dma-mapping.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543
  1. /*
  2. * linux/arch/arm/mm/dma-mapping.c
  3. *
  4. * Copyright (C) 2000-2004 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * DMA uncached mapping support.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/gfp.h>
  15. #include <linux/errno.h>
  16. #include <linux/list.h>
  17. #include <linux/init.h>
  18. #include <linux/device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/dma-contiguous.h>
  21. #include <linux/highmem.h>
  22. #include <linux/memblock.h>
  23. #include <linux/slab.h>
  24. #include <linux/iommu.h>
  25. #include <linux/io.h>
  26. #include <linux/vmalloc.h>
  27. #include <asm/memory.h>
  28. #include <asm/highmem.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/sizes.h>
  32. #include <asm/mach/arch.h>
  33. #include <asm/dma-iommu.h>
  34. #include <asm/mach/map.h>
  35. #include <asm/system_info.h>
  36. #include <asm/dma-contiguous.h>
  37. #include "mm.h"
  38. /*
  39. * The DMA API is built upon the notion of "buffer ownership". A buffer
  40. * is either exclusively owned by the CPU (and therefore may be accessed
  41. * by it) or exclusively owned by the DMA device. These helper functions
  42. * represent the transitions between these two ownership states.
  43. *
  44. * Note, however, that on later ARMs, this notion does not work due to
  45. * speculative prefetches. We model our approach on the assumption that
  46. * the CPU does do speculative prefetches, which means we clean caches
  47. * before transfers and delay cache invalidation until transfer completion.
  48. *
  49. */
  50. static void __dma_page_cpu_to_dev(struct page *, unsigned long,
  51. size_t, enum dma_data_direction);
  52. static void __dma_page_dev_to_cpu(struct page *, unsigned long,
  53. size_t, enum dma_data_direction);
  54. /**
  55. * arm_dma_map_page - map a portion of a page for streaming DMA
  56. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  57. * @page: page that buffer resides in
  58. * @offset: offset into page for start of buffer
  59. * @size: size of buffer to map
  60. * @dir: DMA transfer direction
  61. *
  62. * Ensure that any data held in the cache is appropriately discarded
  63. * or written back.
  64. *
  65. * The device owns this memory once this call has completed. The CPU
  66. * can regain ownership by calling dma_unmap_page().
  67. */
  68. static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
  69. unsigned long offset, size_t size, enum dma_data_direction dir,
  70. struct dma_attrs *attrs)
  71. {
  72. if (!arch_is_coherent())
  73. __dma_page_cpu_to_dev(page, offset, size, dir);
  74. return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  75. }
  76. /**
  77. * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  78. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  79. * @handle: DMA address of buffer
  80. * @size: size of buffer (same as passed to dma_map_page)
  81. * @dir: DMA transfer direction (same as passed to dma_map_page)
  82. *
  83. * Unmap a page streaming mode DMA translation. The handle and size
  84. * must match what was provided in the previous dma_map_page() call.
  85. * All other usages are undefined.
  86. *
  87. * After this call, reads by the CPU to the buffer are guaranteed to see
  88. * whatever the device wrote there.
  89. */
  90. static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
  91. size_t size, enum dma_data_direction dir,
  92. struct dma_attrs *attrs)
  93. {
  94. if (!arch_is_coherent())
  95. __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
  96. handle & ~PAGE_MASK, size, dir);
  97. }
  98. static void arm_dma_sync_single_for_cpu(struct device *dev,
  99. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  100. {
  101. unsigned int offset = handle & (PAGE_SIZE - 1);
  102. struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
  103. if (!arch_is_coherent())
  104. __dma_page_dev_to_cpu(page, offset, size, dir);
  105. }
  106. static void arm_dma_sync_single_for_device(struct device *dev,
  107. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  108. {
  109. unsigned int offset = handle & (PAGE_SIZE - 1);
  110. struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
  111. if (!arch_is_coherent())
  112. __dma_page_cpu_to_dev(page, offset, size, dir);
  113. }
  114. static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
  115. struct dma_map_ops arm_dma_ops = {
  116. .alloc = arm_dma_alloc,
  117. .free = arm_dma_free,
  118. .mmap = arm_dma_mmap,
  119. .map_page = arm_dma_map_page,
  120. .unmap_page = arm_dma_unmap_page,
  121. .map_sg = arm_dma_map_sg,
  122. .unmap_sg = arm_dma_unmap_sg,
  123. .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
  124. .sync_single_for_device = arm_dma_sync_single_for_device,
  125. .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
  126. .sync_sg_for_device = arm_dma_sync_sg_for_device,
  127. .set_dma_mask = arm_dma_set_mask,
  128. };
  129. EXPORT_SYMBOL(arm_dma_ops);
  130. static u64 get_coherent_dma_mask(struct device *dev)
  131. {
  132. u64 mask = (u64)arm_dma_limit;
  133. if (dev) {
  134. mask = dev->coherent_dma_mask;
  135. /*
  136. * Sanity check the DMA mask - it must be non-zero, and
  137. * must be able to be satisfied by a DMA allocation.
  138. */
  139. if (mask == 0) {
  140. dev_warn(dev, "coherent DMA mask is unset\n");
  141. return 0;
  142. }
  143. if ((~mask) & (u64)arm_dma_limit) {
  144. dev_warn(dev, "coherent DMA mask %#llx is smaller "
  145. "than system GFP_DMA mask %#llx\n",
  146. mask, (u64)arm_dma_limit);
  147. return 0;
  148. }
  149. }
  150. return mask;
  151. }
  152. static void __dma_clear_buffer(struct page *page, size_t size)
  153. {
  154. void *ptr;
  155. /*
  156. * Ensure that the allocated pages are zeroed, and that any data
  157. * lurking in the kernel direct-mapped region is invalidated.
