_fbdev(dev, mode);
  5633. if (fb == NULL) {
  5634. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5635. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5636. old->release_fb = fb;
  5637. } else
  5638. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5639. if (IS_ERR(fb)) {
  5640. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5641. mutex_unlock(&crtc->mutex);
  5642. return false;
  5643. }
  5644. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5645. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5646. if (old->release_fb)
  5647. old->release_fb->funcs->destroy(old->release_fb);
  5648. mutex_unlock(&crtc->mutex);
  5649. return false;
  5650. }
  5651. /* let the connector get through one full cycle before testing */
  5652. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5653. return true;
  5654. }
  5655. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5656. struct intel_load_detect_pipe *old)
  5657. {
  5658. struct intel_encoder *intel_encoder =
  5659. intel_attached_encoder(connector);
  5660. struct drm_encoder *encoder = &intel_encoder->base;
  5661. struct drm_crtc *crtc = encoder->crtc;
  5662. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5663. connector->base.id, drm_get_connector_name(connector),
  5664. encoder->base.id, drm_get_encoder_name(encoder));
  5665. if (old->load_detect_temp) {
  5666. to_intel_connector(connector)->new_encoder = NULL;
  5667. intel_encoder->new_crtc = NULL;
  5668. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5669. if (old->release_fb) {
  5670. drm_framebuffer_unregister_private(old->release_fb);
  5671. drm_framebuffer_unreference(old->release_fb);
  5672. }
  5673. mutex_unlock(&crtc->mutex);
  5674. return;
  5675. }
  5676. /* Switch crtc and encoder back off if necessary */
  5677. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5678. connector->funcs->dpms(connector, old->dpms_mode);
  5679. mutex_unlock(&crtc->mutex);
  5680. }
  5681. /* Returns the clock of the currently programmed mode of the given pipe. */
  5682. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5683. {
  5684. struct drm_i915_private *dev_priv = dev->dev_private;
  5685. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5686. int pipe = intel_crtc->pipe;
  5687. u32 dpll = I915_READ(DPLL(pipe));
  5688. u32 fp;
  5689. intel_clock_t clock;
  5690. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5691. fp = I915_READ(FP0(pipe));
  5692. else
  5693. fp = I915_READ(FP1(pipe));
  5694. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5695. if (IS_PINEVIEW(dev)) {
  5696. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5697. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5698. } else {
  5699. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5700. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5701. }
  5702. if (!IS_GEN2(dev)) {
  5703. if (IS_PINEVIEW(dev))
  5704. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5705. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5706. else
  5707. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5708. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5709. switch (dpll & DPLL_MODE_MASK) {
  5710. case DPLLB_MODE_DAC_SERIAL:
  5711. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5712. 5 : 10;
  5713. break;
  5714. case DPLLB_MODE_LVDS:
  5715. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5716. 7 : 14;
  5717. break;
  5718. default:
  5719. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5720. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5721. return 0;
  5722. }
  5723. /* XXX: Handle the 100Mhz refclk */
  5724. intel_clock(dev, 96000, &clock);
  5725. } else {
  5726. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5727. if (is_lvds) {
  5728. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5729. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5730. clock.p2 = 14;
  5731. if ((dpll & PLL_REF_INPUT_MASK) ==
  5732. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5733. /* XXX: might not be 66MHz */
  5734. intel_clock(dev, 66000, &clock);
  5735. } else
  5736. intel_clock(dev, 48000, &clock);
  5737. } else {
  5738. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5739. clock.p1 = 2;
  5740. else {
  5741. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5742. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5743. }
  5744. if (dpll & PLL_P2_DIVIDE_BY_4)
  5745. clock.p2 = 4;
  5746. else
  5747. clock.p2 = 2;
  5748. intel_clock(dev, 48000, &clock);
  5749. }
  5750. }
  5751. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5752. * i830PllIsValid() because it relies on the xf86_config connector
  5753. * configuration being accurate, which it isn't necessarily.
  5754. */
  5755. return clock.dot;
  5756. }
  5757. /** Returns the currently programmed mode of the given pipe. */
  5758. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5759. struct drm_crtc *crtc)
  5760. {
  5761. struct drm_i915_private *dev_priv = dev->dev_private;
  5762. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5763. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5764. struct drm_display_mode *mode;
  5765. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5766. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5767. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5768. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5769. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5770. if (!mode)
  5771. return NULL;
  5772. mode->clock = intel_crtc_clock_get(dev, crtc);
  5773. mode->hdisplay = (htot & 0xffff) + 1;
  5774. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5775. mode->hsync_start = (hsync & 0xffff) + 1;
  5776. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5777. mode->vdisplay = (vtot & 0xffff) + 1;
  5778. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5779. mode->vsync_start = (vsync & 0xffff) + 1;
  5780. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5781. drm_mode_set_name(mode);
  5782. return mode;
  5783. }
  5784. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5785. {
  5786. struct drm_device *dev = crtc->dev;
  5787. drm_i915_private_t *dev_priv = dev->dev_private;
  5788. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5789. int pipe = intel_crtc->pipe;
  5790. int dpll_reg = DPLL(pipe);
  5791. int dpll;
  5792. if (HAS_PCH_SPLIT(dev))
  5793. return;
  5794. if (!dev_priv->lvds_downclock_avail)
  5795. return;
  5796. dpll = I915_READ(dpll_reg);
  5797. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5798. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5799. assert_panel_unlocked(dev_priv, pipe);
  5800. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5801. I915_WRITE(dpll_reg, dpll);
  5802. intel_wait_for_vblank(dev, pipe);
  5803. dpll = I915_READ(dpll_reg);
  5804. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5805. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5806. }
  5807. }
  5808. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5809. {
  5810. struct drm_device *dev = crtc->dev;
  5811. drm_i915_private_t *dev_priv = dev->dev_private;
  5812. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5813. if (HAS_PCH_SPLIT(dev))
  5814. return;
  5815. if (!dev_priv->lvds_downclock_avail)
  5816. return;
  5817. /*
  5818. * Since this is called by a timer, we should never get here in
  5819. * the manual case.
  5820. */
  5821. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5822. int pipe = intel_crtc->pipe;
  5823. int dpll_reg = DPLL(pipe);
  5824. int dpll;
  5825. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5826. assert_panel_unlocked(dev_priv, pipe);
  5827. dpll = I915_READ(dpll_reg);
  5828. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5829. I915_WRITE(dpll_reg, dpll);
  5830. intel_wait_for_vblank(dev, pipe);
  5831. dpll = I915_READ(dpll_reg);
  5832. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5833. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5834. }
  5835. }
  5836. void intel_mark_busy(struct drm_device *dev)
  5837. {
  5838. i915_update_gfx_val(dev->dev_private);
  5839. }
  5840. void intel_mark_idle(struct drm_device *dev)
  5841. {
  5842. struct drm_crtc *crtc;
  5843. if (!i915_powersave)
  5844. return;
  5845. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5846. if (!crtc->fb)
  5847. continue;
  5848. intel_decrease_pllclock(crtc);
  5849. }
  5850. }
  5851. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5852. {
  5853. struct drm_device *dev = obj->base.dev;
  5854. struct drm_crtc *crtc;
  5855. if (!i915_powersave)
  5856. return;
  5857. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5858. if (!crtc->fb)
  5859. continue;
  5860. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5861. intel_increase_pllclock(crtc);
  5862. }
  5863. }
  5864. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5865. {
  5866. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5867. struct drm_device *dev = crtc->dev;
  5868. struct intel_unpin_work *work;
  5869. unsigned long flags;
  5870. spin_lock_irqsave(&dev->event_lock, flags);
  5871. work = intel_crtc->unpin_work;
  5872. intel_crtc->unpin_work = NULL;
  5873. spin_unlock_irqrestore(&dev->event_lock, flags);
  5874. if (work) {
  5875. cancel_work_sync(&work->work);
  5876. kfree(work);
  5877. }
  5878. drm_crtc_cleanup(crtc);
  5879. kfree(intel_crtc);
  5880. }
  5881. static void intel_unpin_work_fn(struct work_struct *__work)
  5882. {
  5883. struct intel_unpin_work *work =
  5884. container_of(__work, struct intel_unpin_work, work);
  5885. struct drm_device *dev = work->crtc->dev;
  5886. mutex_lock(&dev->struct_mutex);
  5887. intel_unpin_fb_obj(work->old_fb_obj);
  5888. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5889. drm_gem_object_unreference(&work->old_fb_obj->base);
  5890. intel_update_fbc(dev);
  5891. mutex_unlock(&dev->struct_mutex);
  5892. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5893. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5894. kfree(work);
  5895. }
  5896. static void do_intel_finish_page_flip(struct drm_device *dev,
  5897. struct drm_crtc *crtc)
  5898. {
  5899. drm_i915_private_t *dev_priv = dev->dev_private;
  5900. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5901. struct intel_unpin_work *work;
  5902. unsigned long flags;
  5903. /* Ignore early vblank irqs */
  5904. if (intel_crtc == NULL)
  5905. return;
  5906. spin_lock_irqsave(&dev->event_lock, flags);
  5907. work = intel_crtc->unpin_work;
  5908. /* Ensure we don't miss a work->pending update ... */
  5909. smp_rmb();
  5910. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  5911. spin_unlock_irqrestore(&dev->event_lock, flags);
  5912. return;
  5913. }
  5914. /* and that the unpin work is consistent wrt ->pending. */
  5915. smp_rmb();
  5916. intel_crtc->unpin_work = NULL;
  5917. if (work->event)
  5918. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  5919. drm_vblank_put(dev, intel_crtc->pipe);
  5920. spin_unlock_irqrestore(&dev->event_lock, flags);
  5921. wake_up_all(&dev_priv->pending_flip_queue);
  5922. queue_work(dev_priv->wq, &work->work);
  5923. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5924. }
  5925. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5926. {
  5927. drm_i915_private_t *dev_priv = dev->dev_private;
  5928. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5929. do_intel_finish_page_flip(dev, crtc);
  5930. }
  5931. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5932. {
  5933. drm_i915_private_t *dev_priv = dev->dev_private;
  5934. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5935. do_intel_finish_page_flip(dev, crtc);
  5936. }
  5937. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5938. {
  5939. drm_i915_private_t *dev_priv = dev->dev_private;
  5940. struct intel_crtc *intel_crtc =
  5941. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5942. unsigned long flags;
  5943. /* NB: An MMIO update of the plane base pointer will also
  5944. * generate a page-flip completion irq, i.e. every modeset
  5945. * is also accompanied by a spurious intel_prepare_page_flip().
