huge_memory.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <asm/tlb.h>
  18. #include <asm/pgalloc.h>
  19. #include "internal.h"
  20. /*
  21. * By default transparent hugepage support is enabled for all mappings
  22. * and khugepaged scans all mappings. Defrag is only invoked by
  23. * khugepaged hugepage allocations and by page faults inside
  24. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  25. * allocations.
  26. */
  27. unsigned long transparent_hugepage_flags __read_mostly =
  28. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  29. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  30. #endif
  31. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  32. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  33. #endif
  34. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  35. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  36. /* default scan 8*512 pte (or vmas) every 30 second */
  37. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  38. static unsigned int khugepaged_pages_collapsed;
  39. static unsigned int khugepaged_full_scans;
  40. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  41. /* during fragmentation poll the hugepage allocator once every minute */
  42. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  43. static struct task_struct *khugepaged_thread __read_mostly;
  44. static DEFINE_MUTEX(khugepaged_mutex);
  45. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  46. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  47. /*
  48. * default collapse hugepages if there is at least one pte mapped like
  49. * it would have happened if the vma was large enough during page
  50. * fault.
  51. */
  52. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  53. static int khugepaged(void *none);
  54. static int mm_slots_hash_init(void);
  55. static int khugepaged_slab_init(void);
  56. static void khugepaged_slab_free(void);
  57. #define MM_SLOTS_HASH_HEADS 1024
  58. static struct hlist_head *mm_slots_hash __read_mostly;
  59. static struct kmem_cache *mm_slot_cache __read_mostly;
  60. /**
  61. * struct mm_slot - hash lookup from mm to mm_slot
  62. * @hash: hash collision list
  63. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  64. * @mm: the mm that this information is valid for
  65. */
  66. struct mm_slot {
  67. struct hlist_node hash;
  68. struct list_head mm_node;
  69. struct mm_struct *mm;
  70. };
  71. /**
  72. * struct khugepaged_scan - cursor for scanning
  73. * @mm_head: the head of the mm list to scan
  74. * @mm_slot: the current mm_slot we are scanning
  75. * @address: the next address inside that to be scanned
  76. *
  77. * There is only the one khugepaged_scan instance of this cursor structure.
  78. */
  79. struct khugepaged_scan {
  80. struct list_head mm_head;
  81. struct mm_slot *mm_slot;
  82. unsigned long address;
  83. } khugepaged_scan = {
  84. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  85. };
  86. static int set_recommended_min_free_kbytes(void)
  87. {
  88. struct zone *zone;
  89. int nr_zones = 0;
  90. unsigned long recommended_min;
  91. extern int min_free_kbytes;
  92. if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  93. &transparent_hugepage_flags) &&
  94. !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  95. &transparent_hugepage_flags))
  96. return 0;
  97. for_each_populated_zone(zone)
  98. nr_zones++;
  99. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  100. recommended_min = pageblock_nr_pages * nr_zones * 2;
  101. /*
  102. * Make sure that on average at least two pageblocks are almost free
  103. * of another type, one for a migratetype to fall back to and a
  104. * second to avoid subsequent fallbacks of other types There are 3
  105. * MIGRATE_TYPES we care about.
  106. */
  107. recommended_min += pageblock_nr_pages * nr_zones *
  108. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  109. /* don't ever allow to reserve more than 5% of the lowmem */
  110. recommended_min = min(recommended_min,
  111. (unsigned long) nr_free_buffer_pages() / 20);
  112. recommended_min <<= (PAGE_SHIFT-10);
  113. if (recommended_min > min_free_kbytes)
  114. min_free_kbytes = recommended_min;
  115. setup_per_zone_wmarks();
  116. return 0;
  117. }
  118. late_initcall(set_recommended_min_free_kbytes);
  119. static int start_khugepaged(void)
  120. {
  121. int err = 0;
  122. if (khugepaged_enabled()) {
  123. int wakeup;
  124. if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
  125. err = -ENOMEM;
  126. goto out;
  127. }
  128. mutex_lock(&khugepaged_mutex);
  129. if (!khugepaged_thread)
  130. khugepaged_thread = kthread_run(khugepaged, NULL,
  131. "khugepaged");
  132. if (unlikely(IS_ERR(khugepaged_thread))) {
  133. printk(KERN_ERR
  134. "khugepaged: kthread_run(khugepaged) failed\n");
  135. err = PTR_ERR(khugepaged_thread);
  136. khugepaged_thread = NULL;
  137. }
  138. wakeup = !list_empty(&khugepaged_scan.mm_head);
  139. mutex_unlock(&khugepaged_mutex);
  140. if (wakeup)
  141. wake_up_interruptible(&khugepaged_wait);
  142. set_recommended_min_free_kbytes();
  143. } else
  144. /* wakeup to exit */
  145. wake_up_interruptible(&khugepaged_wait);
  146. out:
  147. return err;
  148. }
  149. #ifdef CONFIG_SYSFS
  150. static ssize_t double_flag_show(struct kobject *kobj,
  151. struct kobj_attribute *attr, char *buf,
  152. enum transparent_hugepage_flag enabled,
  153. enum transparent_hugepage_flag req_madv)
  154. {
  155. if (test_bit(enabled, &transparent_hugepage_flags)) {
  156. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  157. return sprintf(buf, "[always] madvise never\n");
  158. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  159. return sprintf(buf, "always [madvise] never\n");
  160. else
  161. return sprintf(buf, "always madvise [never]\n");
  162. }
  163. static ssize_t double_flag_store(struct kobject *kobj,
  164. struct kobj_attribute *attr,
  165. const char *buf, size_t count,
  166. enum transparent_hugepage_flag enabled,
  167. enum transparent_hugepage_flag req_madv)
  168. {
  169. if (!memcmp("always", buf,
  170. min(sizeof("always")-1, count))) {
  171. set_bit(enabled, &transparent_hugepage_flags);
  172. clear_bit(req_madv, &transparent_hugepage_flags);
  173. } else if (!memcmp("madvise", buf,
  174. min(sizeof("madvise")-1, count))) {
  175. clear_bit(enabled, &transparent_hugepage_flags);
  176. set_bit(req_madv, &transparent_hugepage_flags);
  177. } else if (!memcmp("never", buf,
  178. min(sizeof("never")-1, count))) {
  179. clear_bit(enabled, &transparent_hugepage_flags);
  180. clear_bit(req_madv, &transparent_hugepage_flags);
  181. } else
  182. return -EINVAL;
  183. return count;
  184. }
  185. static ssize_t enabled_show(struct kobject *kobj,
  186. struct kobj_attribute *attr, char *buf)
  187. {
  188. return double_flag_show(kobj, attr, buf,
  189. TRANSPARENT_HUGEPAGE_FLAG,
  190. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  191. }
  192. static ssize_t enabled_store(struct kobject *kobj,
  193. struct kobj_attribute *attr,
  194. const char *buf, size_t count)
  195. {
  196. ssize_t ret;
  197. ret = double_flag_store(kobj, attr, buf, count,
  198. TRANSPARENT_HUGEPAGE_FLAG,
  199. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  200. if (ret > 0) {
  201. int err = start_khugepaged();
  202. if (err)
  203. ret = err;
  204. }
  205. if (ret > 0 &&
  206. (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  207. &transparent_hugepage_flags) ||
  208. test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  209. &transparent_hugepage_flags)))
  210. set_recommended_min_free_kbytes();
  211. return ret;
  212. }
  213. static struct kobj_attribute enabled_attr =
  214. __ATTR(enabled, 0644, enabled_show, enabled_store);
  215. static ssize_t single_flag_show(struct kobject *kobj,
  216. struct kobj_attribute *attr, char *buf,
  217. enum transparent_hugepage_flag flag)
  218. {
  219. if (test_bit(flag, &transparent_hugepage_flags))
  220. return sprintf(buf, "[yes] no\n");
  221. else
  222. return sprintf(buf, "yes [no]\n");
  223. }
  224. static ssize_t single_flag_store(struct kobject *kobj,
  225. struct kobj_attribute *attr,
  226. const char *buf, size_t count,
  227. enum transparent_hugepage_flag flag)
  228. {
  229. if (!memcmp("yes", buf,
  230. min(sizeof("yes")-1, count))) {
  231. set_bit(flag, &transparent_hugepage_flags);
  232. } else if (!memcmp("no", buf,
  233. min(sizeof("no")-1, count))) {
  234. clear_bit(flag, &transparent_hugepage_flags);
  235. } else
  236. return -EINVAL;
  237. return count;
  238. }
  239. /*
  240. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  241. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  242. * memory just to allocate one more hugepage.
