sched.c 187 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/pid_namespace.h>
  47. #include <linux/smp.h>
  48. #include <linux/threads.h>
  49. #include <linux/timer.h>
  50. #include <linux/rcupdate.h>
  51. #include <linux/cpu.h>
  52. #include <linux/cpuset.h>
  53. #include <linux/percpu.h>
  54. #include <linux/kthread.h>
  55. #include <linux/seq_file.h>
  56. #include <linux/sysctl.h>
  57. #include <linux/syscalls.h>
  58. #include <linux/times.h>
  59. #include <linux/tsacct_kern.h>
  60. #include <linux/kprobes.h>
  61. #include <linux/delayacct.h>
  62. #include <linux/reciprocal_div.h>
  63. #include <linux/unistd.h>
  64. #include <linux/pagemap.h>
  65. #include <asm/tlb.h>
  66. #include <asm/irq_regs.h>
  67. /*
  68. * Scheduler clock - returns current time in nanosec units.
  69. * This is default implementation.
  70. * Architectures and sub-architectures can override this.
  71. */
  72. unsigned long long __attribute__((weak)) sched_clock(void)
  73. {
  74. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  75. }
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Some helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
  97. #define NICE_0_LOAD SCHED_LOAD_SCALE
  98. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  99. /*
  100. * These are the 'tuning knobs' of the scheduler:
  101. *
  102. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  103. * Timeslices get refilled after they expire.
  104. */
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. static inline int rt_policy(int policy)
  126. {
  127. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  128. return 1;
  129. return 0;
  130. }
  131. static inline int task_has_rt_policy(struct task_struct *p)
  132. {
  133. return rt_policy(p->policy);
  134. }
  135. /*
  136. * This is the priority-queue data structure of the RT scheduling class:
  137. */
  138. struct rt_prio_array {
  139. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  140. struct list_head queue[MAX_RT_PRIO];
  141. };
  142. #ifdef CONFIG_FAIR_GROUP_SCHED
  143. #include <linux/cgroup.h>
  144. struct cfs_rq;
  145. /* task group related information */
  146. struct task_group {
  147. #ifdef CONFIG_FAIR_CGROUP_SCHED
  148. struct cgroup_subsys_state css;
  149. #endif
  150. /* schedulable entities of this group on each cpu */
  151. struct sched_entity **se;
  152. /* runqueue "owned" by this group on each cpu */
  153. struct cfs_rq **cfs_rq;
  154. /*
  155. * shares assigned to a task group governs how much of cpu bandwidth
  156. * is allocated to the group. The more shares a group has, the more is
  157. * the cpu bandwidth allocated to it.
  158. *
  159. * For ex, lets say that there are three task groups, A, B and C which
  160. * have been assigned shares 1000, 2000 and 3000 respectively. Then,
  161. * cpu bandwidth allocated by the scheduler to task groups A, B and C
  162. * should be:
  163. *
  164. * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
  165. * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
  166. * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
  167. *
  168. * The weight assigned to a task group's schedulable entities on every
  169. * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
  170. * group's shares. For ex: lets say that task group A has been
  171. * assigned shares of 1000 and there are two CPUs in a system. Then,
  172. *
  173. * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
  174. *
  175. * Note: It's not necessary that each of a task's group schedulable
  176. * entity have the same weight on all CPUs. If the group
  177. * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
  178. * better distribution of weight could be:
  179. *
  180. * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
  181. * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
  182. *
  183. * rebalance_shares() is responsible for distributing the shares of a
  184. * task groups like this among the group's schedulable entities across
  185. * cpus.
  186. *
  187. */
  188. unsigned long shares;
  189. struct rcu_head rcu;
  190. };
  191. /* Default task group's sched entity on each cpu */
  192. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  193. /* Default task group's cfs_rq on each cpu */
  194. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  195. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  196. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  197. /* task_group_mutex serializes add/remove of task groups and also changes to
  198. * a task group's cpu shares.
  199. */
  200. static DEFINE_MUTEX(task_group_mutex);
  201. /* doms_cur_mutex serializes access to doms_cur[] array */
  202. static DEFINE_MUTEX(doms_cur_mutex);
  203. #ifdef CONFIG_SMP
  204. /* kernel thread that runs rebalance_shares() periodically */
  205. static struct task_struct *lb_monitor_task;
  206. static int load_balance_monitor(void *unused);
  207. #endif
  208. static void set_se_shares(struct sched_entity *se, unsigned long shares);
  209. /* Default task group.
  210. * Every task in system belong to this group at bootup.
  211. */
  212. struct task_group init_task_group = {
  213. .se = init_sched_entity_p,
  214. .cfs_rq = init_cfs_rq_p,
  215. };
  216. #ifdef CONFIG_FAIR_USER_SCHED
  217. # define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
  218. #else
  219. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  220. #endif
  221. #define MIN_GROUP_SHARES 2
  222. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  223. /* return group to which a task belongs */
  224. static inline struct task_group *task_group(struct task_struct *p)
  225. {
  226. struct task_group *tg;
  227. #ifdef CONFIG_FAIR_USER_SCHED
  228. tg = p->user->tg;
  229. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  230. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  231. struct task_group, css);
  232. #else
  233. tg = &init_task_group;
  234. #endif
  235. return tg;
  236. }
  237. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  238. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
  239. {
  240. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  241. p->se.parent = task_group(p)->se[cpu];
  242. }
  243. static inline void lock_task_group_list(void)
  244. {
  245. mutex_lock(&task_group_mutex);
  246. }
  247. static inline void unlock_task_group_list(void)
  248. {
  249. mutex_unlock(&task_group_mutex);
  250. }
  251. static inline void lock_doms_cur(void)
  252. {
  253. mutex_lock(&doms_cur_mutex);
  254. }
  255. static inline void unlock_doms_cur(void)
  256. {
  257. mutex_unlock(&doms_cur_mutex);
  258. }
  259. #else
  260. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
  261. static inline void lock_task_group_list(void) { }
  262. static inline void unlock_task_group_list(void) { }
  263. static inline void lock_doms_cur(void) { }
  264. static inline void unlock_doms_cur(void) { }
  265. #endif /* CONFIG_FAIR_GROUP_SCHED */
  266. /* CFS-related fields in a runqueue */
  267. struct cfs_rq {
  268. struct load_weight load;
  269. unsigned long nr_running;
  270. u64 exec_clock;
  271. u64 min_vruntime;
  272. struct rb_root tasks_timeline;
  273. struct rb_node *rb_leftmost;
  274. struct rb_node *rb_load_balance_curr;
  275. /* 'curr' points to currently running entity on this cfs_rq.
  276. * It is set to NULL otherwise (i.e when none are currently running).
  277. */
  278. struct sched_entity *curr;
  279. unsigned long nr_spread_over;
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  282. /*
  283. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  284. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  285. * (like users, containers etc.)
  286. *
  287. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  288. * list is used during load balance.
  289. */
  290. struct list_head leaf_cfs_rq_list;
  291. struct task_group *tg; /* group that "owns" this runqueue */
  292. #endif
  293. };
  294. /* Real-Time classes' related field in a runqueue: */
  295. struct rt_rq {
  296. struct rt_prio_array active;
  297. int rt_load_balance_idx;
  298. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  299. };
  300. /*
  301. * This is the main, per-CPU runqueue data structure.
  302. *
  303. * Locking rule: those places that want to lock multiple runqueues
  304. * (such as the load balancing or the thread migration code), lock
  305. * acquire operations must be ordered by ascending &runqueue.
  306. */
  307. struct rq {
  308. /* runqueue lock: */
  309. spinlock_t lock;
  310. /*
  311. * nr_running and cpu_load should be in the same cacheline because
  312. * remote CPUs use both these fields when doing load calculation.
  313. */
  314. unsigned long nr_running;
  315. #define CPU_LOAD_IDX_MAX 5
  316. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  317. unsigned char idle_at_tick;
  318. #ifdef CONFIG_NO_HZ
  319. unsigned char in_nohz_recently;
  320. #endif
  321. /* capture load from *all* tasks on this cpu: */
  322. struct load_weight load;
  323. unsigned long nr_load_updates;
  324. u64 nr_switches;
  325. struct cfs_rq cfs;
  326. #ifdef CONFIG_FAIR_GROUP_SCHED
  327. /* list of leaf cfs_rq on this cpu: */
  328. struct list_head leaf_cfs_rq_list;
  329. #endif
  330. struct rt_rq rt;
  331. /*
  332. * This is part of a global counter where only the total sum
  333. * over all CPUs matters. A task can increase this counter on
  334. * one CPU and if it got migrated afterwards it may decrease
  335. * it on another CPU. Always updated under the runqueue lock:
  336. */
  337. unsigned long nr_uninterruptible;
  338. struct task_struct *curr, *idle;
  339. unsigned long next_balance;
  340. struct mm_struct *prev_mm;
  341. u64 clock, prev_clock_raw;
  342. s64 clock_max_delta;
  343. unsigned int clock_warps, clock_overflows;
  344. u64 idle_clock;
  345. unsigned int clock_deep_idle_events;
  346. u64 tick_timestamp;
  347. atomic_t nr_iowait;
  348. #ifdef CONFIG_SMP
  349. struct sched_domain *sd;
  350. /* For active balancing */
  351. int active_balance;
  352. int push_cpu;
  353. /* cpu of this runqueue: */
  354. int cpu;
  355. struct task_struct *migration_thread;
  356. struct list_head migration_queue;
  357. #endif
  358. #ifdef CONFIG_SCHEDSTATS
  359. /* latency stats */
  360. struct sched_info rq_sched_info;
  361. /* sys_sched_yield() stats */
  362. unsigned int yld_exp_empty;
  363. unsigned int yld_act_empty;
  364. unsigned int yld_both_empty;
  365. unsigned int yld_count;
  366. /* schedule() stats */
  367. unsigned int sched_switch;
  368. unsigned int sched_count;
  369. unsigned int sched_goidle;
  370. /* try_to_wake_up() stats */
  371. unsigned int ttwu_count;
  372. unsigned int ttwu_local;
  373. /* BKL stats */
  374. unsigned int bkl_count;
  375. #endif
  376. struct lock_class_key rq_lock_key;
  377. };
  378. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  379. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  380. {
  381. rq->curr->sched_class->check_preempt_curr(rq, p);
  382. }
  383. static inline int cpu_of(struct rq *rq)
  384. {
  385. #ifdef CONFIG_SMP
  386. return rq->cpu;
  387. #else
  388. return 0;
  389. #endif
  390. }
  391. /*
  392. * Update the per-runqueue clock, as finegrained as the platform can give
  393. * us, but without assuming monotonicity, etc.:
  394. */
  395. static void __update_rq_clock(struct rq *rq)
  396. {
  397. u64 prev_raw = rq->prev_clock_raw;
  398. u64 now = sched_clock();
  399. s64 delta = now - prev_raw;
  400. u64 clock = rq->clock;
  401. #ifdef CONFIG_SCHED_DEBUG
  402. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  403. #endif
  404. /*
  405. * Protect against sched_clock() occasionally going backwards:
  406. */
  407. if (unlikely(delta < 0)) {
  408. clock++;
  409. rq->clock_warps++;
  410. } else {
  411. /*
  412. * Catch too large forward jumps too:
  413. */
  414. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  415. if (clock < rq->tick_timestamp + TICK_NSEC)
  416. clock = rq->tick_timestamp + TICK_NSEC;
  417. else
  418. clock++;
  419. rq->clock_overflows++;
  420. } else {
  421. if (unlikely(delta > rq->clock_max_delta))
  422. rq->clock_max_delta = delta;
  423. clock += delta;
  424. }
  425. }
  426. rq->prev_clock_raw = now;
  427. rq->clock = clock;
  428. }
  429. static void update_rq_clock(struct rq *rq)
  430. {
  431. if (likely(smp_processor_id() == cpu_of(rq)))
  432. __update_rq_clock(rq);
  433. }
  434. /*
  435. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  436. * See detach_destroy_domains: synchronize_sched for details.
  437. *
  438. * The domain tree of any CPU may only be accessed from within
  439. * preempt-disabled sections.
  440. */
  441. #define for_each_domain(cpu, __sd) \
  442. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  443. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  444. #define this_rq() (&__get_cpu_var(runqueues))
  445. #define task_rq(p) cpu_rq(task_cpu(p))
  446. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  447. /*
  448. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  449. */
  450. #ifdef CONFIG_SCHED_DEBUG
  451. # define const_debug __read_mostly
  452. #else
  453. # define const_debug static const
  454. #endif
  455. /*
  456. * Debugging: various feature bits
  457. */
  458. enum {
  459. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  460. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  461. SCHED_FEAT_START_DEBIT = 4,
  462. SCHED_FEAT_TREE_AVG = 8,
  463. SCHED_FEAT_APPROX_AVG = 16,
  464. };
  465. const_debug unsigned int sysctl_sched_features =
  466. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  467. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  468. SCHED_FEAT_START_DEBIT * 1 |
  469. SCHED_FEAT_TREE_AVG * 0 |
  470. SCHED_FEAT_APPROX_AVG * 0;
  471. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  472. /*
  473. * Number of tasks to iterate in a single balance run.
  474. * Limited because this is done with IRQs disabled.
  475. */
  476. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  477. /*
  478. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  479. * clock constructed from sched_clock():
  480. */
  481. unsigned long long cpu_clock(int cpu)
  482. {
  483. unsigned long long now;
  484. unsigned long flags;
  485. struct rq *rq;
  486. local_irq_save(flags);
  487. rq = cpu_rq(cpu);
  488. /*
  489. * Only call sched_clock() if the scheduler has already been
  490. * initialized (some code might call cpu_clock() very early):
  491. */
  492. if (rq->idle)
  493. update_rq_clock(rq);
  494. now = rq->clock;
  495. local_irq_restore(flags);
  496. return now;
  497. }
  498. EXPORT_SYMBOL_GPL(cpu_clock);
  499. #ifndef prepare_arch_switch
  500. # define prepare_arch_switch(next) do { } while (0)
  501. #endif
  502. #ifndef finish_arch_switch
  503. # define finish_arch_switch(prev) do { } while (0)
  504. #endif
  505. static inline int task_current(struct rq *rq, struct task_struct *p)
  506. {
  507. return rq->curr == p;
  508. }
  509. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  510. static inline int task_running(struct rq *rq, struct task_struct *p)
  511. {
  512. return task_current(rq, p);
  513. }
  514. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  515. {
  516. }
  517. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  518. {
  519. #ifdef CONFIG_DEBUG_SPINLOCK
  520. /* this is a valid case when another task releases the spinlock */
  521. rq->lock.owner = current;
  522. #endif
  523. /*
  524. * If we are tracking spinlock dependencies then we have to
  525. * fix up the runqueue lock - which gets 'carried over' from
  526. * prev into current:
  527. */
  528. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  529. spin_unlock_irq(&rq->lock);
  530. }
  531. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  532. static inline int task_running(struct rq *rq, struct task_struct *p)
  533. {
  534. #ifdef CONFIG_SMP
  535. return p->oncpu;
  536. #else
  537. return task_current(rq, p);
  538. #endif
  539. }
  540. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  541. {
  542. #ifdef CONFIG_SMP
  543. /*
  544. * We can optimise this out completely for !SMP, because the
  545. * SMP rebalancing from interrupt is the only thing that cares
  546. * here.
  547. */
  548. next->oncpu = 1;
  549. #endif
  550. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  551. spin_unlock_irq(&rq->lock);
  552. #else
  553. spin_unlock(&rq->lock);
  554. #endif
  555. }
  556. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  557. {
  558. #ifdef CONFIG_SMP
  559. /*
  560. * After ->oncpu is cleared, the task can be moved to a different CPU.
  561. * We must ensure this doesn't happen until the switch is completely
  562. * finished.
  563. */
  564. smp_wmb();
  565. prev->oncpu = 0;
  566. #endif
  567. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  568. local_irq_enable();
  569. #endif
  570. }
  571. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  572. /*
  573. * __task_rq_lock - lock the runqueue a given task resides on.
  574. * Must be called interrupts disabled.
  575. */
  576. static inline struct rq *__task_rq_lock(struct task_struct *p)
  577. __acquires(rq->lock)
  578. {
  579. for (;;) {
  580. struct rq *rq = task_rq(p);
  581. spin_lock(&rq->lock);
  582. if (likely(rq == task_rq(p)))
  583. return rq;
  584. spin_unlock(&rq->lock);
  585. }
  586. }
  587. /*
  588. * task_rq_lock - lock the runqueue a given task resides on and disable
  589. * interrupts. Note the ordering: we can safely lookup the task_rq without
  590. * explicitly disabling preemption.
  591. */
  592. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  593. __acquires(rq->lock)
  594. {
  595. struct rq *rq;
  596. for (;;) {
  597. local_irq_save(*flags);
  598. rq = task_rq(p);
  599. spin_lock(&rq->lock);
  600. if (likely(rq == task_rq(p)))
  601. return rq;
  602. spin_unlock_irqrestore(&rq->lock, *flags);
  603. }
  604. }
  605. static void __task_rq_unlock(struct rq *rq)
  606. __releases(rq->lock)
  607. {
  608. spin_unlock(&rq->lock);
  609. }
  610. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  611. __releases(rq->lock)
  612. {
  613. spin_unlock_irqrestore(&rq->lock, *flags);
  614. }
  615. /*
  616. * this_rq_lock - lock this runqueue and disable interrupts.
  617. */
  618. static struct rq *this_rq_lock(void)
  619. __acquires(rq->lock)
  620. {
  621. struct rq *rq;
  622. local_irq_disable();
  623. rq = this_rq();
  624. spin_lock(&rq->lock);
  625. return rq;
  626. }
  627. /*
  628. * We are going deep-idle (irqs are disabled):
  629. */
  630. void sched_clock_idle_sleep_event(void)
  631. {
  632. struct rq *rq = cpu_rq(smp_processor_id());
  633. spin_lock(&rq->lock);
  634. __update_rq_clock(rq);
  635. spin_unlock(&rq->lock);
  636. rq->clock_deep_idle_events++;
  637. }
  638. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  639. /*
  640. * We just idled delta nanoseconds (called with irqs disabled):
  641. */
  642. void sched_clock_idle_wakeup_event(u64 delta_ns)
  643. {
  644. struct rq *rq = cpu_rq(smp_processor_id());
  645. u64 now = sched_clock();
  646. touch_softlockup_watchdog();
  647. rq->idle_clock += delta_ns;
  648. /*
  649. * Override the previous timestamp and ignore all
  650. * sched_clock() deltas that occured while we idled,
  651. * and use the PM-provided delta_ns to advance the
  652. * rq clock:
  653. */
  654. spin_lock(&rq->lock);
  655. rq->prev_clock_raw = now;
  656. rq->clock += delta_ns;
  657. spin_unlock(&rq->lock);
  658. }
  659. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  660. /*
  661. * resched_task - mark a task 'to be rescheduled now'.
  662. *
  663. * On UP this means the setting of the need_resched flag, on SMP it
  664. * might also involve a cross-CPU call to trigger the scheduler on
  665. * the target CPU.
  666. */
  667. #ifdef CONFIG_SMP
  668. #ifndef tsk_is_polling
  669. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  670. #endif
  671. static void resched_task(struct task_struct *p)
  672. {
  673. int cpu;
  674. assert_spin_locked(&task_rq(p)->lock);
  675. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  676. return;
  677. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  678. cpu = task_cpu(p);
  679. if (cpu == smp_processor_id())
  680. return;
  681. /* NEED_RESCHED must be visible before we test polling */
  682. smp_mb();
  683. if (!tsk_is_polling(p))
  684. smp_send_reschedule(cpu);
  685. }
  686. static void resched_cpu(int cpu)
  687. {
  688. struct rq *rq = cpu_rq(cpu);
  689. unsigned long flags;
  690. if (!spin_trylock_irqsave(&rq->lock, flags))
  691. return;
  692. resched_task(cpu_curr(cpu));
  693. spin_unlock_irqrestore(&rq->lock, flags);
  694. }
  695. #else
  696. static inline void resched_task(struct task_struct *p)
  697. {
  698. assert_spin_locked(&task_rq(p)->lock);
  699. set_tsk_need_resched(p);
  700. }
  701. #endif
  702. #if BITS_PER_LONG == 32
  703. # define WMULT_CONST (~0UL)
  704. #else
  705. # define WMULT_CONST (1UL << 32)
  706. #endif
  707. #define WMULT_SHIFT 32
  708. /*
  709. * Shift right and round:
  710. */
  711. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  712. static unsigned long
  713. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  714. struct load_weight *lw)
  715. {
  716. u64 tmp;
  717. if (unlikely(!lw->inv_weight))
  718. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  719. tmp = (u64)delta_exec * weight;
  720. /*
  721. * Check whether we'd overflow the 64-bit multiplication:
  722. */
  723. if (unlikely(tmp > WMULT_CONST))
  724. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  725. WMULT_SHIFT/2);
  726. else
  727. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  728. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  729. }
  730. static inline unsigned long
  731. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  732. {
  733. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  734. }
  735. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  736. {
  737. lw->weight += inc;
  738. }
  739. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  740. {
  741. lw->weight -= dec;
  742. }
  743. /*
  744. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  745. * of tasks with abnormal "nice" values across CPUs the contribution that
  746. * each task makes to its run queue's load is weighted according to its
  747. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  748. * scaled version of the new time slice allocation that they receive on time
  749. * slice expiry etc.
  750. */
  751. #define WEIGHT_IDLEPRIO 2
  752. #define WMULT_IDLEPRIO (1 << 31)
  753. /*
  754. * Nice levels are multiplicative, with a gentle 10% change for every
  755. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  756. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  757. * that remained on nice 0.
  758. *
  759. * The "10% effect" is relative and cumulative: from _any_ nice level,
  760. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  761. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  762. * If a task goes up by ~10% and another task goes down by ~10% then
  763. * the relative distance between them is ~25%.)
  764. */
  765. static const int prio_to_weight[40] = {
  766. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  767. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  768. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  769. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  770. /* 0 */ 1024, 820, 655, 526, 423,
  771. /* 5 */ 335, 272, 215, 172, 137,
  772. /* 10 */ 110, 87, 70, 56, 45,
  773. /* 15 */ 36, 29, 23, 18, 15,
  774. };
  775. /*
  776. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  777. *
  778. * In cases where the weight does not change often, we can use the
  779. * precalculated inverse to speed up arithmetics by turning divisions
  780. * into multiplications:
  781. */
  782. static const u32 prio_to_wmult[40] = {
  783. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  784. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  785. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  786. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  787. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  788. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  789. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  790. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  791. };
  792. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  793. /*
  794. * runqueue iterator, to support SMP load-balancing between different
  795. * scheduling classes, without having to expose their internal data
  796. * structures to the load-balancing proper:
  797. */
  798. struct rq_iterator {
  799. void *arg;
  800. struct task_struct *(*start)(void *);
  801. struct task_struct *(*next)(void *);
  802. };
  803. #ifdef CONFIG_SMP
  804. static unsigned long
  805. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  806. unsigned long max_load_move, struct sched_domain *sd,
  807. enum cpu_idle_type idle, int *all_pinned,
  808. int *this_best_prio, struct rq_iterator *iterator);
  809. static int
  810. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  811. struct sched_domain *sd, enum cpu_idle_type idle,
  812. struct rq_iterator *iterator);
  813. #endif
  814. #ifdef CONFIG_CGROUP_CPUACCT
  815. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  816. #else
  817. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  818. #endif
  819. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  820. {
  821. update_load_add(&rq->load, load);
  822. }
  823. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  824. {
  825. update_load_sub(&rq->load, load);
  826. }
  827. #include "sched_stats.h"
  828. #include "sched_idletask.c"
  829. #include "sched_fair.c"
  830. #include "sched_rt.c"
  831. #ifdef CONFIG_SCHED_DEBUG
  832. # include "sched_debug.c"
  833. #endif
  834. #define sched_class_highest (&rt_sched_class)
  835. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  836. {
  837. rq->nr_running++;
  838. }
  839. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  840. {
  841. rq->nr_running--;
  842. }
  843. static void set_load_weight(struct task_struct *p)
  844. {
  845. if (task_has_rt_policy(p)) {
  846. p->se.load.weight = prio_to_weight[0] * 2;
  847. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  848. return;
  849. }
  850. /*
  851. * SCHED_IDLE tasks get minimal weight:
  852. */
  853. if (p->policy == SCHED_IDLE) {
  854. p->se.load.weight = WEIGHT_IDLEPRIO;
  855. p->se.load.inv_weight = WMULT_IDLEPRIO;
  856. return;
  857. }
  858. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  859. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  860. }
  861. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  862. {
  863. sched_info_queued(p);
  864. p->sched_class->enqueue_task(rq, p, wakeup);
  865. p->se.on_rq = 1;
  866. }
  867. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  868. {
  869. p->sched_class->dequeue_task(rq, p, sleep);
  870. p->se.on_rq = 0;
  871. }
  872. /*
  873. * __normal_prio - return the priority that is based on the static prio
  874. */
  875. static inline int __normal_prio(struct task_struct *p)
  876. {
  877. return p->static_prio;
  878. }
  879. /*
  880. * Calculate the expected normal priority: i.e. priority
  881. * without taking RT-inheritance into account. Might be
  882. * boosted by interactivity modifiers. Changes upon fork,
  883. * setprio syscalls, and whenever the interactivity
  884. * estimator recalculates.
  885. */
  886. static inline int normal_prio(struct task_struct *p)
  887. {
  888. int prio;
  889. if (task_has_rt_policy(p))
  890. prio = MAX_RT_PRIO-1 - p->rt_priority;
  891. else
  892. prio = __normal_prio(p);
  893. return prio;
  894. }
  895. /*
  896. * Calculate the current priority, i.e. the priority
  897. * taken into account by the scheduler. This value might
  898. * be boosted by RT tasks, or might be boosted by
  899. * interactivity modifiers. Will be RT if the task got
  900. * RT-boosted. If not then it returns p->normal_prio.
  901. */
  902. static int effective_prio(struct task_struct *p)
  903. {
  904. p->normal_prio = normal_prio(p);
  905. /*
  906. * If we are RT tasks or we were boosted to RT priority,
  907. * keep the priority unchanged. Otherwise, update priority
  908. * to the normal priority:
  909. */
  910. if (!rt_prio(p->prio))
  911. return p->normal_prio;
  912. return p->prio;
  913. }
  914. /*
  915. * activate_task - move a task to the runqueue.
  916. */
  917. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  918. {
  919. if (p->state == TASK_UNINTERRUPTIBLE)
  920. rq->nr_uninterruptible--;
  921. enqueue_task(rq, p, wakeup);
  922. inc_nr_running(p, rq);
  923. }
  924. /*
  925. * deactivate_task - remove a task from the runqueue.
  926. */
  927. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  928. {
  929. if (p->state == TASK_UNINTERRUPTIBLE)
  930. rq->nr_uninterruptible++;
  931. dequeue_task(rq, p, sleep);
  932. dec_nr_running(p, rq);
  933. }
  934. /**
  935. * task_curr - is this task currently executing on a CPU?
  936. * @p: the task in question.
  937. */
  938. inline int task_curr(const struct task_struct *p)
  939. {
  940. return cpu_curr(task_cpu(p)) == p;
  941. }
  942. /* Used instead of source_load when we know the type == 0 */
  943. unsigned long weighted_cpuload(const int cpu)
  944. {
  945. return cpu_rq(cpu)->load.weight;
  946. }
  947. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  948. {
  949. set_task_cfs_rq(p, cpu);
  950. #ifdef CONFIG_SMP
  951. /*
  952. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  953. * successfuly executed on another CPU. We must ensure that updates of
  954. * per-task data have been completed by this moment.
