elevator.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@kernel.dk> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/delay.h>
  35. #include <linux/blktrace_api.h>
  36. #include <linux/hash.h>
  37. #include <asm/uaccess.h>
  38. static DEFINE_SPINLOCK(elv_list_lock);
  39. static LIST_HEAD(elv_list);
  40. /*
  41. * Merge hash stuff.
  42. */
  43. static const int elv_hash_shift = 6;
  44. #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
  45. #define ELV_HASH_FN(sec) (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
  46. #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
  47. #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
  48. #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
  49. /*
  50. * Query io scheduler to see if the current process issuing bio may be
  51. * merged with rq.
  52. */
  53. static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
  54. {
  55. request_queue_t *q = rq->q;
  56. elevator_t *e = q->elevator;
  57. if (e->ops->elevator_allow_merge_fn)
  58. return e->ops->elevator_allow_merge_fn(q, rq, bio);
  59. return 1;
  60. }
  61. /*
  62. * can we safely merge with this request?
  63. */
  64. inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  65. {
  66. if (!rq_mergeable(rq))
  67. return 0;
  68. /*
  69. * different data direction or already started, don't merge
  70. */
  71. if (bio_data_dir(bio) != rq_data_dir(rq))
  72. return 0;
  73. /*
  74. * must be same device and not a special request
  75. */
  76. if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
  77. return 0;
  78. if (!elv_iosched_allow_merge(rq, bio))
  79. return 0;
  80. return 1;
  81. }
  82. EXPORT_SYMBOL(elv_rq_merge_ok);
  83. static inline int elv_try_merge(struct request *__rq, struct bio *bio)
  84. {
  85. int ret = ELEVATOR_NO_MERGE;
  86. /*
  87. * we can merge and sequence is ok, check if it's possible
  88. */
  89. if (elv_rq_merge_ok(__rq, bio)) {
  90. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  91. ret = ELEVATOR_BACK_MERGE;
  92. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  93. ret = ELEVATOR_FRONT_MERGE;
  94. }
  95. return ret;
  96. }
  97. static struct elevator_type *elevator_find(const char *name)
  98. {
  99. struct elevator_type *e;
  100. list_for_each_entry(e, &elv_list, list) {
  101. if (!strcmp(e->elevator_name, name))
  102. return e;
  103. }
  104. return NULL;
  105. }
  106. static void elevator_put(struct elevator_type *e)
  107. {
  108. module_put(e->elevator_owner);
  109. }
  110. static struct elevator_type *elevator_get(const char *name)
  111. {
  112. struct elevator_type *e;
  113. spin_lock(&elv_list_lock);
  114. e = elevator_find(name);
  115. if (e && !try_module_get(e->elevator_owner))
  116. e = NULL;
  117. spin_unlock(&elv_list_lock);
  118. return e;
  119. }
  120. static void *elevator_init_queue(request_queue_t *q, struct elevator_queue *eq)
  121. {
  122. return eq->ops->elevator_init_fn(q);
  123. }
  124. static void elevator_attach(request_queue_t *q, struct elevator_queue *eq,
  125. void *data)
  126. {
  127. q->elevator = eq;
  128. eq->elevator_data = data;
  129. }
  130. static char chosen_elevator[16];
  131. static int __init elevator_setup(char *str)
  132. {
  133. /*
  134. * Be backwards-compatible with previous kernels, so users
  135. * won't get the wrong elevator.