  158. */
  159. ptr = page_address(page);
  160. if (ptr) {
  161. memset(ptr, 0, size);
  162. dmac_flush_range(ptr, ptr + size);
  163. outer_flush_range(__pa(ptr), __pa(ptr) + size);
  164. }
  165. }
  166. /*
  167. * Allocate a DMA buffer for 'dev' of size 'size' using the
  168. * specified gfp mask. Note that 'size' must be page aligned.
  169. */
  170. static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
  171. {
  172. unsigned long order = get_order(size);
  173. struct page *page, *p, *e;
  174. page = alloc_pages(gfp, order);
  175. if (!page)
  176. return NULL;
  177. /*
  178. * Now split the huge page and free the excess pages
  179. */
  180. split_page(page, order);
  181. for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
  182. __free_page(p);
  183. __dma_clear_buffer(page, size);
  184. return page;
  185. }
  186. /*
  187. * Free a DMA buffer. 'size' must be page aligned.
  188. */
  189. static void __dma_free_buffer(struct page *page, size_t size)
  190. {
  191. struct page *e = page + (size >> PAGE_SHIFT);
  192. while (page < e) {
  193. __free_page(page);
  194. page++;
  195. }
  196. }
  197. #ifdef CONFIG_MMU
  198. #ifdef CONFIG_HUGETLB_PAGE
  199. #error ARM Coherent DMA allocator does not (yet) support huge TLB
  200. #endif
  201. static void *__alloc_from_contiguous(struct device *dev, size_t size,
  202. pgprot_t prot, struct page **ret_page);
  203. static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
  204. pgprot_t prot, struct page **ret_page,
  205. const void *caller);
  206. static void *
  207. __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
  208. const void *caller)
  209. {
  210. struct vm_struct *area;
  211. unsigned long addr;
  212. /*
  213. * DMA allocation can be mapped to user space, so lets
  214. * set VM_USERMAP flags too.
  215. */
  216. area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
  217. caller);
  218. if (!area)
  219. return NULL;
  220. addr = (unsigned long)area->addr;
  221. area->phys_addr = __pfn_to_phys(page_to_pfn(page));
  222. if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
  223. vunmap((void *)addr);
  224. return NULL;
  225. }
  226. return (void *)addr;
  227. }
  228. static void __dma_free_remap(void *cpu_addr, size_t size)
  229. {
  230. unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
  231. struct vm_struct *area = find_vm_area(cpu_addr);
  232. if (!area || (area->flags & flags) != flags) {
  233. WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
  234. return;
  235. }
  236. unmap_kernel_range((unsigned long)cpu_addr, size);
  237. vunmap(cpu_addr);
  238. }
  239. struct dma_pool {
  240. size_t size;
  241. spinlock_t lock;
  242. unsigned long *bitmap;
  243. unsigned long nr_pages;
  244. void *vaddr;
  245. struct page *page;
  246. };
  247. static struct dma_pool atomic_pool = {
  248. .size = SZ_256K,
  249. };
  250. static int __init early_coherent_pool(char *p)
  251. {
  252. atomic_pool.size = memparse(p, &p);
  253. return 0;
  254. }
  255. early_param("coherent_pool", early_coherent_pool);
  256. /*
  257. * Initialise the coherent pool for atomic allocations.
  258. */
  259. static int __init atomic_pool_init(void)
  260. {
  261. struct dma_pool *pool = &atomic_pool;
  262. pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
  263. unsigned long nr_pages = pool->size >> PAGE_SHIFT;
  264. unsigned long *bitmap;
  265. struct page *page;
  266. void *ptr;
  267. int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
  268. bitmap = kzalloc(bitmap_size, GFP_KERNEL);
  269. if (!bitmap)
  270. goto no_bitmap;
  271. if (IS_ENABLED(CONFIG_CMA))
  272. ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
  273. else
  274. ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
  275. &page, NULL);
  276. if (ptr) {
  277. spin_lock_init(&pool->lock);
  278. pool->vaddr = ptr;
  279. pool->page = page;
  280. pool->bitmap = bitmap;
  281. pool->nr_pages = nr_pages;
  282. pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
  283. (unsigned)pool->size / 1024);
  284. return 0;
  285. }
  286. kfree(bitmap);
  287. no_bitmap:
  288. pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
  289. (unsigned)pool->size / 1024);
  290. return -ENOMEM;
  291. }
  292. /*
  293. * CMA is activated by core_initcall, so we must be called after it.