  5946. */
  5947. spin_lock_irqsave(&dev->event_lock, flags);
  5948. if (intel_crtc->unpin_work)
  5949. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  5950. spin_unlock_irqrestore(&dev->event_lock, flags);
  5951. }
  5952. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  5953. {
  5954. /* Ensure that the work item is consistent when activating it ... */
  5955. smp_wmb();
  5956. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  5957. /* and that it is marked active as soon as the irq could fire. */
  5958. smp_wmb();
  5959. }
  5960. static int intel_gen2_queue_flip(struct drm_device *dev,
  5961. struct drm_crtc *crtc,
  5962. struct drm_framebuffer *fb,
  5963. struct drm_i915_gem_object *obj)
  5964. {
  5965. struct drm_i915_private *dev_priv = dev->dev_private;
  5966. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5967. u32 flip_mask;
  5968. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5969. int ret;
  5970. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5971. if (ret)
  5972. goto err;
  5973. ret = intel_ring_begin(ring, 6);
  5974. if (ret)
  5975. goto err_unpin;
  5976. /* Can't queue multiple flips, so wait for the previous
  5977. * one to finish before executing the next.
  5978. */
  5979. if (intel_crtc->plane)
  5980. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5981. else
  5982. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5983. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5984. intel_ring_emit(ring, MI_NOOP);
  5985. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5986. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5987. intel_ring_emit(ring, fb->pitches[0]);
  5988. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5989. intel_ring_emit(ring, 0); /* aux display base address, unused */
  5990. intel_mark_page_flip_active(intel_crtc);
  5991. intel_ring_advance(ring);
  5992. return 0;
  5993. err_unpin:
  5994. intel_unpin_fb_obj(obj);
  5995. err:
  5996. return ret;
  5997. }
  5998. static int intel_gen3_queue_flip(struct drm_device *dev,
  5999. struct drm_crtc *crtc,
  6000. struct drm_framebuffer *fb,
  6001. struct drm_i915_gem_object *obj)
  6002. {
  6003. struct drm_i915_private *dev_priv = dev->dev_private;
  6004. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6005. u32 flip_mask;
  6006. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6007. int ret;
  6008. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6009. if (ret)
  6010. goto err;
  6011. ret = intel_ring_begin(ring, 6);
  6012. if (ret)
  6013. goto err_unpin;
  6014. if (intel_crtc->plane)
  6015. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6016. else
  6017. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6018. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6019. intel_ring_emit(ring, MI_NOOP);
  6020. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6021. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6022. intel_ring_emit(ring, fb->pitches[0]);
  6023. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6024. intel_ring_emit(ring, MI_NOOP);
  6025. intel_mark_page_flip_active(intel_crtc);
  6026. intel_ring_advance(ring);
  6027. return 0;
  6028. err_unpin:
  6029. intel_unpin_fb_obj(obj);
  6030. err:
  6031. return ret;
  6032. }
  6033. static int intel_gen4_queue_flip(struct drm_device *dev,
  6034. struct drm_crtc *crtc,
  6035. struct drm_framebuffer *fb,
  6036. struct drm_i915_gem_object *obj)
  6037. {
  6038. struct drm_i915_private *dev_priv = dev->dev_private;
  6039. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6040. uint32_t pf, pipesrc;
  6041. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6042. int ret;
  6043. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6044. if (ret)
  6045. goto err;
  6046. ret = intel_ring_begin(ring, 4);
  6047. if (ret)
  6048. goto err_unpin;
  6049. /* i965+ uses the linear or tiled offsets from the
  6050. * Display Registers (which do not change across a page-flip)
  6051. * so we need only reprogram the base address.
  6052. */
  6053. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6054. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6055. intel_ring_emit(ring, fb->pitches[0]);
  6056. intel_ring_emit(ring,
  6057. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6058. obj->tiling_mode);
  6059. /* XXX Enabling the panel-fitter across page-flip is so far
  6060. * untested on non-native modes, so ignore it for now.
  6061. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6062. */
  6063. pf = 0;
  6064. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6065. intel_ring_emit(ring, pf | pipesrc);
  6066. intel_mark_page_flip_active(intel_crtc);
  6067. intel_ring_advance(ring);
  6068. return 0;
  6069. err_unpin:
  6070. intel_unpin_fb_obj(obj);
  6071. err:
  6072. return ret;
  6073. }
  6074. static int intel_gen6_queue_flip(struct drm_device *dev,
  6075. struct drm_crtc *crtc,
  6076. struct drm_framebuffer *fb,
  6077. struct drm_i915_gem_object *obj)
  6078. {
  6079. struct drm_i915_private *dev_priv = dev->dev_private;
  6080. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6081. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6082. uint32_t pf, pipesrc;
  6083. int ret;
  6084. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6085. if (ret)
  6086. goto err;
  6087. ret = intel_ring_begin(ring, 4);
  6088. if (ret)
  6089. goto err_unpin;
  6090. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6091. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6092. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6093. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6094. /* Contrary to the suggestions in the documentation,
  6095. * "Enable Panel Fitter" does not seem to be required when page
  6096. * flipping with a non-native mode, and worse causes a normal
  6097. * modeset to fail.
  6098. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6099. */
  6100. pf = 0;
  6101. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6102. intel_ring_emit(ring, pf | pipesrc);
  6103. intel_mark_page_flip_active(intel_crtc);
  6104. intel_ring_advance(ring);
  6105. return 0;
  6106. err_unpin:
  6107. intel_unpin_fb_obj(obj);
  6108. err:
  6109. return ret;
  6110. }
  6111. /*
  6112. * On gen7 we currently use the blit ring because (in early silicon at least)
  6113. * the render ring doesn't give us interrpts for page flip completion, which
  6114. * means clients will hang after the first flip is queued. Fortunately the
  6115. * blit ring generates interrupts properly, so use it instead.
  6116. */
  6117. static int intel_gen7_queue_flip(struct drm_device *dev,
  6118. struct drm_crtc *crtc,
  6119. struct drm_framebuffer *fb,
  6120. struct drm_i915_gem_object *obj)
  6121. {
  6122. struct drm_i915_private *dev_priv = dev->dev_private;
  6123. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6124. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6125. uint32_t plane_bit = 0;
  6126. int ret;
  6127. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6128. if (ret)
  6129. goto err;
  6130. switch(intel_crtc->plane) {
  6131. case PLANE_A:
  6132. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6133. break;
  6134. case PLANE_B:
  6135. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6136. break;
  6137. case PLANE_C:
  6138. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6139. break;
  6140. default:
  6141. WARN_ONCE(1, "unknown plane in flip command\n");
  6142. ret = -ENODEV;
  6143. goto err_unpin;
  6144. }
  6145. ret = intel_ring_begin(ring, 4);
  6146. if (ret)
  6147. goto err_unpin;
  6148. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6149. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6150. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6151. intel_ring_emit(ring, (MI_NOOP));
  6152. intel_mark_page_flip_active(intel_crtc);
  6153. intel_ring_advance(ring);
  6154. return 0;
  6155. err_unpin:
  6156. intel_unpin_fb_obj(obj);
  6157. err:
  6158. return ret;
  6159. }
  6160. static int intel_default_queue_flip(struct drm_device *dev,
  6161. struct drm_crtc *crtc,
  6162. struct drm_framebuffer *fb,
  6163. struct drm_i915_gem_object *obj)
  6164. {
  6165. return -ENODEV;
  6166. }
  6167. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6168. struct drm_framebuffer *fb,
  6169. struct drm_pending_vblank_event *event)
  6170. {
  6171. struct drm_device *dev = crtc->dev;
  6172. struct drm_i915_private *dev_priv = dev->dev_private;
  6173. struct drm_framebuffer *old_fb = crtc->fb;
  6174. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6175. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6176. struct intel_unpin_work *work;
  6177. unsigned long flags;
  6178. int ret;
  6179. /* Can't change pixel format via MI display flips. */
  6180. if (fb->pixel_format != crtc->fb->pixel_format)
  6181. return -EINVAL;
  6182. /*
  6183. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6184. * Note that pitch changes could also affect these register.
  6185. */
  6186. if (INTEL_INFO(dev)->gen > 3 &&
  6187. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6188. fb->pitches[0] != crtc->fb->pitches[0]))
  6189. return -EINVAL;
  6190. work = kzalloc(sizeof *work, GFP_KERNEL);
  6191. if (work == NULL)
  6192. return -ENOMEM;
  6193. work->event = event;
  6194. work->crtc = crtc;
  6195. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6196. INIT_WORK(&work->work, intel_unpin_work_fn);
  6197. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6198. if (ret)
  6199. goto free_work;
  6200. /* We borrow the event spin lock for protecting unpin_work */
  6201. spin_lock_irqsave(&dev->event_lock, flags);
  6202. if (intel_crtc->unpin_work) {
  6203. spin_unlock_irqrestore(&dev->event_lock, flags);
  6204. kfree(work);
  6205. drm_vblank_put(dev, intel_crtc->pipe);
  6206. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6207. return -EBUSY;
  6208. }
  6209. intel_crtc->unpin_work = work;
  6210. spin_unlock_irqrestore(&dev->event_lock, flags);
  6211. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6212. flush_workqueue(dev_priv->wq);
  6213. ret = i915_mutex_lock_interruptible(dev);
  6214. if (ret)
  6215. goto cleanup;
  6216. /* Reference the objects for the scheduled work. */
  6217. drm_gem_object_reference(&work->old_fb_obj->base);
  6218. drm_gem_object_reference(&obj->base);
  6219. crtc->fb = fb;
  6220. work->pending_flip_obj = obj;
  6221. work->enable_stall_check = true;
  6222. atomic_inc(&intel_crtc->unpin_work_count);
  6223. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6224. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6225. if (ret)
  6226. goto cleanup_pending;
  6227. intel_disable_fbc(dev);
  6228. intel_mark_fb_busy(obj);
  6229. mutex_unlock(&dev->struct_mutex);
  6230. trace_i915_flip_request(intel_crtc->plane, obj);
  6231. return 0;
  6232. cleanup_pending:
  6233. atomic_dec(&intel_crtc->unpin_work_count);
  6234. crtc->fb = old_fb;
  6235. drm_gem_object_unreference(&work->old_fb_obj->base);
  6236. drm_gem_object_unreference(&obj->base);
  6237. mutex_unlock(&dev->struct_mutex);
  6238. cleanup:
  6239. spin_lock_irqsave(&dev->event_lock, flags);
  6240. intel_crtc->unpin_work = NULL;
  6241. spin_unlock_irqrestore(&dev->event_lock, flags);
  6242. drm_vblank_put(dev, intel_crtc->pipe);
  6243. free_work:
  6244. kfree(work);
  6245. return ret;
  6246. }
  6247. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6248. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6249. .load_lut = intel_crtc_load_lut,
  6250. };
  6251. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6252. {
  6253. struct intel_encoder *other_encoder;
  6254. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6255. if (WARN_ON(!crtc))
  6256. return false;
  6257. list_for_each_entry(other_encoder,
  6258. &crtc->dev->mode_config.encoder_list,
  6259. base.head) {
  6260. if (&other_encoder->new_crtc->base != crtc ||
  6261. encoder == other_encoder)
  6262. continue;
  6263. else
  6264. return true;
  6265. }
  6266. return false;
  6267. }
  6268. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6269. struct drm_crtc *crtc)
  6270. {
  6271. struct drm_device *dev;
  6272. struct drm_crtc *tmp;
  6273. int crtc_mask = 1;
  6274. WARN(!crtc, "checking null crtc?\n");
  6275. dev = crtc->dev;
  6276. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6277. if (tmp == crtc)
  6278. break;
  6279. crtc_mask <<= 1;
  6280. }
  6281. if (encoder->possible_crtcs & crtc_mask)
  6282. return true;
  6283. return false;
  6284. }
  6285. /**
  6286. * intel_modeset_update_staged_output_state
  6287. *
  6288. * Updates the staged output configuration state, e.g. after we've read out the
  6289. * current hw state.