  136. */
  137. if (!strcmp(str, "as"))
  138. strcpy(chosen_elevator, "anticipatory");
  139. else
  140. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  141. return 1;
  142. }
  143. __setup("elevator=", elevator_setup);
  144. static struct kobj_type elv_ktype;
  145. static elevator_t *elevator_alloc(request_queue_t *q, struct elevator_type *e)
  146. {
  147. elevator_t *eq;
  148. int i;
  149. eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node);
  150. if (unlikely(!eq))
  151. goto err;
  152. eq->ops = &e->ops;
  153. eq->elevator_type = e;
  154. kobject_init(&eq->kobj);
  155. snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
  156. eq->kobj.ktype = &elv_ktype;
  157. mutex_init(&eq->sysfs_lock);
  158. eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
  159. GFP_KERNEL, q->node);
  160. if (!eq->hash)
  161. goto err;
  162. for (i = 0; i < ELV_HASH_ENTRIES; i++)
  163. INIT_HLIST_HEAD(&eq->hash[i]);
  164. return eq;
  165. err:
  166. kfree(eq);
  167. elevator_put(e);
  168. return NULL;
  169. }
  170. static void elevator_release(struct kobject *kobj)
  171. {
  172. elevator_t *e = container_of(kobj, elevator_t, kobj);
  173. elevator_put(e->elevator_type);
  174. kfree(e->hash);
  175. kfree(e);
  176. }
  177. int elevator_init(request_queue_t *q, char *name)
  178. {
  179. struct elevator_type *e = NULL;
  180. struct elevator_queue *eq;
  181. int ret = 0;
  182. void *data;
  183. INIT_LIST_HEAD(&q->queue_head);
  184. q->last_merge = NULL;
  185. q->end_sector = 0;
  186. q->boundary_rq = NULL;
  187. if (name && !(e = elevator_get(name)))
  188. return -EINVAL;
  189. if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
  190. printk("I/O scheduler %s not found\n", chosen_elevator);
  191. if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
  192. printk("Default I/O scheduler not found, using no-op\n");
  193. e = elevator_get("noop");
  194. }
  195. eq = elevator_alloc(q, e);
  196. if (!eq)
  197. return -ENOMEM;
  198. data = elevator_init_queue(q, eq);
  199. if (!data) {
  200. kobject_put(&eq->kobj);
  201. return -ENOMEM;
  202. }
  203. elevator_attach(q, eq, data);
  204. return ret;
  205. }
  206. EXPORT_SYMBOL(elevator_init);
  207. void elevator_exit(elevator_t *e)
  208. {
  209. mutex_lock(&e->sysfs_lock);
  210. if (e->ops->elevator_exit_fn)
  211. e->ops->elevator_exit_fn(e);
  212. e->ops = NULL;
  213. mutex_unlock(&e->sysfs_lock);
  214. kobject_put(&e->kobj);
  215. }
  216. EXPORT_SYMBOL(elevator_exit);
  217. static void elv_activate_rq(request_queue_t *q, struct request *rq)
  218. {
  219. elevator_t *e = q->elevator;
  220. if (e->ops->elevator_activate_req_fn)
  221. e->ops->elevator_activate_req_fn(q, rq);
  222. }
  223. static void elv_deactivate_rq(request_queue_t *q, struct request *rq)
  224. {
  225. elevator_t *e = q->elevator;
  226. if (e->ops->elevator_deactivate_req_fn)
  227. e->ops->elevator_deactivate_req_fn(q, rq);
  228. }
  229. static inline void __elv_rqhash_del(struct request *rq)
  230. {
  231. hlist_del_init(&rq->hash);
  232. }
  233. static void elv_rqhash_del(request_queue_t *q, struct request *rq)
  234. {
  235. if (ELV_ON_HASH(rq))
  236. __elv_rqhash_del(rq);
  237. }
  238. static void elv_rqhash_add(request_queue_t *q, struct request *rq)
  239. {
  240. elevator_t *e = q->elevator;
  241. BUG_ON(ELV_ON_HASH(rq));
  242. hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
  243. }
  244. static void elv_rqhash_reposition(request_queue_t *q, struct request *rq)
  245. {
  246. __elv_rqhash_del(rq);
  247. elv_rqhash_add(q, rq);
  248. }
  249. static struct request *elv_rqhash_find(request_queue_t *q, sector_t offset)
  250. {
  251. elevator_t *e = q->elevator;
  252. struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
  253. struct hlist_node *entry, *next;
  254. struct request *rq;
  255. hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
  256. BUG_ON(!ELV_ON_HASH(rq));
  257. if (unlikely(!rq_mergeable(rq))) {
  258. __elv_rqhash_del(rq);
  259. continue;
  260. }
  261. if (rq_hash_key(rq) == offset)
  262. return rq;
  263. }
  264. return NULL;
  265. }
  266. /*
  267. * RB-tree support functions for inserting/lookup/removal of requests
  268. * in a sorted RB tree.