  294. */
  295. postcore_initcall(atomic_pool_init);
  296. struct dma_contig_early_reserve {
  297. phys_addr_t base;
  298. unsigned long size;
  299. };
  300. static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
  301. static int dma_mmu_remap_num __initdata;
  302. void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
  303. {
  304. dma_mmu_remap[dma_mmu_remap_num].base = base;
  305. dma_mmu_remap[dma_mmu_remap_num].size = size;
  306. dma_mmu_remap_num++;
  307. }
  308. void __init dma_contiguous_remap(void)
  309. {
  310. int i;
  311. for (i = 0; i < dma_mmu_remap_num; i++) {
  312. phys_addr_t start = dma_mmu_remap[i].base;
  313. phys_addr_t end = start + dma_mmu_remap[i].size;
  314. struct map_desc map;
  315. unsigned long addr;
  316. if (end > arm_lowmem_limit)
  317. end = arm_lowmem_limit;
  318. if (start >= end)
  319. return;
  320. map.pfn = __phys_to_pfn(start);
  321. map.virtual = __phys_to_virt(start);
  322. map.length = end - start;
  323. map.type = MT_MEMORY_DMA_READY;
  324. /*
  325. * Clear previous low-memory mapping
  326. */
  327. for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
  328. addr += PMD_SIZE)
  329. pmd_clear(pmd_off_k(addr));
  330. iotable_init(&map, 1);
  331. }
  332. }
  333. static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
  334. void *data)
  335. {
  336. struct page *page = virt_to_page(addr);
  337. pgprot_t prot = *(pgprot_t *)data;
  338. set_pte_ext(pte, mk_pte(page, prot), 0);
  339. return 0;
  340. }
  341. static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
  342. {
  343. unsigned long start = (unsigned long) page_address(page);
  344. unsigned end = start + size;
  345. apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
  346. dsb();
  347. flush_tlb_kernel_range(start, end);
  348. }
  349. static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
  350. pgprot_t prot, struct page **ret_page,
  351. const void *caller)
  352. {
  353. struct page *page;
  354. void *ptr;
  355. page = __dma_alloc_buffer(dev, size, gfp);
  356. if (!page)
  357. return NULL;
  358. ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
  359. if (!ptr) {
  360. __dma_free_buffer(page, size);
  361. return NULL;
  362. }
  363. *ret_page = page;
  364. return ptr;
  365. }
  366. static void *__alloc_from_pool(size_t size, struct page **ret_page)
  367. {
  368. struct dma_pool *pool = &atomic_pool;
  369. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  370. unsigned int pageno;
  371. unsigned long flags;
  372. void *ptr = NULL;
  373. size_t align;
  374. if (!pool->vaddr) {
  375. WARN(1, "coherent pool not initialised!\n");
  376. return NULL;
  377. }
  378. /*
  379. * Align the region allocation - allocations from pool are rather
  380. * small, so align them to their order in pages, minimum is a page
  381. * size. This helps reduce fragmentation of the DMA space.
  382. */
  383. align = PAGE_SIZE << get_order(size);
  384. spin_lock_irqsave(&pool->lock, flags);
  385. pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
  386. 0, count, (1 << align) - 1);
  387. if (pageno < pool->nr_pages) {
  388. bitmap_set(pool->bitmap, pageno, count);
  389. ptr = pool->vaddr + PAGE_SIZE * pageno;
  390. *ret_page = pool->page + pageno;
  391. }
  392. spin_unlock_irqrestore(&pool->lock, flags);
  393. return ptr;
  394. }
  395. static int __free_from_pool(void *start, size_t size)
  396. {
  397. struct dma_pool *pool = &atomic_pool;
  398. unsigned long pageno, count;
  399. unsigned long flags;
  400. if (start < pool->vaddr || start > pool->vaddr + pool->size)
  401. return 0;
  402. if (start + size > pool->vaddr + pool->size) {
  403. WARN(1, "freeing wrong coherent size from pool\n");
  404. return 0;
  405. }
  406. pageno = (start - pool->vaddr) >> PAGE_SHIFT;
  407. count = size >> PAGE_SHIFT;
  408. spin_lock_irqsave(&pool->lock, flags);
  409. bitmap_clear(pool->bitmap, pageno, count);
  410. spin_unlock_irqrestore(&pool->lock, flags);
  411. return 1;
  412. }
  413. static void *__alloc_from_contiguous(struct device *dev, size_t size,
  414. pgprot_t prot, struct page **ret_page)
  415. {
  416. unsigned long order = get_order(size);
  417. size_t count = size >> PAGE_SHIFT;
  418. struct page *page;
  419. page = dma_alloc_from_contiguous(dev, count, order);
  420. if (!page)
  421. return NULL;
  422. __dma_clear_buffer(page, size);
  423. __dma_remap(page, size, prot);
  424. *ret_page = page;
  425. return page_address(page);
  426. }
  427. static void __free_from_contiguous(struct device *dev, struct page *page,
  428. size_t size)
  429. {
  430. __dma_remap(page, size, pgprot_kernel);
  431. dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
  432. }
  433. static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
  434. {
  435. prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
  436. pgprot_writecombine(prot) :
  437. pgprot_dmacoherent(prot);
  438. return prot;
  439. }
  440. #define nommu() 0
  441. #else /* !CONFIG_MMU */
  442. #define nommu() 1
  443. #define __get_dma_pgprot(attrs, prot) __pgprot(0)
  444. #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
  445. #define __alloc_from_pool(size, ret_page) NULL
  446. #define __alloc_from_contiguous(dev, size, prot, ret) NULL
  447. #define __free_from_pool(cpu_addr, size) 0
  448. #define __free_from_contiguous(dev, page, size) do { } while (0)
  449. #define __dma_free_remap(cpu_addr, size) do { } while (0)
  450. #endif /* CONFIG_MMU */
  451. static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
  452. struct page **ret_page)
  453. {
  454. struct page *page;
  455. page = __dma_alloc_buffer(dev, size, gfp);
  456. if (!page)
  457. return NULL;
  458. *ret_page = page;
  459. return page_address(page);
  460. }
  461. static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
  462. gfp_t gfp, pgprot_t prot, const void *caller)
  463. {
  464. u64 mask = get_coherent_dma_mask(dev);
  465. struct page *page;
  466. void *addr;
  467. #ifdef CONFIG_DMA_API_DEBUG
  468. u64 limit = (mask + 1) & ~mask;
  469. if (limit && size >= limit) {
  470. dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
  471. size, mask);
  472. return NULL;
  473. }
  474. #endif
  475. if (!mask)
  476. return NULL;
  477. if (mask < 0xffffffffULL)
  478. gfp |= GFP_DMA;
  479. /*
  480. * Following is a work-around (a.k.a. hack) to prevent pages
  481. * with __GFP_COMP being passed to split_page() which cannot
  482. * handle them. The real problem is that this flag probably
  483. * should be 0 on ARM as it is not supported on this
  484. * platform; see CONFIG_HUGETLBFS.
