intel_dp.c 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include "drmP.h"
  31. #include "drm.h"
  32. #include "drm_crtc.h"
  33. #include "drm_crtc_helper.h"
  34. #include "intel_drv.h"
  35. #include "i915_drm.h"
  36. #include "i915_drv.h"
  37. #include "drm_dp_helper.h"
  38. #define DP_RECEIVER_CAP_SIZE 0xf
  39. #define DP_LINK_STATUS_SIZE 6
  40. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  41. #define DP_LINK_CONFIGURATION_SIZE 9
  42. struct intel_dp {
  43. struct intel_encoder base;
  44. uint32_t output_reg;
  45. uint32_t DP;
  46. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  47. bool has_audio;
  48. enum hdmi_force_audio force_audio;
  49. uint32_t color_range;
  50. int dpms_mode;
  51. uint8_t link_bw;
  52. uint8_t lane_count;
  53. uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
  54. struct i2c_adapter adapter;
  55. struct i2c_algo_dp_aux_data algo;
  56. bool is_pch_edp;
  57. uint8_t train_set[4];
  58. int panel_power_up_delay;
  59. int panel_power_down_delay;
  60. int panel_power_cycle_delay;
  61. int backlight_on_delay;
  62. int backlight_off_delay;
  63. struct drm_display_mode *panel_fixed_mode; /* for eDP */
  64. struct delayed_work panel_vdd_work;
  65. bool want_panel_vdd;
  66. };
  67. /**
  68. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  69. * @intel_dp: DP struct
  70. *
  71. * If a CPU or PCH DP output is attached to an eDP panel, this function
  72. * will return true, and false otherwise.
  73. */
  74. static bool is_edp(struct intel_dp *intel_dp)
  75. {
  76. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  77. }
  78. /**
  79. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  80. * @intel_dp: DP struct
  81. *
  82. * Returns true if the given DP struct corresponds to a PCH DP port attached
  83. * to an eDP panel, false otherwise. Helpful for determining whether we
  84. * may need FDI resources for a given DP output or not.
  85. */
  86. static bool is_pch_edp(struct intel_dp *intel_dp)
  87. {
  88. return intel_dp->is_pch_edp;
  89. }
  90. /**
  91. * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
  92. * @intel_dp: DP struct
  93. *
  94. * Returns true if the given DP struct corresponds to a CPU eDP port.
  95. */
  96. static bool is_cpu_edp(struct intel_dp *intel_dp)
  97. {
  98. return is_edp(intel_dp) && !is_pch_edp(intel_dp);
  99. }
  100. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  101. {
  102. return container_of(encoder, struct intel_dp, base.base);
  103. }
  104. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  105. {
  106. return container_of(intel_attached_encoder(connector),
  107. struct intel_dp, base);
  108. }
  109. /**
  110. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  111. * @encoder: DRM encoder
  112. *
  113. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  114. * by intel_display.c.
  115. */
  116. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  117. {
  118. struct intel_dp *intel_dp;
  119. if (!encoder)
  120. return false;
  121. intel_dp = enc_to_intel_dp(encoder);
  122. return is_pch_edp(intel_dp);
  123. }
  124. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  125. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  126. static void intel_dp_link_down(struct intel_dp *intel_dp);
  127. void
  128. intel_edp_link_config(struct intel_encoder *intel_encoder,
  129. int *lane_num, int *link_bw)
  130. {
  131. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  132. *lane_num = intel_dp->lane_count;
  133. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  134. *link_bw = 162000;
  135. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  136. *link_bw = 270000;
  137. }
  138. int
  139. intel_edp_target_clock(struct intel_encoder *intel_encoder,
  140. struct drm_display_mode *mode)
  141. {
  142. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  143. if (intel_dp->panel_fixed_mode)
  144. return intel_dp->panel_fixed_mode->clock;
  145. else
  146. return mode->clock;
  147. }
  148. static int
  149. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  150. {
  151. int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
  152. switch (max_lane_count) {
  153. case 1: case 2: case 4:
  154. break;
  155. default:
  156. max_lane_count = 4;
  157. }
  158. return max_lane_count;
  159. }
  160. static int
  161. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  162. {
  163. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  164. switch (max_link_bw) {
  165. case DP_LINK_BW_1_62:
  166. case DP_LINK_BW_2_7:
  167. break;
  168. default:
  169. max_link_bw = DP_LINK_BW_1_62;
  170. break;
  171. }
  172. return max_link_bw;
  173. }
  174. static int
  175. intel_dp_link_clock(uint8_t link_bw)
  176. {
  177. if (link_bw == DP_LINK_BW_2_7)
  178. return 270000;
  179. else
  180. return 162000;
  181. }
  182. /*
  183. * The units on the numbers in the next two are... bizarre. Examples will
  184. * make it clearer; this one parallels an example in the eDP spec.
  185. *
  186. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  187. *
  188. * 270000 * 1 * 8 / 10 == 216000
  189. *
  190. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  191. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  192. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  193. * 119000. At 18bpp that's 2142000 kilobits per second.
  194. *
  195. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  196. * get the result in decakilobits instead of kilobits.
  197. */
  198. static int
  199. intel_dp_link_required(int pixel_clock, int bpp)
  200. {
  201. return (pixel_clock * bpp + 9) / 10;
  202. }
  203. static int
  204. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  205. {
  206. return (max_link_clock * max_lanes * 8) / 10;
  207. }
  208. static bool
  209. intel_dp_adjust_dithering(struct intel_dp *intel_dp,
  210. struct drm_display_mode *mode,
  211. struct drm_display_mode *adjusted_mode)
  212. {
  213. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  214. int max_lanes = intel_dp_max_lane_count(intel_dp);
  215. int max_rate, mode_rate;
  216. mode_rate = intel_dp_link_required(mode->clock, 24);
  217. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  218. if (mode_rate > max_rate) {
  219. mode_rate = intel_dp_link_required(mode->clock, 18);
  220. if (mode_rate > max_rate)
  221. return false;
  222. if (adjusted_mode)
  223. adjusted_mode->private_flags
  224. |= INTEL_MODE_DP_FORCE_6BPC;
  225. return true;
  226. }
  227. return true;
  228. }
  229. static int
  230. intel_dp_mode_valid(struct drm_connector *connector,
  231. struct drm_display_mode *mode)
  232. {
  233. struct intel_dp *intel_dp = intel_attached_dp(connector);
  234. if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
  235. if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
  236. return MODE_PANEL;
  237. if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
  238. return MODE_PANEL;
  239. }
  240. if (!intel_dp_adjust_dithering(intel_dp, mode, NULL))
  241. return MODE_CLOCK_HIGH;
  242. if (mode->clock < 10000)
  243. return MODE_CLOCK_LOW;
  244. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  245. return MODE_H_ILLEGAL;
  246. return MODE_OK;
  247. }
  248. static uint32_t
  249. pack_aux(uint8_t *src, int src_bytes)
  250. {
  251. int i;
  252. uint32_t v = 0;
  253. if (src_bytes > 4)
  254. src_bytes = 4;
  255. for (i = 0; i < src_bytes; i++)
  256. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  257. return v;
  258. }
  259. static void
  260. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  261. {
  262. int i;
  263. if (dst_bytes > 4)
  264. dst_bytes = 4;
  265. for (i = 0; i < dst_bytes; i++)
  266. dst[i] = src >> ((3-i) * 8);
  267. }
  268. /* hrawclock is 1/4 the FSB frequency */
  269. static int
  270. intel_hrawclk(struct drm_device *dev)
  271. {
  272. struct drm_i915_private *dev_priv = dev->dev_private;
  273. uint32_t clkcfg;
  274. clkcfg = I915_READ(CLKCFG);
  275. switch (clkcfg & CLKCFG_FSB_MASK) {
  276. case CLKCFG_FSB_400:
  277. return 100;
  278. case CLKCFG_FSB_533:
  279. return 133;
  280. case CLKCFG_FSB_667:
  281. return 166;
  282. case CLKCFG_FSB_800:
  283. return 200;
  284. case CLKCFG_FSB_1067:
  285. return 266;
  286. case CLKCFG_FSB_1333:
  287. return 333;
  288. /* these two are just a guess; one of them might be right */
  289. case CLKCFG_FSB_1600:
  290. case CLKCFG_FSB_1600_ALT:
  291. return 400;
  292. default:
  293. return 133;
  294. }
  295. }
  296. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  297. {
  298. struct drm_device *dev = intel_dp->base.base.dev;
  299. struct drm_i915_private *dev_priv = dev->dev_private;
  300. return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
  301. }
  302. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  303. {
  304. struct drm_device *dev = intel_dp->base.base.dev;
  305. struct drm_i915_private *dev_priv = dev->dev_private;
  306. return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
  307. }
  308. static void
  309. intel_dp_check_edp(struct intel_dp *intel_dp)
  310. {
  311. struct drm_device *dev = intel_dp->base.base.dev;
  312. struct drm_i915_private *dev_priv = dev->dev_private;
  313. if (!is_edp(intel_dp))
  314. return;
  315. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  316. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  317. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  318. I915_READ(PCH_PP_STATUS),
  319. I915_READ(PCH_PP_CONTROL));
  320. }
  321. }
  322. static int
  323. intel_dp_aux_ch(struct intel_dp *intel_dp,
  324. uint8_t *send, int send_bytes,
  325. uint8_t *recv, int recv_size)
  326. {
  327. uint32_t output_reg = intel_dp->output_reg;
  328. struct drm_device *dev = intel_dp->base.base.dev;
  329. struct drm_i915_private *dev_priv = dev->dev_private;
  330. uint32_t ch_ctl = output_reg + 0x10;
  331. uint32_t ch_data = ch_ctl + 4;
  332. int i;
  333. int recv_bytes;
  334. uint32_t status;
  335. uint32_t aux_clock_divider;
  336. int try, precharge = 5;
  337. intel_dp_check_edp(intel_dp);
  338. /* The clock divider is based off the hrawclk,
  339. * and would like to run at 2MHz. So, take the
  340. * hrawclk value and divide by 2 and use that
  341. *
  342. * Note that PCH attached eDP panels should use a 125MHz input
  343. * clock divider.
