sched.c 178 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/pid_namespace.h>
  47. #include <linux/smp.h>
  48. #include <linux/threads.h>
  49. #include <linux/timer.h>
  50. #include <linux/rcupdate.h>
  51. #include <linux/cpu.h>
  52. #include <linux/cpuset.h>
  53. #include <linux/percpu.h>
  54. #include <linux/kthread.h>
  55. #include <linux/seq_file.h>
  56. #include <linux/sysctl.h>
  57. #include <linux/syscalls.h>
  58. #include <linux/times.h>
  59. #include <linux/tsacct_kern.h>
  60. #include <linux/kprobes.h>
  61. #include <linux/delayacct.h>
  62. #include <linux/reciprocal_div.h>
  63. #include <linux/unistd.h>
  64. #include <linux/pagemap.h>
  65. #include <asm/tlb.h>
  66. #include <asm/irq_regs.h>
  67. /*
  68. * Scheduler clock - returns current time in nanosec units.
  69. * This is default implementation.
  70. * Architectures and sub-architectures can override this.
  71. */
  72. unsigned long long __attribute__((weak)) sched_clock(void)
  73. {
  74. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  75. }
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Some helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
  97. #define NICE_0_LOAD SCHED_LOAD_SCALE
  98. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  99. /*
  100. * These are the 'tuning knobs' of the scheduler:
  101. *
  102. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  103. * Timeslices get refilled after they expire.
  104. */
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. static inline int rt_policy(int policy)
  126. {
  127. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  128. return 1;
  129. return 0;
  130. }
  131. static inline int task_has_rt_policy(struct task_struct *p)
  132. {
  133. return rt_policy(p->policy);
  134. }
  135. /*
  136. * This is the priority-queue data structure of the RT scheduling class:
  137. */
  138. struct rt_prio_array {
  139. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  140. struct list_head queue[MAX_RT_PRIO];
  141. };
  142. #ifdef CONFIG_FAIR_GROUP_SCHED
  143. #include <linux/cgroup.h>
  144. struct cfs_rq;
  145. /* task group related information */
  146. struct task_group {
  147. #ifdef CONFIG_FAIR_CGROUP_SCHED
  148. struct cgroup_subsys_state css;
  149. #endif
  150. /* schedulable entities of this group on each cpu */
  151. struct sched_entity **se;
  152. /* runqueue "owned" by this group on each cpu */
  153. struct cfs_rq **cfs_rq;
  154. unsigned long shares;
  155. /* spinlock to serialize modification to shares */
  156. spinlock_t lock;
  157. struct rcu_head rcu;
  158. };
  159. /* Default task group's sched entity on each cpu */
  160. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  161. /* Default task group's cfs_rq on each cpu */
  162. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  163. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  164. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  165. /* Default task group.
  166. * Every task in system belong to this group at bootup.
  167. */
  168. struct task_group init_task_group = {
  169. .se = init_sched_entity_p,
  170. .cfs_rq = init_cfs_rq_p,
  171. };
  172. #ifdef CONFIG_FAIR_USER_SCHED
  173. # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
  174. #else
  175. # define INIT_TASK_GRP_LOAD NICE_0_LOAD
  176. #endif
  177. static int init_task_group_load = INIT_TASK_GRP_LOAD;
  178. /* return group to which a task belongs */
  179. static inline struct task_group *task_group(struct task_struct *p)
  180. {
  181. struct task_group *tg;
  182. #ifdef CONFIG_FAIR_USER_SCHED
  183. tg = p->user->tg;
  184. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  185. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  186. struct task_group, css);
  187. #else
  188. tg = &init_task_group;
  189. #endif
  190. return tg;
  191. }
  192. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  193. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
  194. {
  195. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  196. p->se.parent = task_group(p)->se[cpu];
  197. }
  198. #else
  199. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
  200. #endif /* CONFIG_FAIR_GROUP_SCHED */
  201. /* CFS-related fields in a runqueue */
  202. struct cfs_rq {
  203. struct load_weight load;
  204. unsigned long nr_running;
  205. u64 exec_clock;
  206. u64 min_vruntime;
  207. struct rb_root tasks_timeline;
  208. struct rb_node *rb_leftmost;
  209. struct rb_node *rb_load_balance_curr;
  210. /* 'curr' points to currently running entity on this cfs_rq.
  211. * It is set to NULL otherwise (i.e when none are currently running).
  212. */
  213. struct sched_entity *curr;
  214. unsigned long nr_spread_over;
  215. #ifdef CONFIG_FAIR_GROUP_SCHED
  216. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  217. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  218. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  219. * (like users, containers etc.)
  220. *
  221. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  222. * list is used during load balance.
  223. */
  224. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  225. struct task_group *tg; /* group that "owns" this runqueue */
  226. #endif
  227. };
  228. /* Real-Time classes' related field in a runqueue: */
  229. struct rt_rq {
  230. struct rt_prio_array active;
  231. int rt_load_balance_idx;
  232. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  233. };
  234. /*
  235. * This is the main, per-CPU runqueue data structure.
  236. *
  237. * Locking rule: those places that want to lock multiple runqueues
  238. * (such as the load balancing or the thread migration code), lock
  239. * acquire operations must be ordered by ascending &runqueue.
  240. */
  241. struct rq {
  242. /* runqueue lock: */
  243. spinlock_t lock;
  244. /*
  245. * nr_running and cpu_load should be in the same cacheline because
  246. * remote CPUs use both these fields when doing load calculation.
  247. */
  248. unsigned long nr_running;
  249. #define CPU_LOAD_IDX_MAX 5
  250. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  251. unsigned char idle_at_tick;
  252. #ifdef CONFIG_NO_HZ
  253. unsigned char in_nohz_recently;
  254. #endif
  255. /* capture load from *all* tasks on this cpu: */
  256. struct load_weight load;
  257. unsigned long nr_load_updates;
  258. u64 nr_switches;
  259. struct cfs_rq cfs;
  260. #ifdef CONFIG_FAIR_GROUP_SCHED
  261. /* list of leaf cfs_rq on this cpu: */
  262. struct list_head leaf_cfs_rq_list;
  263. #endif
  264. struct rt_rq rt;
  265. /*
  266. * This is part of a global counter where only the total sum
  267. * over all CPUs matters. A task can increase this counter on
  268. * one CPU and if it got migrated afterwards it may decrease
  269. * it on another CPU. Always updated under the runqueue lock:
  270. */
  271. unsigned long nr_uninterruptible;
  272. struct task_struct *curr, *idle;
  273. unsigned long next_balance;
  274. struct mm_struct *prev_mm;
  275. u64 clock, prev_clock_raw;
  276. s64 clock_max_delta;
  277. unsigned int clock_warps, clock_overflows;
  278. u64 idle_clock;
  279. unsigned int clock_deep_idle_events;
  280. u64 tick_timestamp;
  281. atomic_t nr_iowait;
  282. #ifdef CONFIG_SMP
  283. struct sched_domain *sd;
  284. /* For active balancing */
  285. int active_balance;
  286. int push_cpu;
  287. /* cpu of this runqueue: */
  288. int cpu;
  289. struct task_struct *migration_thread;
  290. struct list_head migration_queue;
  291. #endif
  292. #ifdef CONFIG_SCHEDSTATS
  293. /* latency stats */
  294. struct sched_info rq_sched_info;
  295. /* sys_sched_yield() stats */
  296. unsigned int yld_exp_empty;
  297. unsigned int yld_act_empty;
  298. unsigned int yld_both_empty;
  299. unsigned int yld_count;
  300. /* schedule() stats */
  301. unsigned int sched_switch;
  302. unsigned int sched_count;
  303. unsigned int sched_goidle;
  304. /* try_to_wake_up() stats */
  305. unsigned int ttwu_count;
  306. unsigned int ttwu_local;
  307. /* BKL stats */
  308. unsigned int bkl_count;
  309. #endif
  310. struct lock_class_key rq_lock_key;
  311. };
  312. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  313. static DEFINE_MUTEX(sched_hotcpu_mutex);
  314. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  315. {
  316. rq->curr->sched_class->check_preempt_curr(rq, p);
  317. }
  318. static inline int cpu_of(struct rq *rq)
  319. {
  320. #ifdef CONFIG_SMP
  321. return rq->cpu;
  322. #else
  323. return 0;
  324. #endif
  325. }
  326. /*
  327. * Update the per-runqueue clock, as finegrained as the platform can give
  328. * us, but without assuming monotonicity, etc.:
  329. */
  330. static void __update_rq_clock(struct rq *rq)
  331. {
  332. u64 prev_raw = rq->prev_clock_raw;
  333. u64 now = sched_clock();
  334. s64 delta = now - prev_raw;
  335. u64 clock = rq->clock;
  336. #ifdef CONFIG_SCHED_DEBUG
  337. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  338. #endif
  339. /*
  340. * Protect against sched_clock() occasionally going backwards:
  341. */
  342. if (unlikely(delta < 0)) {
  343. clock++;
  344. rq->clock_warps++;
  345. } else {
  346. /*
  347. * Catch too large forward jumps too:
  348. */
  349. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  350. if (clock < rq->tick_timestamp + TICK_NSEC)
  351. clock = rq->tick_timestamp + TICK_NSEC;
  352. else
  353. clock++;
  354. rq->clock_overflows++;
  355. } else {
  356. if (unlikely(delta > rq->clock_max_delta))
  357. rq->clock_max_delta = delta;
  358. clock += delta;
  359. }
  360. }
  361. rq->prev_clock_raw = now;
  362. rq->clock = clock;
  363. }
  364. static void update_rq_clock(struct rq *rq)
  365. {
  366. if (likely(smp_processor_id() == cpu_of(rq)))
  367. __update_rq_clock(rq);
  368. }
  369. /*
  370. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  371. * See detach_destroy_domains: synchronize_sched for details.
  372. *
  373. * The domain tree of any CPU may only be accessed from within
  374. * preempt-disabled sections.
  375. */
  376. #define for_each_domain(cpu, __sd) \
  377. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  378. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  379. #define this_rq() (&__get_cpu_var(runqueues))
  380. #define task_rq(p) cpu_rq(task_cpu(p))
  381. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  382. /*
  383. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  384. */
  385. #ifdef CONFIG_SCHED_DEBUG
  386. # define const_debug __read_mostly
  387. #else
  388. # define const_debug static const
  389. #endif
  390. /*
  391. * Debugging: various feature bits
  392. */
  393. enum {
  394. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  395. SCHED_FEAT_START_DEBIT = 2,
  396. SCHED_FEAT_TREE_AVG = 4,
  397. SCHED_FEAT_APPROX_AVG = 8,
  398. SCHED_FEAT_WAKEUP_PREEMPT = 16,
  399. };
  400. const_debug unsigned int sysctl_sched_features =
  401. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  402. SCHED_FEAT_START_DEBIT * 1 |
  403. SCHED_FEAT_TREE_AVG * 0 |
  404. SCHED_FEAT_APPROX_AVG * 0 |
  405. SCHED_FEAT_WAKEUP_PREEMPT * 1;
  406. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  407. /*
  408. * Number of tasks to iterate in a single balance run.
  409. * Limited because this is done with IRQs disabled.
  410. */
  411. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  412. /*
  413. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  414. * clock constructed from sched_clock():
  415. */
  416. unsigned long long cpu_clock(int cpu)
  417. {
  418. unsigned long long now;
  419. unsigned long flags;
  420. struct rq *rq;
  421. local_irq_save(flags);
  422. rq = cpu_rq(cpu);
  423. update_rq_clock(rq);
  424. now = rq->clock;
  425. local_irq_restore(flags);
  426. return now;
  427. }
  428. EXPORT_SYMBOL_GPL(cpu_clock);
  429. #ifndef prepare_arch_switch
  430. # define prepare_arch_switch(next) do { } while (0)
  431. #endif
  432. #ifndef finish_arch_switch
  433. # define finish_arch_switch(prev) do { } while (0)
  434. #endif
  435. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  436. static inline int task_running(struct rq *rq, struct task_struct *p)
  437. {
  438. return rq->curr == p;
  439. }
  440. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  441. {
  442. }
  443. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  444. {
  445. #ifdef CONFIG_DEBUG_SPINLOCK
  446. /* this is a valid case when another task releases the spinlock */
  447. rq->lock.owner = current;
  448. #endif
  449. /*
  450. * If we are tracking spinlock dependencies then we have to
  451. * fix up the runqueue lock - which gets 'carried over' from
  452. * prev into current:
  453. */
  454. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  455. spin_unlock_irq(&rq->lock);
  456. }
  457. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  458. static inline int task_running(struct rq *rq, struct task_struct *p)
  459. {
  460. #ifdef CONFIG_SMP
  461. return p->oncpu;
  462. #else
  463. return rq->curr == p;
  464. #endif
  465. }
  466. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  467. {
  468. #ifdef CONFIG_SMP
  469. /*
  470. * We can optimise this out completely for !SMP, because the
  471. * SMP rebalancing from interrupt is the only thing that cares
  472. * here.
  473. */
  474. next->oncpu = 1;
  475. #endif
  476. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  477. spin_unlock_irq(&rq->lock);
  478. #else
  479. spin_unlock(&rq->lock);
  480. #endif
  481. }
  482. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  483. {
  484. #ifdef CONFIG_SMP
  485. /*
  486. * After ->oncpu is cleared, the task can be moved to a different CPU.
  487. * We must ensure this doesn't happen until the switch is completely
  488. * finished.
  489. */
  490. smp_wmb();
  491. prev->oncpu = 0;
  492. #endif
  493. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  494. local_irq_enable();
  495. #endif
  496. }
  497. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  498. /*
  499. * __task_rq_lock - lock the runqueue a given task resides on.
  500. * Must be called interrupts disabled.
  501. */
  502. static inline struct rq *__task_rq_lock(struct task_struct *p)
  503. __acquires(rq->lock)
  504. {
  505. for (;;) {
  506. struct rq *rq = task_rq(p);
  507. spin_lock(&rq->lock);
  508. if (likely(rq == task_rq(p)))
  509. return rq;
  510. spin_unlock(&rq->lock);
  511. }
  512. }
  513. /*
  514. * task_rq_lock - lock the runqueue a given task resides on and disable
  515. * interrupts. Note the ordering: we can safely lookup the task_rq without
  516. * explicitly disabling preemption.
  517. */
  518. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  519. __acquires(rq->lock)
  520. {
  521. struct rq *rq;
  522. for (;;) {
  523. local_irq_save(*flags);
  524. rq = task_rq(p);
  525. spin_lock(&rq->lock);
  526. if (likely(rq == task_rq(p)))
  527. return rq;
  528. spin_unlock_irqrestore(&rq->lock, *flags);
  529. }
  530. }
  531. static void __task_rq_unlock(struct rq *rq)
  532. __releases(rq->lock)
  533. {
  534. spin_unlock(&rq->lock);
  535. }
  536. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  537. __releases(rq->lock)
  538. {
  539. spin_unlock_irqrestore(&rq->lock, *flags);
  540. }
  541. /*
  542. * this_rq_lock - lock this runqueue and disable interrupts.
  543. */
  544. static struct rq *this_rq_lock(void)
  545. __acquires(rq->lock)
  546. {
  547. struct rq *rq;
  548. local_irq_disable();
  549. rq = this_rq();
  550. spin_lock(&rq->lock);
  551. return rq;
  552. }
  553. /*
  554. * We are going deep-idle (irqs are disabled):
  555. */
  556. void sched_clock_idle_sleep_event(void)
  557. {
  558. struct rq *rq = cpu_rq(smp_processor_id());
  559. spin_lock(&rq->lock);
  560. __update_rq_clock(rq);
  561. spin_unlock(&rq->lock);
  562. rq->clock_deep_idle_events++;
  563. }
  564. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  565. /*
  566. * We just idled delta nanoseconds (called with irqs disabled):
  567. */
  568. void sched_clock_idle_wakeup_event(u64 delta_ns)
  569. {
  570. struct rq *rq = cpu_rq(smp_processor_id());
  571. u64 now = sched_clock();
  572. rq->idle_clock += delta_ns;
  573. /*
  574. * Override the previous timestamp and ignore all
  575. * sched_clock() deltas that occured while we idled,
  576. * and use the PM-provided delta_ns to advance the
  577. * rq clock:
  578. */
  579. spin_lock(&rq->lock);
  580. rq->prev_clock_raw = now;
  581. rq->clock += delta_ns;
  582. spin_unlock(&rq->lock);
  583. }
  584. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  585. /*
  586. * resched_task - mark a task 'to be rescheduled now'.