  485. */
  486. gfp &= ~(__GFP_COMP);
  487. *handle = DMA_ERROR_CODE;
  488. size = PAGE_ALIGN(size);
  489. if (arch_is_coherent() || nommu())
  490. addr = __alloc_simple_buffer(dev, size, gfp, &page);
  491. else if (gfp & GFP_ATOMIC)
  492. addr = __alloc_from_pool(size, &page);
  493. else if (!IS_ENABLED(CONFIG_CMA))
  494. addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
  495. else
  496. addr = __alloc_from_contiguous(dev, size, prot, &page);
  497. if (addr)
  498. *handle = pfn_to_dma(dev, page_to_pfn(page));
  499. return addr;
  500. }
  501. /*
  502. * Allocate DMA-coherent memory space and return both the kernel remapped
  503. * virtual and bus address for that space.
  504. */
  505. void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
  506. gfp_t gfp, struct dma_attrs *attrs)
  507. {
  508. pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
  509. void *memory;
  510. if (dma_alloc_from_coherent(dev, size, handle, &memory))
  511. return memory;
  512. return __dma_alloc(dev, size, handle, gfp, prot,
  513. __builtin_return_address(0));
  514. }
  515. /*
  516. * Create userspace mapping for the DMA-coherent memory.
  517. */
  518. int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
  519. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  520. struct dma_attrs *attrs)
  521. {
  522. int ret = -ENXIO;
  523. #ifdef CONFIG_MMU
  524. unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  525. unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  526. unsigned long pfn = dma_to_pfn(dev, dma_addr);
  527. unsigned long off = vma->vm_pgoff;
  528. vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
  529. if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
  530. return ret;
  531. if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
  532. ret = remap_pfn_range(vma, vma->vm_start,
  533. pfn + off,
  534. vma->vm_end - vma->vm_start,
  535. vma->vm_page_prot);
  536. }
  537. #endif /* CONFIG_MMU */
  538. return ret;
  539. }
  540. /*
  541. * Free a buffer as defined by the above mapping.
  542. */
  543. void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
  544. dma_addr_t handle, struct dma_attrs *attrs)
  545. {
  546. struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
  547. if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
  548. return;
  549. size = PAGE_ALIGN(size);
  550. if (arch_is_coherent() || nommu()) {
  551. __dma_free_buffer(page, size);
  552. } else if (!IS_ENABLED(CONFIG_CMA)) {
  553. __dma_free_remap(cpu_addr, size);
  554. __dma_free_buffer(page, size);
  555. } else {
  556. if (__free_from_pool(cpu_addr, size))
  557. return;
  558. /*
  559. * Non-atomic allocations cannot be freed with IRQs disabled
  560. */
  561. WARN_ON(irqs_disabled());
  562. __free_from_contiguous(dev, page, size);
  563. }
  564. }
  565. static void dma_cache_maint_page(struct page *page, unsigned long offset,
  566. size_t size, enum dma_data_direction dir,
  567. void (*op)(const void *, size_t, int))
  568. {
  569. /*
  570. * A single sg entry may refer to multiple physically contiguous
  571. * pages. But we still need to process highmem pages individually.
  572. * If highmem is not configured then the bulk of this loop gets
  573. * optimized out.
  574. */
  575. size_t left = size;
  576. do {
  577. size_t len = left;
  578. void *vaddr;
  579. if (PageHighMem(page)) {
  580. if (len + offset > PAGE_SIZE) {
  581. if (offset >= PAGE_SIZE) {
  582. page += offset / PAGE_SIZE;
  583. offset %= PAGE_SIZE;
  584. }
  585. len = PAGE_SIZE - offset;
  586. }
  587. vaddr = kmap_high_get(page);
  588. if (vaddr) {
  589. vaddr += offset;
  590. op(vaddr, len, dir);
  591. kunmap_high(page);
  592. } else if (cache_is_vipt()) {
  593. /* unmapped pages might still be cached */
  594. vaddr = kmap_atomic(page);
  595. op(vaddr + offset, len, dir);
  596. kunmap_atomic(vaddr);
  597. }
  598. } else {
  599. vaddr = page_address(page) + offset;
  600. op(vaddr, len, dir);
  601. }
  602. offset = 0;
  603. page++;
  604. left -= len;
  605. } while (left);
  606. }
  607. /*
  608. * Make an area consistent for devices.
  609. * Note: Drivers should NOT use this function directly, as it will break
  610. * platforms with CONFIG_DMABOUNCE.
  611. * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
  612. */
  613. static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
  614. size_t size, enum dma_data_direction dir)
  615. {
  616. unsigned long paddr;
  617. dma_cache_maint_page(page, off, size, dir, dmac_map_area);
  618. paddr = page_to_phys(page) + off;
  619. if (dir == DMA_FROM_DEVICE) {
  620. outer_inv_range(paddr, paddr + size);
  621. } else {
  622. outer_clean_range(paddr, paddr + size);
  623. }
  624. /* FIXME: non-speculating: flush on bidirectional mappings? */
  625. }
  626. static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
  627. size_t size, enum dma_data_direction dir)
  628. {
  629. unsigned long paddr = page_to_phys(page) + off;
  630. /* FIXME: non-speculating: not required */
  631. /* don't bother invalidating if DMA to device */
  632. if (dir != DMA_TO_DEVICE)
  633. outer_inv_range(paddr, paddr + size);
  634. dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
  635. /*
  636. * Mark the D-cache clean for this page to avoid extra flushing.
  637. */
  638. if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
  639. set_bit(PG_dcache_clean, &page->flags);
  640. }
  641. /**
  642. * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
  643. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  644. * @sg: list of buffers
  645. * @nents: number of buffers to map
  646. * @dir: DMA transfer direction
  647. *
  648. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  649. * This is the scatter-gather version of the dma_map_single interface.
  650. * Here the scatter gather list elements are each tagged with the
  651. * appropriate dma address and length. They are obtained via
  652. * sg_dma_{address,length}.