  344. */
  345. if (is_cpu_edp(intel_dp)) {
  346. if (IS_GEN6(dev) || IS_GEN7(dev))
  347. aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
  348. else
  349. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  350. } else if (HAS_PCH_SPLIT(dev))
  351. aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
  352. else
  353. aux_clock_divider = intel_hrawclk(dev) / 2;
  354. /* Try to wait for any previous AUX channel activity */
  355. for (try = 0; try < 3; try++) {
  356. status = I915_READ(ch_ctl);
  357. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  358. break;
  359. msleep(1);
  360. }
  361. if (try == 3) {
  362. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  363. I915_READ(ch_ctl));
  364. return -EBUSY;
  365. }
  366. /* Must try at least 3 times according to DP spec */
  367. for (try = 0; try < 5; try++) {
  368. /* Load the send data into the aux channel data registers */
  369. for (i = 0; i < send_bytes; i += 4)
  370. I915_WRITE(ch_data + i,
  371. pack_aux(send + i, send_bytes - i));
  372. /* Send the command and wait for it to complete */
  373. I915_WRITE(ch_ctl,
  374. DP_AUX_CH_CTL_SEND_BUSY |
  375. DP_AUX_CH_CTL_TIME_OUT_400us |
  376. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  377. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  378. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  379. DP_AUX_CH_CTL_DONE |
  380. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  381. DP_AUX_CH_CTL_RECEIVE_ERROR);
  382. for (;;) {
  383. status = I915_READ(ch_ctl);
  384. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  385. break;
  386. udelay(100);
  387. }
  388. /* Clear done status and any errors */
  389. I915_WRITE(ch_ctl,
  390. status |
  391. DP_AUX_CH_CTL_DONE |
  392. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  393. DP_AUX_CH_CTL_RECEIVE_ERROR);
  394. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  395. DP_AUX_CH_CTL_RECEIVE_ERROR))
  396. continue;
  397. if (status & DP_AUX_CH_CTL_DONE)
  398. break;
  399. }
  400. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  401. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  402. return -EBUSY;
  403. }
  404. /* Check for timeout or receive error.
  405. * Timeouts occur when the sink is not connected
  406. */
  407. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  408. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  409. return -EIO;
  410. }
  411. /* Timeouts occur when the device isn't connected, so they're
  412. * "normal" -- don't fill the kernel log with these */
  413. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  414. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  415. return -ETIMEDOUT;
  416. }
  417. /* Unload any bytes sent back from the other side */
  418. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  419. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  420. if (recv_bytes > recv_size)
  421. recv_bytes = recv_size;
  422. for (i = 0; i < recv_bytes; i += 4)
  423. unpack_aux(I915_READ(ch_data + i),
  424. recv + i, recv_bytes - i);
  425. return recv_bytes;
  426. }
  427. /* Write data to the aux channel in native mode */
  428. static int
  429. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  430. uint16_t address, uint8_t *send, int send_bytes)
  431. {
  432. int ret;
  433. uint8_t msg[20];
  434. int msg_bytes;
  435. uint8_t ack;
  436. intel_dp_check_edp(intel_dp);
  437. if (send_bytes > 16)
  438. return -1;
  439. msg[0] = AUX_NATIVE_WRITE << 4;
  440. msg[1] = address >> 8;
  441. msg[2] = address & 0xff;
  442. msg[3] = send_bytes - 1;
  443. memcpy(&msg[4], send, send_bytes);
  444. msg_bytes = send_bytes + 4;
  445. for (;;) {
  446. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  447. if (ret < 0)
  448. return ret;
  449. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  450. break;
  451. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  452. udelay(100);
  453. else
  454. return -EIO;
  455. }
  456. return send_bytes;
  457. }
  458. /* Write a single byte to the aux channel in native mode */
  459. static int
  460. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  461. uint16_t address, uint8_t byte)
  462. {
  463. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  464. }
  465. /* read bytes from a native aux channel */
  466. static int
  467. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  468. uint16_t address, uint8_t *recv, int recv_bytes)
  469. {
  470. uint8_t msg[4];
  471. int msg_bytes;
  472. uint8_t reply[20];
  473. int reply_bytes;
  474. uint8_t ack;
  475. int ret;
  476. intel_dp_check_edp(intel_dp);
  477. msg[0] = AUX_NATIVE_READ << 4;
  478. msg[1] = address >> 8;
  479. msg[2] = address & 0xff;
  480. msg[3] = recv_bytes - 1;
  481. msg_bytes = 4;
  482. reply_bytes = recv_bytes + 1;
  483. for (;;) {
  484. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  485. reply, reply_bytes);
  486. if (ret == 0)
  487. return -EPROTO;
  488. if (ret < 0)
  489. return ret;
  490. ack = reply[0];
  491. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  492. memcpy(recv, reply + 1, ret - 1);
  493. return ret - 1;
  494. }
  495. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  496. udelay(100);
  497. else
  498. return -EIO;
  499. }
  500. }
  501. static int
  502. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  503. uint8_t write_byte, uint8_t *read_byte)
  504. {
  505. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  506. struct intel_dp *intel_dp = container_of(adapter,
  507. struct intel_dp,
  508. adapter);
  509. uint16_t address = algo_data->address;
  510. uint8_t msg[5];
  511. uint8_t reply[2];
  512. unsigned retry;
  513. int msg_bytes;
  514. int reply_bytes;
  515. int ret;
  516. intel_dp_check_edp(intel_dp);
  517. /* Set up the command byte */
  518. if (mode & MODE_I2C_READ)
  519. msg[0] = AUX_I2C_READ << 4;
  520. else
  521. msg[0] = AUX_I2C_WRITE << 4;
  522. if (!(mode & MODE_I2C_STOP))
  523. msg[0] |= AUX_I2C_MOT << 4;
  524. msg[1] = address >> 8;
  525. msg[2] = address;
  526. switch (mode) {
  527. case MODE_I2C_WRITE:
  528. msg[3] = 0;
  529. msg[4] = write_byte;
  530. msg_bytes = 5;
  531. reply_bytes = 1;
  532. break;
  533. case MODE_I2C_READ:
  534. msg[3] = 0;
  535. msg_bytes = 4;
  536. reply_bytes = 2;
  537. break;
  538. default:
  539. msg_bytes = 3;
  540. reply_bytes = 1;
  541. break;
  542. }
  543. for (retry = 0; retry < 5; retry++) {
  544. ret = intel_dp_aux_ch(intel_dp,
  545. msg, msg_bytes,
  546. reply, reply_bytes);
  547. if (ret < 0) {
  548. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  549. return ret;
  550. }
  551. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  552. case AUX_NATIVE_REPLY_ACK:
  553. /* I2C-over-AUX Reply field is only valid
  554. * when paired with AUX ACK.
  555. */
  556. break;
  557. case AUX_NATIVE_REPLY_NACK:
  558. DRM_DEBUG_KMS("aux_ch native nack\n");
  559. return -EREMOTEIO;
  560. case AUX_NATIVE_REPLY_DEFER:
  561. udelay(100);
  562. continue;
  563. default:
  564. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  565. reply[0]);
  566. return -EREMOTEIO;
  567. }
  568. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  569. case AUX_I2C_REPLY_ACK:
  570. if (mode == MODE_I2C_READ) {
  571. *read_byte = reply[1];
  572. }
  573. return reply_bytes - 1;
  574. case AUX_I2C_REPLY_NACK:
  575. DRM_DEBUG_KMS("aux_i2c nack\n");
  576. return -EREMOTEIO;
  577. case AUX_I2C_REPLY_DEFER:
  578. DRM_DEBUG_KMS("aux_i2c defer\n");
  579. udelay(100);
  580. break;
  581. default:
  582. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  583. return -EREMOTEIO;
  584. }
  585. }
  586. DRM_ERROR("too many retries, giving up\n");
  587. return -EREMOTEIO;
  588. }
  589. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
  590. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
  591. static int
  592. intel_dp_i2c_init(struct intel_dp *intel_dp,
  593. struct intel_connector *intel_connector, const char *name)
  594. {
  595. int ret;
  596. DRM_DEBUG_KMS("i2c_init %s\n", name);
  597. intel_dp->algo.running = false;
  598. intel_dp->algo.address = 0;
  599. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  600. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  601. intel_dp->adapter.owner = THIS_MODULE;
  602. intel_dp->adapter.class = I2C_CLASS_DDC;
  603. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  604. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  605. intel_dp->adapter.algo_data = &intel_dp->algo;
  606. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  607. ironlake_edp_panel_vdd_on(intel_dp);
  608. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  609. ironlake_edp_panel_vdd_off(intel_dp, false);
  610. return ret;
  611. }
  612. static bool
  613. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  614. struct drm_display_mode *adjusted_mode)
  615. {
  616. struct drm_device *dev = encoder->dev;
  617. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  618. int lane_count, clock;
  619. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  620. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  621. int bpp, mode_rate;
  622. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  623. if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
  624. intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
  625. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  626. mode, adjusted_mode);
  627. /*
  628. * the mode->clock is used to calculate the Data&Link M/N
  629. * of the pipe. For the eDP the fixed clock should be used.