  6290. */
  6291. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6292. {
  6293. struct intel_encoder *encoder;
  6294. struct intel_connector *connector;
  6295. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6296. base.head) {
  6297. connector->new_encoder =
  6298. to_intel_encoder(connector->base.encoder);
  6299. }
  6300. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6301. base.head) {
  6302. encoder->new_crtc =
  6303. to_intel_crtc(encoder->base.crtc);
  6304. }
  6305. }
  6306. /**
  6307. * intel_modeset_commit_output_state
  6308. *
  6309. * This function copies the stage display pipe configuration to the real one.
  6310. */
  6311. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6312. {
  6313. struct intel_encoder *encoder;
  6314. struct intel_connector *connector;
  6315. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6316. base.head) {
  6317. connector->base.encoder = &connector->new_encoder->base;
  6318. }
  6319. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6320. base.head) {
  6321. encoder->base.crtc = &encoder->new_crtc->base;
  6322. }
  6323. }
  6324. static int
  6325. pipe_config_set_bpp(struct drm_crtc *crtc,
  6326. struct drm_framebuffer *fb,
  6327. struct intel_crtc_config *pipe_config)
  6328. {
  6329. struct drm_device *dev = crtc->dev;
  6330. struct drm_connector *connector;
  6331. int bpp;
  6332. switch (fb->pixel_format) {
  6333. case DRM_FORMAT_C8:
  6334. bpp = 8*3; /* since we go through a colormap */
  6335. break;
  6336. case DRM_FORMAT_XRGB1555:
  6337. case DRM_FORMAT_ARGB1555:
  6338. /* checked in intel_framebuffer_init already */
  6339. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6340. return -EINVAL;
  6341. case DRM_FORMAT_RGB565:
  6342. bpp = 6*3; /* min is 18bpp */
  6343. break;
  6344. case DRM_FORMAT_XBGR8888:
  6345. case DRM_FORMAT_ABGR8888:
  6346. /* checked in intel_framebuffer_init already */
  6347. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6348. return -EINVAL;
  6349. case DRM_FORMAT_XRGB8888:
  6350. case DRM_FORMAT_ARGB8888:
  6351. bpp = 8*3;
  6352. break;
  6353. case DRM_FORMAT_XRGB2101010:
  6354. case DRM_FORMAT_ARGB2101010:
  6355. case DRM_FORMAT_XBGR2101010:
  6356. case DRM_FORMAT_ABGR2101010:
  6357. /* checked in intel_framebuffer_init already */
  6358. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6359. return -EINVAL;
  6360. bpp = 10*3;
  6361. break;
  6362. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6363. default:
  6364. DRM_DEBUG_KMS("unsupported depth\n");
  6365. return -EINVAL;
  6366. }
  6367. pipe_config->pipe_bpp = bpp;
  6368. /* Clamp display bpp to EDID value */
  6369. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6370. head) {
  6371. if (connector->encoder && connector->encoder->crtc != crtc)
  6372. continue;
  6373. /* Don't use an invalid EDID bpc value */
  6374. if (connector->display_info.bpc &&
  6375. connector->display_info.bpc * 3 < bpp) {
  6376. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6377. bpp, connector->display_info.bpc*3);
  6378. pipe_config->pipe_bpp = connector->display_info.bpc*3;
  6379. }
  6380. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6381. if (connector->display_info.bpc == 0 && bpp > 24) {
  6382. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6383. bpp);
  6384. pipe_config->pipe_bpp = 24;
  6385. }
  6386. }
  6387. return bpp;
  6388. }
  6389. static struct intel_crtc_config *
  6390. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6391. struct drm_framebuffer *fb,
  6392. struct drm_display_mode *mode)
  6393. {
  6394. struct drm_device *dev = crtc->dev;
  6395. struct drm_encoder_helper_funcs *encoder_funcs;
  6396. struct intel_encoder *encoder;
  6397. struct intel_crtc_config *pipe_config;
  6398. int plane_bpp;
  6399. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6400. if (!pipe_config)
  6401. return ERR_PTR(-ENOMEM);
  6402. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6403. drm_mode_copy(&pipe_config->requested_mode, mode);
  6404. plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
  6405. if (plane_bpp < 0)
  6406. goto fail;
  6407. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6408. * adjust it according to limitations or connector properties, and also
  6409. * a chance to reject the mode entirely.
  6410. */
  6411. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6412. base.head) {
  6413. if (&encoder->new_crtc->base != crtc)
  6414. continue;
  6415. if (encoder->compute_config) {
  6416. if (!(encoder->compute_config(encoder, pipe_config))) {
  6417. DRM_DEBUG_KMS("Encoder config failure\n");
  6418. goto fail;
  6419. }
  6420. continue;
  6421. }
  6422. encoder_funcs = encoder->base.helper_private;
  6423. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6424. &pipe_config->requested_mode,
  6425. &pipe_config->adjusted_mode))) {
  6426. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6427. goto fail;
  6428. }
  6429. }
  6430. if (!(intel_crtc_compute_config(crtc, pipe_config))) {
  6431. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6432. goto fail;
  6433. }
  6434. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  6435. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6436. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6437. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6438. return pipe_config;
  6439. fail:
  6440. kfree(pipe_config);
  6441. return ERR_PTR(-EINVAL);
  6442. }
  6443. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6444. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6445. static void
  6446. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6447. unsigned *prepare_pipes, unsigned *disable_pipes)
  6448. {
  6449. struct intel_crtc *intel_crtc;
  6450. struct drm_device *dev = crtc->dev;
  6451. struct intel_encoder *encoder;
  6452. struct intel_connector *connector;
  6453. struct drm_crtc *tmp_crtc;
  6454. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6455. /* Check which crtcs have changed outputs connected to them, these need
  6456. * to be part of the prepare_pipes mask. We don't (yet) support global
  6457. * modeset across multiple crtcs, so modeset_pipes will only have one
  6458. * bit set at most. */
  6459. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6460. base.head) {
  6461. if (connector->base.encoder == &connector->new_encoder->base)
  6462. continue;
  6463. if (connector->base.encoder) {
  6464. tmp_crtc = connector->base.encoder->crtc;
  6465. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6466. }
  6467. if (connector->new_encoder)
  6468. *prepare_pipes |=
  6469. 1 << connector->new_encoder->new_crtc->pipe;
  6470. }
  6471. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6472. base.head) {
  6473. if (encoder->base.crtc == &encoder->new_crtc->base)
  6474. continue;
  6475. if (encoder->base.crtc) {
  6476. tmp_crtc = encoder->base.crtc;
  6477. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6478. }
  6479. if (encoder->new_crtc)
  6480. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6481. }
  6482. /* Check for any pipes that will be fully disabled ... */
  6483. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6484. base.head) {
  6485. bool used = false;
  6486. /* Don't try to disable disabled crtcs. */
  6487. if (!intel_crtc->base.enabled)
  6488. continue;
  6489. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6490. base.head) {
  6491. if (encoder->new_crtc == intel_crtc)
  6492. used = true;
  6493. }
  6494. if (!used)
  6495. *disable_pipes |= 1 << intel_crtc->pipe;
  6496. }
  6497. /* set_mode is also used to update properties on life display pipes. */
  6498. intel_crtc = to_intel_crtc(crtc);
  6499. if (crtc->enabled)
  6500. *prepare_pipes |= 1 << intel_crtc->pipe;
  6501. /*
  6502. * For simplicity do a full modeset on any pipe where the output routing
  6503. * changed. We could be more clever, but that would require us to be
  6504. * more careful with calling the relevant encoder->mode_set functions.
  6505. */
  6506. if (*prepare_pipes)
  6507. *modeset_pipes = *prepare_pipes;
  6508. /* ... and mask these out. */
  6509. *modeset_pipes &= ~(*disable_pipes);
  6510. *prepare_pipes &= ~(*disable_pipes);
  6511. /*
  6512. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6513. * obies this rule, but the modeset restore mode of
  6514. * intel_modeset_setup_hw_state does not.
