aops.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043
  1. /* -*- mode: c; c-basic-offset: 8; -*-
  2. * vim: noexpandtab sw=8 ts=8 sts=0:
  3. *
  4. * Copyright (C) 2002, 2004 Oracle. All rights reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public
  17. * License along with this program; if not, write to the
  18. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19. * Boston, MA 021110-1307, USA.
  20. */
  21. #include <linux/fs.h>
  22. #include <linux/slab.h>
  23. #include <linux/highmem.h>
  24. #include <linux/pagemap.h>
  25. #include <asm/byteorder.h>
  26. #include <linux/swap.h>
  27. #include <linux/pipe_fs_i.h>
  28. #include <linux/mpage.h>
  29. #include <linux/quotaops.h>
  30. #include <cluster/masklog.h>
  31. #include "ocfs2.h"
  32. #include "alloc.h"
  33. #include "aops.h"
  34. #include "dlmglue.h"
  35. #include "extent_map.h"
  36. #include "file.h"
  37. #include "inode.h"
  38. #include "journal.h"
  39. #include "suballoc.h"
  40. #include "super.h"
  41. #include "symlink.h"
  42. #include "refcounttree.h"
  43. #include "ocfs2_trace.h"
  44. #include "buffer_head_io.h"
  45. static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  46. struct buffer_head *bh_result, int create)
  47. {
  48. int err = -EIO;
  49. int status;
  50. struct ocfs2_dinode *fe = NULL;
  51. struct buffer_head *bh = NULL;
  52. struct buffer_head *buffer_cache_bh = NULL;
  53. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  54. void *kaddr;
  55. trace_ocfs2_symlink_get_block(
  56. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  57. (unsigned long long)iblock, bh_result, create);
  58. BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  59. if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  60. mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  61. (unsigned long long)iblock);
  62. goto bail;
  63. }
  64. status = ocfs2_read_inode_block(inode, &bh);
  65. if (status < 0) {
  66. mlog_errno(status);
  67. goto bail;
  68. }
  69. fe = (struct ocfs2_dinode *) bh->b_data;
  70. if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  71. le32_to_cpu(fe->i_clusters))) {
  72. mlog(ML_ERROR, "block offset is outside the allocated size: "
  73. "%llu\n", (unsigned long long)iblock);
  74. goto bail;
  75. }
  76. /* We don't use the page cache to create symlink data, so if
  77. * need be, copy it over from the buffer cache. */
  78. if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  79. u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  80. iblock;
  81. buffer_cache_bh = sb_getblk(osb->sb, blkno);
  82. if (!buffer_cache_bh) {
  83. mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  84. goto bail;
  85. }
  86. /* we haven't locked out transactions, so a commit
  87. * could've happened. Since we've got a reference on
  88. * the bh, even if it commits while we're doing the
  89. * copy, the data is still good. */
  90. if (buffer_jbd(buffer_cache_bh)
  91. && ocfs2_inode_is_new(inode)) {
  92. kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
  93. if (!kaddr) {
  94. mlog(ML_ERROR, "couldn't kmap!\n");
  95. goto bail;
  96. }
  97. memcpy(kaddr + (bh_result->b_size * iblock),
  98. buffer_cache_bh->b_data,
  99. bh_result->b_size);
  100. kunmap_atomic(kaddr, KM_USER0);
  101. set_buffer_uptodate(bh_result);
  102. }
  103. brelse(buffer_cache_bh);
  104. }
  105. map_bh(bh_result, inode->i_sb,
  106. le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
  107. err = 0;
  108. bail:
  109. brelse(bh);
  110. return err;
  111. }
  112. int ocfs2_get_block(struct inode *inode, sector_t iblock,
  113. struct buffer_head *bh_result, int create)
  114. {
  115. int err = 0;
  116. unsigned int ext_flags;
  117. u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
  118. u64 p_blkno, count, past_eof;
  119. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  120. trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
  121. (unsigned long long)iblock, bh_result, create);
  122. if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
  123. mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
  124. inode, inode->i_ino);
  125. if (S_ISLNK(inode->i_mode)) {
  126. /* this always does I/O for some reason. */
  127. err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
  128. goto bail;
  129. }
  130. err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
  131. &ext_flags);
  132. if (err) {
  133. mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
  134. "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
  135. (unsigned long long)p_blkno);
  136. goto bail;
  137. }
  138. if (max_blocks < count)
  139. count = max_blocks;
  140. /*
  141. * ocfs2 never allocates in this function - the only time we
  142. * need to use BH_New is when we're extending i_size on a file
  143. * system which doesn't support holes, in which case BH_New
  144. * allows __block_write_begin() to zero.
  145. *
  146. * If we see this on a sparse file system, then a truncate has
  147. * raced us and removed the cluster. In this case, we clear
  148. * the buffers dirty and uptodate bits and let the buffer code
  149. * ignore it as a hole.
  150. */
  151. if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
  152. clear_buffer_dirty(bh_result);
  153. clear_buffer_uptodate(bh_result);
  154. goto bail;
  155. }
  156. /* Treat the unwritten extent as a hole for zeroing purposes. */
  157. if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
  158. map_bh(bh_result, inode->i_sb, p_blkno);
  159. bh_result->b_size = count << inode->i_blkbits;
  160. if (!ocfs2_sparse_alloc(osb)) {
  161. if (p_blkno == 0) {
  162. err = -EIO;
  163. mlog(ML_ERROR,
  164. "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
  165. (unsigned long long)iblock,
  166. (unsigned long long)p_blkno,
  167. (unsigned long long)OCFS2_I(inode)->ip_blkno);
  168. mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
  169. dump_stack();
  170. goto bail;
  171. }
  172. }
  173. past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
  174. trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
  175. (unsigned long long)past_eof);
  176. if (create && (iblock >= past_eof))
  177. set_buffer_new(bh_result);
  178. bail:
  179. if (err < 0)
  180. err = -EIO;
  181. return err;
  182. }
  183. int ocfs2_read_inline_data(struct inode *inode, struct page *page,
  184. struct buffer_head *di_bh)
  185. {
  186. void *kaddr;
  187. loff_t size;
  188. struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
  189. if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
  190. ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
  191. (unsigned long long)OCFS2_I(inode)->ip_blkno);
  192. return -EROFS;
  193. }
  194. size = i_size_read(inode);
  195. if (size > PAGE_CACHE_SIZE ||
  196. size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
  197. ocfs2_error(inode->i_sb,
  198. "Inode %llu has with inline data has bad size: %Lu",
  199. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  200. (unsigned long long)size);
  201. return -EROFS;
  202. }
  203. kaddr = kmap_atomic(page, KM_USER0);
  204. if (size)
  205. memcpy(kaddr, di->id2.i_data.id_data, size);
  206. /* Clear the remaining part of the page */
  207. memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
  208. flush_dcache_page(page);
  209. kunmap_atomic(kaddr, KM_USER0);
  210. SetPageUptodate(page);
  211. return 0;
  212. }
  213. static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
  214. {
  215. int ret;
  216. struct buffer_head *di_bh = NULL;
  217. BUG_ON(!PageLocked(page));
  218. BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
  219. ret = ocfs2_read_inode_block(inode, &di_bh);
  220. if (ret) {
  221. mlog_errno(ret);
  222. goto out;
  223. }
  224. ret = ocfs2_read_inline_data(inode, page, di_bh);
  225. out:
  226. unlock_page(page);
  227. brelse(di_bh);
  228. return ret;
  229. }
  230. static int ocfs2_readpage(struct file *file, struct page *page)
  231. {
  232. struct inode *inode = page->mapping->host;
  233. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  234. loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
  235. int ret, unlock = 1;
  236. trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
  237. (page ? page->index : 0));
  238. ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
  239. if (ret != 0) {
  240. if (ret == AOP_TRUNCATED_PAGE)
  241. unlock = 0;
  242. mlog_errno(ret);
  243. goto out;
  244. }
  245. if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
  246. ret = AOP_TRUNCATED_PAGE;
  247. goto out_inode_unlock;
  248. }
  249. /*
  250. * i_size might have just been updated as we grabed the meta lock. We
  251. * might now be discovering a truncate that hit on another node.