  630. */
  631. mode->clock = intel_dp->panel_fixed_mode->clock;
  632. }
  633. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  634. return false;
  635. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  636. "max bw %02x pixel clock %iKHz\n",
  637. max_lane_count, bws[max_clock], mode->clock);
  638. if (!intel_dp_adjust_dithering(intel_dp, mode, adjusted_mode))
  639. return false;
  640. bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
  641. mode_rate = intel_dp_link_required(mode->clock, bpp);
  642. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  643. for (clock = 0; clock <= max_clock; clock++) {
  644. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  645. if (mode_rate <= link_avail) {
  646. intel_dp->link_bw = bws[clock];
  647. intel_dp->lane_count = lane_count;
  648. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  649. DRM_DEBUG_KMS("DP link bw %02x lane "
  650. "count %d clock %d bpp %d\n",
  651. intel_dp->link_bw, intel_dp->lane_count,
  652. adjusted_mode->clock, bpp);
  653. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  654. mode_rate, link_avail);
  655. return true;
  656. }
  657. }
  658. }
  659. return false;
  660. }
  661. struct intel_dp_m_n {
  662. uint32_t tu;
  663. uint32_t gmch_m;
  664. uint32_t gmch_n;
  665. uint32_t link_m;
  666. uint32_t link_n;
  667. };
  668. static void
  669. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  670. {
  671. while (*num > 0xffffff || *den > 0xffffff) {
  672. *num >>= 1;
  673. *den >>= 1;
  674. }
  675. }
  676. static void
  677. intel_dp_compute_m_n(int bpp,
  678. int nlanes,
  679. int pixel_clock,
  680. int link_clock,
  681. struct intel_dp_m_n *m_n)
  682. {
  683. m_n->tu = 64;
  684. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  685. m_n->gmch_n = link_clock * nlanes;
  686. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  687. m_n->link_m = pixel_clock;
  688. m_n->link_n = link_clock;
  689. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  690. }
  691. void
  692. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  693. struct drm_display_mode *adjusted_mode)
  694. {
  695. struct drm_device *dev = crtc->dev;
  696. struct drm_mode_config *mode_config = &dev->mode_config;
  697. struct drm_encoder *encoder;
  698. struct drm_i915_private *dev_priv = dev->dev_private;
  699. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  700. int lane_count = 4;
  701. struct intel_dp_m_n m_n;
  702. int pipe = intel_crtc->pipe;
  703. /*
  704. * Find the lane count in the intel_encoder private
  705. */
  706. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  707. struct intel_dp *intel_dp;
  708. if (encoder->crtc != crtc)
  709. continue;
  710. intel_dp = enc_to_intel_dp(encoder);
  711. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
  712. intel_dp->base.type == INTEL_OUTPUT_EDP)
  713. {
  714. lane_count = intel_dp->lane_count;
  715. break;
  716. }
  717. }
  718. /*
  719. * Compute the GMCH and Link ratios. The '3' here is
  720. * the number of bytes_per_pixel post-LUT, which we always
  721. * set up for 8-bits of R/G/B, or 3 bytes total.
  722. */
  723. intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
  724. mode->clock, adjusted_mode->clock, &m_n);
  725. if (HAS_PCH_SPLIT(dev)) {
  726. I915_WRITE(TRANSDATA_M1(pipe),
  727. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  728. m_n.gmch_m);
  729. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  730. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  731. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  732. } else {
  733. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  734. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  735. m_n.gmch_m);
  736. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  737. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  738. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  739. }
  740. }
  741. static void ironlake_edp_pll_on(struct drm_encoder *encoder);
  742. static void ironlake_edp_pll_off(struct drm_encoder *encoder);
  743. static void
  744. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  745. struct drm_display_mode *adjusted_mode)
  746. {
  747. struct drm_device *dev = encoder->dev;
  748. struct drm_i915_private *dev_priv = dev->dev_private;
  749. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  750. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  751. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  752. /* Turn on the eDP PLL if needed */
  753. if (is_edp(intel_dp)) {
  754. if (!is_pch_edp(intel_dp))
  755. ironlake_edp_pll_on(encoder);
  756. else
  757. ironlake_edp_pll_off(encoder);
  758. }
  759. /*
  760. * There are four kinds of DP registers:
  761. *
  762. * IBX PCH
  763. * SNB CPU
  764. * IVB CPU
  765. * CPT PCH
  766. *
  767. * IBX PCH and CPU are the same for almost everything,
  768. * except that the CPU DP PLL is configured in this
  769. * register
  770. *
  771. * CPT PCH is quite different, having many bits moved
  772. * to the TRANS_DP_CTL register instead. That
  773. * configuration happens (oddly) in ironlake_pch_enable
  774. */
  775. /* Preserve the BIOS-computed detected bit. This is
  776. * supposed to be read-only.
  777. */
  778. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  779. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  780. /* Handle DP bits in common between all three register formats */
  781. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  782. switch (intel_dp->lane_count) {
  783. case 1:
  784. intel_dp->DP |= DP_PORT_WIDTH_1;
  785. break;
  786. case 2:
  787. intel_dp->DP |= DP_PORT_WIDTH_2;
  788. break;
  789. case 4:
  790. intel_dp->DP |= DP_PORT_WIDTH_4;
  791. break;
  792. }
  793. if (intel_dp->has_audio) {
  794. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  795. pipe_name(intel_crtc->pipe));
  796. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  797. intel_write_eld(encoder, adjusted_mode);
  798. }
  799. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  800. intel_dp->link_configuration[0] = intel_dp->link_bw;
  801. intel_dp->link_configuration[1] = intel_dp->lane_count;
  802. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  803. /*
  804. * Check for DPCD version > 1.1 and enhanced framing support
  805. */
  806. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  807. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  808. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  809. }
  810. /* Split out the IBX/CPU vs CPT settings */
  811. if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
  812. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  813. intel_dp->DP |= DP_SYNC_HS_HIGH;
  814. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  815. intel_dp->DP |= DP_SYNC_VS_HIGH;
  816. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  817. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  818. intel_dp->DP |= DP_ENHANCED_FRAMING;
  819. intel_dp->DP |= intel_crtc->pipe << 29;
  820. /* don't miss out required setting for eDP */
  821. intel_dp->DP |= DP_PLL_ENABLE;
  822. if (adjusted_mode->clock < 200000)
  823. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  824. else
  825. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  826. } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
  827. intel_dp->DP |= intel_dp->color_range;
  828. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  829. intel_dp->DP |= DP_SYNC_HS_HIGH;
  830. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  831. intel_dp->DP |= DP_SYNC_VS_HIGH;
  832. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  833. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  834. intel_dp->DP |= DP_ENHANCED_FRAMING;
  835. if (intel_crtc->pipe == 1)
  836. intel_dp->DP |= DP_PIPEB_SELECT;
  837. if (is_cpu_edp(intel_dp)) {
  838. /* don't miss out required setting for eDP */
  839. intel_dp->DP |= DP_PLL_ENABLE;
  840. if (adjusted_mode->clock < 200000)
  841. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  842. else
  843. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  844. }
  845. } else {
  846. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  847. }
  848. }
  849. #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  850. #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  851. #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  852. #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  853. #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  854. #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  855. static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
  856. u32 mask,