  269. */
  270. struct request *elv_rb_add(struct rb_root *root, struct request *rq)
  271. {
  272. struct rb_node **p = &root->rb_node;
  273. struct rb_node *parent = NULL;
  274. struct request *__rq;
  275. while (*p) {
  276. parent = *p;
  277. __rq = rb_entry(parent, struct request, rb_node);
  278. if (rq->sector < __rq->sector)
  279. p = &(*p)->rb_left;
  280. else if (rq->sector > __rq->sector)
  281. p = &(*p)->rb_right;
  282. else
  283. return __rq;
  284. }
  285. rb_link_node(&rq->rb_node, parent, p);
  286. rb_insert_color(&rq->rb_node, root);
  287. return NULL;
  288. }
  289. EXPORT_SYMBOL(elv_rb_add);
  290. void elv_rb_del(struct rb_root *root, struct request *rq)
  291. {
  292. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  293. rb_erase(&rq->rb_node, root);
  294. RB_CLEAR_NODE(&rq->rb_node);
  295. }
  296. EXPORT_SYMBOL(elv_rb_del);
  297. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  298. {
  299. struct rb_node *n = root->rb_node;
  300. struct request *rq;
  301. while (n) {
  302. rq = rb_entry(n, struct request, rb_node);
  303. if (sector < rq->sector)
  304. n = n->rb_left;
  305. else if (sector > rq->sector)
  306. n = n->rb_right;
  307. else
  308. return rq;
  309. }
  310. return NULL;
  311. }
  312. EXPORT_SYMBOL(elv_rb_find);
  313. /*
  314. * Insert rq into dispatch queue of q. Queue lock must be held on
  315. * entry. rq is sort insted into the dispatch queue. To be used by
  316. * specific elevators.
  317. */
  318. void elv_dispatch_sort(request_queue_t *q, struct request *rq)
  319. {
  320. sector_t boundary;
  321. struct list_head *entry;
  322. if (q->last_merge == rq)
  323. q->last_merge = NULL;
  324. elv_rqhash_del(q, rq);
  325. q->nr_sorted--;
  326. boundary = q->end_sector;
  327. list_for_each_prev(entry, &q->queue_head) {
  328. struct request *pos = list_entry_rq(entry);
  329. if (rq_data_dir(rq) != rq_data_dir(pos))
  330. break;
  331. if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
  332. break;
  333. if (rq->sector >= boundary) {
  334. if (pos->sector < boundary)
  335. continue;
  336. } else {
  337. if (pos->sector >= boundary)
  338. break;
  339. }
  340. if (rq->sector >= pos->sector)
  341. break;
  342. }
  343. list_add(&rq->queuelist, entry);
  344. }
  345. EXPORT_SYMBOL(elv_dispatch_sort);
  346. /*
  347. * Insert rq into dispatch queue of q. Queue lock must be held on
  348. * entry. rq is added to the back of the dispatch queue. To be used by
  349. * specific elevators.
  350. */
  351. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  352. {
  353. if (q->last_merge == rq)
  354. q->last_merge = NULL;
  355. elv_rqhash_del(q, rq);
  356. q->nr_sorted--;
  357. q->end_sector = rq_end_sector(rq);
  358. q->boundary_rq = rq;
  359. list_add_tail(&rq->queuelist, &q->queue_head);
  360. }
  361. EXPORT_SYMBOL(elv_dispatch_add_tail);
  362. int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
  363. {
  364. elevator_t *e = q->elevator;
  365. struct request *__rq;
  366. int ret;
  367. /*
  368. * First try one-hit cache.
  369. */
  370. if (q->last_merge) {
  371. ret = elv_try_merge(q->last_merge, bio);
  372. if (ret != ELEVATOR_NO_MERGE) {
  373. *req = q->last_merge;
  374. return ret;
  375. }
  376. }
  377. /*
  378. * See if our hash lookup can find a potential backmerge.