  252. * block_read_full_page->get_block freaks out if it is asked to read
  253. * beyond the end of a file, so we check here. Callers
  254. * (generic_file_read, vm_ops->fault) are clever enough to check i_size
  255. * and notice that the page they just read isn't needed.
  256. *
  257. * XXX sys_readahead() seems to get that wrong?
  258. */
  259. if (start >= i_size_read(inode)) {
  260. zero_user(page, 0, PAGE_SIZE);
  261. SetPageUptodate(page);
  262. ret = 0;
  263. goto out_alloc;
  264. }
  265. if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
  266. ret = ocfs2_readpage_inline(inode, page);
  267. else
  268. ret = block_read_full_page(page, ocfs2_get_block);
  269. unlock = 0;
  270. out_alloc:
  271. up_read(&OCFS2_I(inode)->ip_alloc_sem);
  272. out_inode_unlock:
  273. ocfs2_inode_unlock(inode, 0);
  274. out:
  275. if (unlock)
  276. unlock_page(page);
  277. return ret;
  278. }
  279. /*
  280. * This is used only for read-ahead. Failures or difficult to handle
  281. * situations are safe to ignore.
  282. *
  283. * Right now, we don't bother with BH_Boundary - in-inode extent lists
  284. * are quite large (243 extents on 4k blocks), so most inodes don't
  285. * grow out to a tree. If need be, detecting boundary extents could
  286. * trivially be added in a future version of ocfs2_get_block().
  287. */
  288. static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
  289. struct list_head *pages, unsigned nr_pages)
  290. {
  291. int ret, err = -EIO;
  292. struct inode *inode = mapping->host;
  293. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  294. loff_t start;
  295. struct page *last;
  296. /*
  297. * Use the nonblocking flag for the dlm code to avoid page
  298. * lock inversion, but don't bother with retrying.
  299. */
  300. ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
  301. if (ret)
  302. return err;
  303. if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
  304. ocfs2_inode_unlock(inode, 0);
  305. return err;
  306. }
  307. /*
  308. * Don't bother with inline-data. There isn't anything
  309. * to read-ahead in that case anyway...
  310. */
  311. if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
  312. goto out_unlock;
  313. /*
  314. * Check whether a remote node truncated this file - we just
  315. * drop out in that case as it's not worth handling here.
  316. */
  317. last = list_entry(pages->prev, struct page, lru);
  318. start = (loff_t)last->index << PAGE_CACHE_SHIFT;
  319. if (start >= i_size_read(inode))
  320. goto out_unlock;
  321. err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
  322. out_unlock:
  323. up_read(&oi->ip_alloc_sem);
  324. ocfs2_inode_unlock(inode, 0);
  325. return err;
  326. }
  327. /* Note: Because we don't support holes, our allocation has
  328. * already happened (allocation writes zeros to the file data)
  329. * so we don't have to worry about ordered writes in
  330. * ocfs2_writepage.
  331. *
  332. * ->writepage is called during the process of invalidating the page cache
  333. * during blocked lock processing. It can't block on any cluster locks
  334. * to during block mapping. It's relying on the fact that the block
  335. * mapping can't have disappeared under the dirty pages that it is
  336. * being asked to write back.
  337. */
  338. static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
  339. {
  340. trace_ocfs2_writepage(
  341. (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
  342. page->index);
  343. return block_write_full_page(page, ocfs2_get_block, wbc);
  344. }
  345. /* Taken from ext3. We don't necessarily need the full blown
  346. * functionality yet, but IMHO it's better to cut and paste the whole
  347. * thing so we can avoid introducing our own bugs (and easily pick up
  348. * their fixes when they happen) --Mark */
  349. int walk_page_buffers( handle_t *handle,
  350. struct buffer_head *head,
  351. unsigned from,
  352. unsigned to,
  353. int *partial,
  354. int (*fn)( handle_t *handle,
  355. struct buffer_head *bh))
  356. {
  357. struct buffer_head *bh;
  358. unsigned block_start, block_end;
  359. unsigned blocksize = head->b_size;
  360. int err, ret = 0;
  361. struct buffer_head *next;
  362. for ( bh = head, block_start = 0;
  363. ret == 0 && (bh != head || !block_start);
  364. block_start = block_end, bh = next)
  365. {
  366. next = bh->b_this_page;
  367. block_end = block_start + blocksize;
  368. if (block_end <= from || block_start >= to) {
  369. if (partial && !buffer_uptodate(bh))
  370. *partial = 1;
  371. continue;
  372. }
  373. err = (*fn)(handle, bh);
  374. if (!ret)
  375. ret = err;
  376. }
  377. return ret;
  378. }
  379. static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
  380. {
  381. sector_t status;
  382. u64 p_blkno = 0;
  383. int err = 0;
  384. struct inode *inode = mapping->host;
  385. trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
  386. (unsigned long long)block);
  387. /* We don't need to lock journal system files, since they aren't
  388. * accessed concurrently from multiple nodes.
  389. */
  390. if (!INODE_JOURNAL(inode)) {
  391. err = ocfs2_inode_lock(inode, NULL, 0);
  392. if (err) {
  393. if (err != -ENOENT)
  394. mlog_errno(err);
  395. goto bail;
  396. }
  397. down_read(&OCFS2_I(inode)->ip_alloc_sem);
  398. }
  399. if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
  400. err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
  401. NULL);
  402. if (!INODE_JOURNAL(inode)) {
  403. up_read(&OCFS2_I(inode)->ip_alloc_sem);
  404. ocfs2_inode_unlock(inode, 0);
  405. }
  406. if (err) {
  407. mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
  408. (unsigned long long)block);
  409. mlog_errno(err);
  410. goto bail;
  411. }
  412. bail:
  413. status = err ? 0 : p_blkno;
  414. return status;
  415. }
  416. /*
  417. * TODO: Make this into a generic get_blocks function.
  418. *
  419. * From do_direct_io in direct-io.c:
  420. * "So what we do is to permit the ->get_blocks function to populate
  421. * bh.b_size with the size of IO which is permitted at this offset and
  422. * this i_blkbits."
  423. *
  424. * This function is called directly from get_more_blocks in direct-io.c.
  425. *
  426. * called like this: dio->get_blocks(dio->inode, fs_startblk,
  427. * fs_count, map_bh, dio->rw == WRITE);
  428. *
  429. * Note that we never bother to allocate blocks here, and thus ignore the
  430. * create argument.
  431. */
  432. static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
  433. struct buffer_head *bh_result, int create)
  434. {
  435. int ret;
  436. u64 p_blkno, inode_blocks, contig_blocks;
  437. unsigned int ext_flags;
  438. unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
  439. unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
  440. /* This function won't even be called if the request isn't all
  441. * nicely aligned and of the right size, so there's no need
  442. * for us to check any of that. */
  443. inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
  444. /* This figures out the size of the next contiguous block, and
  445. * our logical offset */
  446. ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
  447. &contig_blocks, &ext_flags);
  448. if (ret) {
  449. mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
  450. (unsigned long long)iblock);
  451. ret = -EIO;
  452. goto bail;
  453. }
  454. /* We should already CoW the refcounted extent in case of create. */
  455. BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
  456. /*
  457. * get_more_blocks() expects us to describe a hole by clearing
  458. * the mapped bit on bh_result().