  653. *
  654. * Device ownership issues as mentioned for dma_map_single are the same
  655. * here.
  656. */
  657. int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  658. enum dma_data_direction dir, struct dma_attrs *attrs)
  659. {
  660. struct dma_map_ops *ops = get_dma_ops(dev);
  661. struct scatterlist *s;
  662. int i, j;
  663. for_each_sg(sg, s, nents, i) {
  664. #ifdef CONFIG_NEED_SG_DMA_LENGTH
  665. s->dma_length = s->length;
  666. #endif
  667. s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
  668. s->length, dir, attrs);
  669. if (dma_mapping_error(dev, s->dma_address))
  670. goto bad_mapping;
  671. }
  672. return nents;
  673. bad_mapping:
  674. for_each_sg(sg, s, i, j)
  675. ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
  676. return 0;
  677. }
  678. /**
  679. * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  680. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  681. * @sg: list of buffers
  682. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  683. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  684. *
  685. * Unmap a set of streaming mode DMA translations. Again, CPU access
  686. * rules concerning calls here are the same as for dma_unmap_single().
  687. */
  688. void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  689. enum dma_data_direction dir, struct dma_attrs *attrs)
  690. {
  691. struct dma_map_ops *ops = get_dma_ops(dev);
  692. struct scatterlist *s;
  693. int i;
  694. for_each_sg(sg, s, nents, i)
  695. ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
  696. }
  697. /**
  698. * arm_dma_sync_sg_for_cpu
  699. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  700. * @sg: list of buffers
  701. * @nents: number of buffers to map (returned from dma_map_sg)
  702. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  703. */
  704. void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  705. int nents, enum dma_data_direction dir)
  706. {
  707. struct dma_map_ops *ops = get_dma_ops(dev);
  708. struct scatterlist *s;
  709. int i;
  710. for_each_sg(sg, s, nents, i)
  711. ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
  712. dir);
  713. }
  714. /**
  715. * arm_dma_sync_sg_for_device
  716. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  717. * @sg: list of buffers
  718. * @nents: number of buffers to map (returned from dma_map_sg)
  719. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  720. */
  721. void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  722. int nents, enum dma_data_direction dir)
  723. {
  724. struct dma_map_ops *ops = get_dma_ops(dev);
  725. struct scatterlist *s;
  726. int i;
  727. for_each_sg(sg, s, nents, i)
  728. ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
  729. dir);
  730. }
  731. /*
  732. * Return whether the given device DMA address mask can be supported
  733. * properly. For example, if your device can only drive the low 24-bits
  734. * during bus mastering, then you would pass 0x00ffffff as the mask
  735. * to this function.
  736. */
  737. int dma_supported(struct device *dev, u64 mask)
  738. {
  739. if (mask < (u64)arm_dma_limit)
  740. return 0;
  741. return 1;
  742. }
  743. EXPORT_SYMBOL(dma_supported);
  744. static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
  745. {
  746. if (!dev->dma_mask || !dma_supported(dev, dma_mask))
  747. return -EIO;
  748. *dev->dma_mask = dma_mask;
  749. return 0;
  750. }
  751. #define PREALLOC_DMA_DEBUG_ENTRIES 4096
  752. static int __init dma_debug_do_init(void)
  753. {
  754. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  755. return 0;
  756. }
  757. fs_initcall(dma_debug_do_init);
  758. #ifdef CONFIG_ARM_DMA_USE_IOMMU
  759. /* IOMMU */
  760. static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
  761. size_t size)
  762. {
  763. unsigned int order = get_order(size);
  764. unsigned int align = 0;
  765. unsigned int count, start;
  766. unsigned long flags;
  767. count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
  768. (1 << mapping->order) - 1) >> mapping->order;
  769. if (order > mapping->order)
  770. align = (1 << (order - mapping->order)) - 1;
  771. spin_lock_irqsave(&mapping->lock, flags);
  772. start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
  773. count, align);
  774. if (start > mapping->bits) {
  775. spin_unlock_irqrestore(&mapping->lock, flags);
  776. return DMA_ERROR_CODE;
  777. }
  778. bitmap_set(mapping->bitmap, start, count);
  779. spin_unlock_irqrestore(&mapping->lock, flags);
  780. return mapping->base + (start << (mapping->order + PAGE_SHIFT));
  781. }
  782. static inline void __free_iova(struct dma_iommu_mapping *mapping,
  783. dma_addr_t addr, size_t size)
  784. {
  785. unsigned int start = (addr - mapping->base) >>
  786. (mapping->order + PAGE_SHIFT);
  787. unsigned int count = ((size >> PAGE_SHIFT) +
  788. (1 << mapping->order) - 1) >> mapping->order;
  789. unsigned long flags;
  790. spin_lock_irqsave(&mapping->lock, flags);
  791. bitmap_clear(mapping->bitmap, start, count);
  792. spin_unlock_irqrestore(&mapping->lock, flags);
  793. }
  794. static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
  795. {
  796. struct page **pages;
  797. int count = size >> PAGE_SHIFT;
  798. int array_size = count * sizeof(struct page *);
  799. int i = 0;
  800. if (array_size <= PAGE_SIZE)
  801. pages = kzalloc(array_size, gfp);
  802. else
  803. pages = vzalloc(array_size);
  804. if (!pages)
  805. return NULL;
  806. while (count) {
  807. int j, order = __fls(count);
  808. pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
