tsc.c 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452
  1. /*
  2. * This code largely moved from arch/i386/kernel/timer/timer_tsc.c
  3. * which was originally moved from arch/i386/kernel/time.c.
  4. * See comments there for proper credits.
  5. */
  6. #include <linux/clocksource.h>
  7. #include <linux/workqueue.h>
  8. #include <linux/cpufreq.h>
  9. #include <linux/jiffies.h>
  10. #include <linux/init.h>
  11. #include <linux/dmi.h>
  12. #include <asm/delay.h>
  13. #include <asm/tsc.h>
  14. #include <asm/io.h>
  15. #include "mach_timer.h"
  16. /*
  17. * On some systems the TSC frequency does not
  18. * change with the cpu frequency. So we need
  19. * an extra value to store the TSC freq
  20. */
  21. unsigned int tsc_khz;
  22. unsigned long long (*custom_sched_clock)(void);
  23. int tsc_disable;
  24. #ifdef CONFIG_X86_TSC
  25. static int __init tsc_setup(char *str)
  26. {
  27. printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
  28. "cannot disable TSC.\n");
  29. return 1;
  30. }
  31. #else
  32. /*
  33. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  34. * in cpu/common.c
  35. */
  36. static int __init tsc_setup(char *str)
  37. {
  38. tsc_disable = 1;
  39. return 1;
  40. }
  41. #endif
  42. __setup("notsc", tsc_setup);
  43. /*
  44. * code to mark and check if the TSC is unstable
  45. * due to cpufreq or due to unsynced TSCs
  46. */
  47. static int tsc_unstable;
  48. static inline int check_tsc_unstable(void)
  49. {
  50. return tsc_unstable;
  51. }
  52. void mark_tsc_unstable(void)
  53. {
  54. tsc_unstable = 1;
  55. }
  56. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  57. /* Accellerators for sched_clock()
  58. * convert from cycles(64bits) => nanoseconds (64bits)
  59. * basic equation:
  60. * ns = cycles / (freq / ns_per_sec)
  61. * ns = cycles * (ns_per_sec / freq)
  62. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  63. * ns = cycles * (10^6 / cpu_khz)
  64. *
  65. * Then we use scaling math (suggested by george@mvista.com) to get:
  66. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  67. * ns = cycles * cyc2ns_scale / SC
  68. *
  69. * And since SC is a constant power of two, we can convert the div
  70. * into a shift.
  71. *
  72. * We can use khz divisor instead of mhz to keep a better percision, since
  73. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  74. * (mathieu.desnoyers@polymtl.ca)
  75. *
  76. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  77. */
  78. static unsigned long cyc2ns_scale __read_mostly;
  79. #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
  80. static inline void set_cyc2ns_scale(unsigned long cpu_khz)
  81. {
  82. cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
  83. }
  84. static inline unsigned long long cycles_2_ns(unsigned long long cyc)
  85. {
  86. return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
  87. }
  88. /*
  89. * Scheduler clock - returns current time in nanosec units.
  90. */
  91. unsigned long long sched_clock(void)
  92. {
  93. unsigned long long this_offset;
  94. if (unlikely(custom_sched_clock))
  95. return (*custom_sched_clock)();
  96. /*
  97. * Fall back to jiffies if there's no TSC available:
  98. */
  99. if (unlikely(tsc_disable))
  100. /* No locking but a rare wrong value is not a big deal: */
  101. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  102. /* read the Time Stamp Counter: */
  103. rdtscll(this_offset);
  104. /* return the value in ns */
  105. return cycles_2_ns(this_offset);
  106. }
  107. static unsigned long calculate_cpu_khz(void)
  108. {
  109. unsigned long long start, end;
  110. unsigned long count;
  111. u64 delta64;
  112. int i;
  113. unsigned long flags;
  114. local_irq_save(flags);
  115. /* run 3 times to ensure the cache is warm */
  116. for (i = 0; i < 3; i++) {
  117. mach_prepare_counter();
  118. rdtscll(start);
  119. mach_countup(&count);
  120. rdtscll(end);
  121. }
  122. /*
  123. * Error: ECTCNEVERSET
  124. * The CTC wasn't reliable: we got a hit on the very first read,
  125. * or the CPU was so fast/slow that the quotient wouldn't fit in
  126. * 32 bits..