  6515. */
  6516. *modeset_pipes &= 1 << intel_crtc->pipe;
  6517. *prepare_pipes &= 1 << intel_crtc->pipe;
  6518. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6519. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6520. }
  6521. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6522. {
  6523. struct drm_encoder *encoder;
  6524. struct drm_device *dev = crtc->dev;
  6525. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6526. if (encoder->crtc == crtc)
  6527. return true;
  6528. return false;
  6529. }
  6530. static void
  6531. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6532. {
  6533. struct intel_encoder *intel_encoder;
  6534. struct intel_crtc *intel_crtc;
  6535. struct drm_connector *connector;
  6536. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6537. base.head) {
  6538. if (!intel_encoder->base.crtc)
  6539. continue;
  6540. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6541. if (prepare_pipes & (1 << intel_crtc->pipe))
  6542. intel_encoder->connectors_active = false;
  6543. }
  6544. intel_modeset_commit_output_state(dev);
  6545. /* Update computed state. */
  6546. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6547. base.head) {
  6548. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6549. }
  6550. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6551. if (!connector->encoder || !connector->encoder->crtc)
  6552. continue;
  6553. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6554. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6555. struct drm_property *dpms_property =
  6556. dev->mode_config.dpms_property;
  6557. connector->dpms = DRM_MODE_DPMS_ON;
  6558. drm_object_property_set_value(&connector->base,
  6559. dpms_property,
  6560. DRM_MODE_DPMS_ON);
  6561. intel_encoder = to_intel_encoder(connector->encoder);
  6562. intel_encoder->connectors_active = true;
  6563. }
  6564. }
  6565. }
  6566. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6567. list_for_each_entry((intel_crtc), \
  6568. &(dev)->mode_config.crtc_list, \
  6569. base.head) \
  6570. if (mask & (1 <<(intel_crtc)->pipe)) \
  6571. static bool
  6572. intel_pipe_config_compare(struct intel_crtc_config *current_config,
  6573. struct intel_crtc_config *pipe_config)
  6574. {
  6575. if (current_config->has_pch_encoder != pipe_config->has_pch_encoder) {
  6576. DRM_ERROR("mismatch in has_pch_encoder "
  6577. "(expected %i, found %i)\n",
  6578. current_config->has_pch_encoder,
  6579. pipe_config->has_pch_encoder);
  6580. return false;
  6581. }
  6582. return true;
  6583. }
  6584. void
  6585. intel_modeset_check_state(struct drm_device *dev)
  6586. {
  6587. drm_i915_private_t *dev_priv = dev->dev_private;
  6588. struct intel_crtc *crtc;
  6589. struct intel_encoder *encoder;
  6590. struct intel_connector *connector;
  6591. struct intel_crtc_config pipe_config;
  6592. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6593. base.head) {
  6594. /* This also checks the encoder/connector hw state with the
  6595. * ->get_hw_state callbacks. */
  6596. intel_connector_check_state(connector);
  6597. WARN(&connector->new_encoder->base != connector->base.encoder,
  6598. "connector's staged encoder doesn't match current encoder\n");
  6599. }
  6600. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6601. base.head) {
  6602. bool enabled = false;
  6603. bool active = false;
  6604. enum pipe pipe, tracked_pipe;
  6605. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6606. encoder->base.base.id,
  6607. drm_get_encoder_name(&encoder->base));
  6608. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6609. "encoder's stage crtc doesn't match current crtc\n");
  6610. WARN(encoder->connectors_active && !encoder->base.crtc,
  6611. "encoder's active_connectors set, but no crtc\n");
  6612. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6613. base.head) {
  6614. if (connector->base.encoder != &encoder->base)
  6615. continue;
  6616. enabled = true;
  6617. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6618. active = true;
  6619. }
  6620. WARN(!!encoder->base.crtc != enabled,
  6621. "encoder's enabled state mismatch "
  6622. "(expected %i, found %i)\n",
  6623. !!encoder->base.crtc, enabled);
  6624. WARN(active && !encoder->base.crtc,
  6625. "active encoder with no crtc\n");
  6626. WARN(encoder->connectors_active != active,
  6627. "encoder's computed active state doesn't match tracked active state "
  6628. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6629. active = encoder->get_hw_state(encoder, &pipe);
  6630. WARN(active != encoder->connectors_active,
  6631. "encoder's hw state doesn't match sw tracking "
  6632. "(expected %i, found %i)\n",
  6633. encoder->connectors_active, active);
  6634. if (!encoder->base.crtc)
  6635. continue;
  6636. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6637. WARN(active && pipe != tracked_pipe,
  6638. "active encoder's pipe doesn't match"
  6639. "(expected %i, found %i)\n",
  6640. tracked_pipe, pipe);
  6641. }
  6642. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6643. base.head) {
  6644. bool enabled = false;
  6645. bool active = false;
  6646. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6647. crtc->base.base.id);
  6648. WARN(crtc->active && !crtc->base.enabled,
  6649. "active crtc, but not enabled in sw tracking\n");
  6650. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6651. base.head) {
  6652. if (encoder->base.crtc != &crtc->base)
  6653. continue;
  6654. enabled = true;
  6655. if (encoder->connectors_active)
  6656. active = true;
  6657. }
  6658. WARN(active != crtc->active,
  6659. "crtc's computed active state doesn't match tracked active state "
  6660. "(expected %i, found %i)\n", active, crtc->active);
  6661. WARN(enabled != crtc->base.enabled,
  6662. "crtc's computed enabled state doesn't match tracked enabled state "
  6663. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6664. memset(&pipe_config, 0, sizeof(pipe_config));
  6665. active = dev_priv->display.get_pipe_config(crtc,
  6666. &pipe_config);
  6667. WARN(crtc->active != active,
  6668. "crtc active state doesn't match with hw state "
  6669. "(expected %i, found %i)\n", crtc->active, active);
  6670. WARN(active &&
  6671. !intel_pipe_config_compare(&crtc->config, &pipe_config),
  6672. "pipe state doesn't match!\n");
  6673. }
  6674. }
  6675. static int __intel_set_mode(struct drm_crtc *crtc,
  6676. struct drm_display_mode *mode,
  6677. int x, int y, struct drm_framebuffer *fb)
  6678. {
  6679. struct drm_device *dev = crtc->dev;
  6680. drm_i915_private_t *dev_priv = dev->dev_private;
  6681. struct drm_display_mode *saved_mode, *saved_hwmode;
  6682. struct intel_crtc_config *pipe_config = NULL;
  6683. struct intel_crtc *intel_crtc;
  6684. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6685. int ret = 0;
  6686. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6687. if (!saved_mode)
  6688. return -ENOMEM;
  6689. saved_hwmode = saved_mode + 1;
  6690. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6691. &prepare_pipes, &disable_pipes);
  6692. *saved_hwmode = crtc->hwmode;
  6693. *saved_mode = crtc->mode;
  6694. /* Hack: Because we don't (yet) support global modeset on multiple
  6695. * crtcs, we don't keep track of the new mode for more than one crtc.
  6696. * Hence simply check whether any bit is set in modeset_pipes in all the
  6697. * pieces of code that are not yet converted to deal with mutliple crtcs
  6698. * changing their mode at the same time. */
  6699. if (modeset_pipes) {
  6700. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6701. if (IS_ERR(pipe_config)) {
  6702. ret = PTR_ERR(pipe_config);
  6703. pipe_config = NULL;
  6704. goto out;
  6705. }
  6706. }
  6707. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6708. intel_crtc_disable(&intel_crtc->base);
  6709. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6710. if (intel_crtc->base.enabled)
  6711. dev_priv->display.crtc_disable(&intel_crtc->base);
  6712. }
  6713. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6714. * to set it here already despite that we pass it down the callchain.
  6715. */
  6716. if (modeset_pipes) {
  6717. enum transcoder tmp = to_intel_crtc(crtc)->config.cpu_transcoder;
  6718. crtc->mode = *mode;
  6719. /* mode_set/enable/disable functions rely on a correct pipe
  6720. * config. */
  6721. to_intel_crtc(crtc)->config = *pipe_config;
  6722. to_intel_crtc(crtc)->config.cpu_transcoder = tmp;
  6723. }
  6724. /* Only after disabling all output pipelines that will be changed can we
  6725. * update the the output configuration. */
  6726. intel_modeset_update_state(dev, prepare_pipes);
  6727. if (dev_priv->display.modeset_global_resources)
  6728. dev_priv->display.modeset_global_resources(dev);
  6729. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6730. * on the DPLL.
  6731. */
  6732. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6733. ret = intel_crtc_mode_set(&intel_crtc->base,
  6734. x, y, fb);
  6735. if (ret)
  6736. goto done;
  6737. }
  6738. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6739. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6740. dev_priv->display.crtc_enable(&intel_crtc->base);
  6741. if (modeset_pipes) {
  6742. /* Store real post-adjustment hardware mode. */
  6743. crtc->hwmode = pipe_config->adjusted_mode;
  6744. /* Calculate and store various constants which
  6745. * are later needed by vblank and swap-completion
  6746. * timestamping. They are derived from true hwmode.
  6747. */
  6748. drm_calc_timestamping_constants(crtc);
  6749. }
  6750. /* FIXME: add subpixel order */
  6751. done:
  6752. if (ret && crtc->enabled) {
  6753. crtc->hwmode = *saved_hwmode;
  6754. crtc->mode = *saved_mode;
  6755. }
  6756. out:
  6757. kfree(pipe_config);
  6758. kfree(saved_mode);
  6759. return ret;
  6760. }
  6761. int intel_set_mode(struct drm_crtc *crtc,
  6762. struct drm_display_mode *mode,
  6763. int x, int y, struct drm_framebuffer *fb)
  6764. {
  6765. int ret;
  6766. ret = __intel_set_mode(crtc, mode, x, y, fb);
  6767. if (ret == 0)
  6768. intel_modeset_check_state(crtc->dev);
  6769. return ret;
  6770. }
  6771. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  6772. {
  6773. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  6774. }
  6775. #undef for_each_intel_crtc_masked
  6776. static void intel_set_config_free(struct intel_set_config *config)
  6777. {
  6778. if (!config)
  6779. return;
  6780. kfree(config->save_connector_encoders);
  6781. kfree(config->save_encoder_crtcs);
  6782. kfree(config);
  6783. }
  6784. static int intel_set_config_save_state(struct drm_device *dev,
  6785. struct intel_set_config *config)
  6786. {
  6787. struct drm_encoder *encoder;
  6788. struct drm_connector *connector;
  6789. int count;
  6790. config->save_encoder_crtcs =
  6791. kcalloc(dev->mode_config.num_encoder,
  6792. sizeof(struct drm_crtc *), GFP_KERNEL);
  6793. if (!config->save_encoder_crtcs)
  6794. return -ENOMEM;
  6795. config->save_connector_encoders =
  6796. kcalloc(dev->mode_config.num_connector,
  6797. sizeof(struct drm_encoder *), GFP_KERNEL);
  6798. if (!config->save_connector_encoders)
  6799. return -ENOMEM;
  6800. /* Copy data. Note that driver private data is not affected.
  6801. * Should anything bad happen only the expected state is
  6802. * restored, not the drivers personal bookkeeping.