  243. */
  244. static ssize_t defrag_show(struct kobject *kobj,
  245. struct kobj_attribute *attr, char *buf)
  246. {
  247. return double_flag_show(kobj, attr, buf,
  248. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  249. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  250. }
  251. static ssize_t defrag_store(struct kobject *kobj,
  252. struct kobj_attribute *attr,
  253. const char *buf, size_t count)
  254. {
  255. return double_flag_store(kobj, attr, buf, count,
  256. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  257. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  258. }
  259. static struct kobj_attribute defrag_attr =
  260. __ATTR(defrag, 0644, defrag_show, defrag_store);
  261. #ifdef CONFIG_DEBUG_VM
  262. static ssize_t debug_cow_show(struct kobject *kobj,
  263. struct kobj_attribute *attr, char *buf)
  264. {
  265. return single_flag_show(kobj, attr, buf,
  266. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  267. }
  268. static ssize_t debug_cow_store(struct kobject *kobj,
  269. struct kobj_attribute *attr,
  270. const char *buf, size_t count)
  271. {
  272. return single_flag_store(kobj, attr, buf, count,
  273. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  274. }
  275. static struct kobj_attribute debug_cow_attr =
  276. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  277. #endif /* CONFIG_DEBUG_VM */
  278. static struct attribute *hugepage_attr[] = {
  279. &enabled_attr.attr,
  280. &defrag_attr.attr,
  281. #ifdef CONFIG_DEBUG_VM
  282. &debug_cow_attr.attr,
  283. #endif
  284. NULL,
  285. };
  286. static struct attribute_group hugepage_attr_group = {
  287. .attrs = hugepage_attr,
  288. };
  289. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  290. struct kobj_attribute *attr,
  291. char *buf)
  292. {
  293. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  294. }
  295. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  296. struct kobj_attribute *attr,
  297. const char *buf, size_t count)
  298. {
  299. unsigned long msecs;
  300. int err;
  301. err = strict_strtoul(buf, 10, &msecs);
  302. if (err || msecs > UINT_MAX)
  303. return -EINVAL;
  304. khugepaged_scan_sleep_millisecs = msecs;
  305. wake_up_interruptible(&khugepaged_wait);
  306. return count;
  307. }
  308. static struct kobj_attribute scan_sleep_millisecs_attr =
  309. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  310. scan_sleep_millisecs_store);
  311. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  312. struct kobj_attribute *attr,
  313. char *buf)
  314. {
  315. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  316. }
  317. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  318. struct kobj_attribute *attr,
  319. const char *buf, size_t count)
  320. {
  321. unsigned long msecs;
  322. int err;
  323. err = strict_strtoul(buf, 10, &msecs);
  324. if (err || msecs > UINT_MAX)
  325. return -EINVAL;
  326. khugepaged_alloc_sleep_millisecs = msecs;
  327. wake_up_interruptible(&khugepaged_wait);
  328. return count;
  329. }
  330. static struct kobj_attribute alloc_sleep_millisecs_attr =
  331. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  332. alloc_sleep_millisecs_store);
  333. static ssize_t pages_to_scan_show(struct kobject *kobj,
  334. struct kobj_attribute *attr,
  335. char *buf)
  336. {
  337. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  338. }
  339. static ssize_t pages_to_scan_store(struct kobject *kobj,
  340. struct kobj_attribute *attr,
  341. const char *buf, size_t count)
  342. {
  343. int err;
  344. unsigned long pages;
  345. err = strict_strtoul(buf, 10, &pages);
  346. if (err || !pages || pages > UINT_MAX)
  347. return -EINVAL;
  348. khugepaged_pages_to_scan = pages;
  349. return count;
  350. }
  351. static struct kobj_attribute pages_to_scan_attr =
  352. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  353. pages_to_scan_store);
  354. static ssize_t pages_collapsed_show(struct kobject *kobj,
  355. struct kobj_attribute *attr,
  356. char *buf)
  357. {
  358. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  359. }
  360. static struct kobj_attribute pages_collapsed_attr =
  361. __ATTR_RO(pages_collapsed);
  362. static ssize_t full_scans_show(struct kobject *kobj,
  363. struct kobj_attribute *attr,
  364. char *buf)
  365. {
  366. return sprintf(buf, "%u\n", khugepaged_full_scans);
  367. }
  368. static struct kobj_attribute full_scans_attr =
  369. __ATTR_RO(full_scans);
  370. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  371. struct kobj_attribute *attr, char *buf)
  372. {
  373. return single_flag_show(kobj, attr, buf,
  374. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  375. }
  376. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  377. struct kobj_attribute *attr,
  378. const char *buf, size_t count)
  379. {
  380. return single_flag_store(kobj, attr, buf, count,
  381. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  382. }
  383. static struct kobj_attribute khugepaged_defrag_attr =
  384. __ATTR(defrag, 0644, khugepaged_defrag_show,
  385. khugepaged_defrag_store);
  386. /*
  387. * max_ptes_none controls if khugepaged should collapse hugepages over
  388. * any unmapped ptes in turn potentially increasing the memory
  389. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  390. * reduce the available free memory in the system as it
  391. * runs. Increasing max_ptes_none will instead potentially reduce the
  392. * free memory in the system during the khugepaged scan.
  393. */
  394. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  395. struct kobj_attribute *attr,
  396. char *buf)
  397. {
  398. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  399. }
  400. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  401. struct kobj_attribute *attr,
  402. const char *buf, size_t count)
  403. {
  404. int err;
  405. unsigned long max_ptes_none;
  406. err = strict_strtoul(buf, 10, &max_ptes_none);
  407. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  408. return -EINVAL;
  409. khugepaged_max_ptes_none = max_ptes_none;
  410. return count;
  411. }
  412. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  413. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  414. khugepaged_max_ptes_none_store);
  415. static struct attribute *khugepaged_attr[] = {
  416. &khugepaged_defrag_attr.attr,
  417. &khugepaged_max_ptes_none_attr.attr,
  418. &pages_to_scan_attr.attr,
  419. &pages_collapsed_attr.attr,
  420. &full_scans_attr.attr,
  421. &scan_sleep_millisecs_attr.attr,
  422. &alloc_sleep_millisecs_attr.attr,
  423. NULL,
  424. };
  425. static struct attribute_group khugepaged_attr_group = {
  426. .attrs = khugepaged_attr,
  427. .name = "khugepaged",
  428. };
  429. #endif /* CONFIG_SYSFS */
  430. static int __init hugepage_init(void)
  431. {
  432. int err;
  433. #ifdef CONFIG_SYSFS
  434. static struct kobject *hugepage_kobj;
  435. err = -ENOMEM;
  436. hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  437. if (unlikely(!hugepage_kobj)) {
  438. printk(KERN_ERR "hugepage: failed kobject create\n");
  439. goto out;
  440. }
  441. err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
  442. if (err) {
  443. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  444. goto out;
  445. }
  446. err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
  447. if (err) {
  448. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  449. goto out;
  450. }
  451. #endif
  452. err = khugepaged_slab_init();
  453. if (err)
  454. goto out;
  455. err = mm_slots_hash_init();
  456. if (err) {
  457. khugepaged_slab_free();
  458. goto out;
  459. }
  460. start_khugepaged();
  461. set_recommended_min_free_kbytes();
  462. out:
  463. return err;
  464. }
  465. module_init(hugepage_init)
  466. static int __init setup_transparent_hugepage(char *str)
  467. {
  468. int ret = 0;
  469. if (!str)
  470. goto out;
  471. if (!strcmp(str, "always")) {
  472. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  473. &transparent_hugepage_flags);
  474. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  475. &transparent_hugepage_flags);
  476. ret = 1;
  477. } else if (!strcmp(str, "madvise")) {
  478. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  479. &transparent_hugepage_flags);
  480. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  481. &transparent_hugepage_flags);
  482. ret = 1;
  483. } else if (!strcmp(str, "never")) {
  484. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  485. &transparent_hugepage_flags);
  486. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  487. &transparent_hugepage_flags);
  488. ret = 1;
  489. }
  490. out:
  491. if (!ret)
  492. printk(KERN_WARNING
  493. "transparent_hugepage= cannot parse, ignored\n");
  494. return ret;
  495. }
  496. __setup("transparent_hugepage=", setup_transparent_hugepage);
  497. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  498. struct mm_struct *mm)
  499. {
  500. assert_spin_locked(&mm->page_table_lock);
  501. /* FIFO */
  502. if (!mm->pmd_huge_pte)
  503. INIT_LIST_HEAD(&pgtable->lru);
  504. else
  505. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  506. mm->pmd_huge_pte = pgtable;
  507. }
  508. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  509. {
  510. if (likely(vma->vm_flags & VM_WRITE))
  511. pmd = pmd_mkwrite(pmd);
  512. return pmd;
  513. }
  514. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  515. struct vm_area_struct *vma,
  516. unsigned long haddr, pmd_t *pmd,
  517. struct page *page)
  518. {
  519. int ret = 0;
  520. pgtable_t pgtable;
  521. VM_BUG_ON(!PageCompound(page));
  522. pgtable = pte_alloc_one(mm, haddr);
  523. if (unlikely(!pgtable)) {
  524. mem_cgroup_uncharge_page(page);
  525. put_page(page);
  526. return VM_FAULT_OOM;
  527. }
  528. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  529. __SetPageUptodate(page);
  530. spin_lock(&mm->page_table_lock);
  531. if (unlikely(!pmd_none(*pmd))) {
  532. spin_unlock(&mm->page_table_lock);
  533. mem_cgroup_uncharge_page(page);
  534. put_page(page);
  535. pte_free(mm, pgtable);
  536. } else {
  537. pmd_t entry;
  538. entry = mk_pmd(page, vma->vm_page_prot);
  539. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  540. entry = pmd_mkhuge(entry);
  541. /*
  542. * The spinlocking to take the lru_lock inside
  543. * page_add_new_anon_rmap() acts as a full memory
  544. * barrier to be sure clear_huge_page writes become
  545. * visible after the set_pmd_at() write.