  587. *
  588. * On UP this means the setting of the need_resched flag, on SMP it
  589. * might also involve a cross-CPU call to trigger the scheduler on
  590. * the target CPU.
  591. */
  592. #ifdef CONFIG_SMP
  593. #ifndef tsk_is_polling
  594. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  595. #endif
  596. static void resched_task(struct task_struct *p)
  597. {
  598. int cpu;
  599. assert_spin_locked(&task_rq(p)->lock);
  600. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  601. return;
  602. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  603. cpu = task_cpu(p);
  604. if (cpu == smp_processor_id())
  605. return;
  606. /* NEED_RESCHED must be visible before we test polling */
  607. smp_mb();
  608. if (!tsk_is_polling(p))
  609. smp_send_reschedule(cpu);
  610. }
  611. static void resched_cpu(int cpu)
  612. {
  613. struct rq *rq = cpu_rq(cpu);
  614. unsigned long flags;
  615. if (!spin_trylock_irqsave(&rq->lock, flags))
  616. return;
  617. resched_task(cpu_curr(cpu));
  618. spin_unlock_irqrestore(&rq->lock, flags);
  619. }
  620. #else
  621. static inline void resched_task(struct task_struct *p)
  622. {
  623. assert_spin_locked(&task_rq(p)->lock);
  624. set_tsk_need_resched(p);
  625. }
  626. #endif
  627. #if BITS_PER_LONG == 32
  628. # define WMULT_CONST (~0UL)
  629. #else
  630. # define WMULT_CONST (1UL << 32)
  631. #endif
  632. #define WMULT_SHIFT 32
  633. /*
  634. * Shift right and round:
  635. */
  636. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  637. static unsigned long
  638. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  639. struct load_weight *lw)
  640. {
  641. u64 tmp;
  642. if (unlikely(!lw->inv_weight))
  643. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  644. tmp = (u64)delta_exec * weight;
  645. /*
  646. * Check whether we'd overflow the 64-bit multiplication:
  647. */
  648. if (unlikely(tmp > WMULT_CONST))
  649. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  650. WMULT_SHIFT/2);
  651. else
  652. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  653. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  654. }
  655. static inline unsigned long
  656. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  657. {
  658. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  659. }
  660. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  661. {
  662. lw->weight += inc;
  663. }
  664. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  665. {
  666. lw->weight -= dec;
  667. }
  668. /*
  669. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  670. * of tasks with abnormal "nice" values across CPUs the contribution that
  671. * each task makes to its run queue's load is weighted according to its
  672. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  673. * scaled version of the new time slice allocation that they receive on time
  674. * slice expiry etc.
  675. */
  676. #define WEIGHT_IDLEPRIO 2
  677. #define WMULT_IDLEPRIO (1 << 31)
  678. /*
  679. * Nice levels are multiplicative, with a gentle 10% change for every
  680. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  681. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  682. * that remained on nice 0.
  683. *
  684. * The "10% effect" is relative and cumulative: from _any_ nice level,
  685. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  686. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  687. * If a task goes up by ~10% and another task goes down by ~10% then
  688. * the relative distance between them is ~25%.)
  689. */
  690. static const int prio_to_weight[40] = {
  691. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  692. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  693. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  694. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  695. /* 0 */ 1024, 820, 655, 526, 423,
  696. /* 5 */ 335, 272, 215, 172, 137,
  697. /* 10 */ 110, 87, 70, 56, 45,
  698. /* 15 */ 36, 29, 23, 18, 15,
  699. };
  700. /*
  701. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  702. *
  703. * In cases where the weight does not change often, we can use the
  704. * precalculated inverse to speed up arithmetics by turning divisions
  705. * into multiplications:
  706. */
  707. static const u32 prio_to_wmult[40] = {
  708. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  709. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  710. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  711. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  712. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  713. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  714. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  715. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  716. };
  717. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  718. /*
  719. * runqueue iterator, to support SMP load-balancing between different
  720. * scheduling classes, without having to expose their internal data
  721. * structures to the load-balancing proper:
  722. */
  723. struct rq_iterator {
  724. void *arg;
  725. struct task_struct *(*start)(void *);
  726. struct task_struct *(*next)(void *);
  727. };
  728. #ifdef CONFIG_SMP
  729. static unsigned long
  730. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  731. unsigned long max_load_move, struct sched_domain *sd,
  732. enum cpu_idle_type idle, int *all_pinned,
  733. int *this_best_prio, struct rq_iterator *iterator);
  734. static int
  735. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  736. struct sched_domain *sd, enum cpu_idle_type idle,
  737. struct rq_iterator *iterator);
  738. #endif
  739. #include "sched_stats.h"
  740. #include "sched_idletask.c"
  741. #include "sched_fair.c"
  742. #include "sched_rt.c"
  743. #ifdef CONFIG_SCHED_DEBUG
  744. # include "sched_debug.c"
  745. #endif
  746. #define sched_class_highest (&rt_sched_class)
  747. /*
  748. * Update delta_exec, delta_fair fields for rq.
  749. *
  750. * delta_fair clock advances at a rate inversely proportional to
  751. * total load (rq->load.weight) on the runqueue, while
  752. * delta_exec advances at the same rate as wall-clock (provided
  753. * cpu is not idle).
  754. *
  755. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  756. * runqueue over any given interval. This (smoothened) load is used
  757. * during load balance.
  758. *
  759. * This function is called /before/ updating rq->load
  760. * and when switching tasks.
  761. */
  762. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  763. {
  764. update_load_add(&rq->load, p->se.load.weight);
  765. }
  766. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  767. {
  768. update_load_sub(&rq->load, p->se.load.weight);
  769. }
  770. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  771. {
  772. rq->nr_running++;
  773. inc_load(rq, p);
  774. }
  775. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  776. {
  777. rq->nr_running--;
  778. dec_load(rq, p);
  779. }
  780. static void set_load_weight(struct task_struct *p)
  781. {
  782. if (task_has_rt_policy(p)) {
  783. p->se.load.weight = prio_to_weight[0] * 2;
  784. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  785. return;
  786. }
  787. /*
  788. * SCHED_IDLE tasks get minimal weight:
  789. */
  790. if (p->policy == SCHED_IDLE) {
  791. p->se.load.weight = WEIGHT_IDLEPRIO;
  792. p->se.load.inv_weight = WMULT_IDLEPRIO;
  793. return;
  794. }
  795. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  796. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  797. }
  798. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  799. {
  800. sched_info_queued(p);
  801. p->sched_class->enqueue_task(rq, p, wakeup);
  802. p->se.on_rq = 1;
  803. }
  804. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  805. {
  806. p->sched_class->dequeue_task(rq, p, sleep);
  807. p->se.on_rq = 0;
  808. }
  809. /*
  810. * __normal_prio - return the priority that is based on the static prio
  811. */
  812. static inline int __normal_prio(struct task_struct *p)
  813. {
  814. return p->static_prio;
  815. }
  816. /*
  817. * Calculate the expected normal priority: i.e. priority
  818. * without taking RT-inheritance into account. Might be
  819. * boosted by interactivity modifiers. Changes upon fork,
  820. * setprio syscalls, and whenever the interactivity
  821. * estimator recalculates.
  822. */
  823. static inline int normal_prio(struct task_struct *p)
  824. {
  825. int prio;
  826. if (task_has_rt_policy(p))
  827. prio = MAX_RT_PRIO-1 - p->rt_priority;
  828. else
  829. prio = __normal_prio(p);
  830. return prio;
  831. }
  832. /*
  833. * Calculate the current priority, i.e. the priority
  834. * taken into account by the scheduler. This value might
  835. * be boosted by RT tasks, or might be boosted by
  836. * interactivity modifiers. Will be RT if the task got
  837. * RT-boosted. If not then it returns p->normal_prio.
  838. */
  839. static int effective_prio(struct task_struct *p)
  840. {
  841. p->normal_prio = normal_prio(p);
  842. /*
  843. * If we are RT tasks or we were boosted to RT priority,
  844. * keep the priority unchanged. Otherwise, update priority
  845. * to the normal priority:
  846. */
  847. if (!rt_prio(p->prio))
  848. return p->normal_prio;
  849. return p->prio;
  850. }
  851. /*
  852. * activate_task - move a task to the runqueue.
  853. */
  854. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  855. {
  856. if (p->state == TASK_UNINTERRUPTIBLE)
  857. rq->nr_uninterruptible--;
  858. enqueue_task(rq, p, wakeup);
  859. inc_nr_running(p, rq);
  860. }
  861. /*
  862. * deactivate_task - remove a task from the runqueue.
  863. */
  864. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  865. {
  866. if (p->state == TASK_UNINTERRUPTIBLE)
  867. rq->nr_uninterruptible++;
  868. dequeue_task(rq, p, sleep);
  869. dec_nr_running(p, rq);
  870. }
  871. /**
  872. * task_curr - is this task currently executing on a CPU?
  873. * @p: the task in question.
  874. */
  875. inline int task_curr(const struct task_struct *p)
  876. {
  877. return cpu_curr(task_cpu(p)) == p;
  878. }
  879. /* Used instead of source_load when we know the type == 0 */
  880. unsigned long weighted_cpuload(const int cpu)
  881. {
  882. return cpu_rq(cpu)->load.weight;
  883. }
  884. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  885. {
  886. set_task_cfs_rq(p, cpu);
  887. #ifdef CONFIG_SMP
  888. /*
  889. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  890. * successfuly executed on another CPU. We must ensure that updates of
  891. * per-task data have been completed by this moment.
  892. */
  893. smp_wmb();
  894. task_thread_info(p)->cpu = cpu;
  895. #endif
  896. }
  897. #ifdef CONFIG_SMP
  898. /*
  899. * Is this task likely cache-hot:
  900. */
  901. static inline int
  902. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  903. {
  904. s64 delta;
  905. if (p->sched_class != &fair_sched_class)
  906. return 0;
  907. if (sysctl_sched_migration_cost == -1)
  908. return 1;
  909. if (sysctl_sched_migration_cost == 0)
  910. return 0;
  911. delta = now - p->se.exec_start;
  912. return delta < (s64)sysctl_sched_migration_cost;
  913. }
  914. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  915. {
  916. int old_cpu = task_cpu(p);
  917. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  918. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  919. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  920. u64 clock_offset;
  921. clock_offset = old_rq->clock - new_rq->clock;
  922. #ifdef CONFIG_SCHEDSTATS
  923. if (p->se.wait_start)
  924. p->se.wait_start -= clock_offset;
  925. if (p->se.sleep_start)
  926. p->se.sleep_start -= clock_offset;
  927. if (p->se.block_start)
  928. p->se.block_start -= clock_offset;
  929. if (old_cpu != new_cpu) {
  930. schedstat_inc(p, se.nr_migrations);
  931. if (task_hot(p, old_rq->clock, NULL))
  932. schedstat_inc(p, se.nr_forced2_migrations);
  933. }
  934. #endif
  935. p->se.vruntime -= old_cfsrq->min_vruntime -
  936. new_cfsrq->min_vruntime;
  937. __set_task_cpu(p, new_cpu);
  938. }
  939. struct migration_req {
  940. struct list_head list;
  941. struct task_struct *task;
  942. int dest_cpu;
  943. struct completion done;
  944. };
  945. /*
  946. * The task's runqueue lock must be held.
  947. * Returns true if you have to wait for migration thread.
  948. */
  949. static int
  950. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  951. {
  952. struct rq *rq = task_rq(p);
  953. /*
  954. * If the task is not on a runqueue (and not running), then
  955. * it is sufficient to simply update the task's cpu field.
  956. */
  957. if (!p->se.on_rq && !task_running(rq, p)) {
  958. set_task_cpu(p, dest_cpu);
  959. return 0;
  960. }
  961. init_completion(&req->done);
  962. req->task = p;
  963. req->dest_cpu = dest_cpu;
  964. list_add(&req->list, &rq->migration_queue);
  965. return 1;
  966. }
  967. /*
  968. * wait_task_inactive - wait for a thread to unschedule.
  969. *
  970. * The caller must ensure that the task *will* unschedule sometime soon,
  971. * else this function might spin for a *long* time. This function can't
  972. * be called with interrupts off, or it may introduce deadlock with
  973. * smp_call_function() if an IPI is sent by the same process we are
  974. * waiting to become inactive.
  975. */
  976. void wait_task_inactive(struct task_struct *p)
  977. {
  978. unsigned long flags;
  979. int running, on_rq;
  980. struct rq *rq;
  981. for (;;) {
  982. /*
  983. * We do the initial early heuristics without holding
  984. * any task-queue locks at all. We'll only try to get
  985. * the runqueue lock when things look like they will
  986. * work out!
  987. */
  988. rq = task_rq(p);
  989. /*
  990. * If the task is actively running on another CPU
  991. * still, just relax and busy-wait without holding
  992. * any locks.
  993. *
  994. * NOTE! Since we don't hold any locks, it's not
  995. * even sure that "rq" stays as the right runqueue!
  996. * But we don't care, since "task_running()" will
  997. * return false if the runqueue has changed and p
  998. * is actually now running somewhere else!
  999. */
  1000. while (task_running(rq, p))
  1001. cpu_relax();
  1002. /*
  1003. * Ok, time to look more closely! We need the rq
  1004. * lock now, to be *sure*. If we're wrong, we'll
  1005. * just go back and repeat.
  1006. */
  1007. rq = task_rq_lock(p, &flags);
  1008. running = task_running(rq, p);
  1009. on_rq = p->se.on_rq;
  1010. task_rq_unlock(rq, &flags);
  1011. /*
  1012. * Was it really running after all now that we
  1013. * checked with the proper locks actually held?
  1014. *
  1015. * Oops. Go back and try again..
  1016. */
  1017. if (unlikely(running)) {
  1018. cpu_relax();
  1019. continue;
  1020. }
  1021. /*
  1022. * It's not enough that it's not actively running,
  1023. * it must be off the runqueue _entirely_, and not
  1024. * preempted!
  1025. *
  1026. * So if it wa still runnable (but just not actively
  1027. * running right now), it's preempted, and we should
  1028. * yield - it could be a while.
  1029. */
  1030. if (unlikely(on_rq)) {
  1031. schedule_timeout_uninterruptible(1);
  1032. continue;
  1033. }
  1034. /*
  1035. * Ahh, all good. It wasn't running, and it wasn't
  1036. * runnable, which means that it will never become
  1037. * running in the future either. We're all done!
  1038. */
  1039. break;
  1040. }
  1041. }
  1042. /***
  1043. * kick_process - kick a running thread to enter/exit the kernel
  1044. * @p: the to-be-kicked thread
  1045. *
  1046. * Cause a process which is running on another CPU to enter
  1047. * kernel-mode, without any delay. (to get signals handled.)
  1048. *
  1049. * NOTE: this function doesnt have to take the runqueue lock,
  1050. * because all it wants to ensure is that the remote task enters
  1051. * the kernel. If the IPI races and the task has been migrated
  1052. * to another CPU then no harm is done and the purpose has been
  1053. * achieved as well.
  1054. */
  1055. void kick_process(struct task_struct *p)
  1056. {
  1057. int cpu;
  1058. preempt_disable();
  1059. cpu = task_cpu(p);
  1060. if ((cpu != smp_processor_id()) && task_curr(p))
  1061. smp_send_reschedule(cpu);
  1062. preempt_enable();
  1063. }
  1064. /*
  1065. * Return a low guess at the load of a migration-source cpu weighted
  1066. * according to the scheduling class and "nice" value.
  1067. *
  1068. * We want to under-estimate the load of migration sources, to
  1069. * balance conservatively.
  1070. */
  1071. static unsigned long source_load(int cpu, int type)
  1072. {
  1073. struct rq *rq = cpu_rq(cpu);
  1074. unsigned long total = weighted_cpuload(cpu);
  1075. if (type == 0)
  1076. return total;
  1077. return min(rq->cpu_load[type-1], total);
  1078. }
  1079. /*
  1080. * Return a high guess at the load of a migration-target cpu weighted
  1081. * according to the scheduling class and "nice" value.