  6803. */
  6804. count = 0;
  6805. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6806. config->save_encoder_crtcs[count++] = encoder->crtc;
  6807. }
  6808. count = 0;
  6809. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6810. config->save_connector_encoders[count++] = connector->encoder;
  6811. }
  6812. return 0;
  6813. }
  6814. static void intel_set_config_restore_state(struct drm_device *dev,
  6815. struct intel_set_config *config)
  6816. {
  6817. struct intel_encoder *encoder;
  6818. struct intel_connector *connector;
  6819. int count;
  6820. count = 0;
  6821. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6822. encoder->new_crtc =
  6823. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6824. }
  6825. count = 0;
  6826. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6827. connector->new_encoder =
  6828. to_intel_encoder(config->save_connector_encoders[count++]);
  6829. }
  6830. }
  6831. static void
  6832. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  6833. struct intel_set_config *config)
  6834. {
  6835. /* We should be able to check here if the fb has the same properties
  6836. * and then just flip_or_move it */
  6837. if (set->crtc->fb != set->fb) {
  6838. /* If we have no fb then treat it as a full mode set */
  6839. if (set->crtc->fb == NULL) {
  6840. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  6841. config->mode_changed = true;
  6842. } else if (set->fb == NULL) {
  6843. config->mode_changed = true;
  6844. } else if (set->fb->pixel_format !=
  6845. set->crtc->fb->pixel_format) {
  6846. config->mode_changed = true;
  6847. } else
  6848. config->fb_changed = true;
  6849. }
  6850. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  6851. config->fb_changed = true;
  6852. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  6853. DRM_DEBUG_KMS("modes are different, full mode set\n");
  6854. drm_mode_debug_printmodeline(&set->crtc->mode);
  6855. drm_mode_debug_printmodeline(set->mode);
  6856. config->mode_changed = true;
  6857. }
  6858. }
  6859. static int
  6860. intel_modeset_stage_output_state(struct drm_device *dev,
  6861. struct drm_mode_set *set,
  6862. struct intel_set_config *config)
  6863. {
  6864. struct drm_crtc *new_crtc;
  6865. struct intel_connector *connector;
  6866. struct intel_encoder *encoder;
  6867. int count, ro;
  6868. /* The upper layers ensure that we either disable a crtc or have a list
  6869. * of connectors. For paranoia, double-check this. */
  6870. WARN_ON(!set->fb && (set->num_connectors != 0));
  6871. WARN_ON(set->fb && (set->num_connectors == 0));
  6872. count = 0;
  6873. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6874. base.head) {
  6875. /* Otherwise traverse passed in connector list and get encoders
  6876. * for them. */
  6877. for (ro = 0; ro < set->num_connectors; ro++) {
  6878. if (set->connectors[ro] == &connector->base) {
  6879. connector->new_encoder = connector->encoder;
  6880. break;
  6881. }
  6882. }
  6883. /* If we disable the crtc, disable all its connectors. Also, if
  6884. * the connector is on the changing crtc but not on the new
  6885. * connector list, disable it. */
  6886. if ((!set->fb || ro == set->num_connectors) &&
  6887. connector->base.encoder &&
  6888. connector->base.encoder->crtc == set->crtc) {
  6889. connector->new_encoder = NULL;
  6890. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  6891. connector->base.base.id,
  6892. drm_get_connector_name(&connector->base));
  6893. }
  6894. if (&connector->new_encoder->base != connector->base.encoder) {
  6895. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  6896. config->mode_changed = true;
  6897. }
  6898. }
  6899. /* connector->new_encoder is now updated for all connectors. */
  6900. /* Update crtc of enabled connectors. */
  6901. count = 0;
  6902. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6903. base.head) {
  6904. if (!connector->new_encoder)
  6905. continue;
  6906. new_crtc = connector->new_encoder->base.crtc;
  6907. for (ro = 0; ro < set->num_connectors; ro++) {
  6908. if (set->connectors[ro] == &connector->base)
  6909. new_crtc = set->crtc;
  6910. }
  6911. /* Make sure the new CRTC will work with the encoder */
  6912. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  6913. new_crtc)) {
  6914. return -EINVAL;
  6915. }
  6916. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  6917. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  6918. connector->base.base.id,
  6919. drm_get_connector_name(&connector->base),
  6920. new_crtc->base.id);
  6921. }
  6922. /* Check for any encoders that needs to be disabled. */
  6923. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6924. base.head) {
  6925. list_for_each_entry(connector,
  6926. &dev->mode_config.connector_list,
  6927. base.head) {
  6928. if (connector->new_encoder == encoder) {
  6929. WARN_ON(!connector->new_encoder->new_crtc);
  6930. goto next_encoder;
  6931. }
  6932. }
  6933. encoder->new_crtc = NULL;
  6934. next_encoder:
  6935. /* Only now check for crtc changes so we don't miss encoders
  6936. * that will be disabled. */
  6937. if (&encoder->new_crtc->base != encoder->base.crtc) {
  6938. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  6939. config->mode_changed = true;
  6940. }
  6941. }
  6942. /* Now we've also updated encoder->new_crtc for all encoders. */
  6943. return 0;
  6944. }
  6945. static int intel_crtc_set_config(struct drm_mode_set *set)
  6946. {
  6947. struct drm_device *dev;
  6948. struct drm_mode_set save_set;
  6949. struct intel_set_config *config;
  6950. int ret;
  6951. BUG_ON(!set);
  6952. BUG_ON(!set->crtc);
  6953. BUG_ON(!set->crtc->helper_private);
  6954. /* Enforce sane interface api - has been abused by the fb helper. */
  6955. BUG_ON(!set->mode && set->fb);
  6956. BUG_ON(set->fb && set->num_connectors == 0);
  6957. if (set->fb) {
  6958. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  6959. set->crtc->base.id, set->fb->base.id,
  6960. (int)set->num_connectors, set->x, set->y);
  6961. } else {
  6962. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  6963. }
  6964. dev = set->crtc->dev;
  6965. ret = -ENOMEM;
  6966. config = kzalloc(sizeof(*config), GFP_KERNEL);
  6967. if (!config)
  6968. goto out_config;
  6969. ret = intel_set_config_save_state(dev, config);
  6970. if (ret)
  6971. goto out_config;
  6972. save_set.crtc = set->crtc;
  6973. save_set.mode = &set->crtc->mode;
  6974. save_set.x = set->crtc->x;
  6975. save_set.y = set->crtc->y;
  6976. save_set.fb = set->crtc->fb;
  6977. /* Compute whether we need a full modeset, only an fb base update or no
  6978. * change at all. In the future we might also check whether only the
  6979. * mode changed, e.g. for LVDS where we only change the panel fitter in
  6980. * such cases. */
  6981. intel_set_config_compute_mode_changes(set, config);
  6982. ret = intel_modeset_stage_output_state(dev, set, config);
  6983. if (ret)
  6984. goto fail;
  6985. if (config->mode_changed) {
  6986. if (set->mode) {
  6987. DRM_DEBUG_KMS("attempting to set mode from"
  6988. " userspace\n");
  6989. drm_mode_debug_printmodeline(set->mode);
  6990. }
  6991. ret = intel_set_mode(set->crtc, set->mode,
  6992. set->x, set->y, set->fb);
  6993. if (ret) {
  6994. DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
  6995. set->crtc->base.id, ret);
  6996. goto fail;
  6997. }
  6998. } else if (config->fb_changed) {
  6999. intel_crtc_wait_for_pending_flips(set->crtc);
  7000. ret = intel_pipe_set_base(set->crtc,
  7001. set->x, set->y, set->fb);
  7002. }
  7003. intel_set_config_free(config);
  7004. return 0;
  7005. fail:
  7006. intel_set_config_restore_state(dev, config);
  7007. /* Try to restore the config */
  7008. if (config->mode_changed &&
  7009. intel_set_mode(save_set.crtc, save_set.mode,
  7010. save_set.x, save_set.y, save_set.fb))
  7011. DRM_ERROR("failed to restore config after modeset failure\n");
  7012. out_config:
  7013. intel_set_config_free(config);
  7014. return ret;
  7015. }
  7016. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7017. .cursor_set = intel_crtc_cursor_set,
  7018. .cursor_move = intel_crtc_cursor_move,
  7019. .gamma_set = intel_crtc_gamma_set,
  7020. .set_config = intel_crtc_set_config,
  7021. .destroy = intel_crtc_destroy,
  7022. .page_flip = intel_crtc_page_flip,
  7023. };
  7024. static void intel_cpu_pll_init(struct drm_device *dev)
  7025. {
  7026. if (HAS_DDI(dev))
  7027. intel_ddi_pll_init(dev);
  7028. }
  7029. static void intel_pch_pll_init(struct drm_device *dev)
  7030. {
  7031. drm_i915_private_t *dev_priv = dev->dev_private;
  7032. int i;
  7033. if (dev_priv->num_pch_pll == 0) {
  7034. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  7035. return;
  7036. }
  7037. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  7038. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  7039. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  7040. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  7041. }
  7042. }
  7043. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7044. {
  7045. drm_i915_private_t *dev_priv = dev->dev_private;
  7046. struct intel_crtc *intel_crtc;
  7047. int i;
  7048. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7049. if (intel_crtc == NULL)
  7050. return;
  7051. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7052. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7053. for (i = 0; i < 256; i++) {
  7054. intel_crtc->lut_r[i] = i;
  7055. intel_crtc->lut_g[i] = i;
  7056. intel_crtc->lut_b[i] = i;
  7057. }
  7058. /* Swap pipes & planes for FBC on pre-965 */
  7059. intel_crtc->pipe = pipe;
  7060. intel_crtc->plane = pipe;
  7061. intel_crtc->config.cpu_transcoder = pipe;
  7062. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7063. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7064. intel_crtc->plane = !pipe;
  7065. }
  7066. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7067. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7068. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7069. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7070. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7071. }
  7072. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7073. struct drm_file *file)
  7074. {
  7075. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7076. struct drm_mode_object *drmmode_obj;
  7077. struct intel_crtc *crtc;
  7078. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7079. return -ENODEV;
  7080. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7081. DRM_MODE_OBJECT_CRTC);
  7082. if (!drmmode_obj) {
  7083. DRM_ERROR("no such CRTC id\n");
  7084. return -EINVAL;
  7085. }
  7086. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7087. pipe_from_crtc_id->pipe = crtc->pipe;
  7088. return 0;
  7089. }
  7090. static int intel_encoder_clones(struct intel_encoder *encoder)
  7091. {
  7092. struct drm_device *dev = encoder->base.dev;
  7093. struct intel_encoder *source_encoder;
  7094. int index_mask = 0;
  7095. int entry = 0;
  7096. list_for_each_entry(source_encoder,
  7097. &dev->mode_config.encoder_list, base.head) {
  7098. if (encoder == source_encoder)
  7099. index_mask |= (1 << entry);
  7100. /* Intel hw has only one MUX where enocoders could be cloned. */
  7101. if (encoder->cloneable && source_encoder->cloneable)
  7102. index_mask |= (1 << entry);
  7103. entry++;
  7104. }
  7105. return index_mask;
  7106. }
  7107. static bool has_edp_a(struct drm_device *dev)
  7108. {
  7109. struct drm_i915_private *dev_priv = dev->dev_private;
  7110. if (!IS_MOBILE(dev))
  7111. return false;
  7112. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7113. return false;
  7114. if (IS_GEN5(dev) &&
  7115. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7116. return false;
  7117. return true;
  7118. }
  7119. static void intel_setup_outputs(struct drm_device *dev)
  7120. {
  7121. struct drm_i915_private *dev_priv = dev->dev_private;
  7122. struct intel_encoder *encoder;
  7123. bool dpd_is_edp = false;
  7124. bool has_lvds;
  7125. has_lvds = intel_lvds_init(dev);
  7126. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  7127. /* disable the panel fitter on everything but LVDS */
  7128. I915_WRITE(PFIT_CONTROL, 0);
  7129. }
  7130. if (!IS_ULT(dev))
  7131. intel_crt_init(dev);
  7132. if (HAS_DDI(dev)) {
  7133. int found;