  546. */
  547. page_add_new_anon_rmap(page, vma, haddr);
  548. set_pmd_at(mm, haddr, pmd, entry);
  549. prepare_pmd_huge_pte(pgtable, mm);
  550. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  551. spin_unlock(&mm->page_table_lock);
  552. }
  553. return ret;
  554. }
  555. static inline gfp_t alloc_hugepage_gfpmask(int defrag)
  556. {
  557. return GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT);
  558. }
  559. static inline struct page *alloc_hugepage_vma(int defrag,
  560. struct vm_area_struct *vma,
  561. unsigned long haddr)
  562. {
  563. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag),
  564. HPAGE_PMD_ORDER, vma, haddr);
  565. }
  566. #ifndef CONFIG_NUMA
  567. static inline struct page *alloc_hugepage(int defrag)
  568. {
  569. return alloc_pages(alloc_hugepage_gfpmask(defrag),
  570. HPAGE_PMD_ORDER);
  571. }
  572. #endif
  573. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  574. unsigned long address, pmd_t *pmd,
  575. unsigned int flags)
  576. {
  577. struct page *page;
  578. unsigned long haddr = address & HPAGE_PMD_MASK;
  579. pte_t *pte;
  580. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  581. if (unlikely(anon_vma_prepare(vma)))
  582. return VM_FAULT_OOM;
  583. if (unlikely(khugepaged_enter(vma)))
  584. return VM_FAULT_OOM;
  585. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  586. vma, haddr);
  587. if (unlikely(!page))
  588. goto out;
  589. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  590. put_page(page);
  591. goto out;
  592. }
  593. return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
  594. }
  595. out:
  596. /*
  597. * Use __pte_alloc instead of pte_alloc_map, because we can't
  598. * run pte_offset_map on the pmd, if an huge pmd could
  599. * materialize from under us from a different thread.
  600. */
  601. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  602. return VM_FAULT_OOM;
  603. /* if an huge pmd materialized from under us just retry later */
  604. if (unlikely(pmd_trans_huge(*pmd)))
  605. return 0;
  606. /*
  607. * A regular pmd is established and it can't morph into a huge pmd
  608. * from under us anymore at this point because we hold the mmap_sem
  609. * read mode and khugepaged takes it in write mode. So now it's
  610. * safe to run pte_offset_map().
  611. */
  612. pte = pte_offset_map(pmd, address);
  613. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  614. }
  615. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  616. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  617. struct vm_area_struct *vma)
  618. {
  619. struct page *src_page;
  620. pmd_t pmd;
  621. pgtable_t pgtable;
  622. int ret;
  623. ret = -ENOMEM;
  624. pgtable = pte_alloc_one(dst_mm, addr);
  625. if (unlikely(!pgtable))
  626. goto out;
  627. spin_lock(&dst_mm->page_table_lock);
  628. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  629. ret = -EAGAIN;
  630. pmd = *src_pmd;
  631. if (unlikely(!pmd_trans_huge(pmd))) {
  632. pte_free(dst_mm, pgtable);
  633. goto out_unlock;
  634. }
  635. if (unlikely(pmd_trans_splitting(pmd))) {
  636. /* split huge page running from under us */
  637. spin_unlock(&src_mm->page_table_lock);
  638. spin_unlock(&dst_mm->page_table_lock);
  639. pte_free(dst_mm, pgtable);
  640. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  641. goto out;
  642. }
  643. src_page = pmd_page(pmd);
  644. VM_BUG_ON(!PageHead(src_page));
  645. get_page(src_page);
  646. page_dup_rmap(src_page);
  647. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  648. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  649. pmd = pmd_mkold(pmd_wrprotect(pmd));
  650. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  651. prepare_pmd_huge_pte(pgtable, dst_mm);
  652. ret = 0;
  653. out_unlock:
  654. spin_unlock(&src_mm->page_table_lock);
  655. spin_unlock(&dst_mm->page_table_lock);
  656. out:
  657. return ret;
  658. }
  659. /* no "address" argument so destroys page coloring of some arch */
  660. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  661. {
  662. pgtable_t pgtable;
  663. assert_spin_locked(&mm->page_table_lock);
  664. /* FIFO */
  665. pgtable = mm->pmd_huge_pte;
  666. if (list_empty(&pgtable->lru))
  667. mm->pmd_huge_pte = NULL;
  668. else {
  669. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  670. struct page, lru);
  671. list_del(&pgtable->lru);
  672. }
  673. return pgtable;
  674. }
  675. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  676. struct vm_area_struct *vma,
  677. unsigned long address,
  678. pmd_t *pmd, pmd_t orig_pmd,
  679. struct page *page,
  680. unsigned long haddr)
  681. {
  682. pgtable_t pgtable;
  683. pmd_t _pmd;
  684. int ret = 0, i;
  685. struct page **pages;
  686. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  687. GFP_KERNEL);
  688. if (unlikely(!pages)) {
  689. ret |= VM_FAULT_OOM;
  690. goto out;
  691. }
  692. for (i = 0; i < HPAGE_PMD_NR; i++) {
  693. pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  694. vma, address);
  695. if (unlikely(!pages[i] ||
  696. mem_cgroup_newpage_charge(pages[i], mm,
  697. GFP_KERNEL))) {
  698. if (pages[i])
  699. put_page(pages[i]);
  700. mem_cgroup_uncharge_start();
  701. while (--i >= 0) {
  702. mem_cgroup_uncharge_page(pages[i]);
  703. put_page(pages[i]);
  704. }
  705. mem_cgroup_uncharge_end();
  706. kfree(pages);
  707. ret |= VM_FAULT_OOM;
  708. goto out;
  709. }
  710. }
  711. for (i = 0; i < HPAGE_PMD_NR; i++) {
  712. copy_user_highpage(pages[i], page + i,
  713. haddr + PAGE_SHIFT*i, vma);
  714. __SetPageUptodate(pages[i]);
  715. cond_resched();
  716. }
  717. spin_lock(&mm->page_table_lock);
  718. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  719. goto out_free_pages;
  720. VM_BUG_ON(!PageHead(page));
  721. pmdp_clear_flush_notify(vma, haddr, pmd);
  722. /* leave pmd empty until pte is filled */
  723. pgtable = get_pmd_huge_pte(mm);
  724. pmd_populate(mm, &_pmd, pgtable);
  725. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  726. pte_t *pte, entry;
  727. entry = mk_pte(pages[i], vma->vm_page_prot);
  728. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  729. page_add_new_anon_rmap(pages[i], vma, haddr);
  730. pte = pte_offset_map(&_pmd, haddr);
  731. VM_BUG_ON(!pte_none(*pte));
  732. set_pte_at(mm, haddr, pte, entry);
  733. pte_unmap(pte);
  734. }
  735. kfree(pages);
  736. mm->nr_ptes++;
  737. smp_wmb(); /* make pte visible before pmd */
  738. pmd_populate(mm, pmd, pgtable);
  739. page_remove_rmap(page);
  740. spin_unlock(&mm->page_table_lock);
  741. ret |= VM_FAULT_WRITE;
  742. put_page(page);
  743. out:
  744. return ret;
  745. out_free_pages:
  746. spin_unlock(&mm->page_table_lock);
  747. mem_cgroup_uncharge_start();
  748. for (i = 0; i < HPAGE_PMD_NR; i++) {
  749. mem_cgroup_uncharge_page(pages[i]);
  750. put_page(pages[i]);
  751. }
  752. mem_cgroup_uncharge_end();
  753. kfree(pages);
  754. goto out;
  755. }
  756. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  757. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  758. {
  759. int ret = 0;
  760. struct page *page, *new_page;
  761. unsigned long haddr;
  762. VM_BUG_ON(!vma->anon_vma);
  763. spin_lock(&mm->page_table_lock);
  764. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  765. goto out_unlock;
  766. page = pmd_page(orig_pmd);
  767. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  768. haddr = address & HPAGE_PMD_MASK;
  769. if (page_mapcount(page) == 1) {
  770. pmd_t entry;
  771. entry = pmd_mkyoung(orig_pmd);
  772. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  773. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  774. update_mmu_cache(vma, address, entry);
  775. ret |= VM_FAULT_WRITE;
  776. goto out_unlock;
  777. }
  778. get_page(page);
  779. spin_unlock(&mm->page_table_lock);
  780. if (transparent_hugepage_enabled(vma) &&
  781. !transparent_hugepage_debug_cow())
  782. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  783. vma, haddr);
  784. else
  785. new_page = NULL;
  786. if (unlikely(!new_page)) {
  787. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  788. pmd, orig_pmd, page, haddr);
  789. put_page(page);
  790. goto out;
  791. }
  792. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  793. put_page(new_page);
  794. put_page(page);
  795. ret |= VM_FAULT_OOM;
  796. goto out;
  797. }
  798. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  799. __SetPageUptodate(new_page);
  800. spin_lock(&mm->page_table_lock);
  801. put_page(page);
  802. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  803. mem_cgroup_uncharge_page(new_page);
  804. put_page(new_page);
  805. } else {
  806. pmd_t entry;
  807. VM_BUG_ON(!PageHead(page));
  808. entry = mk_pmd(new_page, vma->vm_page_prot);
  809. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  810. entry = pmd_mkhuge(entry);
  811. pmdp_clear_flush_notify(vma, haddr, pmd);
  812. page_add_new_anon_rmap(new_page, vma, haddr);
  813. set_pmd_at(mm, haddr, pmd, entry);
  814. update_mmu_cache(vma, address, entry);
  815. page_remove_rmap(page);
  816. put_page(page);
  817. ret |= VM_FAULT_WRITE;
  818. }
  819. out_unlock:
  820. spin_unlock(&mm->page_table_lock);
  821. out:
  822. return ret;
  823. }
  824. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  825. unsigned long addr,
  826. pmd_t *pmd,
  827. unsigned int flags)
  828. {
  829. struct page *page = NULL;
  830. assert_spin_locked(&mm->page_table_lock);
  831. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  832. goto out;
  833. page = pmd_page(*pmd);
  834. VM_BUG_ON(!PageHead(page));
  835. if (flags & FOLL_TOUCH) {
  836. pmd_t _pmd;
  837. /*
  838. * We should set the dirty bit only for FOLL_WRITE but
  839. * for now the dirty bit in the pmd is meaningless.