  857. u32 value)
  858. {
  859. struct drm_device *dev = intel_dp->base.base.dev;
  860. struct drm_i915_private *dev_priv = dev->dev_private;
  861. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  862. mask, value,
  863. I915_READ(PCH_PP_STATUS),
  864. I915_READ(PCH_PP_CONTROL));
  865. if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
  866. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  867. I915_READ(PCH_PP_STATUS),
  868. I915_READ(PCH_PP_CONTROL));
  869. }
  870. }
  871. static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
  872. {
  873. DRM_DEBUG_KMS("Wait for panel power on\n");
  874. ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  875. }
  876. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  877. {
  878. DRM_DEBUG_KMS("Wait for panel power off time\n");
  879. ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  880. }
  881. static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
  882. {
  883. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  884. ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  885. }
  886. /* Read the current pp_control value, unlocking the register if it
  887. * is locked
  888. */
  889. static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
  890. {
  891. u32 control = I915_READ(PCH_PP_CONTROL);
  892. control &= ~PANEL_UNLOCK_MASK;
  893. control |= PANEL_UNLOCK_REGS;
  894. return control;
  895. }
  896. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  897. {
  898. struct drm_device *dev = intel_dp->base.base.dev;
  899. struct drm_i915_private *dev_priv = dev->dev_private;
  900. u32 pp;
  901. if (!is_edp(intel_dp))
  902. return;
  903. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  904. WARN(intel_dp->want_panel_vdd,
  905. "eDP VDD already requested on\n");
  906. intel_dp->want_panel_vdd = true;
  907. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  908. DRM_DEBUG_KMS("eDP VDD already on\n");
  909. return;
  910. }
  911. if (!ironlake_edp_have_panel_power(intel_dp))
  912. ironlake_wait_panel_power_cycle(intel_dp);
  913. pp = ironlake_get_pp_control(dev_priv);
  914. pp |= EDP_FORCE_VDD;
  915. I915_WRITE(PCH_PP_CONTROL, pp);
  916. POSTING_READ(PCH_PP_CONTROL);
  917. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  918. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  919. /*
  920. * If the panel wasn't on, delay before accessing aux channel
  921. */
  922. if (!ironlake_edp_have_panel_power(intel_dp)) {
  923. DRM_DEBUG_KMS("eDP was not running\n");
  924. msleep(intel_dp->panel_power_up_delay);
  925. }
  926. }
  927. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  928. {
  929. struct drm_device *dev = intel_dp->base.base.dev;
  930. struct drm_i915_private *dev_priv = dev->dev_private;
  931. u32 pp;
  932. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  933. pp = ironlake_get_pp_control(dev_priv);
  934. pp &= ~EDP_FORCE_VDD;
  935. I915_WRITE(PCH_PP_CONTROL, pp);
  936. POSTING_READ(PCH_PP_CONTROL);
  937. /* Make sure sequencer is idle before allowing subsequent activity */
  938. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  939. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  940. msleep(intel_dp->panel_power_down_delay);
  941. }
  942. }
  943. static void ironlake_panel_vdd_work(struct work_struct *__work)
  944. {
  945. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  946. struct intel_dp, panel_vdd_work);
  947. struct drm_device *dev = intel_dp->base.base.dev;
  948. mutex_lock(&dev->mode_config.mutex);
  949. ironlake_panel_vdd_off_sync(intel_dp);
  950. mutex_unlock(&dev->mode_config.mutex);
  951. }
  952. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  953. {
  954. if (!is_edp(intel_dp))
  955. return;
  956. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  957. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  958. intel_dp->want_panel_vdd = false;
  959. if (sync) {
  960. ironlake_panel_vdd_off_sync(intel_dp);
  961. } else {
  962. /*
  963. * Queue the timer to fire a long
  964. * time from now (relative to the power down delay)
  965. * to keep the panel power up across a sequence of operations
  966. */
  967. schedule_delayed_work(&intel_dp->panel_vdd_work,
  968. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  969. }
  970. }
  971. static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  972. {
  973. struct drm_device *dev = intel_dp->base.base.dev;
  974. struct drm_i915_private *dev_priv = dev->dev_private;
  975. u32 pp;
  976. if (!is_edp(intel_dp))
  977. return;
  978. DRM_DEBUG_KMS("Turn eDP power on\n");
  979. if (ironlake_edp_have_panel_power(intel_dp)) {
  980. DRM_DEBUG_KMS("eDP power already on\n");
  981. return;
  982. }
  983. ironlake_wait_panel_power_cycle(intel_dp);
  984. pp = ironlake_get_pp_control(dev_priv);
  985. if (IS_GEN5(dev)) {
  986. /* ILK workaround: disable reset around power sequence */
  987. pp &= ~PANEL_POWER_RESET;
  988. I915_WRITE(PCH_PP_CONTROL, pp);
  989. POSTING_READ(PCH_PP_CONTROL);
  990. }
  991. pp |= POWER_TARGET_ON;
  992. if (!IS_GEN5(dev))
  993. pp |= PANEL_POWER_RESET;
  994. I915_WRITE(PCH_PP_CONTROL, pp);
  995. POSTING_READ(PCH_PP_CONTROL);
  996. ironlake_wait_panel_on(intel_dp);
  997. if (IS_GEN5(dev)) {
  998. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  999. I915_WRITE(PCH_PP_CONTROL, pp);
  1000. POSTING_READ(PCH_PP_CONTROL);
  1001. }
  1002. }
  1003. static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
  1004. {
  1005. struct drm_device *dev = intel_dp->base.base.dev;
  1006. struct drm_i915_private *dev_priv = dev->dev_private;
  1007. u32 pp;
  1008. if (!is_edp(intel_dp))
  1009. return;
  1010. DRM_DEBUG_KMS("Turn eDP power off\n");
  1011. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  1012. pp = ironlake_get_pp_control(dev_priv);
  1013. pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_BLC_ENABLE);
  1014. I915_WRITE(PCH_PP_CONTROL, pp);
  1015. POSTING_READ(PCH_PP_CONTROL);
  1016. ironlake_wait_panel_off(intel_dp);
  1017. }
  1018. static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  1019. {
  1020. struct drm_device *dev = intel_dp->base.base.dev;
  1021. struct drm_i915_private *dev_priv = dev->dev_private;
  1022. u32 pp;
  1023. if (!is_edp(intel_dp))
  1024. return;
  1025. DRM_DEBUG_KMS("\n");
  1026. /*
  1027. * If we enable the backlight right away following a panel power
  1028. * on, we may see slight flicker as the panel syncs with the eDP
  1029. * link. So delay a bit to make sure the image is solid before
  1030. * allowing it to appear.
  1031. */
  1032. msleep(intel_dp->backlight_on_delay);
  1033. pp = ironlake_get_pp_control(dev_priv);
  1034. pp |= EDP_BLC_ENABLE;
  1035. I915_WRITE(PCH_PP_CONTROL, pp);
  1036. POSTING_READ(PCH_PP_CONTROL);
  1037. }
  1038. static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  1039. {
  1040. struct drm_device *dev = intel_dp->base.base.dev;
  1041. struct drm_i915_private *dev_priv = dev->dev_private;
  1042. u32 pp;
  1043. if (!is_edp(intel_dp))
  1044. return;
  1045. DRM_DEBUG_KMS("\n");
  1046. pp = ironlake_get_pp_control(dev_priv);
  1047. pp &= ~EDP_BLC_ENABLE;
  1048. I915_WRITE(PCH_PP_CONTROL, pp);
  1049. POSTING_READ(PCH_PP_CONTROL);
  1050. msleep(intel_dp->backlight_off_delay);
  1051. }
  1052. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  1053. {
  1054. struct drm_device *dev = encoder->dev;
  1055. struct drm_i915_private *dev_priv = dev->dev_private;
  1056. u32 dpa_ctl;
  1057. DRM_DEBUG_KMS("\n");
  1058. dpa_ctl = I915_READ(DP_A);
  1059. dpa_ctl |= DP_PLL_ENABLE;
  1060. I915_WRITE(DP_A, dpa_ctl);
  1061. POSTING_READ(DP_A);
  1062. udelay(200);
  1063. }
  1064. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  1065. {
  1066. struct drm_device *dev = encoder->dev;
  1067. struct drm_i915_private *dev_priv = dev->dev_private;
  1068. u32 dpa_ctl;
  1069. dpa_ctl = I915_READ(DP_A);
  1070. dpa_ctl &= ~DP_PLL_ENABLE;
  1071. I915_WRITE(DP_A, dpa_ctl);
  1072. POSTING_READ(DP_A);
  1073. udelay(200);
  1074. }
  1075. /* If the sink supports it, try to set the power state appropriately */
  1076. static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1077. {
  1078. int ret, i;
  1079. /* Should have a valid DPCD by this point */
  1080. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1081. return;
  1082. if (mode != DRM_MODE_DPMS_ON) {
  1083. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1084. DP_SET_POWER_D3);
  1085. if (ret != 1)
  1086. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1087. } else {
  1088. /*
  1089. * When turning on, we need to retry for 1ms to give the sink
  1090. * time to wake up.