  7134. /* Haswell uses DDI functions to detect digital outputs */
  7135. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7136. /* DDI A only supports eDP */
  7137. if (found)
  7138. intel_ddi_init(dev, PORT_A);
  7139. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7140. * register */
  7141. found = I915_READ(SFUSE_STRAP);
  7142. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7143. intel_ddi_init(dev, PORT_B);
  7144. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7145. intel_ddi_init(dev, PORT_C);
  7146. if (found & SFUSE_STRAP_DDID_DETECTED)
  7147. intel_ddi_init(dev, PORT_D);
  7148. } else if (HAS_PCH_SPLIT(dev)) {
  7149. int found;
  7150. dpd_is_edp = intel_dpd_is_edp(dev);
  7151. if (has_edp_a(dev))
  7152. intel_dp_init(dev, DP_A, PORT_A);
  7153. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7154. /* PCH SDVOB multiplex with HDMIB */
  7155. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7156. if (!found)
  7157. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7158. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7159. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7160. }
  7161. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7162. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7163. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7164. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7165. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7166. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7167. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7168. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7169. } else if (IS_VALLEYVIEW(dev)) {
  7170. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7171. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7172. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7173. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7174. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7175. PORT_B);
  7176. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7177. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7178. }
  7179. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7180. bool found = false;
  7181. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7182. DRM_DEBUG_KMS("probing SDVOB\n");
  7183. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7184. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7185. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7186. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7187. }
  7188. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  7189. DRM_DEBUG_KMS("probing DP_B\n");
  7190. intel_dp_init(dev, DP_B, PORT_B);
  7191. }
  7192. }
  7193. /* Before G4X SDVOC doesn't have its own detect register */
  7194. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7195. DRM_DEBUG_KMS("probing SDVOC\n");
  7196. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7197. }
  7198. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7199. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7200. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7201. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7202. }
  7203. if (SUPPORTS_INTEGRATED_DP(dev)) {
  7204. DRM_DEBUG_KMS("probing DP_C\n");
  7205. intel_dp_init(dev, DP_C, PORT_C);
  7206. }
  7207. }
  7208. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7209. (I915_READ(DP_D) & DP_DETECTED)) {
  7210. DRM_DEBUG_KMS("probing DP_D\n");
  7211. intel_dp_init(dev, DP_D, PORT_D);
  7212. }
  7213. } else if (IS_GEN2(dev))
  7214. intel_dvo_init(dev);
  7215. if (SUPPORTS_TV(dev))
  7216. intel_tv_init(dev);
  7217. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7218. encoder->base.possible_crtcs = encoder->crtc_mask;
  7219. encoder->base.possible_clones =
  7220. intel_encoder_clones(encoder);
  7221. }
  7222. intel_init_pch_refclk(dev);
  7223. drm_helper_move_panel_connectors_to_head(dev);
  7224. }
  7225. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7226. {
  7227. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7228. drm_framebuffer_cleanup(fb);
  7229. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7230. kfree(intel_fb);
  7231. }
  7232. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7233. struct drm_file *file,
  7234. unsigned int *handle)
  7235. {
  7236. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7237. struct drm_i915_gem_object *obj = intel_fb->obj;
  7238. return drm_gem_handle_create(file, &obj->base, handle);
  7239. }
  7240. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7241. .destroy = intel_user_framebuffer_destroy,
  7242. .create_handle = intel_user_framebuffer_create_handle,
  7243. };
  7244. int intel_framebuffer_init(struct drm_device *dev,
  7245. struct intel_framebuffer *intel_fb,
  7246. struct drm_mode_fb_cmd2 *mode_cmd,
  7247. struct drm_i915_gem_object *obj)
  7248. {
  7249. int ret;
  7250. if (obj->tiling_mode == I915_TILING_Y) {
  7251. DRM_DEBUG("hardware does not support tiling Y\n");
  7252. return -EINVAL;
  7253. }
  7254. if (mode_cmd->pitches[0] & 63) {
  7255. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7256. mode_cmd->pitches[0]);
  7257. return -EINVAL;
  7258. }
  7259. /* FIXME <= Gen4 stride limits are bit unclear */
  7260. if (mode_cmd->pitches[0] > 32768) {
  7261. DRM_DEBUG("pitch (%d) must be at less than 32768\n",
  7262. mode_cmd->pitches[0]);
  7263. return -EINVAL;
  7264. }
  7265. if (obj->tiling_mode != I915_TILING_NONE &&
  7266. mode_cmd->pitches[0] != obj->stride) {
  7267. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7268. mode_cmd->pitches[0], obj->stride);
  7269. return -EINVAL;
  7270. }
  7271. /* Reject formats not supported by any plane early. */
  7272. switch (mode_cmd->pixel_format) {
  7273. case DRM_FORMAT_C8:
  7274. case DRM_FORMAT_RGB565:
  7275. case DRM_FORMAT_XRGB8888:
  7276. case DRM_FORMAT_ARGB8888:
  7277. break;
  7278. case DRM_FORMAT_XRGB1555:
  7279. case DRM_FORMAT_ARGB1555:
  7280. if (INTEL_INFO(dev)->gen > 3) {
  7281. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7282. return -EINVAL;
  7283. }
  7284. break;
  7285. case DRM_FORMAT_XBGR8888:
  7286. case DRM_FORMAT_ABGR8888:
  7287. case DRM_FORMAT_XRGB2101010:
  7288. case DRM_FORMAT_ARGB2101010:
  7289. case DRM_FORMAT_XBGR2101010:
  7290. case DRM_FORMAT_ABGR2101010:
  7291. if (INTEL_INFO(dev)->gen < 4) {
  7292. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7293. return -EINVAL;
  7294. }
  7295. break;
  7296. case DRM_FORMAT_YUYV:
  7297. case DRM_FORMAT_UYVY:
  7298. case DRM_FORMAT_YVYU:
  7299. case DRM_FORMAT_VYUY:
  7300. if (INTEL_INFO(dev)->gen < 5) {
  7301. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7302. return -EINVAL;
  7303. }
  7304. break;
  7305. default:
  7306. DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7307. return -EINVAL;
  7308. }
  7309. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7310. if (mode_cmd->offsets[0] != 0)
  7311. return -EINVAL;
  7312. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7313. intel_fb->obj = obj;
  7314. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7315. if (ret) {
  7316. DRM_ERROR("framebuffer init failed %d\n", ret);
  7317. return ret;
  7318. }
  7319. return 0;
  7320. }
  7321. static struct drm_framebuffer *
  7322. intel_user_framebuffer_create(struct drm_device *dev,
  7323. struct drm_file *filp,
  7324. struct drm_mode_fb_cmd2 *mode_cmd)
  7325. {
  7326. struct drm_i915_gem_object *obj;
  7327. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7328. mode_cmd->handles[0]));
  7329. if (&obj->base == NULL)
  7330. return ERR_PTR(-ENOENT);
  7331. return intel_framebuffer_create(dev, mode_cmd, obj);
  7332. }
  7333. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7334. .fb_create = intel_user_framebuffer_create,
  7335. .output_poll_changed = intel_fb_output_poll_changed,
  7336. };
  7337. /* Set up chip specific display functions */
  7338. static void intel_init_display(struct drm_device *dev)
  7339. {
  7340. struct drm_i915_private *dev_priv = dev->dev_private;
  7341. if (HAS_DDI(dev)) {
  7342. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7343. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7344. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7345. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7346. dev_priv->display.off = haswell_crtc_off;
  7347. dev_priv->display.update_plane = ironlake_update_plane;
  7348. } else if (HAS_PCH_SPLIT(dev)) {
  7349. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7350. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7351. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7352. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7353. dev_priv->display.off = ironlake_crtc_off;
  7354. dev_priv->display.update_plane = ironlake_update_plane;
  7355. } else if (IS_VALLEYVIEW(dev)) {
  7356. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7357. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7358. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7359. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7360. dev_priv->display.off = i9xx_crtc_off;
  7361. dev_priv->display.update_plane = i9xx_update_plane;
  7362. } else {
  7363. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7364. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7365. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7366. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7367. dev_priv->display.off = i9xx_crtc_off;
  7368. dev_priv->display.update_plane = i9xx_update_plane;
  7369. }
  7370. /* Returns the core display clock speed */
  7371. if (IS_VALLEYVIEW(dev))
  7372. dev_priv->display.get_display_clock_speed =
  7373. valleyview_get_display_clock_speed;
  7374. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7375. dev_priv->display.get_display_clock_speed =
  7376. i945_get_display_clock_speed;
  7377. else if (IS_I915G(dev))
  7378. dev_priv->display.get_display_clock_speed =
  7379. i915_get_display_clock_speed;
  7380. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7381. dev_priv->display.get_display_clock_speed =
  7382. i9xx_misc_get_display_clock_speed;
  7383. else if (IS_I915GM(dev))
  7384. dev_priv->display.get_display_clock_speed =
  7385. i915gm_get_display_clock_speed;
  7386. else if (IS_I865G(dev))
  7387. dev_priv->display.get_display_clock_speed =
  7388. i865_get_display_clock_speed;
  7389. else if (IS_I85X(dev))
  7390. dev_priv->display.get_display_clock_speed =
  7391. i855_get_display_clock_speed;
  7392. else /* 852, 830 */
  7393. dev_priv->display.get_display_clock_speed =
  7394. i830_get_display_clock_speed;
  7395. if (HAS_PCH_SPLIT(dev)) {
  7396. if (IS_GEN5(dev)) {
  7397. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7398. dev_priv->display.write_eld = ironlake_write_eld;
  7399. } else if (IS_GEN6(dev)) {
  7400. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7401. dev_priv->display.write_eld = ironlake_write_eld;
  7402. } else if (IS_IVYBRIDGE(dev)) {
  7403. /* FIXME: detect B0+ stepping and use auto training */
  7404. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7405. dev_priv->display.write_eld = ironlake_write_eld;
  7406. dev_priv->display.modeset_global_resources =
  7407. ivb_modeset_global_resources;
  7408. } else if (IS_HASWELL(dev)) {
  7409. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7410. dev_priv->display.write_eld = haswell_write_eld;
  7411. dev_priv->display.modeset_global_resources =
  7412. haswell_modeset_global_resources;
  7413. }
  7414. } else if (IS_G4X(dev)) {
  7415. dev_priv->display.write_eld = g4x_write_eld;
  7416. }
  7417. /* Default just returns -ENODEV to indicate unsupported */
  7418. dev_priv->display.queue_flip = intel_default_queue_flip;
  7419. switch (INTEL_INFO(dev)->gen) {
  7420. case 2:
  7421. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7422. break;
  7423. case 3:
  7424. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7425. break;
  7426. case 4:
  7427. case 5:
  7428. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7429. break;
  7430. case 6:
  7431. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7432. break;
  7433. case 7:
  7434. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7435. break;
  7436. }
  7437. }
  7438. /*
  7439. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7440. * resume, or other times. This quirk makes sure that's the case for
  7441. * affected systems.