  840. * And if the dirty bit will become meaningful and
  841. * we'll only set it with FOLL_WRITE, an atomic
  842. * set_bit will be required on the pmd to set the
  843. * young bit, instead of the current set_pmd_at.
  844. */
  845. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  846. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  847. }
  848. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  849. VM_BUG_ON(!PageCompound(page));
  850. if (flags & FOLL_GET)
  851. get_page(page);
  852. out:
  853. return page;
  854. }
  855. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  856. pmd_t *pmd)
  857. {
  858. int ret = 0;
  859. spin_lock(&tlb->mm->page_table_lock);
  860. if (likely(pmd_trans_huge(*pmd))) {
  861. if (unlikely(pmd_trans_splitting(*pmd))) {
  862. spin_unlock(&tlb->mm->page_table_lock);
  863. wait_split_huge_page(vma->anon_vma,
  864. pmd);
  865. } else {
  866. struct page *page;
  867. pgtable_t pgtable;
  868. pgtable = get_pmd_huge_pte(tlb->mm);
  869. page = pmd_page(*pmd);
  870. pmd_clear(pmd);
  871. page_remove_rmap(page);
  872. VM_BUG_ON(page_mapcount(page) < 0);
  873. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  874. VM_BUG_ON(!PageHead(page));
  875. spin_unlock(&tlb->mm->page_table_lock);
  876. tlb_remove_page(tlb, page);
  877. pte_free(tlb->mm, pgtable);
  878. ret = 1;
  879. }
  880. } else
  881. spin_unlock(&tlb->mm->page_table_lock);
  882. return ret;
  883. }
  884. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  885. unsigned long addr, unsigned long end,
  886. unsigned char *vec)
  887. {
  888. int ret = 0;
  889. spin_lock(&vma->vm_mm->page_table_lock);
  890. if (likely(pmd_trans_huge(*pmd))) {
  891. ret = !pmd_trans_splitting(*pmd);
  892. spin_unlock(&vma->vm_mm->page_table_lock);
  893. if (unlikely(!ret))
  894. wait_split_huge_page(vma->anon_vma, pmd);
  895. else {
  896. /*
  897. * All logical pages in the range are present
  898. * if backed by a huge page.
  899. */
  900. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  901. }
  902. } else
  903. spin_unlock(&vma->vm_mm->page_table_lock);
  904. return ret;
  905. }
  906. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  907. unsigned long addr, pgprot_t newprot)
  908. {
  909. struct mm_struct *mm = vma->vm_mm;
  910. int ret = 0;
  911. spin_lock(&mm->page_table_lock);
  912. if (likely(pmd_trans_huge(*pmd))) {
  913. if (unlikely(pmd_trans_splitting(*pmd))) {
  914. spin_unlock(&mm->page_table_lock);
  915. wait_split_huge_page(vma->anon_vma, pmd);
  916. } else {
  917. pmd_t entry;
  918. entry = pmdp_get_and_clear(mm, addr, pmd);
  919. entry = pmd_modify(entry, newprot);
  920. set_pmd_at(mm, addr, pmd, entry);
  921. spin_unlock(&vma->vm_mm->page_table_lock);
  922. flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
  923. ret = 1;
  924. }
  925. } else
  926. spin_unlock(&vma->vm_mm->page_table_lock);
  927. return ret;
  928. }
  929. pmd_t *page_check_address_pmd(struct page *page,
  930. struct mm_struct *mm,
  931. unsigned long address,
  932. enum page_check_address_pmd_flag flag)
  933. {
  934. pgd_t *pgd;
  935. pud_t *pud;
  936. pmd_t *pmd, *ret = NULL;
  937. if (address & ~HPAGE_PMD_MASK)
  938. goto out;
  939. pgd = pgd_offset(mm, address);
  940. if (!pgd_present(*pgd))
  941. goto out;
  942. pud = pud_offset(pgd, address);
  943. if (!pud_present(*pud))
  944. goto out;
  945. pmd = pmd_offset(pud, address);
  946. if (pmd_none(*pmd))
  947. goto out;
  948. if (pmd_page(*pmd) != page)
  949. goto out;
  950. /*
  951. * split_vma() may create temporary aliased mappings. There is
  952. * no risk as long as all huge pmd are found and have their
  953. * splitting bit set before __split_huge_page_refcount
  954. * runs. Finding the same huge pmd more than once during the
  955. * same rmap walk is not a problem.
  956. */
  957. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  958. pmd_trans_splitting(*pmd))
  959. goto out;
  960. if (pmd_trans_huge(*pmd)) {
  961. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  962. !pmd_trans_splitting(*pmd));
  963. ret = pmd;
  964. }
  965. out:
  966. return ret;
  967. }
  968. static int __split_huge_page_splitting(struct page *page,
  969. struct vm_area_struct *vma,
  970. unsigned long address)
  971. {
  972. struct mm_struct *mm = vma->vm_mm;
  973. pmd_t *pmd;
  974. int ret = 0;
  975. spin_lock(&mm->page_table_lock);
  976. pmd = page_check_address_pmd(page, mm, address,
  977. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  978. if (pmd) {
  979. /*
  980. * We can't temporarily set the pmd to null in order
  981. * to split it, the pmd must remain marked huge at all
  982. * times or the VM won't take the pmd_trans_huge paths
  983. * and it won't wait on the anon_vma->root->lock to
  984. * serialize against split_huge_page*.
  985. */
  986. pmdp_splitting_flush_notify(vma, address, pmd);
  987. ret = 1;
  988. }
  989. spin_unlock(&mm->page_table_lock);
  990. return ret;
  991. }
  992. static void __split_huge_page_refcount(struct page *page)
  993. {
  994. int i;
  995. unsigned long head_index = page->index;
  996. struct zone *zone = page_zone(page);
  997. /* prevent PageLRU to go away from under us, and freeze lru stats */
  998. spin_lock_irq(&zone->lru_lock);
  999. compound_lock(page);
  1000. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1001. struct page *page_tail = page + i;
  1002. /* tail_page->_count cannot change */
  1003. atomic_sub(atomic_read(&page_tail->_count), &page->_count);
  1004. BUG_ON(page_count(page) <= 0);
  1005. atomic_add(page_mapcount(page) + 1, &page_tail->_count);
  1006. BUG_ON(atomic_read(&page_tail->_count) <= 0);
  1007. /* after clearing PageTail the gup refcount can be released */
  1008. smp_mb();
  1009. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  1010. page_tail->flags |= (page->flags &
  1011. ((1L << PG_referenced) |
  1012. (1L << PG_swapbacked) |
  1013. (1L << PG_mlocked) |
  1014. (1L << PG_uptodate)));
  1015. page_tail->flags |= (1L << PG_dirty);
  1016. /*
  1017. * 1) clear PageTail before overwriting first_page
  1018. * 2) clear PageTail before clearing PageHead for VM_BUG_ON
  1019. */
  1020. smp_wmb();
  1021. /*
  1022. * __split_huge_page_splitting() already set the
  1023. * splitting bit in all pmd that could map this
  1024. * hugepage, that will ensure no CPU can alter the
  1025. * mapcount on the head page. The mapcount is only
  1026. * accounted in the head page and it has to be
  1027. * transferred to all tail pages in the below code. So
  1028. * for this code to be safe, the split the mapcount
  1029. * can't change. But that doesn't mean userland can't
  1030. * keep changing and reading the page contents while
  1031. * we transfer the mapcount, so the pmd splitting
  1032. * status is achieved setting a reserved bit in the
  1033. * pmd, not by clearing the present bit.