  379. */
  380. __rq = elv_rqhash_find(q, bio->bi_sector);
  381. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  382. *req = __rq;
  383. return ELEVATOR_BACK_MERGE;
  384. }
  385. if (e->ops->elevator_merge_fn)
  386. return e->ops->elevator_merge_fn(q, req, bio);
  387. return ELEVATOR_NO_MERGE;
  388. }
  389. void elv_merged_request(request_queue_t *q, struct request *rq, int type)
  390. {
  391. elevator_t *e = q->elevator;
  392. if (e->ops->elevator_merged_fn)
  393. e->ops->elevator_merged_fn(q, rq, type);
  394. if (type == ELEVATOR_BACK_MERGE)
  395. elv_rqhash_reposition(q, rq);
  396. q->last_merge = rq;
  397. }
  398. void elv_merge_requests(request_queue_t *q, struct request *rq,
  399. struct request *next)
  400. {
  401. elevator_t *e = q->elevator;
  402. if (e->ops->elevator_merge_req_fn)
  403. e->ops->elevator_merge_req_fn(q, rq, next);
  404. elv_rqhash_reposition(q, rq);
  405. elv_rqhash_del(q, next);
  406. q->nr_sorted--;
  407. q->last_merge = rq;
  408. }
  409. void elv_requeue_request(request_queue_t *q, struct request *rq)
  410. {
  411. /*
  412. * it already went through dequeue, we need to decrement the
  413. * in_flight count again
  414. */
  415. if (blk_account_rq(rq)) {
  416. q->in_flight--;
  417. if (blk_sorted_rq(rq))
  418. elv_deactivate_rq(q, rq);
  419. }
  420. rq->cmd_flags &= ~REQ_STARTED;
  421. elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
  422. }
  423. static void elv_drain_elevator(request_queue_t *q)
  424. {
  425. static int printed;
  426. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  427. ;
  428. if (q->nr_sorted == 0)
  429. return;
  430. if (printed++ < 10) {
  431. printk(KERN_ERR "%s: forced dispatching is broken "
  432. "(nr_sorted=%u), please report this\n",
  433. q->elevator->elevator_type->elevator_name, q->nr_sorted);
  434. }
  435. }
  436. void elv_insert(request_queue_t *q, struct request *rq, int where)
  437. {
  438. struct list_head *pos;
  439. unsigned ordseq;
  440. int unplug_it = 1;
  441. blk_add_trace_rq(q, rq, BLK_TA_INSERT);
  442. rq->q = q;
  443. switch (where) {
  444. case ELEVATOR_INSERT_FRONT:
  445. rq->cmd_flags |= REQ_SOFTBARRIER;
  446. list_add(&rq->queuelist, &q->queue_head);
  447. break;
  448. case ELEVATOR_INSERT_BACK:
  449. rq->cmd_flags |= REQ_SOFTBARRIER;
  450. elv_drain_elevator(q);
  451. list_add_tail(&rq->queuelist, &q->queue_head);
  452. /*
  453. * We kick the queue here for the following reasons.
  454. * - The elevator might have returned NULL previously
  455. * to delay requests and returned them now. As the
  456. * queue wasn't empty before this request, ll_rw_blk
  457. * won't run the queue on return, resulting in hang.
  458. * - Usually, back inserted requests won't be merged
  459. * with anything. There's no point in delaying queue
  460. * processing.
  461. */
  462. blk_remove_plug(q);
  463. q->request_fn(q);
  464. break;
  465. case ELEVATOR_INSERT_SORT:
  466. BUG_ON(!blk_fs_request(rq));
  467. rq->cmd_flags |= REQ_SORTED;
  468. q->nr_sorted++;
  469. if (rq_mergeable(rq)) {
  470. elv_rqhash_add(q, rq);
  471. if (!q->last_merge)
  472. q->last_merge = rq;
  473. }
  474. /*
  475. * Some ioscheds (cfq) run q->request_fn directly, so
  476. * rq cannot be accessed after calling
  477. * elevator_add_req_fn.