  955. */
  956. smp_wmb();
  957. task_thread_info(p)->cpu = cpu;
  958. #endif
  959. }
  960. #ifdef CONFIG_SMP
  961. /*
  962. * Is this task likely cache-hot:
  963. */
  964. static inline int
  965. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  966. {
  967. s64 delta;
  968. if (p->sched_class != &fair_sched_class)
  969. return 0;
  970. if (sysctl_sched_migration_cost == -1)
  971. return 1;
  972. if (sysctl_sched_migration_cost == 0)
  973. return 0;
  974. delta = now - p->se.exec_start;
  975. return delta < (s64)sysctl_sched_migration_cost;
  976. }
  977. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  978. {
  979. int old_cpu = task_cpu(p);
  980. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  981. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  982. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  983. u64 clock_offset;
  984. clock_offset = old_rq->clock - new_rq->clock;
  985. #ifdef CONFIG_SCHEDSTATS
  986. if (p->se.wait_start)
  987. p->se.wait_start -= clock_offset;
  988. if (p->se.sleep_start)
  989. p->se.sleep_start -= clock_offset;
  990. if (p->se.block_start)
  991. p->se.block_start -= clock_offset;
  992. if (old_cpu != new_cpu) {
  993. schedstat_inc(p, se.nr_migrations);
  994. if (task_hot(p, old_rq->clock, NULL))
  995. schedstat_inc(p, se.nr_forced2_migrations);
  996. }
  997. #endif
  998. p->se.vruntime -= old_cfsrq->min_vruntime -
  999. new_cfsrq->min_vruntime;
  1000. __set_task_cpu(p, new_cpu);
  1001. }
  1002. struct migration_req {
  1003. struct list_head list;
  1004. struct task_struct *task;
  1005. int dest_cpu;
  1006. struct completion done;
  1007. };
  1008. /*
  1009. * The task's runqueue lock must be held.
  1010. * Returns true if you have to wait for migration thread.
  1011. */
  1012. static int
  1013. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1014. {
  1015. struct rq *rq = task_rq(p);
  1016. /*
  1017. * If the task is not on a runqueue (and not running), then
  1018. * it is sufficient to simply update the task's cpu field.
  1019. */
  1020. if (!p->se.on_rq && !task_running(rq, p)) {
  1021. set_task_cpu(p, dest_cpu);
  1022. return 0;
  1023. }
  1024. init_completion(&req->done);
  1025. req->task = p;
  1026. req->dest_cpu = dest_cpu;
  1027. list_add(&req->list, &rq->migration_queue);
  1028. return 1;
  1029. }
  1030. /*
  1031. * wait_task_inactive - wait for a thread to unschedule.
  1032. *
  1033. * The caller must ensure that the task *will* unschedule sometime soon,
  1034. * else this function might spin for a *long* time. This function can't
  1035. * be called with interrupts off, or it may introduce deadlock with
  1036. * smp_call_function() if an IPI is sent by the same process we are
  1037. * waiting to become inactive.
  1038. */
  1039. void wait_task_inactive(struct task_struct *p)
  1040. {
  1041. unsigned long flags;
  1042. int running, on_rq;
  1043. struct rq *rq;
  1044. for (;;) {
  1045. /*
  1046. * We do the initial early heuristics without holding
  1047. * any task-queue locks at all. We'll only try to get
  1048. * the runqueue lock when things look like they will
  1049. * work out!
  1050. */
  1051. rq = task_rq(p);
  1052. /*
  1053. * If the task is actively running on another CPU
  1054. * still, just relax and busy-wait without holding
  1055. * any locks.
  1056. *
  1057. * NOTE! Since we don't hold any locks, it's not
  1058. * even sure that "rq" stays as the right runqueue!
  1059. * But we don't care, since "task_running()" will
  1060. * return false if the runqueue has changed and p
  1061. * is actually now running somewhere else!
  1062. */
  1063. while (task_running(rq, p))
  1064. cpu_relax();
  1065. /*
  1066. * Ok, time to look more closely! We need the rq
  1067. * lock now, to be *sure*. If we're wrong, we'll
  1068. * just go back and repeat.
  1069. */
  1070. rq = task_rq_lock(p, &flags);
  1071. running = task_running(rq, p);
  1072. on_rq = p->se.on_rq;
  1073. task_rq_unlock(rq, &flags);
  1074. /*
  1075. * Was it really running after all now that we
  1076. * checked with the proper locks actually held?
  1077. *
  1078. * Oops. Go back and try again..
  1079. */
  1080. if (unlikely(running)) {
  1081. cpu_relax();
  1082. continue;
  1083. }
  1084. /*
  1085. * It's not enough that it's not actively running,
  1086. * it must be off the runqueue _entirely_, and not
  1087. * preempted!
  1088. *
  1089. * So if it wa still runnable (but just not actively
  1090. * running right now), it's preempted, and we should
  1091. * yield - it could be a while.
  1092. */
  1093. if (unlikely(on_rq)) {
  1094. schedule_timeout_uninterruptible(1);
  1095. continue;
  1096. }
  1097. /*
  1098. * Ahh, all good. It wasn't running, and it wasn't
  1099. * runnable, which means that it will never become
  1100. * running in the future either. We're all done!
  1101. */
  1102. break;
  1103. }
  1104. }
  1105. /***
  1106. * kick_process - kick a running thread to enter/exit the kernel
  1107. * @p: the to-be-kicked thread
  1108. *
  1109. * Cause a process which is running on another CPU to enter
  1110. * kernel-mode, without any delay. (to get signals handled.)
  1111. *
  1112. * NOTE: this function doesnt have to take the runqueue lock,
  1113. * because all it wants to ensure is that the remote task enters
  1114. * the kernel. If the IPI races and the task has been migrated
  1115. * to another CPU then no harm is done and the purpose has been
  1116. * achieved as well.
  1117. */
  1118. void kick_process(struct task_struct *p)
  1119. {
  1120. int cpu;
  1121. preempt_disable();
  1122. cpu = task_cpu(p);
  1123. if ((cpu != smp_processor_id()) && task_curr(p))
  1124. smp_send_reschedule(cpu);
  1125. preempt_enable();
  1126. }
  1127. /*
  1128. * Return a low guess at the load of a migration-source cpu weighted
  1129. * according to the scheduling class and "nice" value.
  1130. *
  1131. * We want to under-estimate the load of migration sources, to
  1132. * balance conservatively.
  1133. */
  1134. static unsigned long source_load(int cpu, int type)
  1135. {
  1136. struct rq *rq = cpu_rq(cpu);
  1137. unsigned long total = weighted_cpuload(cpu);
  1138. if (type == 0)
  1139. return total;
  1140. return min(rq->cpu_load[type-1], total);
  1141. }
  1142. /*
  1143. * Return a high guess at the load of a migration-target cpu weighted
  1144. * according to the scheduling class and "nice" value.
  1145. */
  1146. static unsigned long target_load(int cpu, int type)
  1147. {
  1148. struct rq *rq = cpu_rq(cpu);
  1149. unsigned long total = weighted_cpuload(cpu);
  1150. if (type == 0)
  1151. return total;
  1152. return max(rq->cpu_load[type-1], total);
  1153. }
  1154. /*
  1155. * Return the average load per task on the cpu's run queue
  1156. */
  1157. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1158. {
  1159. struct rq *rq = cpu_rq(cpu);
  1160. unsigned long total = weighted_cpuload(cpu);
  1161. unsigned long n = rq->nr_running;
  1162. return n ? total / n : SCHED_LOAD_SCALE;
  1163. }
  1164. /*
  1165. * find_idlest_group finds and returns the least busy CPU group within the
  1166. * domain.
  1167. */
  1168. static struct sched_group *
  1169. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1170. {
  1171. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1172. unsigned long min_load = ULONG_MAX, this_load = 0;
  1173. int load_idx = sd->forkexec_idx;
  1174. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1175. do {
  1176. unsigned long load, avg_load;
  1177. int local_group;
  1178. int i;
  1179. /* Skip over this group if it has no CPUs allowed */
  1180. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1181. continue;
  1182. local_group = cpu_isset(this_cpu, group->cpumask);
  1183. /* Tally up the load of all CPUs in the group */
  1184. avg_load = 0;
  1185. for_each_cpu_mask(i, group->cpumask) {
  1186. /* Bias balancing toward cpus of our domain */
  1187. if (local_group)
  1188. load = source_load(i, load_idx);
  1189. else
  1190. load = target_load(i, load_idx);
  1191. avg_load += load;
  1192. }
  1193. /* Adjust by relative CPU power of the group */
  1194. avg_load = sg_div_cpu_power(group,
  1195. avg_load * SCHED_LOAD_SCALE);
  1196. if (local_group) {
  1197. this_load = avg_load;
  1198. this = group;
  1199. } else if (avg_load < min_load) {
  1200. min_load = avg_load;
  1201. idlest = group;
  1202. }
  1203. } while (group = group->next, group != sd->groups);
  1204. if (!idlest || 100*this_load < imbalance*min_load)
  1205. return NULL;
  1206. return idlest;
  1207. }
  1208. /*
  1209. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1210. */
  1211. static int
  1212. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1213. {
  1214. cpumask_t tmp;
  1215. unsigned long load, min_load = ULONG_MAX;
  1216. int idlest = -1;
  1217. int i;
  1218. /* Traverse only the allowed CPUs */
  1219. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1220. for_each_cpu_mask(i, tmp) {
  1221. load = weighted_cpuload(i);
  1222. if (load < min_load || (load == min_load && i == this_cpu)) {
  1223. min_load = load;
  1224. idlest = i;
  1225. }
  1226. }
  1227. return idlest;
  1228. }
  1229. /*
  1230. * sched_balance_self: balance the current task (running on cpu) in domains
  1231. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1232. * SD_BALANCE_EXEC.
  1233. *
  1234. * Balance, ie. select the least loaded group.
  1235. *
  1236. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1237. *
  1238. * preempt must be disabled.
  1239. */
  1240. static int sched_balance_self(int cpu, int flag)
  1241. {
  1242. struct task_struct *t = current;
  1243. struct sched_domain *tmp, *sd = NULL;
  1244. for_each_domain(cpu, tmp) {
  1245. /*
  1246. * If power savings logic is enabled for a domain, stop there.
  1247. */
  1248. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1249. break;
  1250. if (tmp->flags & flag)
  1251. sd = tmp;
  1252. }
  1253. while (sd) {
  1254. cpumask_t span;
  1255. struct sched_group *group;
  1256. int new_cpu, weight;
  1257. if (!(sd->flags & flag)) {
  1258. sd = sd->child;
  1259. continue;
  1260. }
  1261. span = sd->span;
  1262. group = find_idlest_group(sd, t, cpu);
  1263. if (!group) {
  1264. sd = sd->child;
  1265. continue;
  1266. }
  1267. new_cpu = find_idlest_cpu(group, t, cpu);
  1268. if (new_cpu == -1 || new_cpu == cpu) {
  1269. /* Now try balancing at a lower domain level of cpu */
  1270. sd = sd->child;
  1271. continue;
  1272. }
  1273. /* Now try balancing at a lower domain level of new_cpu */
  1274. cpu = new_cpu;
  1275. sd = NULL;
  1276. weight = cpus_weight(span);
  1277. for_each_domain(cpu, tmp) {
  1278. if (weight <= cpus_weight(tmp->span))
  1279. break;
  1280. if (tmp->flags & flag)
  1281. sd = tmp;
  1282. }
  1283. /* while loop will break here if sd == NULL */
  1284. }
  1285. return cpu;
  1286. }
  1287. #endif /* CONFIG_SMP */
  1288. /*
  1289. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1290. * not idle and an idle cpu is available. The span of cpus to
  1291. * search starts with cpus closest then further out as needed,
  1292. * so we always favor a closer, idle cpu.
  1293. *
  1294. * Returns the CPU we should wake onto.
  1295. */
  1296. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1297. static int wake_idle(int cpu, struct task_struct *p)
  1298. {
  1299. cpumask_t tmp;
  1300. struct sched_domain *sd;
  1301. int i;
  1302. /*
  1303. * If it is idle, then it is the best cpu to run this task.
  1304. *
  1305. * This cpu is also the best, if it has more than one task already.
  1306. * Siblings must be also busy(in most cases) as they didn't already
  1307. * pickup the extra load from this cpu and hence we need not check
  1308. * sibling runqueue info. This will avoid the checks and cache miss
  1309. * penalities associated with that.
  1310. */
  1311. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1312. return cpu;
  1313. for_each_domain(cpu, sd) {
  1314. if (sd->flags & SD_WAKE_IDLE) {
  1315. cpus_and(tmp, sd->span, p->cpus_allowed);
  1316. for_each_cpu_mask(i, tmp) {
  1317. if (idle_cpu(i)) {
  1318. if (i != task_cpu(p)) {
  1319. schedstat_inc(p,
  1320. se.nr_wakeups_idle);
  1321. }
  1322. return i;
  1323. }
  1324. }
  1325. } else {
  1326. break;
  1327. }
  1328. }
  1329. return cpu;
  1330. }
  1331. #else
  1332. static inline int wake_idle(int cpu, struct task_struct *p)
  1333. {
  1334. return cpu;
  1335. }
  1336. #endif
  1337. /***
  1338. * try_to_wake_up - wake up a thread
  1339. * @p: the to-be-woken-up thread
  1340. * @state: the mask of task states that can be woken
  1341. * @sync: do a synchronous wakeup?
  1342. *
  1343. * Put it on the run-queue if it's not already there. The "current"
  1344. * thread is always on the run-queue (except when the actual
  1345. * re-schedule is in progress), and as such you're allowed to do
  1346. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1347. * runnable without the overhead of this.
  1348. *
  1349. * returns failure only if the task is already active.
  1350. */
  1351. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1352. {
  1353. int cpu, orig_cpu, this_cpu, success = 0;
  1354. unsigned long flags;
  1355. long old_state;
  1356. struct rq *rq;
  1357. #ifdef CONFIG_SMP
  1358. struct sched_domain *sd, *this_sd = NULL;
  1359. unsigned long load, this_load;
  1360. int new_cpu;
  1361. #endif
  1362. rq = task_rq_lock(p, &flags);
  1363. old_state = p->state;
  1364. if (!(old_state & state))
  1365. goto out;
  1366. if (p->se.on_rq)
  1367. goto out_running;
  1368. cpu = task_cpu(p);
  1369. orig_cpu = cpu;
  1370. this_cpu = smp_processor_id();
  1371. #ifdef CONFIG_SMP
  1372. if (unlikely(task_running(rq, p)))
  1373. goto out_activate;
  1374. new_cpu = cpu;
  1375. schedstat_inc(rq, ttwu_count);
  1376. if (cpu == this_cpu) {
  1377. schedstat_inc(rq, ttwu_local);
  1378. goto out_set_cpu;
  1379. }
  1380. for_each_domain(this_cpu, sd) {
  1381. if (cpu_isset(cpu, sd->span)) {
  1382. schedstat_inc(sd, ttwu_wake_remote);
  1383. this_sd = sd;
  1384. break;
  1385. }
  1386. }
  1387. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1388. goto out_set_cpu;
  1389. /*
  1390. * Check for affine wakeup and passive balancing possibilities.
  1391. */
  1392. if (this_sd) {
  1393. int idx = this_sd->wake_idx;
  1394. unsigned int imbalance;
  1395. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1396. load = source_load(cpu, idx);
  1397. this_load = target_load(this_cpu, idx);
  1398. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1399. if (this_sd->flags & SD_WAKE_AFFINE) {
  1400. unsigned long tl = this_load;
  1401. unsigned long tl_per_task;
  1402. /*
  1403. * Attract cache-cold tasks on sync wakeups:
  1404. */
  1405. if (sync && !task_hot(p, rq->clock, this_sd))
  1406. goto out_set_cpu;
  1407. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1408. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1409. /*
  1410. * If sync wakeup then subtract the (maximum possible)
  1411. * effect of the currently running task from the load
  1412. * of the current CPU:
  1413. */
  1414. if (sync)
  1415. tl -= current->se.load.weight;
  1416. if ((tl <= load &&
  1417. tl + target_load(cpu, idx) <= tl_per_task) ||
  1418. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1419. /*
  1420. * This domain has SD_WAKE_AFFINE and
  1421. * p is cache cold in this domain, and
  1422. * there is no bad imbalance.
  1423. */
  1424. schedstat_inc(this_sd, ttwu_move_affine);
  1425. schedstat_inc(p, se.nr_wakeups_affine);
  1426. goto out_set_cpu;
  1427. }
  1428. }
  1429. /*
  1430. * Start passive balancing when half the imbalance_pct
  1431. * limit is reached.
  1432. */
  1433. if (this_sd->flags & SD_WAKE_BALANCE) {
  1434. if (imbalance*this_load <= 100*load) {
  1435. schedstat_inc(this_sd, ttwu_move_balance);
  1436. schedstat_inc(p, se.nr_wakeups_passive);
  1437. goto out_set_cpu;
  1438. }
  1439. }
  1440. }
  1441. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1442. out_set_cpu:
  1443. new_cpu = wake_idle(new_cpu, p);
  1444. if (new_cpu != cpu) {
  1445. set_task_cpu(p, new_cpu);
  1446. task_rq_unlock(rq, &flags);
  1447. /* might preempt at this point */
  1448. rq = task_rq_lock(p, &flags);
  1449. old_state = p->state;
  1450. if (!(old_state & state))
  1451. goto out;
  1452. if (p->se.on_rq)
  1453. goto out_running;
  1454. this_cpu = smp_processor_id();
  1455. cpu = task_cpu(p);
  1456. }
  1457. out_activate:
  1458. #endif /* CONFIG_SMP */
  1459. schedstat_inc(p, se.nr_wakeups);
  1460. if (sync)
  1461. schedstat_inc(p, se.nr_wakeups_sync);
  1462. if (orig_cpu != cpu)
  1463. schedstat_inc(p, se.nr_wakeups_migrate);
  1464. if (cpu == this_cpu)
  1465. schedstat_inc(p, se.nr_wakeups_local);
  1466. else
  1467. schedstat_inc(p, se.nr_wakeups_remote);
  1468. update_rq_clock(rq);
  1469. activate_task(rq, p, 1);
  1470. check_preempt_curr(rq, p);
  1471. success = 1;
  1472. out_running:
  1473. p->state = TASK_RUNNING;
  1474. out:
  1475. task_rq_unlock(rq, &flags);
  1476. return success;
  1477. }
  1478. int fastcall wake_up_process(struct task_struct *p)
  1479. {
  1480. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1481. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1482. }
  1483. EXPORT_SYMBOL(wake_up_process);
  1484. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1485. {
  1486. return try_to_wake_up(p, state, 0);
  1487. }
  1488. /*
  1489. * Perform scheduler related setup for a newly forked process p.
  1490. * p is forked by current.
  1491. *
  1492. * __sched_fork() is basic setup used by init_idle() too:
  1493. */
  1494. static void __sched_fork(struct task_struct *p)
  1495. {
  1496. p->se.exec_start = 0;
  1497. p->se.sum_exec_runtime = 0;
  1498. p->se.prev_sum_exec_runtime = 0;
  1499. #ifdef CONFIG_SCHEDSTATS
  1500. p->se.wait_start = 0;
  1501. p->se.sum_sleep_runtime = 0;
  1502. p->se.sleep_start = 0;
  1503. p->se.block_start = 0;
  1504. p->se.sleep_max = 0;
  1505. p->se.block_max = 0;
  1506. p->se.exec_max = 0;
  1507. p->se.slice_max = 0;
  1508. p->se.wait_max = 0;
  1509. #endif
  1510. INIT_LIST_HEAD(&p->run_list);
  1511. p->se.on_rq = 0;
  1512. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1513. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1514. #endif
  1515. /*
  1516. * We mark the process as running here, but have not actually
  1517. * inserted it onto the runqueue yet. This guarantees that
  1518. * nobody will actually run it, and a signal or other external
  1519. * event cannot wake it up and insert it on the runqueue either.
  1520. */
  1521. p->state = TASK_RUNNING;
  1522. }
  1523. /*
  1524. * fork()/clone()-time setup:
  1525. */
  1526. void sched_fork(struct task_struct *p, int clone_flags)
  1527. {
  1528. int cpu = get_cpu();
  1529. __sched_fork(p);
  1530. #ifdef CONFIG_SMP
  1531. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1532. #endif
  1533. set_task_cpu(p, cpu);
  1534. /*
  1535. * Make sure we do not leak PI boosting priority to the child:
  1536. */
  1537. p->prio = current->normal_prio;
  1538. if (!rt_prio(p->prio))
  1539. p->sched_class = &fair_sched_class;
  1540. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1541. if (likely(sched_info_on()))
  1542. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1543. #endif
  1544. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1545. p->oncpu = 0;
  1546. #endif
  1547. #ifdef CONFIG_PREEMPT
  1548. /* Want to start with kernel preemption disabled. */
  1549. task_thread_info(p)->preempt_count = 1;
  1550. #endif
  1551. put_cpu();
  1552. }
  1553. /*
  1554. * wake_up_new_task - wake up a newly created task for the first time.
  1555. *
  1556. * This function will do some initial scheduler statistics housekeeping
  1557. * that must be done for every newly created context, then puts the task
  1558. * on the runqueue and wakes it.
  1559. */
  1560. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1561. {
  1562. unsigned long flags;
  1563. struct rq *rq;
  1564. rq = task_rq_lock(p, &flags);
  1565. BUG_ON(p->state != TASK_RUNNING);
  1566. update_rq_clock(rq);
  1567. p->prio = effective_prio(p);
  1568. if (!p->sched_class->task_new || !current->se.on_rq) {
  1569. activate_task(rq, p, 0);
  1570. } else {
  1571. /*
  1572. * Let the scheduling class do new task startup
  1573. * management (if any):
  1574. */
  1575. p->sched_class->task_new(rq, p);
  1576. inc_nr_running(p, rq);
  1577. }
  1578. check_preempt_curr(rq, p);
  1579. task_rq_unlock(rq, &flags);
  1580. }
  1581. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1582. /**
  1583. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1584. * @notifier: notifier struct to register
  1585. */
  1586. void preempt_notifier_register(struct preempt_notifier *notifier)
  1587. {
  1588. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1589. }
  1590. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1591. /**
  1592. * preempt_notifier_unregister - no longer interested in preemption notifications
  1593. * @notifier: notifier struct to unregister
  1594. *
  1595. * This is safe to call from within a preemption notifier.
  1596. */
  1597. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1598. {
  1599. hlist_del(&notifier->link);
  1600. }
  1601. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1602. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1603. {
  1604. struct preempt_notifier *notifier;
  1605. struct hlist_node *node;
  1606. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1607. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1608. }
  1609. static void
  1610. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1611. struct task_struct *next)
  1612. {
  1613. struct preempt_notifier *notifier;
  1614. struct hlist_node *node;
  1615. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1616. notifier->ops->sched_out(notifier, next);
  1617. }
  1618. #else
  1619. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1620. {
  1621. }
  1622. static void
  1623. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1624. struct task_struct *next)
  1625. {
  1626. }
  1627. #endif
  1628. /**
  1629. * prepare_task_switch - prepare to switch tasks
  1630. * @rq: the runqueue preparing to switch
  1631. * @prev: the current task that is being switched out
  1632. * @next: the task we are going to switch to.
  1633. *
  1634. * This is called with the rq lock held and interrupts off. It must
  1635. * be paired with a subsequent finish_task_switch after the context
  1636. * switch.
  1637. *
  1638. * prepare_task_switch sets up locking and calls architecture specific
  1639. * hooks.
  1640. */
  1641. static inline void
  1642. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1643. struct task_struct *next)
  1644. {
  1645. fire_sched_out_preempt_notifiers(prev, next);
  1646. prepare_lock_switch(rq, next);
  1647. prepare_arch_switch(next);
  1648. }
  1649. /**
  1650. * finish_task_switch - clean up after a task-switch
  1651. * @rq: runqueue associated with task-switch
  1652. * @prev: the thread we just switched away from.
  1653. *
  1654. * finish_task_switch must be called after the context switch, paired
  1655. * with a prepare_task_switch call before the context switch.
  1656. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1657. * and do any other architecture-specific cleanup actions.
  1658. *
  1659. * Note that we may have delayed dropping an mm in context_switch(). If
  1660. * so, we finish that here outside of the runqueue lock. (Doing it
  1661. * with the lock held can cause deadlocks; see schedule() for
  1662. * details.)
  1663. */
  1664. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1665. __releases(rq->lock)
  1666. {
  1667. struct mm_struct *mm = rq->prev_mm;
  1668. long prev_state;
  1669. rq->prev_mm = NULL;
  1670. /*
  1671. * A task struct has one reference for the use as "current".
  1672. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1673. * schedule one last time. The schedule call will never return, and
  1674. * the scheduled task must drop that reference.
  1675. * The test for TASK_DEAD must occur while the runqueue locks are
  1676. * still held, otherwise prev could be scheduled on another cpu, die
  1677. * there before we look at prev->state, and then the reference would
  1678. * be dropped twice.
  1679. * Manfred Spraul <manfred@colorfullife.com>
  1680. */
  1681. prev_state = prev->state;
  1682. finish_arch_switch(prev);
  1683. finish_lock_switch(rq, prev);
  1684. fire_sched_in_preempt_notifiers(current);
  1685. if (mm)
  1686. mmdrop(mm);
  1687. if (unlikely(prev_state == TASK_DEAD)) {
  1688. /*
  1689. * Remove function-return probe instances associated with this
  1690. * task and put them back on the free list.
  1691. */
  1692. kprobe_flush_task(prev);
  1693. put_task_struct(prev);
  1694. }
  1695. }
  1696. /**
  1697. * schedule_tail - first thing a freshly forked thread must call.
  1698. * @prev: the thread we just switched away from.
  1699. */
  1700. asmlinkage void schedule_tail(struct task_struct *prev)
  1701. __releases(rq->lock)
  1702. {
  1703. struct rq *rq = this_rq();
  1704. finish_task_switch(rq, prev);
  1705. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1706. /* In this case, finish_task_switch does not reenable preemption */
  1707. preempt_enable();
  1708. #endif
  1709. if (current->set_child_tid)
  1710. put_user(task_pid_vnr(current), current->set_child_tid);
  1711. }
  1712. /*
  1713. * context_switch - switch to the new MM and the new
  1714. * thread's register state.
  1715. */
  1716. static inline void
  1717. context_switch(struct rq *rq, struct task_struct *prev,
  1718. struct task_struct *next)
  1719. {
  1720. struct mm_struct *mm, *oldmm;
  1721. prepare_task_switch(rq, prev, next);
  1722. mm = next->mm;
  1723. oldmm = prev->active_mm;
  1724. /*
  1725. * For paravirt, this is coupled with an exit in switch_to to
  1726. * combine the page table reload and the switch backend into
  1727. * one hypercall.
  1728. */
  1729. arch_enter_lazy_cpu_mode();
  1730. if (unlikely(!mm)) {
  1731. next->active_mm = oldmm;
  1732. atomic_inc(&oldmm->mm_count);
  1733. enter_lazy_tlb(oldmm, next);
  1734. } else
  1735. switch_mm(oldmm, mm, next);
  1736. if (unlikely(!prev->mm)) {
  1737. prev->active_mm = NULL;
  1738. rq->prev_mm = oldmm;
  1739. }
  1740. /*
  1741. * Since the runqueue lock will be released by the next
  1742. * task (which is an invalid locking op but in the case
  1743. * of the scheduler it's an obvious special-case), so we
  1744. * do an early lockdep release here:
  1745. */
  1746. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1747. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1748. #endif
  1749. /* Here we just switch the register state and the stack. */
  1750. switch_to(prev, next, prev);
  1751. barrier();
  1752. /*
  1753. * this_rq must be evaluated again because prev may have moved
  1754. * CPUs since it called schedule(), thus the 'rq' on its stack
  1755. * frame will be invalid.
  1756. */
  1757. finish_task_switch(this_rq(), prev);
  1758. }
  1759. /*
  1760. * nr_running, nr_uninterruptible and nr_context_switches:
  1761. *
  1762. * externally visible scheduler statistics: current number of runnable
  1763. * threads, current number of uninterruptible-sleeping threads, total
  1764. * number of context switches performed since bootup.
  1765. */
  1766. unsigned long nr_running(void)
  1767. {
  1768. unsigned long i, sum = 0;
  1769. for_each_online_cpu(i)
  1770. sum += cpu_rq(i)->nr_running;
  1771. return sum;
  1772. }
  1773. unsigned long nr_uninterruptible(void)
  1774. {
  1775. unsigned long i, sum = 0;
  1776. for_each_possible_cpu(i)
  1777. sum += cpu_rq(i)->nr_uninterruptible;
  1778. /*
  1779. * Since we read the counters lockless, it might be slightly
  1780. * inaccurate. Do not allow it to go below zero though:
  1781. */
  1782. if (unlikely((long)sum < 0))
  1783. sum = 0;
  1784. return sum;
  1785. }
  1786. unsigned long long nr_context_switches(void)
  1787. {
  1788. int i;
  1789. unsigned long long sum = 0;
  1790. for_each_possible_cpu(i)
  1791. sum += cpu_rq(i)->nr_switches;
  1792. return sum;
  1793. }
  1794. unsigned long nr_iowait(void)
  1795. {
  1796. unsigned long i, sum = 0;
  1797. for_each_possible_cpu(i)
  1798. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1799. return sum;
  1800. }
  1801. unsigned long nr_active(void)
  1802. {
  1803. unsigned long i, running = 0, uninterruptible = 0;
  1804. for_each_online_cpu(i) {
  1805. running += cpu_rq(i)->nr_running;
  1806. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1807. }
  1808. if (unlikely((long)uninterruptible < 0))
  1809. uninterruptible = 0;
  1810. return running + uninterruptible;
  1811. }
  1812. /*
  1813. * Update rq->cpu_load[] statistics. This function is usually called every
  1814. * scheduler tick (TICK_NSEC).