  459. *
  460. * Consider an unwritten extent as a hole.
  461. */
  462. if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
  463. map_bh(bh_result, inode->i_sb, p_blkno);
  464. else
  465. clear_buffer_mapped(bh_result);
  466. /* make sure we don't map more than max_blocks blocks here as
  467. that's all the kernel will handle at this point. */
  468. if (max_blocks < contig_blocks)
  469. contig_blocks = max_blocks;
  470. bh_result->b_size = contig_blocks << blocksize_bits;
  471. bail:
  472. return ret;
  473. }
  474. /*
  475. * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
  476. * particularly interested in the aio/dio case. Like the core uses
  477. * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
  478. * truncation on another.
  479. */
  480. static void ocfs2_dio_end_io(struct kiocb *iocb,
  481. loff_t offset,
  482. ssize_t bytes,
  483. void *private,
  484. int ret,
  485. bool is_async)
  486. {
  487. struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
  488. int level;
  489. /* this io's submitter should not have unlocked this before we could */
  490. BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
  491. if (ocfs2_iocb_is_sem_locked(iocb)) {
  492. up_read(&inode->i_alloc_sem);
  493. ocfs2_iocb_clear_sem_locked(iocb);
  494. }
  495. ocfs2_iocb_clear_rw_locked(iocb);
  496. level = ocfs2_iocb_rw_locked_level(iocb);
  497. ocfs2_rw_unlock(inode, level);
  498. if (is_async)
  499. aio_complete(iocb, ret, 0);
  500. }
  501. /*
  502. * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
  503. * from ext3. PageChecked() bits have been removed as OCFS2 does not
  504. * do journalled data.
  505. */
  506. static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
  507. {
  508. journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
  509. jbd2_journal_invalidatepage(journal, page, offset);
  510. }
  511. static int ocfs2_releasepage(struct page *page, gfp_t wait)
  512. {
  513. journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
  514. if (!page_has_buffers(page))
  515. return 0;
  516. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  517. }
  518. static ssize_t ocfs2_direct_IO(int rw,
  519. struct kiocb *iocb,
  520. const struct iovec *iov,
  521. loff_t offset,
  522. unsigned long nr_segs)
  523. {
  524. struct file *file = iocb->ki_filp;
  525. struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
  526. /*
  527. * Fallback to buffered I/O if we see an inode without
  528. * extents.
  529. */
  530. if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
  531. return 0;
  532. /* Fallback to buffered I/O if we are appending. */
  533. if (i_size_read(inode) <= offset)
  534. return 0;
  535. return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
  536. iov, offset, nr_segs,
  537. ocfs2_direct_IO_get_blocks,
  538. ocfs2_dio_end_io, NULL, 0);
  539. }
  540. static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
  541. u32 cpos,
  542. unsigned int *start,
  543. unsigned int *end)
  544. {
  545. unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
  546. if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
  547. unsigned int cpp;
  548. cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
  549. cluster_start = cpos % cpp;
  550. cluster_start = cluster_start << osb->s_clustersize_bits;
  551. cluster_end = cluster_start + osb->s_clustersize;
  552. }
  553. BUG_ON(cluster_start > PAGE_SIZE);
  554. BUG_ON(cluster_end > PAGE_SIZE);
  555. if (start)
  556. *start = cluster_start;
  557. if (end)
  558. *end = cluster_end;
  559. }
  560. /*
  561. * 'from' and 'to' are the region in the page to avoid zeroing.
  562. *
  563. * If pagesize > clustersize, this function will avoid zeroing outside
  564. * of the cluster boundary.
  565. *
  566. * from == to == 0 is code for "zero the entire cluster region"
  567. */
  568. static void ocfs2_clear_page_regions(struct page *page,
  569. struct ocfs2_super *osb, u32 cpos,
  570. unsigned from, unsigned to)
  571. {
  572. void *kaddr;
  573. unsigned int cluster_start, cluster_end;
  574. ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
  575. kaddr = kmap_atomic(page, KM_USER0);
  576. if (from || to) {
  577. if (from > cluster_start)
  578. memset(kaddr + cluster_start, 0, from - cluster_start);
  579. if (to < cluster_end)
  580. memset(kaddr + to, 0, cluster_end - to);
  581. } else {
  582. memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
  583. }
  584. kunmap_atomic(kaddr, KM_USER0);
  585. }
  586. /*
  587. * Nonsparse file systems fully allocate before we get to the write
  588. * code. This prevents ocfs2_write() from tagging the write as an
  589. * allocating one, which means ocfs2_map_page_blocks() might try to
  590. * read-in the blocks at the tail of our file. Avoid reading them by
  591. * testing i_size against each block offset.
  592. */
  593. static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
  594. unsigned int block_start)
  595. {
  596. u64 offset = page_offset(page) + block_start;
  597. if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
  598. return 1;
  599. if (i_size_read(inode) > offset)
  600. return 1;
  601. return 0;
  602. }
  603. /*
  604. * Some of this taken from __block_write_begin(). We already have our
  605. * mapping by now though, and the entire write will be allocating or
  606. * it won't, so not much need to use BH_New.
  607. *
  608. * This will also skip zeroing, which is handled externally.
  609. */
  610. int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
  611. struct inode *inode, unsigned int from,
  612. unsigned int to, int new)
  613. {
  614. int ret = 0;
  615. struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
  616. unsigned int block_end, block_start;
  617. unsigned int bsize = 1 << inode->i_blkbits;
  618. if (!page_has_buffers(page))
  619. create_empty_buffers(page, bsize, 0);
  620. head = page_buffers(page);
  621. for (bh = head, block_start = 0; bh != head || !block_start;
  622. bh = bh->b_this_page, block_start += bsize) {
  623. block_end = block_start + bsize;
  624. clear_buffer_new(bh);
  625. /*
  626. * Ignore blocks outside of our i/o range -
  627. * they may belong to unallocated clusters.
  628. */
  629. if (block_start >= to || block_end <= from) {
  630. if (PageUptodate(page))
  631. set_buffer_uptodate(bh);
  632. continue;
  633. }
  634. /*
  635. * For an allocating write with cluster size >= page
  636. * size, we always write the entire page.
  637. */
  638. if (new)
  639. set_buffer_new(bh);
  640. if (!buffer_mapped(bh)) {
  641. map_bh(bh, inode->i_sb, *p_blkno);
  642. unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
  643. }
  644. if (PageUptodate(page)) {
  645. if (!buffer_uptodate(bh))
  646. set_buffer_uptodate(bh);
  647. } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
  648. !buffer_new(bh) &&
  649. ocfs2_should_read_blk(inode, page, block_start) &&
  650. (block_start < from || block_end > to)) {
  651. ll_rw_block(READ, 1, &bh);
  652. *wait_bh++=bh;
  653. }
  654. *p_blkno = *p_blkno + 1;
  655. }
  656. /*
  657. * If we issued read requests - let them complete.
  658. */
  659. while(wait_bh > wait) {
  660. wait_on_buffer(*--wait_bh);
  661. if (!buffer_uptodate(*wait_bh))
  662. ret = -EIO;
  663. }
  664. if (ret == 0 || !new)
  665. return ret;
  666. /*
  667. * If we get -EIO above, zero out any newly allocated blocks
  668. * to avoid exposing stale data.