  1034. */
  1035. BUG_ON(page_mapcount(page_tail));
  1036. page_tail->_mapcount = page->_mapcount;
  1037. BUG_ON(page_tail->mapping);
  1038. page_tail->mapping = page->mapping;
  1039. page_tail->index = ++head_index;
  1040. BUG_ON(!PageAnon(page_tail));
  1041. BUG_ON(!PageUptodate(page_tail));
  1042. BUG_ON(!PageDirty(page_tail));
  1043. BUG_ON(!PageSwapBacked(page_tail));
  1044. lru_add_page_tail(zone, page, page_tail);
  1045. }
  1046. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  1047. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1048. ClearPageCompound(page);
  1049. compound_unlock(page);
  1050. spin_unlock_irq(&zone->lru_lock);
  1051. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1052. struct page *page_tail = page + i;
  1053. BUG_ON(page_count(page_tail) <= 0);
  1054. /*
  1055. * Tail pages may be freed if there wasn't any mapping
  1056. * like if add_to_swap() is running on a lru page that
  1057. * had its mapping zapped. And freeing these pages
  1058. * requires taking the lru_lock so we do the put_page
  1059. * of the tail pages after the split is complete.
  1060. */
  1061. put_page(page_tail);
  1062. }
  1063. /*
  1064. * Only the head page (now become a regular page) is required
  1065. * to be pinned by the caller.
  1066. */
  1067. BUG_ON(page_count(page) <= 0);
  1068. }
  1069. static int __split_huge_page_map(struct page *page,
  1070. struct vm_area_struct *vma,
  1071. unsigned long address)
  1072. {
  1073. struct mm_struct *mm = vma->vm_mm;
  1074. pmd_t *pmd, _pmd;
  1075. int ret = 0, i;
  1076. pgtable_t pgtable;
  1077. unsigned long haddr;
  1078. spin_lock(&mm->page_table_lock);
  1079. pmd = page_check_address_pmd(page, mm, address,
  1080. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1081. if (pmd) {
  1082. pgtable = get_pmd_huge_pte(mm);
  1083. pmd_populate(mm, &_pmd, pgtable);
  1084. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  1085. i++, haddr += PAGE_SIZE) {
  1086. pte_t *pte, entry;
  1087. BUG_ON(PageCompound(page+i));
  1088. entry = mk_pte(page + i, vma->vm_page_prot);
  1089. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1090. if (!pmd_write(*pmd))
  1091. entry = pte_wrprotect(entry);
  1092. else
  1093. BUG_ON(page_mapcount(page) != 1);
  1094. if (!pmd_young(*pmd))
  1095. entry = pte_mkold(entry);
  1096. pte = pte_offset_map(&_pmd, haddr);
  1097. BUG_ON(!pte_none(*pte));
  1098. set_pte_at(mm, haddr, pte, entry);
  1099. pte_unmap(pte);
  1100. }
  1101. mm->nr_ptes++;
  1102. smp_wmb(); /* make pte visible before pmd */
  1103. /*
  1104. * Up to this point the pmd is present and huge and
  1105. * userland has the whole access to the hugepage
  1106. * during the split (which happens in place). If we
  1107. * overwrite the pmd with the not-huge version
  1108. * pointing to the pte here (which of course we could
  1109. * if all CPUs were bug free), userland could trigger
  1110. * a small page size TLB miss on the small sized TLB
  1111. * while the hugepage TLB entry is still established
  1112. * in the huge TLB. Some CPU doesn't like that. See
  1113. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1114. * Erratum 383 on page 93. Intel should be safe but is
  1115. * also warns that it's only safe if the permission
  1116. * and cache attributes of the two entries loaded in
  1117. * the two TLB is identical (which should be the case
  1118. * here). But it is generally safer to never allow
  1119. * small and huge TLB entries for the same virtual
  1120. * address to be loaded simultaneously. So instead of
  1121. * doing "pmd_populate(); flush_tlb_range();" we first
  1122. * mark the current pmd notpresent (atomically because
  1123. * here the pmd_trans_huge and pmd_trans_splitting
  1124. * must remain set at all times on the pmd until the
  1125. * split is complete for this pmd), then we flush the
  1126. * SMP TLB and finally we write the non-huge version
  1127. * of the pmd entry with pmd_populate.
  1128. */
  1129. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1130. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1131. pmd_populate(mm, pmd, pgtable);
  1132. ret = 1;
  1133. }
  1134. spin_unlock(&mm->page_table_lock);
  1135. return ret;
  1136. }
  1137. /* must be called with anon_vma->root->lock hold */
  1138. static void __split_huge_page(struct page *page,
  1139. struct anon_vma *anon_vma)
  1140. {
  1141. int mapcount, mapcount2;
  1142. struct anon_vma_chain *avc;
  1143. BUG_ON(!PageHead(page));
  1144. BUG_ON(PageTail(page));
  1145. mapcount = 0;
  1146. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1147. struct vm_area_struct *vma = avc->vma;
  1148. unsigned long addr = vma_address(page, vma);
  1149. BUG_ON(is_vma_temporary_stack(vma));
  1150. if (addr == -EFAULT)
  1151. continue;
  1152. mapcount += __split_huge_page_splitting(page, vma, addr);
  1153. }
  1154. /*
  1155. * It is critical that new vmas are added to the tail of the
  1156. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1157. * and establishes a child pmd before
  1158. * __split_huge_page_splitting() freezes the parent pmd (so if
  1159. * we fail to prevent copy_huge_pmd() from running until the
  1160. * whole __split_huge_page() is complete), we will still see
  1161. * the newly established pmd of the child later during the
  1162. * walk, to be able to set it as pmd_trans_splitting too.
  1163. */
  1164. if (mapcount != page_mapcount(page))
  1165. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1166. mapcount, page_mapcount(page));
  1167. BUG_ON(mapcount != page_mapcount(page));
  1168. __split_huge_page_refcount(page);
  1169. mapcount2 = 0;
  1170. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1171. struct vm_area_struct *vma = avc->vma;
  1172. unsigned long addr = vma_address(page, vma);
  1173. BUG_ON(is_vma_temporary_stack(vma));
  1174. if (addr == -EFAULT)
  1175. continue;
  1176. mapcount2 += __split_huge_page_map(page, vma, addr);
  1177. }
  1178. if (mapcount != mapcount2)
  1179. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1180. mapcount, mapcount2, page_mapcount(page));
  1181. BUG_ON(mapcount != mapcount2);
  1182. }
  1183. int split_huge_page(struct page *page)
  1184. {
  1185. struct anon_vma *anon_vma;
  1186. int ret = 1;
  1187. BUG_ON(!PageAnon(page));
  1188. anon_vma = page_lock_anon_vma(page);
  1189. if (!anon_vma)
  1190. goto out;
  1191. ret = 0;
  1192. if (!PageCompound(page))
  1193. goto out_unlock;
  1194. BUG_ON(!PageSwapBacked(page));
  1195. __split_huge_page(page, anon_vma);
  1196. BUG_ON(PageCompound(page));
  1197. out_unlock:
  1198. page_unlock_anon_vma(anon_vma);
  1199. out:
  1200. return ret;
  1201. }
  1202. int hugepage_madvise(unsigned long *vm_flags)
  1203. {
  1204. /*
  1205. * Be somewhat over-protective like KSM for now!
  1206. */
  1207. if (*vm_flags & (VM_HUGEPAGE | VM_SHARED | VM_MAYSHARE |
  1208. VM_PFNMAP | VM_IO | VM_DONTEXPAND |
  1209. VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
  1210. VM_MIXEDMAP | VM_SAO))
  1211. return -EINVAL;
  1212. *vm_flags |= VM_HUGEPAGE;
  1213. return 0;
  1214. }
  1215. static int __init khugepaged_slab_init(void)
  1216. {
  1217. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1218. sizeof(struct mm_slot),
  1219. __alignof__(struct mm_slot), 0, NULL);
  1220. if (!mm_slot_cache)
  1221. return -ENOMEM;
  1222. return 0;
  1223. }
  1224. static void __init khugepaged_slab_free(void)
  1225. {
  1226. kmem_cache_destroy(mm_slot_cache);
  1227. mm_slot_cache = NULL;
  1228. }
  1229. static inline struct mm_slot *alloc_mm_slot(void)
  1230. {
  1231. if (!mm_slot_cache) /* initialization failed */
  1232. return NULL;
  1233. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1234. }
  1235. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1236. {
  1237. kmem_cache_free(mm_slot_cache, mm_slot);
  1238. }
  1239. static int __init mm_slots_hash_init(void)
  1240. {
  1241. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1242. GFP_KERNEL);
  1243. if (!mm_slots_hash)
  1244. return -ENOMEM;
  1245. return 0;
  1246. }
  1247. #if 0
  1248. static void __init mm_slots_hash_free(void)
  1249. {
  1250. kfree(mm_slots_hash);
  1251. mm_slots_hash = NULL;
  1252. }
  1253. #endif
  1254. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1255. {
  1256. struct mm_slot *mm_slot;
  1257. struct hlist_head *bucket;
  1258. struct hlist_node *node;
  1259. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1260. % MM_SLOTS_HASH_HEADS];
  1261. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1262. if (mm == mm_slot->mm)
  1263. return mm_slot;
  1264. }
  1265. return NULL;
  1266. }
  1267. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1268. struct mm_slot *mm_slot)
  1269. {
  1270. struct hlist_head *bucket;
  1271. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1272. % MM_SLOTS_HASH_HEADS];
  1273. mm_slot->mm = mm;
  1274. hlist_add_head(&mm_slot->hash, bucket);
  1275. }
  1276. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1277. {
  1278. return atomic_read(&mm->mm_users) == 0;
  1279. }
  1280. int __khugepaged_enter(struct mm_struct *mm)
  1281. {
  1282. struct mm_slot *mm_slot;
  1283. int wakeup;
  1284. mm_slot = alloc_mm_slot();
  1285. if (!mm_slot)
  1286. return -ENOMEM;
  1287. /* __khugepaged_exit() must not run from under us */
  1288. VM_BUG_ON(khugepaged_test_exit(mm));
  1289. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1290. free_mm_slot(mm_slot);
  1291. return 0;
  1292. }
  1293. spin_lock(&khugepaged_mm_lock);
  1294. insert_to_mm_slots_hash(mm, mm_slot);
  1295. /*
  1296. * Insert just behind the scanning cursor, to let the area settle
  1297. * down a little.