  1082. */
  1083. static unsigned long target_load(int cpu, int type)
  1084. {
  1085. struct rq *rq = cpu_rq(cpu);
  1086. unsigned long total = weighted_cpuload(cpu);
  1087. if (type == 0)
  1088. return total;
  1089. return max(rq->cpu_load[type-1], total);
  1090. }
  1091. /*
  1092. * Return the average load per task on the cpu's run queue
  1093. */
  1094. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1095. {
  1096. struct rq *rq = cpu_rq(cpu);
  1097. unsigned long total = weighted_cpuload(cpu);
  1098. unsigned long n = rq->nr_running;
  1099. return n ? total / n : SCHED_LOAD_SCALE;
  1100. }
  1101. /*
  1102. * find_idlest_group finds and returns the least busy CPU group within the
  1103. * domain.
  1104. */
  1105. static struct sched_group *
  1106. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1107. {
  1108. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1109. unsigned long min_load = ULONG_MAX, this_load = 0;
  1110. int load_idx = sd->forkexec_idx;
  1111. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1112. do {
  1113. unsigned long load, avg_load;
  1114. int local_group;
  1115. int i;
  1116. /* Skip over this group if it has no CPUs allowed */
  1117. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1118. continue;
  1119. local_group = cpu_isset(this_cpu, group->cpumask);
  1120. /* Tally up the load of all CPUs in the group */
  1121. avg_load = 0;
  1122. for_each_cpu_mask(i, group->cpumask) {
  1123. /* Bias balancing toward cpus of our domain */
  1124. if (local_group)
  1125. load = source_load(i, load_idx);
  1126. else
  1127. load = target_load(i, load_idx);
  1128. avg_load += load;
  1129. }
  1130. /* Adjust by relative CPU power of the group */
  1131. avg_load = sg_div_cpu_power(group,
  1132. avg_load * SCHED_LOAD_SCALE);
  1133. if (local_group) {
  1134. this_load = avg_load;
  1135. this = group;
  1136. } else if (avg_load < min_load) {
  1137. min_load = avg_load;
  1138. idlest = group;
  1139. }
  1140. } while (group = group->next, group != sd->groups);
  1141. if (!idlest || 100*this_load < imbalance*min_load)
  1142. return NULL;
  1143. return idlest;
  1144. }
  1145. /*
  1146. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1147. */
  1148. static int
  1149. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1150. {
  1151. cpumask_t tmp;
  1152. unsigned long load, min_load = ULONG_MAX;
  1153. int idlest = -1;
  1154. int i;
  1155. /* Traverse only the allowed CPUs */
  1156. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1157. for_each_cpu_mask(i, tmp) {
  1158. load = weighted_cpuload(i);
  1159. if (load < min_load || (load == min_load && i == this_cpu)) {
  1160. min_load = load;
  1161. idlest = i;
  1162. }
  1163. }
  1164. return idlest;
  1165. }
  1166. /*
  1167. * sched_balance_self: balance the current task (running on cpu) in domains
  1168. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1169. * SD_BALANCE_EXEC.
  1170. *
  1171. * Balance, ie. select the least loaded group.
  1172. *
  1173. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1174. *
  1175. * preempt must be disabled.
  1176. */
  1177. static int sched_balance_self(int cpu, int flag)
  1178. {
  1179. struct task_struct *t = current;
  1180. struct sched_domain *tmp, *sd = NULL;
  1181. for_each_domain(cpu, tmp) {
  1182. /*
  1183. * If power savings logic is enabled for a domain, stop there.
  1184. */
  1185. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1186. break;
  1187. if (tmp->flags & flag)
  1188. sd = tmp;
  1189. }
  1190. while (sd) {
  1191. cpumask_t span;
  1192. struct sched_group *group;
  1193. int new_cpu, weight;
  1194. if (!(sd->flags & flag)) {
  1195. sd = sd->child;
  1196. continue;
  1197. }
  1198. span = sd->span;
  1199. group = find_idlest_group(sd, t, cpu);
  1200. if (!group) {
  1201. sd = sd->child;
  1202. continue;
  1203. }
  1204. new_cpu = find_idlest_cpu(group, t, cpu);
  1205. if (new_cpu == -1 || new_cpu == cpu) {
  1206. /* Now try balancing at a lower domain level of cpu */
  1207. sd = sd->child;
  1208. continue;
  1209. }
  1210. /* Now try balancing at a lower domain level of new_cpu */
  1211. cpu = new_cpu;
  1212. sd = NULL;
  1213. weight = cpus_weight(span);
  1214. for_each_domain(cpu, tmp) {
  1215. if (weight <= cpus_weight(tmp->span))
  1216. break;
  1217. if (tmp->flags & flag)
  1218. sd = tmp;
  1219. }
  1220. /* while loop will break here if sd == NULL */
  1221. }
  1222. return cpu;
  1223. }
  1224. #endif /* CONFIG_SMP */
  1225. /*
  1226. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1227. * not idle and an idle cpu is available. The span of cpus to
  1228. * search starts with cpus closest then further out as needed,
  1229. * so we always favor a closer, idle cpu.
  1230. *
  1231. * Returns the CPU we should wake onto.
  1232. */
  1233. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1234. static int wake_idle(int cpu, struct task_struct *p)
  1235. {
  1236. cpumask_t tmp;
  1237. struct sched_domain *sd;
  1238. int i;
  1239. /*
  1240. * If it is idle, then it is the best cpu to run this task.
  1241. *
  1242. * This cpu is also the best, if it has more than one task already.
  1243. * Siblings must be also busy(in most cases) as they didn't already
  1244. * pickup the extra load from this cpu and hence we need not check
  1245. * sibling runqueue info. This will avoid the checks and cache miss
  1246. * penalities associated with that.
  1247. */
  1248. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1249. return cpu;
  1250. for_each_domain(cpu, sd) {
  1251. if (sd->flags & SD_WAKE_IDLE) {
  1252. cpus_and(tmp, sd->span, p->cpus_allowed);
  1253. for_each_cpu_mask(i, tmp) {
  1254. if (idle_cpu(i)) {
  1255. if (i != task_cpu(p)) {
  1256. schedstat_inc(p,
  1257. se.nr_wakeups_idle);
  1258. }
  1259. return i;
  1260. }
  1261. }
  1262. } else {
  1263. break;
  1264. }
  1265. }
  1266. return cpu;
  1267. }
  1268. #else
  1269. static inline int wake_idle(int cpu, struct task_struct *p)
  1270. {
  1271. return cpu;
  1272. }
  1273. #endif
  1274. /***
  1275. * try_to_wake_up - wake up a thread
  1276. * @p: the to-be-woken-up thread
  1277. * @state: the mask of task states that can be woken
  1278. * @sync: do a synchronous wakeup?
  1279. *
  1280. * Put it on the run-queue if it's not already there. The "current"
  1281. * thread is always on the run-queue (except when the actual
  1282. * re-schedule is in progress), and as such you're allowed to do
  1283. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1284. * runnable without the overhead of this.
  1285. *
  1286. * returns failure only if the task is already active.
  1287. */
  1288. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1289. {
  1290. int cpu, orig_cpu, this_cpu, success = 0;
  1291. unsigned long flags;
  1292. long old_state;
  1293. struct rq *rq;
  1294. #ifdef CONFIG_SMP
  1295. struct sched_domain *sd, *this_sd = NULL;
  1296. unsigned long load, this_load;
  1297. int new_cpu;
  1298. #endif
  1299. rq = task_rq_lock(p, &flags);
  1300. old_state = p->state;
  1301. if (!(old_state & state))
  1302. goto out;
  1303. if (p->se.on_rq)
  1304. goto out_running;
  1305. cpu = task_cpu(p);
  1306. orig_cpu = cpu;
  1307. this_cpu = smp_processor_id();
  1308. #ifdef CONFIG_SMP
  1309. if (unlikely(task_running(rq, p)))
  1310. goto out_activate;
  1311. new_cpu = cpu;
  1312. schedstat_inc(rq, ttwu_count);
  1313. if (cpu == this_cpu) {
  1314. schedstat_inc(rq, ttwu_local);
  1315. goto out_set_cpu;
  1316. }
  1317. for_each_domain(this_cpu, sd) {
  1318. if (cpu_isset(cpu, sd->span)) {
  1319. schedstat_inc(sd, ttwu_wake_remote);
  1320. this_sd = sd;
  1321. break;
  1322. }
  1323. }
  1324. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1325. goto out_set_cpu;
  1326. /*
  1327. * Check for affine wakeup and passive balancing possibilities.
  1328. */
  1329. if (this_sd) {
  1330. int idx = this_sd->wake_idx;
  1331. unsigned int imbalance;
  1332. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1333. load = source_load(cpu, idx);
  1334. this_load = target_load(this_cpu, idx);
  1335. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1336. if (this_sd->flags & SD_WAKE_AFFINE) {
  1337. unsigned long tl = this_load;
  1338. unsigned long tl_per_task;
  1339. /*
  1340. * Attract cache-cold tasks on sync wakeups:
  1341. */
  1342. if (sync && !task_hot(p, rq->clock, this_sd))
  1343. goto out_set_cpu;
  1344. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1345. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1346. /*
  1347. * If sync wakeup then subtract the (maximum possible)
  1348. * effect of the currently running task from the load
  1349. * of the current CPU:
  1350. */
  1351. if (sync)
  1352. tl -= current->se.load.weight;
  1353. if ((tl <= load &&
  1354. tl + target_load(cpu, idx) <= tl_per_task) ||
  1355. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1356. /*
  1357. * This domain has SD_WAKE_AFFINE and
  1358. * p is cache cold in this domain, and
  1359. * there is no bad imbalance.
  1360. */
  1361. schedstat_inc(this_sd, ttwu_move_affine);
  1362. schedstat_inc(p, se.nr_wakeups_affine);
  1363. goto out_set_cpu;
  1364. }
  1365. }
  1366. /*
  1367. * Start passive balancing when half the imbalance_pct
  1368. * limit is reached.
  1369. */
  1370. if (this_sd->flags & SD_WAKE_BALANCE) {
  1371. if (imbalance*this_load <= 100*load) {
  1372. schedstat_inc(this_sd, ttwu_move_balance);
  1373. schedstat_inc(p, se.nr_wakeups_passive);
  1374. goto out_set_cpu;
  1375. }
  1376. }
  1377. }
  1378. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1379. out_set_cpu:
  1380. new_cpu = wake_idle(new_cpu, p);
  1381. if (new_cpu != cpu) {
  1382. set_task_cpu(p, new_cpu);
  1383. task_rq_unlock(rq, &flags);
  1384. /* might preempt at this point */
  1385. rq = task_rq_lock(p, &flags);
  1386. old_state = p->state;
  1387. if (!(old_state & state))
  1388. goto out;
  1389. if (p->se.on_rq)
  1390. goto out_running;
  1391. this_cpu = smp_processor_id();
  1392. cpu = task_cpu(p);
  1393. }
  1394. out_activate:
  1395. #endif /* CONFIG_SMP */
  1396. schedstat_inc(p, se.nr_wakeups);
  1397. if (sync)
  1398. schedstat_inc(p, se.nr_wakeups_sync);
  1399. if (orig_cpu != cpu)
  1400. schedstat_inc(p, se.nr_wakeups_migrate);
  1401. if (cpu == this_cpu)
  1402. schedstat_inc(p, se.nr_wakeups_local);
  1403. else
  1404. schedstat_inc(p, se.nr_wakeups_remote);
  1405. update_rq_clock(rq);
  1406. activate_task(rq, p, 1);
  1407. check_preempt_curr(rq, p);
  1408. success = 1;
  1409. out_running:
  1410. p->state = TASK_RUNNING;
  1411. out:
  1412. task_rq_unlock(rq, &flags);
  1413. return success;
  1414. }
  1415. int fastcall wake_up_process(struct task_struct *p)
  1416. {
  1417. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1418. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1419. }
  1420. EXPORT_SYMBOL(wake_up_process);
  1421. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1422. {
  1423. return try_to_wake_up(p, state, 0);
  1424. }
  1425. /*
  1426. * Perform scheduler related setup for a newly forked process p.
  1427. * p is forked by current.
  1428. *
  1429. * __sched_fork() is basic setup used by init_idle() too:
  1430. */
  1431. static void __sched_fork(struct task_struct *p)
  1432. {
  1433. p->se.exec_start = 0;
  1434. p->se.sum_exec_runtime = 0;
  1435. p->se.prev_sum_exec_runtime = 0;
  1436. #ifdef CONFIG_SCHEDSTATS
  1437. p->se.wait_start = 0;
  1438. p->se.sum_sleep_runtime = 0;
  1439. p->se.sleep_start = 0;
  1440. p->se.block_start = 0;
  1441. p->se.sleep_max = 0;
  1442. p->se.block_max = 0;
  1443. p->se.exec_max = 0;
  1444. p->se.slice_max = 0;
  1445. p->se.wait_max = 0;
  1446. #endif
  1447. INIT_LIST_HEAD(&p->run_list);
  1448. p->se.on_rq = 0;
  1449. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1450. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1451. #endif
  1452. /*
  1453. * We mark the process as running here, but have not actually
  1454. * inserted it onto the runqueue yet. This guarantees that
  1455. * nobody will actually run it, and a signal or other external
  1456. * event cannot wake it up and insert it on the runqueue either.
  1457. */
  1458. p->state = TASK_RUNNING;
  1459. }
  1460. /*
  1461. * fork()/clone()-time setup:
  1462. */
  1463. void sched_fork(struct task_struct *p, int clone_flags)
  1464. {
  1465. int cpu = get_cpu();
  1466. __sched_fork(p);
  1467. #ifdef CONFIG_SMP
  1468. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1469. #endif
  1470. set_task_cpu(p, cpu);
  1471. /*
  1472. * Make sure we do not leak PI boosting priority to the child:
  1473. */
  1474. p->prio = current->normal_prio;
  1475. if (!rt_prio(p->prio))
  1476. p->sched_class = &fair_sched_class;
  1477. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1478. if (likely(sched_info_on()))
  1479. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1480. #endif
  1481. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1482. p->oncpu = 0;
  1483. #endif
  1484. #ifdef CONFIG_PREEMPT
  1485. /* Want to start with kernel preemption disabled. */
  1486. task_thread_info(p)->preempt_count = 1;
  1487. #endif
  1488. put_cpu();
  1489. }
  1490. /*
  1491. * wake_up_new_task - wake up a newly created task for the first time.
  1492. *
  1493. * This function will do some initial scheduler statistics housekeeping
  1494. * that must be done for every newly created context, then puts the task
  1495. * on the runqueue and wakes it.
  1496. */
  1497. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1498. {
  1499. unsigned long flags;
  1500. struct rq *rq;
  1501. rq = task_rq_lock(p, &flags);
  1502. BUG_ON(p->state != TASK_RUNNING);
  1503. update_rq_clock(rq);
  1504. p->prio = effective_prio(p);
  1505. if (!p->sched_class->task_new || !current->se.on_rq) {
  1506. activate_task(rq, p, 0);
  1507. } else {
  1508. /*
  1509. * Let the scheduling class do new task startup
  1510. * management (if any):
  1511. */
  1512. p->sched_class->task_new(rq, p);
  1513. inc_nr_running(p, rq);
  1514. }
  1515. check_preempt_curr(rq, p);
  1516. task_rq_unlock(rq, &flags);
  1517. }
  1518. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1519. /**
  1520. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1521. * @notifier: notifier struct to register
  1522. */
  1523. void preempt_notifier_register(struct preempt_notifier *notifier)
  1524. {
  1525. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1526. }
  1527. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1528. /**
  1529. * preempt_notifier_unregister - no longer interested in preemption notifications
  1530. * @notifier: notifier struct to unregister
  1531. *
  1532. * This is safe to call from within a preemption notifier.
  1533. */
  1534. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1535. {
  1536. hlist_del(&notifier->link);
  1537. }
  1538. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1539. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1540. {
  1541. struct preempt_notifier *notifier;
  1542. struct hlist_node *node;
  1543. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1544. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1545. }
  1546. static void
  1547. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1548. struct task_struct *next)
  1549. {
  1550. struct preempt_notifier *notifier;
  1551. struct hlist_node *node;
  1552. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1553. notifier->ops->sched_out(notifier, next);
  1554. }
  1555. #else
  1556. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1557. {
  1558. }
  1559. static void
  1560. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1561. struct task_struct *next)
  1562. {
  1563. }
  1564. #endif
  1565. /**
  1566. * prepare_task_switch - prepare to switch tasks
  1567. * @rq: the runqueue preparing to switch
  1568. * @prev: the current task that is being switched out
  1569. * @next: the task we are going to switch to.
