tick-common.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406
  1. /*
  2. * linux/kernel/time/tick-common.c
  3. *
  4. * This file contains the base functions to manage periodic tick
  5. * related events.
  6. *
  7. * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  8. * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  9. * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  10. *
  11. * This code is licenced under the GPL version 2. For details see
  12. * kernel-base/COPYING.
  13. */
  14. #include <linux/cpu.h>
  15. #include <linux/err.h>
  16. #include <linux/hrtimer.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/percpu.h>
  19. #include <linux/profile.h>
  20. #include <linux/sched.h>
  21. #include <linux/tick.h>
  22. #include <asm/irq_regs.h>
  23. #include "tick-internal.h"
  24. /*
  25. * Tick devices
  26. */
  27. DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
  28. /*
  29. * Tick next event: keeps track of the tick time
  30. */
  31. ktime_t tick_next_period;
  32. ktime_t tick_period;
  33. int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
  34. DEFINE_SPINLOCK(tick_device_lock);
  35. /*
  36. * Debugging: see timer_list.c
  37. */
  38. struct tick_device *tick_get_device(int cpu)
  39. {
  40. return &per_cpu(tick_cpu_device, cpu);
  41. }
  42. /**
  43. * tick_is_oneshot_available - check for a oneshot capable event device
  44. */
  45. int tick_is_oneshot_available(void)
  46. {
  47. struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
  48. return dev && (dev->features & CLOCK_EVT_FEAT_ONESHOT);
  49. }
  50. /*
  51. * Periodic tick
  52. */
  53. static void tick_periodic(int cpu)
  54. {
  55. if (tick_do_timer_cpu == cpu) {
  56. write_seqlock(&xtime_lock);
  57. /* Keep track of the next tick event */
  58. tick_next_period = ktime_add(tick_next_period, tick_period);
  59. do_timer(1);
  60. write_sequnlock(&xtime_lock);
  61. }
  62. update_process_times(user_mode(get_irq_regs()));
  63. profile_tick(CPU_PROFILING);
  64. }
  65. /*
  66. * Event handler for periodic ticks
  67. */
  68. void tick_handle_periodic(struct clock_event_device *dev)
  69. {
  70. int cpu = smp_processor_id();
  71. ktime_t next;
  72. tick_periodic(cpu);
  73. if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
  74. return;
  75. /*
  76. * Setup the next period for devices, which do not have
  77. * periodic mode:
  78. */
  79. next = ktime_add(dev->next_event, tick_period);
  80. for (;;) {
  81. if (!clockevents_program_event(dev, next, ktime_get()))
  82. return;
  83. tick_periodic(cpu);
  84. next = ktime_add(next, tick_period);
  85. }
  86. }
  87. /*
  88. * Setup the device for a periodic tick
  89. */
  90. void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
  91. {
  92. tick_set_periodic_handler(dev, broadcast);
  93. /* Broadcast setup ? */
  94. if (!tick_device_is_functional(dev))
  95. return;
  96. if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
  97. !tick_broadcast_oneshot_active()) {
  98. clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
  99. } else {
  100. unsigned long seq;
  101. ktime_t next;
  102. do {
  103. seq = read_seqbegin(&xtime_lock);
  104. next = tick_next_period;
  105. } while (read_seqretry(&xtime_lock, seq));
  106. clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
  107. for (;;) {
  108. if (!clockevents_program_event(dev, next, ktime_get()))
  109. return;
  110. next = ktime_add(next, tick_period);
  111. }
  112. }
  113. }
  114. /*
  115. * Setup the tick device
  116. */
  117. static void tick_setup_device(struct tick_device *td,
  118. struct clock_event_device *newdev, int cpu,
  119. const struct cpumask *cpumask)
  120. {
  121. ktime_t next_event;
  122. void (*handler)(struct clock_event_device *) = NULL;
  123. /*
  124. * First device setup ?