  809. while (!pages[i] && order)
  810. pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
  811. if (!pages[i])
  812. goto error;
  813. if (order)
  814. split_page(pages[i], order);
  815. j = 1 << order;
  816. while (--j)
  817. pages[i + j] = pages[i] + j;
  818. __dma_clear_buffer(pages[i], PAGE_SIZE << order);
  819. i += 1 << order;
  820. count -= 1 << order;
  821. }
  822. return pages;
  823. error:
  824. while (i--)
  825. if (pages[i])
  826. __free_pages(pages[i], 0);
  827. if (array_size <= PAGE_SIZE)
  828. kfree(pages);
  829. else
  830. vfree(pages);
  831. return NULL;
  832. }
  833. static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
  834. {
  835. int count = size >> PAGE_SHIFT;
  836. int array_size = count * sizeof(struct page *);
  837. int i;
  838. for (i = 0; i < count; i++)
  839. if (pages[i])
  840. __free_pages(pages[i], 0);
  841. if (array_size <= PAGE_SIZE)
  842. kfree(pages);
  843. else
  844. vfree(pages);
  845. return 0;
  846. }
  847. /*
  848. * Create a CPU mapping for a specified pages
  849. */
  850. static void *
  851. __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
  852. const void *caller)
  853. {
  854. unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  855. struct vm_struct *area;
  856. unsigned long p;
  857. area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
  858. caller);
  859. if (!area)
  860. return NULL;
  861. area->pages = pages;
  862. area->nr_pages = nr_pages;
  863. p = (unsigned long)area->addr;
  864. for (i = 0; i < nr_pages; i++) {
  865. phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
  866. if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
  867. goto err;
  868. p += PAGE_SIZE;
  869. }
  870. return area->addr;
  871. err:
  872. unmap_kernel_range((unsigned long)area->addr, size);
  873. vunmap(area->addr);
  874. return NULL;
  875. }
  876. /*
  877. * Create a mapping in device IO address space for specified pages
  878. */
  879. static dma_addr_t
  880. __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
  881. {
  882. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  883. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  884. dma_addr_t dma_addr, iova;
  885. int i, ret = DMA_ERROR_CODE;
  886. dma_addr = __alloc_iova(mapping, size);
  887. if (dma_addr == DMA_ERROR_CODE)
  888. return dma_addr;
  889. iova = dma_addr;
  890. for (i = 0; i < count; ) {
  891. unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
  892. phys_addr_t phys = page_to_phys(pages[i]);
  893. unsigned int len, j;
  894. for (j = i + 1; j < count; j++, next_pfn++)
  895. if (page_to_pfn(pages[j]) != next_pfn)
  896. break;
  897. len = (j - i) << PAGE_SHIFT;
  898. ret = iommu_map(mapping->domain, iova, phys, len, 0);
  899. if (ret < 0)
  900. goto fail;
  901. iova += len;
  902. i = j;
  903. }
  904. return dma_addr;
  905. fail:
  906. iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
  907. __free_iova(mapping, dma_addr, size);
  908. return DMA_ERROR_CODE;
  909. }
  910. static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
  911. {
  912. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  913. /*
  914. * add optional in-page offset from iova to size and align
  915. * result to page size
  916. */
  917. size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
  918. iova &= PAGE_MASK;
  919. iommu_unmap(mapping->domain, iova, size);
  920. __free_iova(mapping, iova, size);
  921. return 0;
  922. }
  923. static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
  924. {
  925. struct vm_struct *area;
  926. if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
  927. return cpu_addr;
  928. area = find_vm_area(cpu_addr);
  929. if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
  930. return area->pages;
  931. return NULL;
  932. }
  933. static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
  934. dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
  935. {
  936. pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
  937. struct page **pages;
  938. void *addr = NULL;
  939. *handle = DMA_ERROR_CODE;
  940. size = PAGE_ALIGN(size);
  941. pages = __iommu_alloc_buffer(dev, size, gfp);
  942. if (!pages)
  943. return NULL;
  944. *handle = __iommu_create_mapping(dev, pages, size);
  945. if (*handle == DMA_ERROR_CODE)
  946. goto err_buffer;
  947. if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
  948. return pages;
  949. addr = __iommu_alloc_remap(pages, size, gfp, prot,
  950. __builtin_return_address(0));
  951. if (!addr)
  952. goto err_mapping;
  953. return addr;
  954. err_mapping:
  955. __iommu_remove_mapping(dev, *handle, size);
  956. err_buffer:
  957. __iommu_free_buffer(dev, pages, size);
  958. return NULL;
  959. }
  960. static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
  961. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  962. struct dma_attrs *attrs)
  963. {
  964. unsigned long uaddr = vma->vm_start;
  965. unsigned long usize = vma->vm_end - vma->vm_start;
  966. struct page **pages = __iommu_get_pages(cpu_addr, attrs);
  967. vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
  968. if (!pages)
  969. return -ENXIO;
  970. do {
  971. int ret = vm_insert_page(vma, uaddr, *pages++);
  972. if (ret) {
  973. pr_err("Remapping memory failed: %d\n", ret);
  974. return ret;
  975. }
  976. uaddr += PAGE_SIZE;
  977. usize -= PAGE_SIZE;
  978. } while (usize > 0);
  979. return 0;
  980. }
  981. /*
  982. * free a page as defined by the above mapping.
  983. * Must not be called with IRQs disabled.