  1570. *
  1571. * This is called with the rq lock held and interrupts off. It must
  1572. * be paired with a subsequent finish_task_switch after the context
  1573. * switch.
  1574. *
  1575. * prepare_task_switch sets up locking and calls architecture specific
  1576. * hooks.
  1577. */
  1578. static inline void
  1579. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1580. struct task_struct *next)
  1581. {
  1582. fire_sched_out_preempt_notifiers(prev, next);
  1583. prepare_lock_switch(rq, next);
  1584. prepare_arch_switch(next);
  1585. }
  1586. /**
  1587. * finish_task_switch - clean up after a task-switch
  1588. * @rq: runqueue associated with task-switch
  1589. * @prev: the thread we just switched away from.
  1590. *
  1591. * finish_task_switch must be called after the context switch, paired
  1592. * with a prepare_task_switch call before the context switch.
  1593. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1594. * and do any other architecture-specific cleanup actions.
  1595. *
  1596. * Note that we may have delayed dropping an mm in context_switch(). If
  1597. * so, we finish that here outside of the runqueue lock. (Doing it
  1598. * with the lock held can cause deadlocks; see schedule() for
  1599. * details.)
  1600. */
  1601. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1602. __releases(rq->lock)
  1603. {
  1604. struct mm_struct *mm = rq->prev_mm;
  1605. long prev_state;
  1606. rq->prev_mm = NULL;
  1607. /*
  1608. * A task struct has one reference for the use as "current".
  1609. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1610. * schedule one last time. The schedule call will never return, and
  1611. * the scheduled task must drop that reference.
  1612. * The test for TASK_DEAD must occur while the runqueue locks are
  1613. * still held, otherwise prev could be scheduled on another cpu, die
  1614. * there before we look at prev->state, and then the reference would
  1615. * be dropped twice.
  1616. * Manfred Spraul <manfred@colorfullife.com>
  1617. */
  1618. prev_state = prev->state;
  1619. finish_arch_switch(prev);
  1620. finish_lock_switch(rq, prev);
  1621. fire_sched_in_preempt_notifiers(current);
  1622. if (mm)
  1623. mmdrop(mm);
  1624. if (unlikely(prev_state == TASK_DEAD)) {
  1625. /*
  1626. * Remove function-return probe instances associated with this
  1627. * task and put them back on the free list.
  1628. */
  1629. kprobe_flush_task(prev);
  1630. put_task_struct(prev);
  1631. }
  1632. }
  1633. /**
  1634. * schedule_tail - first thing a freshly forked thread must call.
  1635. * @prev: the thread we just switched away from.
  1636. */
  1637. asmlinkage void schedule_tail(struct task_struct *prev)
  1638. __releases(rq->lock)
  1639. {
  1640. struct rq *rq = this_rq();
  1641. finish_task_switch(rq, prev);
  1642. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1643. /* In this case, finish_task_switch does not reenable preemption */
  1644. preempt_enable();
  1645. #endif
  1646. if (current->set_child_tid)
  1647. put_user(task_pid_vnr(current), current->set_child_tid);
  1648. }
  1649. /*
  1650. * context_switch - switch to the new MM and the new
  1651. * thread's register state.
  1652. */
  1653. static inline void
  1654. context_switch(struct rq *rq, struct task_struct *prev,
  1655. struct task_struct *next)
  1656. {
  1657. struct mm_struct *mm, *oldmm;
  1658. prepare_task_switch(rq, prev, next);
  1659. mm = next->mm;
  1660. oldmm = prev->active_mm;
  1661. /*
  1662. * For paravirt, this is coupled with an exit in switch_to to
  1663. * combine the page table reload and the switch backend into
  1664. * one hypercall.
  1665. */
  1666. arch_enter_lazy_cpu_mode();
  1667. if (unlikely(!mm)) {
  1668. next->active_mm = oldmm;
  1669. atomic_inc(&oldmm->mm_count);
  1670. enter_lazy_tlb(oldmm, next);
  1671. } else
  1672. switch_mm(oldmm, mm, next);
  1673. if (unlikely(!prev->mm)) {
  1674. prev->active_mm = NULL;
  1675. rq->prev_mm = oldmm;
  1676. }
  1677. /*
  1678. * Since the runqueue lock will be released by the next
  1679. * task (which is an invalid locking op but in the case
  1680. * of the scheduler it's an obvious special-case), so we
  1681. * do an early lockdep release here:
  1682. */
  1683. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1684. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1685. #endif
  1686. /* Here we just switch the register state and the stack. */
  1687. switch_to(prev, next, prev);
  1688. barrier();
  1689. /*
  1690. * this_rq must be evaluated again because prev may have moved
  1691. * CPUs since it called schedule(), thus the 'rq' on its stack
  1692. * frame will be invalid.
  1693. */
  1694. finish_task_switch(this_rq(), prev);
  1695. }
  1696. /*
  1697. * nr_running, nr_uninterruptible and nr_context_switches:
  1698. *
  1699. * externally visible scheduler statistics: current number of runnable
  1700. * threads, current number of uninterruptible-sleeping threads, total
  1701. * number of context switches performed since bootup.
  1702. */
  1703. unsigned long nr_running(void)
  1704. {
  1705. unsigned long i, sum = 0;
  1706. for_each_online_cpu(i)
  1707. sum += cpu_rq(i)->nr_running;
  1708. return sum;
  1709. }
  1710. unsigned long nr_uninterruptible(void)
  1711. {
  1712. unsigned long i, sum = 0;
  1713. for_each_possible_cpu(i)
  1714. sum += cpu_rq(i)->nr_uninterruptible;
  1715. /*
  1716. * Since we read the counters lockless, it might be slightly
  1717. * inaccurate. Do not allow it to go below zero though:
  1718. */
  1719. if (unlikely((long)sum < 0))
  1720. sum = 0;
  1721. return sum;
  1722. }
  1723. unsigned long long nr_context_switches(void)
  1724. {
  1725. int i;
  1726. unsigned long long sum = 0;
  1727. for_each_possible_cpu(i)
  1728. sum += cpu_rq(i)->nr_switches;
  1729. return sum;
  1730. }
  1731. unsigned long nr_iowait(void)
  1732. {
  1733. unsigned long i, sum = 0;
  1734. for_each_possible_cpu(i)
  1735. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1736. return sum;
  1737. }
  1738. unsigned long nr_active(void)
  1739. {
  1740. unsigned long i, running = 0, uninterruptible = 0;
  1741. for_each_online_cpu(i) {
  1742. running += cpu_rq(i)->nr_running;
  1743. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1744. }
  1745. if (unlikely((long)uninterruptible < 0))
  1746. uninterruptible = 0;
  1747. return running + uninterruptible;
  1748. }
  1749. /*
  1750. * Update rq->cpu_load[] statistics. This function is usually called every
  1751. * scheduler tick (TICK_NSEC).
  1752. */
  1753. static void update_cpu_load(struct rq *this_rq)
  1754. {
  1755. unsigned long this_load = this_rq->load.weight;
  1756. int i, scale;
  1757. this_rq->nr_load_updates++;
  1758. /* Update our load: */
  1759. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1760. unsigned long old_load, new_load;
  1761. /* scale is effectively 1 << i now, and >> i divides by scale */
  1762. old_load = this_rq->cpu_load[i];
  1763. new_load = this_load;
  1764. /*
  1765. * Round up the averaging division if load is increasing. This
  1766. * prevents us from getting stuck on 9 if the load is 10, for
  1767. * example.
  1768. */
  1769. if (new_load > old_load)
  1770. new_load += scale-1;
  1771. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1772. }
  1773. }
  1774. #ifdef CONFIG_SMP
  1775. /*
  1776. * double_rq_lock - safely lock two runqueues
  1777. *
  1778. * Note this does not disable interrupts like task_rq_lock,
  1779. * you need to do so manually before calling.
  1780. */
  1781. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1782. __acquires(rq1->lock)
  1783. __acquires(rq2->lock)
  1784. {
  1785. BUG_ON(!irqs_disabled());
  1786. if (rq1 == rq2) {
  1787. spin_lock(&rq1->lock);
  1788. __acquire(rq2->lock); /* Fake it out ;) */
  1789. } else {
  1790. if (rq1 < rq2) {
  1791. spin_lock(&rq1->lock);
  1792. spin_lock(&rq2->lock);
  1793. } else {
  1794. spin_lock(&rq2->lock);
  1795. spin_lock(&rq1->lock);
  1796. }
  1797. }
  1798. update_rq_clock(rq1);
  1799. update_rq_clock(rq2);
  1800. }
  1801. /*
  1802. * double_rq_unlock - safely unlock two runqueues
  1803. *
  1804. * Note this does not restore interrupts like task_rq_unlock,
  1805. * you need to do so manually after calling.
  1806. */
  1807. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1808. __releases(rq1->lock)
  1809. __releases(rq2->lock)
  1810. {
  1811. spin_unlock(&rq1->lock);
  1812. if (rq1 != rq2)
  1813. spin_unlock(&rq2->lock);
  1814. else
  1815. __release(rq2->lock);
  1816. }
  1817. /*
  1818. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1819. */
  1820. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1821. __releases(this_rq->lock)
  1822. __acquires(busiest->lock)
  1823. __acquires(this_rq->lock)
  1824. {
  1825. if (unlikely(!irqs_disabled())) {
  1826. /* printk() doesn't work good under rq->lock */
  1827. spin_unlock(&this_rq->lock);
  1828. BUG_ON(1);
  1829. }
  1830. if (unlikely(!spin_trylock(&busiest->lock))) {
  1831. if (busiest < this_rq) {
  1832. spin_unlock(&this_rq->lock);
  1833. spin_lock(&busiest->lock);
  1834. spin_lock(&this_rq->lock);
  1835. } else
  1836. spin_lock(&busiest->lock);
  1837. }
  1838. }
  1839. /*
  1840. * If dest_cpu is allowed for this process, migrate the task to it.
  1841. * This is accomplished by forcing the cpu_allowed mask to only
  1842. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1843. * the cpu_allowed mask is restored.
  1844. */
  1845. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1846. {
  1847. struct migration_req req;
  1848. unsigned long flags;
  1849. struct rq *rq;
  1850. rq = task_rq_lock(p, &flags);
  1851. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1852. || unlikely(cpu_is_offline(dest_cpu)))
  1853. goto out;
  1854. /* force the process onto the specified CPU */
  1855. if (migrate_task(p, dest_cpu, &req)) {
  1856. /* Need to wait for migration thread (might exit: take ref). */
  1857. struct task_struct *mt = rq->migration_thread;
  1858. get_task_struct(mt);
  1859. task_rq_unlock(rq, &flags);
  1860. wake_up_process(mt);
  1861. put_task_struct(mt);
  1862. wait_for_completion(&req.done);
  1863. return;
  1864. }
  1865. out:
  1866. task_rq_unlock(rq, &flags);
  1867. }
  1868. /*
  1869. * sched_exec - execve() is a valuable balancing opportunity, because at
  1870. * this point the task has the smallest effective memory and cache footprint.
  1871. */
  1872. void sched_exec(void)
  1873. {
  1874. int new_cpu, this_cpu = get_cpu();
  1875. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1876. put_cpu();
  1877. if (new_cpu != this_cpu)
  1878. sched_migrate_task(current, new_cpu);
  1879. }
  1880. /*
  1881. * pull_task - move a task from a remote runqueue to the local runqueue.
  1882. * Both runqueues must be locked.
  1883. */
  1884. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1885. struct rq *this_rq, int this_cpu)
  1886. {
  1887. deactivate_task(src_rq, p, 0);
  1888. set_task_cpu(p, this_cpu);
  1889. activate_task(this_rq, p, 0);
  1890. /*
  1891. * Note that idle threads have a prio of MAX_PRIO, for this test
  1892. * to be always true for them.
  1893. */
  1894. check_preempt_curr(this_rq, p);
  1895. }
  1896. /*
  1897. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1898. */
  1899. static
  1900. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1901. struct sched_domain *sd, enum cpu_idle_type idle,
  1902. int *all_pinned)
  1903. {
  1904. /*
  1905. * We do not migrate tasks that are:
  1906. * 1) running (obviously), or
  1907. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1908. * 3) are cache-hot on their current CPU.
  1909. */
  1910. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1911. schedstat_inc(p, se.nr_failed_migrations_affine);
  1912. return 0;
  1913. }
  1914. *all_pinned = 0;
  1915. if (task_running(rq, p)) {
  1916. schedstat_inc(p, se.nr_failed_migrations_running);
  1917. return 0;
  1918. }
  1919. /*
  1920. * Aggressive migration if:
  1921. * 1) task is cache cold, or
  1922. * 2) too many balance attempts have failed.
  1923. */
  1924. if (!task_hot(p, rq->clock, sd) ||
  1925. sd->nr_balance_failed > sd->cache_nice_tries) {
  1926. #ifdef CONFIG_SCHEDSTATS
  1927. if (task_hot(p, rq->clock, sd)) {
  1928. schedstat_inc(sd, lb_hot_gained[idle]);
  1929. schedstat_inc(p, se.nr_forced_migrations);
  1930. }
  1931. #endif
  1932. return 1;
  1933. }
  1934. if (task_hot(p, rq->clock, sd)) {
  1935. schedstat_inc(p, se.nr_failed_migrations_hot);
  1936. return 0;
  1937. }
  1938. return 1;
  1939. }
  1940. static unsigned long
  1941. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1942. unsigned long max_load_move, struct sched_domain *sd,
  1943. enum cpu_idle_type idle, int *all_pinned,
  1944. int *this_best_prio, struct rq_iterator *iterator)
  1945. {
  1946. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  1947. struct task_struct *p;
  1948. long rem_load_move = max_load_move;
  1949. if (max_load_move == 0)
  1950. goto out;
  1951. pinned = 1;
  1952. /*
  1953. * Start the load-balancing iterator:
  1954. */
  1955. p = iterator->start(iterator->arg);
  1956. next:
  1957. if (!p || loops++ > sysctl_sched_nr_migrate)
  1958. goto out;
  1959. /*
  1960. * To help distribute high priority tasks across CPUs we don't
  1961. * skip a task if it will be the highest priority task (i.e. smallest
  1962. * prio value) on its new queue regardless of its load weight
  1963. */
  1964. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1965. SCHED_LOAD_SCALE_FUZZ;
  1966. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1967. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1968. p = iterator->next(iterator->arg);
  1969. goto next;
  1970. }
  1971. pull_task(busiest, p, this_rq, this_cpu);
  1972. pulled++;
  1973. rem_load_move -= p->se.load.weight;
  1974. /*
  1975. * We only want to steal up to the prescribed amount of weighted load.
  1976. */
  1977. if (rem_load_move > 0) {
  1978. if (p->prio < *this_best_prio)
  1979. *this_best_prio = p->prio;
  1980. p = iterator->next(iterator->arg);
  1981. goto next;
  1982. }
  1983. out:
  1984. /*
  1985. * Right now, this is one of only two places pull_task() is called,
  1986. * so we can safely collect pull_task() stats here rather than
  1987. * inside pull_task().
  1988. */
  1989. schedstat_add(sd, lb_gained[idle], pulled);
  1990. if (all_pinned)
  1991. *all_pinned = pinned;
  1992. return max_load_move - rem_load_move;
  1993. }
  1994. /*
  1995. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1996. * this_rq, as part of a balancing operation within domain "sd".
  1997. * Returns 1 if successful and 0 otherwise.
  1998. *
  1999. * Called with both runqueues locked.