  1091. */
  1092. for (i = 0; i < 3; i++) {
  1093. ret = intel_dp_aux_native_write_1(intel_dp,
  1094. DP_SET_POWER,
  1095. DP_SET_POWER_D0);
  1096. if (ret == 1)
  1097. break;
  1098. msleep(1);
  1099. }
  1100. }
  1101. }
  1102. static void intel_dp_prepare(struct drm_encoder *encoder)
  1103. {
  1104. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1105. /* Make sure the panel is off before trying to change the mode. But also
  1106. * ensure that we have vdd while we switch off the panel. */
  1107. ironlake_edp_panel_vdd_on(intel_dp);
  1108. ironlake_edp_backlight_off(intel_dp);
  1109. ironlake_edp_panel_off(intel_dp);
  1110. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1111. intel_dp_link_down(intel_dp);
  1112. ironlake_edp_panel_vdd_off(intel_dp, false);
  1113. }
  1114. static void intel_dp_commit(struct drm_encoder *encoder)
  1115. {
  1116. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1117. struct drm_device *dev = encoder->dev;
  1118. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1119. ironlake_edp_panel_vdd_on(intel_dp);
  1120. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1121. intel_dp_start_link_train(intel_dp);
  1122. ironlake_edp_panel_on(intel_dp);
  1123. ironlake_edp_panel_vdd_off(intel_dp, true);
  1124. intel_dp_complete_link_train(intel_dp);
  1125. ironlake_edp_backlight_on(intel_dp);
  1126. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1127. if (HAS_PCH_CPT(dev))
  1128. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  1129. }
  1130. static void
  1131. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  1132. {
  1133. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1134. struct drm_device *dev = encoder->dev;
  1135. struct drm_i915_private *dev_priv = dev->dev_private;
  1136. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1137. if (mode != DRM_MODE_DPMS_ON) {
  1138. /* Switching the panel off requires vdd. */
  1139. ironlake_edp_panel_vdd_on(intel_dp);
  1140. ironlake_edp_backlight_off(intel_dp);
  1141. ironlake_edp_panel_off(intel_dp);
  1142. intel_dp_sink_dpms(intel_dp, mode);
  1143. intel_dp_link_down(intel_dp);
  1144. ironlake_edp_panel_vdd_off(intel_dp, false);
  1145. if (is_cpu_edp(intel_dp))
  1146. ironlake_edp_pll_off(encoder);
  1147. } else {
  1148. if (is_cpu_edp(intel_dp))
  1149. ironlake_edp_pll_on(encoder);
  1150. ironlake_edp_panel_vdd_on(intel_dp);
  1151. intel_dp_sink_dpms(intel_dp, mode);
  1152. if (!(dp_reg & DP_PORT_EN)) {
  1153. intel_dp_start_link_train(intel_dp);
  1154. ironlake_edp_panel_on(intel_dp);
  1155. ironlake_edp_panel_vdd_off(intel_dp, true);
  1156. intel_dp_complete_link_train(intel_dp);
  1157. } else
  1158. ironlake_edp_panel_vdd_off(intel_dp, false);
  1159. ironlake_edp_backlight_on(intel_dp);
  1160. }
  1161. intel_dp->dpms_mode = mode;
  1162. }
  1163. /*
  1164. * Native read with retry for link status and receiver capability reads for
  1165. * cases where the sink may still be asleep.
  1166. */
  1167. static bool
  1168. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1169. uint8_t *recv, int recv_bytes)
  1170. {
  1171. int ret, i;
  1172. /*
  1173. * Sinks are *supposed* to come up within 1ms from an off state,
  1174. * but we're also supposed to retry 3 times per the spec.
  1175. */
  1176. for (i = 0; i < 3; i++) {
  1177. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1178. recv_bytes);
  1179. if (ret == recv_bytes)
  1180. return true;
  1181. msleep(1);
  1182. }
  1183. return false;
  1184. }
  1185. /*
  1186. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1187. * link status information
  1188. */
  1189. static bool
  1190. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1191. {
  1192. return intel_dp_aux_native_read_retry(intel_dp,
  1193. DP_LANE0_1_STATUS,
  1194. link_status,
  1195. DP_LINK_STATUS_SIZE);
  1196. }
  1197. static uint8_t
  1198. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1199. int r)
  1200. {
  1201. return link_status[r - DP_LANE0_1_STATUS];
  1202. }
  1203. static uint8_t
  1204. intel_get_adjust_request_voltage(uint8_t adjust_request[2],
  1205. int lane)
  1206. {
  1207. int s = ((lane & 1) ?
  1208. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  1209. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  1210. uint8_t l = adjust_request[lane>>1];
  1211. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  1212. }
  1213. static uint8_t
  1214. intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
  1215. int lane)
  1216. {
  1217. int s = ((lane & 1) ?
  1218. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  1219. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  1220. uint8_t l = adjust_request[lane>>1];
  1221. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  1222. }
  1223. #if 0
  1224. static char *voltage_names[] = {
  1225. "0.4V", "0.6V", "0.8V", "1.2V"
  1226. };
  1227. static char *pre_emph_names[] = {
  1228. "0dB", "3.5dB", "6dB", "9.5dB"
  1229. };
  1230. static char *link_train_names[] = {
  1231. "pattern 1", "pattern 2", "idle", "off"
  1232. };
  1233. #endif
  1234. /*
  1235. * These are source-specific values; current Intel hardware supports
  1236. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1237. */
  1238. static uint8_t
  1239. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1240. {
  1241. struct drm_device *dev = intel_dp->base.base.dev;
  1242. if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
  1243. return DP_TRAIN_VOLTAGE_SWING_800;
  1244. else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
  1245. return DP_TRAIN_VOLTAGE_SWING_1200;
  1246. else
  1247. return DP_TRAIN_VOLTAGE_SWING_800;
  1248. }
  1249. static uint8_t
  1250. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1251. {
  1252. struct drm_device *dev = intel_dp->base.base.dev;
  1253. if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
  1254. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1255. case DP_TRAIN_VOLTAGE_SWING_400:
  1256. return DP_TRAIN_PRE_EMPHASIS_6;
  1257. case DP_TRAIN_VOLTAGE_SWING_600:
  1258. case DP_TRAIN_VOLTAGE_SWING_800:
  1259. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1260. default:
  1261. return DP_TRAIN_PRE_EMPHASIS_0;
  1262. }
  1263. } else {
  1264. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1265. case DP_TRAIN_VOLTAGE_SWING_400:
  1266. return DP_TRAIN_PRE_EMPHASIS_6;
  1267. case DP_TRAIN_VOLTAGE_SWING_600:
  1268. return DP_TRAIN_PRE_EMPHASIS_6;
  1269. case DP_TRAIN_VOLTAGE_SWING_800:
  1270. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1271. case DP_TRAIN_VOLTAGE_SWING_1200:
  1272. default:
  1273. return DP_TRAIN_PRE_EMPHASIS_0;
  1274. }
  1275. }
  1276. }
  1277. static void
  1278. intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1279. {
  1280. uint8_t v = 0;
  1281. uint8_t p = 0;
  1282. int lane;
  1283. uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
  1284. uint8_t voltage_max;
  1285. uint8_t preemph_max;
  1286. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1287. uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
  1288. uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
  1289. if (this_v > v)
  1290. v = this_v;
  1291. if (this_p > p)
  1292. p = this_p;
  1293. }
  1294. voltage_max = intel_dp_voltage_max(intel_dp);
  1295. if (v >= voltage_max)
  1296. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  1297. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  1298. if (p >= preemph_max)
  1299. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1300. for (lane = 0; lane < 4; lane++)
  1301. intel_dp->train_set[lane] = v | p;
  1302. }
  1303. static uint32_t
  1304. intel_dp_signal_levels(uint8_t train_set)
  1305. {
  1306. uint32_t signal_levels = 0;
  1307. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1308. case DP_TRAIN_VOLTAGE_SWING_400:
  1309. default:
  1310. signal_levels |= DP_VOLTAGE_0_4;
  1311. break;
  1312. case DP_TRAIN_VOLTAGE_SWING_600:
  1313. signal_levels |= DP_VOLTAGE_0_6;
  1314. break;
  1315. case DP_TRAIN_VOLTAGE_SWING_800:
  1316. signal_levels |= DP_VOLTAGE_0_8;
  1317. break;
  1318. case DP_TRAIN_VOLTAGE_SWING_1200:
  1319. signal_levels |= DP_VOLTAGE_1_2;
  1320. break;
  1321. }
  1322. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1323. case DP_TRAIN_PRE_EMPHASIS_0:
  1324. default:
  1325. signal_levels |= DP_PRE_EMPHASIS_0;
  1326. break;
  1327. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1328. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1329. break;
  1330. case DP_TRAIN_PRE_EMPHASIS_6:
  1331. signal_levels |= DP_PRE_EMPHASIS_6;
  1332. break;
  1333. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1334. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1335. break;
  1336. }
  1337. return signal_levels;
  1338. }
  1339. /* Gen6's DP voltage swing and pre-emphasis control */
  1340. static uint32_t
  1341. intel_gen6_edp_signal_levels(uint8_t train_set)
  1342. {
  1343. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1344. DP_TRAIN_PRE_EMPHASIS_MASK);
  1345. switch (signal_levels) {
  1346. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1347. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1348. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1349. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1350. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1351. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1352. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1353. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1354. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1355. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1356. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1357. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1358. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1359. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1360. default:
  1361. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1362. "0x%x\n", signal_levels);
  1363. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1364. }
  1365. }
  1366. /* Gen7's DP voltage swing and pre-emphasis control */
  1367. static uint32_t
  1368. intel_gen7_edp_signal_levels(uint8_t train_set)
  1369. {
  1370. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1371. DP_TRAIN_PRE_EMPHASIS_MASK);
  1372. switch (signal_levels) {
  1373. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1374. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  1375. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1376. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  1377. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1378. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  1379. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1380. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  1381. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1382. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  1383. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1384. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  1385. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1386. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  1387. default:
  1388. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1389. "0x%x\n", signal_levels);
  1390. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  1391. }
  1392. }
  1393. static uint8_t
  1394. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1395. int lane)
  1396. {
  1397. int s = (lane & 1) * 4;
  1398. uint8_t l = link_status[lane>>1];
  1399. return (l >> s) & 0xf;
  1400. }
  1401. /* Check for clock recovery is done on all channels */
  1402. static bool
  1403. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1404. {
  1405. int lane;
  1406. uint8_t lane_status;
  1407. for (lane = 0; lane < lane_count; lane++) {
  1408. lane_status = intel_get_lane_status(link_status, lane);
  1409. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1410. return false;
  1411. }
  1412. return true;
  1413. }
  1414. /* Check to see if channel eq is done on all channels */
  1415. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1416. DP_LANE_CHANNEL_EQ_DONE|\
  1417. DP_LANE_SYMBOL_LOCKED)
  1418. static bool
  1419. intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1420. {
  1421. uint8_t lane_align;
  1422. uint8_t lane_status;
  1423. int lane;
  1424. lane_align = intel_dp_link_status(link_status,
  1425. DP_LANE_ALIGN_STATUS_UPDATED);
  1426. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1427. return false;
  1428. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1429. lane_status = intel_get_lane_status(link_status, lane);
  1430. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1431. return false;
  1432. }
  1433. return true;
  1434. }
  1435. static bool
  1436. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1437. uint32_t dp_reg_value,
  1438. uint8_t dp_train_pat)
  1439. {
  1440. struct drm_device *dev = intel_dp->base.base.dev;
  1441. struct drm_i915_private *dev_priv = dev->dev_private;
  1442. int ret;
  1443. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1444. POSTING_READ(intel_dp->output_reg);
  1445. intel_dp_aux_native_write_1(intel_dp,
  1446. DP_TRAINING_PATTERN_SET,
  1447. dp_train_pat);
  1448. ret = intel_dp_aux_native_write(intel_dp,
  1449. DP_TRAINING_LANE0_SET,
  1450. intel_dp->train_set,
  1451. intel_dp->lane_count);
  1452. if (ret != intel_dp->lane_count)
  1453. return false;
  1454. return true;
  1455. }
  1456. /* Enable corresponding port and start training pattern 1 */
  1457. static void
  1458. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1459. {
  1460. struct drm_device *dev = intel_dp->base.base.dev;
  1461. struct drm_i915_private *dev_priv = dev->dev_private;
  1462. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1463. int i;
  1464. uint8_t voltage;
  1465. bool clock_recovery = false;
  1466. int voltage_tries, loop_tries;
  1467. u32 reg;
  1468. uint32_t DP = intel_dp->DP;
  1469. /*
  1470. * On CPT we have to enable the port in training pattern 1, which
  1471. * will happen below in intel_dp_set_link_train. Otherwise, enable
  1472. * the port and wait for it to become active.