  1298. */
  1299. wakeup = list_empty(&khugepaged_scan.mm_head);
  1300. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1301. spin_unlock(&khugepaged_mm_lock);
  1302. atomic_inc(&mm->mm_count);
  1303. if (wakeup)
  1304. wake_up_interruptible(&khugepaged_wait);
  1305. return 0;
  1306. }
  1307. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1308. {
  1309. unsigned long hstart, hend;
  1310. if (!vma->anon_vma)
  1311. /*
  1312. * Not yet faulted in so we will register later in the
  1313. * page fault if needed.
  1314. */
  1315. return 0;
  1316. if (vma->vm_file || vma->vm_ops)
  1317. /* khugepaged not yet working on file or special mappings */
  1318. return 0;
  1319. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1320. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1321. hend = vma->vm_end & HPAGE_PMD_MASK;
  1322. if (hstart < hend)
  1323. return khugepaged_enter(vma);
  1324. return 0;
  1325. }
  1326. void __khugepaged_exit(struct mm_struct *mm)
  1327. {
  1328. struct mm_slot *mm_slot;
  1329. int free = 0;
  1330. spin_lock(&khugepaged_mm_lock);
  1331. mm_slot = get_mm_slot(mm);
  1332. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1333. hlist_del(&mm_slot->hash);
  1334. list_del(&mm_slot->mm_node);
  1335. free = 1;
  1336. }
  1337. if (free) {
  1338. spin_unlock(&khugepaged_mm_lock);
  1339. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1340. free_mm_slot(mm_slot);
  1341. mmdrop(mm);
  1342. } else if (mm_slot) {
  1343. spin_unlock(&khugepaged_mm_lock);
  1344. /*
  1345. * This is required to serialize against
  1346. * khugepaged_test_exit() (which is guaranteed to run
  1347. * under mmap sem read mode). Stop here (after we
  1348. * return all pagetables will be destroyed) until
  1349. * khugepaged has finished working on the pagetables
  1350. * under the mmap_sem.
  1351. */
  1352. down_write(&mm->mmap_sem);
  1353. up_write(&mm->mmap_sem);
  1354. } else
  1355. spin_unlock(&khugepaged_mm_lock);
  1356. }
  1357. static void release_pte_page(struct page *page)
  1358. {
  1359. /* 0 stands for page_is_file_cache(page) == false */
  1360. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1361. unlock_page(page);
  1362. putback_lru_page(page);
  1363. }
  1364. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1365. {
  1366. while (--_pte >= pte) {
  1367. pte_t pteval = *_pte;
  1368. if (!pte_none(pteval))
  1369. release_pte_page(pte_page(pteval));
  1370. }
  1371. }
  1372. static void release_all_pte_pages(pte_t *pte)
  1373. {
  1374. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1375. }
  1376. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1377. unsigned long address,
  1378. pte_t *pte)
  1379. {
  1380. struct page *page;
  1381. pte_t *_pte;
  1382. int referenced = 0, isolated = 0, none = 0;
  1383. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1384. _pte++, address += PAGE_SIZE) {
  1385. pte_t pteval = *_pte;
  1386. if (pte_none(pteval)) {
  1387. if (++none <= khugepaged_max_ptes_none)
  1388. continue;
  1389. else {
  1390. release_pte_pages(pte, _pte);
  1391. goto out;
  1392. }
  1393. }
  1394. if (!pte_present(pteval) || !pte_write(pteval)) {
  1395. release_pte_pages(pte, _pte);
  1396. goto out;
  1397. }
  1398. page = vm_normal_page(vma, address, pteval);
  1399. if (unlikely(!page)) {
  1400. release_pte_pages(pte, _pte);
  1401. goto out;
  1402. }
  1403. VM_BUG_ON(PageCompound(page));
  1404. BUG_ON(!PageAnon(page));
  1405. VM_BUG_ON(!PageSwapBacked(page));
  1406. /* cannot use mapcount: can't collapse if there's a gup pin */
  1407. if (page_count(page) != 1) {
  1408. release_pte_pages(pte, _pte);
  1409. goto out;
  1410. }
  1411. /*
  1412. * We can do it before isolate_lru_page because the
  1413. * page can't be freed from under us. NOTE: PG_lock
  1414. * is needed to serialize against split_huge_page
  1415. * when invoked from the VM.
  1416. */
  1417. if (!trylock_page(page)) {
  1418. release_pte_pages(pte, _pte);
  1419. goto out;
  1420. }
  1421. /*
  1422. * Isolate the page to avoid collapsing an hugepage
  1423. * currently in use by the VM.
  1424. */
  1425. if (isolate_lru_page(page)) {
  1426. unlock_page(page);
  1427. release_pte_pages(pte, _pte);
  1428. goto out;
  1429. }
  1430. /* 0 stands for page_is_file_cache(page) == false */
  1431. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1432. VM_BUG_ON(!PageLocked(page));
  1433. VM_BUG_ON(PageLRU(page));
  1434. /* If there is no mapped pte young don't collapse the page */
  1435. if (pte_young(pteval))
  1436. referenced = 1;
  1437. }
  1438. if (unlikely(!referenced))
  1439. release_all_pte_pages(pte);
  1440. else
  1441. isolated = 1;
  1442. out:
  1443. return isolated;
  1444. }
  1445. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1446. struct vm_area_struct *vma,
  1447. unsigned long address,
  1448. spinlock_t *ptl)
  1449. {
  1450. pte_t *_pte;
  1451. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1452. pte_t pteval = *_pte;
  1453. struct page *src_page;
  1454. if (pte_none(pteval)) {
  1455. clear_user_highpage(page, address);
  1456. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1457. } else {
  1458. src_page = pte_page(pteval);
  1459. copy_user_highpage(page, src_page, address, vma);
  1460. VM_BUG_ON(page_mapcount(src_page) != 1);
  1461. VM_BUG_ON(page_count(src_page) != 2);
  1462. release_pte_page(src_page);
  1463. /*
  1464. * ptl mostly unnecessary, but preempt has to
  1465. * be disabled to update the per-cpu stats
  1466. * inside page_remove_rmap().
  1467. */
  1468. spin_lock(ptl);
  1469. /*
  1470. * paravirt calls inside pte_clear here are
  1471. * superfluous.
  1472. */
  1473. pte_clear(vma->vm_mm, address, _pte);
  1474. page_remove_rmap(src_page);
  1475. spin_unlock(ptl);
  1476. free_page_and_swap_cache(src_page);
  1477. }
  1478. address += PAGE_SIZE;
  1479. page++;
  1480. }
  1481. }
  1482. static void collapse_huge_page(struct mm_struct *mm,
  1483. unsigned long address,
  1484. struct page **hpage,
  1485. struct vm_area_struct *vma)
  1486. {
  1487. pgd_t *pgd;
  1488. pud_t *pud;
  1489. pmd_t *pmd, _pmd;
  1490. pte_t *pte;
  1491. pgtable_t pgtable;
  1492. struct page *new_page;
  1493. spinlock_t *ptl;
  1494. int isolated;
  1495. unsigned long hstart, hend;
  1496. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1497. #ifndef CONFIG_NUMA
  1498. VM_BUG_ON(!*hpage);
  1499. new_page = *hpage;
  1500. #else
  1501. VM_BUG_ON(*hpage);
  1502. /*
  1503. * Allocate the page while the vma is still valid and under
  1504. * the mmap_sem read mode so there is no memory allocation
  1505. * later when we take the mmap_sem in write mode. This is more
  1506. * friendly behavior (OTOH it may actually hide bugs) to
  1507. * filesystems in userland with daemons allocating memory in
  1508. * the userland I/O paths. Allocating memory with the
  1509. * mmap_sem in read mode is good idea also to allow greater
  1510. * scalability.