  7442. */
  7443. static void quirk_pipea_force(struct drm_device *dev)
  7444. {
  7445. struct drm_i915_private *dev_priv = dev->dev_private;
  7446. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7447. DRM_INFO("applying pipe a force quirk\n");
  7448. }
  7449. /*
  7450. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7451. */
  7452. static void quirk_ssc_force_disable(struct drm_device *dev)
  7453. {
  7454. struct drm_i915_private *dev_priv = dev->dev_private;
  7455. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7456. DRM_INFO("applying lvds SSC disable quirk\n");
  7457. }
  7458. /*
  7459. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7460. * brightness value
  7461. */
  7462. static void quirk_invert_brightness(struct drm_device *dev)
  7463. {
  7464. struct drm_i915_private *dev_priv = dev->dev_private;
  7465. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7466. DRM_INFO("applying inverted panel brightness quirk\n");
  7467. }
  7468. struct intel_quirk {
  7469. int device;
  7470. int subsystem_vendor;
  7471. int subsystem_device;
  7472. void (*hook)(struct drm_device *dev);
  7473. };
  7474. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7475. struct intel_dmi_quirk {
  7476. void (*hook)(struct drm_device *dev);
  7477. const struct dmi_system_id (*dmi_id_list)[];
  7478. };
  7479. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7480. {
  7481. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7482. return 1;
  7483. }
  7484. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7485. {
  7486. .dmi_id_list = &(const struct dmi_system_id[]) {
  7487. {
  7488. .callback = intel_dmi_reverse_brightness,
  7489. .ident = "NCR Corporation",
  7490. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7491. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7492. },
  7493. },
  7494. { } /* terminating entry */
  7495. },
  7496. .hook = quirk_invert_brightness,
  7497. },
  7498. };
  7499. static struct intel_quirk intel_quirks[] = {
  7500. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7501. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7502. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7503. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7504. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7505. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7506. /* 830/845 need to leave pipe A & dpll A up */
  7507. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7508. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7509. /* Lenovo U160 cannot use SSC on LVDS */
  7510. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7511. /* Sony Vaio Y cannot use SSC on LVDS */
  7512. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7513. /* Acer Aspire 5734Z must invert backlight brightness */
  7514. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7515. /* Acer/eMachines G725 */
  7516. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7517. /* Acer/eMachines e725 */
  7518. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7519. /* Acer/Packard Bell NCL20 */
  7520. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7521. /* Acer Aspire 4736Z */
  7522. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7523. };
  7524. static void intel_init_quirks(struct drm_device *dev)
  7525. {
  7526. struct pci_dev *d = dev->pdev;
  7527. int i;
  7528. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7529. struct intel_quirk *q = &intel_quirks[i];
  7530. if (d->device == q->device &&
  7531. (d->subsystem_vendor == q->subsystem_vendor ||
  7532. q->subsystem_vendor == PCI_ANY_ID) &&
  7533. (d->subsystem_device == q->subsystem_device ||
  7534. q->subsystem_device == PCI_ANY_ID))
  7535. q->hook(dev);
  7536. }
  7537. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7538. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7539. intel_dmi_quirks[i].hook(dev);
  7540. }
  7541. }
  7542. /* Disable the VGA plane that we never use */
  7543. static void i915_disable_vga(struct drm_device *dev)
  7544. {
  7545. struct drm_i915_private *dev_priv = dev->dev_private;
  7546. u8 sr1;
  7547. u32 vga_reg = i915_vgacntrl_reg(dev);
  7548. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7549. outb(SR01, VGA_SR_INDEX);
  7550. sr1 = inb(VGA_SR_DATA);
  7551. outb(sr1 | 1<<5, VGA_SR_DATA);
  7552. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7553. udelay(300);
  7554. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7555. POSTING_READ(vga_reg);
  7556. }
  7557. void intel_modeset_init_hw(struct drm_device *dev)
  7558. {
  7559. intel_init_power_well(dev);
  7560. intel_prepare_ddi(dev);
  7561. intel_init_clock_gating(dev);
  7562. mutex_lock(&dev->struct_mutex);
  7563. intel_enable_gt_powersave(dev);
  7564. mutex_unlock(&dev->struct_mutex);
  7565. }
  7566. void intel_modeset_init(struct drm_device *dev)
  7567. {
  7568. struct drm_i915_private *dev_priv = dev->dev_private;
  7569. int i, j, ret;
  7570. drm_mode_config_init(dev);
  7571. dev->mode_config.min_width = 0;
  7572. dev->mode_config.min_height = 0;
  7573. dev->mode_config.preferred_depth = 24;
  7574. dev->mode_config.prefer_shadow = 1;
  7575. dev->mode_config.funcs = &intel_mode_funcs;
  7576. intel_init_quirks(dev);
  7577. intel_init_pm(dev);
  7578. if (INTEL_INFO(dev)->num_pipes == 0)
  7579. return;
  7580. intel_init_display(dev);
  7581. if (IS_GEN2(dev)) {
  7582. dev->mode_config.max_width = 2048;
  7583. dev->mode_config.max_height = 2048;
  7584. } else if (IS_GEN3(dev)) {
  7585. dev->mode_config.max_width = 4096;
  7586. dev->mode_config.max_height = 4096;
  7587. } else {
  7588. dev->mode_config.max_width = 8192;
  7589. dev->mode_config.max_height = 8192;
  7590. }
  7591. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7592. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7593. INTEL_INFO(dev)->num_pipes,
  7594. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7595. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7596. intel_crtc_init(dev, i);
  7597. for (j = 0; j < dev_priv->num_plane; j++) {
  7598. ret = intel_plane_init(dev, i, j);
  7599. if (ret)
  7600. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7601. pipe_name(i), sprite_name(i, j), ret);
  7602. }
  7603. }
  7604. intel_cpu_pll_init(dev);
  7605. intel_pch_pll_init(dev);
  7606. /* Just disable it once at startup */
  7607. i915_disable_vga(dev);
  7608. intel_setup_outputs(dev);
  7609. /* Just in case the BIOS is doing something questionable. */
  7610. intel_disable_fbc(dev);
  7611. }
  7612. static void
  7613. intel_connector_break_all_links(struct intel_connector *connector)
  7614. {
  7615. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7616. connector->base.encoder = NULL;
  7617. connector->encoder->connectors_active = false;
  7618. connector->encoder->base.crtc = NULL;
  7619. }
  7620. static void intel_enable_pipe_a(struct drm_device *dev)
  7621. {
  7622. struct intel_connector *connector;
  7623. struct drm_connector *crt = NULL;
  7624. struct intel_load_detect_pipe load_detect_temp;
  7625. /* We can't just switch on the pipe A, we need to set things up with a
  7626. * proper mode and output configuration. As a gross hack, enable pipe A
  7627. * by enabling the load detect pipe once. */
  7628. list_for_each_entry(connector,
  7629. &dev->mode_config.connector_list,
  7630. base.head) {
  7631. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7632. crt = &connector->base;
  7633. break;
  7634. }
  7635. }
  7636. if (!crt)
  7637. return;
  7638. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7639. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7640. }
  7641. static bool
  7642. intel_check_plane_mapping(struct intel_crtc *crtc)
  7643. {
  7644. struct drm_device *dev = crtc->base.dev;
  7645. struct drm_i915_private *dev_priv = dev->dev_private;
  7646. u32 reg, val;
  7647. if (INTEL_INFO(dev)->num_pipes == 1)
  7648. return true;
  7649. reg = DSPCNTR(!crtc->plane);
  7650. val = I915_READ(reg);
  7651. if ((val & DISPLAY_PLANE_ENABLE) &&
  7652. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7653. return false;
  7654. return true;
  7655. }
  7656. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7657. {
  7658. struct drm_device *dev = crtc->base.dev;
  7659. struct drm_i915_private *dev_priv = dev->dev_private;
  7660. u32 reg;
  7661. /* Clear any frame start delays used for debugging left by the BIOS */
  7662. reg = PIPECONF(crtc->config.cpu_transcoder);
  7663. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7664. /* We need to sanitize the plane -> pipe mapping first because this will
  7665. * disable the crtc (and hence change the state) if it is wrong. Note
  7666. * that gen4+ has a fixed plane -> pipe mapping. */
  7667. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7668. struct intel_connector *connector;
  7669. bool plane;
  7670. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7671. crtc->base.base.id);
  7672. /* Pipe has the wrong plane attached and the plane is active.