  669. */
  670. bh = head;
  671. block_start = 0;
  672. do {
  673. block_end = block_start + bsize;
  674. if (block_end <= from)
  675. goto next_bh;
  676. if (block_start >= to)
  677. break;
  678. zero_user(page, block_start, bh->b_size);
  679. set_buffer_uptodate(bh);
  680. mark_buffer_dirty(bh);
  681. next_bh:
  682. block_start = block_end;
  683. bh = bh->b_this_page;
  684. } while (bh != head);
  685. return ret;
  686. }
  687. #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
  688. #define OCFS2_MAX_CTXT_PAGES 1
  689. #else
  690. #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
  691. #endif
  692. #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
  693. /*
  694. * Describe the state of a single cluster to be written to.
  695. */
  696. struct ocfs2_write_cluster_desc {
  697. u32 c_cpos;
  698. u32 c_phys;
  699. /*
  700. * Give this a unique field because c_phys eventually gets
  701. * filled.
  702. */
  703. unsigned c_new;
  704. unsigned c_unwritten;
  705. unsigned c_needs_zero;
  706. };
  707. struct ocfs2_write_ctxt {
  708. /* Logical cluster position / len of write */
  709. u32 w_cpos;
  710. u32 w_clen;
  711. /* First cluster allocated in a nonsparse extend */
  712. u32 w_first_new_cpos;
  713. struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
  714. /*
  715. * This is true if page_size > cluster_size.
  716. *
  717. * It triggers a set of special cases during write which might
  718. * have to deal with allocating writes to partial pages.
  719. */
  720. unsigned int w_large_pages;
  721. /*
  722. * Pages involved in this write.
  723. *
  724. * w_target_page is the page being written to by the user.
  725. *
  726. * w_pages is an array of pages which always contains
  727. * w_target_page, and in the case of an allocating write with
  728. * page_size < cluster size, it will contain zero'd and mapped
  729. * pages adjacent to w_target_page which need to be written
  730. * out in so that future reads from that region will get
  731. * zero's.
  732. */
  733. unsigned int w_num_pages;
  734. struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
  735. struct page *w_target_page;
  736. /*
  737. * ocfs2_write_end() uses this to know what the real range to
  738. * write in the target should be.
  739. */
  740. unsigned int w_target_from;
  741. unsigned int w_target_to;
  742. /*
  743. * We could use journal_current_handle() but this is cleaner,
  744. * IMHO -Mark
  745. */
  746. handle_t *w_handle;
  747. struct buffer_head *w_di_bh;
  748. struct ocfs2_cached_dealloc_ctxt w_dealloc;
  749. };
  750. void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
  751. {
  752. int i;
  753. for(i = 0; i < num_pages; i++) {
  754. if (pages[i]) {
  755. unlock_page(pages[i]);
  756. mark_page_accessed(pages[i]);
  757. page_cache_release(pages[i]);
  758. }
  759. }
  760. }
  761. static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
  762. {
  763. ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
  764. brelse(wc->w_di_bh);
  765. kfree(wc);
  766. }
  767. static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
  768. struct ocfs2_super *osb, loff_t pos,
  769. unsigned len, struct buffer_head *di_bh)
  770. {
  771. u32 cend;
  772. struct ocfs2_write_ctxt *wc;
  773. wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
  774. if (!wc)
  775. return -ENOMEM;
  776. wc->w_cpos = pos >> osb->s_clustersize_bits;
  777. wc->w_first_new_cpos = UINT_MAX;
  778. cend = (pos + len - 1) >> osb->s_clustersize_bits;
  779. wc->w_clen = cend - wc->w_cpos + 1;
  780. get_bh(di_bh);
  781. wc->w_di_bh = di_bh;
  782. if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
  783. wc->w_large_pages = 1;
  784. else
  785. wc->w_large_pages = 0;
  786. ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
  787. *wcp = wc;
  788. return 0;
  789. }
  790. /*
  791. * If a page has any new buffers, zero them out here, and mark them uptodate
  792. * and dirty so they'll be written out (in order to prevent uninitialised
  793. * block data from leaking). And clear the new bit.
  794. */
  795. static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
  796. {
  797. unsigned int block_start, block_end;
  798. struct buffer_head *head, *bh;
  799. BUG_ON(!PageLocked(page));
  800. if (!page_has_buffers(page))
  801. return;
  802. bh = head = page_buffers(page);
  803. block_start = 0;
  804. do {
  805. block_end = block_start + bh->b_size;
  806. if (buffer_new(bh)) {
  807. if (block_end > from && block_start < to) {
  808. if (!PageUptodate(page)) {
  809. unsigned start, end;
  810. start = max(from, block_start);
  811. end = min(to, block_end);
  812. zero_user_segment(page, start, end);
  813. set_buffer_uptodate(bh);
  814. }
  815. clear_buffer_new(bh);
  816. mark_buffer_dirty(bh);
  817. }
  818. }
  819. block_start = block_end;
  820. bh = bh->b_this_page;
  821. } while (bh != head);
  822. }
  823. /*
  824. * Only called when we have a failure during allocating write to write
  825. * zero's to the newly allocated region.
  826. */
  827. static void ocfs2_write_failure(struct inode *inode,
  828. struct ocfs2_write_ctxt *wc,
  829. loff_t user_pos, unsigned user_len)
  830. {
  831. int i;
  832. unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
  833. to = user_pos + user_len;
  834. struct page *tmppage;
  835. ocfs2_zero_new_buffers(wc->w_target_page, from, to);
  836. for(i = 0; i < wc->w_num_pages; i++) {
  837. tmppage = wc->w_pages[i];
  838. if (page_has_buffers(tmppage)) {
  839. if (ocfs2_should_order_data(inode))
  840. ocfs2_jbd2_file_inode(wc->w_handle, inode);
  841. block_commit_write(tmppage, from, to);
  842. }
  843. }
  844. }
  845. static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
  846. struct ocfs2_write_ctxt *wc,
  847. struct page *page, u32 cpos,
  848. loff_t user_pos, unsigned user_len,
  849. int new)
  850. {
  851. int ret;
  852. unsigned int map_from = 0, map_to = 0;
  853. unsigned int cluster_start, cluster_end;
  854. unsigned int user_data_from = 0, user_data_to = 0;
  855. ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
  856. &cluster_start, &cluster_end);
  857. if (page == wc->w_target_page) {
  858. map_from = user_pos & (PAGE_CACHE_SIZE - 1);
  859. map_to = map_from + user_len;
  860. if (new)
  861. ret = ocfs2_map_page_blocks(page, p_blkno, inode,
  862. cluster_start, cluster_end,
  863. new);
  864. else
  865. ret = ocfs2_map_page_blocks(page, p_blkno, inode,
  866. map_from, map_to, new);
  867. if (ret) {
  868. mlog_errno(ret);
  869. goto out;
  870. }
  871. user_data_from = map_from;
  872. user_data_to = map_to;
  873. if (new) {
  874. map_from = cluster_start;
  875. map_to = cluster_end;
  876. }
  877. } else {
  878. /*
  879. * If we haven't allocated the new page yet, we
  880. * shouldn't be writing it out without copying user
  881. * data. This is likely a math error from the caller.
  882. */
  883. BUG_ON(!new);
  884. map_from = cluster_start;
  885. map_to = cluster_end;
  886. ret = ocfs2_map_page_blocks(page, p_blkno, inode,
  887. cluster_start, cluster_end, new);
  888. if (ret) {
  889. mlog_errno(ret);
  890. goto out;
  891. }
  892. }
  893. /*
  894. * Parts of newly allocated pages need to be zero'd.
  895. *
  896. * Above, we have also rewritten 'to' and 'from' - as far as
  897. * the rest of the function is concerned, the entire cluster
  898. * range inside of a page needs to be written.