  1815. */
  1816. static void update_cpu_load(struct rq *this_rq)
  1817. {
  1818. unsigned long this_load = this_rq->load.weight;
  1819. int i, scale;
  1820. this_rq->nr_load_updates++;
  1821. /* Update our load: */
  1822. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1823. unsigned long old_load, new_load;
  1824. /* scale is effectively 1 << i now, and >> i divides by scale */
  1825. old_load = this_rq->cpu_load[i];
  1826. new_load = this_load;
  1827. /*
  1828. * Round up the averaging division if load is increasing. This
  1829. * prevents us from getting stuck on 9 if the load is 10, for
  1830. * example.
  1831. */
  1832. if (new_load > old_load)
  1833. new_load += scale-1;
  1834. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1835. }
  1836. }
  1837. #ifdef CONFIG_SMP
  1838. /*
  1839. * double_rq_lock - safely lock two runqueues
  1840. *
  1841. * Note this does not disable interrupts like task_rq_lock,
  1842. * you need to do so manually before calling.
  1843. */
  1844. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1845. __acquires(rq1->lock)
  1846. __acquires(rq2->lock)
  1847. {
  1848. BUG_ON(!irqs_disabled());
  1849. if (rq1 == rq2) {
  1850. spin_lock(&rq1->lock);
  1851. __acquire(rq2->lock); /* Fake it out ;) */
  1852. } else {
  1853. if (rq1 < rq2) {
  1854. spin_lock(&rq1->lock);
  1855. spin_lock(&rq2->lock);
  1856. } else {
  1857. spin_lock(&rq2->lock);
  1858. spin_lock(&rq1->lock);
  1859. }
  1860. }
  1861. update_rq_clock(rq1);
  1862. update_rq_clock(rq2);
  1863. }
  1864. /*
  1865. * double_rq_unlock - safely unlock two runqueues
  1866. *
  1867. * Note this does not restore interrupts like task_rq_unlock,
  1868. * you need to do so manually after calling.
  1869. */
  1870. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1871. __releases(rq1->lock)
  1872. __releases(rq2->lock)
  1873. {
  1874. spin_unlock(&rq1->lock);
  1875. if (rq1 != rq2)
  1876. spin_unlock(&rq2->lock);
  1877. else
  1878. __release(rq2->lock);
  1879. }
  1880. /*
  1881. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1882. */
  1883. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1884. __releases(this_rq->lock)
  1885. __acquires(busiest->lock)
  1886. __acquires(this_rq->lock)
  1887. {
  1888. if (unlikely(!irqs_disabled())) {
  1889. /* printk() doesn't work good under rq->lock */
  1890. spin_unlock(&this_rq->lock);
  1891. BUG_ON(1);
  1892. }
  1893. if (unlikely(!spin_trylock(&busiest->lock))) {
  1894. if (busiest < this_rq) {
  1895. spin_unlock(&this_rq->lock);
  1896. spin_lock(&busiest->lock);
  1897. spin_lock(&this_rq->lock);
  1898. } else
  1899. spin_lock(&busiest->lock);
  1900. }
  1901. }
  1902. /*
  1903. * If dest_cpu is allowed for this process, migrate the task to it.
  1904. * This is accomplished by forcing the cpu_allowed mask to only
  1905. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1906. * the cpu_allowed mask is restored.
  1907. */
  1908. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1909. {
  1910. struct migration_req req;
  1911. unsigned long flags;
  1912. struct rq *rq;
  1913. rq = task_rq_lock(p, &flags);
  1914. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1915. || unlikely(cpu_is_offline(dest_cpu)))
  1916. goto out;
  1917. /* force the process onto the specified CPU */
  1918. if (migrate_task(p, dest_cpu, &req)) {
  1919. /* Need to wait for migration thread (might exit: take ref). */
  1920. struct task_struct *mt = rq->migration_thread;
  1921. get_task_struct(mt);
  1922. task_rq_unlock(rq, &flags);
  1923. wake_up_process(mt);
  1924. put_task_struct(mt);
  1925. wait_for_completion(&req.done);
  1926. return;
  1927. }
  1928. out:
  1929. task_rq_unlock(rq, &flags);
  1930. }
  1931. /*
  1932. * sched_exec - execve() is a valuable balancing opportunity, because at
  1933. * this point the task has the smallest effective memory and cache footprint.
  1934. */
  1935. void sched_exec(void)
  1936. {
  1937. int new_cpu, this_cpu = get_cpu();
  1938. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1939. put_cpu();
  1940. if (new_cpu != this_cpu)
  1941. sched_migrate_task(current, new_cpu);
  1942. }
  1943. /*
  1944. * pull_task - move a task from a remote runqueue to the local runqueue.
  1945. * Both runqueues must be locked.
  1946. */
  1947. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1948. struct rq *this_rq, int this_cpu)
  1949. {
  1950. deactivate_task(src_rq, p, 0);
  1951. set_task_cpu(p, this_cpu);
  1952. activate_task(this_rq, p, 0);
  1953. /*
  1954. * Note that idle threads have a prio of MAX_PRIO, for this test
  1955. * to be always true for them.
  1956. */
  1957. check_preempt_curr(this_rq, p);
  1958. }
  1959. /*
  1960. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1961. */
  1962. static
  1963. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1964. struct sched_domain *sd, enum cpu_idle_type idle,
  1965. int *all_pinned)
  1966. {
  1967. /*
  1968. * We do not migrate tasks that are:
  1969. * 1) running (obviously), or
  1970. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1971. * 3) are cache-hot on their current CPU.
  1972. */
  1973. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1974. schedstat_inc(p, se.nr_failed_migrations_affine);
  1975. return 0;
  1976. }
  1977. *all_pinned = 0;
  1978. if (task_running(rq, p)) {
  1979. schedstat_inc(p, se.nr_failed_migrations_running);
  1980. return 0;
  1981. }
  1982. /*
  1983. * Aggressive migration if:
  1984. * 1) task is cache cold, or
  1985. * 2) too many balance attempts have failed.
  1986. */
  1987. if (!task_hot(p, rq->clock, sd) ||
  1988. sd->nr_balance_failed > sd->cache_nice_tries) {
  1989. #ifdef CONFIG_SCHEDSTATS
  1990. if (task_hot(p, rq->clock, sd)) {
  1991. schedstat_inc(sd, lb_hot_gained[idle]);
  1992. schedstat_inc(p, se.nr_forced_migrations);
  1993. }
  1994. #endif
  1995. return 1;
  1996. }
  1997. if (task_hot(p, rq->clock, sd)) {
  1998. schedstat_inc(p, se.nr_failed_migrations_hot);
  1999. return 0;
  2000. }
  2001. return 1;
  2002. }
  2003. static unsigned long
  2004. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2005. unsigned long max_load_move, struct sched_domain *sd,
  2006. enum cpu_idle_type idle, int *all_pinned,
  2007. int *this_best_prio, struct rq_iterator *iterator)
  2008. {
  2009. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2010. struct task_struct *p;
  2011. long rem_load_move = max_load_move;
  2012. if (max_load_move == 0)
  2013. goto out;
  2014. pinned = 1;
  2015. /*
  2016. * Start the load-balancing iterator:
  2017. */
  2018. p = iterator->start(iterator->arg);
  2019. next:
  2020. if (!p || loops++ > sysctl_sched_nr_migrate)
  2021. goto out;
  2022. /*
  2023. * To help distribute high priority tasks across CPUs we don't
  2024. * skip a task if it will be the highest priority task (i.e. smallest
  2025. * prio value) on its new queue regardless of its load weight
  2026. */
  2027. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2028. SCHED_LOAD_SCALE_FUZZ;
  2029. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2030. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2031. p = iterator->next(iterator->arg);
  2032. goto next;
  2033. }
  2034. pull_task(busiest, p, this_rq, this_cpu);
  2035. pulled++;
  2036. rem_load_move -= p->se.load.weight;
  2037. /*
  2038. * We only want to steal up to the prescribed amount of weighted load.
  2039. */
  2040. if (rem_load_move > 0) {
  2041. if (p->prio < *this_best_prio)
  2042. *this_best_prio = p->prio;
  2043. p = iterator->next(iterator->arg);
  2044. goto next;
  2045. }
  2046. out:
  2047. /*
  2048. * Right now, this is one of only two places pull_task() is called,
  2049. * so we can safely collect pull_task() stats here rather than
  2050. * inside pull_task().
  2051. */
  2052. schedstat_add(sd, lb_gained[idle], pulled);
  2053. if (all_pinned)
  2054. *all_pinned = pinned;
  2055. return max_load_move - rem_load_move;
  2056. }
  2057. /*
  2058. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2059. * this_rq, as part of a balancing operation within domain "sd".
  2060. * Returns 1 if successful and 0 otherwise.
  2061. *
  2062. * Called with both runqueues locked.
  2063. */
  2064. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2065. unsigned long max_load_move,
  2066. struct sched_domain *sd, enum cpu_idle_type idle,
  2067. int *all_pinned)
  2068. {
  2069. const struct sched_class *class = sched_class_highest;
  2070. unsigned long total_load_moved = 0;
  2071. int this_best_prio = this_rq->curr->prio;
  2072. do {
  2073. total_load_moved +=
  2074. class->load_balance(this_rq, this_cpu, busiest,
  2075. max_load_move - total_load_moved,
  2076. sd, idle, all_pinned, &this_best_prio);
  2077. class = class->next;
  2078. } while (class && max_load_move > total_load_moved);
  2079. return total_load_moved > 0;
  2080. }
  2081. static int
  2082. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2083. struct sched_domain *sd, enum cpu_idle_type idle,
  2084. struct rq_iterator *iterator)
  2085. {
  2086. struct task_struct *p = iterator->start(iterator->arg);
  2087. int pinned = 0;
  2088. while (p) {
  2089. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2090. pull_task(busiest, p, this_rq, this_cpu);
  2091. /*
  2092. * Right now, this is only the second place pull_task()
  2093. * is called, so we can safely collect pull_task()
  2094. * stats here rather than inside pull_task().
  2095. */
  2096. schedstat_inc(sd, lb_gained[idle]);
  2097. return 1;
  2098. }
  2099. p = iterator->next(iterator->arg);
  2100. }
  2101. return 0;
  2102. }
  2103. /*
  2104. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2105. * part of active balancing operations within "domain".
  2106. * Returns 1 if successful and 0 otherwise.
  2107. *
  2108. * Called with both runqueues locked.
  2109. */
  2110. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2111. struct sched_domain *sd, enum cpu_idle_type idle)
  2112. {
  2113. const struct sched_class *class;
  2114. for (class = sched_class_highest; class; class = class->next)
  2115. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2116. return 1;
  2117. return 0;
  2118. }
  2119. /*
  2120. * find_busiest_group finds and returns the busiest CPU group within the
  2121. * domain. It calculates and returns the amount of weighted load which
  2122. * should be moved to restore balance via the imbalance parameter.
  2123. */
  2124. static struct sched_group *
  2125. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2126. unsigned long *imbalance, enum cpu_idle_type idle,
  2127. int *sd_idle, cpumask_t *cpus, int *balance)
  2128. {
  2129. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2130. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2131. unsigned long max_pull;
  2132. unsigned long busiest_load_per_task, busiest_nr_running;
  2133. unsigned long this_load_per_task, this_nr_running;
  2134. int load_idx, group_imb = 0;
  2135. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2136. int power_savings_balance = 1;
  2137. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2138. unsigned long min_nr_running = ULONG_MAX;
  2139. struct sched_group *group_min = NULL, *group_leader = NULL;
  2140. #endif
  2141. max_load = this_load = total_load = total_pwr = 0;
  2142. busiest_load_per_task = busiest_nr_running = 0;
  2143. this_load_per_task = this_nr_running = 0;
  2144. if (idle == CPU_NOT_IDLE)
  2145. load_idx = sd->busy_idx;
  2146. else if (idle == CPU_NEWLY_IDLE)
  2147. load_idx = sd->newidle_idx;
  2148. else
  2149. load_idx = sd->idle_idx;
  2150. do {
  2151. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2152. int local_group;
  2153. int i;
  2154. int __group_imb = 0;
  2155. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2156. unsigned long sum_nr_running, sum_weighted_load;
  2157. local_group = cpu_isset(this_cpu, group->cpumask);
  2158. if (local_group)
  2159. balance_cpu = first_cpu(group->cpumask);
  2160. /* Tally up the load of all CPUs in the group */
  2161. sum_weighted_load = sum_nr_running = avg_load = 0;
  2162. max_cpu_load = 0;
  2163. min_cpu_load = ~0UL;
  2164. for_each_cpu_mask(i, group->cpumask) {
  2165. struct rq *rq;
  2166. if (!cpu_isset(i, *cpus))
  2167. continue;
  2168. rq = cpu_rq(i);
  2169. if (*sd_idle && rq->nr_running)
  2170. *sd_idle = 0;
  2171. /* Bias balancing toward cpus of our domain */
  2172. if (local_group) {
  2173. if (idle_cpu(i) && !first_idle_cpu) {
  2174. first_idle_cpu = 1;
  2175. balance_cpu = i;
  2176. }
  2177. load = target_load(i, load_idx);
  2178. } else {
  2179. load = source_load(i, load_idx);
  2180. if (load > max_cpu_load)
  2181. max_cpu_load = load;
  2182. if (min_cpu_load > load)
  2183. min_cpu_load = load;
  2184. }
  2185. avg_load += load;
  2186. sum_nr_running += rq->nr_running;
  2187. sum_weighted_load += weighted_cpuload(i);
  2188. }
  2189. /*
  2190. * First idle cpu or the first cpu(busiest) in this sched group
  2191. * is eligible for doing load balancing at this and above
  2192. * domains. In the newly idle case, we will allow all the cpu's
  2193. * to do the newly idle load balance.
  2194. */
  2195. if (idle != CPU_NEWLY_IDLE && local_group &&
  2196. balance_cpu != this_cpu && balance) {
  2197. *balance = 0;
  2198. goto ret;
  2199. }
  2200. total_load += avg_load;
  2201. total_pwr += group->__cpu_power;
  2202. /* Adjust by relative CPU power of the group */
  2203. avg_load = sg_div_cpu_power(group,
  2204. avg_load * SCHED_LOAD_SCALE);
  2205. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2206. __group_imb = 1;
  2207. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2208. if (local_group) {
  2209. this_load = avg_load;
  2210. this = group;
  2211. this_nr_running = sum_nr_running;
  2212. this_load_per_task = sum_weighted_load;
  2213. } else if (avg_load > max_load &&
  2214. (sum_nr_running > group_capacity || __group_imb)) {
  2215. max_load = avg_load;
  2216. busiest = group;
  2217. busiest_nr_running = sum_nr_running;
  2218. busiest_load_per_task = sum_weighted_load;
  2219. group_imb = __group_imb;
  2220. }
  2221. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2222. /*
  2223. * Busy processors will not participate in power savings
  2224. * balance.
  2225. */
  2226. if (idle == CPU_NOT_IDLE ||
  2227. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2228. goto group_next;
  2229. /*
  2230. * If the local group is idle or completely loaded
  2231. * no need to do power savings balance at this domain
  2232. */
  2233. if (local_group && (this_nr_running >= group_capacity ||
  2234. !this_nr_running))
  2235. power_savings_balance = 0;
  2236. /*
  2237. * If a group is already running at full capacity or idle,
  2238. * don't include that group in power savings calculations
  2239. */
  2240. if (!power_savings_balance || sum_nr_running >= group_capacity
  2241. || !sum_nr_running)
  2242. goto group_next;
  2243. /*
  2244. * Calculate the group which has the least non-idle load.
  2245. * This is the group from where we need to pick up the load
  2246. * for saving power
  2247. */
  2248. if ((sum_nr_running < min_nr_running) ||
  2249. (sum_nr_running == min_nr_running &&
  2250. first_cpu(group->cpumask) <
  2251. first_cpu(group_min->cpumask))) {
  2252. group_min = group;
  2253. min_nr_running = sum_nr_running;
  2254. min_load_per_task = sum_weighted_load /
  2255. sum_nr_running;
  2256. }
  2257. /*
  2258. * Calculate the group which is almost near its
  2259. * capacity but still has some space to pick up some load
  2260. * from other group and save more power
  2261. */
  2262. if (sum_nr_running <= group_capacity - 1) {
  2263. if (sum_nr_running > leader_nr_running ||
  2264. (sum_nr_running == leader_nr_running &&
  2265. first_cpu(group->cpumask) >
  2266. first_cpu(group_leader->cpumask))) {
  2267. group_leader = group;
  2268. leader_nr_running = sum_nr_running;
  2269. }
  2270. }
  2271. group_next:
  2272. #endif
  2273. group = group->next;
  2274. } while (group != sd->groups);
  2275. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2276. goto out_balanced;
  2277. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2278. if (this_load >= avg_load ||
  2279. 100*max_load <= sd->imbalance_pct*this_load)
  2280. goto out_balanced;
  2281. busiest_load_per_task /= busiest_nr_running;
  2282. if (group_imb)
  2283. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2284. /*
  2285. * We're trying to get all the cpus to the average_load, so we don't
  2286. * want to push ourselves above the average load, nor do we wish to
  2287. * reduce the max loaded cpu below the average load, as either of these
  2288. * actions would just result in more rebalancing later, and ping-pong
  2289. * tasks around. Thus we look for the minimum possible imbalance.
  2290. * Negative imbalances (*we* are more loaded than anyone else) will
  2291. * be counted as no imbalance for these purposes -- we can't fix that
  2292. * by pulling tasks to us. Be careful of negative numbers as they'll
  2293. * appear as very large values with unsigned longs.
  2294. */
  2295. if (max_load <= busiest_load_per_task)
  2296. goto out_balanced;
  2297. /*
  2298. * In the presence of smp nice balancing, certain scenarios can have
  2299. * max load less than avg load(as we skip the groups at or below
  2300. * its cpu_power, while calculating max_load..)
  2301. */
  2302. if (max_load < avg_load) {
  2303. *imbalance = 0;
  2304. goto small_imbalance;
  2305. }
  2306. /* Don't want to pull so many tasks that a group would go idle */
  2307. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2308. /* How much load to actually move to equalise the imbalance */
  2309. *imbalance = min(max_pull * busiest->__cpu_power,
  2310. (avg_load - this_load) * this->__cpu_power)
  2311. / SCHED_LOAD_SCALE;
  2312. /*
  2313. * if *imbalance is less than the average load per runnable task
  2314. * there is no gaurantee that any tasks will be moved so we'll have
  2315. * a think about bumping its value to force at least one task to be
  2316. * moved
  2317. */
  2318. if (*imbalance < busiest_load_per_task) {
  2319. unsigned long tmp, pwr_now, pwr_move;
  2320. unsigned int imbn;
  2321. small_imbalance:
  2322. pwr_move = pwr_now = 0;
  2323. imbn = 2;
  2324. if (this_nr_running) {
  2325. this_load_per_task /= this_nr_running;
  2326. if (busiest_load_per_task > this_load_per_task)
  2327. imbn = 1;
  2328. } else
  2329. this_load_per_task = SCHED_LOAD_SCALE;
  2330. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2331. busiest_load_per_task * imbn) {
  2332. *imbalance = busiest_load_per_task;
  2333. return busiest;
  2334. }
  2335. /*
  2336. * OK, we don't have enough imbalance to justify moving tasks,
  2337. * however we may be able to increase total CPU power used by
  2338. * moving them.
  2339. */
  2340. pwr_now += busiest->__cpu_power *
  2341. min(busiest_load_per_task, max_load);
  2342. pwr_now += this->__cpu_power *
  2343. min(this_load_per_task, this_load);
  2344. pwr_now /= SCHED_LOAD_SCALE;
  2345. /* Amount of load we'd subtract */
  2346. tmp = sg_div_cpu_power(busiest,
  2347. busiest_load_per_task * SCHED_LOAD_SCALE);
  2348. if (max_load > tmp)
  2349. pwr_move += busiest->__cpu_power *
  2350. min(busiest_load_per_task, max_load - tmp);
  2351. /* Amount of load we'd add */
  2352. if (max_load * busiest->__cpu_power <
  2353. busiest_load_per_task * SCHED_LOAD_SCALE)
  2354. tmp = sg_div_cpu_power(this,
  2355. max_load * busiest->__cpu_power);
  2356. else
  2357. tmp = sg_div_cpu_power(this,
  2358. busiest_load_per_task * SCHED_LOAD_SCALE);
  2359. pwr_move += this->__cpu_power *
  2360. min(this_load_per_task, this_load + tmp);
  2361. pwr_move /= SCHED_LOAD_SCALE;
  2362. /* Move if we gain throughput */
  2363. if (pwr_move > pwr_now)
  2364. *imbalance = busiest_load_per_task;
  2365. }
  2366. return busiest;
  2367. out_balanced:
  2368. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2369. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2370. goto ret;
  2371. if (this == group_leader && group_leader != group_min) {
  2372. *imbalance = min_load_per_task;
  2373. return group_min;
  2374. }
  2375. #endif
  2376. ret:
  2377. *imbalance = 0;
  2378. return NULL;
  2379. }
  2380. /*
  2381. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2382. */
  2383. static struct rq *
  2384. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2385. unsigned long imbalance, cpumask_t *cpus)
  2386. {
  2387. struct rq *busiest = NULL, *rq;
  2388. unsigned long max_load = 0;
  2389. int i;
  2390. for_each_cpu_mask(i, group->cpumask) {
  2391. unsigned long wl;
  2392. if (!cpu_isset(i, *cpus))
  2393. continue;
  2394. rq = cpu_rq(i);
  2395. wl = weighted_cpuload(i);
  2396. if (rq->nr_running == 1 && wl > imbalance)
  2397. continue;
  2398. if (wl > max_load) {
  2399. max_load = wl;
  2400. busiest = rq;
  2401. }
  2402. }
  2403. return busiest;
  2404. }
  2405. /*
  2406. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2407. * so long as it is large enough.
  2408. */
  2409. #define MAX_PINNED_INTERVAL 512
  2410. /*
  2411. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2412. * tasks if there is an imbalance.
  2413. */
  2414. static int load_balance(int this_cpu, struct rq *this_rq,
  2415. struct sched_domain *sd, enum cpu_idle_type idle,
  2416. int *balance)
  2417. {
  2418. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2419. struct sched_group *group;
  2420. unsigned long imbalance;
  2421. struct rq *busiest;
  2422. cpumask_t cpus = CPU_MASK_ALL;
  2423. unsigned long flags;
  2424. /*
  2425. * When power savings policy is enabled for the parent domain, idle
  2426. * sibling can pick up load irrespective of busy siblings. In this case,
  2427. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2428. * portraying it as CPU_NOT_IDLE.
  2429. */
  2430. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2431. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2432. sd_idle = 1;
  2433. schedstat_inc(sd, lb_count[idle]);
  2434. redo:
  2435. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2436. &cpus, balance);
  2437. if (*balance == 0)
  2438. goto out_balanced;
  2439. if (!group) {
  2440. schedstat_inc(sd, lb_nobusyg[idle]);
  2441. goto out_balanced;
  2442. }
  2443. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2444. if (!busiest) {
  2445. schedstat_inc(sd, lb_nobusyq[idle]);
  2446. goto out_balanced;
  2447. }
  2448. BUG_ON(busiest == this_rq);
  2449. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2450. ld_moved = 0;
  2451. if (busiest->nr_running > 1) {
  2452. /*
  2453. * Attempt to move tasks. If find_busiest_group has found
  2454. * an imbalance but busiest->nr_running <= 1, the group is
  2455. * still unbalanced. ld_moved simply stays zero, so it is
  2456. * correctly treated as an imbalance.
  2457. */
  2458. local_irq_save(flags);
  2459. double_rq_lock(this_rq, busiest);
  2460. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2461. imbalance, sd, idle, &all_pinned);
  2462. double_rq_unlock(this_rq, busiest);
  2463. local_irq_restore(flags);
  2464. /*
  2465. * some other cpu did the load balance for us.
  2466. */
  2467. if (ld_moved && this_cpu != smp_processor_id())
  2468. resched_cpu(this_cpu);
  2469. /* All tasks on this runqueue were pinned by CPU affinity */
  2470. if (unlikely(all_pinned)) {
  2471. cpu_clear(cpu_of(busiest), cpus);
  2472. if (!cpus_empty(cpus))
  2473. goto redo;
  2474. goto out_balanced;
  2475. }
  2476. }
  2477. if (!ld_moved) {
  2478. schedstat_inc(sd, lb_failed[idle]);
  2479. sd->nr_balance_failed++;
  2480. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2481. spin_lock_irqsave(&busiest->lock, flags);
  2482. /* don't kick the migration_thread, if the curr
  2483. * task on busiest cpu can't be moved to this_cpu
  2484. */
  2485. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2486. spin_unlock_irqrestore(&busiest->lock, flags);
  2487. all_pinned = 1;
  2488. goto out_one_pinned;
  2489. }
  2490. if (!busiest->active_balance) {
  2491. busiest->active_balance = 1;
  2492. busiest->push_cpu = this_cpu;
  2493. active_balance = 1;
  2494. }
  2495. spin_unlock_irqrestore(&busiest->lock, flags);
  2496. if (active_balance)
  2497. wake_up_process(busiest->migration_thread);
  2498. /*
  2499. * We've kicked active balancing, reset the failure
  2500. * counter.
  2501. */
  2502. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2503. }
  2504. } else
  2505. sd->nr_balance_failed = 0;
  2506. if (likely(!active_balance)) {
  2507. /* We were unbalanced, so reset the balancing interval */
  2508. sd->balance_interval = sd->min_interval;
  2509. } else {
  2510. /*
  2511. * If we've begun active balancing, start to back off. This
  2512. * case may not be covered by the all_pinned logic if there
  2513. * is only 1 task on the busy runqueue (because we don't call
  2514. * move_tasks).
  2515. */
  2516. if (sd->balance_interval < sd->max_interval)
  2517. sd->balance_interval *= 2;
  2518. }
  2519. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2520. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2521. return -1;
  2522. return ld_moved;
  2523. out_balanced:
  2524. schedstat_inc(sd, lb_balanced[idle]);
  2525. sd->nr_balance_failed = 0;
  2526. out_one_pinned:
  2527. /* tune up the balancing interval */
  2528. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2529. (sd->balance_interval < sd->max_interval))
  2530. sd->balance_interval *= 2;
  2531. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2532. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2533. return -1;
  2534. return 0;
  2535. }
  2536. /*
  2537. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2538. * tasks if there is an imbalance.
  2539. *
  2540. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2541. * this_rq is locked.
  2542. */
  2543. static int
  2544. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2545. {
  2546. struct sched_group *group;
  2547. struct rq *busiest = NULL;
  2548. unsigned long imbalance;
  2549. int ld_moved = 0;
  2550. int sd_idle = 0;
  2551. int all_pinned = 0;
  2552. cpumask_t cpus = CPU_MASK_ALL;
  2553. /*
  2554. * When power savings policy is enabled for the parent domain, idle
  2555. * sibling can pick up load irrespective of busy siblings. In this case,
  2556. * let the state of idle sibling percolate up as IDLE, instead of
  2557. * portraying it as CPU_NOT_IDLE.