  984. */
  985. void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
  986. dma_addr_t handle, struct dma_attrs *attrs)
  987. {
  988. struct page **pages = __iommu_get_pages(cpu_addr, attrs);
  989. size = PAGE_ALIGN(size);
  990. if (!pages) {
  991. WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
  992. return;
  993. }
  994. if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
  995. unmap_kernel_range((unsigned long)cpu_addr, size);
  996. vunmap(cpu_addr);
  997. }
  998. __iommu_remove_mapping(dev, handle, size);
  999. __iommu_free_buffer(dev, pages, size);
  1000. }
  1001. /*
  1002. * Map a part of the scatter-gather list into contiguous io address space
  1003. */
  1004. static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
  1005. size_t size, dma_addr_t *handle,
  1006. enum dma_data_direction dir)
  1007. {
  1008. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1009. dma_addr_t iova, iova_base;
  1010. int ret = 0;
  1011. unsigned int count;
  1012. struct scatterlist *s;
  1013. size = PAGE_ALIGN(size);
  1014. *handle = DMA_ERROR_CODE;
  1015. iova_base = iova = __alloc_iova(mapping, size);
  1016. if (iova == DMA_ERROR_CODE)
  1017. return -ENOMEM;
  1018. for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
  1019. phys_addr_t phys = page_to_phys(sg_page(s));
  1020. unsigned int len = PAGE_ALIGN(s->offset + s->length);
  1021. if (!arch_is_coherent())
  1022. __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
  1023. ret = iommu_map(mapping->domain, iova, phys, len, 0);
  1024. if (ret < 0)
  1025. goto fail;
  1026. count += len >> PAGE_SHIFT;
  1027. iova += len;
  1028. }
  1029. *handle = iova_base;
  1030. return 0;
  1031. fail:
  1032. iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
  1033. __free_iova(mapping, iova_base, size);
  1034. return ret;
  1035. }
  1036. /**
  1037. * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
  1038. * @dev: valid struct device pointer
  1039. * @sg: list of buffers
  1040. * @nents: number of buffers to map
  1041. * @dir: DMA transfer direction
  1042. *
  1043. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  1044. * The scatter gather list elements are merged together (if possible) and
  1045. * tagged with the appropriate dma address and length. They are obtained via
  1046. * sg_dma_{address,length}.
  1047. */
  1048. int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  1049. enum dma_data_direction dir, struct dma_attrs *attrs)
  1050. {
  1051. struct scatterlist *s = sg, *dma = sg, *start = sg;
  1052. int i, count = 0;
  1053. unsigned int offset = s->offset;
  1054. unsigned int size = s->offset + s->length;
  1055. unsigned int max = dma_get_max_seg_size(dev);
  1056. for (i = 1; i < nents; i++) {
  1057. s = sg_next(s);
  1058. s->dma_address = DMA_ERROR_CODE;
  1059. s->dma_length = 0;
  1060. if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
  1061. if (__map_sg_chunk(dev, start, size, &dma->dma_address,
  1062. dir) < 0)
  1063. goto bad_mapping;
  1064. dma->dma_address += offset;
  1065. dma->dma_length = size - offset;
  1066. size = offset = s->offset;
  1067. start = s;
  1068. dma = sg_next(dma);
  1069. count += 1;
  1070. }
  1071. size += s->length;
  1072. }
  1073. if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir) < 0)
  1074. goto bad_mapping;
  1075. dma->dma_address += offset;
  1076. dma->dma_length = size - offset;
  1077. return count+1;
  1078. bad_mapping:
  1079. for_each_sg(sg, s, count, i)
  1080. __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
  1081. return 0;
  1082. }
  1083. /**
  1084. * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  1085. * @dev: valid struct device pointer
  1086. * @sg: list of buffers
  1087. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  1088. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1089. *
  1090. * Unmap a set of streaming mode DMA translations. Again, CPU access
  1091. * rules concerning calls here are the same as for dma_unmap_single().
  1092. */
  1093. void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  1094. enum dma_data_direction dir, struct dma_attrs *attrs)
  1095. {
  1096. struct scatterlist *s;
  1097. int i;
  1098. for_each_sg(sg, s, nents, i) {
  1099. if (sg_dma_len(s))
  1100. __iommu_remove_mapping(dev, sg_dma_address(s),
  1101. sg_dma_len(s));
  1102. if (!arch_is_coherent())
  1103. __dma_page_dev_to_cpu(sg_page(s), s->offset,
  1104. s->length, dir);
  1105. }
  1106. }
  1107. /**
  1108. * arm_iommu_sync_sg_for_cpu
  1109. * @dev: valid struct device pointer
  1110. * @sg: list of buffers
  1111. * @nents: number of buffers to map (returned from dma_map_sg)
  1112. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1113. */
  1114. void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  1115. int nents, enum dma_data_direction dir)
  1116. {
  1117. struct scatterlist *s;
  1118. int i;
  1119. for_each_sg(sg, s, nents, i)
  1120. if (!arch_is_coherent())
  1121. __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
  1122. }
  1123. /**
  1124. * arm_iommu_sync_sg_for_device
  1125. * @dev: valid struct device pointer
  1126. * @sg: list of buffers
  1127. * @nents: number of buffers to map (returned from dma_map_sg)
  1128. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1129. */
  1130. void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  1131. int nents, enum dma_data_direction dir)
  1132. {
  1133. struct scatterlist *s;
  1134. int i;
  1135. for_each_sg(sg, s, nents, i)
  1136. if (!arch_is_coherent())
  1137. __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
  1138. }
  1139. /**
  1140. * arm_iommu_map_page
  1141. * @dev: valid struct device pointer
  1142. * @page: page that buffer resides in
  1143. * @offset: offset into page for start of buffer
  1144. * @size: size of buffer to map
  1145. * @dir: DMA transfer direction
  1146. *
  1147. * IOMMU aware version of arm_dma_map_page()
  1148. */
  1149. static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
  1150. unsigned long offset, size_t size, enum dma_data_direction dir,