  899. *
  900. * We can skip this if the page is up to date - it's already
  901. * been zero'd from being read in as a hole.
  902. */
  903. if (new && !PageUptodate(page))
  904. ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
  905. cpos, user_data_from, user_data_to);
  906. flush_dcache_page(page);
  907. out:
  908. return ret;
  909. }
  910. /*
  911. * This function will only grab one clusters worth of pages.
  912. */
  913. static int ocfs2_grab_pages_for_write(struct address_space *mapping,
  914. struct ocfs2_write_ctxt *wc,
  915. u32 cpos, loff_t user_pos,
  916. unsigned user_len, int new,
  917. struct page *mmap_page)
  918. {
  919. int ret = 0, i;
  920. unsigned long start, target_index, end_index, index;
  921. struct inode *inode = mapping->host;
  922. loff_t last_byte;
  923. target_index = user_pos >> PAGE_CACHE_SHIFT;
  924. /*
  925. * Figure out how many pages we'll be manipulating here. For
  926. * non allocating write, we just change the one
  927. * page. Otherwise, we'll need a whole clusters worth. If we're
  928. * writing past i_size, we only need enough pages to cover the
  929. * last page of the write.
  930. */
  931. if (new) {
  932. wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
  933. start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
  934. /*
  935. * We need the index *past* the last page we could possibly
  936. * touch. This is the page past the end of the write or
  937. * i_size, whichever is greater.
  938. */
  939. last_byte = max(user_pos + user_len, i_size_read(inode));
  940. BUG_ON(last_byte < 1);
  941. end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
  942. if ((start + wc->w_num_pages) > end_index)
  943. wc->w_num_pages = end_index - start;
  944. } else {
  945. wc->w_num_pages = 1;
  946. start = target_index;
  947. }
  948. for(i = 0; i < wc->w_num_pages; i++) {
  949. index = start + i;
  950. if (index == target_index && mmap_page) {
  951. /*
  952. * ocfs2_pagemkwrite() is a little different
  953. * and wants us to directly use the page
  954. * passed in.
  955. */
  956. lock_page(mmap_page);
  957. if (mmap_page->mapping != mapping) {
  958. unlock_page(mmap_page);
  959. /*
  960. * Sanity check - the locking in
  961. * ocfs2_pagemkwrite() should ensure
  962. * that this code doesn't trigger.
  963. */
  964. ret = -EINVAL;
  965. mlog_errno(ret);
  966. goto out;
  967. }
  968. page_cache_get(mmap_page);
  969. wc->w_pages[i] = mmap_page;
  970. } else {
  971. wc->w_pages[i] = find_or_create_page(mapping, index,
  972. GFP_NOFS);
  973. if (!wc->w_pages[i]) {
  974. ret = -ENOMEM;
  975. mlog_errno(ret);
  976. goto out;
  977. }
  978. }
  979. if (index == target_index)
  980. wc->w_target_page = wc->w_pages[i];
  981. }
  982. out:
  983. return ret;
  984. }
  985. /*
  986. * Prepare a single cluster for write one cluster into the file.
  987. */
  988. static int ocfs2_write_cluster(struct address_space *mapping,
  989. u32 phys, unsigned int unwritten,
  990. unsigned int should_zero,
  991. struct ocfs2_alloc_context *data_ac,
  992. struct ocfs2_alloc_context *meta_ac,
  993. struct ocfs2_write_ctxt *wc, u32 cpos,
  994. loff_t user_pos, unsigned user_len)
  995. {
  996. int ret, i, new;
  997. u64 v_blkno, p_blkno;
  998. struct inode *inode = mapping->host;
  999. struct ocfs2_extent_tree et;
  1000. new = phys == 0 ? 1 : 0;
  1001. if (new) {
  1002. u32 tmp_pos;
  1003. /*
  1004. * This is safe to call with the page locks - it won't take
  1005. * any additional semaphores or cluster locks.
  1006. */
  1007. tmp_pos = cpos;
  1008. ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
  1009. &tmp_pos, 1, 0, wc->w_di_bh,
  1010. wc->w_handle, data_ac,
  1011. meta_ac, NULL);
  1012. /*
  1013. * This shouldn't happen because we must have already
  1014. * calculated the correct meta data allocation required. The
  1015. * internal tree allocation code should know how to increase
  1016. * transaction credits itself.
  1017. *
  1018. * If need be, we could handle -EAGAIN for a
  1019. * RESTART_TRANS here.
  1020. */
  1021. mlog_bug_on_msg(ret == -EAGAIN,
  1022. "Inode %llu: EAGAIN return during allocation.\n",
  1023. (unsigned long long)OCFS2_I(inode)->ip_blkno);
  1024. if (ret < 0) {
  1025. mlog_errno(ret);
  1026. goto out;
  1027. }
  1028. } else if (unwritten) {
  1029. ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
  1030. wc->w_di_bh);
  1031. ret = ocfs2_mark_extent_written(inode, &et,
  1032. wc->w_handle, cpos, 1, phys,
  1033. meta_ac, &wc->w_dealloc);
  1034. if (ret < 0) {
  1035. mlog_errno(ret);
  1036. goto out;
  1037. }
  1038. }
  1039. if (should_zero)
  1040. v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
  1041. else
  1042. v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
  1043. /*
  1044. * The only reason this should fail is due to an inability to
  1045. * find the extent added.
  1046. */
  1047. ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
  1048. NULL);
  1049. if (ret < 0) {
  1050. ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
  1051. "at logical block %llu",
  1052. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  1053. (unsigned long long)v_blkno);
  1054. goto out;
  1055. }
  1056. BUG_ON(p_blkno == 0);
  1057. for(i = 0; i < wc->w_num_pages; i++) {
  1058. int tmpret;
  1059. tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
  1060. wc->w_pages[i], cpos,
  1061. user_pos, user_len,
  1062. should_zero);
  1063. if (tmpret) {
  1064. mlog_errno(tmpret);
  1065. if (ret == 0)
  1066. ret = tmpret;
  1067. }
  1068. }
  1069. /*
  1070. * We only have cleanup to do in case of allocating write.
  1071. */
  1072. if (ret && new)
  1073. ocfs2_write_failure(inode, wc, user_pos, user_len);
  1074. out:
  1075. return ret;
  1076. }
  1077. static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
  1078. struct ocfs2_alloc_context *data_ac,
  1079. struct ocfs2_alloc_context *meta_ac,
  1080. struct ocfs2_write_ctxt *wc,
  1081. loff_t pos, unsigned len)
  1082. {
  1083. int ret, i;
  1084. loff_t cluster_off;
  1085. unsigned int local_len = len;
  1086. struct ocfs2_write_cluster_desc *desc;
  1087. struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
  1088. for (i = 0; i < wc->w_clen; i++) {
  1089. desc = &wc->w_desc[i];
  1090. /*
  1091. * We have to make sure that the total write passed in
  1092. * doesn't extend past a single cluster.
  1093. */
  1094. local_len = len;
  1095. cluster_off = pos & (osb->s_clustersize - 1);
  1096. if ((cluster_off + local_len) > osb->s_clustersize)
  1097. local_len = osb->s_clustersize - cluster_off;
  1098. ret = ocfs2_write_cluster(mapping, desc->c_phys,
  1099. desc->c_unwritten,
  1100. desc->c_needs_zero,
  1101. data_ac, meta_ac,
  1102. wc, desc->c_cpos, pos, local_len);
  1103. if (ret) {
  1104. mlog_errno(ret);
  1105. goto out;
  1106. }
  1107. len -= local_len;
  1108. pos += local_len;
  1109. }
  1110. ret = 0;
  1111. out:
  1112. return ret;
  1113. }
  1114. /*
  1115. * ocfs2_write_end() wants to know which parts of the target page it
  1116. * should complete the write on. It's easiest to compute them ahead of
  1117. * time when a more complete view of the write is available.