  2558. */
  2559. if (sd->flags & SD_SHARE_CPUPOWER &&
  2560. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2561. sd_idle = 1;
  2562. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2563. redo:
  2564. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2565. &sd_idle, &cpus, NULL);
  2566. if (!group) {
  2567. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2568. goto out_balanced;
  2569. }
  2570. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2571. &cpus);
  2572. if (!busiest) {
  2573. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2574. goto out_balanced;
  2575. }
  2576. BUG_ON(busiest == this_rq);
  2577. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2578. ld_moved = 0;
  2579. if (busiest->nr_running > 1) {
  2580. /* Attempt to move tasks */
  2581. double_lock_balance(this_rq, busiest);
  2582. /* this_rq->clock is already updated */
  2583. update_rq_clock(busiest);
  2584. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2585. imbalance, sd, CPU_NEWLY_IDLE,
  2586. &all_pinned);
  2587. spin_unlock(&busiest->lock);
  2588. if (unlikely(all_pinned)) {
  2589. cpu_clear(cpu_of(busiest), cpus);
  2590. if (!cpus_empty(cpus))
  2591. goto redo;
  2592. }
  2593. }
  2594. if (!ld_moved) {
  2595. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2596. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2597. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2598. return -1;
  2599. } else
  2600. sd->nr_balance_failed = 0;
  2601. return ld_moved;
  2602. out_balanced:
  2603. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2604. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2605. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2606. return -1;
  2607. sd->nr_balance_failed = 0;
  2608. return 0;
  2609. }
  2610. /*
  2611. * idle_balance is called by schedule() if this_cpu is about to become
  2612. * idle. Attempts to pull tasks from other CPUs.
  2613. */
  2614. static void idle_balance(int this_cpu, struct rq *this_rq)
  2615. {
  2616. struct sched_domain *sd;
  2617. int pulled_task = -1;
  2618. unsigned long next_balance = jiffies + HZ;
  2619. for_each_domain(this_cpu, sd) {
  2620. unsigned long interval;
  2621. if (!(sd->flags & SD_LOAD_BALANCE))
  2622. continue;
  2623. if (sd->flags & SD_BALANCE_NEWIDLE)
  2624. /* If we've pulled tasks over stop searching: */
  2625. pulled_task = load_balance_newidle(this_cpu,
  2626. this_rq, sd);
  2627. interval = msecs_to_jiffies(sd->balance_interval);
  2628. if (time_after(next_balance, sd->last_balance + interval))
  2629. next_balance = sd->last_balance + interval;
  2630. if (pulled_task)
  2631. break;
  2632. }
  2633. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2634. /*
  2635. * We are going idle. next_balance may be set based on
  2636. * a busy processor. So reset next_balance.
  2637. */
  2638. this_rq->next_balance = next_balance;
  2639. }
  2640. }
  2641. /*
  2642. * active_load_balance is run by migration threads. It pushes running tasks
  2643. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2644. * running on each physical CPU where possible, and avoids physical /
  2645. * logical imbalances.
  2646. *
  2647. * Called with busiest_rq locked.
  2648. */
  2649. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2650. {
  2651. int target_cpu = busiest_rq->push_cpu;
  2652. struct sched_domain *sd;
  2653. struct rq *target_rq;
  2654. /* Is there any task to move? */
  2655. if (busiest_rq->nr_running <= 1)
  2656. return;
  2657. target_rq = cpu_rq(target_cpu);
  2658. /*
  2659. * This condition is "impossible", if it occurs
  2660. * we need to fix it. Originally reported by
  2661. * Bjorn Helgaas on a 128-cpu setup.
  2662. */
  2663. BUG_ON(busiest_rq == target_rq);
  2664. /* move a task from busiest_rq to target_rq */
  2665. double_lock_balance(busiest_rq, target_rq);
  2666. update_rq_clock(busiest_rq);
  2667. update_rq_clock(target_rq);
  2668. /* Search for an sd spanning us and the target CPU. */
  2669. for_each_domain(target_cpu, sd) {
  2670. if ((sd->flags & SD_LOAD_BALANCE) &&
  2671. cpu_isset(busiest_cpu, sd->span))
  2672. break;
  2673. }
  2674. if (likely(sd)) {
  2675. schedstat_inc(sd, alb_count);
  2676. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2677. sd, CPU_IDLE))
  2678. schedstat_inc(sd, alb_pushed);
  2679. else
  2680. schedstat_inc(sd, alb_failed);
  2681. }
  2682. spin_unlock(&target_rq->lock);
  2683. }
  2684. #ifdef CONFIG_NO_HZ
  2685. static struct {
  2686. atomic_t load_balancer;
  2687. cpumask_t cpu_mask;
  2688. } nohz ____cacheline_aligned = {
  2689. .load_balancer = ATOMIC_INIT(-1),
  2690. .cpu_mask = CPU_MASK_NONE,
  2691. };
  2692. /*
  2693. * This routine will try to nominate the ilb (idle load balancing)
  2694. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2695. * load balancing on behalf of all those cpus. If all the cpus in the system
  2696. * go into this tickless mode, then there will be no ilb owner (as there is
  2697. * no need for one) and all the cpus will sleep till the next wakeup event
  2698. * arrives...
  2699. *
  2700. * For the ilb owner, tick is not stopped. And this tick will be used
  2701. * for idle load balancing. ilb owner will still be part of
  2702. * nohz.cpu_mask..
  2703. *
  2704. * While stopping the tick, this cpu will become the ilb owner if there
  2705. * is no other owner. And will be the owner till that cpu becomes busy
  2706. * or if all cpus in the system stop their ticks at which point
  2707. * there is no need for ilb owner.
  2708. *
  2709. * When the ilb owner becomes busy, it nominates another owner, during the
  2710. * next busy scheduler_tick()
  2711. */
  2712. int select_nohz_load_balancer(int stop_tick)
  2713. {
  2714. int cpu = smp_processor_id();
  2715. if (stop_tick) {
  2716. cpu_set(cpu, nohz.cpu_mask);
  2717. cpu_rq(cpu)->in_nohz_recently = 1;
  2718. /*
  2719. * If we are going offline and still the leader, give up!
  2720. */
  2721. if (cpu_is_offline(cpu) &&
  2722. atomic_read(&nohz.load_balancer) == cpu) {
  2723. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2724. BUG();
  2725. return 0;
  2726. }
  2727. /* time for ilb owner also to sleep */
  2728. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2729. if (atomic_read(&nohz.load_balancer) == cpu)
  2730. atomic_set(&nohz.load_balancer, -1);
  2731. return 0;
  2732. }
  2733. if (atomic_read(&nohz.load_balancer) == -1) {
  2734. /* make me the ilb owner */
  2735. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2736. return 1;
  2737. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2738. return 1;
  2739. } else {
  2740. if (!cpu_isset(cpu, nohz.cpu_mask))
  2741. return 0;
  2742. cpu_clear(cpu, nohz.cpu_mask);
  2743. if (atomic_read(&nohz.load_balancer) == cpu)
  2744. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2745. BUG();
  2746. }
  2747. return 0;
  2748. }
  2749. #endif
  2750. static DEFINE_SPINLOCK(balancing);
  2751. /*
  2752. * It checks each scheduling domain to see if it is due to be balanced,
  2753. * and initiates a balancing operation if so.
  2754. *
  2755. * Balancing parameters are set up in arch_init_sched_domains.
  2756. */
  2757. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2758. {
  2759. int balance = 1;
  2760. struct rq *rq = cpu_rq(cpu);
  2761. unsigned long interval;
  2762. struct sched_domain *sd;
  2763. /* Earliest time when we have to do rebalance again */
  2764. unsigned long next_balance = jiffies + 60*HZ;
  2765. int update_next_balance = 0;
  2766. for_each_domain(cpu, sd) {
  2767. if (!(sd->flags & SD_LOAD_BALANCE))
  2768. continue;
  2769. interval = sd->balance_interval;
  2770. if (idle != CPU_IDLE)
  2771. interval *= sd->busy_factor;
  2772. /* scale ms to jiffies */
  2773. interval = msecs_to_jiffies(interval);
  2774. if (unlikely(!interval))
  2775. interval = 1;
  2776. if (interval > HZ*NR_CPUS/10)
  2777. interval = HZ*NR_CPUS/10;
  2778. if (sd->flags & SD_SERIALIZE) {
  2779. if (!spin_trylock(&balancing))
  2780. goto out;
  2781. }
  2782. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2783. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2784. /*
  2785. * We've pulled tasks over so either we're no
  2786. * longer idle, or one of our SMT siblings is
  2787. * not idle.
  2788. */
  2789. idle = CPU_NOT_IDLE;
  2790. }
  2791. sd->last_balance = jiffies;
  2792. }
  2793. if (sd->flags & SD_SERIALIZE)
  2794. spin_unlock(&balancing);
  2795. out:
  2796. if (time_after(next_balance, sd->last_balance + interval)) {
  2797. next_balance = sd->last_balance + interval;
  2798. update_next_balance = 1;
  2799. }
  2800. /*
  2801. * Stop the load balance at this level. There is another
  2802. * CPU in our sched group which is doing load balancing more
  2803. * actively.
  2804. */
  2805. if (!balance)
  2806. break;
  2807. }
  2808. /*
  2809. * next_balance will be updated only when there is a need.
  2810. * When the cpu is attached to null domain for ex, it will not be
  2811. * updated.
  2812. */
  2813. if (likely(update_next_balance))
  2814. rq->next_balance = next_balance;
  2815. }
  2816. /*
  2817. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2818. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2819. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2820. */
  2821. static void run_rebalance_domains(struct softirq_action *h)
  2822. {
  2823. int this_cpu = smp_processor_id();
  2824. struct rq *this_rq = cpu_rq(this_cpu);
  2825. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2826. CPU_IDLE : CPU_NOT_IDLE;
  2827. rebalance_domains(this_cpu, idle);
  2828. #ifdef CONFIG_NO_HZ
  2829. /*
  2830. * If this cpu is the owner for idle load balancing, then do the
  2831. * balancing on behalf of the other idle cpus whose ticks are
  2832. * stopped.
  2833. */
  2834. if (this_rq->idle_at_tick &&
  2835. atomic_read(&nohz.load_balancer) == this_cpu) {
  2836. cpumask_t cpus = nohz.cpu_mask;
  2837. struct rq *rq;
  2838. int balance_cpu;
  2839. cpu_clear(this_cpu, cpus);
  2840. for_each_cpu_mask(balance_cpu, cpus) {
  2841. /*
  2842. * If this cpu gets work to do, stop the load balancing
  2843. * work being done for other cpus. Next load
  2844. * balancing owner will pick it up.
  2845. */
  2846. if (need_resched())
  2847. break;
  2848. rebalance_domains(balance_cpu, CPU_IDLE);
  2849. rq = cpu_rq(balance_cpu);
  2850. if (time_after(this_rq->next_balance, rq->next_balance))
  2851. this_rq->next_balance = rq->next_balance;
  2852. }
  2853. }
  2854. #endif
  2855. }
  2856. /*
  2857. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2858. *
  2859. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2860. * idle load balancing owner or decide to stop the periodic load balancing,
  2861. * if the whole system is idle.
  2862. */
  2863. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2864. {
  2865. #ifdef CONFIG_NO_HZ
  2866. /*
  2867. * If we were in the nohz mode recently and busy at the current
  2868. * scheduler tick, then check if we need to nominate new idle
  2869. * load balancer.
  2870. */
  2871. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2872. rq->in_nohz_recently = 0;
  2873. if (atomic_read(&nohz.load_balancer) == cpu) {
  2874. cpu_clear(cpu, nohz.cpu_mask);
  2875. atomic_set(&nohz.load_balancer, -1);
  2876. }
  2877. if (atomic_read(&nohz.load_balancer) == -1) {
  2878. /*
  2879. * simple selection for now: Nominate the
  2880. * first cpu in the nohz list to be the next
  2881. * ilb owner.
  2882. *
  2883. * TBD: Traverse the sched domains and nominate
  2884. * the nearest cpu in the nohz.cpu_mask.
  2885. */
  2886. int ilb = first_cpu(nohz.cpu_mask);
  2887. if (ilb != NR_CPUS)
  2888. resched_cpu(ilb);
  2889. }
  2890. }
  2891. /*
  2892. * If this cpu is idle and doing idle load balancing for all the
  2893. * cpus with ticks stopped, is it time for that to stop?
  2894. */
  2895. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2896. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2897. resched_cpu(cpu);
  2898. return;
  2899. }
  2900. /*
  2901. * If this cpu is idle and the idle load balancing is done by
  2902. * someone else, then no need raise the SCHED_SOFTIRQ
  2903. */
  2904. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2905. cpu_isset(cpu, nohz.cpu_mask))
  2906. return;
  2907. #endif
  2908. if (time_after_eq(jiffies, rq->next_balance))
  2909. raise_softirq(SCHED_SOFTIRQ);
  2910. }
  2911. #else /* CONFIG_SMP */
  2912. /*
  2913. * on UP we do not need to balance between CPUs:
  2914. */
  2915. static inline void idle_balance(int cpu, struct rq *rq)
  2916. {
  2917. }
  2918. #endif
  2919. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2920. EXPORT_PER_CPU_SYMBOL(kstat);
  2921. /*
  2922. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2923. * that have not yet been banked in case the task is currently running.
  2924. */
  2925. unsigned long long task_sched_runtime(struct task_struct *p)
  2926. {
  2927. unsigned long flags;
  2928. u64 ns, delta_exec;
  2929. struct rq *rq;
  2930. rq = task_rq_lock(p, &flags);
  2931. ns = p->se.sum_exec_runtime;
  2932. if (task_current(rq, p)) {
  2933. update_rq_clock(rq);
  2934. delta_exec = rq->clock - p->se.exec_start;
  2935. if ((s64)delta_exec > 0)
  2936. ns += delta_exec;
  2937. }
  2938. task_rq_unlock(rq, &flags);
  2939. return ns;
  2940. }
  2941. /*
  2942. * Account user cpu time to a process.
  2943. * @p: the process that the cpu time gets accounted to
  2944. * @cputime: the cpu time spent in user space since the last update
  2945. */
  2946. void account_user_time(struct task_struct *p, cputime_t cputime)
  2947. {
  2948. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2949. cputime64_t tmp;
  2950. p->utime = cputime_add(p->utime, cputime);
  2951. /* Add user time to cpustat. */
  2952. tmp = cputime_to_cputime64(cputime);
  2953. if (TASK_NICE(p) > 0)
  2954. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2955. else
  2956. cpustat->user = cputime64_add(cpustat->user, tmp);
  2957. }
  2958. /*
  2959. * Account guest cpu time to a process.
  2960. * @p: the process that the cpu time gets accounted to
  2961. * @cputime: the cpu time spent in virtual machine since the last update
  2962. */
  2963. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  2964. {
  2965. cputime64_t tmp;
  2966. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2967. tmp = cputime_to_cputime64(cputime);
  2968. p->utime = cputime_add(p->utime, cputime);
  2969. p->gtime = cputime_add(p->gtime, cputime);
  2970. cpustat->user = cputime64_add(cpustat->user, tmp);
  2971. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2972. }
  2973. /*
  2974. * Account scaled user cpu time to a process.
  2975. * @p: the process that the cpu time gets accounted to
  2976. * @cputime: the cpu time spent in user space since the last update
  2977. */
  2978. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2979. {
  2980. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2981. }
  2982. /*
  2983. * Account system cpu time to a process.
  2984. * @p: the process that the cpu time gets accounted to
  2985. * @hardirq_offset: the offset to subtract from hardirq_count()
  2986. * @cputime: the cpu time spent in kernel space since the last update
  2987. */
  2988. void account_system_time(struct task_struct *p, int hardirq_offset,
  2989. cputime_t cputime)
  2990. {
  2991. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2992. struct rq *rq = this_rq();
  2993. cputime64_t tmp;
  2994. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  2995. return account_guest_time(p, cputime);
  2996. p->stime = cputime_add(p->stime, cputime);
  2997. /* Add system time to cpustat. */
  2998. tmp = cputime_to_cputime64(cputime);
  2999. if (hardirq_count() - hardirq_offset)
  3000. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3001. else if (softirq_count())
  3002. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3003. else if (p != rq->idle)
  3004. cpustat->system = cputime64_add(cpustat->system, tmp);
  3005. else if (atomic_read(&rq->nr_iowait) > 0)
  3006. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3007. else
  3008. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3009. /* Account for system time used */
  3010. acct_update_integrals(p);
  3011. }
  3012. /*
  3013. * Account scaled system cpu time to a process.
  3014. * @p: the process that the cpu time gets accounted to
  3015. * @hardirq_offset: the offset to subtract from hardirq_count()
  3016. * @cputime: the cpu time spent in kernel space since the last update
  3017. */
  3018. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3019. {
  3020. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3021. }
  3022. /*
  3023. * Account for involuntary wait time.
  3024. * @p: the process from which the cpu time has been stolen
  3025. * @steal: the cpu time spent in involuntary wait
  3026. */
  3027. void account_steal_time(struct task_struct *p, cputime_t steal)
  3028. {
  3029. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3030. cputime64_t tmp = cputime_to_cputime64(steal);
  3031. struct rq *rq = this_rq();
  3032. if (p == rq->idle) {
  3033. p->stime = cputime_add(p->stime, steal);
  3034. if (atomic_read(&rq->nr_iowait) > 0)
  3035. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3036. else
  3037. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3038. } else
  3039. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3040. }
  3041. /*
  3042. * This function gets called by the timer code, with HZ frequency.
  3043. * We call it with interrupts disabled.
  3044. *
  3045. * It also gets called by the fork code, when changing the parent's
  3046. * timeslices.
  3047. */
  3048. void scheduler_tick(void)
  3049. {
  3050. int cpu = smp_processor_id();
  3051. struct rq *rq = cpu_rq(cpu);
  3052. struct task_struct *curr = rq->curr;
  3053. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3054. spin_lock(&rq->lock);
  3055. __update_rq_clock(rq);
  3056. /*
  3057. * Let rq->clock advance by at least TICK_NSEC:
  3058. */
  3059. if (unlikely(rq->clock < next_tick))
  3060. rq->clock = next_tick;
  3061. rq->tick_timestamp = rq->clock;
  3062. update_cpu_load(rq);
  3063. if (curr != rq->idle) /* FIXME: needed? */
  3064. curr->sched_class->task_tick(rq, curr);
  3065. spin_unlock(&rq->lock);
  3066. #ifdef CONFIG_SMP
  3067. rq->idle_at_tick = idle_cpu(cpu);
  3068. trigger_load_balance(rq, cpu);
  3069. #endif
  3070. }
  3071. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3072. void fastcall add_preempt_count(int val)
  3073. {
  3074. /*
  3075. * Underflow?
  3076. */
  3077. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3078. return;
  3079. preempt_count() += val;
  3080. /*
  3081. * Spinlock count overflowing soon?
  3082. */
  3083. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3084. PREEMPT_MASK - 10);
  3085. }
  3086. EXPORT_SYMBOL(add_preempt_count);
  3087. void fastcall sub_preempt_count(int val)
  3088. {
  3089. /*
  3090. * Underflow?
  3091. */
  3092. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3093. return;
  3094. /*
  3095. * Is the spinlock portion underflowing?
  3096. */
  3097. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3098. !(preempt_count() & PREEMPT_MASK)))
  3099. return;
  3100. preempt_count() -= val;
  3101. }
  3102. EXPORT_SYMBOL(sub_preempt_count);
  3103. #endif
  3104. /*
  3105. * Print scheduling while atomic bug:
  3106. */
  3107. static noinline void __schedule_bug(struct task_struct *prev)
  3108. {
  3109. struct pt_regs *regs = get_irq_regs();
  3110. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3111. prev->comm, prev->pid, preempt_count());
  3112. debug_show_held_locks(prev);
  3113. if (irqs_disabled())
  3114. print_irqtrace_events(prev);
  3115. if (regs)
  3116. show_regs(regs);
  3117. else
  3118. dump_stack();
  3119. }
  3120. /*
  3121. * Various schedule()-time debugging checks and statistics:
  3122. */
  3123. static inline void schedule_debug(struct task_struct *prev)
  3124. {
  3125. /*
  3126. * Test if we are atomic. Since do_exit() needs to call into
  3127. * schedule() atomically, we ignore that path for now.
  3128. * Otherwise, whine if we are scheduling when we should not be.
  3129. */
  3130. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3131. __schedule_bug(prev);
  3132. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3133. schedstat_inc(this_rq(), sched_count);
  3134. #ifdef CONFIG_SCHEDSTATS
  3135. if (unlikely(prev->lock_depth >= 0)) {
  3136. schedstat_inc(this_rq(), bkl_count);
  3137. schedstat_inc(prev, sched_info.bkl_count);
  3138. }
  3139. #endif
  3140. }
  3141. /*
  3142. * Pick up the highest-prio task:
  3143. */
  3144. static inline struct task_struct *
  3145. pick_next_task(struct rq *rq, struct task_struct *prev)
  3146. {
  3147. const struct sched_class *class;
  3148. struct task_struct *p;
  3149. /*
  3150. * Optimization: we know that if all tasks are in
  3151. * the fair class we can call that function directly:
  3152. */
  3153. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3154. p = fair_sched_class.pick_next_task(rq);
  3155. if (likely(p))
  3156. return p;
  3157. }
  3158. class = sched_class_highest;
  3159. for ( ; ; ) {
  3160. p = class->pick_next_task(rq);
  3161. if (p)
  3162. return p;
  3163. /*
  3164. * Will never be NULL as the idle class always
  3165. * returns a non-NULL p:
  3166. */
  3167. class = class->next;
  3168. }
  3169. }
  3170. /*
  3171. * schedule() is the main scheduler function.
  3172. */
  3173. asmlinkage void __sched schedule(void)
  3174. {
  3175. struct task_struct *prev, *next;
  3176. long *switch_count;
  3177. struct rq *rq;
  3178. int cpu;
  3179. need_resched:
  3180. preempt_disable();
  3181. cpu = smp_processor_id();
  3182. rq = cpu_rq(cpu);
  3183. rcu_qsctr_inc(cpu);
  3184. prev = rq->curr;
  3185. switch_count = &prev->nivcsw;
  3186. release_kernel_lock(prev);
  3187. need_resched_nonpreemptible:
  3188. schedule_debug(prev);
  3189. /*
  3190. * Do the rq-clock update outside the rq lock:
  3191. */
  3192. local_irq_disable();
  3193. __update_rq_clock(rq);
  3194. spin_lock(&rq->lock);
  3195. clear_tsk_need_resched(prev);
  3196. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3197. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3198. unlikely(signal_pending(prev)))) {
  3199. prev->state = TASK_RUNNING;
  3200. } else {
  3201. deactivate_task(rq, prev, 1);
  3202. }
  3203. switch_count = &prev->nvcsw;
  3204. }
  3205. if (unlikely(!rq->nr_running))
  3206. idle_balance(cpu, rq);
  3207. prev->sched_class->put_prev_task(rq, prev);
  3208. next = pick_next_task(rq, prev);
  3209. sched_info_switch(prev, next);
  3210. if (likely(prev != next)) {
  3211. rq->nr_switches++;
  3212. rq->curr = next;
  3213. ++*switch_count;
  3214. context_switch(rq, prev, next); /* unlocks the rq */
  3215. } else
  3216. spin_unlock_irq(&rq->lock);
  3217. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3218. cpu = smp_processor_id();
  3219. rq = cpu_rq(cpu);
  3220. goto need_resched_nonpreemptible;
  3221. }
  3222. preempt_enable_no_resched();
  3223. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3224. goto need_resched;
  3225. }
  3226. EXPORT_SYMBOL(schedule);
  3227. #ifdef CONFIG_PREEMPT
  3228. /*
  3229. * this is the entry point to schedule() from in-kernel preemption
  3230. * off of preempt_enable. Kernel preemptions off return from interrupt
  3231. * occur there and call schedule directly.
  3232. */
  3233. asmlinkage void __sched preempt_schedule(void)
  3234. {
  3235. struct thread_info *ti = current_thread_info();
  3236. #ifdef CONFIG_PREEMPT_BKL
  3237. struct task_struct *task = current;
  3238. int saved_lock_depth;
  3239. #endif
  3240. /*
  3241. * If there is a non-zero preempt_count or interrupts are disabled,
  3242. * we do not want to preempt the current task. Just return..
  3243. */
  3244. if (likely(ti->preempt_count || irqs_disabled()))
  3245. return;
  3246. do {
  3247. add_preempt_count(PREEMPT_ACTIVE);
  3248. /*
  3249. * We keep the big kernel semaphore locked, but we
  3250. * clear ->lock_depth so that schedule() doesnt
  3251. * auto-release the semaphore:
  3252. */
  3253. #ifdef CONFIG_PREEMPT_BKL
  3254. saved_lock_depth = task->lock_depth;
  3255. task->lock_depth = -1;
  3256. #endif
  3257. schedule();
  3258. #ifdef CONFIG_PREEMPT_BKL
  3259. task->lock_depth = saved_lock_depth;
  3260. #endif
  3261. sub_preempt_count(PREEMPT_ACTIVE);
  3262. /*
  3263. * Check again in case we missed a preemption opportunity
  3264. * between schedule and now.
  3265. */
  3266. barrier();
  3267. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3268. }
  3269. EXPORT_SYMBOL(preempt_schedule);
  3270. /*
  3271. * this is the entry point to schedule() from kernel preemption
  3272. * off of irq context.
  3273. * Note, that this is called and return with irqs disabled. This will
  3274. * protect us against recursive calling from irq.
  3275. */
  3276. asmlinkage void __sched preempt_schedule_irq(void)
  3277. {
  3278. struct thread_info *ti = current_thread_info();
  3279. #ifdef CONFIG_PREEMPT_BKL
  3280. struct task_struct *task = current;
  3281. int saved_lock_depth;
  3282. #endif
  3283. /* Catch callers which need to be fixed */
  3284. BUG_ON(ti->preempt_count || !irqs_disabled());
  3285. do {
  3286. add_preempt_count(PREEMPT_ACTIVE);
  3287. /*
  3288. * We keep the big kernel semaphore locked, but we
  3289. * clear ->lock_depth so that schedule() doesnt
  3290. * auto-release the semaphore:
  3291. */
  3292. #ifdef CONFIG_PREEMPT_BKL
  3293. saved_lock_depth = task->lock_depth;
  3294. task->lock_depth = -1;
  3295. #endif
  3296. local_irq_enable();
  3297. schedule();
  3298. local_irq_disable();
  3299. #ifdef CONFIG_PREEMPT_BKL
  3300. task->lock_depth = saved_lock_depth;
  3301. #endif
  3302. sub_preempt_count(PREEMPT_ACTIVE);
  3303. /*
  3304. * Check again in case we missed a preemption opportunity
  3305. * between schedule and now.
  3306. */
  3307. barrier();
  3308. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3309. }
  3310. #endif /* CONFIG_PREEMPT */
  3311. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3312. void *key)
  3313. {
  3314. return try_to_wake_up(curr->private, mode, sync);
  3315. }
  3316. EXPORT_SYMBOL(default_wake_function);
  3317. /*
  3318. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3319. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3320. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3321. *
  3322. * There are circumstances in which we can try to wake a task which has already
  3323. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3324. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3325. */
  3326. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3327. int nr_exclusive, int sync, void *key)
  3328. {
  3329. wait_queue_t *curr, *next;
  3330. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3331. unsigned flags = curr->flags;
  3332. if (curr->func(curr, mode, sync, key) &&
  3333. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3334. break;
  3335. }
  3336. }
  3337. /**
  3338. * __wake_up - wake up threads blocked on a waitqueue.
  3339. * @q: the waitqueue
  3340. * @mode: which threads
  3341. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3342. * @key: is directly passed to the wakeup function
  3343. */
  3344. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3345. int nr_exclusive, void *key)
  3346. {
  3347. unsigned long flags;
  3348. spin_lock_irqsave(&q->lock, flags);
  3349. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3350. spin_unlock_irqrestore(&q->lock, flags);
  3351. }
  3352. EXPORT_SYMBOL(__wake_up);
  3353. /*
  3354. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3355. */
  3356. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3357. {
  3358. __wake_up_common(q, mode, 1, 0, NULL);
  3359. }
  3360. /**
  3361. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3362. * @q: the waitqueue
  3363. * @mode: which threads
  3364. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3365. *
  3366. * The sync wakeup differs that the waker knows that it will schedule
  3367. * away soon, so while the target thread will be woken up, it will not
  3368. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3369. * with each other. This can prevent needless bouncing between CPUs.
  3370. *
  3371. * On UP it can prevent extra preemption.