  1473. */
  1474. if (!HAS_PCH_CPT(dev)) {
  1475. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1476. POSTING_READ(intel_dp->output_reg);
  1477. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1478. }
  1479. /* Write the link configuration data */
  1480. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1481. intel_dp->link_configuration,
  1482. DP_LINK_CONFIGURATION_SIZE);
  1483. DP |= DP_PORT_EN;
  1484. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
  1485. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1486. else
  1487. DP &= ~DP_LINK_TRAIN_MASK;
  1488. memset(intel_dp->train_set, 0, 4);
  1489. voltage = 0xff;
  1490. voltage_tries = 0;
  1491. loop_tries = 0;
  1492. clock_recovery = false;
  1493. for (;;) {
  1494. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1495. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1496. uint32_t signal_levels;
  1497. if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
  1498. signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
  1499. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
  1500. } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
  1501. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1502. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1503. } else {
  1504. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
  1505. DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
  1506. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1507. }
  1508. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
  1509. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1510. else
  1511. reg = DP | DP_LINK_TRAIN_PAT_1;
  1512. if (!intel_dp_set_link_train(intel_dp, reg,
  1513. DP_TRAINING_PATTERN_1 |
  1514. DP_LINK_SCRAMBLING_DISABLE))
  1515. break;
  1516. /* Set training pattern 1 */
  1517. udelay(100);
  1518. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1519. DRM_ERROR("failed to get link status\n");
  1520. break;
  1521. }
  1522. if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1523. DRM_DEBUG_KMS("clock recovery OK\n");
  1524. clock_recovery = true;
  1525. break;
  1526. }
  1527. /* Check to see if we've tried the max voltage */
  1528. for (i = 0; i < intel_dp->lane_count; i++)
  1529. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1530. break;
  1531. if (i == intel_dp->lane_count) {
  1532. ++loop_tries;
  1533. if (loop_tries == 5) {
  1534. DRM_DEBUG_KMS("too many full retries, give up\n");
  1535. break;
  1536. }
  1537. memset(intel_dp->train_set, 0, 4);
  1538. voltage_tries = 0;
  1539. continue;
  1540. }
  1541. /* Check to see if we've tried the same voltage 5 times */
  1542. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1543. ++voltage_tries;
  1544. if (voltage_tries == 5) {
  1545. DRM_DEBUG_KMS("too many voltage retries, give up\n");
  1546. break;
  1547. }
  1548. } else
  1549. voltage_tries = 0;
  1550. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1551. /* Compute new intel_dp->train_set as requested by target */
  1552. intel_get_adjust_train(intel_dp, link_status);
  1553. }
  1554. intel_dp->DP = DP;
  1555. }
  1556. static void
  1557. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1558. {
  1559. struct drm_device *dev = intel_dp->base.base.dev;
  1560. struct drm_i915_private *dev_priv = dev->dev_private;
  1561. bool channel_eq = false;
  1562. int tries, cr_tries;
  1563. u32 reg;
  1564. uint32_t DP = intel_dp->DP;
  1565. /* channel equalization */
  1566. tries = 0;
  1567. cr_tries = 0;
  1568. channel_eq = false;
  1569. for (;;) {
  1570. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1571. uint32_t signal_levels;
  1572. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1573. if (cr_tries > 5) {
  1574. DRM_ERROR("failed to train DP, aborting\n");
  1575. intel_dp_link_down(intel_dp);
  1576. break;
  1577. }
  1578. if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
  1579. signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
  1580. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
  1581. } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
  1582. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1583. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1584. } else {
  1585. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
  1586. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1587. }
  1588. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
  1589. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1590. else
  1591. reg = DP | DP_LINK_TRAIN_PAT_2;
  1592. /* channel eq pattern */
  1593. if (!intel_dp_set_link_train(intel_dp, reg,
  1594. DP_TRAINING_PATTERN_2 |
  1595. DP_LINK_SCRAMBLING_DISABLE))
  1596. break;
  1597. udelay(400);
  1598. if (!intel_dp_get_link_status(intel_dp, link_status))
  1599. break;
  1600. /* Make sure clock is still ok */
  1601. if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1602. intel_dp_start_link_train(intel_dp);
  1603. cr_tries++;
  1604. continue;
  1605. }
  1606. if (intel_channel_eq_ok(intel_dp, link_status)) {
  1607. channel_eq = true;
  1608. break;
  1609. }
  1610. /* Try 5 times, then try clock recovery if that fails */
  1611. if (tries > 5) {
  1612. intel_dp_link_down(intel_dp);
  1613. intel_dp_start_link_train(intel_dp);
  1614. tries = 0;
  1615. cr_tries++;
  1616. continue;
  1617. }
  1618. /* Compute new intel_dp->train_set as requested by target */
  1619. intel_get_adjust_train(intel_dp, link_status);
  1620. ++tries;
  1621. }
  1622. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
  1623. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1624. else
  1625. reg = DP | DP_LINK_TRAIN_OFF;
  1626. I915_WRITE(intel_dp->output_reg, reg);
  1627. POSTING_READ(intel_dp->output_reg);
  1628. intel_dp_aux_native_write_1(intel_dp,
  1629. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1630. }
  1631. static void
  1632. intel_dp_link_down(struct intel_dp *intel_dp)
  1633. {
  1634. struct drm_device *dev = intel_dp->base.base.dev;
  1635. struct drm_i915_private *dev_priv = dev->dev_private;
  1636. uint32_t DP = intel_dp->DP;
  1637. if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1638. return;
  1639. DRM_DEBUG_KMS("\n");
  1640. if (is_edp(intel_dp)) {
  1641. DP &= ~DP_PLL_ENABLE;
  1642. I915_WRITE(intel_dp->output_reg, DP);
  1643. POSTING_READ(intel_dp->output_reg);
  1644. udelay(100);
  1645. }
  1646. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
  1647. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1648. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1649. } else {
  1650. DP &= ~DP_LINK_TRAIN_MASK;
  1651. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1652. }
  1653. POSTING_READ(intel_dp->output_reg);
  1654. msleep(17);
  1655. if (is_edp(intel_dp)) {
  1656. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
  1657. DP |= DP_LINK_TRAIN_OFF_CPT;
  1658. else
  1659. DP |= DP_LINK_TRAIN_OFF;
  1660. }
  1661. if (HAS_PCH_IBX(dev) &&
  1662. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1663. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1664. /* Hardware workaround: leaving our transcoder select
  1665. * set to transcoder B while it's off will prevent the
  1666. * corresponding HDMI output on transcoder A.
  1667. *
  1668. * Combine this with another hardware workaround:
  1669. * transcoder select bit can only be cleared while the
  1670. * port is enabled.
  1671. */
  1672. DP &= ~DP_PIPEB_SELECT;
  1673. I915_WRITE(intel_dp->output_reg, DP);
  1674. /* Changes to enable or select take place the vblank
  1675. * after being written.
  1676. */
  1677. if (crtc == NULL) {
  1678. /* We can arrive here never having been attached
  1679. * to a CRTC, for instance, due to inheriting
  1680. * random state from the BIOS.
  1681. *
  1682. * If the pipe is not running, play safe and
  1683. * wait for the clocks to stabilise before
  1684. * continuing.