  1118. */
  1119. static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
  1120. struct ocfs2_write_ctxt *wc,
  1121. loff_t pos, unsigned len, int alloc)
  1122. {
  1123. struct ocfs2_write_cluster_desc *desc;
  1124. wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
  1125. wc->w_target_to = wc->w_target_from + len;
  1126. if (alloc == 0)
  1127. return;
  1128. /*
  1129. * Allocating write - we may have different boundaries based
  1130. * on page size and cluster size.
  1131. *
  1132. * NOTE: We can no longer compute one value from the other as
  1133. * the actual write length and user provided length may be
  1134. * different.
  1135. */
  1136. if (wc->w_large_pages) {
  1137. /*
  1138. * We only care about the 1st and last cluster within
  1139. * our range and whether they should be zero'd or not. Either
  1140. * value may be extended out to the start/end of a
  1141. * newly allocated cluster.
  1142. */
  1143. desc = &wc->w_desc[0];
  1144. if (desc->c_needs_zero)
  1145. ocfs2_figure_cluster_boundaries(osb,
  1146. desc->c_cpos,
  1147. &wc->w_target_from,
  1148. NULL);
  1149. desc = &wc->w_desc[wc->w_clen - 1];
  1150. if (desc->c_needs_zero)
  1151. ocfs2_figure_cluster_boundaries(osb,
  1152. desc->c_cpos,
  1153. NULL,
  1154. &wc->w_target_to);
  1155. } else {
  1156. wc->w_target_from = 0;
  1157. wc->w_target_to = PAGE_CACHE_SIZE;
  1158. }
  1159. }
  1160. /*
  1161. * Populate each single-cluster write descriptor in the write context
  1162. * with information about the i/o to be done.
  1163. *
  1164. * Returns the number of clusters that will have to be allocated, as
  1165. * well as a worst case estimate of the number of extent records that
  1166. * would have to be created during a write to an unwritten region.
  1167. */
  1168. static int ocfs2_populate_write_desc(struct inode *inode,
  1169. struct ocfs2_write_ctxt *wc,
  1170. unsigned int *clusters_to_alloc,
  1171. unsigned int *extents_to_split)
  1172. {
  1173. int ret;
  1174. struct ocfs2_write_cluster_desc *desc;
  1175. unsigned int num_clusters = 0;
  1176. unsigned int ext_flags = 0;
  1177. u32 phys = 0;
  1178. int i;
  1179. *clusters_to_alloc = 0;
  1180. *extents_to_split = 0;
  1181. for (i = 0; i < wc->w_clen; i++) {
  1182. desc = &wc->w_desc[i];
  1183. desc->c_cpos = wc->w_cpos + i;
  1184. if (num_clusters == 0) {
  1185. /*
  1186. * Need to look up the next extent record.
  1187. */
  1188. ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
  1189. &num_clusters, &ext_flags);
  1190. if (ret) {
  1191. mlog_errno(ret);
  1192. goto out;
  1193. }
  1194. /* We should already CoW the refcountd extent. */
  1195. BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
  1196. /*
  1197. * Assume worst case - that we're writing in
  1198. * the middle of the extent.
  1199. *
  1200. * We can assume that the write proceeds from
  1201. * left to right, in which case the extent
  1202. * insert code is smart enough to coalesce the
  1203. * next splits into the previous records created.
  1204. */
  1205. if (ext_flags & OCFS2_EXT_UNWRITTEN)
  1206. *extents_to_split = *extents_to_split + 2;
  1207. } else if (phys) {
  1208. /*
  1209. * Only increment phys if it doesn't describe
  1210. * a hole.
  1211. */
  1212. phys++;
  1213. }
  1214. /*
  1215. * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
  1216. * file that got extended. w_first_new_cpos tells us
  1217. * where the newly allocated clusters are so we can
  1218. * zero them.
  1219. */
  1220. if (desc->c_cpos >= wc->w_first_new_cpos) {
  1221. BUG_ON(phys == 0);
  1222. desc->c_needs_zero = 1;
  1223. }
  1224. desc->c_phys = phys;
  1225. if (phys == 0) {
  1226. desc->c_new = 1;
  1227. desc->c_needs_zero = 1;
  1228. *clusters_to_alloc = *clusters_to_alloc + 1;
  1229. }
  1230. if (ext_flags & OCFS2_EXT_UNWRITTEN) {
  1231. desc->c_unwritten = 1;
  1232. desc->c_needs_zero = 1;
  1233. }
  1234. num_clusters--;
  1235. }
  1236. ret = 0;
  1237. out:
  1238. return ret;
  1239. }
  1240. static int ocfs2_write_begin_inline(struct address_space *mapping,
  1241. struct inode *inode,
  1242. struct ocfs2_write_ctxt *wc)
  1243. {
  1244. int ret;
  1245. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1246. struct page *page;
  1247. handle_t *handle;
  1248. struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1249. page = find_or_create_page(mapping, 0, GFP_NOFS);
  1250. if (!page) {
  1251. ret = -ENOMEM;
  1252. mlog_errno(ret);
  1253. goto out;
  1254. }
  1255. /*
  1256. * If we don't set w_num_pages then this page won't get unlocked
  1257. * and freed on cleanup of the write context.
  1258. */
  1259. wc->w_pages[0] = wc->w_target_page = page;
  1260. wc->w_num_pages = 1;
  1261. handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
  1262. if (IS_ERR(handle)) {
  1263. ret = PTR_ERR(handle);
  1264. mlog_errno(ret);
  1265. goto out;
  1266. }
  1267. ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
  1268. OCFS2_JOURNAL_ACCESS_WRITE);
  1269. if (ret) {
  1270. ocfs2_commit_trans(osb, handle);
  1271. mlog_errno(ret);
  1272. goto out;
  1273. }
  1274. if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
  1275. ocfs2_set_inode_data_inline(inode, di);
  1276. if (!PageUptodate(page)) {
  1277. ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
  1278. if (ret) {
  1279. ocfs2_commit_trans(osb, handle);
  1280. goto out;
  1281. }
  1282. }
  1283. wc->w_handle = handle;
  1284. out:
  1285. return ret;
  1286. }
  1287. int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
  1288. {
  1289. struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
  1290. if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
  1291. return 1;
  1292. return 0;
  1293. }
  1294. static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
  1295. struct inode *inode, loff_t pos,
  1296. unsigned len, struct page *mmap_page,
  1297. struct ocfs2_write_ctxt *wc)
  1298. {
  1299. int ret, written = 0;
  1300. loff_t end = pos + len;
  1301. struct ocfs2_inode_info *oi = OCFS2_I(inode);
  1302. struct ocfs2_dinode *di = NULL;
  1303. trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
  1304. len, (unsigned long long)pos,
  1305. oi->ip_dyn_features);
  1306. /*
  1307. * Handle inodes which already have inline data 1st.
  1308. */
  1309. if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
  1310. if (mmap_page == NULL &&
  1311. ocfs2_size_fits_inline_data(wc->w_di_bh, end))
  1312. goto do_inline_write;
  1313. /*
  1314. * The write won't fit - we have to give this inode an
  1315. * inline extent list now.
  1316. */
  1317. ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
  1318. if (ret)
  1319. mlog_errno(ret);
  1320. goto out;
  1321. }
  1322. /*
  1323. * Check whether the inode can accept inline data.
  1324. */
  1325. if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
  1326. return 0;
  1327. /*
  1328. * Check whether the write can fit.