  125. */
  126. if (!td->evtdev) {
  127. /*
  128. * If no cpu took the do_timer update, assign it to
  129. * this cpu:
  130. */
  131. if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
  132. tick_do_timer_cpu = cpu;
  133. tick_next_period = ktime_get();
  134. tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
  135. }
  136. /*
  137. * Startup in periodic mode first.
  138. */
  139. td->mode = TICKDEV_MODE_PERIODIC;
  140. } else {
  141. handler = td->evtdev->event_handler;
  142. next_event = td->evtdev->next_event;
  143. td->evtdev->event_handler = clockevents_handle_noop;
  144. }
  145. td->evtdev = newdev;
  146. /*
  147. * When the device is not per cpu, pin the interrupt to the
  148. * current cpu:
  149. */
  150. if (!cpumask_equal(newdev->cpumask, cpumask))
  151. irq_set_affinity(newdev->irq, cpumask);
  152. /*
  153. * When global broadcasting is active, check if the current
  154. * device is registered as a placeholder for broadcast mode.
  155. * This allows us to handle this x86 misfeature in a generic
  156. * way.
  157. */
  158. if (tick_device_uses_broadcast(newdev, cpu))
  159. return;
  160. if (td->mode == TICKDEV_MODE_PERIODIC)
  161. tick_setup_periodic(newdev, 0);
  162. else
  163. tick_setup_oneshot(newdev, handler, next_event);
  164. }
  165. /*
  166. * Check, if the new registered device should be used.
  167. */
  168. static int tick_check_new_device(struct clock_event_device *newdev)
  169. {
  170. struct clock_event_device *curdev;
  171. struct tick_device *td;
  172. int cpu, ret = NOTIFY_OK;
  173. unsigned long flags;
  174. spin_lock_irqsave(&tick_device_lock, flags);
  175. cpu = smp_processor_id();
  176. if (!cpumask_test_cpu(cpu, newdev->cpumask))
  177. goto out_bc;
  178. td = &per_cpu(tick_cpu_device, cpu);
  179. curdev = td->evtdev;
  180. /* cpu local device ? */
  181. if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu))) {
  182. /*
  183. * If the cpu affinity of the device interrupt can not
  184. * be set, ignore it.
  185. */
  186. if (!irq_can_set_affinity(newdev->irq))
  187. goto out_bc;
  188. /*
  189. * If we have a cpu local device already, do not replace it
  190. * by a non cpu local device
  191. */
  192. if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
  193. goto out_bc;
  194. }
  195. /*
  196. * If we have an active device, then check the rating and the oneshot
  197. * feature.
  198. */
  199. if (curdev) {
  200. /*
  201. * Prefer one shot capable devices !
  202. */
  203. if ((curdev->features & CLOCK_EVT_FEAT_ONESHOT) &&
  204. !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
  205. goto out_bc;
  206. /*
  207. * Check the rating
  208. */
  209. if (curdev->rating >= newdev->rating)
  210. goto out_bc;
  211. }
  212. /*
  213. * Replace the eventually existing device by the new
  214. * device. If the current device is the broadcast device, do
  215. * not give it back to the clockevents layer !
  216. */
  217. if (tick_is_broadcast_device(curdev)) {
  218. clockevents_shutdown(curdev);
  219. curdev = NULL;
  220. }
  221. clockevents_exchange_device(curdev, newdev);
  222. tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
  223. if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
  224. tick_oneshot_notify();
  225. spin_unlock_irqrestore(&tick_device_lock, flags);
  226. return NOTIFY_STOP;
  227. out_bc:
  228. /*
  229. * Can the new device be used as a broadcast device ?
  230. */
  231. if (tick_check_broadcast_device(newdev))
  232. ret = NOTIFY_STOP;
  233. spin_unlock_irqrestore(&tick_device_lock, flags);
  234. return ret;
  235. }
  236. /*
  237. * Transfer the do_timer job away from a dying cpu.
  238. *
  239. * Called with interrupts disabled.