  478. */
  479. q->elevator->ops->elevator_add_req_fn(q, rq);
  480. break;
  481. case ELEVATOR_INSERT_REQUEUE:
  482. /*
  483. * If ordered flush isn't in progress, we do front
  484. * insertion; otherwise, requests should be requeued
  485. * in ordseq order.
  486. */
  487. rq->cmd_flags |= REQ_SOFTBARRIER;
  488. /*
  489. * Most requeues happen because of a busy condition,
  490. * don't force unplug of the queue for that case.
  491. */
  492. unplug_it = 0;
  493. if (q->ordseq == 0) {
  494. list_add(&rq->queuelist, &q->queue_head);
  495. break;
  496. }
  497. ordseq = blk_ordered_req_seq(rq);
  498. list_for_each(pos, &q->queue_head) {
  499. struct request *pos_rq = list_entry_rq(pos);
  500. if (ordseq <= blk_ordered_req_seq(pos_rq))
  501. break;
  502. }
  503. list_add_tail(&rq->queuelist, pos);
  504. break;
  505. default:
  506. printk(KERN_ERR "%s: bad insertion point %d\n",
  507. __FUNCTION__, where);
  508. BUG();
  509. }
  510. if (unplug_it && blk_queue_plugged(q)) {
  511. int nrq = q->rq.count[READ] + q->rq.count[WRITE]
  512. - q->in_flight;
  513. if (nrq >= q->unplug_thresh)
  514. __generic_unplug_device(q);
  515. }
  516. }
  517. void __elv_add_request(request_queue_t *q, struct request *rq, int where,
  518. int plug)
  519. {
  520. if (q->ordcolor)
  521. rq->cmd_flags |= REQ_ORDERED_COLOR;
  522. if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  523. /*
  524. * toggle ordered color
  525. */
  526. if (blk_barrier_rq(rq))
  527. q->ordcolor ^= 1;
  528. /*
  529. * barriers implicitly indicate back insertion
  530. */
  531. if (where == ELEVATOR_INSERT_SORT)
  532. where = ELEVATOR_INSERT_BACK;
  533. /*
  534. * this request is scheduling boundary, update
  535. * end_sector
  536. */
  537. if (blk_fs_request(rq)) {
  538. q->end_sector = rq_end_sector(rq);
  539. q->boundary_rq = rq;
  540. }
  541. } else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
  542. where = ELEVATOR_INSERT_BACK;
  543. if (plug)
  544. blk_plug_device(q);
  545. elv_insert(q, rq, where);
  546. }
  547. EXPORT_SYMBOL(__elv_add_request);
  548. void elv_add_request(request_queue_t *q, struct request *rq, int where,
  549. int plug)
  550. {
  551. unsigned long flags;
  552. spin_lock_irqsave(q->queue_lock, flags);
  553. __elv_add_request(q, rq, where, plug);
  554. spin_unlock_irqrestore(q->queue_lock, flags);
  555. }
  556. EXPORT_SYMBOL(elv_add_request);
  557. static inline struct request *__elv_next_request(request_queue_t *q)
  558. {
  559. struct request *rq;
  560. while (1) {
  561. while (!list_empty(&q->queue_head)) {
  562. rq = list_entry_rq(q->queue_head.next);
  563. if (blk_do_ordered(q, &rq))
  564. return rq;
  565. }
  566. if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
  567. return NULL;
  568. }
  569. }
  570. struct request *elv_next_request(request_queue_t *q)
  571. {
  572. struct request *rq;
  573. int ret;
  574. while ((rq = __elv_next_request(q)) != NULL) {
  575. if (!(rq->cmd_flags & REQ_STARTED)) {
  576. /*
  577. * This is the first time the device driver
  578. * sees this request (possibly after
  579. * requeueing). Notify IO scheduler.