  1151. struct dma_attrs *attrs)
  1152. {
  1153. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1154. dma_addr_t dma_addr;
  1155. int ret, len = PAGE_ALIGN(size + offset);
  1156. if (!arch_is_coherent())
  1157. __dma_page_cpu_to_dev(page, offset, size, dir);
  1158. dma_addr = __alloc_iova(mapping, len);
  1159. if (dma_addr == DMA_ERROR_CODE)
  1160. return dma_addr;
  1161. ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
  1162. if (ret < 0)
  1163. goto fail;
  1164. return dma_addr + offset;
  1165. fail:
  1166. __free_iova(mapping, dma_addr, len);
  1167. return DMA_ERROR_CODE;
  1168. }
  1169. /**
  1170. * arm_iommu_unmap_page
  1171. * @dev: valid struct device pointer
  1172. * @handle: DMA address of buffer
  1173. * @size: size of buffer (same as passed to dma_map_page)
  1174. * @dir: DMA transfer direction (same as passed to dma_map_page)
  1175. *
  1176. * IOMMU aware version of arm_dma_unmap_page()
  1177. */
  1178. static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
  1179. size_t size, enum dma_data_direction dir,
  1180. struct dma_attrs *attrs)
  1181. {
  1182. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1183. dma_addr_t iova = handle & PAGE_MASK;
  1184. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1185. int offset = handle & ~PAGE_MASK;
  1186. int len = PAGE_ALIGN(size + offset);
  1187. if (!iova)
  1188. return;
  1189. if (!arch_is_coherent())
  1190. __dma_page_dev_to_cpu(page, offset, size, dir);
  1191. iommu_unmap(mapping->domain, iova, len);
  1192. __free_iova(mapping, iova, len);
  1193. }
  1194. static void arm_iommu_sync_single_for_cpu(struct device *dev,
  1195. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  1196. {
  1197. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1198. dma_addr_t iova = handle & PAGE_MASK;
  1199. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1200. unsigned int offset = handle & ~PAGE_MASK;
  1201. if (!iova)
  1202. return;
  1203. if (!arch_is_coherent())
  1204. __dma_page_dev_to_cpu(page, offset, size, dir);
  1205. }
  1206. static void arm_iommu_sync_single_for_device(struct device *dev,
  1207. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  1208. {
  1209. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1210. dma_addr_t iova = handle & PAGE_MASK;
  1211. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1212. unsigned int offset = handle & ~PAGE_MASK;
  1213. if (!iova)
  1214. return;
  1215. __dma_page_cpu_to_dev(page, offset, size, dir);
  1216. }
  1217. struct dma_map_ops iommu_ops = {
  1218. .alloc = arm_iommu_alloc_attrs,
  1219. .free = arm_iommu_free_attrs,
  1220. .mmap = arm_iommu_mmap_attrs,
  1221. .map_page = arm_iommu_map_page,
  1222. .unmap_page = arm_iommu_unmap_page,
  1223. .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
  1224. .sync_single_for_device = arm_iommu_sync_single_for_device,
  1225. .map_sg = arm_iommu_map_sg,
  1226. .unmap_sg = arm_iommu_unmap_sg,
  1227. .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
  1228. .sync_sg_for_device = arm_iommu_sync_sg_for_device,
  1229. };
  1230. /**
  1231. * arm_iommu_create_mapping
  1232. * @bus: pointer to the bus holding the client device (for IOMMU calls)
  1233. * @base: start address of the valid IO address space
  1234. * @size: size of the valid IO address space
  1235. * @order: accuracy of the IO addresses allocations
  1236. *
  1237. * Creates a mapping structure which holds information about used/unused
  1238. * IO address ranges, which is required to perform memory allocation and
  1239. * mapping with IOMMU aware functions.
  1240. *
  1241. * The client device need to be attached to the mapping with
  1242. * arm_iommu_attach_device function.
  1243. */
  1244. struct dma_iommu_mapping *
  1245. arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
  1246. int order)
  1247. {
  1248. unsigned int count = size >> (PAGE_SHIFT + order);
  1249. unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
  1250. struct dma_iommu_mapping *mapping;
  1251. int err = -ENOMEM;
  1252. if (!count)
  1253. return ERR_PTR(-EINVAL);
  1254. mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
  1255. if (!mapping)
  1256. goto err;
  1257. mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
  1258. if (!mapping->bitmap)
  1259. goto err2;
  1260. mapping->base = base;
  1261. mapping->bits = BITS_PER_BYTE * bitmap_size;
  1262. mapping->order = order;
  1263. spin_lock_init(&mapping->lock);
  1264. mapping->domain = iommu_domain_alloc(bus);
  1265. if (!mapping->domain)
  1266. goto err3;
  1267. kref_init(&mapping->kref);
  1268. return mapping;
  1269. err3:
  1270. kfree(mapping->bitmap);
  1271. err2:
  1272. kfree(mapping);
  1273. err:
  1274. return ERR_PTR(err);
  1275. }
  1276. static void release_iommu_mapping(struct kref *kref)
  1277. {
  1278. struct dma_iommu_mapping *mapping =
  1279. container_of(kref, struct dma_iommu_mapping, kref);
  1280. iommu_domain_free(mapping->domain);
  1281. kfree(mapping->bitmap);
  1282. kfree(mapping);
  1283. }
  1284. void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
  1285. {
  1286. if (mapping)
  1287. kref_put(&mapping->kref, release_iommu_mapping);
  1288. }
  1289. /**
  1290. * arm_iommu_attach_device
  1291. * @dev: valid struct device pointer
  1292. * @mapping: io address space mapping structure (returned from
  1293. * arm_iommu_create_mapping)
  1294. *
  1295. * Attaches specified io address space mapping to the provided device,
  1296. * this replaces the dma operations (dma_map_ops pointer) with the
  1297. * IOMMU aware version. More than one client might be attached to
  1298. * the same io address space mapping.
  1299. */
  1300. int arm_iommu_attach_device(struct device *dev,
  1301. struct dma_iommu_mapping *mapping)
  1302. {
  1303. int err;
  1304. err = iommu_attach_device(mapping->domain, dev);
  1305. if (err)
  1306. return err;
  1307. kref_get(&mapping->kref);
  1308. dev->archdata.mapping = mapping;
  1309. set_dma_ops(dev, &iommu_ops);
  1310. pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
  1311. return 0;
  1312. }
  1313. #endif