  240. */
  241. static void tick_handover_do_timer(int *cpup)
  242. {
  243. if (*cpup == tick_do_timer_cpu) {
  244. int cpu = cpumask_first(cpu_online_mask);
  245. tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
  246. TICK_DO_TIMER_NONE;
  247. }
  248. }
  249. /*
  250. * Shutdown an event device on a given cpu:
  251. *
  252. * This is called on a life CPU, when a CPU is dead. So we cannot
  253. * access the hardware device itself.
  254. * We just set the mode and remove it from the lists.
  255. */
  256. static void tick_shutdown(unsigned int *cpup)
  257. {
  258. struct tick_device *td = &per_cpu(tick_cpu_device, *cpup);
  259. struct clock_event_device *dev = td->evtdev;
  260. unsigned long flags;
  261. spin_lock_irqsave(&tick_device_lock, flags);
  262. td->mode = TICKDEV_MODE_PERIODIC;
  263. if (dev) {
  264. /*
  265. * Prevent that the clock events layer tries to call
  266. * the set mode function!
  267. */
  268. dev->mode = CLOCK_EVT_MODE_UNUSED;
  269. clockevents_exchange_device(dev, NULL);
  270. td->evtdev = NULL;
  271. }
  272. spin_unlock_irqrestore(&tick_device_lock, flags);
  273. }
  274. static void tick_suspend(void)
  275. {
  276. struct tick_device *td = &__get_cpu_var(tick_cpu_device);
  277. unsigned long flags;
  278. spin_lock_irqsave(&tick_device_lock, flags);
  279. clockevents_shutdown(td->evtdev);
  280. spin_unlock_irqrestore(&tick_device_lock, flags);
  281. }
  282. static void tick_resume(void)
  283. {
  284. struct tick_device *td = &__get_cpu_var(tick_cpu_device);
  285. unsigned long flags;
  286. int broadcast = tick_resume_broadcast();
  287. spin_lock_irqsave(&tick_device_lock, flags);
  288. clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME);
  289. if (!broadcast) {
  290. if (td->mode == TICKDEV_MODE_PERIODIC)
  291. tick_setup_periodic(td->evtdev, 0);
  292. else
  293. tick_resume_oneshot();
  294. }
  295. spin_unlock_irqrestore(&tick_device_lock, flags);
  296. }
  297. /*
  298. * Notification about clock event devices
  299. */
  300. static int tick_notify(struct notifier_block *nb, unsigned long reason,
  301. void *dev)
  302. {
  303. switch (reason) {
  304. case CLOCK_EVT_NOTIFY_ADD:
  305. return tick_check_new_device(dev);
  306. case CLOCK_EVT_NOTIFY_BROADCAST_ON:
  307. case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
  308. case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
  309. tick_broadcast_on_off(reason, dev);
  310. break;
  311. case CLOCK_EVT_NOTIFY_BROADCAST_ENTER:
  312. case CLOCK_EVT_NOTIFY_BROADCAST_EXIT:
  313. tick_broadcast_oneshot_control(reason);
  314. break;
  315. case CLOCK_EVT_NOTIFY_CPU_DYING:
  316. tick_handover_do_timer(dev);
  317. break;
  318. case CLOCK_EVT_NOTIFY_CPU_DEAD:
  319. tick_shutdown_broadcast_oneshot(dev);
  320. tick_shutdown_broadcast(dev);
  321. tick_shutdown(dev);
  322. break;
  323. case CLOCK_EVT_NOTIFY_SUSPEND:
  324. tick_suspend();
  325. tick_suspend_broadcast();
  326. break;
  327. case CLOCK_EVT_NOTIFY_RESUME:
  328. tick_resume();
  329. break;
  330. default:
  331. break;
  332. }
  333. return NOTIFY_OK;
  334. }
  335. static struct notifier_block tick_notifier = {
  336. .notifier_call = tick_notify,
  337. };
  338. /**
  339. * tick_init - initialize the tick control
  340. *
  341. * Register the notifier with the clockevents framework
  342. */
  343. void __init tick_init(void)
  344. {
  345. clockevents_register_notifier(&tick_notifier);
  346. }