  580. */
  581. if (blk_sorted_rq(rq))
  582. elv_activate_rq(q, rq);
  583. /*
  584. * just mark as started even if we don't start
  585. * it, a request that has been delayed should
  586. * not be passed by new incoming requests
  587. */
  588. rq->cmd_flags |= REQ_STARTED;
  589. blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
  590. }
  591. if (!q->boundary_rq || q->boundary_rq == rq) {
  592. q->end_sector = rq_end_sector(rq);
  593. q->boundary_rq = NULL;
  594. }
  595. if ((rq->cmd_flags & REQ_DONTPREP) || !q->prep_rq_fn)
  596. break;
  597. ret = q->prep_rq_fn(q, rq);
  598. if (ret == BLKPREP_OK) {
  599. break;
  600. } else if (ret == BLKPREP_DEFER) {
  601. /*
  602. * the request may have been (partially) prepped.
  603. * we need to keep this request in the front to
  604. * avoid resource deadlock. REQ_STARTED will
  605. * prevent other fs requests from passing this one.
  606. */
  607. rq = NULL;
  608. break;
  609. } else if (ret == BLKPREP_KILL) {
  610. int nr_bytes = rq->hard_nr_sectors << 9;
  611. if (!nr_bytes)
  612. nr_bytes = rq->data_len;
  613. blkdev_dequeue_request(rq);
  614. rq->cmd_flags |= REQ_QUIET;
  615. end_that_request_chunk(rq, 0, nr_bytes);
  616. end_that_request_last(rq, 0);
  617. } else {
  618. printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
  619. ret);
  620. break;
  621. }
  622. }
  623. return rq;
  624. }
  625. EXPORT_SYMBOL(elv_next_request);
  626. void elv_dequeue_request(request_queue_t *q, struct request *rq)
  627. {
  628. BUG_ON(list_empty(&rq->queuelist));
  629. BUG_ON(ELV_ON_HASH(rq));
  630. list_del_init(&rq->queuelist);
  631. /*
  632. * the time frame between a request being removed from the lists
  633. * and to it is freed is accounted as io that is in progress at
  634. * the driver side.
  635. */
  636. if (blk_account_rq(rq))
  637. q->in_flight++;
  638. }
  639. EXPORT_SYMBOL(elv_dequeue_request);
  640. int elv_queue_empty(request_queue_t *q)
  641. {
  642. elevator_t *e = q->elevator;
  643. if (!list_empty(&q->queue_head))
  644. return 0;
  645. if (e->ops->elevator_queue_empty_fn)
  646. return e->ops->elevator_queue_empty_fn(q);
  647. return 1;
  648. }
  649. EXPORT_SYMBOL(elv_queue_empty);
  650. struct request *elv_latter_request(request_queue_t *q, struct request *rq)
  651. {
  652. elevator_t *e = q->elevator;
  653. if (e->ops->elevator_latter_req_fn)
  654. return e->ops->elevator_latter_req_fn(q, rq);
  655. return NULL;
  656. }
  657. struct request *elv_former_request(request_queue_t *q, struct request *rq)
  658. {
  659. elevator_t *e = q->elevator;
  660. if (e->ops->elevator_former_req_fn)
  661. return e->ops->elevator_former_req_fn(q, rq);
  662. return NULL;
  663. }
  664. int elv_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
  665. {
  666. elevator_t *e = q->elevator;
  667. if (e->ops->elevator_set_req_fn)
  668. return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
  669. rq->elevator_private = NULL;
  670. return 0;
  671. }
  672. void elv_put_request(request_queue_t *q, struct request *rq)
  673. {
  674. elevator_t *e = q->elevator;
  675. if (e->ops->elevator_put_req_fn)
  676. e->ops->elevator_put_req_fn(rq);
  677. }
  678. int elv_may_queue(request_queue_t *q, int rw)
  679. {
  680. elevator_t *e = q->elevator;
  681. if (e->ops->elevator_may_queue_fn)
  682. return e->ops->elevator_may_queue_fn(q, rw);
  683. return ELV_MQUEUE_MAY;
  684. }
  685. void elv_completed_request(request_queue_t *q, struct request *rq)
  686. {
  687. elevator_t *e = q->elevator;
  688. /*
  689. * request is released from the driver, io must be done
  690. */
  691. if (blk_account_rq(rq)) {
  692. q->in_flight--;
  693. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  694. e->ops->elevator_completed_req_fn(q, rq);
  695. }
  696. /*
  697. * Check if the queue is waiting for fs requests to be
  698. * drained for flush sequence.