  3372. */
  3373. void fastcall
  3374. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3375. {
  3376. unsigned long flags;
  3377. int sync = 1;
  3378. if (unlikely(!q))
  3379. return;
  3380. if (unlikely(!nr_exclusive))
  3381. sync = 0;
  3382. spin_lock_irqsave(&q->lock, flags);
  3383. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3384. spin_unlock_irqrestore(&q->lock, flags);
  3385. }
  3386. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3387. void complete(struct completion *x)
  3388. {
  3389. unsigned long flags;
  3390. spin_lock_irqsave(&x->wait.lock, flags);
  3391. x->done++;
  3392. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3393. 1, 0, NULL);
  3394. spin_unlock_irqrestore(&x->wait.lock, flags);
  3395. }
  3396. EXPORT_SYMBOL(complete);
  3397. void complete_all(struct completion *x)
  3398. {
  3399. unsigned long flags;
  3400. spin_lock_irqsave(&x->wait.lock, flags);
  3401. x->done += UINT_MAX/2;
  3402. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3403. 0, 0, NULL);
  3404. spin_unlock_irqrestore(&x->wait.lock, flags);
  3405. }
  3406. EXPORT_SYMBOL(complete_all);
  3407. static inline long __sched
  3408. do_wait_for_common(struct completion *x, long timeout, int state)
  3409. {
  3410. if (!x->done) {
  3411. DECLARE_WAITQUEUE(wait, current);
  3412. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3413. __add_wait_queue_tail(&x->wait, &wait);
  3414. do {
  3415. if (state == TASK_INTERRUPTIBLE &&
  3416. signal_pending(current)) {
  3417. __remove_wait_queue(&x->wait, &wait);
  3418. return -ERESTARTSYS;
  3419. }
  3420. __set_current_state(state);
  3421. spin_unlock_irq(&x->wait.lock);
  3422. timeout = schedule_timeout(timeout);
  3423. spin_lock_irq(&x->wait.lock);
  3424. if (!timeout) {
  3425. __remove_wait_queue(&x->wait, &wait);
  3426. return timeout;
  3427. }
  3428. } while (!x->done);
  3429. __remove_wait_queue(&x->wait, &wait);
  3430. }
  3431. x->done--;
  3432. return timeout;
  3433. }
  3434. static long __sched
  3435. wait_for_common(struct completion *x, long timeout, int state)
  3436. {
  3437. might_sleep();
  3438. spin_lock_irq(&x->wait.lock);
  3439. timeout = do_wait_for_common(x, timeout, state);
  3440. spin_unlock_irq(&x->wait.lock);
  3441. return timeout;
  3442. }
  3443. void __sched wait_for_completion(struct completion *x)
  3444. {
  3445. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3446. }
  3447. EXPORT_SYMBOL(wait_for_completion);
  3448. unsigned long __sched
  3449. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3450. {
  3451. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3452. }
  3453. EXPORT_SYMBOL(wait_for_completion_timeout);
  3454. int __sched wait_for_completion_interruptible(struct completion *x)
  3455. {
  3456. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3457. if (t == -ERESTARTSYS)
  3458. return t;
  3459. return 0;
  3460. }
  3461. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3462. unsigned long __sched
  3463. wait_for_completion_interruptible_timeout(struct completion *x,
  3464. unsigned long timeout)
  3465. {
  3466. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3467. }
  3468. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3469. static long __sched
  3470. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3471. {
  3472. unsigned long flags;
  3473. wait_queue_t wait;
  3474. init_waitqueue_entry(&wait, current);
  3475. __set_current_state(state);
  3476. spin_lock_irqsave(&q->lock, flags);
  3477. __add_wait_queue(q, &wait);
  3478. spin_unlock(&q->lock);
  3479. timeout = schedule_timeout(timeout);
  3480. spin_lock_irq(&q->lock);
  3481. __remove_wait_queue(q, &wait);
  3482. spin_unlock_irqrestore(&q->lock, flags);
  3483. return timeout;
  3484. }
  3485. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3486. {
  3487. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3488. }
  3489. EXPORT_SYMBOL(interruptible_sleep_on);
  3490. long __sched
  3491. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3492. {
  3493. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3494. }
  3495. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3496. void __sched sleep_on(wait_queue_head_t *q)
  3497. {
  3498. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3499. }
  3500. EXPORT_SYMBOL(sleep_on);
  3501. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3502. {
  3503. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3504. }
  3505. EXPORT_SYMBOL(sleep_on_timeout);
  3506. #ifdef CONFIG_RT_MUTEXES
  3507. /*
  3508. * rt_mutex_setprio - set the current priority of a task
  3509. * @p: task
  3510. * @prio: prio value (kernel-internal form)
  3511. *
  3512. * This function changes the 'effective' priority of a task. It does
  3513. * not touch ->normal_prio like __setscheduler().
  3514. *
  3515. * Used by the rt_mutex code to implement priority inheritance logic.
  3516. */
  3517. void rt_mutex_setprio(struct task_struct *p, int prio)
  3518. {
  3519. unsigned long flags;
  3520. int oldprio, on_rq, running;
  3521. struct rq *rq;
  3522. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3523. rq = task_rq_lock(p, &flags);
  3524. update_rq_clock(rq);
  3525. oldprio = p->prio;
  3526. on_rq = p->se.on_rq;
  3527. running = task_current(rq, p);
  3528. if (on_rq) {
  3529. dequeue_task(rq, p, 0);
  3530. if (running)
  3531. p->sched_class->put_prev_task(rq, p);
  3532. }
  3533. if (rt_prio(prio))
  3534. p->sched_class = &rt_sched_class;
  3535. else
  3536. p->sched_class = &fair_sched_class;
  3537. p->prio = prio;
  3538. if (on_rq) {
  3539. if (running)
  3540. p->sched_class->set_curr_task(rq);
  3541. enqueue_task(rq, p, 0);
  3542. /*
  3543. * Reschedule if we are currently running on this runqueue and
  3544. * our priority decreased, or if we are not currently running on
  3545. * this runqueue and our priority is higher than the current's
  3546. */
  3547. if (running) {
  3548. if (p->prio > oldprio)
  3549. resched_task(rq->curr);
  3550. } else {
  3551. check_preempt_curr(rq, p);
  3552. }
  3553. }
  3554. task_rq_unlock(rq, &flags);
  3555. }
  3556. #endif
  3557. void set_user_nice(struct task_struct *p, long nice)
  3558. {
  3559. int old_prio, delta, on_rq;
  3560. unsigned long flags;
  3561. struct rq *rq;
  3562. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3563. return;
  3564. /*
  3565. * We have to be careful, if called from sys_setpriority(),
  3566. * the task might be in the middle of scheduling on another CPU.
  3567. */
  3568. rq = task_rq_lock(p, &flags);
  3569. update_rq_clock(rq);
  3570. /*
  3571. * The RT priorities are set via sched_setscheduler(), but we still
  3572. * allow the 'normal' nice value to be set - but as expected
  3573. * it wont have any effect on scheduling until the task is
  3574. * SCHED_FIFO/SCHED_RR:
  3575. */
  3576. if (task_has_rt_policy(p)) {
  3577. p->static_prio = NICE_TO_PRIO(nice);
  3578. goto out_unlock;
  3579. }
  3580. on_rq = p->se.on_rq;
  3581. if (on_rq)
  3582. dequeue_task(rq, p, 0);
  3583. p->static_prio = NICE_TO_PRIO(nice);
  3584. set_load_weight(p);
  3585. old_prio = p->prio;
  3586. p->prio = effective_prio(p);
  3587. delta = p->prio - old_prio;
  3588. if (on_rq) {
  3589. enqueue_task(rq, p, 0);
  3590. /*
  3591. * If the task increased its priority or is running and
  3592. * lowered its priority, then reschedule its CPU:
  3593. */
  3594. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3595. resched_task(rq->curr);
  3596. }
  3597. out_unlock:
  3598. task_rq_unlock(rq, &flags);
  3599. }
  3600. EXPORT_SYMBOL(set_user_nice);
  3601. /*
  3602. * can_nice - check if a task can reduce its nice value
  3603. * @p: task
  3604. * @nice: nice value
  3605. */
  3606. int can_nice(const struct task_struct *p, const int nice)
  3607. {
  3608. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3609. int nice_rlim = 20 - nice;
  3610. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3611. capable(CAP_SYS_NICE));
  3612. }
  3613. #ifdef __ARCH_WANT_SYS_NICE
  3614. /*
  3615. * sys_nice - change the priority of the current process.
  3616. * @increment: priority increment
  3617. *
  3618. * sys_setpriority is a more generic, but much slower function that
  3619. * does similar things.
  3620. */
  3621. asmlinkage long sys_nice(int increment)
  3622. {
  3623. long nice, retval;
  3624. /*
  3625. * Setpriority might change our priority at the same moment.
  3626. * We don't have to worry. Conceptually one call occurs first
  3627. * and we have a single winner.
  3628. */
  3629. if (increment < -40)
  3630. increment = -40;
  3631. if (increment > 40)
  3632. increment = 40;
  3633. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3634. if (nice < -20)
  3635. nice = -20;
  3636. if (nice > 19)
  3637. nice = 19;
  3638. if (increment < 0 && !can_nice(current, nice))
  3639. return -EPERM;
  3640. retval = security_task_setnice(current, nice);
  3641. if (retval)
  3642. return retval;
  3643. set_user_nice(current, nice);
  3644. return 0;
  3645. }
  3646. #endif
  3647. /**
  3648. * task_prio - return the priority value of a given task.
  3649. * @p: the task in question.
  3650. *
  3651. * This is the priority value as seen by users in /proc.
  3652. * RT tasks are offset by -200. Normal tasks are centered
  3653. * around 0, value goes from -16 to +15.
  3654. */
  3655. int task_prio(const struct task_struct *p)
  3656. {
  3657. return p->prio - MAX_RT_PRIO;
  3658. }
  3659. /**
  3660. * task_nice - return the nice value of a given task.
  3661. * @p: the task in question.
  3662. */
  3663. int task_nice(const struct task_struct *p)
  3664. {
  3665. return TASK_NICE(p);
  3666. }
  3667. EXPORT_SYMBOL_GPL(task_nice);
  3668. /**
  3669. * idle_cpu - is a given cpu idle currently?
  3670. * @cpu: the processor in question.
  3671. */
  3672. int idle_cpu(int cpu)
  3673. {
  3674. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3675. }
  3676. /**
  3677. * idle_task - return the idle task for a given cpu.
  3678. * @cpu: the processor in question.
  3679. */
  3680. struct task_struct *idle_task(int cpu)
  3681. {
  3682. return cpu_rq(cpu)->idle;
  3683. }
  3684. /**
  3685. * find_process_by_pid - find a process with a matching PID value.
  3686. * @pid: the pid in question.
  3687. */
  3688. static struct task_struct *find_process_by_pid(pid_t pid)
  3689. {
  3690. return pid ? find_task_by_vpid(pid) : current;
  3691. }
  3692. /* Actually do priority change: must hold rq lock. */
  3693. static void
  3694. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3695. {
  3696. BUG_ON(p->se.on_rq);
  3697. p->policy = policy;
  3698. switch (p->policy) {
  3699. case SCHED_NORMAL:
  3700. case SCHED_BATCH:
  3701. case SCHED_IDLE:
  3702. p->sched_class = &fair_sched_class;
  3703. break;
  3704. case SCHED_FIFO:
  3705. case SCHED_RR:
  3706. p->sched_class = &rt_sched_class;
  3707. break;
  3708. }
  3709. p->rt_priority = prio;
  3710. p->normal_prio = normal_prio(p);
  3711. /* we are holding p->pi_lock already */
  3712. p->prio = rt_mutex_getprio(p);
  3713. set_load_weight(p);
  3714. }
  3715. /**
  3716. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3717. * @p: the task in question.
  3718. * @policy: new policy.
  3719. * @param: structure containing the new RT priority.
  3720. *
  3721. * NOTE that the task may be already dead.
  3722. */
  3723. int sched_setscheduler(struct task_struct *p, int policy,
  3724. struct sched_param *param)
  3725. {
  3726. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3727. unsigned long flags;
  3728. struct rq *rq;
  3729. /* may grab non-irq protected spin_locks */
  3730. BUG_ON(in_interrupt());
  3731. recheck:
  3732. /* double check policy once rq lock held */
  3733. if (policy < 0)
  3734. policy = oldpolicy = p->policy;
  3735. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3736. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3737. policy != SCHED_IDLE)
  3738. return -EINVAL;
  3739. /*
  3740. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3741. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3742. * SCHED_BATCH and SCHED_IDLE is 0.
  3743. */
  3744. if (param->sched_priority < 0 ||
  3745. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3746. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3747. return -EINVAL;
  3748. if (rt_policy(policy) != (param->sched_priority != 0))
  3749. return -EINVAL;
  3750. /*
  3751. * Allow unprivileged RT tasks to decrease priority:
  3752. */
  3753. if (!capable(CAP_SYS_NICE)) {
  3754. if (rt_policy(policy)) {
  3755. unsigned long rlim_rtprio;
  3756. if (!lock_task_sighand(p, &flags))
  3757. return -ESRCH;
  3758. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3759. unlock_task_sighand(p, &flags);
  3760. /* can't set/change the rt policy */
  3761. if (policy != p->policy && !rlim_rtprio)
  3762. return -EPERM;
  3763. /* can't increase priority */
  3764. if (param->sched_priority > p->rt_priority &&
  3765. param->sched_priority > rlim_rtprio)
  3766. return -EPERM;
  3767. }
  3768. /*
  3769. * Like positive nice levels, dont allow tasks to
  3770. * move out of SCHED_IDLE either:
  3771. */
  3772. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3773. return -EPERM;
  3774. /* can't change other user's priorities */
  3775. if ((current->euid != p->euid) &&
  3776. (current->euid != p->uid))
  3777. return -EPERM;
  3778. }
  3779. retval = security_task_setscheduler(p, policy, param);
  3780. if (retval)
  3781. return retval;
  3782. /*
  3783. * make sure no PI-waiters arrive (or leave) while we are
  3784. * changing the priority of the task:
  3785. */
  3786. spin_lock_irqsave(&p->pi_lock, flags);
  3787. /*
  3788. * To be able to change p->policy safely, the apropriate
  3789. * runqueue lock must be held.
  3790. */
  3791. rq = __task_rq_lock(p);
  3792. /* recheck policy now with rq lock held */
  3793. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3794. policy = oldpolicy = -1;
  3795. __task_rq_unlock(rq);
  3796. spin_unlock_irqrestore(&p->pi_lock, flags);
  3797. goto recheck;
  3798. }
  3799. update_rq_clock(rq);
  3800. on_rq = p->se.on_rq;
  3801. running = task_current(rq, p);
  3802. if (on_rq) {
  3803. deactivate_task(rq, p, 0);
  3804. if (running)
  3805. p->sched_class->put_prev_task(rq, p);
  3806. }
  3807. oldprio = p->prio;
  3808. __setscheduler(rq, p, policy, param->sched_priority);
  3809. if (on_rq) {
  3810. if (running)
  3811. p->sched_class->set_curr_task(rq);
  3812. activate_task(rq, p, 0);
  3813. /*
  3814. * Reschedule if we are currently running on this runqueue and
  3815. * our priority decreased, or if we are not currently running on
  3816. * this runqueue and our priority is higher than the current's
  3817. */
  3818. if (running) {
  3819. if (p->prio > oldprio)
  3820. resched_task(rq->curr);
  3821. } else {
  3822. check_preempt_curr(rq, p);
  3823. }
  3824. }
  3825. __task_rq_unlock(rq);
  3826. spin_unlock_irqrestore(&p->pi_lock, flags);
  3827. rt_mutex_adjust_pi(p);
  3828. return 0;
  3829. }
  3830. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3831. static int
  3832. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3833. {
  3834. struct sched_param lparam;
  3835. struct task_struct *p;
  3836. int retval;
  3837. if (!param || pid < 0)
  3838. return -EINVAL;
  3839. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3840. return -EFAULT;
  3841. rcu_read_lock();
  3842. retval = -ESRCH;
  3843. p = find_process_by_pid(pid);
  3844. if (p != NULL)
  3845. retval = sched_setscheduler(p, policy, &lparam);
  3846. rcu_read_unlock();
  3847. return retval;
  3848. }
  3849. /**
  3850. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3851. * @pid: the pid in question.
  3852. * @policy: new policy.
  3853. * @param: structure containing the new RT priority.
  3854. */
  3855. asmlinkage long
  3856. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3857. {
  3858. /* negative values for policy are not valid */
  3859. if (policy < 0)
  3860. return -EINVAL;
  3861. return do_sched_setscheduler(pid, policy, param);
  3862. }
  3863. /**
  3864. * sys_sched_setparam - set/change the RT priority of a thread
  3865. * @pid: the pid in question.
  3866. * @param: structure containing the new RT priority.
  3867. */
  3868. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3869. {
  3870. return do_sched_setscheduler(pid, -1, param);
  3871. }
  3872. /**
  3873. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3874. * @pid: the pid in question.
  3875. */
  3876. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3877. {
  3878. struct task_struct *p;
  3879. int retval;
  3880. if (pid < 0)
  3881. return -EINVAL;
  3882. retval = -ESRCH;
  3883. read_lock(&tasklist_lock);
  3884. p = find_process_by_pid(pid);
  3885. if (p) {
  3886. retval = security_task_getscheduler(p);
  3887. if (!retval)
  3888. retval = p->policy;
  3889. }
  3890. read_unlock(&tasklist_lock);
  3891. return retval;
  3892. }
  3893. /**
  3894. * sys_sched_getscheduler - get the RT priority of a thread
  3895. * @pid: the pid in question.
  3896. * @param: structure containing the RT priority.
  3897. */
  3898. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3899. {
  3900. struct sched_param lp;
  3901. struct task_struct *p;
  3902. int retval;
  3903. if (!param || pid < 0)
  3904. return -EINVAL;
  3905. read_lock(&tasklist_lock);
  3906. p = find_process_by_pid(pid);
  3907. retval = -ESRCH;
  3908. if (!p)
  3909. goto out_unlock;
  3910. retval = security_task_getscheduler(p);
  3911. if (retval)
  3912. goto out_unlock;
  3913. lp.sched_priority = p->rt_priority;
  3914. read_unlock(&tasklist_lock);
  3915. /*
  3916. * This one might sleep, we cannot do it with a spinlock held ...
  3917. */
  3918. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3919. return retval;
  3920. out_unlock:
  3921. read_unlock(&tasklist_lock);
  3922. return retval;
  3923. }
  3924. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3925. {
  3926. cpumask_t cpus_allowed;
  3927. struct task_struct *p;
  3928. int retval;
  3929. get_online_cpus();
  3930. read_lock(&tasklist_lock);
  3931. p = find_process_by_pid(pid);
  3932. if (!p) {
  3933. read_unlock(&tasklist_lock);
  3934. put_online_cpus();
  3935. return -ESRCH;
  3936. }
  3937. /*
  3938. * It is not safe to call set_cpus_allowed with the
  3939. * tasklist_lock held. We will bump the task_struct's
  3940. * usage count and then drop tasklist_lock.
  3941. */
  3942. get_task_struct(p);
  3943. read_unlock(&tasklist_lock);
  3944. retval = -EPERM;
  3945. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3946. !capable(CAP_SYS_NICE))
  3947. goto out_unlock;
  3948. retval = security_task_setscheduler(p, 0, NULL);
  3949. if (retval)
  3950. goto out_unlock;
  3951. cpus_allowed = cpuset_cpus_allowed(p);
  3952. cpus_and(new_mask, new_mask, cpus_allowed);
  3953. again:
  3954. retval = set_cpus_allowed(p, new_mask);
  3955. if (!retval) {
  3956. cpus_allowed = cpuset_cpus_allowed(p);
  3957. if (!cpus_subset(new_mask, cpus_allowed)) {
  3958. /*
  3959. * We must have raced with a concurrent cpuset
  3960. * update. Just reset the cpus_allowed to the
  3961. * cpuset's cpus_allowed
  3962. */
  3963. new_mask = cpus_allowed;
  3964. goto again;
  3965. }
  3966. }
  3967. out_unlock:
  3968. put_task_struct(p);
  3969. put_online_cpus();
  3970. return retval;
  3971. }
  3972. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3973. cpumask_t *new_mask)
  3974. {
  3975. if (len < sizeof(cpumask_t)) {
  3976. memset(new_mask, 0, sizeof(cpumask_t));
  3977. } else if (len > sizeof(cpumask_t)) {
  3978. len = sizeof(cpumask_t);
  3979. }
  3980. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3981. }
  3982. /**
  3983. * sys_sched_setaffinity - set the cpu affinity of a process
  3984. * @pid: pid of the process
  3985. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3986. * @user_mask_ptr: user-space pointer to the new cpu mask
  3987. */
  3988. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3989. unsigned long __user *user_mask_ptr)
  3990. {
  3991. cpumask_t new_mask;
  3992. int retval;
  3993. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3994. if (retval)
  3995. return retval;
  3996. return sched_setaffinity(pid, new_mask);
  3997. }
  3998. /*
  3999. * Represents all cpu's present in the system
  4000. * In systems capable of hotplug, this map could dynamically grow
  4001. * as new cpu's are detected in the system via any platform specific
  4002. * method, such as ACPI for e.g.
  4003. */
  4004. cpumask_t cpu_present_map __read_mostly;
  4005. EXPORT_SYMBOL(cpu_present_map);
  4006. #ifndef CONFIG_SMP
  4007. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4008. EXPORT_SYMBOL(cpu_online_map);
  4009. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4010. EXPORT_SYMBOL(cpu_possible_map);
  4011. #endif
  4012. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4013. {
  4014. struct task_struct *p;
  4015. int retval;
  4016. get_online_cpus();
  4017. read_lock(&tasklist_lock);
  4018. retval = -ESRCH;
  4019. p = find_process_by_pid(pid);
  4020. if (!p)
  4021. goto out_unlock;
  4022. retval = security_task_getscheduler(p);
  4023. if (retval)
  4024. goto out_unlock;
  4025. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4026. out_unlock:
  4027. read_unlock(&tasklist_lock);
  4028. put_online_cpus();
  4029. return retval;
  4030. }
  4031. /**
  4032. * sys_sched_getaffinity - get the cpu affinity of a process
  4033. * @pid: pid of the process
  4034. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4035. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4036. */
  4037. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4038. unsigned long __user *user_mask_ptr)
  4039. {
  4040. int ret;
  4041. cpumask_t mask;
  4042. if (len < sizeof(cpumask_t))
  4043. return -EINVAL;
  4044. ret = sched_getaffinity(pid, &mask);
  4045. if (ret < 0)
  4046. return ret;
  4047. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4048. return -EFAULT;
  4049. return sizeof(cpumask_t);
  4050. }
  4051. /**
  4052. * sys_sched_yield - yield the current processor to other threads.
  4053. *
  4054. * This function yields the current CPU to other tasks. If there are no
  4055. * other threads running on this CPU then this function will return.
  4056. */
  4057. asmlinkage long sys_sched_yield(void)
  4058. {
  4059. struct rq *rq = this_rq_lock();
  4060. schedstat_inc(rq, yld_count);
  4061. current->sched_class->yield_task(rq);
  4062. /*
  4063. * Since we are going to call schedule() anyway, there's
  4064. * no need to preempt or enable interrupts:
  4065. */
  4066. __release(rq->lock);
  4067. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4068. _raw_spin_unlock(&rq->lock);
  4069. preempt_enable_no_resched();
  4070. schedule();
  4071. return 0;
  4072. }
  4073. static void __cond_resched(void)
  4074. {
  4075. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4076. __might_sleep(__FILE__, __LINE__);
  4077. #endif
  4078. /*
  4079. * The BKS might be reacquired before we have dropped
  4080. * PREEMPT_ACTIVE, which could trigger a second
  4081. * cond_resched() call.
  4082. */
  4083. do {
  4084. add_preempt_count(PREEMPT_ACTIVE);
  4085. schedule();
  4086. sub_preempt_count(PREEMPT_ACTIVE);
  4087. } while (need_resched());
  4088. }
  4089. int __sched cond_resched(void)
  4090. {
  4091. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4092. system_state == SYSTEM_RUNNING) {
  4093. __cond_resched();
  4094. return 1;
  4095. }
  4096. return 0;
  4097. }
  4098. EXPORT_SYMBOL(cond_resched);
  4099. /*
  4100. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4101. * call schedule, and on return reacquire the lock.
  4102. *
  4103. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4104. * operations here to prevent schedule() from being called twice (once via
  4105. * spin_unlock(), once by hand).
  4106. */
  4107. int cond_resched_lock(spinlock_t *lock)
  4108. {
  4109. int ret = 0;
  4110. if (need_lockbreak(lock)) {
  4111. spin_unlock(lock);
  4112. cpu_relax();
  4113. ret = 1;
  4114. spin_lock(lock);
  4115. }
  4116. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4117. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4118. _raw_spin_unlock(lock);
  4119. preempt_enable_no_resched();
  4120. __cond_resched();
  4121. ret = 1;
  4122. spin_lock(lock);
  4123. }
  4124. return ret;
  4125. }
  4126. EXPORT_SYMBOL(cond_resched_lock);
  4127. int __sched cond_resched_softirq(void)
  4128. {
  4129. BUG_ON(!in_softirq());
  4130. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4131. local_bh_enable();
  4132. __cond_resched();
  4133. local_bh_disable();
  4134. return 1;
  4135. }
  4136. return 0;
  4137. }
  4138. EXPORT_SYMBOL(cond_resched_softirq);
  4139. /**
  4140. * yield - yield the current processor to other threads.
  4141. *
  4142. * This is a shortcut for kernel-space yielding - it marks the
  4143. * thread runnable and calls sys_sched_yield().
  4144. */
  4145. void __sched yield(void)
  4146. {
  4147. set_current_state(TASK_RUNNING);
  4148. sys_sched_yield();
  4149. }
  4150. EXPORT_SYMBOL(yield);
  4151. /*
  4152. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4153. * that process accounting knows that this is a task in IO wait state.
  4154. *
  4155. * But don't do that if it is a deliberate, throttling IO wait (this task
  4156. * has set its backing_dev_info: the queue against which it should throttle)
  4157. */
  4158. void __sched io_schedule(void)
  4159. {
  4160. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4161. delayacct_blkio_start();
  4162. atomic_inc(&rq->nr_iowait);
  4163. schedule();
  4164. atomic_dec(&rq->nr_iowait);
  4165. delayacct_blkio_end();
  4166. }
  4167. EXPORT_SYMBOL(io_schedule);
  4168. long __sched io_schedule_timeout(long timeout)
  4169. {
  4170. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4171. long ret;
  4172. delayacct_blkio_start();
  4173. atomic_inc(&rq->nr_iowait);
  4174. ret = schedule_timeout(timeout);
  4175. atomic_dec(&rq->nr_iowait);
  4176. delayacct_blkio_end();
  4177. return ret;
  4178. }
  4179. /**
  4180. * sys_sched_get_priority_max - return maximum RT priority.
  4181. * @policy: scheduling class.
  4182. *
  4183. * this syscall returns the maximum rt_priority that can be used
  4184. * by a given scheduling class.
  4185. */
  4186. asmlinkage long sys_sched_get_priority_max(int policy)
  4187. {
  4188. int ret = -EINVAL;
  4189. switch (policy) {
  4190. case SCHED_FIFO:
  4191. case SCHED_RR:
  4192. ret = MAX_USER_RT_PRIO-1;
  4193. break;
  4194. case SCHED_NORMAL:
  4195. case SCHED_BATCH:
  4196. case SCHED_IDLE:
  4197. ret = 0;
  4198. break;
  4199. }
  4200. return ret;
  4201. }
  4202. /**
  4203. * sys_sched_get_priority_min - return minimum RT priority.
  4204. * @policy: scheduling class.
  4205. *
  4206. * this syscall returns the minimum rt_priority that can be used
  4207. * by a given scheduling class.
  4208. */
  4209. asmlinkage long sys_sched_get_priority_min(int policy)
  4210. {
  4211. int ret = -EINVAL;
  4212. switch (policy) {
  4213. case SCHED_FIFO:
  4214. case SCHED_RR:
  4215. ret = 1;
  4216. break;
  4217. case SCHED_NORMAL:
  4218. case SCHED_BATCH:
  4219. case SCHED_IDLE:
  4220. ret = 0;
  4221. }
  4222. return ret;
  4223. }
  4224. /**
  4225. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4226. * @pid: pid of the process.
  4227. * @interval: userspace pointer to the timeslice value.
  4228. *
  4229. * this syscall writes the default timeslice value of a given process
  4230. * into the user-space timespec buffer. A value of '0' means infinity.