  2000. */
  2001. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2002. unsigned long max_load_move,
  2003. struct sched_domain *sd, enum cpu_idle_type idle,
  2004. int *all_pinned)
  2005. {
  2006. const struct sched_class *class = sched_class_highest;
  2007. unsigned long total_load_moved = 0;
  2008. int this_best_prio = this_rq->curr->prio;
  2009. do {
  2010. total_load_moved +=
  2011. class->load_balance(this_rq, this_cpu, busiest,
  2012. max_load_move - total_load_moved,
  2013. sd, idle, all_pinned, &this_best_prio);
  2014. class = class->next;
  2015. } while (class && max_load_move > total_load_moved);
  2016. return total_load_moved > 0;
  2017. }
  2018. static int
  2019. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2020. struct sched_domain *sd, enum cpu_idle_type idle,
  2021. struct rq_iterator *iterator)
  2022. {
  2023. struct task_struct *p = iterator->start(iterator->arg);
  2024. int pinned = 0;
  2025. while (p) {
  2026. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2027. pull_task(busiest, p, this_rq, this_cpu);
  2028. /*
  2029. * Right now, this is only the second place pull_task()
  2030. * is called, so we can safely collect pull_task()
  2031. * stats here rather than inside pull_task().
  2032. */
  2033. schedstat_inc(sd, lb_gained[idle]);
  2034. return 1;
  2035. }
  2036. p = iterator->next(iterator->arg);
  2037. }
  2038. return 0;
  2039. }
  2040. /*
  2041. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2042. * part of active balancing operations within "domain".
  2043. * Returns 1 if successful and 0 otherwise.
  2044. *
  2045. * Called with both runqueues locked.
  2046. */
  2047. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2048. struct sched_domain *sd, enum cpu_idle_type idle)
  2049. {
  2050. const struct sched_class *class;
  2051. for (class = sched_class_highest; class; class = class->next)
  2052. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2053. return 1;
  2054. return 0;
  2055. }
  2056. /*
  2057. * find_busiest_group finds and returns the busiest CPU group within the
  2058. * domain. It calculates and returns the amount of weighted load which
  2059. * should be moved to restore balance via the imbalance parameter.
  2060. */
  2061. static struct sched_group *
  2062. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2063. unsigned long *imbalance, enum cpu_idle_type idle,
  2064. int *sd_idle, cpumask_t *cpus, int *balance)
  2065. {
  2066. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2067. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2068. unsigned long max_pull;
  2069. unsigned long busiest_load_per_task, busiest_nr_running;
  2070. unsigned long this_load_per_task, this_nr_running;
  2071. int load_idx, group_imb = 0;
  2072. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2073. int power_savings_balance = 1;
  2074. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2075. unsigned long min_nr_running = ULONG_MAX;
  2076. struct sched_group *group_min = NULL, *group_leader = NULL;
  2077. #endif
  2078. max_load = this_load = total_load = total_pwr = 0;
  2079. busiest_load_per_task = busiest_nr_running = 0;
  2080. this_load_per_task = this_nr_running = 0;
  2081. if (idle == CPU_NOT_IDLE)
  2082. load_idx = sd->busy_idx;
  2083. else if (idle == CPU_NEWLY_IDLE)
  2084. load_idx = sd->newidle_idx;
  2085. else
  2086. load_idx = sd->idle_idx;
  2087. do {
  2088. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2089. int local_group;
  2090. int i;
  2091. int __group_imb = 0;
  2092. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2093. unsigned long sum_nr_running, sum_weighted_load;
  2094. local_group = cpu_isset(this_cpu, group->cpumask);
  2095. if (local_group)
  2096. balance_cpu = first_cpu(group->cpumask);
  2097. /* Tally up the load of all CPUs in the group */
  2098. sum_weighted_load = sum_nr_running = avg_load = 0;
  2099. max_cpu_load = 0;
  2100. min_cpu_load = ~0UL;
  2101. for_each_cpu_mask(i, group->cpumask) {
  2102. struct rq *rq;
  2103. if (!cpu_isset(i, *cpus))
  2104. continue;
  2105. rq = cpu_rq(i);
  2106. if (*sd_idle && rq->nr_running)
  2107. *sd_idle = 0;
  2108. /* Bias balancing toward cpus of our domain */
  2109. if (local_group) {
  2110. if (idle_cpu(i) && !first_idle_cpu) {
  2111. first_idle_cpu = 1;
  2112. balance_cpu = i;
  2113. }
  2114. load = target_load(i, load_idx);
  2115. } else {
  2116. load = source_load(i, load_idx);
  2117. if (load > max_cpu_load)
  2118. max_cpu_load = load;
  2119. if (min_cpu_load > load)
  2120. min_cpu_load = load;
  2121. }
  2122. avg_load += load;
  2123. sum_nr_running += rq->nr_running;
  2124. sum_weighted_load += weighted_cpuload(i);
  2125. }
  2126. /*
  2127. * First idle cpu or the first cpu(busiest) in this sched group
  2128. * is eligible for doing load balancing at this and above
  2129. * domains. In the newly idle case, we will allow all the cpu's
  2130. * to do the newly idle load balance.
  2131. */
  2132. if (idle != CPU_NEWLY_IDLE && local_group &&
  2133. balance_cpu != this_cpu && balance) {
  2134. *balance = 0;
  2135. goto ret;
  2136. }
  2137. total_load += avg_load;
  2138. total_pwr += group->__cpu_power;
  2139. /* Adjust by relative CPU power of the group */
  2140. avg_load = sg_div_cpu_power(group,
  2141. avg_load * SCHED_LOAD_SCALE);
  2142. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2143. __group_imb = 1;
  2144. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2145. if (local_group) {
  2146. this_load = avg_load;
  2147. this = group;
  2148. this_nr_running = sum_nr_running;
  2149. this_load_per_task = sum_weighted_load;
  2150. } else if (avg_load > max_load &&
  2151. (sum_nr_running > group_capacity || __group_imb)) {
  2152. max_load = avg_load;
  2153. busiest = group;
  2154. busiest_nr_running = sum_nr_running;
  2155. busiest_load_per_task = sum_weighted_load;
  2156. group_imb = __group_imb;
  2157. }
  2158. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2159. /*
  2160. * Busy processors will not participate in power savings
  2161. * balance.
  2162. */
  2163. if (idle == CPU_NOT_IDLE ||
  2164. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2165. goto group_next;
  2166. /*
  2167. * If the local group is idle or completely loaded
  2168. * no need to do power savings balance at this domain
  2169. */
  2170. if (local_group && (this_nr_running >= group_capacity ||
  2171. !this_nr_running))
  2172. power_savings_balance = 0;
  2173. /*
  2174. * If a group is already running at full capacity or idle,
  2175. * don't include that group in power savings calculations
  2176. */
  2177. if (!power_savings_balance || sum_nr_running >= group_capacity
  2178. || !sum_nr_running)
  2179. goto group_next;
  2180. /*
  2181. * Calculate the group which has the least non-idle load.
  2182. * This is the group from where we need to pick up the load
  2183. * for saving power
  2184. */
  2185. if ((sum_nr_running < min_nr_running) ||
  2186. (sum_nr_running == min_nr_running &&
  2187. first_cpu(group->cpumask) <
  2188. first_cpu(group_min->cpumask))) {
  2189. group_min = group;
  2190. min_nr_running = sum_nr_running;
  2191. min_load_per_task = sum_weighted_load /
  2192. sum_nr_running;
  2193. }
  2194. /*
  2195. * Calculate the group which is almost near its
  2196. * capacity but still has some space to pick up some load
  2197. * from other group and save more power
  2198. */
  2199. if (sum_nr_running <= group_capacity - 1) {
  2200. if (sum_nr_running > leader_nr_running ||
  2201. (sum_nr_running == leader_nr_running &&
  2202. first_cpu(group->cpumask) >
  2203. first_cpu(group_leader->cpumask))) {
  2204. group_leader = group;
  2205. leader_nr_running = sum_nr_running;
  2206. }
  2207. }
  2208. group_next:
  2209. #endif
  2210. group = group->next;
  2211. } while (group != sd->groups);
  2212. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2213. goto out_balanced;
  2214. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2215. if (this_load >= avg_load ||
  2216. 100*max_load <= sd->imbalance_pct*this_load)
  2217. goto out_balanced;
  2218. busiest_load_per_task /= busiest_nr_running;
  2219. if (group_imb)
  2220. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2221. /*
  2222. * We're trying to get all the cpus to the average_load, so we don't
  2223. * want to push ourselves above the average load, nor do we wish to
  2224. * reduce the max loaded cpu below the average load, as either of these
  2225. * actions would just result in more rebalancing later, and ping-pong
  2226. * tasks around. Thus we look for the minimum possible imbalance.
  2227. * Negative imbalances (*we* are more loaded than anyone else) will
  2228. * be counted as no imbalance for these purposes -- we can't fix that
  2229. * by pulling tasks to us. Be careful of negative numbers as they'll
  2230. * appear as very large values with unsigned longs.
  2231. */
  2232. if (max_load <= busiest_load_per_task)
  2233. goto out_balanced;
  2234. /*
  2235. * In the presence of smp nice balancing, certain scenarios can have
  2236. * max load less than avg load(as we skip the groups at or below
  2237. * its cpu_power, while calculating max_load..)
  2238. */
  2239. if (max_load < avg_load) {
  2240. *imbalance = 0;
  2241. goto small_imbalance;
  2242. }
  2243. /* Don't want to pull so many tasks that a group would go idle */
  2244. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2245. /* How much load to actually move to equalise the imbalance */
  2246. *imbalance = min(max_pull * busiest->__cpu_power,
  2247. (avg_load - this_load) * this->__cpu_power)
  2248. / SCHED_LOAD_SCALE;
  2249. /*
  2250. * if *imbalance is less than the average load per runnable task
  2251. * there is no gaurantee that any tasks will be moved so we'll have
  2252. * a think about bumping its value to force at least one task to be
  2253. * moved
  2254. */
  2255. if (*imbalance < busiest_load_per_task) {
  2256. unsigned long tmp, pwr_now, pwr_move;
  2257. unsigned int imbn;
  2258. small_imbalance:
  2259. pwr_move = pwr_now = 0;
  2260. imbn = 2;
  2261. if (this_nr_running) {
  2262. this_load_per_task /= this_nr_running;
  2263. if (busiest_load_per_task > this_load_per_task)
  2264. imbn = 1;
  2265. } else
  2266. this_load_per_task = SCHED_LOAD_SCALE;
  2267. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2268. busiest_load_per_task * imbn) {
  2269. *imbalance = busiest_load_per_task;
  2270. return busiest;
  2271. }
  2272. /*
  2273. * OK, we don't have enough imbalance to justify moving tasks,
  2274. * however we may be able to increase total CPU power used by
  2275. * moving them.
  2276. */
  2277. pwr_now += busiest->__cpu_power *
  2278. min(busiest_load_per_task, max_load);
  2279. pwr_now += this->__cpu_power *
  2280. min(this_load_per_task, this_load);
  2281. pwr_now /= SCHED_LOAD_SCALE;
  2282. /* Amount of load we'd subtract */
  2283. tmp = sg_div_cpu_power(busiest,
  2284. busiest_load_per_task * SCHED_LOAD_SCALE);
  2285. if (max_load > tmp)
  2286. pwr_move += busiest->__cpu_power *
  2287. min(busiest_load_per_task, max_load - tmp);
  2288. /* Amount of load we'd add */
  2289. if (max_load * busiest->__cpu_power <
  2290. busiest_load_per_task * SCHED_LOAD_SCALE)
  2291. tmp = sg_div_cpu_power(this,
  2292. max_load * busiest->__cpu_power);
  2293. else
  2294. tmp = sg_div_cpu_power(this,
  2295. busiest_load_per_task * SCHED_LOAD_SCALE);
  2296. pwr_move += this->__cpu_power *
  2297. min(this_load_per_task, this_load + tmp);
  2298. pwr_move /= SCHED_LOAD_SCALE;
  2299. /* Move if we gain throughput */
  2300. if (pwr_move > pwr_now)
  2301. *imbalance = busiest_load_per_task;
  2302. }
  2303. return busiest;
  2304. out_balanced:
  2305. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2306. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2307. goto ret;
  2308. if (this == group_leader && group_leader != group_min) {
  2309. *imbalance = min_load_per_task;
  2310. return group_min;
  2311. }
  2312. #endif
  2313. ret:
  2314. *imbalance = 0;
  2315. return NULL;
  2316. }
  2317. /*
  2318. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2319. */
  2320. static struct rq *
  2321. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2322. unsigned long imbalance, cpumask_t *cpus)
  2323. {
  2324. struct rq *busiest = NULL, *rq;
  2325. unsigned long max_load = 0;
  2326. int i;
  2327. for_each_cpu_mask(i, group->cpumask) {
  2328. unsigned long wl;
  2329. if (!cpu_isset(i, *cpus))
  2330. continue;
  2331. rq = cpu_rq(i);
  2332. wl = weighted_cpuload(i);
  2333. if (rq->nr_running == 1 && wl > imbalance)
  2334. continue;
  2335. if (wl > max_load) {
  2336. max_load = wl;
  2337. busiest = rq;
  2338. }
  2339. }
  2340. return busiest;
  2341. }
  2342. /*
  2343. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2344. * so long as it is large enough.
  2345. */
  2346. #define MAX_PINNED_INTERVAL 512
  2347. /*
  2348. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2349. * tasks if there is an imbalance.
  2350. */
  2351. static int load_balance(int this_cpu, struct rq *this_rq,
  2352. struct sched_domain *sd, enum cpu_idle_type idle,
  2353. int *balance)
  2354. {
  2355. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2356. struct sched_group *group;
  2357. unsigned long imbalance;
  2358. struct rq *busiest;
  2359. cpumask_t cpus = CPU_MASK_ALL;
  2360. unsigned long flags;
  2361. /*
  2362. * When power savings policy is enabled for the parent domain, idle
  2363. * sibling can pick up load irrespective of busy siblings. In this case,
  2364. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2365. * portraying it as CPU_NOT_IDLE.
  2366. */
  2367. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2368. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2369. sd_idle = 1;
  2370. schedstat_inc(sd, lb_count[idle]);
  2371. redo:
  2372. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2373. &cpus, balance);
  2374. if (*balance == 0)
  2375. goto out_balanced;
  2376. if (!group) {
  2377. schedstat_inc(sd, lb_nobusyg[idle]);
  2378. goto out_balanced;
  2379. }
  2380. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2381. if (!busiest) {
  2382. schedstat_inc(sd, lb_nobusyq[idle]);
  2383. goto out_balanced;
  2384. }
  2385. BUG_ON(busiest == this_rq);
  2386. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2387. ld_moved = 0;
  2388. if (busiest->nr_running > 1) {
  2389. /*
  2390. * Attempt to move tasks. If find_busiest_group has found
  2391. * an imbalance but busiest->nr_running <= 1, the group is
  2392. * still unbalanced. ld_moved simply stays zero, so it is
  2393. * correctly treated as an imbalance.
  2394. */
  2395. local_irq_save(flags);
  2396. double_rq_lock(this_rq, busiest);
  2397. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2398. imbalance, sd, idle, &all_pinned);
  2399. double_rq_unlock(this_rq, busiest);
  2400. local_irq_restore(flags);
  2401. /*
  2402. * some other cpu did the load balance for us.
  2403. */
  2404. if (ld_moved && this_cpu != smp_processor_id())
  2405. resched_cpu(this_cpu);
  2406. /* All tasks on this runqueue were pinned by CPU affinity */
  2407. if (unlikely(all_pinned)) {
  2408. cpu_clear(cpu_of(busiest), cpus);
  2409. if (!cpus_empty(cpus))
  2410. goto redo;
  2411. goto out_balanced;
  2412. }
  2413. }
  2414. if (!ld_moved) {
  2415. schedstat_inc(sd, lb_failed[idle]);
  2416. sd->nr_balance_failed++;
  2417. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2418. spin_lock_irqsave(&busiest->lock, flags);
  2419. /* don't kick the migration_thread, if the curr
  2420. * task on busiest cpu can't be moved to this_cpu
  2421. */
  2422. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2423. spin_unlock_irqrestore(&busiest->lock, flags);
  2424. all_pinned = 1;
  2425. goto out_one_pinned;
  2426. }
  2427. if (!busiest->active_balance) {
  2428. busiest->active_balance = 1;
  2429. busiest->push_cpu = this_cpu;
  2430. active_balance = 1;
  2431. }
  2432. spin_unlock_irqrestore(&busiest->lock, flags);
  2433. if (active_balance)
  2434. wake_up_process(busiest->migration_thread);
  2435. /*
  2436. * We've kicked active balancing, reset the failure
  2437. * counter.