  1329. */
  1330. di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1331. if (mmap_page ||
  1332. end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
  1333. return 0;
  1334. do_inline_write:
  1335. ret = ocfs2_write_begin_inline(mapping, inode, wc);
  1336. if (ret) {
  1337. mlog_errno(ret);
  1338. goto out;
  1339. }
  1340. /*
  1341. * This signals to the caller that the data can be written
  1342. * inline.
  1343. */
  1344. written = 1;
  1345. out:
  1346. return written ? written : ret;
  1347. }
  1348. /*
  1349. * This function only does anything for file systems which can't
  1350. * handle sparse files.
  1351. *
  1352. * What we want to do here is fill in any hole between the current end
  1353. * of allocation and the end of our write. That way the rest of the
  1354. * write path can treat it as an non-allocating write, which has no
  1355. * special case code for sparse/nonsparse files.
  1356. */
  1357. static int ocfs2_expand_nonsparse_inode(struct inode *inode,
  1358. struct buffer_head *di_bh,
  1359. loff_t pos, unsigned len,
  1360. struct ocfs2_write_ctxt *wc)
  1361. {
  1362. int ret;
  1363. loff_t newsize = pos + len;
  1364. BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
  1365. if (newsize <= i_size_read(inode))
  1366. return 0;
  1367. ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
  1368. if (ret)
  1369. mlog_errno(ret);
  1370. wc->w_first_new_cpos =
  1371. ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
  1372. return ret;
  1373. }
  1374. static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
  1375. loff_t pos)
  1376. {
  1377. int ret = 0;
  1378. BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
  1379. if (pos > i_size_read(inode))
  1380. ret = ocfs2_zero_extend(inode, di_bh, pos);
  1381. return ret;
  1382. }
  1383. /*
  1384. * Try to flush truncate logs if we can free enough clusters from it.
  1385. * As for return value, "< 0" means error, "0" no space and "1" means
  1386. * we have freed enough spaces and let the caller try to allocate again.
  1387. */
  1388. static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
  1389. unsigned int needed)
  1390. {
  1391. tid_t target;
  1392. int ret = 0;
  1393. unsigned int truncated_clusters;
  1394. mutex_lock(&osb->osb_tl_inode->i_mutex);
  1395. truncated_clusters = osb->truncated_clusters;
  1396. mutex_unlock(&osb->osb_tl_inode->i_mutex);
  1397. /*
  1398. * Check whether we can succeed in allocating if we free
  1399. * the truncate log.
  1400. */
  1401. if (truncated_clusters < needed)
  1402. goto out;
  1403. ret = ocfs2_flush_truncate_log(osb);
  1404. if (ret) {
  1405. mlog_errno(ret);
  1406. goto out;
  1407. }
  1408. if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
  1409. jbd2_log_wait_commit(osb->journal->j_journal, target);
  1410. ret = 1;
  1411. }
  1412. out:
  1413. return ret;
  1414. }
  1415. int ocfs2_write_begin_nolock(struct file *filp,
  1416. struct address_space *mapping,
  1417. loff_t pos, unsigned len, unsigned flags,
  1418. struct page **pagep, void **fsdata,
  1419. struct buffer_head *di_bh, struct page *mmap_page)
  1420. {
  1421. int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
  1422. unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
  1423. struct ocfs2_write_ctxt *wc;
  1424. struct inode *inode = mapping->host;
  1425. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1426. struct ocfs2_dinode *di;
  1427. struct ocfs2_alloc_context *data_ac = NULL;
  1428. struct ocfs2_alloc_context *meta_ac = NULL;
  1429. handle_t *handle;
  1430. struct ocfs2_extent_tree et;
  1431. int try_free = 1, ret1;
  1432. try_again:
  1433. ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
  1434. if (ret) {
  1435. mlog_errno(ret);
  1436. return ret;
  1437. }
  1438. if (ocfs2_supports_inline_data(osb)) {
  1439. ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
  1440. mmap_page, wc);
  1441. if (ret == 1) {
  1442. ret = 0;
  1443. goto success;
  1444. }
  1445. if (ret < 0) {
  1446. mlog_errno(ret);
  1447. goto out;
  1448. }
  1449. }
  1450. if (ocfs2_sparse_alloc(osb))
  1451. ret = ocfs2_zero_tail(inode, di_bh, pos);
  1452. else
  1453. ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
  1454. wc);
  1455. if (ret) {
  1456. mlog_errno(ret);
  1457. goto out;
  1458. }
  1459. ret = ocfs2_check_range_for_refcount(inode, pos, len);
  1460. if (ret < 0) {
  1461. mlog_errno(ret);
  1462. goto out;
  1463. } else if (ret == 1) {
  1464. clusters_need = wc->w_clen;
  1465. ret = ocfs2_refcount_cow(inode, filp, di_bh,
  1466. wc->w_cpos, wc->w_clen, UINT_MAX);
  1467. if (ret) {
  1468. mlog_errno(ret);
  1469. goto out;
  1470. }
  1471. }
  1472. ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
  1473. &extents_to_split);
  1474. if (ret) {
  1475. mlog_errno(ret);
  1476. goto out;
  1477. }
  1478. clusters_need += clusters_to_alloc;
  1479. di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1480. trace_ocfs2_write_begin_nolock(
  1481. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  1482. (long long)i_size_read(inode),
  1483. le32_to_cpu(di->i_clusters),
  1484. pos, len, flags, mmap_page,
  1485. clusters_to_alloc, extents_to_split);
  1486. /*
  1487. * We set w_target_from, w_target_to here so that
  1488. * ocfs2_write_end() knows which range in the target page to
  1489. * write out. An allocation requires that we write the entire
  1490. * cluster range.
  1491. */
  1492. if (clusters_to_alloc || extents_to_split) {
  1493. /*
  1494. * XXX: We are stretching the limits of
  1495. * ocfs2_lock_allocators(). It greatly over-estimates
  1496. * the work to be done.
  1497. */
  1498. ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
  1499. wc->w_di_bh);
  1500. ret = ocfs2_lock_allocators(inode, &et,
  1501. clusters_to_alloc, extents_to_split,
  1502. &data_ac, &meta_ac);
  1503. if (ret) {
  1504. mlog_errno(ret);
  1505. goto out;
  1506. }
  1507. if (data_ac)
  1508. data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
  1509. credits = ocfs2_calc_extend_credits(inode->i_sb,
  1510. &di->id2.i_list,
  1511. clusters_to_alloc);
  1512. }
  1513. /*
  1514. * We have to zero sparse allocated clusters, unwritten extent clusters,
  1515. * and non-sparse clusters we just extended. For non-sparse writes,
  1516. * we know zeros will only be needed in the first and/or last cluster.
  1517. */
  1518. if (clusters_to_alloc || extents_to_split ||
  1519. (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
  1520. wc->w_desc[wc->w_clen - 1].c_needs_zero)))
  1521. cluster_of_pages = 1;
  1522. else
  1523. cluster_of_pages = 0;
  1524. ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
  1525. handle = ocfs2_start_trans(osb, credits);
  1526. if (IS_ERR(handle)) {
  1527. ret = PTR_ERR(handle);
  1528. mlog_errno(ret);
  1529. goto out;
  1530. }
  1531. wc->w_handle = handle;
  1532. if (clusters_to_alloc) {
  1533. ret = dquot_alloc_space_nodirty(inode,
  1534. ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
  1535. if (ret)
  1536. goto out_commit;
  1537. }
  1538. /*
  1539. * We don't want this to fail in ocfs2_write_end(), so do it
  1540. * here.