  127. */
  128. if (count <= 1)
  129. goto err;
  130. delta64 = end - start;
  131. /* cpu freq too fast: */
  132. if (delta64 > (1ULL<<32))
  133. goto err;
  134. /* cpu freq too slow: */
  135. if (delta64 <= CALIBRATE_TIME_MSEC)
  136. goto err;
  137. delta64 += CALIBRATE_TIME_MSEC/2; /* round for do_div */
  138. do_div(delta64,CALIBRATE_TIME_MSEC);
  139. local_irq_restore(flags);
  140. return (unsigned long)delta64;
  141. err:
  142. local_irq_restore(flags);
  143. return 0;
  144. }
  145. int recalibrate_cpu_khz(void)
  146. {
  147. #ifndef CONFIG_SMP
  148. unsigned long cpu_khz_old = cpu_khz;
  149. if (cpu_has_tsc) {
  150. cpu_khz = calculate_cpu_khz();
  151. tsc_khz = cpu_khz;
  152. cpu_data[0].loops_per_jiffy =
  153. cpufreq_scale(cpu_data[0].loops_per_jiffy,
  154. cpu_khz_old, cpu_khz);
  155. return 0;
  156. } else
  157. return -ENODEV;
  158. #else
  159. return -ENODEV;
  160. #endif
  161. }
  162. EXPORT_SYMBOL(recalibrate_cpu_khz);
  163. void __init tsc_init(void)
  164. {
  165. if (!cpu_has_tsc || tsc_disable)
  166. goto out_no_tsc;
  167. cpu_khz = calculate_cpu_khz();
  168. tsc_khz = cpu_khz;
  169. if (!cpu_khz)
  170. goto out_no_tsc;
  171. printk("Detected %lu.%03lu MHz processor.\n",
  172. (unsigned long)cpu_khz / 1000,
  173. (unsigned long)cpu_khz % 1000);
  174. set_cyc2ns_scale(cpu_khz);
  175. use_tsc_delay();
  176. return;
  177. out_no_tsc:
  178. /*
  179. * Set the tsc_disable flag if there's no TSC support, this
  180. * makes it a fast flag for the kernel to see whether it
  181. * should be using the TSC.
  182. */
  183. tsc_disable = 1;
  184. }
  185. #ifdef CONFIG_CPU_FREQ
  186. /*
  187. * if the CPU frequency is scaled, TSC-based delays will need a different
  188. * loops_per_jiffy value to function properly.
  189. */
  190. static unsigned int ref_freq = 0;
  191. static unsigned long loops_per_jiffy_ref = 0;
  192. static unsigned long cpu_khz_ref = 0;
  193. static int
  194. time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data)
  195. {
  196. struct cpufreq_freqs *freq = data;
  197. if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
  198. write_seqlock_irq(&xtime_lock);
  199. if (!ref_freq) {
  200. if (!freq->old){
  201. ref_freq = freq->new;
  202. goto end;
  203. }
  204. ref_freq = freq->old;
  205. loops_per_jiffy_ref = cpu_data[freq->cpu].loops_per_jiffy;
  206. cpu_khz_ref = cpu_khz;
  207. }
  208. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  209. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  210. (val == CPUFREQ_RESUMECHANGE)) {
  211. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  212. cpu_data[freq->cpu].loops_per_jiffy =
  213. cpufreq_scale(loops_per_jiffy_ref,
  214. ref_freq, freq->new);
  215. if (cpu_khz) {
  216. if (num_online_cpus() == 1)
  217. cpu_khz = cpufreq_scale(cpu_khz_ref,
  218. ref_freq, freq->new);
  219. if (!(freq->flags & CPUFREQ_CONST_LOOPS)) {
  220. tsc_khz = cpu_khz;
  221. set_cyc2ns_scale(cpu_khz);
  222. /*
  223. * TSC based sched_clock turns
  224. * to junk w/ cpufreq
  225. */
  226. mark_tsc_unstable();
  227. }
  228. }
  229. }
  230. end:
  231. if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
  232. write_sequnlock_irq(&xtime_lock);
  233. return 0;
  234. }
  235. static struct notifier_block time_cpufreq_notifier_block = {
  236. .notifier_call = time_cpufreq_notifier
  237. };
  238. static int __init cpufreq_tsc(void)
  239. {
  240. return cpufreq_register_notifier(&time_cpufreq_notifier_block,
  241. CPUFREQ_TRANSITION_NOTIFIER);
  242. }
  243. core_initcall(cpufreq_tsc);
  244. #endif
  245. /* clock source code */
  246. static unsigned long current_tsc_khz = 0;
  247. static int tsc_update_callback(void);
  248. static cycle_t read_tsc(void)
  249. {
  250. cycle_t ret;
  251. rdtscll(ret);
  252. return ret;
  253. }
  254. static struct clocksource clocksource_tsc = {
  255. .name = "tsc",
  256. .rating = 300,
  257. .read = read_tsc,