  2438. */
  2439. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2440. }
  2441. } else
  2442. sd->nr_balance_failed = 0;
  2443. if (likely(!active_balance)) {
  2444. /* We were unbalanced, so reset the balancing interval */
  2445. sd->balance_interval = sd->min_interval;
  2446. } else {
  2447. /*
  2448. * If we've begun active balancing, start to back off. This
  2449. * case may not be covered by the all_pinned logic if there
  2450. * is only 1 task on the busy runqueue (because we don't call
  2451. * move_tasks).
  2452. */
  2453. if (sd->balance_interval < sd->max_interval)
  2454. sd->balance_interval *= 2;
  2455. }
  2456. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2457. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2458. return -1;
  2459. return ld_moved;
  2460. out_balanced:
  2461. schedstat_inc(sd, lb_balanced[idle]);
  2462. sd->nr_balance_failed = 0;
  2463. out_one_pinned:
  2464. /* tune up the balancing interval */
  2465. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2466. (sd->balance_interval < sd->max_interval))
  2467. sd->balance_interval *= 2;
  2468. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2469. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2470. return -1;
  2471. return 0;
  2472. }
  2473. /*
  2474. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2475. * tasks if there is an imbalance.
  2476. *
  2477. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2478. * this_rq is locked.
  2479. */
  2480. static int
  2481. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2482. {
  2483. struct sched_group *group;
  2484. struct rq *busiest = NULL;
  2485. unsigned long imbalance;
  2486. int ld_moved = 0;
  2487. int sd_idle = 0;
  2488. int all_pinned = 0;
  2489. cpumask_t cpus = CPU_MASK_ALL;
  2490. /*
  2491. * When power savings policy is enabled for the parent domain, idle
  2492. * sibling can pick up load irrespective of busy siblings. In this case,
  2493. * let the state of idle sibling percolate up as IDLE, instead of
  2494. * portraying it as CPU_NOT_IDLE.
  2495. */
  2496. if (sd->flags & SD_SHARE_CPUPOWER &&
  2497. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2498. sd_idle = 1;
  2499. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2500. redo:
  2501. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2502. &sd_idle, &cpus, NULL);
  2503. if (!group) {
  2504. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2505. goto out_balanced;
  2506. }
  2507. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2508. &cpus);
  2509. if (!busiest) {
  2510. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2511. goto out_balanced;
  2512. }
  2513. BUG_ON(busiest == this_rq);
  2514. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2515. ld_moved = 0;
  2516. if (busiest->nr_running > 1) {
  2517. /* Attempt to move tasks */
  2518. double_lock_balance(this_rq, busiest);
  2519. /* this_rq->clock is already updated */
  2520. update_rq_clock(busiest);
  2521. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2522. imbalance, sd, CPU_NEWLY_IDLE,
  2523. &all_pinned);
  2524. spin_unlock(&busiest->lock);
  2525. if (unlikely(all_pinned)) {
  2526. cpu_clear(cpu_of(busiest), cpus);
  2527. if (!cpus_empty(cpus))
  2528. goto redo;
  2529. }
  2530. }
  2531. if (!ld_moved) {
  2532. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2533. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2534. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2535. return -1;
  2536. } else
  2537. sd->nr_balance_failed = 0;
  2538. return ld_moved;
  2539. out_balanced:
  2540. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2541. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2542. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2543. return -1;
  2544. sd->nr_balance_failed = 0;
  2545. return 0;
  2546. }
  2547. /*
  2548. * idle_balance is called by schedule() if this_cpu is about to become
  2549. * idle. Attempts to pull tasks from other CPUs.
  2550. */
  2551. static void idle_balance(int this_cpu, struct rq *this_rq)
  2552. {
  2553. struct sched_domain *sd;
  2554. int pulled_task = -1;
  2555. unsigned long next_balance = jiffies + HZ;
  2556. for_each_domain(this_cpu, sd) {
  2557. unsigned long interval;
  2558. if (!(sd->flags & SD_LOAD_BALANCE))
  2559. continue;
  2560. if (sd->flags & SD_BALANCE_NEWIDLE)
  2561. /* If we've pulled tasks over stop searching: */
  2562. pulled_task = load_balance_newidle(this_cpu,
  2563. this_rq, sd);
  2564. interval = msecs_to_jiffies(sd->balance_interval);
  2565. if (time_after(next_balance, sd->last_balance + interval))
  2566. next_balance = sd->last_balance + interval;
  2567. if (pulled_task)
  2568. break;
  2569. }
  2570. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2571. /*
  2572. * We are going idle. next_balance may be set based on
  2573. * a busy processor. So reset next_balance.
  2574. */
  2575. this_rq->next_balance = next_balance;
  2576. }
  2577. }
  2578. /*
  2579. * active_load_balance is run by migration threads. It pushes running tasks
  2580. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2581. * running on each physical CPU where possible, and avoids physical /
  2582. * logical imbalances.
  2583. *
  2584. * Called with busiest_rq locked.
  2585. */
  2586. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2587. {
  2588. int target_cpu = busiest_rq->push_cpu;
  2589. struct sched_domain *sd;
  2590. struct rq *target_rq;
  2591. /* Is there any task to move? */
  2592. if (busiest_rq->nr_running <= 1)
  2593. return;
  2594. target_rq = cpu_rq(target_cpu);
  2595. /*
  2596. * This condition is "impossible", if it occurs
  2597. * we need to fix it. Originally reported by
  2598. * Bjorn Helgaas on a 128-cpu setup.
  2599. */
  2600. BUG_ON(busiest_rq == target_rq);
  2601. /* move a task from busiest_rq to target_rq */
  2602. double_lock_balance(busiest_rq, target_rq);
  2603. update_rq_clock(busiest_rq);
  2604. update_rq_clock(target_rq);
  2605. /* Search for an sd spanning us and the target CPU. */
  2606. for_each_domain(target_cpu, sd) {
  2607. if ((sd->flags & SD_LOAD_BALANCE) &&
  2608. cpu_isset(busiest_cpu, sd->span))
  2609. break;
  2610. }
  2611. if (likely(sd)) {
  2612. schedstat_inc(sd, alb_count);
  2613. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2614. sd, CPU_IDLE))
  2615. schedstat_inc(sd, alb_pushed);
  2616. else
  2617. schedstat_inc(sd, alb_failed);
  2618. }
  2619. spin_unlock(&target_rq->lock);
  2620. }
  2621. #ifdef CONFIG_NO_HZ
  2622. static struct {
  2623. atomic_t load_balancer;
  2624. cpumask_t cpu_mask;
  2625. } nohz ____cacheline_aligned = {
  2626. .load_balancer = ATOMIC_INIT(-1),
  2627. .cpu_mask = CPU_MASK_NONE,
  2628. };
  2629. /*
  2630. * This routine will try to nominate the ilb (idle load balancing)
  2631. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2632. * load balancing on behalf of all those cpus. If all the cpus in the system
  2633. * go into this tickless mode, then there will be no ilb owner (as there is
  2634. * no need for one) and all the cpus will sleep till the next wakeup event
  2635. * arrives...
  2636. *
  2637. * For the ilb owner, tick is not stopped. And this tick will be used
  2638. * for idle load balancing. ilb owner will still be part of
  2639. * nohz.cpu_mask..
  2640. *
  2641. * While stopping the tick, this cpu will become the ilb owner if there
  2642. * is no other owner. And will be the owner till that cpu becomes busy
  2643. * or if all cpus in the system stop their ticks at which point
  2644. * there is no need for ilb owner.
  2645. *
  2646. * When the ilb owner becomes busy, it nominates another owner, during the
  2647. * next busy scheduler_tick()
  2648. */
  2649. int select_nohz_load_balancer(int stop_tick)
  2650. {
  2651. int cpu = smp_processor_id();
  2652. if (stop_tick) {
  2653. cpu_set(cpu, nohz.cpu_mask);
  2654. cpu_rq(cpu)->in_nohz_recently = 1;
  2655. /*
  2656. * If we are going offline and still the leader, give up!
  2657. */
  2658. if (cpu_is_offline(cpu) &&
  2659. atomic_read(&nohz.load_balancer) == cpu) {
  2660. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2661. BUG();
  2662. return 0;
  2663. }
  2664. /* time for ilb owner also to sleep */
  2665. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2666. if (atomic_read(&nohz.load_balancer) == cpu)
  2667. atomic_set(&nohz.load_balancer, -1);
  2668. return 0;
  2669. }
  2670. if (atomic_read(&nohz.load_balancer) == -1) {
  2671. /* make me the ilb owner */
  2672. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2673. return 1;
  2674. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2675. return 1;
  2676. } else {
  2677. if (!cpu_isset(cpu, nohz.cpu_mask))
  2678. return 0;
  2679. cpu_clear(cpu, nohz.cpu_mask);
  2680. if (atomic_read(&nohz.load_balancer) == cpu)
  2681. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2682. BUG();
  2683. }
  2684. return 0;
  2685. }
  2686. #endif
  2687. static DEFINE_SPINLOCK(balancing);
  2688. /*
  2689. * It checks each scheduling domain to see if it is due to be balanced,
  2690. * and initiates a balancing operation if so.
  2691. *
  2692. * Balancing parameters are set up in arch_init_sched_domains.
  2693. */
  2694. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2695. {
  2696. int balance = 1;
  2697. struct rq *rq = cpu_rq(cpu);
  2698. unsigned long interval;
  2699. struct sched_domain *sd;
  2700. /* Earliest time when we have to do rebalance again */
  2701. unsigned long next_balance = jiffies + 60*HZ;
  2702. int update_next_balance = 0;
  2703. for_each_domain(cpu, sd) {
  2704. if (!(sd->flags & SD_LOAD_BALANCE))
  2705. continue;
  2706. interval = sd->balance_interval;
  2707. if (idle != CPU_IDLE)
  2708. interval *= sd->busy_factor;
  2709. /* scale ms to jiffies */
  2710. interval = msecs_to_jiffies(interval);
  2711. if (unlikely(!interval))
  2712. interval = 1;
  2713. if (interval > HZ*NR_CPUS/10)
  2714. interval = HZ*NR_CPUS/10;
  2715. if (sd->flags & SD_SERIALIZE) {
  2716. if (!spin_trylock(&balancing))
  2717. goto out;
  2718. }
  2719. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2720. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2721. /*
  2722. * We've pulled tasks over so either we're no
  2723. * longer idle, or one of our SMT siblings is
  2724. * not idle.
  2725. */
  2726. idle = CPU_NOT_IDLE;
  2727. }
  2728. sd->last_balance = jiffies;
  2729. }
  2730. if (sd->flags & SD_SERIALIZE)
  2731. spin_unlock(&balancing);
  2732. out:
  2733. if (time_after(next_balance, sd->last_balance + interval)) {
  2734. next_balance = sd->last_balance + interval;
  2735. update_next_balance = 1;
  2736. }
  2737. /*
  2738. * Stop the load balance at this level. There is another
  2739. * CPU in our sched group which is doing load balancing more
  2740. * actively.
  2741. */
  2742. if (!balance)
  2743. break;
  2744. }
  2745. /*
  2746. * next_balance will be updated only when there is a need.
  2747. * When the cpu is attached to null domain for ex, it will not be
  2748. * updated.
  2749. */
  2750. if (likely(update_next_balance))
  2751. rq->next_balance = next_balance;
  2752. }
  2753. /*
  2754. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2755. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2756. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2757. */
  2758. static void run_rebalance_domains(struct softirq_action *h)
  2759. {
  2760. int this_cpu = smp_processor_id();
  2761. struct rq *this_rq = cpu_rq(this_cpu);
  2762. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2763. CPU_IDLE : CPU_NOT_IDLE;
  2764. rebalance_domains(this_cpu, idle);
  2765. #ifdef CONFIG_NO_HZ
  2766. /*
  2767. * If this cpu is the owner for idle load balancing, then do the
  2768. * balancing on behalf of the other idle cpus whose ticks are
  2769. * stopped.
  2770. */
  2771. if (this_rq->idle_at_tick &&
  2772. atomic_read(&nohz.load_balancer) == this_cpu) {
  2773. cpumask_t cpus = nohz.cpu_mask;
  2774. struct rq *rq;
  2775. int balance_cpu;
  2776. cpu_clear(this_cpu, cpus);
  2777. for_each_cpu_mask(balance_cpu, cpus) {
  2778. /*
  2779. * If this cpu gets work to do, stop the load balancing
  2780. * work being done for other cpus. Next load
  2781. * balancing owner will pick it up.
  2782. */
  2783. if (need_resched())
  2784. break;
  2785. rebalance_domains(balance_cpu, CPU_IDLE);
  2786. rq = cpu_rq(balance_cpu);
  2787. if (time_after(this_rq->next_balance, rq->next_balance))
  2788. this_rq->next_balance = rq->next_balance;
  2789. }
  2790. }
  2791. #endif
  2792. }
  2793. /*
  2794. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2795. *
  2796. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2797. * idle load balancing owner or decide to stop the periodic load balancing,
  2798. * if the whole system is idle.
  2799. */
  2800. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2801. {
  2802. #ifdef CONFIG_NO_HZ
  2803. /*
  2804. * If we were in the nohz mode recently and busy at the current
  2805. * scheduler tick, then check if we need to nominate new idle
  2806. * load balancer.
  2807. */
  2808. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2809. rq->in_nohz_recently = 0;
  2810. if (atomic_read(&nohz.load_balancer) == cpu) {
  2811. cpu_clear(cpu, nohz.cpu_mask);
  2812. atomic_set(&nohz.load_balancer, -1);
  2813. }
  2814. if (atomic_read(&nohz.load_balancer) == -1) {
  2815. /*
  2816. * simple selection for now: Nominate the
  2817. * first cpu in the nohz list to be the next
  2818. * ilb owner.
  2819. *
  2820. * TBD: Traverse the sched domains and nominate
  2821. * the nearest cpu in the nohz.cpu_mask.
  2822. */
  2823. int ilb = first_cpu(nohz.cpu_mask);
  2824. if (ilb != NR_CPUS)
  2825. resched_cpu(ilb);
  2826. }
  2827. }
  2828. /*
  2829. * If this cpu is idle and doing idle load balancing for all the
  2830. * cpus with ticks stopped, is it time for that to stop?
  2831. */
  2832. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2833. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2834. resched_cpu(cpu);
  2835. return;
  2836. }
  2837. /*
  2838. * If this cpu is idle and the idle load balancing is done by
  2839. * someone else, then no need raise the SCHED_SOFTIRQ
  2840. */
  2841. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2842. cpu_isset(cpu, nohz.cpu_mask))
  2843. return;
  2844. #endif
  2845. if (time_after_eq(jiffies, rq->next_balance))
  2846. raise_softirq(SCHED_SOFTIRQ);
  2847. }
  2848. #else /* CONFIG_SMP */
  2849. /*
  2850. * on UP we do not need to balance between CPUs:
  2851. */
  2852. static inline void idle_balance(int cpu, struct rq *rq)
  2853. {
  2854. }
  2855. #endif
  2856. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2857. EXPORT_PER_CPU_SYMBOL(kstat);
  2858. /*
  2859. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2860. * that have not yet been banked in case the task is currently running.
  2861. */
  2862. unsigned long long task_sched_runtime(struct task_struct *p)
  2863. {
  2864. unsigned long flags;
  2865. u64 ns, delta_exec;
  2866. struct rq *rq;
  2867. rq = task_rq_lock(p, &flags);
  2868. ns = p->se.sum_exec_runtime;
  2869. if (rq->curr == p) {
  2870. update_rq_clock(rq);
  2871. delta_exec = rq->clock - p->se.exec_start;
  2872. if ((s64)delta_exec > 0)
  2873. ns += delta_exec;
  2874. }
  2875. task_rq_unlock(rq, &flags);
  2876. return ns;
  2877. }
  2878. /*
  2879. * Account user cpu time to a process.
  2880. * @p: the process that the cpu time gets accounted to
  2881. * @cputime: the cpu time spent in user space since the last update
  2882. */
  2883. void account_user_time(struct task_struct *p, cputime_t cputime)
  2884. {
  2885. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2886. cputime64_t tmp;
  2887. p->utime = cputime_add(p->utime, cputime);
  2888. /* Add user time to cpustat. */
  2889. tmp = cputime_to_cputime64(cputime);
  2890. if (TASK_NICE(p) > 0)
  2891. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2892. else
  2893. cpustat->user = cputime64_add(cpustat->user, tmp);
  2894. }
  2895. /*
  2896. * Account guest cpu time to a process.