  1511. */
  1512. new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address);
  1513. if (unlikely(!new_page)) {
  1514. up_read(&mm->mmap_sem);
  1515. *hpage = ERR_PTR(-ENOMEM);
  1516. return;
  1517. }
  1518. #endif
  1519. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1520. up_read(&mm->mmap_sem);
  1521. put_page(new_page);
  1522. return;
  1523. }
  1524. /* after allocating the hugepage upgrade to mmap_sem write mode */
  1525. up_read(&mm->mmap_sem);
  1526. /*
  1527. * Prevent all access to pagetables with the exception of
  1528. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1529. * handled by the anon_vma lock + PG_lock.
  1530. */
  1531. down_write(&mm->mmap_sem);
  1532. if (unlikely(khugepaged_test_exit(mm)))
  1533. goto out;
  1534. vma = find_vma(mm, address);
  1535. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1536. hend = vma->vm_end & HPAGE_PMD_MASK;
  1537. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1538. goto out;
  1539. if (!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always())
  1540. goto out;
  1541. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1542. if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
  1543. goto out;
  1544. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1545. pgd = pgd_offset(mm, address);
  1546. if (!pgd_present(*pgd))
  1547. goto out;
  1548. pud = pud_offset(pgd, address);
  1549. if (!pud_present(*pud))
  1550. goto out;
  1551. pmd = pmd_offset(pud, address);
  1552. /* pmd can't go away or become huge under us */
  1553. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1554. goto out;
  1555. anon_vma_lock(vma->anon_vma);
  1556. pte = pte_offset_map(pmd, address);
  1557. ptl = pte_lockptr(mm, pmd);
  1558. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1559. /*
  1560. * After this gup_fast can't run anymore. This also removes
  1561. * any huge TLB entry from the CPU so we won't allow
  1562. * huge and small TLB entries for the same virtual address
  1563. * to avoid the risk of CPU bugs in that area.
  1564. */
  1565. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1566. spin_unlock(&mm->page_table_lock);
  1567. spin_lock(ptl);
  1568. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1569. spin_unlock(ptl);
  1570. pte_unmap(pte);
  1571. if (unlikely(!isolated)) {
  1572. spin_lock(&mm->page_table_lock);
  1573. BUG_ON(!pmd_none(*pmd));
  1574. set_pmd_at(mm, address, pmd, _pmd);
  1575. spin_unlock(&mm->page_table_lock);
  1576. anon_vma_unlock(vma->anon_vma);
  1577. mem_cgroup_uncharge_page(new_page);
  1578. goto out;
  1579. }
  1580. /*
  1581. * All pages are isolated and locked so anon_vma rmap
  1582. * can't run anymore.
  1583. */
  1584. anon_vma_unlock(vma->anon_vma);
  1585. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1586. __SetPageUptodate(new_page);
  1587. pgtable = pmd_pgtable(_pmd);
  1588. VM_BUG_ON(page_count(pgtable) != 1);
  1589. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1590. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1591. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1592. _pmd = pmd_mkhuge(_pmd);
  1593. /*
  1594. * spin_lock() below is not the equivalent of smp_wmb(), so
  1595. * this is needed to avoid the copy_huge_page writes to become
  1596. * visible after the set_pmd_at() write.
  1597. */
  1598. smp_wmb();
  1599. spin_lock(&mm->page_table_lock);
  1600. BUG_ON(!pmd_none(*pmd));
  1601. page_add_new_anon_rmap(new_page, vma, address);
  1602. set_pmd_at(mm, address, pmd, _pmd);
  1603. update_mmu_cache(vma, address, entry);
  1604. prepare_pmd_huge_pte(pgtable, mm);
  1605. mm->nr_ptes--;
  1606. spin_unlock(&mm->page_table_lock);
  1607. #ifndef CONFIG_NUMA
  1608. *hpage = NULL;
  1609. #endif
  1610. khugepaged_pages_collapsed++;
  1611. out_up_write:
  1612. up_write(&mm->mmap_sem);
  1613. return;
  1614. out:
  1615. #ifdef CONFIG_NUMA
  1616. put_page(new_page);
  1617. #endif
  1618. goto out_up_write;
  1619. }
  1620. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1621. struct vm_area_struct *vma,
  1622. unsigned long address,
  1623. struct page **hpage)
  1624. {
  1625. pgd_t *pgd;
  1626. pud_t *pud;
  1627. pmd_t *pmd;
  1628. pte_t *pte, *_pte;
  1629. int ret = 0, referenced = 0, none = 0;
  1630. struct page *page;
  1631. unsigned long _address;
  1632. spinlock_t *ptl;
  1633. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1634. pgd = pgd_offset(mm, address);
  1635. if (!pgd_present(*pgd))
  1636. goto out;
  1637. pud = pud_offset(pgd, address);
  1638. if (!pud_present(*pud))
  1639. goto out;
  1640. pmd = pmd_offset(pud, address);
  1641. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1642. goto out;
  1643. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1644. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1645. _pte++, _address += PAGE_SIZE) {
  1646. pte_t pteval = *_pte;
  1647. if (pte_none(pteval)) {
  1648. if (++none <= khugepaged_max_ptes_none)
  1649. continue;
  1650. else
  1651. goto out_unmap;
  1652. }
  1653. if (!pte_present(pteval) || !pte_write(pteval))
  1654. goto out_unmap;
  1655. page = vm_normal_page(vma, _address, pteval);
  1656. if (unlikely(!page))
  1657. goto out_unmap;
  1658. VM_BUG_ON(PageCompound(page));
  1659. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1660. goto out_unmap;
  1661. /* cannot use mapcount: can't collapse if there's a gup pin */
  1662. if (page_count(page) != 1)
  1663. goto out_unmap;
  1664. if (pte_young(pteval))
  1665. referenced = 1;
  1666. }
  1667. if (referenced)
  1668. ret = 1;
  1669. out_unmap:
  1670. pte_unmap_unlock(pte, ptl);
  1671. if (ret)
  1672. /* collapse_huge_page will return with the mmap_sem released */
  1673. collapse_huge_page(mm, address, hpage, vma);
  1674. out:
  1675. return ret;
  1676. }
  1677. static void collect_mm_slot(struct mm_slot *mm_slot)
  1678. {
  1679. struct mm_struct *mm = mm_slot->mm;
  1680. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1681. if (khugepaged_test_exit(mm)) {
  1682. /* free mm_slot */
  1683. hlist_del(&mm_slot->hash);
  1684. list_del(&mm_slot->mm_node);
  1685. /*
  1686. * Not strictly needed because the mm exited already.
  1687. *
  1688. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1689. */
  1690. /* khugepaged_mm_lock actually not necessary for the below */
  1691. free_mm_slot(mm_slot);
  1692. mmdrop(mm);
  1693. }
  1694. }
  1695. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1696. struct page **hpage)
  1697. {
  1698. struct mm_slot *mm_slot;
  1699. struct mm_struct *mm;
  1700. struct vm_area_struct *vma;
  1701. int progress = 0;
  1702. VM_BUG_ON(!pages);
  1703. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1704. if (khugepaged_scan.mm_slot)
  1705. mm_slot = khugepaged_scan.mm_slot;
  1706. else {
  1707. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1708. struct mm_slot, mm_node);
  1709. khugepaged_scan.address = 0;
  1710. khugepaged_scan.mm_slot = mm_slot;
  1711. }
  1712. spin_unlock(&khugepaged_mm_lock);
  1713. mm = mm_slot->mm;
  1714. down_read(&mm->mmap_sem);
  1715. if (unlikely(khugepaged_test_exit(mm)))
  1716. vma = NULL;
  1717. else
  1718. vma = find_vma(mm, khugepaged_scan.address);
  1719. progress++;
  1720. for (; vma; vma = vma->vm_next) {
  1721. unsigned long hstart, hend;
  1722. cond_resched();
  1723. if (unlikely(khugepaged_test_exit(mm))) {
  1724. progress++;
  1725. break;
  1726. }
  1727. if (!(vma->vm_flags & VM_HUGEPAGE) &&
  1728. !khugepaged_always()) {
  1729. progress++;
  1730. continue;
  1731. }
  1732. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1733. if (!vma->anon_vma || vma->vm_ops || vma->vm_file) {
  1734. khugepaged_scan.address = vma->vm_end;
  1735. progress++;
  1736. continue;
  1737. }
  1738. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1739. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1740. hend = vma->vm_end & HPAGE_PMD_MASK;
  1741. if (hstart >= hend) {
  1742. progress++;
  1743. continue;
  1744. }
  1745. if (khugepaged_scan.address < hstart)
  1746. khugepaged_scan.address = hstart;
  1747. if (khugepaged_scan.address > hend) {
  1748. khugepaged_scan.address = hend + HPAGE_PMD_SIZE;
  1749. progress++;
  1750. continue;
  1751. }
  1752. BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1753. while (khugepaged_scan.address < hend) {
  1754. int ret;
  1755. cond_resched();
  1756. if (unlikely(khugepaged_test_exit(mm)))
  1757. goto breakouterloop;
  1758. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1759. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1760. hend);
  1761. ret = khugepaged_scan_pmd(mm, vma,
  1762. khugepaged_scan.address,
  1763. hpage);
  1764. /* move to next address */
  1765. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1766. progress += HPAGE_PMD_NR;
  1767. if (ret)
  1768. /* we released mmap_sem so break loop */
  1769. goto breakouterloop_mmap_sem;
  1770. if (progress >= pages)
  1771. goto breakouterloop;
  1772. }
  1773. }
  1774. breakouterloop:
  1775. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1776. breakouterloop_mmap_sem:
  1777. spin_lock(&khugepaged_mm_lock);
  1778. BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1779. /*
  1780. * Release the current mm_slot if this mm is about to die, or
  1781. * if we scanned all vmas of this mm.