  699. */
  700. if (unlikely(q->ordseq)) {
  701. struct request *first_rq = list_entry_rq(q->queue_head.next);
  702. if (q->in_flight == 0 &&
  703. blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
  704. blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
  705. blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
  706. q->request_fn(q);
  707. }
  708. }
  709. }
  710. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  711. static ssize_t
  712. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  713. {
  714. elevator_t *e = container_of(kobj, elevator_t, kobj);
  715. struct elv_fs_entry *entry = to_elv(attr);
  716. ssize_t error;
  717. if (!entry->show)
  718. return -EIO;
  719. mutex_lock(&e->sysfs_lock);
  720. error = e->ops ? entry->show(e, page) : -ENOENT;
  721. mutex_unlock(&e->sysfs_lock);
  722. return error;
  723. }
  724. static ssize_t
  725. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  726. const char *page, size_t length)
  727. {
  728. elevator_t *e = container_of(kobj, elevator_t, kobj);
  729. struct elv_fs_entry *entry = to_elv(attr);
  730. ssize_t error;
  731. if (!entry->store)
  732. return -EIO;
  733. mutex_lock(&e->sysfs_lock);
  734. error = e->ops ? entry->store(e, page, length) : -ENOENT;
  735. mutex_unlock(&e->sysfs_lock);
  736. return error;
  737. }
  738. static struct sysfs_ops elv_sysfs_ops = {
  739. .show = elv_attr_show,
  740. .store = elv_attr_store,
  741. };
  742. static struct kobj_type elv_ktype = {
  743. .sysfs_ops = &elv_sysfs_ops,
  744. .release = elevator_release,
  745. };
  746. int elv_register_queue(struct request_queue *q)
  747. {
  748. elevator_t *e = q->elevator;
  749. int error;
  750. e->kobj.parent = &q->kobj;
  751. error = kobject_add(&e->kobj);
  752. if (!error) {
  753. struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
  754. if (attr) {
  755. while (attr->attr.name) {
  756. if (sysfs_create_file(&e->kobj, &attr->attr))
  757. break;
  758. attr++;
  759. }
  760. }
  761. kobject_uevent(&e->kobj, KOBJ_ADD);
  762. }
  763. return error;
  764. }
  765. static void __elv_unregister_queue(elevator_t *e)
  766. {
  767. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  768. kobject_del(&e->kobj);
  769. }
  770. void elv_unregister_queue(struct request_queue *q)
  771. {
  772. if (q)
  773. __elv_unregister_queue(q->elevator);
  774. }
  775. int elv_register(struct elevator_type *e)
  776. {
  777. char *def = "";
  778. spin_lock(&elv_list_lock);
  779. BUG_ON(elevator_find(e->elevator_name));
  780. list_add_tail(&e->list, &elv_list);
  781. spin_unlock(&elv_list_lock);
  782. if (!strcmp(e->elevator_name, chosen_elevator) ||
  783. (!*chosen_elevator &&
  784. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  785. def = " (default)";
  786. printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, def);
  787. return 0;
  788. }
  789. EXPORT_SYMBOL_GPL(elv_register);
  790. void elv_unregister(struct elevator_type *e)
  791. {
  792. struct task_struct *g, *p;
  793. /*
  794. * Iterate every thread in the process to remove the io contexts.
  795. */
  796. if (e->ops.trim) {
  797. read_lock(&tasklist_lock);
  798. do_each_thread(g, p) {
  799. task_lock(p);
  800. if (p->io_context)
  801. e->ops.trim(p->io_context);
  802. task_unlock(p);
  803. } while_each_thread(g, p);
  804. read_unlock(&tasklist_lock);
  805. }
  806. spin_lock(&elv_list_lock);
  807. list_del_init(&e->list);
  808. spin_unlock(&elv_list_lock);
  809. }
  810. EXPORT_SYMBOL_GPL(elv_unregister);
  811. /*
  812. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  813. * we don't free the old io scheduler, before we have allocated what we
  814. * need for the new one. this way we have a chance of going back to the old
  815. * one, if the new one fails init for some reason.