  4231. */
  4232. asmlinkage
  4233. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4234. {
  4235. struct task_struct *p;
  4236. unsigned int time_slice;
  4237. int retval;
  4238. struct timespec t;
  4239. if (pid < 0)
  4240. return -EINVAL;
  4241. retval = -ESRCH;
  4242. read_lock(&tasklist_lock);
  4243. p = find_process_by_pid(pid);
  4244. if (!p)
  4245. goto out_unlock;
  4246. retval = security_task_getscheduler(p);
  4247. if (retval)
  4248. goto out_unlock;
  4249. /*
  4250. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4251. * tasks that are on an otherwise idle runqueue:
  4252. */
  4253. time_slice = 0;
  4254. if (p->policy == SCHED_RR) {
  4255. time_slice = DEF_TIMESLICE;
  4256. } else {
  4257. struct sched_entity *se = &p->se;
  4258. unsigned long flags;
  4259. struct rq *rq;
  4260. rq = task_rq_lock(p, &flags);
  4261. if (rq->cfs.load.weight)
  4262. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4263. task_rq_unlock(rq, &flags);
  4264. }
  4265. read_unlock(&tasklist_lock);
  4266. jiffies_to_timespec(time_slice, &t);
  4267. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4268. return retval;
  4269. out_unlock:
  4270. read_unlock(&tasklist_lock);
  4271. return retval;
  4272. }
  4273. static const char stat_nam[] = "RSDTtZX";
  4274. static void show_task(struct task_struct *p)
  4275. {
  4276. unsigned long free = 0;
  4277. unsigned state;
  4278. state = p->state ? __ffs(p->state) + 1 : 0;
  4279. printk(KERN_INFO "%-13.13s %c", p->comm,
  4280. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4281. #if BITS_PER_LONG == 32
  4282. if (state == TASK_RUNNING)
  4283. printk(KERN_CONT " running ");
  4284. else
  4285. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4286. #else
  4287. if (state == TASK_RUNNING)
  4288. printk(KERN_CONT " running task ");
  4289. else
  4290. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4291. #endif
  4292. #ifdef CONFIG_DEBUG_STACK_USAGE
  4293. {
  4294. unsigned long *n = end_of_stack(p);
  4295. while (!*n)
  4296. n++;
  4297. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4298. }
  4299. #endif
  4300. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4301. task_pid_nr(p), task_pid_nr(p->real_parent));
  4302. if (state != TASK_RUNNING)
  4303. show_stack(p, NULL);
  4304. }
  4305. void show_state_filter(unsigned long state_filter)
  4306. {
  4307. struct task_struct *g, *p;
  4308. #if BITS_PER_LONG == 32
  4309. printk(KERN_INFO
  4310. " task PC stack pid father\n");
  4311. #else
  4312. printk(KERN_INFO
  4313. " task PC stack pid father\n");
  4314. #endif
  4315. read_lock(&tasklist_lock);
  4316. do_each_thread(g, p) {
  4317. /*
  4318. * reset the NMI-timeout, listing all files on a slow
  4319. * console might take alot of time:
  4320. */
  4321. touch_nmi_watchdog();
  4322. if (!state_filter || (p->state & state_filter))
  4323. show_task(p);
  4324. } while_each_thread(g, p);
  4325. touch_all_softlockup_watchdogs();
  4326. #ifdef CONFIG_SCHED_DEBUG
  4327. sysrq_sched_debug_show();
  4328. #endif
  4329. read_unlock(&tasklist_lock);
  4330. /*
  4331. * Only show locks if all tasks are dumped:
  4332. */
  4333. if (state_filter == -1)
  4334. debug_show_all_locks();
  4335. }
  4336. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4337. {
  4338. idle->sched_class = &idle_sched_class;
  4339. }
  4340. /**
  4341. * init_idle - set up an idle thread for a given CPU
  4342. * @idle: task in question
  4343. * @cpu: cpu the idle task belongs to
  4344. *
  4345. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4346. * flag, to make booting more robust.
  4347. */
  4348. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4349. {
  4350. struct rq *rq = cpu_rq(cpu);
  4351. unsigned long flags;
  4352. __sched_fork(idle);
  4353. idle->se.exec_start = sched_clock();
  4354. idle->prio = idle->normal_prio = MAX_PRIO;
  4355. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4356. __set_task_cpu(idle, cpu);
  4357. spin_lock_irqsave(&rq->lock, flags);
  4358. rq->curr = rq->idle = idle;
  4359. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4360. idle->oncpu = 1;
  4361. #endif
  4362. spin_unlock_irqrestore(&rq->lock, flags);
  4363. /* Set the preempt count _outside_ the spinlocks! */
  4364. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4365. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4366. #else
  4367. task_thread_info(idle)->preempt_count = 0;
  4368. #endif
  4369. /*
  4370. * The idle tasks have their own, simple scheduling class:
  4371. */
  4372. idle->sched_class = &idle_sched_class;
  4373. }
  4374. /*
  4375. * In a system that switches off the HZ timer nohz_cpu_mask
  4376. * indicates which cpus entered this state. This is used
  4377. * in the rcu update to wait only for active cpus. For system
  4378. * which do not switch off the HZ timer nohz_cpu_mask should
  4379. * always be CPU_MASK_NONE.
  4380. */
  4381. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4382. /*
  4383. * Increase the granularity value when there are more CPUs,
  4384. * because with more CPUs the 'effective latency' as visible
  4385. * to users decreases. But the relationship is not linear,
  4386. * so pick a second-best guess by going with the log2 of the
  4387. * number of CPUs.
  4388. *
  4389. * This idea comes from the SD scheduler of Con Kolivas:
  4390. */
  4391. static inline void sched_init_granularity(void)
  4392. {
  4393. unsigned int factor = 1 + ilog2(num_online_cpus());
  4394. const unsigned long limit = 200000000;
  4395. sysctl_sched_min_granularity *= factor;
  4396. if (sysctl_sched_min_granularity > limit)
  4397. sysctl_sched_min_granularity = limit;
  4398. sysctl_sched_latency *= factor;
  4399. if (sysctl_sched_latency > limit)
  4400. sysctl_sched_latency = limit;
  4401. sysctl_sched_wakeup_granularity *= factor;
  4402. sysctl_sched_batch_wakeup_granularity *= factor;
  4403. }
  4404. #ifdef CONFIG_SMP
  4405. /*
  4406. * This is how migration works:
  4407. *
  4408. * 1) we queue a struct migration_req structure in the source CPU's
  4409. * runqueue and wake up that CPU's migration thread.
  4410. * 2) we down() the locked semaphore => thread blocks.
  4411. * 3) migration thread wakes up (implicitly it forces the migrated
  4412. * thread off the CPU)
  4413. * 4) it gets the migration request and checks whether the migrated
  4414. * task is still in the wrong runqueue.
  4415. * 5) if it's in the wrong runqueue then the migration thread removes
  4416. * it and puts it into the right queue.
  4417. * 6) migration thread up()s the semaphore.
  4418. * 7) we wake up and the migration is done.
  4419. */
  4420. /*
  4421. * Change a given task's CPU affinity. Migrate the thread to a
  4422. * proper CPU and schedule it away if the CPU it's executing on
  4423. * is removed from the allowed bitmask.
  4424. *
  4425. * NOTE: the caller must have a valid reference to the task, the
  4426. * task must not exit() & deallocate itself prematurely. The
  4427. * call is not atomic; no spinlocks may be held.
  4428. */
  4429. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4430. {
  4431. struct migration_req req;
  4432. unsigned long flags;
  4433. struct rq *rq;
  4434. int ret = 0;
  4435. rq = task_rq_lock(p, &flags);
  4436. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4437. ret = -EINVAL;
  4438. goto out;
  4439. }
  4440. p->cpus_allowed = new_mask;
  4441. /* Can the task run on the task's current CPU? If so, we're done */
  4442. if (cpu_isset(task_cpu(p), new_mask))
  4443. goto out;
  4444. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4445. /* Need help from migration thread: drop lock and wait. */
  4446. task_rq_unlock(rq, &flags);
  4447. wake_up_process(rq->migration_thread);
  4448. wait_for_completion(&req.done);
  4449. tlb_migrate_finish(p->mm);
  4450. return 0;
  4451. }
  4452. out:
  4453. task_rq_unlock(rq, &flags);
  4454. return ret;
  4455. }
  4456. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4457. /*
  4458. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4459. * this because either it can't run here any more (set_cpus_allowed()
  4460. * away from this CPU, or CPU going down), or because we're
  4461. * attempting to rebalance this task on exec (sched_exec).
  4462. *
  4463. * So we race with normal scheduler movements, but that's OK, as long
  4464. * as the task is no longer on this CPU.
  4465. *
  4466. * Returns non-zero if task was successfully migrated.
  4467. */
  4468. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4469. {
  4470. struct rq *rq_dest, *rq_src;
  4471. int ret = 0, on_rq;
  4472. if (unlikely(cpu_is_offline(dest_cpu)))
  4473. return ret;
  4474. rq_src = cpu_rq(src_cpu);
  4475. rq_dest = cpu_rq(dest_cpu);
  4476. double_rq_lock(rq_src, rq_dest);
  4477. /* Already moved. */
  4478. if (task_cpu(p) != src_cpu)
  4479. goto out;
  4480. /* Affinity changed (again). */
  4481. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4482. goto out;
  4483. on_rq = p->se.on_rq;
  4484. if (on_rq)
  4485. deactivate_task(rq_src, p, 0);
  4486. set_task_cpu(p, dest_cpu);
  4487. if (on_rq) {
  4488. activate_task(rq_dest, p, 0);
  4489. check_preempt_curr(rq_dest, p);
  4490. }
  4491. ret = 1;
  4492. out:
  4493. double_rq_unlock(rq_src, rq_dest);
  4494. return ret;
  4495. }
  4496. /*
  4497. * migration_thread - this is a highprio system thread that performs
  4498. * thread migration by bumping thread off CPU then 'pushing' onto
  4499. * another runqueue.
  4500. */
  4501. static int migration_thread(void *data)
  4502. {
  4503. int cpu = (long)data;
  4504. struct rq *rq;
  4505. rq = cpu_rq(cpu);
  4506. BUG_ON(rq->migration_thread != current);
  4507. set_current_state(TASK_INTERRUPTIBLE);
  4508. while (!kthread_should_stop()) {
  4509. struct migration_req *req;
  4510. struct list_head *head;
  4511. spin_lock_irq(&rq->lock);
  4512. if (cpu_is_offline(cpu)) {
  4513. spin_unlock_irq(&rq->lock);
  4514. goto wait_to_die;
  4515. }
  4516. if (rq->active_balance) {
  4517. active_load_balance(rq, cpu);
  4518. rq->active_balance = 0;
  4519. }
  4520. head = &rq->migration_queue;
  4521. if (list_empty(head)) {
  4522. spin_unlock_irq(&rq->lock);
  4523. schedule();
  4524. set_current_state(TASK_INTERRUPTIBLE);
  4525. continue;
  4526. }
  4527. req = list_entry(head->next, struct migration_req, list);
  4528. list_del_init(head->next);
  4529. spin_unlock(&rq->lock);
  4530. __migrate_task(req->task, cpu, req->dest_cpu);
  4531. local_irq_enable();
  4532. complete(&req->done);
  4533. }
  4534. __set_current_state(TASK_RUNNING);
  4535. return 0;
  4536. wait_to_die:
  4537. /* Wait for kthread_stop */
  4538. set_current_state(TASK_INTERRUPTIBLE);
  4539. while (!kthread_should_stop()) {
  4540. schedule();
  4541. set_current_state(TASK_INTERRUPTIBLE);
  4542. }
  4543. __set_current_state(TASK_RUNNING);
  4544. return 0;
  4545. }
  4546. #ifdef CONFIG_HOTPLUG_CPU
  4547. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4548. {
  4549. int ret;
  4550. local_irq_disable();
  4551. ret = __migrate_task(p, src_cpu, dest_cpu);
  4552. local_irq_enable();
  4553. return ret;
  4554. }
  4555. /*
  4556. * Figure out where task on dead CPU should go, use force if necessary.
  4557. * NOTE: interrupts should be disabled by the caller
  4558. */
  4559. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4560. {
  4561. unsigned long flags;
  4562. cpumask_t mask;
  4563. struct rq *rq;
  4564. int dest_cpu;
  4565. do {
  4566. /* On same node? */
  4567. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4568. cpus_and(mask, mask, p->cpus_allowed);
  4569. dest_cpu = any_online_cpu(mask);
  4570. /* On any allowed CPU? */
  4571. if (dest_cpu == NR_CPUS)
  4572. dest_cpu = any_online_cpu(p->cpus_allowed);
  4573. /* No more Mr. Nice Guy. */
  4574. if (dest_cpu == NR_CPUS) {
  4575. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4576. /*
  4577. * Try to stay on the same cpuset, where the
  4578. * current cpuset may be a subset of all cpus.
  4579. * The cpuset_cpus_allowed_locked() variant of
  4580. * cpuset_cpus_allowed() will not block. It must be
  4581. * called within calls to cpuset_lock/cpuset_unlock.
  4582. */
  4583. rq = task_rq_lock(p, &flags);
  4584. p->cpus_allowed = cpus_allowed;
  4585. dest_cpu = any_online_cpu(p->cpus_allowed);
  4586. task_rq_unlock(rq, &flags);
  4587. /*
  4588. * Don't tell them about moving exiting tasks or
  4589. * kernel threads (both mm NULL), since they never
  4590. * leave kernel.
  4591. */
  4592. if (p->mm && printk_ratelimit()) {
  4593. printk(KERN_INFO "process %d (%s) no "
  4594. "longer affine to cpu%d\n",
  4595. task_pid_nr(p), p->comm, dead_cpu);
  4596. }
  4597. }
  4598. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4599. }
  4600. /*
  4601. * While a dead CPU has no uninterruptible tasks queued at this point,
  4602. * it might still have a nonzero ->nr_uninterruptible counter, because
  4603. * for performance reasons the counter is not stricly tracking tasks to
  4604. * their home CPUs. So we just add the counter to another CPU's counter,
  4605. * to keep the global sum constant after CPU-down:
  4606. */
  4607. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4608. {
  4609. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4610. unsigned long flags;
  4611. local_irq_save(flags);
  4612. double_rq_lock(rq_src, rq_dest);
  4613. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4614. rq_src->nr_uninterruptible = 0;
  4615. double_rq_unlock(rq_src, rq_dest);
  4616. local_irq_restore(flags);
  4617. }
  4618. /* Run through task list and migrate tasks from the dead cpu. */
  4619. static void migrate_live_tasks(int src_cpu)
  4620. {
  4621. struct task_struct *p, *t;
  4622. read_lock(&tasklist_lock);
  4623. do_each_thread(t, p) {
  4624. if (p == current)
  4625. continue;
  4626. if (task_cpu(p) == src_cpu)
  4627. move_task_off_dead_cpu(src_cpu, p);
  4628. } while_each_thread(t, p);
  4629. read_unlock(&tasklist_lock);
  4630. }
  4631. /*
  4632. * Schedules idle task to be the next runnable task on current CPU.
  4633. * It does so by boosting its priority to highest possible.
  4634. * Used by CPU offline code.
  4635. */
  4636. void sched_idle_next(void)
  4637. {
  4638. int this_cpu = smp_processor_id();
  4639. struct rq *rq = cpu_rq(this_cpu);
  4640. struct task_struct *p = rq->idle;
  4641. unsigned long flags;
  4642. /* cpu has to be offline */
  4643. BUG_ON(cpu_online(this_cpu));
  4644. /*
  4645. * Strictly not necessary since rest of the CPUs are stopped by now
  4646. * and interrupts disabled on the current cpu.
  4647. */
  4648. spin_lock_irqsave(&rq->lock, flags);
  4649. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4650. update_rq_clock(rq);
  4651. activate_task(rq, p, 0);
  4652. spin_unlock_irqrestore(&rq->lock, flags);
  4653. }
  4654. /*
  4655. * Ensures that the idle task is using init_mm right before its cpu goes
  4656. * offline.
  4657. */
  4658. void idle_task_exit(void)
  4659. {
  4660. struct mm_struct *mm = current->active_mm;
  4661. BUG_ON(cpu_online(smp_processor_id()));
  4662. if (mm != &init_mm)
  4663. switch_mm(mm, &init_mm, current);
  4664. mmdrop(mm);
  4665. }
  4666. /* called under rq->lock with disabled interrupts */
  4667. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4668. {
  4669. struct rq *rq = cpu_rq(dead_cpu);
  4670. /* Must be exiting, otherwise would be on tasklist. */
  4671. BUG_ON(!p->exit_state);
  4672. /* Cannot have done final schedule yet: would have vanished. */
  4673. BUG_ON(p->state == TASK_DEAD);
  4674. get_task_struct(p);
  4675. /*
  4676. * Drop lock around migration; if someone else moves it,
  4677. * that's OK. No task can be added to this CPU, so iteration is
  4678. * fine.
  4679. */
  4680. spin_unlock_irq(&rq->lock);
  4681. move_task_off_dead_cpu(dead_cpu, p);
  4682. spin_lock_irq(&rq->lock);
  4683. put_task_struct(p);
  4684. }
  4685. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4686. static void migrate_dead_tasks(unsigned int dead_cpu)
  4687. {
  4688. struct rq *rq = cpu_rq(dead_cpu);
  4689. struct task_struct *next;
  4690. for ( ; ; ) {
  4691. if (!rq->nr_running)
  4692. break;
  4693. update_rq_clock(rq);
  4694. next = pick_next_task(rq, rq->curr);
  4695. if (!next)
  4696. break;
  4697. migrate_dead(dead_cpu, next);
  4698. }
  4699. }
  4700. #endif /* CONFIG_HOTPLUG_CPU */
  4701. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4702. static struct ctl_table sd_ctl_dir[] = {
  4703. {
  4704. .procname = "sched_domain",
  4705. .mode = 0555,
  4706. },
  4707. {0, },
  4708. };
  4709. static struct ctl_table sd_ctl_root[] = {
  4710. {
  4711. .ctl_name = CTL_KERN,
  4712. .procname = "kernel",
  4713. .mode = 0555,
  4714. .child = sd_ctl_dir,
  4715. },
  4716. {0, },
  4717. };
  4718. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4719. {
  4720. struct ctl_table *entry =
  4721. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4722. return entry;
  4723. }
  4724. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4725. {
  4726. struct ctl_table *entry;
  4727. /*
  4728. * In the intermediate directories, both the child directory and
  4729. * procname are dynamically allocated and could fail but the mode
  4730. * will always be set. In the lowest directory the names are
  4731. * static strings and all have proc handlers.
  4732. */
  4733. for (entry = *tablep; entry->mode; entry++) {
  4734. if (entry->child)
  4735. sd_free_ctl_entry(&entry->child);
  4736. if (entry->proc_handler == NULL)
  4737. kfree(entry->procname);
  4738. }
  4739. kfree(*tablep);
  4740. *tablep = NULL;
  4741. }
  4742. static void
  4743. set_table_entry(struct ctl_table *entry,
  4744. const char *procname, void *data, int maxlen,
  4745. mode_t mode, proc_handler *proc_handler)
  4746. {
  4747. entry->procname = procname;
  4748. entry->data = data;
  4749. entry->maxlen = maxlen;
  4750. entry->mode = mode;
  4751. entry->proc_handler = proc_handler;
  4752. }
  4753. static struct ctl_table *
  4754. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4755. {
  4756. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4757. if (table == NULL)
  4758. return NULL;
  4759. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4760. sizeof(long), 0644, proc_doulongvec_minmax);
  4761. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4762. sizeof(long), 0644, proc_doulongvec_minmax);
  4763. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4764. sizeof(int), 0644, proc_dointvec_minmax);
  4765. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4766. sizeof(int), 0644, proc_dointvec_minmax);
  4767. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4768. sizeof(int), 0644, proc_dointvec_minmax);
  4769. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4770. sizeof(int), 0644, proc_dointvec_minmax);
  4771. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4772. sizeof(int), 0644, proc_dointvec_minmax);
  4773. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4774. sizeof(int), 0644, proc_dointvec_minmax);
  4775. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4776. sizeof(int), 0644, proc_dointvec_minmax);
  4777. set_table_entry(&table[9], "cache_nice_tries",
  4778. &sd->cache_nice_tries,
  4779. sizeof(int), 0644, proc_dointvec_minmax);
  4780. set_table_entry(&table[10], "flags", &sd->flags,
  4781. sizeof(int), 0644, proc_dointvec_minmax);
  4782. /* &table[11] is terminator */
  4783. return table;
  4784. }
  4785. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4786. {
  4787. struct ctl_table *entry, *table;
  4788. struct sched_domain *sd;
  4789. int domain_num = 0, i;
  4790. char buf[32];
  4791. for_each_domain(cpu, sd)
  4792. domain_num++;
  4793. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4794. if (table == NULL)
  4795. return NULL;
  4796. i = 0;
  4797. for_each_domain(cpu, sd) {
  4798. snprintf(buf, 32, "domain%d", i);
  4799. entry->procname = kstrdup(buf, GFP_KERNEL);
  4800. entry->mode = 0555;
  4801. entry->child = sd_alloc_ctl_domain_table(sd);
  4802. entry++;
  4803. i++;
  4804. }
  4805. return table;
  4806. }
  4807. static struct ctl_table_header *sd_sysctl_header;
  4808. static void register_sched_domain_sysctl(void)
  4809. {
  4810. int i, cpu_num = num_online_cpus();
  4811. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4812. char buf[32];
  4813. WARN_ON(sd_ctl_dir[0].child);
  4814. sd_ctl_dir[0].child = entry;
  4815. if (entry == NULL)
  4816. return;
  4817. for_each_online_cpu(i) {
  4818. snprintf(buf, 32, "cpu%d", i);
  4819. entry->procname = kstrdup(buf, GFP_KERNEL);
  4820. entry->mode = 0555;
  4821. entry->child = sd_alloc_ctl_cpu_table(i);
  4822. entry++;
  4823. }
  4824. WARN_ON(sd_sysctl_header);
  4825. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4826. }
  4827. /* may be called multiple times per register */
  4828. static void unregister_sched_domain_sysctl(void)
  4829. {
  4830. if (sd_sysctl_header)
  4831. unregister_sysctl_table(sd_sysctl_header);
  4832. sd_sysctl_header = NULL;
  4833. if (sd_ctl_dir[0].child)
  4834. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4835. }
  4836. #else
  4837. static void register_sched_domain_sysctl(void)
  4838. {
  4839. }
  4840. static void unregister_sched_domain_sysctl(void)
  4841. {
  4842. }
  4843. #endif
  4844. /*
  4845. * migration_call - callback that gets triggered when a CPU is added.
  4846. * Here we can start up the necessary migration thread for the new CPU.
  4847. */
  4848. static int __cpuinit
  4849. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4850. {
  4851. struct task_struct *p;
  4852. int cpu = (long)hcpu;
  4853. unsigned long flags;
  4854. struct rq *rq;
  4855. switch (action) {
  4856. case CPU_UP_PREPARE:
  4857. case CPU_UP_PREPARE_FROZEN:
  4858. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4859. if (IS_ERR(p))
  4860. return NOTIFY_BAD;
  4861. kthread_bind(p, cpu);
  4862. /* Must be high prio: stop_machine expects to yield to it. */
  4863. rq = task_rq_lock(p, &flags);
  4864. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4865. task_rq_unlock(rq, &flags);
  4866. cpu_rq(cpu)->migration_thread = p;
  4867. break;
  4868. case CPU_ONLINE:
  4869. case CPU_ONLINE_FROZEN:
  4870. /* Strictly unnecessary, as first user will wake it. */
  4871. wake_up_process(cpu_rq(cpu)->migration_thread);
  4872. break;
  4873. #ifdef CONFIG_HOTPLUG_CPU
  4874. case CPU_UP_CANCELED:
  4875. case CPU_UP_CANCELED_FROZEN:
  4876. if (!cpu_rq(cpu)->migration_thread)
  4877. break;
  4878. /* Unbind it from offline cpu so it can run. Fall thru. */
  4879. kthread_bind(cpu_rq(cpu)->migration_thread,
  4880. any_online_cpu(cpu_online_map));
  4881. kthread_stop(cpu_rq(cpu)->migration_thread);
  4882. cpu_rq(cpu)->migration_thread = NULL;
  4883. break;
  4884. case CPU_DEAD:
  4885. case CPU_DEAD_FROZEN:
  4886. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4887. migrate_live_tasks(cpu);
  4888. rq = cpu_rq(cpu);
  4889. kthread_stop(rq->migration_thread);
  4890. rq->migration_thread = NULL;
  4891. /* Idle task back to normal (off runqueue, low prio) */
  4892. spin_lock_irq(&rq->lock);
  4893. update_rq_clock(rq);
  4894. deactivate_task(rq, rq->idle, 0);
  4895. rq->idle->static_prio = MAX_PRIO;
  4896. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4897. rq->idle->sched_class = &idle_sched_class;
  4898. migrate_dead_tasks(cpu);
  4899. spin_unlock_irq(&rq->lock);
  4900. cpuset_unlock();
  4901. migrate_nr_uninterruptible(rq);
  4902. BUG_ON(rq->nr_running != 0);
  4903. /*
  4904. * No need to migrate the tasks: it was best-effort if
  4905. * they didn't take sched_hotcpu_mutex. Just wake up
  4906. * the requestors.
  4907. */
  4908. spin_lock_irq(&rq->lock);
  4909. while (!list_empty(&rq->migration_queue)) {
  4910. struct migration_req *req;
  4911. req = list_entry(rq->migration_queue.next,
  4912. struct migration_req, list);
  4913. list_del_init(&req->list);
  4914. complete(&req->done);
  4915. }
  4916. spin_unlock_irq(&rq->lock);
  4917. break;
  4918. #endif
  4919. }
  4920. return NOTIFY_OK;
  4921. }
  4922. /* Register at highest priority so that task migration (migrate_all_tasks)
  4923. * happens before everything else.