  258. .mask = CLOCKSOURCE_MASK(64),
  259. .mult = 0, /* to be set */
  260. .shift = 22,
  261. .update_callback = tsc_update_callback,
  262. .is_continuous = 1,
  263. };
  264. static int tsc_update_callback(void)
  265. {
  266. int change = 0;
  267. /* check to see if we should switch to the safe clocksource: */
  268. if (clocksource_tsc.rating != 0 && check_tsc_unstable()) {
  269. clocksource_change_rating(&clocksource_tsc, 0);
  270. change = 1;
  271. }
  272. /* only update if tsc_khz has changed: */
  273. if (current_tsc_khz != tsc_khz) {
  274. current_tsc_khz = tsc_khz;
  275. clocksource_tsc.mult = clocksource_khz2mult(current_tsc_khz,
  276. clocksource_tsc.shift);
  277. change = 1;
  278. }
  279. return change;
  280. }
  281. static int __init dmi_mark_tsc_unstable(struct dmi_system_id *d)
  282. {
  283. printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
  284. d->ident);
  285. mark_tsc_unstable();
  286. return 0;
  287. }
  288. /* List of systems that have known TSC problems */
  289. static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
  290. {
  291. .callback = dmi_mark_tsc_unstable,
  292. .ident = "IBM Thinkpad 380XD",
  293. .matches = {
  294. DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
  295. DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
  296. },
  297. },
  298. {}
  299. };
  300. #define TSC_FREQ_CHECK_INTERVAL (10*MSEC_PER_SEC) /* 10sec in MS */
  301. static struct timer_list verify_tsc_freq_timer;
  302. /* XXX - Probably should add locking */
  303. static void verify_tsc_freq(unsigned long unused)
  304. {
  305. static u64 last_tsc;
  306. static unsigned long last_jiffies;
  307. u64 now_tsc, interval_tsc;
  308. unsigned long now_jiffies, interval_jiffies;
  309. if (check_tsc_unstable())
  310. return;
  311. rdtscll(now_tsc);
  312. now_jiffies = jiffies;
  313. if (!last_jiffies) {
  314. goto out;
  315. }
  316. interval_jiffies = now_jiffies - last_jiffies;
  317. interval_tsc = now_tsc - last_tsc;
  318. interval_tsc *= HZ;
  319. do_div(interval_tsc, cpu_khz*1000);
  320. if (interval_tsc < (interval_jiffies * 3 / 4)) {
  321. printk("TSC appears to be running slowly. "
  322. "Marking it as unstable\n");
  323. mark_tsc_unstable();
  324. return;
  325. }
  326. out:
  327. last_tsc = now_tsc;
  328. last_jiffies = now_jiffies;
  329. /* set us up to go off on the next interval: */
  330. mod_timer(&verify_tsc_freq_timer,
  331. jiffies + msecs_to_jiffies(TSC_FREQ_CHECK_INTERVAL));
  332. }
  333. /*
  334. * Make an educated guess if the TSC is trustworthy and synchronized
  335. * over all CPUs.
  336. */
  337. __cpuinit int unsynchronized_tsc(void)
  338. {
  339. if (!cpu_has_tsc || tsc_unstable)
  340. return 1;
  341. /*
  342. * Intel systems are normally all synchronized.
  343. * Exceptions must mark TSC as unstable:
  344. */
  345. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
  346. return 0;
  347. /* assume multi socket systems are not synchronized: */
  348. return num_possible_cpus() > 1;
  349. }
  350. static int __init init_tsc_clocksource(void)
  351. {
  352. if (cpu_has_tsc && tsc_khz && !tsc_disable) {
  353. /* check blacklist */
  354. dmi_check_system(bad_tsc_dmi_table);
  355. if (unsynchronized_tsc()) /* mark unstable if unsynced */
  356. mark_tsc_unstable();
  357. current_tsc_khz = tsc_khz;
  358. clocksource_tsc.mult = clocksource_khz2mult(current_tsc_khz,
  359. clocksource_tsc.shift);
  360. /* lower the rating if we already know its unstable: */
  361. if (check_tsc_unstable())
  362. clocksource_tsc.rating = 0;
  363. init_timer(&verify_tsc_freq_timer);
  364. verify_tsc_freq_timer.function = verify_tsc_freq;
  365. verify_tsc_freq_timer.expires =
  366. jiffies + msecs_to_jiffies(TSC_FREQ_CHECK_INTERVAL);
  367. add_timer(&verify_tsc_freq_timer);
  368. return clocksource_register(&clocksource_tsc);
  369. }
  370. return 0;
  371. }
  372. module_init(init_tsc_clocksource);