  2897. * @p: the process that the cpu time gets accounted to
  2898. * @cputime: the cpu time spent in virtual machine since the last update
  2899. */
  2900. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  2901. {
  2902. cputime64_t tmp;
  2903. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2904. tmp = cputime_to_cputime64(cputime);
  2905. p->utime = cputime_add(p->utime, cputime);
  2906. p->gtime = cputime_add(p->gtime, cputime);
  2907. cpustat->user = cputime64_add(cpustat->user, tmp);
  2908. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2909. }
  2910. /*
  2911. * Account scaled user cpu time to a process.
  2912. * @p: the process that the cpu time gets accounted to
  2913. * @cputime: the cpu time spent in user space since the last update
  2914. */
  2915. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2916. {
  2917. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2918. }
  2919. /*
  2920. * Account system cpu time to a process.
  2921. * @p: the process that the cpu time gets accounted to
  2922. * @hardirq_offset: the offset to subtract from hardirq_count()
  2923. * @cputime: the cpu time spent in kernel space since the last update
  2924. */
  2925. void account_system_time(struct task_struct *p, int hardirq_offset,
  2926. cputime_t cputime)
  2927. {
  2928. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2929. struct rq *rq = this_rq();
  2930. cputime64_t tmp;
  2931. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  2932. return account_guest_time(p, cputime);
  2933. p->stime = cputime_add(p->stime, cputime);
  2934. /* Add system time to cpustat. */
  2935. tmp = cputime_to_cputime64(cputime);
  2936. if (hardirq_count() - hardirq_offset)
  2937. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2938. else if (softirq_count())
  2939. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2940. else if (p != rq->idle)
  2941. cpustat->system = cputime64_add(cpustat->system, tmp);
  2942. else if (atomic_read(&rq->nr_iowait) > 0)
  2943. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2944. else
  2945. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2946. /* Account for system time used */
  2947. acct_update_integrals(p);
  2948. }
  2949. /*
  2950. * Account scaled system cpu time to a process.
  2951. * @p: the process that the cpu time gets accounted to
  2952. * @hardirq_offset: the offset to subtract from hardirq_count()
  2953. * @cputime: the cpu time spent in kernel space since the last update
  2954. */
  2955. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2956. {
  2957. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2958. }
  2959. /*
  2960. * Account for involuntary wait time.
  2961. * @p: the process from which the cpu time has been stolen
  2962. * @steal: the cpu time spent in involuntary wait
  2963. */
  2964. void account_steal_time(struct task_struct *p, cputime_t steal)
  2965. {
  2966. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2967. cputime64_t tmp = cputime_to_cputime64(steal);
  2968. struct rq *rq = this_rq();
  2969. if (p == rq->idle) {
  2970. p->stime = cputime_add(p->stime, steal);
  2971. if (atomic_read(&rq->nr_iowait) > 0)
  2972. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2973. else
  2974. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2975. } else
  2976. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2977. }
  2978. /*
  2979. * This function gets called by the timer code, with HZ frequency.
  2980. * We call it with interrupts disabled.
  2981. *
  2982. * It also gets called by the fork code, when changing the parent's
  2983. * timeslices.
  2984. */
  2985. void scheduler_tick(void)
  2986. {
  2987. int cpu = smp_processor_id();
  2988. struct rq *rq = cpu_rq(cpu);
  2989. struct task_struct *curr = rq->curr;
  2990. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2991. spin_lock(&rq->lock);
  2992. __update_rq_clock(rq);
  2993. /*
  2994. * Let rq->clock advance by at least TICK_NSEC:
  2995. */
  2996. if (unlikely(rq->clock < next_tick))
  2997. rq->clock = next_tick;
  2998. rq->tick_timestamp = rq->clock;
  2999. update_cpu_load(rq);
  3000. if (curr != rq->idle) /* FIXME: needed? */
  3001. curr->sched_class->task_tick(rq, curr);
  3002. spin_unlock(&rq->lock);
  3003. #ifdef CONFIG_SMP
  3004. rq->idle_at_tick = idle_cpu(cpu);
  3005. trigger_load_balance(rq, cpu);
  3006. #endif
  3007. }
  3008. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3009. void fastcall add_preempt_count(int val)
  3010. {
  3011. /*
  3012. * Underflow?
  3013. */
  3014. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3015. return;
  3016. preempt_count() += val;
  3017. /*
  3018. * Spinlock count overflowing soon?
  3019. */
  3020. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3021. PREEMPT_MASK - 10);
  3022. }
  3023. EXPORT_SYMBOL(add_preempt_count);
  3024. void fastcall sub_preempt_count(int val)
  3025. {
  3026. /*
  3027. * Underflow?
  3028. */
  3029. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3030. return;
  3031. /*
  3032. * Is the spinlock portion underflowing?
  3033. */
  3034. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3035. !(preempt_count() & PREEMPT_MASK)))
  3036. return;
  3037. preempt_count() -= val;
  3038. }
  3039. EXPORT_SYMBOL(sub_preempt_count);
  3040. #endif
  3041. /*
  3042. * Print scheduling while atomic bug:
  3043. */
  3044. static noinline void __schedule_bug(struct task_struct *prev)
  3045. {
  3046. struct pt_regs *regs = get_irq_regs();
  3047. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3048. prev->comm, prev->pid, preempt_count());
  3049. debug_show_held_locks(prev);
  3050. if (irqs_disabled())
  3051. print_irqtrace_events(prev);
  3052. if (regs)
  3053. show_regs(regs);
  3054. else
  3055. dump_stack();
  3056. }
  3057. /*
  3058. * Various schedule()-time debugging checks and statistics:
  3059. */
  3060. static inline void schedule_debug(struct task_struct *prev)
  3061. {
  3062. /*
  3063. * Test if we are atomic. Since do_exit() needs to call into
  3064. * schedule() atomically, we ignore that path for now.
  3065. * Otherwise, whine if we are scheduling when we should not be.
  3066. */
  3067. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3068. __schedule_bug(prev);
  3069. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3070. schedstat_inc(this_rq(), sched_count);
  3071. #ifdef CONFIG_SCHEDSTATS
  3072. if (unlikely(prev->lock_depth >= 0)) {
  3073. schedstat_inc(this_rq(), bkl_count);
  3074. schedstat_inc(prev, sched_info.bkl_count);
  3075. }
  3076. #endif
  3077. }
  3078. /*
  3079. * Pick up the highest-prio task:
  3080. */
  3081. static inline struct task_struct *
  3082. pick_next_task(struct rq *rq, struct task_struct *prev)
  3083. {
  3084. const struct sched_class *class;
  3085. struct task_struct *p;
  3086. /*
  3087. * Optimization: we know that if all tasks are in
  3088. * the fair class we can call that function directly:
  3089. */
  3090. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3091. p = fair_sched_class.pick_next_task(rq);
  3092. if (likely(p))
  3093. return p;
  3094. }
  3095. class = sched_class_highest;
  3096. for ( ; ; ) {
  3097. p = class->pick_next_task(rq);
  3098. if (p)
  3099. return p;
  3100. /*
  3101. * Will never be NULL as the idle class always
  3102. * returns a non-NULL p:
  3103. */
  3104. class = class->next;
  3105. }
  3106. }
  3107. /*
  3108. * schedule() is the main scheduler function.
  3109. */
  3110. asmlinkage void __sched schedule(void)
  3111. {
  3112. struct task_struct *prev, *next;
  3113. long *switch_count;
  3114. struct rq *rq;
  3115. int cpu;
  3116. need_resched:
  3117. preempt_disable();
  3118. cpu = smp_processor_id();
  3119. rq = cpu_rq(cpu);
  3120. rcu_qsctr_inc(cpu);
  3121. prev = rq->curr;
  3122. switch_count = &prev->nivcsw;
  3123. release_kernel_lock(prev);
  3124. need_resched_nonpreemptible:
  3125. schedule_debug(prev);
  3126. /*
  3127. * Do the rq-clock update outside the rq lock:
  3128. */
  3129. local_irq_disable();
  3130. __update_rq_clock(rq);
  3131. spin_lock(&rq->lock);
  3132. clear_tsk_need_resched(prev);
  3133. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3134. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3135. unlikely(signal_pending(prev)))) {
  3136. prev->state = TASK_RUNNING;
  3137. } else {
  3138. deactivate_task(rq, prev, 1);
  3139. }
  3140. switch_count = &prev->nvcsw;
  3141. }
  3142. if (unlikely(!rq->nr_running))
  3143. idle_balance(cpu, rq);
  3144. prev->sched_class->put_prev_task(rq, prev);
  3145. next = pick_next_task(rq, prev);
  3146. sched_info_switch(prev, next);
  3147. if (likely(prev != next)) {
  3148. rq->nr_switches++;
  3149. rq->curr = next;
  3150. ++*switch_count;
  3151. context_switch(rq, prev, next); /* unlocks the rq */
  3152. } else
  3153. spin_unlock_irq(&rq->lock);
  3154. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3155. cpu = smp_processor_id();
  3156. rq = cpu_rq(cpu);
  3157. goto need_resched_nonpreemptible;
  3158. }
  3159. preempt_enable_no_resched();
  3160. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3161. goto need_resched;
  3162. }
  3163. EXPORT_SYMBOL(schedule);
  3164. #ifdef CONFIG_PREEMPT
  3165. /*
  3166. * this is the entry point to schedule() from in-kernel preemption
  3167. * off of preempt_enable. Kernel preemptions off return from interrupt
  3168. * occur there and call schedule directly.
  3169. */
  3170. asmlinkage void __sched preempt_schedule(void)
  3171. {
  3172. struct thread_info *ti = current_thread_info();
  3173. #ifdef CONFIG_PREEMPT_BKL
  3174. struct task_struct *task = current;
  3175. int saved_lock_depth;
  3176. #endif
  3177. /*
  3178. * If there is a non-zero preempt_count or interrupts are disabled,
  3179. * we do not want to preempt the current task. Just return..
  3180. */
  3181. if (likely(ti->preempt_count || irqs_disabled()))
  3182. return;
  3183. do {
  3184. add_preempt_count(PREEMPT_ACTIVE);
  3185. /*
  3186. * We keep the big kernel semaphore locked, but we
  3187. * clear ->lock_depth so that schedule() doesnt
  3188. * auto-release the semaphore:
  3189. */
  3190. #ifdef CONFIG_PREEMPT_BKL
  3191. saved_lock_depth = task->lock_depth;
  3192. task->lock_depth = -1;
  3193. #endif
  3194. schedule();
  3195. #ifdef CONFIG_PREEMPT_BKL
  3196. task->lock_depth = saved_lock_depth;
  3197. #endif
  3198. sub_preempt_count(PREEMPT_ACTIVE);
  3199. /*
  3200. * Check again in case we missed a preemption opportunity
  3201. * between schedule and now.
  3202. */
  3203. barrier();
  3204. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3205. }
  3206. EXPORT_SYMBOL(preempt_schedule);
  3207. /*
  3208. * this is the entry point to schedule() from kernel preemption
  3209. * off of irq context.
  3210. * Note, that this is called and return with irqs disabled. This will
  3211. * protect us against recursive calling from irq.
  3212. */
  3213. asmlinkage void __sched preempt_schedule_irq(void)
  3214. {
  3215. struct thread_info *ti = current_thread_info();
  3216. #ifdef CONFIG_PREEMPT_BKL
  3217. struct task_struct *task = current;
  3218. int saved_lock_depth;
  3219. #endif
  3220. /* Catch callers which need to be fixed */
  3221. BUG_ON(ti->preempt_count || !irqs_disabled());
  3222. do {
  3223. add_preempt_count(PREEMPT_ACTIVE);
  3224. /*
  3225. * We keep the big kernel semaphore locked, but we
  3226. * clear ->lock_depth so that schedule() doesnt
  3227. * auto-release the semaphore:
  3228. */
  3229. #ifdef CONFIG_PREEMPT_BKL
  3230. saved_lock_depth = task->lock_depth;
  3231. task->lock_depth = -1;
  3232. #endif
  3233. local_irq_enable();
  3234. schedule();
  3235. local_irq_disable();
  3236. #ifdef CONFIG_PREEMPT_BKL
  3237. task->lock_depth = saved_lock_depth;
  3238. #endif
  3239. sub_preempt_count(PREEMPT_ACTIVE);
  3240. /*
  3241. * Check again in case we missed a preemption opportunity
  3242. * between schedule and now.
  3243. */
  3244. barrier();
  3245. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3246. }
  3247. #endif /* CONFIG_PREEMPT */
  3248. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3249. void *key)
  3250. {
  3251. return try_to_wake_up(curr->private, mode, sync);
  3252. }
  3253. EXPORT_SYMBOL(default_wake_function);
  3254. /*
  3255. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3256. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3257. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3258. *
  3259. * There are circumstances in which we can try to wake a task which has already
  3260. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3261. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3262. */
  3263. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3264. int nr_exclusive, int sync, void *key)
  3265. {
  3266. wait_queue_t *curr, *next;
  3267. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3268. unsigned flags = curr->flags;
  3269. if (curr->func(curr, mode, sync, key) &&
  3270. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3271. break;
  3272. }
  3273. }
  3274. /**
  3275. * __wake_up - wake up threads blocked on a waitqueue.
  3276. * @q: the waitqueue
  3277. * @mode: which threads
  3278. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3279. * @key: is directly passed to the wakeup function
  3280. */
  3281. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3282. int nr_exclusive, void *key)
  3283. {
  3284. unsigned long flags;
  3285. spin_lock_irqsave(&q->lock, flags);
  3286. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3287. spin_unlock_irqrestore(&q->lock, flags);
  3288. }
  3289. EXPORT_SYMBOL(__wake_up);
  3290. /*
  3291. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3292. */
  3293. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3294. {
  3295. __wake_up_common(q, mode, 1, 0, NULL);
  3296. }
  3297. /**
  3298. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3299. * @q: the waitqueue
  3300. * @mode: which threads
  3301. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3302. *
  3303. * The sync wakeup differs that the waker knows that it will schedule
  3304. * away soon, so while the target thread will be woken up, it will not
  3305. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3306. * with each other. This can prevent needless bouncing between CPUs.
  3307. *
  3308. * On UP it can prevent extra preemption.