  1685. */
  1686. POSTING_READ(intel_dp->output_reg);
  1687. msleep(50);
  1688. } else
  1689. intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
  1690. }
  1691. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  1692. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1693. POSTING_READ(intel_dp->output_reg);
  1694. msleep(intel_dp->panel_power_down_delay);
  1695. }
  1696. static bool
  1697. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  1698. {
  1699. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  1700. sizeof(intel_dp->dpcd)) &&
  1701. (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
  1702. return true;
  1703. }
  1704. return false;
  1705. }
  1706. static void
  1707. intel_dp_probe_oui(struct intel_dp *intel_dp)
  1708. {
  1709. u8 buf[3];
  1710. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  1711. return;
  1712. if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
  1713. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  1714. buf[0], buf[1], buf[2]);
  1715. if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
  1716. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  1717. buf[0], buf[1], buf[2]);
  1718. }
  1719. static bool
  1720. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  1721. {
  1722. int ret;
  1723. ret = intel_dp_aux_native_read_retry(intel_dp,
  1724. DP_DEVICE_SERVICE_IRQ_VECTOR,
  1725. sink_irq_vector, 1);
  1726. if (!ret)
  1727. return false;
  1728. return true;
  1729. }
  1730. static void
  1731. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  1732. {
  1733. /* NAK by default */
  1734. intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
  1735. }
  1736. /*
  1737. * According to DP spec
  1738. * 5.1.2:
  1739. * 1. Read DPCD
  1740. * 2. Configure link according to Receiver Capabilities
  1741. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1742. * 4. Check link status on receipt of hot-plug interrupt
  1743. */
  1744. static void
  1745. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1746. {
  1747. u8 sink_irq_vector;
  1748. u8 link_status[DP_LINK_STATUS_SIZE];
  1749. if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
  1750. return;
  1751. if (!intel_dp->base.base.crtc)
  1752. return;
  1753. /* Try to read receiver status if the link appears to be up */
  1754. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1755. intel_dp_link_down(intel_dp);
  1756. return;
  1757. }
  1758. /* Now read the DPCD to see if it's actually running */
  1759. if (!intel_dp_get_dpcd(intel_dp)) {
  1760. intel_dp_link_down(intel_dp);
  1761. return;
  1762. }
  1763. /* Try to read the source of the interrupt */
  1764. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  1765. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  1766. /* Clear interrupt source */
  1767. intel_dp_aux_native_write_1(intel_dp,
  1768. DP_DEVICE_SERVICE_IRQ_VECTOR,
  1769. sink_irq_vector);
  1770. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  1771. intel_dp_handle_test_request(intel_dp);
  1772. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  1773. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  1774. }
  1775. if (!intel_channel_eq_ok(intel_dp, link_status)) {
  1776. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  1777. drm_get_encoder_name(&intel_dp->base.base));
  1778. intel_dp_start_link_train(intel_dp);
  1779. intel_dp_complete_link_train(intel_dp);
  1780. }
  1781. }
  1782. static enum drm_connector_status
  1783. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  1784. {
  1785. if (intel_dp_get_dpcd(intel_dp))
  1786. return connector_status_connected;
  1787. return connector_status_disconnected;
  1788. }
  1789. static enum drm_connector_status
  1790. ironlake_dp_detect(struct intel_dp *intel_dp)
  1791. {
  1792. enum drm_connector_status status;
  1793. /* Can't disconnect eDP, but you can close the lid... */
  1794. if (is_edp(intel_dp)) {
  1795. status = intel_panel_detect(intel_dp->base.base.dev);
  1796. if (status == connector_status_unknown)
  1797. status = connector_status_connected;
  1798. return status;
  1799. }
  1800. return intel_dp_detect_dpcd(intel_dp);
  1801. }
  1802. static enum drm_connector_status
  1803. g4x_dp_detect(struct intel_dp *intel_dp)
  1804. {
  1805. struct drm_device *dev = intel_dp->base.base.dev;
  1806. struct drm_i915_private *dev_priv = dev->dev_private;
  1807. uint32_t bit;
  1808. switch (intel_dp->output_reg) {
  1809. case DP_B:
  1810. bit = DPB_HOTPLUG_LIVE_STATUS;
  1811. break;
  1812. case DP_C:
  1813. bit = DPC_HOTPLUG_LIVE_STATUS;
  1814. break;
  1815. case DP_D:
  1816. bit = DPD_HOTPLUG_LIVE_STATUS;
  1817. break;
  1818. default:
  1819. return connector_status_unknown;
  1820. }
  1821. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  1822. return connector_status_disconnected;
  1823. return intel_dp_detect_dpcd(intel_dp);
  1824. }
  1825. static struct edid *
  1826. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  1827. {
  1828. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1829. struct edid *edid;
  1830. ironlake_edp_panel_vdd_on(intel_dp);
  1831. edid = drm_get_edid(connector, adapter);
  1832. ironlake_edp_panel_vdd_off(intel_dp, false);
  1833. return edid;
  1834. }
  1835. static int
  1836. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  1837. {
  1838. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1839. int ret;
  1840. ironlake_edp_panel_vdd_on(intel_dp);
  1841. ret = intel_ddc_get_modes(connector, adapter);
  1842. ironlake_edp_panel_vdd_off(intel_dp, false);
  1843. return ret;
  1844. }
  1845. /**
  1846. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1847. *
  1848. * \return true if DP port is connected.
  1849. * \return false if DP port is disconnected.
  1850. */
  1851. static enum drm_connector_status
  1852. intel_dp_detect(struct drm_connector *connector, bool force)
  1853. {
  1854. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1855. struct drm_device *dev = intel_dp->base.base.dev;
  1856. enum drm_connector_status status;
  1857. struct edid *edid = NULL;
  1858. intel_dp->has_audio = false;
  1859. if (HAS_PCH_SPLIT(dev))
  1860. status = ironlake_dp_detect(intel_dp);
  1861. else
  1862. status = g4x_dp_detect(intel_dp);
  1863. DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
  1864. intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
  1865. intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
  1866. intel_dp->dpcd[6], intel_dp->dpcd[7]);
  1867. if (status != connector_status_connected)
  1868. return status;
  1869. intel_dp_probe_oui(intel_dp);
  1870. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  1871. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  1872. } else {
  1873. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  1874. if (edid) {
  1875. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1876. connector->display_info.raw_edid = NULL;
  1877. kfree(edid);
  1878. }
  1879. }
  1880. return connector_status_connected;
  1881. }
  1882. static int intel_dp_get_modes(struct drm_connector *connector)
  1883. {
  1884. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1885. struct drm_device *dev = intel_dp->base.base.dev;
  1886. struct drm_i915_private *dev_priv = dev->dev_private;
  1887. int ret;
  1888. /* We should parse the EDID data and find out if it has an audio sink
  1889. */
  1890. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  1891. if (ret) {
  1892. if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
  1893. struct drm_display_mode *newmode;
  1894. list_for_each_entry(newmode, &connector->probed_modes,
  1895. head) {
  1896. if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
  1897. intel_dp->panel_fixed_mode =
  1898. drm_mode_duplicate(dev, newmode);
  1899. break;
  1900. }
  1901. }
  1902. }
  1903. return ret;
  1904. }
  1905. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1906. if (is_edp(intel_dp)) {
  1907. /* initialize panel mode from VBT if available for eDP */
  1908. if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
  1909. intel_dp->panel_fixed_mode =
  1910. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1911. if (intel_dp->panel_fixed_mode) {
  1912. intel_dp->panel_fixed_mode->type |=
  1913. DRM_MODE_TYPE_PREFERRED;
  1914. }
  1915. }
  1916. if (intel_dp->panel_fixed_mode) {
  1917. struct drm_display_mode *mode;
  1918. mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
  1919. drm_mode_probed_add(connector, mode);
  1920. return 1;
  1921. }
  1922. }
  1923. return 0;
  1924. }
  1925. static bool
  1926. intel_dp_detect_audio(struct drm_connector *connector)
  1927. {
  1928. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1929. struct edid *edid;
  1930. bool has_audio = false;
  1931. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  1932. if (edid) {
  1933. has_audio = drm_detect_monitor_audio(edid);
  1934. connector->display_info.raw_edid = NULL;
  1935. kfree(edid);
  1936. }
  1937. return has_audio;
  1938. }
  1939. static int
  1940. intel_dp_set_property(struct drm_connector *connector,
  1941. struct drm_property *property,
  1942. uint64_t val)
  1943. {
  1944. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1945. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1946. int ret;
  1947. ret = drm_connector_property_set_value(connector, property, val);
  1948. if (ret)
  1949. return ret;
  1950. if (property == dev_priv->force_audio_property) {
  1951. int i = val;
  1952. bool has_audio;
  1953. if (i == intel_dp->force_audio)
  1954. return 0;
  1955. intel_dp->force_audio = i;
  1956. if (i == HDMI_AUDIO_AUTO)
  1957. has_audio = intel_dp_detect_audio(connector);
  1958. else
  1959. has_audio = (i == HDMI_AUDIO_ON);
  1960. if (has_audio == intel_dp->has_audio)
  1961. return 0;
  1962. intel_dp->has_audio = has_audio;
  1963. goto done;
  1964. }
  1965. if (property == dev_priv->broadcast_rgb_property) {