  1782. */
  1783. if (khugepaged_test_exit(mm) || !vma) {
  1784. /*
  1785. * Make sure that if mm_users is reaching zero while
  1786. * khugepaged runs here, khugepaged_exit will find
  1787. * mm_slot not pointing to the exiting mm.
  1788. */
  1789. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1790. khugepaged_scan.mm_slot = list_entry(
  1791. mm_slot->mm_node.next,
  1792. struct mm_slot, mm_node);
  1793. khugepaged_scan.address = 0;
  1794. } else {
  1795. khugepaged_scan.mm_slot = NULL;
  1796. khugepaged_full_scans++;
  1797. }
  1798. collect_mm_slot(mm_slot);
  1799. }
  1800. return progress;
  1801. }
  1802. static int khugepaged_has_work(void)
  1803. {
  1804. return !list_empty(&khugepaged_scan.mm_head) &&
  1805. khugepaged_enabled();
  1806. }
  1807. static int khugepaged_wait_event(void)
  1808. {
  1809. return !list_empty(&khugepaged_scan.mm_head) ||
  1810. !khugepaged_enabled();
  1811. }
  1812. static void khugepaged_do_scan(struct page **hpage)
  1813. {
  1814. unsigned int progress = 0, pass_through_head = 0;
  1815. unsigned int pages = khugepaged_pages_to_scan;
  1816. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1817. while (progress < pages) {
  1818. cond_resched();
  1819. #ifndef CONFIG_NUMA
  1820. if (!*hpage) {
  1821. *hpage = alloc_hugepage(khugepaged_defrag());
  1822. if (unlikely(!*hpage))
  1823. break;
  1824. }
  1825. #else
  1826. if (IS_ERR(*hpage))
  1827. break;
  1828. #endif
  1829. spin_lock(&khugepaged_mm_lock);
  1830. if (!khugepaged_scan.mm_slot)
  1831. pass_through_head++;
  1832. if (khugepaged_has_work() &&
  1833. pass_through_head < 2)
  1834. progress += khugepaged_scan_mm_slot(pages - progress,
  1835. hpage);
  1836. else
  1837. progress = pages;
  1838. spin_unlock(&khugepaged_mm_lock);
  1839. }
  1840. }
  1841. static void khugepaged_alloc_sleep(void)
  1842. {
  1843. DEFINE_WAIT(wait);
  1844. add_wait_queue(&khugepaged_wait, &wait);
  1845. schedule_timeout_interruptible(
  1846. msecs_to_jiffies(
  1847. khugepaged_alloc_sleep_millisecs));
  1848. remove_wait_queue(&khugepaged_wait, &wait);
  1849. }
  1850. #ifndef CONFIG_NUMA
  1851. static struct page *khugepaged_alloc_hugepage(void)
  1852. {
  1853. struct page *hpage;
  1854. do {
  1855. hpage = alloc_hugepage(khugepaged_defrag());
  1856. if (!hpage)
  1857. khugepaged_alloc_sleep();
  1858. } while (unlikely(!hpage) &&
  1859. likely(khugepaged_enabled()));
  1860. return hpage;
  1861. }
  1862. #endif
  1863. static void khugepaged_loop(void)
  1864. {
  1865. struct page *hpage;
  1866. #ifdef CONFIG_NUMA
  1867. hpage = NULL;
  1868. #endif
  1869. while (likely(khugepaged_enabled())) {
  1870. #ifndef CONFIG_NUMA
  1871. hpage = khugepaged_alloc_hugepage();
  1872. if (unlikely(!hpage))
  1873. break;
  1874. #else
  1875. if (IS_ERR(hpage)) {
  1876. khugepaged_alloc_sleep();
  1877. hpage = NULL;
  1878. }
  1879. #endif
  1880. khugepaged_do_scan(&hpage);
  1881. #ifndef CONFIG_NUMA
  1882. if (hpage)
  1883. put_page(hpage);
  1884. #endif
  1885. if (khugepaged_has_work()) {
  1886. DEFINE_WAIT(wait);
  1887. if (!khugepaged_scan_sleep_millisecs)
  1888. continue;
  1889. add_wait_queue(&khugepaged_wait, &wait);
  1890. schedule_timeout_interruptible(
  1891. msecs_to_jiffies(
  1892. khugepaged_scan_sleep_millisecs));
  1893. remove_wait_queue(&khugepaged_wait, &wait);
  1894. } else if (khugepaged_enabled())
  1895. wait_event_interruptible(khugepaged_wait,
  1896. khugepaged_wait_event());
  1897. }
  1898. }
  1899. static int khugepaged(void *none)
  1900. {
  1901. struct mm_slot *mm_slot;
  1902. set_user_nice(current, 19);
  1903. /* serialize with start_khugepaged() */
  1904. mutex_lock(&khugepaged_mutex);
  1905. for (;;) {
  1906. mutex_unlock(&khugepaged_mutex);
  1907. BUG_ON(khugepaged_thread != current);
  1908. khugepaged_loop();
  1909. BUG_ON(khugepaged_thread != current);
  1910. mutex_lock(&khugepaged_mutex);
  1911. if (!khugepaged_enabled())
  1912. break;
  1913. }
  1914. spin_lock(&khugepaged_mm_lock);
  1915. mm_slot = khugepaged_scan.mm_slot;
  1916. khugepaged_scan.mm_slot = NULL;
  1917. if (mm_slot)
  1918. collect_mm_slot(mm_slot);
  1919. spin_unlock(&khugepaged_mm_lock);
  1920. khugepaged_thread = NULL;
  1921. mutex_unlock(&khugepaged_mutex);
  1922. return 0;
  1923. }
  1924. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  1925. {
  1926. struct page *page;
  1927. spin_lock(&mm->page_table_lock);
  1928. if (unlikely(!pmd_trans_huge(*pmd))) {
  1929. spin_unlock(&mm->page_table_lock);
  1930. return;
  1931. }
  1932. page = pmd_page(*pmd);
  1933. VM_BUG_ON(!page_count(page));
  1934. get_page(page);
  1935. spin_unlock(&mm->page_table_lock);
  1936. split_huge_page(page);
  1937. put_page(page);
  1938. BUG_ON(pmd_trans_huge(*pmd));
  1939. }
  1940. static void split_huge_page_address(struct mm_struct *mm,
  1941. unsigned long address)
  1942. {
  1943. pgd_t *pgd;
  1944. pud_t *pud;
  1945. pmd_t *pmd;
  1946. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  1947. pgd = pgd_offset(mm, address);
  1948. if (!pgd_present(*pgd))
  1949. return;
  1950. pud = pud_offset(pgd, address);
  1951. if (!pud_present(*pud))
  1952. return;
  1953. pmd = pmd_offset(pud, address);
  1954. if (!pmd_present(*pmd))
  1955. return;
  1956. /*
  1957. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  1958. * materialize from under us.
  1959. */
  1960. split_huge_page_pmd(mm, pmd);
  1961. }
  1962. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  1963. unsigned long start,
  1964. unsigned long end,
  1965. long adjust_next)
  1966. {
  1967. /*
  1968. * If the new start address isn't hpage aligned and it could
  1969. * previously contain an hugepage: check if we need to split
  1970. * an huge pmd.
  1971. */
  1972. if (start & ~HPAGE_PMD_MASK &&
  1973. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  1974. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  1975. split_huge_page_address(vma->vm_mm, start);
  1976. /*
  1977. * If the new end address isn't hpage aligned and it could
  1978. * previously contain an hugepage: check if we need to split
  1979. * an huge pmd.
  1980. */
  1981. if (end & ~HPAGE_PMD_MASK &&
  1982. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  1983. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  1984. split_huge_page_address(vma->vm_mm, end);
  1985. /*
  1986. * If we're also updating the vma->vm_next->vm_start, if the new
  1987. * vm_next->vm_start isn't page aligned and it could previously
  1988. * contain an hugepage: check if we need to split an huge pmd.
  1989. */
  1990. if (adjust_next > 0) {
  1991. struct vm_area_struct *next = vma->vm_next;
  1992. unsigned long nstart = next->vm_start;
  1993. nstart += adjust_next << PAGE_SHIFT;
  1994. if (nstart & ~HPAGE_PMD_MASK &&
  1995. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  1996. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  1997. split_huge_page_address(next->vm_mm, nstart);
  1998. }
  1999. }