  4924. */
  4925. static struct notifier_block __cpuinitdata migration_notifier = {
  4926. .notifier_call = migration_call,
  4927. .priority = 10
  4928. };
  4929. void __init migration_init(void)
  4930. {
  4931. void *cpu = (void *)(long)smp_processor_id();
  4932. int err;
  4933. /* Start one for the boot CPU: */
  4934. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4935. BUG_ON(err == NOTIFY_BAD);
  4936. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4937. register_cpu_notifier(&migration_notifier);
  4938. }
  4939. #endif
  4940. #ifdef CONFIG_SMP
  4941. /* Number of possible processor ids */
  4942. int nr_cpu_ids __read_mostly = NR_CPUS;
  4943. EXPORT_SYMBOL(nr_cpu_ids);
  4944. #ifdef CONFIG_SCHED_DEBUG
  4945. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4946. {
  4947. struct sched_group *group = sd->groups;
  4948. cpumask_t groupmask;
  4949. char str[NR_CPUS];
  4950. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4951. cpus_clear(groupmask);
  4952. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4953. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4954. printk("does not load-balance\n");
  4955. if (sd->parent)
  4956. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4957. " has parent");
  4958. return -1;
  4959. }
  4960. printk(KERN_CONT "span %s\n", str);
  4961. if (!cpu_isset(cpu, sd->span)) {
  4962. printk(KERN_ERR "ERROR: domain->span does not contain "
  4963. "CPU%d\n", cpu);
  4964. }
  4965. if (!cpu_isset(cpu, group->cpumask)) {
  4966. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4967. " CPU%d\n", cpu);
  4968. }
  4969. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4970. do {
  4971. if (!group) {
  4972. printk("\n");
  4973. printk(KERN_ERR "ERROR: group is NULL\n");
  4974. break;
  4975. }
  4976. if (!group->__cpu_power) {
  4977. printk(KERN_CONT "\n");
  4978. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4979. "set\n");
  4980. break;
  4981. }
  4982. if (!cpus_weight(group->cpumask)) {
  4983. printk(KERN_CONT "\n");
  4984. printk(KERN_ERR "ERROR: empty group\n");
  4985. break;
  4986. }
  4987. if (cpus_intersects(groupmask, group->cpumask)) {
  4988. printk(KERN_CONT "\n");
  4989. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4990. break;
  4991. }
  4992. cpus_or(groupmask, groupmask, group->cpumask);
  4993. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4994. printk(KERN_CONT " %s", str);
  4995. group = group->next;
  4996. } while (group != sd->groups);
  4997. printk(KERN_CONT "\n");
  4998. if (!cpus_equal(sd->span, groupmask))
  4999. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5000. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  5001. printk(KERN_ERR "ERROR: parent span is not a superset "
  5002. "of domain->span\n");
  5003. return 0;
  5004. }
  5005. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5006. {
  5007. int level = 0;
  5008. if (!sd) {
  5009. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5010. return;
  5011. }
  5012. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5013. for (;;) {
  5014. if (sched_domain_debug_one(sd, cpu, level))
  5015. break;
  5016. level++;
  5017. sd = sd->parent;
  5018. if (!sd)
  5019. break;
  5020. }
  5021. }
  5022. #else
  5023. # define sched_domain_debug(sd, cpu) do { } while (0)
  5024. #endif
  5025. static int sd_degenerate(struct sched_domain *sd)
  5026. {
  5027. if (cpus_weight(sd->span) == 1)
  5028. return 1;
  5029. /* Following flags need at least 2 groups */
  5030. if (sd->flags & (SD_LOAD_BALANCE |
  5031. SD_BALANCE_NEWIDLE |
  5032. SD_BALANCE_FORK |
  5033. SD_BALANCE_EXEC |
  5034. SD_SHARE_CPUPOWER |
  5035. SD_SHARE_PKG_RESOURCES)) {
  5036. if (sd->groups != sd->groups->next)
  5037. return 0;
  5038. }
  5039. /* Following flags don't use groups */
  5040. if (sd->flags & (SD_WAKE_IDLE |
  5041. SD_WAKE_AFFINE |
  5042. SD_WAKE_BALANCE))
  5043. return 0;
  5044. return 1;
  5045. }
  5046. static int
  5047. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5048. {
  5049. unsigned long cflags = sd->flags, pflags = parent->flags;
  5050. if (sd_degenerate(parent))
  5051. return 1;
  5052. if (!cpus_equal(sd->span, parent->span))
  5053. return 0;
  5054. /* Does parent contain flags not in child? */
  5055. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5056. if (cflags & SD_WAKE_AFFINE)
  5057. pflags &= ~SD_WAKE_BALANCE;
  5058. /* Flags needing groups don't count if only 1 group in parent */
  5059. if (parent->groups == parent->groups->next) {
  5060. pflags &= ~(SD_LOAD_BALANCE |
  5061. SD_BALANCE_NEWIDLE |
  5062. SD_BALANCE_FORK |
  5063. SD_BALANCE_EXEC |
  5064. SD_SHARE_CPUPOWER |
  5065. SD_SHARE_PKG_RESOURCES);
  5066. }
  5067. if (~cflags & pflags)
  5068. return 0;
  5069. return 1;
  5070. }
  5071. /*
  5072. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5073. * hold the hotplug lock.
  5074. */
  5075. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  5076. {
  5077. struct rq *rq = cpu_rq(cpu);
  5078. struct sched_domain *tmp;
  5079. /* Remove the sched domains which do not contribute to scheduling. */
  5080. for (tmp = sd; tmp; tmp = tmp->parent) {
  5081. struct sched_domain *parent = tmp->parent;
  5082. if (!parent)
  5083. break;
  5084. if (sd_parent_degenerate(tmp, parent)) {
  5085. tmp->parent = parent->parent;
  5086. if (parent->parent)
  5087. parent->parent->child = tmp;
  5088. }
  5089. }
  5090. if (sd && sd_degenerate(sd)) {
  5091. sd = sd->parent;
  5092. if (sd)
  5093. sd->child = NULL;
  5094. }
  5095. sched_domain_debug(sd, cpu);
  5096. rcu_assign_pointer(rq->sd, sd);
  5097. }
  5098. /* cpus with isolated domains */
  5099. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5100. /* Setup the mask of cpus configured for isolated domains */
  5101. static int __init isolated_cpu_setup(char *str)
  5102. {
  5103. int ints[NR_CPUS], i;
  5104. str = get_options(str, ARRAY_SIZE(ints), ints);
  5105. cpus_clear(cpu_isolated_map);
  5106. for (i = 1; i <= ints[0]; i++)
  5107. if (ints[i] < NR_CPUS)
  5108. cpu_set(ints[i], cpu_isolated_map);
  5109. return 1;
  5110. }
  5111. __setup("isolcpus=", isolated_cpu_setup);
  5112. /*
  5113. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5114. * to a function which identifies what group(along with sched group) a CPU
  5115. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5116. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5117. *
  5118. * init_sched_build_groups will build a circular linked list of the groups
  5119. * covered by the given span, and will set each group's ->cpumask correctly,
  5120. * and ->cpu_power to 0.
  5121. */
  5122. static void
  5123. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5124. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5125. struct sched_group **sg))
  5126. {
  5127. struct sched_group *first = NULL, *last = NULL;
  5128. cpumask_t covered = CPU_MASK_NONE;
  5129. int i;
  5130. for_each_cpu_mask(i, span) {
  5131. struct sched_group *sg;
  5132. int group = group_fn(i, cpu_map, &sg);
  5133. int j;
  5134. if (cpu_isset(i, covered))
  5135. continue;
  5136. sg->cpumask = CPU_MASK_NONE;
  5137. sg->__cpu_power = 0;
  5138. for_each_cpu_mask(j, span) {
  5139. if (group_fn(j, cpu_map, NULL) != group)
  5140. continue;
  5141. cpu_set(j, covered);
  5142. cpu_set(j, sg->cpumask);
  5143. }
  5144. if (!first)
  5145. first = sg;
  5146. if (last)
  5147. last->next = sg;
  5148. last = sg;
  5149. }
  5150. last->next = first;
  5151. }
  5152. #define SD_NODES_PER_DOMAIN 16
  5153. #ifdef CONFIG_NUMA
  5154. /**
  5155. * find_next_best_node - find the next node to include in a sched_domain
  5156. * @node: node whose sched_domain we're building
  5157. * @used_nodes: nodes already in the sched_domain
  5158. *
  5159. * Find the next node to include in a given scheduling domain. Simply
  5160. * finds the closest node not already in the @used_nodes map.
  5161. *
  5162. * Should use nodemask_t.
  5163. */
  5164. static int find_next_best_node(int node, unsigned long *used_nodes)
  5165. {
  5166. int i, n, val, min_val, best_node = 0;
  5167. min_val = INT_MAX;
  5168. for (i = 0; i < MAX_NUMNODES; i++) {
  5169. /* Start at @node */
  5170. n = (node + i) % MAX_NUMNODES;
  5171. if (!nr_cpus_node(n))
  5172. continue;
  5173. /* Skip already used nodes */
  5174. if (test_bit(n, used_nodes))
  5175. continue;
  5176. /* Simple min distance search */
  5177. val = node_distance(node, n);
  5178. if (val < min_val) {
  5179. min_val = val;
  5180. best_node = n;
  5181. }
  5182. }
  5183. set_bit(best_node, used_nodes);
  5184. return best_node;
  5185. }
  5186. /**
  5187. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5188. * @node: node whose cpumask we're constructing
  5189. * @size: number of nodes to include in this span
  5190. *
  5191. * Given a node, construct a good cpumask for its sched_domain to span. It
  5192. * should be one that prevents unnecessary balancing, but also spreads tasks
  5193. * out optimally.
  5194. */
  5195. static cpumask_t sched_domain_node_span(int node)
  5196. {
  5197. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5198. cpumask_t span, nodemask;
  5199. int i;
  5200. cpus_clear(span);
  5201. bitmap_zero(used_nodes, MAX_NUMNODES);
  5202. nodemask = node_to_cpumask(node);
  5203. cpus_or(span, span, nodemask);
  5204. set_bit(node, used_nodes);
  5205. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5206. int next_node = find_next_best_node(node, used_nodes);
  5207. nodemask = node_to_cpumask(next_node);
  5208. cpus_or(span, span, nodemask);
  5209. }
  5210. return span;
  5211. }
  5212. #endif
  5213. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5214. /*
  5215. * SMT sched-domains:
  5216. */
  5217. #ifdef CONFIG_SCHED_SMT
  5218. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5219. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5220. static int
  5221. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5222. {
  5223. if (sg)
  5224. *sg = &per_cpu(sched_group_cpus, cpu);
  5225. return cpu;
  5226. }
  5227. #endif
  5228. /*
  5229. * multi-core sched-domains:
  5230. */
  5231. #ifdef CONFIG_SCHED_MC
  5232. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5233. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5234. #endif
  5235. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5236. static int
  5237. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5238. {
  5239. int group;
  5240. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5241. cpus_and(mask, mask, *cpu_map);
  5242. group = first_cpu(mask);
  5243. if (sg)
  5244. *sg = &per_cpu(sched_group_core, group);
  5245. return group;
  5246. }
  5247. #elif defined(CONFIG_SCHED_MC)
  5248. static int
  5249. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5250. {
  5251. if (sg)
  5252. *sg = &per_cpu(sched_group_core, cpu);
  5253. return cpu;
  5254. }
  5255. #endif
  5256. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5257. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5258. static int
  5259. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5260. {
  5261. int group;
  5262. #ifdef CONFIG_SCHED_MC
  5263. cpumask_t mask = cpu_coregroup_map(cpu);
  5264. cpus_and(mask, mask, *cpu_map);
  5265. group = first_cpu(mask);
  5266. #elif defined(CONFIG_SCHED_SMT)
  5267. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5268. cpus_and(mask, mask, *cpu_map);
  5269. group = first_cpu(mask);
  5270. #else
  5271. group = cpu;
  5272. #endif
  5273. if (sg)
  5274. *sg = &per_cpu(sched_group_phys, group);
  5275. return group;
  5276. }
  5277. #ifdef CONFIG_NUMA
  5278. /*
  5279. * The init_sched_build_groups can't handle what we want to do with node
  5280. * groups, so roll our own. Now each node has its own list of groups which
  5281. * gets dynamically allocated.
  5282. */
  5283. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5284. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5285. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5286. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5287. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5288. struct sched_group **sg)
  5289. {
  5290. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5291. int group;
  5292. cpus_and(nodemask, nodemask, *cpu_map);
  5293. group = first_cpu(nodemask);
  5294. if (sg)
  5295. *sg = &per_cpu(sched_group_allnodes, group);
  5296. return group;
  5297. }
  5298. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5299. {
  5300. struct sched_group *sg = group_head;
  5301. int j;
  5302. if (!sg)
  5303. return;
  5304. do {
  5305. for_each_cpu_mask(j, sg->cpumask) {
  5306. struct sched_domain *sd;
  5307. sd = &per_cpu(phys_domains, j);
  5308. if (j != first_cpu(sd->groups->cpumask)) {
  5309. /*
  5310. * Only add "power" once for each
  5311. * physical package.
  5312. */
  5313. continue;
  5314. }
  5315. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5316. }
  5317. sg = sg->next;
  5318. } while (sg != group_head);
  5319. }
  5320. #endif
  5321. #ifdef CONFIG_NUMA
  5322. /* Free memory allocated for various sched_group structures */
  5323. static void free_sched_groups(const cpumask_t *cpu_map)
  5324. {
  5325. int cpu, i;
  5326. for_each_cpu_mask(cpu, *cpu_map) {
  5327. struct sched_group **sched_group_nodes
  5328. = sched_group_nodes_bycpu[cpu];
  5329. if (!sched_group_nodes)
  5330. continue;
  5331. for (i = 0; i < MAX_NUMNODES; i++) {
  5332. cpumask_t nodemask = node_to_cpumask(i);
  5333. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5334. cpus_and(nodemask, nodemask, *cpu_map);
  5335. if (cpus_empty(nodemask))
  5336. continue;
  5337. if (sg == NULL)
  5338. continue;
  5339. sg = sg->next;
  5340. next_sg:
  5341. oldsg = sg;
  5342. sg = sg->next;
  5343. kfree(oldsg);
  5344. if (oldsg != sched_group_nodes[i])
  5345. goto next_sg;
  5346. }
  5347. kfree(sched_group_nodes);
  5348. sched_group_nodes_bycpu[cpu] = NULL;
  5349. }
  5350. }
  5351. #else
  5352. static void free_sched_groups(const cpumask_t *cpu_map)
  5353. {
  5354. }
  5355. #endif
  5356. /*
  5357. * Initialize sched groups cpu_power.
  5358. *
  5359. * cpu_power indicates the capacity of sched group, which is used while
  5360. * distributing the load between different sched groups in a sched domain.
  5361. * Typically cpu_power for all the groups in a sched domain will be same unless
  5362. * there are asymmetries in the topology. If there are asymmetries, group
  5363. * having more cpu_power will pickup more load compared to the group having
  5364. * less cpu_power.
  5365. *
  5366. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5367. * the maximum number of tasks a group can handle in the presence of other idle
  5368. * or lightly loaded groups in the same sched domain.
  5369. */
  5370. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5371. {
  5372. struct sched_domain *child;
  5373. struct sched_group *group;
  5374. WARN_ON(!sd || !sd->groups);
  5375. if (cpu != first_cpu(sd->groups->cpumask))
  5376. return;
  5377. child = sd->child;
  5378. sd->groups->__cpu_power = 0;
  5379. /*
  5380. * For perf policy, if the groups in child domain share resources
  5381. * (for example cores sharing some portions of the cache hierarchy
  5382. * or SMT), then set this domain groups cpu_power such that each group
  5383. * can handle only one task, when there are other idle groups in the
  5384. * same sched domain.
  5385. */
  5386. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5387. (child->flags &
  5388. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5389. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5390. return;
  5391. }
  5392. /*
  5393. * add cpu_power of each child group to this groups cpu_power
  5394. */
  5395. group = child->groups;
  5396. do {
  5397. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5398. group = group->next;
  5399. } while (group != child->groups);
  5400. }
  5401. /*
  5402. * Build sched domains for a given set of cpus and attach the sched domains
  5403. * to the individual cpus
  5404. */
  5405. static int build_sched_domains(const cpumask_t *cpu_map)
  5406. {
  5407. int i;
  5408. #ifdef CONFIG_NUMA
  5409. struct sched_group **sched_group_nodes = NULL;
  5410. int sd_allnodes = 0;
  5411. /*
  5412. * Allocate the per-node list of sched groups
  5413. */
  5414. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5415. GFP_KERNEL);
  5416. if (!sched_group_nodes) {
  5417. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5418. return -ENOMEM;
  5419. }
  5420. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5421. #endif
  5422. /*
  5423. * Set up domains for cpus specified by the cpu_map.
  5424. */
  5425. for_each_cpu_mask(i, *cpu_map) {
  5426. struct sched_domain *sd = NULL, *p;
  5427. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5428. cpus_and(nodemask, nodemask, *cpu_map);
  5429. #ifdef CONFIG_NUMA
  5430. if (cpus_weight(*cpu_map) >
  5431. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5432. sd = &per_cpu(allnodes_domains, i);
  5433. *sd = SD_ALLNODES_INIT;
  5434. sd->span = *cpu_map;
  5435. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5436. p = sd;
  5437. sd_allnodes = 1;
  5438. } else
  5439. p = NULL;
  5440. sd = &per_cpu(node_domains, i);
  5441. *sd = SD_NODE_INIT;
  5442. sd->span = sched_domain_node_span(cpu_to_node(i));
  5443. sd->parent = p;
  5444. if (p)
  5445. p->child = sd;
  5446. cpus_and(sd->span, sd->span, *cpu_map);
  5447. #endif
  5448. p = sd;
  5449. sd = &per_cpu(phys_domains, i);
  5450. *sd = SD_CPU_INIT;
  5451. sd->span = nodemask;
  5452. sd->parent = p;
  5453. if (p)
  5454. p->child = sd;
  5455. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5456. #ifdef CONFIG_SCHED_MC
  5457. p = sd;
  5458. sd = &per_cpu(core_domains, i);
  5459. *sd = SD_MC_INIT;
  5460. sd->span = cpu_coregroup_map(i);
  5461. cpus_and(sd->span, sd->span, *cpu_map);
  5462. sd->parent = p;
  5463. p->child = sd;
  5464. cpu_to_core_group(i, cpu_map, &sd->groups);
  5465. #endif
  5466. #ifdef CONFIG_SCHED_SMT
  5467. p = sd;
  5468. sd = &per_cpu(cpu_domains, i);
  5469. *sd = SD_SIBLING_INIT;
  5470. sd->span = per_cpu(cpu_sibling_map, i);
  5471. cpus_and(sd->span, sd->span, *cpu_map);
  5472. sd->parent = p;
  5473. p->child = sd;
  5474. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5475. #endif
  5476. }
  5477. #ifdef CONFIG_SCHED_SMT
  5478. /* Set up CPU (sibling) groups */
  5479. for_each_cpu_mask(i, *cpu_map) {
  5480. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5481. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5482. if (i != first_cpu(this_sibling_map))
  5483. continue;
  5484. init_sched_build_groups(this_sibling_map, cpu_map,
  5485. &cpu_to_cpu_group);
  5486. }
  5487. #endif
  5488. #ifdef CONFIG_SCHED_MC
  5489. /* Set up multi-core groups */
  5490. for_each_cpu_mask(i, *cpu_map) {
  5491. cpumask_t this_core_map = cpu_coregroup_map(i);
  5492. cpus_and(this_core_map, this_core_map, *cpu_map);
  5493. if (i != first_cpu(this_core_map))
  5494. continue;
  5495. init_sched_build_groups(this_core_map, cpu_map,
  5496. &cpu_to_core_group);
  5497. }
  5498. #endif
  5499. /* Set up physical groups */
  5500. for (i = 0; i < MAX_NUMNODES; i++) {
  5501. cpumask_t nodemask = node_to_cpumask(i);
  5502. cpus_and(nodemask, nodemask, *cpu_map);
  5503. if (cpus_empty(nodemask))
  5504. continue;
  5505. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5506. }
  5507. #ifdef CONFIG_NUMA
  5508. /* Set up node groups */
  5509. if (sd_allnodes)
  5510. init_sched_build_groups(*cpu_map, cpu_map,
  5511. &cpu_to_allnodes_group);
  5512. for (i = 0; i < MAX_NUMNODES; i++) {
  5513. /* Set up node groups */
  5514. struct sched_group *sg, *prev;
  5515. cpumask_t nodemask = node_to_cpumask(i);
  5516. cpumask_t domainspan;
  5517. cpumask_t covered = CPU_MASK_NONE;
  5518. int j;
  5519. cpus_and(nodemask, nodemask, *cpu_map);
  5520. if (cpus_empty(nodemask)) {
  5521. sched_group_nodes[i] = NULL;
  5522. continue;
  5523. }
  5524. domainspan = sched_domain_node_span(i);
  5525. cpus_and(domainspan, domainspan, *cpu_map);
  5526. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5527. if (!sg) {
  5528. printk(KERN_WARNING "Can not alloc domain group for "
  5529. "node %d\n", i);
  5530. goto error;
  5531. }
  5532. sched_group_nodes[i] = sg;
  5533. for_each_cpu_mask(j, nodemask) {
  5534. struct sched_domain *sd;
  5535. sd = &per_cpu(node_domains, j);
  5536. sd->groups = sg;
  5537. }
  5538. sg->__cpu_power = 0;
  5539. sg->cpumask = nodemask;
  5540. sg->next = sg;
  5541. cpus_or(covered, covered, nodemask);
  5542. prev = sg;
  5543. for (j = 0; j < MAX_NUMNODES; j++) {
  5544. cpumask_t tmp, notcovered;
  5545. int n = (i + j) % MAX_NUMNODES;
  5546. cpus_complement(notcovered, covered);
  5547. cpus_and(tmp, notcovered, *cpu_map);
  5548. cpus_and(tmp, tmp, domainspan);
  5549. if (cpus_empty(tmp))
  5550. break;
  5551. nodemask = node_to_cpumask(n);
  5552. cpus_and(tmp, tmp, nodemask);
  5553. if (cpus_empty(tmp))
  5554. continue;
  5555. sg = kmalloc_node(sizeof(struct sched_group),
  5556. GFP_KERNEL, i);
  5557. if (!sg) {
  5558. printk(KERN_WARNING
  5559. "Can not alloc domain group for node %d\n", j);
  5560. goto error;
  5561. }
  5562. sg->__cpu_power = 0;
  5563. sg->cpumask = tmp;
  5564. sg->next = prev->next;
  5565. cpus_or(covered, covered, tmp);
  5566. prev->next = sg;
  5567. prev = sg;
  5568. }
  5569. }
  5570. #endif
  5571. /* Calculate CPU power for physical packages and nodes */
  5572. #ifdef CONFIG_SCHED_SMT
  5573. for_each_cpu_mask(i, *cpu_map) {
  5574. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5575. init_sched_groups_power(i, sd);
  5576. }
  5577. #endif
  5578. #ifdef CONFIG_SCHED_MC
  5579. for_each_cpu_mask(i, *cpu_map) {
  5580. struct sched_domain *sd = &per_cpu(core_domains, i);
  5581. init_sched_groups_power(i, sd);
  5582. }
  5583. #endif
  5584. for_each_cpu_mask(i, *cpu_map) {
  5585. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5586. init_sched_groups_power(i, sd);
  5587. }
  5588. #ifdef CONFIG_NUMA
  5589. for (i = 0; i < MAX_NUMNODES; i++)
  5590. init_numa_sched_groups_power(sched_group_nodes[i]);
  5591. if (sd_allnodes) {
  5592. struct sched_group *sg;
  5593. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5594. init_numa_sched_groups_power(sg);
  5595. }
  5596. #endif
  5597. /* Attach the domains */
  5598. for_each_cpu_mask(i, *cpu_map) {
  5599. struct sched_domain *sd;
  5600. #ifdef CONFIG_SCHED_SMT
  5601. sd = &per_cpu(cpu_domains, i);
  5602. #elif defined(CONFIG_SCHED_MC)
  5603. sd = &per_cpu(core_domains, i);
  5604. #else
  5605. sd = &per_cpu(phys_domains, i);
  5606. #endif
  5607. cpu_attach_domain(sd, i);
  5608. }
  5609. return 0;
  5610. #ifdef CONFIG_NUMA
  5611. error:
  5612. free_sched_groups(cpu_map);
  5613. return -ENOMEM;
  5614. #endif
  5615. }
  5616. static cpumask_t *doms_cur; /* current sched domains */
  5617. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5618. /*
  5619. * Special case: If a kmalloc of a doms_cur partition (array of
  5620. * cpumask_t) fails, then fallback to a single sched domain,
  5621. * as determined by the single cpumask_t fallback_doms.
  5622. */
  5623. static cpumask_t fallback_doms;
  5624. /*
  5625. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5626. * For now this just excludes isolated cpus, but could be used to
  5627. * exclude other special cases in the future.
  5628. */
  5629. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5630. {
  5631. int err;
  5632. ndoms_cur = 1;
  5633. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5634. if (!doms_cur)
  5635. doms_cur = &fallback_doms;
  5636. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5637. err = build_sched_domains(doms_cur);
  5638. register_sched_domain_sysctl();
  5639. return err;
  5640. }
  5641. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5642. {
  5643. free_sched_groups(cpu_map);
  5644. }
  5645. /*
  5646. * Detach sched domains from a group of cpus specified in cpu_map
  5647. * These cpus will now be attached to the NULL domain
  5648. */
  5649. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5650. {
  5651. int i;
  5652. unregister_sched_domain_sysctl();
  5653. for_each_cpu_mask(i, *cpu_map)
  5654. cpu_attach_domain(NULL, i);
  5655. synchronize_sched();
  5656. arch_destroy_sched_domains(cpu_map);
  5657. }
  5658. /*
  5659. * Partition sched domains as specified by the 'ndoms_new'
  5660. * cpumasks in the array doms_new[] of cpumasks. This compares
  5661. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5662. * It destroys each deleted domain and builds each new domain.
  5663. *
  5664. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5665. * The masks don't intersect (don't overlap.) We should setup one
  5666. * sched domain for each mask. CPUs not in any of the cpumasks will
  5667. * not be load balanced. If the same cpumask appears both in the
  5668. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5669. * it as it is.
  5670. *
  5671. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5672. * ownership of it and will kfree it when done with it. If the caller
  5673. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5674. * and partition_sched_domains() will fallback to the single partition
  5675. * 'fallback_doms'.
  5676. *
  5677. * Call with hotplug lock held
  5678. */
  5679. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5680. {
  5681. int i, j;
  5682. lock_doms_cur();
  5683. /* always unregister in case we don't destroy any domains */
  5684. unregister_sched_domain_sysctl();
  5685. if (doms_new == NULL) {
  5686. ndoms_new = 1;
  5687. doms_new = &fallback_doms;
  5688. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5689. }
  5690. /* Destroy deleted domains */
  5691. for (i = 0; i < ndoms_cur; i++) {
  5692. for (j = 0; j < ndoms_new; j++) {
  5693. if (cpus_equal(doms_cur[i], doms_new[j]))
  5694. goto match1;
  5695. }
  5696. /* no match - a current sched domain not in new doms_new[] */
  5697. detach_destroy_domains(doms_cur + i);
  5698. match1:
  5699. ;
  5700. }
  5701. /* Build new domains */
  5702. for (i = 0; i < ndoms_new; i++) {
  5703. for (j = 0; j < ndoms_cur; j++) {
  5704. if (cpus_equal(doms_new[i], doms_cur[j]))
  5705. goto match2;
  5706. }
  5707. /* no match - add a new doms_new */
  5708. build_sched_domains(doms_new + i);
  5709. match2:
  5710. ;
  5711. }
  5712. /* Remember the new sched domains */
  5713. if (doms_cur != &fallback_doms)
  5714. kfree(doms_cur);
  5715. doms_cur = doms_new;
  5716. ndoms_cur = ndoms_new;
  5717. register_sched_domain_sysctl();
  5718. unlock_doms_cur();
  5719. }
  5720. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5721. static int arch_reinit_sched_domains(void)
  5722. {
  5723. int err;
  5724. get_online_cpus();
  5725. detach_destroy_domains(&cpu_online_map);
  5726. err = arch_init_sched_domains(&cpu_online_map);
  5727. put_online_cpus();
  5728. return err;
  5729. }
  5730. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5731. {
  5732. int ret;
  5733. if (buf[0] != '0' && buf[0] != '1')
  5734. return -EINVAL;
  5735. if (smt)
  5736. sched_smt_power_savings = (buf[0] == '1');
  5737. else
  5738. sched_mc_power_savings = (buf[0] == '1');
  5739. ret = arch_reinit_sched_domains();
  5740. return ret ? ret : count;
  5741. }
  5742. #ifdef CONFIG_SCHED_MC
  5743. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5744. {
  5745. return sprintf(page, "%u\n", sched_mc_power_savings);
  5746. }
  5747. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5748. const char *buf, size_t count)
  5749. {
  5750. return sched_power_savings_store(buf, count, 0);
  5751. }
  5752. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5753. sched_mc_power_savings_store);
  5754. #endif
  5755. #ifdef CONFIG_SCHED_SMT
  5756. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5757. {
  5758. return sprintf(page, "%u\n", sched_smt_power_savings);
  5759. }
  5760. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5761. const char *buf, size_t count)
  5762. {
  5763. return sched_power_savings_store(buf, count, 1);
  5764. }
  5765. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5766. sched_smt_power_savings_store);
  5767. #endif
  5768. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5769. {
  5770. int err = 0;
  5771. #ifdef CONFIG_SCHED_SMT
  5772. if (smt_capable())
  5773. err = sysfs_create_file(&cls->kset.kobj,
  5774. &attr_sched_smt_power_savings.attr);
  5775. #endif
  5776. #ifdef CONFIG_SCHED_MC
  5777. if (!err && mc_capable())
  5778. err = sysfs_create_file(&cls->kset.kobj,
  5779. &attr_sched_mc_power_savings.attr);
  5780. #endif
  5781. return err;
  5782. }
  5783. #endif
  5784. /*
  5785. * Force a reinitialization of the sched domains hierarchy. The domains
  5786. * and groups cannot be updated in place without racing with the balancing
  5787. * code, so we temporarily attach all running cpus to the NULL domain
  5788. * which will prevent rebalancing while the sched domains are recalculated.