  1966. if (val == !!intel_dp->color_range)
  1967. return 0;
  1968. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  1969. goto done;
  1970. }
  1971. return -EINVAL;
  1972. done:
  1973. if (intel_dp->base.base.crtc) {
  1974. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1975. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1976. crtc->x, crtc->y,
  1977. crtc->fb);
  1978. }
  1979. return 0;
  1980. }
  1981. static void
  1982. intel_dp_destroy(struct drm_connector *connector)
  1983. {
  1984. struct drm_device *dev = connector->dev;
  1985. if (intel_dpd_is_edp(dev))
  1986. intel_panel_destroy_backlight(dev);
  1987. drm_sysfs_connector_remove(connector);
  1988. drm_connector_cleanup(connector);
  1989. kfree(connector);
  1990. }
  1991. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1992. {
  1993. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1994. i2c_del_adapter(&intel_dp->adapter);
  1995. drm_encoder_cleanup(encoder);
  1996. if (is_edp(intel_dp)) {
  1997. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  1998. ironlake_panel_vdd_off_sync(intel_dp);
  1999. }
  2000. kfree(intel_dp);
  2001. }
  2002. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  2003. .dpms = intel_dp_dpms,
  2004. .mode_fixup = intel_dp_mode_fixup,
  2005. .prepare = intel_dp_prepare,
  2006. .mode_set = intel_dp_mode_set,
  2007. .commit = intel_dp_commit,
  2008. };
  2009. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  2010. .dpms = drm_helper_connector_dpms,
  2011. .detect = intel_dp_detect,
  2012. .fill_modes = drm_helper_probe_single_connector_modes,
  2013. .set_property = intel_dp_set_property,
  2014. .destroy = intel_dp_destroy,
  2015. };
  2016. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  2017. .get_modes = intel_dp_get_modes,
  2018. .mode_valid = intel_dp_mode_valid,
  2019. .best_encoder = intel_best_encoder,
  2020. };
  2021. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  2022. .destroy = intel_dp_encoder_destroy,
  2023. };
  2024. static void
  2025. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  2026. {
  2027. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  2028. intel_dp_check_link_status(intel_dp);
  2029. }
  2030. /* Return which DP Port should be selected for Transcoder DP control */
  2031. int
  2032. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  2033. {
  2034. struct drm_device *dev = crtc->dev;
  2035. struct drm_mode_config *mode_config = &dev->mode_config;
  2036. struct drm_encoder *encoder;
  2037. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  2038. struct intel_dp *intel_dp;
  2039. if (encoder->crtc != crtc)
  2040. continue;
  2041. intel_dp = enc_to_intel_dp(encoder);
  2042. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
  2043. intel_dp->base.type == INTEL_OUTPUT_EDP)
  2044. return intel_dp->output_reg;
  2045. }
  2046. return -1;
  2047. }
  2048. /* check the VBT to see whether the eDP is on DP-D port */
  2049. bool intel_dpd_is_edp(struct drm_device *dev)
  2050. {
  2051. struct drm_i915_private *dev_priv = dev->dev_private;
  2052. struct child_device_config *p_child;
  2053. int i;
  2054. if (!dev_priv->child_dev_num)
  2055. return false;
  2056. for (i = 0; i < dev_priv->child_dev_num; i++) {
  2057. p_child = dev_priv->child_dev + i;
  2058. if (p_child->dvo_port == PORT_IDPD &&
  2059. p_child->device_type == DEVICE_TYPE_eDP)
  2060. return true;
  2061. }
  2062. return false;
  2063. }
  2064. static void
  2065. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  2066. {
  2067. intel_attach_force_audio_property(connector);
  2068. intel_attach_broadcast_rgb_property(connector);
  2069. }
  2070. void
  2071. intel_dp_init(struct drm_device *dev, int output_reg)
  2072. {
  2073. struct drm_i915_private *dev_priv = dev->dev_private;
  2074. struct drm_connector *connector;
  2075. struct intel_dp *intel_dp;
  2076. struct intel_encoder *intel_encoder;
  2077. struct intel_connector *intel_connector;
  2078. const char *name = NULL;
  2079. int type;
  2080. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  2081. if (!intel_dp)
  2082. return;
  2083. intel_dp->output_reg = output_reg;
  2084. intel_dp->dpms_mode = -1;
  2085. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  2086. if (!intel_connector) {
  2087. kfree(intel_dp);
  2088. return;
  2089. }
  2090. intel_encoder = &intel_dp->base;
  2091. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  2092. if (intel_dpd_is_edp(dev))
  2093. intel_dp->is_pch_edp = true;
  2094. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  2095. type = DRM_MODE_CONNECTOR_eDP;
  2096. intel_encoder->type = INTEL_OUTPUT_EDP;
  2097. } else {
  2098. type = DRM_MODE_CONNECTOR_DisplayPort;
  2099. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2100. }
  2101. connector = &intel_connector->base;
  2102. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  2103. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  2104. connector->polled = DRM_CONNECTOR_POLL_HPD;
  2105. if (output_reg == DP_B || output_reg == PCH_DP_B)
  2106. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  2107. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  2108. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  2109. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  2110. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  2111. if (is_edp(intel_dp)) {
  2112. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  2113. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  2114. ironlake_panel_vdd_work);
  2115. }
  2116. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2117. connector->interlace_allowed = true;
  2118. connector->doublescan_allowed = 0;
  2119. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  2120. DRM_MODE_ENCODER_TMDS);
  2121. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  2122. intel_connector_attach_encoder(intel_connector, intel_encoder);
  2123. drm_sysfs_connector_add(connector);
  2124. /* Set up the DDC bus. */
  2125. switch (output_reg) {
  2126. case DP_A:
  2127. name = "DPDDC-A";
  2128. break;
  2129. case DP_B:
  2130. case PCH_DP_B:
  2131. dev_priv->hotplug_supported_mask |=
  2132. DPB_HOTPLUG_INT_STATUS;
  2133. name = "DPDDC-B";
  2134. break;
  2135. case DP_C:
  2136. case PCH_DP_C:
  2137. dev_priv->hotplug_supported_mask |=
  2138. DPC_HOTPLUG_INT_STATUS;
  2139. name = "DPDDC-C";
  2140. break;
  2141. case DP_D:
  2142. case PCH_DP_D:
  2143. dev_priv->hotplug_supported_mask |=
  2144. DPD_HOTPLUG_INT_STATUS;
  2145. name = "DPDDC-D";
  2146. break;
  2147. }
  2148. /* Cache some DPCD data in the eDP case */
  2149. if (is_edp(intel_dp)) {
  2150. bool ret;
  2151. struct edp_power_seq cur, vbt;
  2152. u32 pp_on, pp_off, pp_div;
  2153. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  2154. pp_off = I915_READ(PCH_PP_OFF_DELAYS);
  2155. pp_div = I915_READ(PCH_PP_DIVISOR);
  2156. if (!pp_on || !pp_off || !pp_div) {
  2157. DRM_INFO("bad panel power sequencing delays, disabling panel\n");
  2158. intel_dp_encoder_destroy(&intel_dp->base.base);
  2159. intel_dp_destroy(&intel_connector->base);
  2160. return;
  2161. }
  2162. /* Pull timing values out of registers */
  2163. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  2164. PANEL_POWER_UP_DELAY_SHIFT;
  2165. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  2166. PANEL_LIGHT_ON_DELAY_SHIFT;
  2167. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  2168. PANEL_LIGHT_OFF_DELAY_SHIFT;
  2169. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  2170. PANEL_POWER_DOWN_DELAY_SHIFT;
  2171. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  2172. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  2173. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2174. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  2175. vbt = dev_priv->edp.pps;
  2176. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2177. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  2178. #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
  2179. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  2180. intel_dp->backlight_on_delay = get_delay(t8);
  2181. intel_dp->backlight_off_delay = get_delay(t9);
  2182. intel_dp->panel_power_down_delay = get_delay(t10);
  2183. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  2184. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  2185. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  2186. intel_dp->panel_power_cycle_delay);
  2187. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  2188. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  2189. ironlake_edp_panel_vdd_on(intel_dp);
  2190. ret = intel_dp_get_dpcd(intel_dp);
  2191. ironlake_edp_panel_vdd_off(intel_dp, false);
  2192. if (ret) {
  2193. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  2194. dev_priv->no_aux_handshake =
  2195. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  2196. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  2197. } else {
  2198. /* if this fails, presume the device is a ghost */
  2199. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  2200. intel_dp_encoder_destroy(&intel_dp->base.base);
  2201. intel_dp_destroy(&intel_connector->base);
  2202. return;
  2203. }
  2204. }
  2205. intel_dp_i2c_init(intel_dp, intel_connector, name);
  2206. intel_encoder->hot_plug = intel_dp_hot_plug;
  2207. if (is_edp(intel_dp)) {
  2208. dev_priv->int_edp_connector = connector;
  2209. intel_panel_setup_backlight(dev);
  2210. }
  2211. intel_dp_add_properties(intel_dp, connector);
  2212. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  2213. * 0xd. Failure to do so will result in spurious interrupts being
  2214. * generated on the port when a cable is not attached.
  2215. */
  2216. if (IS_G4X(dev) && !IS_GM45(dev)) {
  2217. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  2218. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  2219. }
  2220. }