  7673. * Temporarily change the plane mapping and disable everything
  7674. * ... */
  7675. plane = crtc->plane;
  7676. crtc->plane = !plane;
  7677. dev_priv->display.crtc_disable(&crtc->base);
  7678. crtc->plane = plane;
  7679. /* ... and break all links. */
  7680. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7681. base.head) {
  7682. if (connector->encoder->base.crtc != &crtc->base)
  7683. continue;
  7684. intel_connector_break_all_links(connector);
  7685. }
  7686. WARN_ON(crtc->active);
  7687. crtc->base.enabled = false;
  7688. }
  7689. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7690. crtc->pipe == PIPE_A && !crtc->active) {
  7691. /* BIOS forgot to enable pipe A, this mostly happens after
  7692. * resume. Force-enable the pipe to fix this, the update_dpms
  7693. * call below we restore the pipe to the right state, but leave
  7694. * the required bits on. */
  7695. intel_enable_pipe_a(dev);
  7696. }
  7697. /* Adjust the state of the output pipe according to whether we
  7698. * have active connectors/encoders. */
  7699. intel_crtc_update_dpms(&crtc->base);
  7700. if (crtc->active != crtc->base.enabled) {
  7701. struct intel_encoder *encoder;
  7702. /* This can happen either due to bugs in the get_hw_state
  7703. * functions or because the pipe is force-enabled due to the
  7704. * pipe A quirk. */
  7705. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7706. crtc->base.base.id,
  7707. crtc->base.enabled ? "enabled" : "disabled",
  7708. crtc->active ? "enabled" : "disabled");
  7709. crtc->base.enabled = crtc->active;
  7710. /* Because we only establish the connector -> encoder ->
  7711. * crtc links if something is active, this means the
  7712. * crtc is now deactivated. Break the links. connector
  7713. * -> encoder links are only establish when things are
  7714. * actually up, hence no need to break them. */
  7715. WARN_ON(crtc->active);
  7716. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7717. WARN_ON(encoder->connectors_active);
  7718. encoder->base.crtc = NULL;
  7719. }
  7720. }
  7721. }
  7722. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7723. {
  7724. struct intel_connector *connector;
  7725. struct drm_device *dev = encoder->base.dev;
  7726. /* We need to check both for a crtc link (meaning that the
  7727. * encoder is active and trying to read from a pipe) and the
  7728. * pipe itself being active. */
  7729. bool has_active_crtc = encoder->base.crtc &&
  7730. to_intel_crtc(encoder->base.crtc)->active;
  7731. if (encoder->connectors_active && !has_active_crtc) {
  7732. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7733. encoder->base.base.id,
  7734. drm_get_encoder_name(&encoder->base));
  7735. /* Connector is active, but has no active pipe. This is
  7736. * fallout from our resume register restoring. Disable
  7737. * the encoder manually again. */
  7738. if (encoder->base.crtc) {
  7739. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7740. encoder->base.base.id,
  7741. drm_get_encoder_name(&encoder->base));
  7742. encoder->disable(encoder);
  7743. }
  7744. /* Inconsistent output/port/pipe state happens presumably due to
  7745. * a bug in one of the get_hw_state functions. Or someplace else
  7746. * in our code, like the register restore mess on resume. Clamp
  7747. * things to off as a safer default. */
  7748. list_for_each_entry(connector,
  7749. &dev->mode_config.connector_list,
  7750. base.head) {
  7751. if (connector->encoder != encoder)
  7752. continue;
  7753. intel_connector_break_all_links(connector);
  7754. }
  7755. }
  7756. /* Enabled encoders without active connectors will be fixed in
  7757. * the crtc fixup. */
  7758. }
  7759. void i915_redisable_vga(struct drm_device *dev)
  7760. {
  7761. struct drm_i915_private *dev_priv = dev->dev_private;
  7762. u32 vga_reg = i915_vgacntrl_reg(dev);
  7763. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  7764. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  7765. i915_disable_vga(dev);
  7766. }
  7767. }
  7768. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7769. * and i915 state tracking structures. */
  7770. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7771. bool force_restore)
  7772. {
  7773. struct drm_i915_private *dev_priv = dev->dev_private;
  7774. enum pipe pipe;
  7775. u32 tmp;
  7776. struct drm_plane *plane;
  7777. struct intel_crtc *crtc;
  7778. struct intel_encoder *encoder;
  7779. struct intel_connector *connector;
  7780. if (HAS_DDI(dev)) {
  7781. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  7782. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  7783. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  7784. case TRANS_DDI_EDP_INPUT_A_ON:
  7785. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  7786. pipe = PIPE_A;
  7787. break;
  7788. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  7789. pipe = PIPE_B;
  7790. break;
  7791. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  7792. pipe = PIPE_C;
  7793. break;
  7794. default:
  7795. /* A bogus value has been programmed, disable
  7796. * the transcoder */
  7797. WARN(1, "Bogus eDP source %08x\n", tmp);
  7798. intel_ddi_disable_transcoder_func(dev_priv,
  7799. TRANSCODER_EDP);
  7800. goto setup_pipes;
  7801. }
  7802. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7803. crtc->config.cpu_transcoder = TRANSCODER_EDP;
  7804. DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
  7805. pipe_name(pipe));
  7806. }
  7807. }
  7808. setup_pipes:
  7809. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7810. base.head) {
  7811. enum transcoder tmp = crtc->config.cpu_transcoder;
  7812. memset(&crtc->config, 0, sizeof(crtc->config));
  7813. crtc->config.cpu_transcoder = tmp;
  7814. crtc->active = dev_priv->display.get_pipe_config(crtc,
  7815. &crtc->config);
  7816. crtc->base.enabled = crtc->active;
  7817. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7818. crtc->base.base.id,
  7819. crtc->active ? "enabled" : "disabled");
  7820. }
  7821. if (HAS_DDI(dev))
  7822. intel_ddi_setup_hw_pll_state(dev);
  7823. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7824. base.head) {
  7825. pipe = 0;
  7826. if (encoder->get_hw_state(encoder, &pipe)) {
  7827. encoder->base.crtc =
  7828. dev_priv->pipe_to_crtc_mapping[pipe];
  7829. } else {
  7830. encoder->base.crtc = NULL;
  7831. }
  7832. encoder->connectors_active = false;
  7833. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7834. encoder->base.base.id,
  7835. drm_get_encoder_name(&encoder->base),
  7836. encoder->base.crtc ? "enabled" : "disabled",
  7837. pipe);
  7838. }
  7839. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7840. base.head) {
  7841. if (connector->get_hw_state(connector)) {
  7842. connector->base.dpms = DRM_MODE_DPMS_ON;
  7843. connector->encoder->connectors_active = true;
  7844. connector->base.encoder = &connector->encoder->base;
  7845. } else {
  7846. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7847. connector->base.encoder = NULL;
  7848. }
  7849. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  7850. connector->base.base.id,
  7851. drm_get_connector_name(&connector->base),
  7852. connector->base.encoder ? "enabled" : "disabled");
  7853. }
  7854. /* HW state is read out, now we need to sanitize this mess. */
  7855. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7856. base.head) {
  7857. intel_sanitize_encoder(encoder);
  7858. }
  7859. for_each_pipe(pipe) {
  7860. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7861. intel_sanitize_crtc(crtc);
  7862. }
  7863. if (force_restore) {
  7864. /*
  7865. * We need to use raw interfaces for restoring state to avoid
  7866. * checking (bogus) intermediate states.
  7867. */
  7868. for_each_pipe(pipe) {
  7869. struct drm_crtc *crtc =
  7870. dev_priv->pipe_to_crtc_mapping[pipe];
  7871. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  7872. crtc->fb);
  7873. }
  7874. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  7875. intel_plane_restore(plane);
  7876. i915_redisable_vga(dev);
  7877. } else {
  7878. intel_modeset_update_staged_output_state(dev);
  7879. }
  7880. intel_modeset_check_state(dev);
  7881. drm_mode_config_reset(dev);
  7882. }
  7883. void intel_modeset_gem_init(struct drm_device *dev)
  7884. {
  7885. intel_modeset_init_hw(dev);
  7886. intel_setup_overlay(dev);
  7887. intel_modeset_setup_hw_state(dev, false);
  7888. }
  7889. void intel_modeset_cleanup(struct drm_device *dev)
  7890. {
  7891. struct drm_i915_private *dev_priv = dev->dev_private;
  7892. struct drm_crtc *crtc;
  7893. struct intel_crtc *intel_crtc;
  7894. /*
  7895. * Interrupts and polling as the first thing to avoid creating havoc.
  7896. * Too much stuff here (turning of rps, connectors, ...) would
  7897. * experience fancy races otherwise.
  7898. */
  7899. drm_irq_uninstall(dev);
  7900. cancel_work_sync(&dev_priv->hotplug_work);
  7901. /*
  7902. * Due to the hpd irq storm handling the hotplug work can re-arm the
  7903. * poll handlers. Hence disable polling after hpd handling is shut down.
  7904. */
  7905. drm_kms_helper_poll_fini(dev);
  7906. mutex_lock(&dev->struct_mutex);
  7907. intel_unregister_dsm_handler();
  7908. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7909. /* Skip inactive CRTCs */
  7910. if (!crtc->fb)
  7911. continue;
  7912. intel_crtc = to_intel_crtc(crtc);
  7913. intel_increase_pllclock(crtc);
  7914. }
  7915. intel_disable_fbc(dev);
  7916. intel_disable_gt_powersave(dev);
  7917. ironlake_teardown_rc6(dev);
  7918. mutex_unlock(&dev->struct_mutex);
  7919. /* flush any delayed tasks or pending work */
  7920. flush_scheduled_work();
  7921. /* destroy backlight, if any, before the connectors */
  7922. intel_panel_destroy_backlight(dev);
  7923. drm_mode_config_cleanup(dev);
  7924. intel_cleanup_overlay(dev);
  7925. }
  7926. /*
  7927. * Return which encoder is currently attached for connector.
  7928. */
  7929. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7930. {
  7931. return &intel_attached_encoder(connector)->base;
  7932. }
  7933. void intel_connector_attach_encoder(struct intel_connector *connector,
  7934. struct intel_encoder *encoder)
  7935. {
  7936. connector->encoder = encoder;
  7937. drm_mode_connector_attach_encoder(&connector->base,
  7938. &encoder->base);
  7939. }
  7940. /*
  7941. * set vga decode state - true == enable VGA decode
  7942. */
  7943. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7944. {
  7945. struct drm_i915_private *dev_priv = dev->dev_private;
  7946. u16 gmch_ctrl;
  7947. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7948. if (state)
  7949. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7950. else
  7951. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7952. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7953. return 0;
  7954. }
  7955. #ifdef CONFIG_DEBUG_FS
  7956. #include <linux/seq_file.h>
  7957. struct intel_display_error_state {
  7958. struct intel_cursor_error_state {
  7959. u32 control;
  7960. u32 position;
  7961. u32 base;
  7962. u32 size;
  7963. } cursor[I915_MAX_PIPES];
  7964. struct intel_pipe_error_state {
  7965. u32 conf;
  7966. u32 source;
  7967. u32 htotal;
  7968. u32 hblank;
  7969. u32 hsync;
  7970. u32 vtotal;
  7971. u32 vblank;
  7972. u32 vsync;
  7973. } pipe[I915_MAX_PIPES];
  7974. struct intel_plane_error_state {
  7975. u32 control;
  7976. u32 stride;
  7977. u32 size;
  7978. u32 pos;
  7979. u32 addr;
  7980. u32 surface;
  7981. u32 tile_offset;
  7982. } plane[I915_MAX_PIPES];
  7983. };
  7984. struct intel_display_error_state *
  7985. intel_display_capture_error_state(struct drm_device *dev)
  7986. {
  7987. drm_i915_private_t *dev_priv = dev->dev_private;
  7988. struct intel_display_error_state *error;
  7989. enum transcoder cpu_transcoder;
  7990. int i;
  7991. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7992. if (error == NULL)
  7993. return NULL;
  7994. for_each_pipe(i) {
  7995. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  7996. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  7997. error->cursor[i].control = I915_READ(CURCNTR(i));
  7998. error->cursor[i].position = I915_READ(CURPOS(i));
  7999. error->cursor[i].base = I915_READ(CURBASE(i));
  8000. } else {
  8001. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8002. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8003. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8004. }
  8005. error->plane[i].control = I915_READ(DSPCNTR(i));
  8006. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8007. if (INTEL_INFO(dev)->gen <= 3) {
  8008. error->plane[i].size = I915_READ(DSPSIZE(i));
  8009. error->plane[i].pos = I915_READ(DSPPOS(i));
  8010. }
  8011. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8012. error->plane[i].addr = I915_READ(DSPADDR(i));
  8013. if (INTEL_INFO(dev)->gen >= 4) {
  8014. error->plane[i].surface = I915_READ(DSPSURF(i));
  8015. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8016. }
  8017. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8018. error->pipe[i].source = I915_READ(PIPESRC(i));
  8019. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8020. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8021. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8022. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8023. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8024. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8025. }
  8026. return error;
  8027. }
  8028. void
  8029. intel_display_print_error_state(struct seq_file *m,
  8030. struct drm_device *dev,
  8031. struct intel_display_error_state *error)
  8032. {
  8033. int i;
  8034. seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8035. for_each_pipe(i) {
  8036. seq_printf(m, "Pipe [%d]:\n", i);
  8037. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8038. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8039. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8040. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8041. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8042. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8043. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8044. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8045. seq_printf(m, "Plane [%d]:\n", i);
  8046. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8047. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8048. if (INTEL_INFO(dev)->gen <= 3) {
  8049. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8050. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  8051. }
  8052. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8053. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8054. if (INTEL_INFO(dev)->gen >= 4) {
  8055. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8056. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8057. }
  8058. seq_printf(m, "Cursor [%d]:\n", i);
  8059. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8060. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  8061. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8062. }
  8063. }
  8064. #endif