  1541. */
  1542. ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
  1543. OCFS2_JOURNAL_ACCESS_WRITE);
  1544. if (ret) {
  1545. mlog_errno(ret);
  1546. goto out_quota;
  1547. }
  1548. /*
  1549. * Fill our page array first. That way we've grabbed enough so
  1550. * that we can zero and flush if we error after adding the
  1551. * extent.
  1552. */
  1553. ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
  1554. cluster_of_pages, mmap_page);
  1555. if (ret) {
  1556. mlog_errno(ret);
  1557. goto out_quota;
  1558. }
  1559. ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
  1560. len);
  1561. if (ret) {
  1562. mlog_errno(ret);
  1563. goto out_quota;
  1564. }
  1565. if (data_ac)
  1566. ocfs2_free_alloc_context(data_ac);
  1567. if (meta_ac)
  1568. ocfs2_free_alloc_context(meta_ac);
  1569. success:
  1570. *pagep = wc->w_target_page;
  1571. *fsdata = wc;
  1572. return 0;
  1573. out_quota:
  1574. if (clusters_to_alloc)
  1575. dquot_free_space(inode,
  1576. ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
  1577. out_commit:
  1578. ocfs2_commit_trans(osb, handle);
  1579. out:
  1580. ocfs2_free_write_ctxt(wc);
  1581. if (data_ac)
  1582. ocfs2_free_alloc_context(data_ac);
  1583. if (meta_ac)
  1584. ocfs2_free_alloc_context(meta_ac);
  1585. if (ret == -ENOSPC && try_free) {
  1586. /*
  1587. * Try to free some truncate log so that we can have enough
  1588. * clusters to allocate.
  1589. */
  1590. try_free = 0;
  1591. ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
  1592. if (ret1 == 1)
  1593. goto try_again;
  1594. if (ret1 < 0)
  1595. mlog_errno(ret1);
  1596. }
  1597. return ret;
  1598. }
  1599. static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
  1600. loff_t pos, unsigned len, unsigned flags,
  1601. struct page **pagep, void **fsdata)
  1602. {
  1603. int ret;
  1604. struct buffer_head *di_bh = NULL;
  1605. struct inode *inode = mapping->host;
  1606. ret = ocfs2_inode_lock(inode, &di_bh, 1);
  1607. if (ret) {
  1608. mlog_errno(ret);
  1609. return ret;
  1610. }
  1611. /*
  1612. * Take alloc sem here to prevent concurrent lookups. That way
  1613. * the mapping, zeroing and tree manipulation within
  1614. * ocfs2_write() will be safe against ->readpage(). This
  1615. * should also serve to lock out allocation from a shared
  1616. * writeable region.
  1617. */
  1618. down_write(&OCFS2_I(inode)->ip_alloc_sem);
  1619. ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
  1620. fsdata, di_bh, NULL);
  1621. if (ret) {
  1622. mlog_errno(ret);
  1623. goto out_fail;
  1624. }
  1625. brelse(di_bh);
  1626. return 0;
  1627. out_fail:
  1628. up_write(&OCFS2_I(inode)->ip_alloc_sem);
  1629. brelse(di_bh);
  1630. ocfs2_inode_unlock(inode, 1);
  1631. return ret;
  1632. }
  1633. static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
  1634. unsigned len, unsigned *copied,
  1635. struct ocfs2_dinode *di,
  1636. struct ocfs2_write_ctxt *wc)
  1637. {
  1638. void *kaddr;
  1639. if (unlikely(*copied < len)) {
  1640. if (!PageUptodate(wc->w_target_page)) {
  1641. *copied = 0;
  1642. return;
  1643. }
  1644. }
  1645. kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
  1646. memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
  1647. kunmap_atomic(kaddr, KM_USER0);
  1648. trace_ocfs2_write_end_inline(
  1649. (unsigned long long)OCFS2_I(inode)->ip_blkno,
  1650. (unsigned long long)pos, *copied,
  1651. le16_to_cpu(di->id2.i_data.id_count),
  1652. le16_to_cpu(di->i_dyn_features));
  1653. }
  1654. int ocfs2_write_end_nolock(struct address_space *mapping,
  1655. loff_t pos, unsigned len, unsigned copied,
  1656. struct page *page, void *fsdata)
  1657. {
  1658. int i;
  1659. unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
  1660. struct inode *inode = mapping->host;
  1661. struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  1662. struct ocfs2_write_ctxt *wc = fsdata;
  1663. struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
  1664. handle_t *handle = wc->w_handle;
  1665. struct page *tmppage;
  1666. if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
  1667. ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
  1668. goto out_write_size;
  1669. }
  1670. if (unlikely(copied < len)) {
  1671. if (!PageUptodate(wc->w_target_page))
  1672. copied = 0;
  1673. ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
  1674. start+len);
  1675. }
  1676. flush_dcache_page(wc->w_target_page);
  1677. for(i = 0; i < wc->w_num_pages; i++) {
  1678. tmppage = wc->w_pages[i];
  1679. if (tmppage == wc->w_target_page) {
  1680. from = wc->w_target_from;
  1681. to = wc->w_target_to;
  1682. BUG_ON(from > PAGE_CACHE_SIZE ||
  1683. to > PAGE_CACHE_SIZE ||
  1684. to < from);
  1685. } else {
  1686. /*
  1687. * Pages adjacent to the target (if any) imply
  1688. * a hole-filling write in which case we want
  1689. * to flush their entire range.
  1690. */
  1691. from = 0;
  1692. to = PAGE_CACHE_SIZE;
  1693. }
  1694. if (page_has_buffers(tmppage)) {
  1695. if (ocfs2_should_order_data(inode))
  1696. ocfs2_jbd2_file_inode(wc->w_handle, inode);
  1697. block_commit_write(tmppage, from, to);
  1698. }
  1699. }
  1700. out_write_size:
  1701. pos += copied;
  1702. if (pos > inode->i_size) {
  1703. i_size_write(inode, pos);
  1704. mark_inode_dirty(inode);
  1705. }
  1706. inode->i_blocks = ocfs2_inode_sector_count(inode);
  1707. di->i_size = cpu_to_le64((u64)i_size_read(inode));
  1708. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1709. di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
  1710. di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  1711. ocfs2_journal_dirty(handle, wc->w_di_bh);
  1712. ocfs2_commit_trans(osb, handle);
  1713. ocfs2_run_deallocs(osb, &wc->w_dealloc);
  1714. ocfs2_free_write_ctxt(wc);
  1715. return copied;
  1716. }
  1717. static int ocfs2_write_end(struct file *file, struct address_space *mapping,
  1718. loff_t pos, unsigned len, unsigned copied,
  1719. struct page *page, void *fsdata)
  1720. {
  1721. int ret;
  1722. struct inode *inode = mapping->host;
  1723. ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
  1724. up_write(&OCFS2_I(inode)->ip_alloc_sem);
  1725. ocfs2_inode_unlock(inode, 1);
  1726. return ret;
  1727. }
  1728. const struct address_space_operations ocfs2_aops = {
  1729. .readpage = ocfs2_readpage,
  1730. .readpages = ocfs2_readpages,
  1731. .writepage = ocfs2_writepage,
  1732. .write_begin = ocfs2_write_begin,
  1733. .write_end = ocfs2_write_end,
  1734. .bmap = ocfs2_bmap,
  1735. .sync_page = block_sync_page,
  1736. .direct_IO = ocfs2_direct_IO,
  1737. .invalidatepage = ocfs2_invalidatepage,
  1738. .releasepage = ocfs2_releasepage,
  1739. .migratepage = buffer_migrate_page,
  1740. .is_partially_uptodate = block_is_partially_uptodate,
  1741. .error_remove_page = generic_error_remove_page,
  1742. };