  816. */
  817. static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
  818. {
  819. elevator_t *old_elevator, *e;
  820. void *data;
  821. /*
  822. * Allocate new elevator
  823. */
  824. e = elevator_alloc(q, new_e);
  825. if (!e)
  826. return 0;
  827. data = elevator_init_queue(q, e);
  828. if (!data) {
  829. kobject_put(&e->kobj);
  830. return 0;
  831. }
  832. /*
  833. * Turn on BYPASS and drain all requests w/ elevator private data
  834. */
  835. spin_lock_irq(q->queue_lock);
  836. set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  837. elv_drain_elevator(q);
  838. while (q->rq.elvpriv) {
  839. blk_remove_plug(q);
  840. q->request_fn(q);
  841. spin_unlock_irq(q->queue_lock);
  842. msleep(10);
  843. spin_lock_irq(q->queue_lock);
  844. elv_drain_elevator(q);
  845. }
  846. /*
  847. * Remember old elevator.
  848. */
  849. old_elevator = q->elevator;
  850. /*
  851. * attach and start new elevator
  852. */
  853. elevator_attach(q, e, data);
  854. spin_unlock_irq(q->queue_lock);
  855. __elv_unregister_queue(old_elevator);
  856. if (elv_register_queue(q))
  857. goto fail_register;
  858. /*
  859. * finally exit old elevator and turn off BYPASS.
  860. */
  861. elevator_exit(old_elevator);
  862. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  863. return 1;
  864. fail_register:
  865. /*
  866. * switch failed, exit the new io scheduler and reattach the old
  867. * one again (along with re-adding the sysfs dir)
  868. */
  869. elevator_exit(e);
  870. q->elevator = old_elevator;
  871. elv_register_queue(q);
  872. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  873. return 0;
  874. }
  875. ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
  876. {
  877. char elevator_name[ELV_NAME_MAX];
  878. size_t len;
  879. struct elevator_type *e;
  880. elevator_name[sizeof(elevator_name) - 1] = '\0';
  881. strncpy(elevator_name, name, sizeof(elevator_name) - 1);
  882. len = strlen(elevator_name);
  883. if (len && elevator_name[len - 1] == '\n')
  884. elevator_name[len - 1] = '\0';
  885. e = elevator_get(elevator_name);
  886. if (!e) {
  887. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  888. return -EINVAL;
  889. }
  890. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
  891. elevator_put(e);
  892. return count;
  893. }
  894. if (!elevator_switch(q, e))
  895. printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
  896. return count;
  897. }
  898. ssize_t elv_iosched_show(request_queue_t *q, char *name)
  899. {
  900. elevator_t *e = q->elevator;
  901. struct elevator_type *elv = e->elevator_type;
  902. struct elevator_type *__e;
  903. int len = 0;
  904. spin_lock(&elv_list_lock);
  905. list_for_each_entry(__e, &elv_list, list) {
  906. if (!strcmp(elv->elevator_name, __e->elevator_name))
  907. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  908. else
  909. len += sprintf(name+len, "%s ", __e->elevator_name);
  910. }
  911. spin_unlock(&elv_list_lock);
  912. len += sprintf(len+name, "\n");
  913. return len;
  914. }
  915. struct request *elv_rb_former_request(request_queue_t *q, struct request *rq)
  916. {
  917. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  918. if (rbprev)
  919. return rb_entry_rq(rbprev);
  920. return NULL;
  921. }
  922. EXPORT_SYMBOL(elv_rb_former_request);
  923. struct request *elv_rb_latter_request(request_queue_t *q, struct request *rq)
  924. {
  925. struct rb_node *rbnext = rb_next(&rq->rb_node);
  926. if (rbnext)
  927. return rb_entry_rq(rbnext);
  928. return NULL;
  929. }
  930. EXPORT_SYMBOL(elv_rb_latter_request);