  5789. */
  5790. static int update_sched_domains(struct notifier_block *nfb,
  5791. unsigned long action, void *hcpu)
  5792. {
  5793. switch (action) {
  5794. case CPU_UP_PREPARE:
  5795. case CPU_UP_PREPARE_FROZEN:
  5796. case CPU_DOWN_PREPARE:
  5797. case CPU_DOWN_PREPARE_FROZEN:
  5798. detach_destroy_domains(&cpu_online_map);
  5799. return NOTIFY_OK;
  5800. case CPU_UP_CANCELED:
  5801. case CPU_UP_CANCELED_FROZEN:
  5802. case CPU_DOWN_FAILED:
  5803. case CPU_DOWN_FAILED_FROZEN:
  5804. case CPU_ONLINE:
  5805. case CPU_ONLINE_FROZEN:
  5806. case CPU_DEAD:
  5807. case CPU_DEAD_FROZEN:
  5808. /*
  5809. * Fall through and re-initialise the domains.
  5810. */
  5811. break;
  5812. default:
  5813. return NOTIFY_DONE;
  5814. }
  5815. /* The hotplug lock is already held by cpu_up/cpu_down */
  5816. arch_init_sched_domains(&cpu_online_map);
  5817. return NOTIFY_OK;
  5818. }
  5819. void __init sched_init_smp(void)
  5820. {
  5821. cpumask_t non_isolated_cpus;
  5822. get_online_cpus();
  5823. arch_init_sched_domains(&cpu_online_map);
  5824. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5825. if (cpus_empty(non_isolated_cpus))
  5826. cpu_set(smp_processor_id(), non_isolated_cpus);
  5827. put_online_cpus();
  5828. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5829. hotcpu_notifier(update_sched_domains, 0);
  5830. /* Move init over to a non-isolated CPU */
  5831. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5832. BUG();
  5833. sched_init_granularity();
  5834. #ifdef CONFIG_FAIR_GROUP_SCHED
  5835. if (nr_cpu_ids == 1)
  5836. return;
  5837. lb_monitor_task = kthread_create(load_balance_monitor, NULL,
  5838. "group_balance");
  5839. if (!IS_ERR(lb_monitor_task)) {
  5840. lb_monitor_task->flags |= PF_NOFREEZE;
  5841. wake_up_process(lb_monitor_task);
  5842. } else {
  5843. printk(KERN_ERR "Could not create load balance monitor thread"
  5844. "(error = %ld) \n", PTR_ERR(lb_monitor_task));
  5845. }
  5846. #endif
  5847. }
  5848. #else
  5849. void __init sched_init_smp(void)
  5850. {
  5851. sched_init_granularity();
  5852. }
  5853. #endif /* CONFIG_SMP */
  5854. int in_sched_functions(unsigned long addr)
  5855. {
  5856. return in_lock_functions(addr) ||
  5857. (addr >= (unsigned long)__sched_text_start
  5858. && addr < (unsigned long)__sched_text_end);
  5859. }
  5860. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5861. {
  5862. cfs_rq->tasks_timeline = RB_ROOT;
  5863. #ifdef CONFIG_FAIR_GROUP_SCHED
  5864. cfs_rq->rq = rq;
  5865. #endif
  5866. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5867. }
  5868. void __init sched_init(void)
  5869. {
  5870. int highest_cpu = 0;
  5871. int i, j;
  5872. for_each_possible_cpu(i) {
  5873. struct rt_prio_array *array;
  5874. struct rq *rq;
  5875. rq = cpu_rq(i);
  5876. spin_lock_init(&rq->lock);
  5877. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5878. rq->nr_running = 0;
  5879. rq->clock = 1;
  5880. init_cfs_rq(&rq->cfs, rq);
  5881. #ifdef CONFIG_FAIR_GROUP_SCHED
  5882. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5883. {
  5884. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5885. struct sched_entity *se =
  5886. &per_cpu(init_sched_entity, i);
  5887. init_cfs_rq_p[i] = cfs_rq;
  5888. init_cfs_rq(cfs_rq, rq);
  5889. cfs_rq->tg = &init_task_group;
  5890. list_add(&cfs_rq->leaf_cfs_rq_list,
  5891. &rq->leaf_cfs_rq_list);
  5892. init_sched_entity_p[i] = se;
  5893. se->cfs_rq = &rq->cfs;
  5894. se->my_q = cfs_rq;
  5895. se->load.weight = init_task_group_load;
  5896. se->load.inv_weight =
  5897. div64_64(1ULL<<32, init_task_group_load);
  5898. se->parent = NULL;
  5899. }
  5900. init_task_group.shares = init_task_group_load;
  5901. #endif
  5902. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5903. rq->cpu_load[j] = 0;
  5904. #ifdef CONFIG_SMP
  5905. rq->sd = NULL;
  5906. rq->active_balance = 0;
  5907. rq->next_balance = jiffies;
  5908. rq->push_cpu = 0;
  5909. rq->cpu = i;
  5910. rq->migration_thread = NULL;
  5911. INIT_LIST_HEAD(&rq->migration_queue);
  5912. #endif
  5913. atomic_set(&rq->nr_iowait, 0);
  5914. array = &rq->rt.active;
  5915. for (j = 0; j < MAX_RT_PRIO; j++) {
  5916. INIT_LIST_HEAD(array->queue + j);
  5917. __clear_bit(j, array->bitmap);
  5918. }
  5919. highest_cpu = i;
  5920. /* delimiter for bitsearch: */
  5921. __set_bit(MAX_RT_PRIO, array->bitmap);
  5922. }
  5923. set_load_weight(&init_task);
  5924. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5925. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5926. #endif
  5927. #ifdef CONFIG_SMP
  5928. nr_cpu_ids = highest_cpu + 1;
  5929. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5930. #endif
  5931. #ifdef CONFIG_RT_MUTEXES
  5932. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5933. #endif
  5934. /*
  5935. * The boot idle thread does lazy MMU switching as well:
  5936. */
  5937. atomic_inc(&init_mm.mm_count);
  5938. enter_lazy_tlb(&init_mm, current);
  5939. /*
  5940. * Make us the idle thread. Technically, schedule() should not be
  5941. * called from this thread, however somewhere below it might be,
  5942. * but because we are the idle thread, we just pick up running again
  5943. * when this runqueue becomes "idle".
  5944. */
  5945. init_idle(current, smp_processor_id());
  5946. /*
  5947. * During early bootup we pretend to be a normal task:
  5948. */
  5949. current->sched_class = &fair_sched_class;
  5950. }
  5951. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5952. void __might_sleep(char *file, int line)
  5953. {
  5954. #ifdef in_atomic
  5955. static unsigned long prev_jiffy; /* ratelimiting */
  5956. if ((in_atomic() || irqs_disabled()) &&
  5957. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5958. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5959. return;
  5960. prev_jiffy = jiffies;
  5961. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5962. " context at %s:%d\n", file, line);
  5963. printk("in_atomic():%d, irqs_disabled():%d\n",
  5964. in_atomic(), irqs_disabled());
  5965. debug_show_held_locks(current);
  5966. if (irqs_disabled())
  5967. print_irqtrace_events(current);
  5968. dump_stack();
  5969. }
  5970. #endif
  5971. }
  5972. EXPORT_SYMBOL(__might_sleep);
  5973. #endif
  5974. #ifdef CONFIG_MAGIC_SYSRQ
  5975. static void normalize_task(struct rq *rq, struct task_struct *p)
  5976. {
  5977. int on_rq;
  5978. update_rq_clock(rq);
  5979. on_rq = p->se.on_rq;
  5980. if (on_rq)
  5981. deactivate_task(rq, p, 0);
  5982. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5983. if (on_rq) {
  5984. activate_task(rq, p, 0);
  5985. resched_task(rq->curr);
  5986. }
  5987. }
  5988. void normalize_rt_tasks(void)
  5989. {
  5990. struct task_struct *g, *p;
  5991. unsigned long flags;
  5992. struct rq *rq;
  5993. read_lock_irq(&tasklist_lock);
  5994. do_each_thread(g, p) {
  5995. /*
  5996. * Only normalize user tasks:
  5997. */
  5998. if (!p->mm)
  5999. continue;
  6000. p->se.exec_start = 0;
  6001. #ifdef CONFIG_SCHEDSTATS
  6002. p->se.wait_start = 0;
  6003. p->se.sleep_start = 0;
  6004. p->se.block_start = 0;
  6005. #endif
  6006. task_rq(p)->clock = 0;
  6007. if (!rt_task(p)) {
  6008. /*
  6009. * Renice negative nice level userspace
  6010. * tasks back to 0:
  6011. */
  6012. if (TASK_NICE(p) < 0 && p->mm)
  6013. set_user_nice(p, 0);
  6014. continue;
  6015. }
  6016. spin_lock_irqsave(&p->pi_lock, flags);
  6017. rq = __task_rq_lock(p);
  6018. normalize_task(rq, p);
  6019. __task_rq_unlock(rq);
  6020. spin_unlock_irqrestore(&p->pi_lock, flags);
  6021. } while_each_thread(g, p);
  6022. read_unlock_irq(&tasklist_lock);
  6023. }
  6024. #endif /* CONFIG_MAGIC_SYSRQ */
  6025. #ifdef CONFIG_IA64
  6026. /*
  6027. * These functions are only useful for the IA64 MCA handling.
  6028. *
  6029. * They can only be called when the whole system has been
  6030. * stopped - every CPU needs to be quiescent, and no scheduling
  6031. * activity can take place. Using them for anything else would
  6032. * be a serious bug, and as a result, they aren't even visible
  6033. * under any other configuration.
  6034. */
  6035. /**
  6036. * curr_task - return the current task for a given cpu.
  6037. * @cpu: the processor in question.
  6038. *
  6039. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6040. */
  6041. struct task_struct *curr_task(int cpu)
  6042. {
  6043. return cpu_curr(cpu);
  6044. }
  6045. /**
  6046. * set_curr_task - set the current task for a given cpu.
  6047. * @cpu: the processor in question.
  6048. * @p: the task pointer to set.
  6049. *
  6050. * Description: This function must only be used when non-maskable interrupts
  6051. * are serviced on a separate stack. It allows the architecture to switch the
  6052. * notion of the current task on a cpu in a non-blocking manner. This function
  6053. * must be called with all CPU's synchronized, and interrupts disabled, the
  6054. * and caller must save the original value of the current task (see
  6055. * curr_task() above) and restore that value before reenabling interrupts and
  6056. * re-starting the system.
  6057. *
  6058. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6059. */
  6060. void set_curr_task(int cpu, struct task_struct *p)
  6061. {
  6062. cpu_curr(cpu) = p;
  6063. }
  6064. #endif
  6065. #ifdef CONFIG_FAIR_GROUP_SCHED
  6066. #ifdef CONFIG_SMP
  6067. /*
  6068. * distribute shares of all task groups among their schedulable entities,
  6069. * to reflect load distrbution across cpus.
  6070. */
  6071. static int rebalance_shares(struct sched_domain *sd, int this_cpu)
  6072. {
  6073. struct cfs_rq *cfs_rq;
  6074. struct rq *rq = cpu_rq(this_cpu);
  6075. cpumask_t sdspan = sd->span;
  6076. int balanced = 1;
  6077. /* Walk thr' all the task groups that we have */
  6078. for_each_leaf_cfs_rq(rq, cfs_rq) {
  6079. int i;
  6080. unsigned long total_load = 0, total_shares;
  6081. struct task_group *tg = cfs_rq->tg;
  6082. /* Gather total task load of this group across cpus */
  6083. for_each_cpu_mask(i, sdspan)
  6084. total_load += tg->cfs_rq[i]->load.weight;
  6085. /* Nothing to do if this group has no load */
  6086. if (!total_load)
  6087. continue;
  6088. /*
  6089. * tg->shares represents the number of cpu shares the task group
  6090. * is eligible to hold on a single cpu. On N cpus, it is
  6091. * eligible to hold (N * tg->shares) number of cpu shares.
  6092. */
  6093. total_shares = tg->shares * cpus_weight(sdspan);
  6094. /*
  6095. * redistribute total_shares across cpus as per the task load
  6096. * distribution.
  6097. */
  6098. for_each_cpu_mask(i, sdspan) {
  6099. unsigned long local_load, local_shares;
  6100. local_load = tg->cfs_rq[i]->load.weight;
  6101. local_shares = (local_load * total_shares) / total_load;
  6102. if (!local_shares)
  6103. local_shares = MIN_GROUP_SHARES;
  6104. if (local_shares == tg->se[i]->load.weight)
  6105. continue;
  6106. spin_lock_irq(&cpu_rq(i)->lock);
  6107. set_se_shares(tg->se[i], local_shares);
  6108. spin_unlock_irq(&cpu_rq(i)->lock);
  6109. balanced = 0;
  6110. }
  6111. }
  6112. return balanced;
  6113. }
  6114. /*
  6115. * How frequently should we rebalance_shares() across cpus?
  6116. *
  6117. * The more frequently we rebalance shares, the more accurate is the fairness
  6118. * of cpu bandwidth distribution between task groups. However higher frequency
  6119. * also implies increased scheduling overhead.
  6120. *
  6121. * sysctl_sched_min_bal_int_shares represents the minimum interval between
  6122. * consecutive calls to rebalance_shares() in the same sched domain.
  6123. *
  6124. * sysctl_sched_max_bal_int_shares represents the maximum interval between
  6125. * consecutive calls to rebalance_shares() in the same sched domain.
  6126. *
  6127. * These settings allows for the appropriate tradeoff between accuracy of
  6128. * fairness and the associated overhead.
  6129. *
  6130. */
  6131. /* default: 8ms, units: milliseconds */
  6132. const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
  6133. /* default: 128ms, units: milliseconds */
  6134. const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
  6135. /* kernel thread that runs rebalance_shares() periodically */
  6136. static int load_balance_monitor(void *unused)
  6137. {
  6138. unsigned int timeout = sysctl_sched_min_bal_int_shares;
  6139. struct sched_param schedparm;
  6140. int ret;
  6141. /*
  6142. * We don't want this thread's execution to be limited by the shares
  6143. * assigned to default group (init_task_group). Hence make it run
  6144. * as a SCHED_RR RT task at the lowest priority.
  6145. */
  6146. schedparm.sched_priority = 1;
  6147. ret = sched_setscheduler(current, SCHED_RR, &schedparm);
  6148. if (ret)
  6149. printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
  6150. " monitor thread (error = %d) \n", ret);
  6151. while (!kthread_should_stop()) {
  6152. int i, cpu, balanced = 1;
  6153. /* Prevent cpus going down or coming up */
  6154. get_online_cpus();
  6155. /* lockout changes to doms_cur[] array */
  6156. lock_doms_cur();
  6157. /*
  6158. * Enter a rcu read-side critical section to safely walk rq->sd
  6159. * chain on various cpus and to walk task group list
  6160. * (rq->leaf_cfs_rq_list) in rebalance_shares().
  6161. */
  6162. rcu_read_lock();
  6163. for (i = 0; i < ndoms_cur; i++) {
  6164. cpumask_t cpumap = doms_cur[i];
  6165. struct sched_domain *sd = NULL, *sd_prev = NULL;
  6166. cpu = first_cpu(cpumap);
  6167. /* Find the highest domain at which to balance shares */
  6168. for_each_domain(cpu, sd) {
  6169. if (!(sd->flags & SD_LOAD_BALANCE))
  6170. continue;
  6171. sd_prev = sd;
  6172. }
  6173. sd = sd_prev;
  6174. /* sd == NULL? No load balance reqd in this domain */
  6175. if (!sd)
  6176. continue;
  6177. balanced &= rebalance_shares(sd, cpu);
  6178. }
  6179. rcu_read_unlock();
  6180. unlock_doms_cur();
  6181. put_online_cpus();
  6182. if (!balanced)
  6183. timeout = sysctl_sched_min_bal_int_shares;
  6184. else if (timeout < sysctl_sched_max_bal_int_shares)
  6185. timeout *= 2;
  6186. msleep_interruptible(timeout);
  6187. }
  6188. return 0;
  6189. }
  6190. #endif /* CONFIG_SMP */
  6191. /* allocate runqueue etc for a new task group */
  6192. struct task_group *sched_create_group(void)
  6193. {
  6194. struct task_group *tg;
  6195. struct cfs_rq *cfs_rq;
  6196. struct sched_entity *se;
  6197. struct rq *rq;
  6198. int i;
  6199. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6200. if (!tg)
  6201. return ERR_PTR(-ENOMEM);
  6202. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6203. if (!tg->cfs_rq)
  6204. goto err;
  6205. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6206. if (!tg->se)
  6207. goto err;
  6208. for_each_possible_cpu(i) {
  6209. rq = cpu_rq(i);
  6210. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6211. cpu_to_node(i));
  6212. if (!cfs_rq)
  6213. goto err;
  6214. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6215. cpu_to_node(i));
  6216. if (!se)
  6217. goto err;
  6218. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6219. memset(se, 0, sizeof(struct sched_entity));
  6220. tg->cfs_rq[i] = cfs_rq;
  6221. init_cfs_rq(cfs_rq, rq);
  6222. cfs_rq->tg = tg;
  6223. tg->se[i] = se;
  6224. se->cfs_rq = &rq->cfs;
  6225. se->my_q = cfs_rq;
  6226. se->load.weight = NICE_0_LOAD;
  6227. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6228. se->parent = NULL;
  6229. }
  6230. tg->shares = NICE_0_LOAD;
  6231. lock_task_group_list();
  6232. for_each_possible_cpu(i) {
  6233. rq = cpu_rq(i);
  6234. cfs_rq = tg->cfs_rq[i];
  6235. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6236. }
  6237. unlock_task_group_list();
  6238. return tg;
  6239. err:
  6240. for_each_possible_cpu(i) {
  6241. if (tg->cfs_rq)
  6242. kfree(tg->cfs_rq[i]);
  6243. if (tg->se)
  6244. kfree(tg->se[i]);
  6245. }
  6246. kfree(tg->cfs_rq);
  6247. kfree(tg->se);
  6248. kfree(tg);
  6249. return ERR_PTR(-ENOMEM);
  6250. }
  6251. /* rcu callback to free various structures associated with a task group */
  6252. static void free_sched_group(struct rcu_head *rhp)
  6253. {
  6254. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6255. struct cfs_rq *cfs_rq;
  6256. struct sched_entity *se;
  6257. int i;
  6258. /* now it should be safe to free those cfs_rqs */
  6259. for_each_possible_cpu(i) {
  6260. cfs_rq = tg->cfs_rq[i];
  6261. kfree(cfs_rq);
  6262. se = tg->se[i];
  6263. kfree(se);
  6264. }
  6265. kfree(tg->cfs_rq);
  6266. kfree(tg->se);
  6267. kfree(tg);
  6268. }
  6269. /* Destroy runqueue etc associated with a task group */
  6270. void sched_destroy_group(struct task_group *tg)
  6271. {
  6272. struct cfs_rq *cfs_rq = NULL;
  6273. int i;
  6274. lock_task_group_list();
  6275. for_each_possible_cpu(i) {
  6276. cfs_rq = tg->cfs_rq[i];
  6277. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6278. }
  6279. unlock_task_group_list();
  6280. BUG_ON(!cfs_rq);
  6281. /* wait for possible concurrent references to cfs_rqs complete */
  6282. call_rcu(&tg->rcu, free_sched_group);
  6283. }
  6284. /* change task's runqueue when it moves between groups.
  6285. * The caller of this function should have put the task in its new group
  6286. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6287. * reflect its new group.
  6288. */
  6289. void sched_move_task(struct task_struct *tsk)
  6290. {
  6291. int on_rq, running;
  6292. unsigned long flags;
  6293. struct rq *rq;
  6294. rq = task_rq_lock(tsk, &flags);
  6295. if (tsk->sched_class != &fair_sched_class) {
  6296. set_task_cfs_rq(tsk, task_cpu(tsk));
  6297. goto done;
  6298. }
  6299. update_rq_clock(rq);
  6300. running = task_current(rq, tsk);
  6301. on_rq = tsk->se.on_rq;
  6302. if (on_rq) {
  6303. dequeue_task(rq, tsk, 0);
  6304. if (unlikely(running))
  6305. tsk->sched_class->put_prev_task(rq, tsk);
  6306. }
  6307. set_task_cfs_rq(tsk, task_cpu(tsk));
  6308. if (on_rq) {
  6309. if (unlikely(running))
  6310. tsk->sched_class->set_curr_task(rq);
  6311. enqueue_task(rq, tsk, 0);
  6312. }
  6313. done:
  6314. task_rq_unlock(rq, &flags);
  6315. }
  6316. /* rq->lock to be locked by caller */
  6317. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6318. {
  6319. struct cfs_rq *cfs_rq = se->cfs_rq;
  6320. struct rq *rq = cfs_rq->rq;
  6321. int on_rq;
  6322. if (!shares)
  6323. shares = MIN_GROUP_SHARES;
  6324. on_rq = se->on_rq;
  6325. if (on_rq) {
  6326. dequeue_entity(cfs_rq, se, 0);
  6327. dec_cpu_load(rq, se->load.weight);
  6328. }
  6329. se->load.weight = shares;
  6330. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6331. if (on_rq) {
  6332. enqueue_entity(cfs_rq, se, 0);
  6333. inc_cpu_load(rq, se->load.weight);
  6334. }
  6335. }
  6336. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6337. {
  6338. int i;
  6339. struct cfs_rq *cfs_rq;
  6340. struct rq *rq;
  6341. lock_task_group_list();
  6342. if (tg->shares == shares)
  6343. goto done;
  6344. if (shares < MIN_GROUP_SHARES)
  6345. shares = MIN_GROUP_SHARES;
  6346. /*
  6347. * Prevent any load balance activity (rebalance_shares,
  6348. * load_balance_fair) from referring to this group first,
  6349. * by taking it off the rq->leaf_cfs_rq_list on each cpu.
  6350. */
  6351. for_each_possible_cpu(i) {
  6352. cfs_rq = tg->cfs_rq[i];
  6353. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6354. }
  6355. /* wait for any ongoing reference to this group to finish */
  6356. synchronize_sched();
  6357. /*
  6358. * Now we are free to modify the group's share on each cpu
  6359. * w/o tripping rebalance_share or load_balance_fair.
  6360. */
  6361. tg->shares = shares;
  6362. for_each_possible_cpu(i) {
  6363. spin_lock_irq(&cpu_rq(i)->lock);
  6364. set_se_shares(tg->se[i], shares);
  6365. spin_unlock_irq(&cpu_rq(i)->lock);
  6366. }
  6367. /*
  6368. * Enable load balance activity on this group, by inserting it back on
  6369. * each cpu's rq->leaf_cfs_rq_list.
  6370. */
  6371. for_each_possible_cpu(i) {
  6372. rq = cpu_rq(i);
  6373. cfs_rq = tg->cfs_rq[i];
  6374. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6375. }
  6376. done:
  6377. unlock_task_group_list();
  6378. return 0;
  6379. }
  6380. unsigned long sched_group_shares(struct task_group *tg)
  6381. {
  6382. return tg->shares;
  6383. }
  6384. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6385. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6386. /* return corresponding task_group object of a cgroup */
  6387. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6388. {
  6389. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6390. struct task_group, css);
  6391. }
  6392. static struct cgroup_subsys_state *
  6393. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6394. {
  6395. struct task_group *tg;
  6396. if (!cgrp->parent) {
  6397. /* This is early initialization for the top cgroup */
  6398. init_task_group.css.cgroup = cgrp;
  6399. return &init_task_group.css;
  6400. }
  6401. /* we support only 1-level deep hierarchical scheduler atm */
  6402. if (cgrp->parent->parent)
  6403. return ERR_PTR(-EINVAL);
  6404. tg = sched_create_group();
  6405. if (IS_ERR(tg))
  6406. return ERR_PTR(-ENOMEM);
  6407. /* Bind the cgroup to task_group object we just created */
  6408. tg->css.cgroup = cgrp;
  6409. return &tg->css;
  6410. }
  6411. static void
  6412. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6413. {
  6414. struct task_group *tg = cgroup_tg(cgrp);
  6415. sched_destroy_group(tg);
  6416. }
  6417. static int
  6418. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6419. struct task_struct *tsk)
  6420. {
  6421. /* We don't support RT-tasks being in separate groups */
  6422. if (tsk->sched_class != &fair_sched_class)
  6423. return -EINVAL;
  6424. return 0;
  6425. }
  6426. static void
  6427. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6428. struct cgroup *old_cont, struct task_struct *tsk)
  6429. {
  6430. sched_move_task(tsk);
  6431. }
  6432. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6433. u64 shareval)
  6434. {
  6435. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6436. }
  6437. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6438. {
  6439. struct task_group *tg = cgroup_tg(cgrp);
  6440. return (u64) tg->shares;
  6441. }
  6442. static struct cftype cpu_files[] = {
  6443. {
  6444. .name = "shares",
  6445. .read_uint = cpu_shares_read_uint,
  6446. .write_uint = cpu_shares_write_uint,
  6447. },
  6448. };
  6449. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6450. {
  6451. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6452. }
  6453. struct cgroup_subsys cpu_cgroup_subsys = {
  6454. .name = "cpu",
  6455. .create = cpu_cgroup_create,
  6456. .destroy = cpu_cgroup_destroy,
  6457. .can_attach = cpu_cgroup_can_attach,
  6458. .attach = cpu_cgroup_attach,
  6459. .populate = cpu_cgroup_populate,
  6460. .subsys_id = cpu_cgroup_subsys_id,
  6461. .early_init = 1,
  6462. };
  6463. #endif /* CONFIG_FAIR_CGROUP_SCHED */
  6464. #ifdef CONFIG_CGROUP_CPUACCT
  6465. /*
  6466. * CPU accounting code for task groups.
  6467. *
  6468. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6469. * (balbir@in.ibm.com).
  6470. */
  6471. /* track cpu usage of a group of tasks */
  6472. struct cpuacct {
  6473. struct cgroup_subsys_state css;
  6474. /* cpuusage holds pointer to a u64-type object on every cpu */
  6475. u64 *cpuusage;
  6476. };
  6477. struct cgroup_subsys cpuacct_subsys;
  6478. /* return cpu accounting group corresponding to this container */
  6479. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6480. {
  6481. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6482. struct cpuacct, css);
  6483. }
  6484. /* return cpu accounting group to which this task belongs */
  6485. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6486. {
  6487. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6488. struct cpuacct, css);
  6489. }
  6490. /* create a new cpu accounting group */
  6491. static struct cgroup_subsys_state *cpuacct_create(
  6492. struct cgroup_subsys *ss, struct cgroup *cont)
  6493. {
  6494. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6495. if (!ca)
  6496. return ERR_PTR(-ENOMEM);
  6497. ca->cpuusage = alloc_percpu(u64);
  6498. if (!ca->cpuusage) {
  6499. kfree(ca);
  6500. return ERR_PTR(-ENOMEM);
  6501. }
  6502. return &ca->css;
  6503. }
  6504. /* destroy an existing cpu accounting group */
  6505. static void
  6506. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  6507. {
  6508. struct cpuacct *ca = cgroup_ca(cont);
  6509. free_percpu(ca->cpuusage);
  6510. kfree(ca);
  6511. }
  6512. /* return total cpu usage (in nanoseconds) of a group */
  6513. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  6514. {
  6515. struct cpuacct *ca = cgroup_ca(cont);
  6516. u64 totalcpuusage = 0;
  6517. int i;
  6518. for_each_possible_cpu(i) {
  6519. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  6520. /*
  6521. * Take rq->lock to make 64-bit addition safe on 32-bit
  6522. * platforms.
  6523. */
  6524. spin_lock_irq(&cpu_rq(i)->lock);
  6525. totalcpuusage += *cpuusage;
  6526. spin_unlock_irq(&cpu_rq(i)->lock);
  6527. }
  6528. return totalcpuusage;
  6529. }
  6530. static struct cftype files[] = {
  6531. {
  6532. .name = "usage",
  6533. .read_uint = cpuusage_read,
  6534. },
  6535. };
  6536. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6537. {
  6538. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  6539. }
  6540. /*
  6541. * charge this task's execution time to its accounting group.
  6542. *
  6543. * called with rq->lock held.
  6544. */
  6545. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6546. {
  6547. struct cpuacct *ca;
  6548. if (!cpuacct_subsys.active)
  6549. return;
  6550. ca = task_ca(tsk);
  6551. if (ca) {
  6552. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  6553. *cpuusage += cputime;
  6554. }
  6555. }
  6556. struct cgroup_subsys cpuacct_subsys = {
  6557. .name = "cpuacct",
  6558. .create = cpuacct_create,
  6559. .destroy = cpuacct_destroy,
  6560. .populate = cpuacct_populate,
  6561. .subsys_id = cpuacct_subsys_id,
  6562. };
  6563. #endif /* CONFIG_CGROUP_CPUACCT */