  3309. */
  3310. void fastcall
  3311. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3312. {
  3313. unsigned long flags;
  3314. int sync = 1;
  3315. if (unlikely(!q))
  3316. return;
  3317. if (unlikely(!nr_exclusive))
  3318. sync = 0;
  3319. spin_lock_irqsave(&q->lock, flags);
  3320. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3321. spin_unlock_irqrestore(&q->lock, flags);
  3322. }
  3323. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3324. void complete(struct completion *x)
  3325. {
  3326. unsigned long flags;
  3327. spin_lock_irqsave(&x->wait.lock, flags);
  3328. x->done++;
  3329. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3330. 1, 0, NULL);
  3331. spin_unlock_irqrestore(&x->wait.lock, flags);
  3332. }
  3333. EXPORT_SYMBOL(complete);
  3334. void complete_all(struct completion *x)
  3335. {
  3336. unsigned long flags;
  3337. spin_lock_irqsave(&x->wait.lock, flags);
  3338. x->done += UINT_MAX/2;
  3339. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3340. 0, 0, NULL);
  3341. spin_unlock_irqrestore(&x->wait.lock, flags);
  3342. }
  3343. EXPORT_SYMBOL(complete_all);
  3344. static inline long __sched
  3345. do_wait_for_common(struct completion *x, long timeout, int state)
  3346. {
  3347. if (!x->done) {
  3348. DECLARE_WAITQUEUE(wait, current);
  3349. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3350. __add_wait_queue_tail(&x->wait, &wait);
  3351. do {
  3352. if (state == TASK_INTERRUPTIBLE &&
  3353. signal_pending(current)) {
  3354. __remove_wait_queue(&x->wait, &wait);
  3355. return -ERESTARTSYS;
  3356. }
  3357. __set_current_state(state);
  3358. spin_unlock_irq(&x->wait.lock);
  3359. timeout = schedule_timeout(timeout);
  3360. spin_lock_irq(&x->wait.lock);
  3361. if (!timeout) {
  3362. __remove_wait_queue(&x->wait, &wait);
  3363. return timeout;
  3364. }
  3365. } while (!x->done);
  3366. __remove_wait_queue(&x->wait, &wait);
  3367. }
  3368. x->done--;
  3369. return timeout;
  3370. }
  3371. static long __sched
  3372. wait_for_common(struct completion *x, long timeout, int state)
  3373. {
  3374. might_sleep();
  3375. spin_lock_irq(&x->wait.lock);
  3376. timeout = do_wait_for_common(x, timeout, state);
  3377. spin_unlock_irq(&x->wait.lock);
  3378. return timeout;
  3379. }
  3380. void __sched wait_for_completion(struct completion *x)
  3381. {
  3382. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3383. }
  3384. EXPORT_SYMBOL(wait_for_completion);
  3385. unsigned long __sched
  3386. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3387. {
  3388. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3389. }
  3390. EXPORT_SYMBOL(wait_for_completion_timeout);
  3391. int __sched wait_for_completion_interruptible(struct completion *x)
  3392. {
  3393. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3394. if (t == -ERESTARTSYS)
  3395. return t;
  3396. return 0;
  3397. }
  3398. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3399. unsigned long __sched
  3400. wait_for_completion_interruptible_timeout(struct completion *x,
  3401. unsigned long timeout)
  3402. {
  3403. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3404. }
  3405. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3406. static long __sched
  3407. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3408. {
  3409. unsigned long flags;
  3410. wait_queue_t wait;
  3411. init_waitqueue_entry(&wait, current);
  3412. __set_current_state(state);
  3413. spin_lock_irqsave(&q->lock, flags);
  3414. __add_wait_queue(q, &wait);
  3415. spin_unlock(&q->lock);
  3416. timeout = schedule_timeout(timeout);
  3417. spin_lock_irq(&q->lock);
  3418. __remove_wait_queue(q, &wait);
  3419. spin_unlock_irqrestore(&q->lock, flags);
  3420. return timeout;
  3421. }
  3422. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3423. {
  3424. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3425. }
  3426. EXPORT_SYMBOL(interruptible_sleep_on);
  3427. long __sched
  3428. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3429. {
  3430. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3431. }
  3432. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3433. void __sched sleep_on(wait_queue_head_t *q)
  3434. {
  3435. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3436. }
  3437. EXPORT_SYMBOL(sleep_on);
  3438. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3439. {
  3440. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3441. }
  3442. EXPORT_SYMBOL(sleep_on_timeout);
  3443. #ifdef CONFIG_RT_MUTEXES
  3444. /*
  3445. * rt_mutex_setprio - set the current priority of a task
  3446. * @p: task
  3447. * @prio: prio value (kernel-internal form)
  3448. *
  3449. * This function changes the 'effective' priority of a task. It does
  3450. * not touch ->normal_prio like __setscheduler().
  3451. *
  3452. * Used by the rt_mutex code to implement priority inheritance logic.
  3453. */
  3454. void rt_mutex_setprio(struct task_struct *p, int prio)
  3455. {
  3456. unsigned long flags;
  3457. int oldprio, on_rq, running;
  3458. struct rq *rq;
  3459. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3460. rq = task_rq_lock(p, &flags);
  3461. update_rq_clock(rq);
  3462. oldprio = p->prio;
  3463. on_rq = p->se.on_rq;
  3464. running = task_running(rq, p);
  3465. if (on_rq) {
  3466. dequeue_task(rq, p, 0);
  3467. if (running)
  3468. p->sched_class->put_prev_task(rq, p);
  3469. }
  3470. if (rt_prio(prio))
  3471. p->sched_class = &rt_sched_class;
  3472. else
  3473. p->sched_class = &fair_sched_class;
  3474. p->prio = prio;
  3475. if (on_rq) {
  3476. if (running)
  3477. p->sched_class->set_curr_task(rq);
  3478. enqueue_task(rq, p, 0);
  3479. /*
  3480. * Reschedule if we are currently running on this runqueue and
  3481. * our priority decreased, or if we are not currently running on
  3482. * this runqueue and our priority is higher than the current's
  3483. */
  3484. if (running) {
  3485. if (p->prio > oldprio)
  3486. resched_task(rq->curr);
  3487. } else {
  3488. check_preempt_curr(rq, p);
  3489. }
  3490. }
  3491. task_rq_unlock(rq, &flags);
  3492. }
  3493. #endif
  3494. void set_user_nice(struct task_struct *p, long nice)
  3495. {
  3496. int old_prio, delta, on_rq;
  3497. unsigned long flags;
  3498. struct rq *rq;
  3499. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3500. return;
  3501. /*
  3502. * We have to be careful, if called from sys_setpriority(),
  3503. * the task might be in the middle of scheduling on another CPU.
  3504. */
  3505. rq = task_rq_lock(p, &flags);
  3506. update_rq_clock(rq);
  3507. /*
  3508. * The RT priorities are set via sched_setscheduler(), but we still
  3509. * allow the 'normal' nice value to be set - but as expected
  3510. * it wont have any effect on scheduling until the task is
  3511. * SCHED_FIFO/SCHED_RR:
  3512. */
  3513. if (task_has_rt_policy(p)) {
  3514. p->static_prio = NICE_TO_PRIO(nice);
  3515. goto out_unlock;
  3516. }
  3517. on_rq = p->se.on_rq;
  3518. if (on_rq) {
  3519. dequeue_task(rq, p, 0);
  3520. dec_load(rq, p);
  3521. }
  3522. p->static_prio = NICE_TO_PRIO(nice);
  3523. set_load_weight(p);
  3524. old_prio = p->prio;
  3525. p->prio = effective_prio(p);
  3526. delta = p->prio - old_prio;
  3527. if (on_rq) {
  3528. enqueue_task(rq, p, 0);
  3529. inc_load(rq, p);
  3530. /*
  3531. * If the task increased its priority or is running and
  3532. * lowered its priority, then reschedule its CPU:
  3533. */
  3534. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3535. resched_task(rq->curr);
  3536. }
  3537. out_unlock:
  3538. task_rq_unlock(rq, &flags);
  3539. }
  3540. EXPORT_SYMBOL(set_user_nice);
  3541. /*
  3542. * can_nice - check if a task can reduce its nice value
  3543. * @p: task
  3544. * @nice: nice value
  3545. */
  3546. int can_nice(const struct task_struct *p, const int nice)
  3547. {
  3548. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3549. int nice_rlim = 20 - nice;
  3550. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3551. capable(CAP_SYS_NICE));
  3552. }
  3553. #ifdef __ARCH_WANT_SYS_NICE
  3554. /*
  3555. * sys_nice - change the priority of the current process.
  3556. * @increment: priority increment
  3557. *
  3558. * sys_setpriority is a more generic, but much slower function that
  3559. * does similar things.
  3560. */
  3561. asmlinkage long sys_nice(int increment)
  3562. {
  3563. long nice, retval;
  3564. /*
  3565. * Setpriority might change our priority at the same moment.
  3566. * We don't have to worry. Conceptually one call occurs first
  3567. * and we have a single winner.
  3568. */
  3569. if (increment < -40)
  3570. increment = -40;
  3571. if (increment > 40)
  3572. increment = 40;
  3573. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3574. if (nice < -20)
  3575. nice = -20;
  3576. if (nice > 19)
  3577. nice = 19;
  3578. if (increment < 0 && !can_nice(current, nice))
  3579. return -EPERM;
  3580. retval = security_task_setnice(current, nice);
  3581. if (retval)
  3582. return retval;
  3583. set_user_nice(current, nice);
  3584. return 0;
  3585. }
  3586. #endif
  3587. /**
  3588. * task_prio - return the priority value of a given task.
  3589. * @p: the task in question.
  3590. *
  3591. * This is the priority value as seen by users in /proc.
  3592. * RT tasks are offset by -200. Normal tasks are centered
  3593. * around 0, value goes from -16 to +15.
  3594. */
  3595. int task_prio(const struct task_struct *p)
  3596. {
  3597. return p->prio - MAX_RT_PRIO;
  3598. }
  3599. /**
  3600. * task_nice - return the nice value of a given task.
  3601. * @p: the task in question.
  3602. */
  3603. int task_nice(const struct task_struct *p)
  3604. {
  3605. return TASK_NICE(p);
  3606. }
  3607. EXPORT_SYMBOL_GPL(task_nice);
  3608. /**
  3609. * idle_cpu - is a given cpu idle currently?
  3610. * @cpu: the processor in question.
  3611. */
  3612. int idle_cpu(int cpu)
  3613. {
  3614. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3615. }
  3616. /**
  3617. * idle_task - return the idle task for a given cpu.
  3618. * @cpu: the processor in question.
  3619. */
  3620. struct task_struct *idle_task(int cpu)
  3621. {
  3622. return cpu_rq(cpu)->idle;
  3623. }
  3624. /**
  3625. * find_process_by_pid - find a process with a matching PID value.
  3626. * @pid: the pid in question.
  3627. */
  3628. static struct task_struct *find_process_by_pid(pid_t pid)
  3629. {
  3630. return pid ? find_task_by_vpid(pid) : current;
  3631. }
  3632. /* Actually do priority change: must hold rq lock. */
  3633. static void
  3634. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3635. {
  3636. BUG_ON(p->se.on_rq);
  3637. p->policy = policy;
  3638. switch (p->policy) {
  3639. case SCHED_NORMAL:
  3640. case SCHED_BATCH:
  3641. case SCHED_IDLE:
  3642. p->sched_class = &fair_sched_class;
  3643. break;
  3644. case SCHED_FIFO:
  3645. case SCHED_RR:
  3646. p->sched_class = &rt_sched_class;
  3647. break;
  3648. }
  3649. p->rt_priority = prio;
  3650. p->normal_prio = normal_prio(p);
  3651. /* we are holding p->pi_lock already */
  3652. p->prio = rt_mutex_getprio(p);
  3653. set_load_weight(p);
  3654. }
  3655. /**
  3656. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3657. * @p: the task in question.
  3658. * @policy: new policy.
  3659. * @param: structure containing the new RT priority.
  3660. *
  3661. * NOTE that the task may be already dead.
  3662. */
  3663. int sched_setscheduler(struct task_struct *p, int policy,
  3664. struct sched_param *param)
  3665. {
  3666. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3667. unsigned long flags;
  3668. struct rq *rq;
  3669. /* may grab non-irq protected spin_locks */
  3670. BUG_ON(in_interrupt());
  3671. recheck:
  3672. /* double check policy once rq lock held */
  3673. if (policy < 0)
  3674. policy = oldpolicy = p->policy;
  3675. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3676. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3677. policy != SCHED_IDLE)
  3678. return -EINVAL;
  3679. /*
  3680. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3681. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3682. * SCHED_BATCH and SCHED_IDLE is 0.
  3683. */
  3684. if (param->sched_priority < 0 ||
  3685. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3686. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3687. return -EINVAL;
  3688. if (rt_policy(policy) != (param->sched_priority != 0))
  3689. return -EINVAL;
  3690. /*
  3691. * Allow unprivileged RT tasks to decrease priority:
  3692. */
  3693. if (!capable(CAP_SYS_NICE)) {
  3694. if (rt_policy(policy)) {
  3695. unsigned long rlim_rtprio;
  3696. if (!lock_task_sighand(p, &flags))
  3697. return -ESRCH;
  3698. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3699. unlock_task_sighand(p, &flags);
  3700. /* can't set/change the rt policy */
  3701. if (policy != p->policy && !rlim_rtprio)
  3702. return -EPERM;
  3703. /* can't increase priority */
  3704. if (param->sched_priority > p->rt_priority &&
  3705. param->sched_priority > rlim_rtprio)
  3706. return -EPERM;
  3707. }
  3708. /*
  3709. * Like positive nice levels, dont allow tasks to
  3710. * move out of SCHED_IDLE either:
  3711. */
  3712. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3713. return -EPERM;
  3714. /* can't change other user's priorities */
  3715. if ((current->euid != p->euid) &&
  3716. (current->euid != p->uid))
  3717. return -EPERM;
  3718. }
  3719. retval = security_task_setscheduler(p, policy, param);
  3720. if (retval)
  3721. return retval;
  3722. /*
  3723. * make sure no PI-waiters arrive (or leave) while we are
  3724. * changing the priority of the task:
  3725. */
  3726. spin_lock_irqsave(&p->pi_lock, flags);
  3727. /*
  3728. * To be able to change p->policy safely, the apropriate
  3729. * runqueue lock must be held.
  3730. */
  3731. rq = __task_rq_lock(p);
  3732. /* recheck policy now with rq lock held */
  3733. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3734. policy = oldpolicy = -1;
  3735. __task_rq_unlock(rq);
  3736. spin_unlock_irqrestore(&p->pi_lock, flags);
  3737. goto recheck;
  3738. }
  3739. update_rq_clock(rq);
  3740. on_rq = p->se.on_rq;
  3741. running = task_running(rq, p);
  3742. if (on_rq) {
  3743. deactivate_task(rq, p, 0);
  3744. if (running)
  3745. p->sched_class->put_prev_task(rq, p);
  3746. }
  3747. oldprio = p->prio;
  3748. __setscheduler(rq, p, policy, param->sched_priority);
  3749. if (on_rq) {
  3750. if (running)
  3751. p->sched_class->set_curr_task(rq);
  3752. activate_task(rq, p, 0);
  3753. /*
  3754. * Reschedule if we are currently running on this runqueue and
  3755. * our priority decreased, or if we are not currently running on
  3756. * this runqueue and our priority is higher than the current's
  3757. */
  3758. if (running) {
  3759. if (p->prio > oldprio)
  3760. resched_task(rq->curr);
  3761. } else {
  3762. check_preempt_curr(rq, p);
  3763. }
  3764. }
  3765. __task_rq_unlock(rq);
  3766. spin_unlock_irqrestore(&p->pi_lock, flags);
  3767. rt_mutex_adjust_pi(p);
  3768. return 0;
  3769. }
  3770. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3771. static int
  3772. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3773. {
  3774. struct sched_param lparam;
  3775. struct task_struct *p;
  3776. int retval;
  3777. if (!param || pid < 0)
  3778. return -EINVAL;
  3779. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3780. return -EFAULT;
  3781. rcu_read_lock();
  3782. retval = -ESRCH;
  3783. p = find_process_by_pid(pid);
  3784. if (p != NULL)
  3785. retval = sched_setscheduler(p, policy, &lparam);
  3786. rcu_read_unlock();
  3787. return retval;
  3788. }
  3789. /**
  3790. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3791. * @pid: the pid in question.
  3792. * @policy: new policy.
  3793. * @param: structure containing the new RT priority.
  3794. */
  3795. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3796. struct sched_param __user *param)
  3797. {
  3798. /* negative values for policy are not valid */
  3799. if (policy < 0)
  3800. return -EINVAL;
  3801. return do_sched_setscheduler(pid, policy, param);
  3802. }
  3803. /**
  3804. * sys_sched_setparam - set/change the RT priority of a thread
  3805. * @pid: the pid in question.
  3806. * @param: structure containing the new RT priority.
  3807. */
  3808. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3809. {
  3810. return do_sched_setscheduler(pid, -1, param);
  3811. }
  3812. /**
  3813. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3814. * @pid: the pid in question.
  3815. */
  3816. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3817. {
  3818. struct task_struct *p;
  3819. int retval;
  3820. if (pid < 0)
  3821. return -EINVAL;
  3822. retval = -ESRCH;
  3823. read_lock(&tasklist_lock);
  3824. p = find_process_by_pid(pid);
  3825. if (p) {
  3826. retval = security_task_getscheduler(p);
  3827. if (!retval)
  3828. retval = p->policy;
  3829. }
  3830. read_unlock(&tasklist_lock);
  3831. return retval;
  3832. }
  3833. /**
  3834. * sys_sched_getscheduler - get the RT priority of a thread
  3835. * @pid: the pid in question.
  3836. * @param: structure containing the RT priority.
  3837. */
  3838. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3839. {
  3840. struct sched_param lp;
  3841. struct task_struct *p;
  3842. int retval;
  3843. if (!param || pid < 0)
  3844. return -EINVAL;
  3845. read_lock(&tasklist_lock);
  3846. p = find_process_by_pid(pid);
  3847. retval = -ESRCH;
  3848. if (!p)
  3849. goto out_unlock;
  3850. retval = security_task_getscheduler(p);
  3851. if (retval)
  3852. goto out_unlock;
  3853. lp.sched_priority = p->rt_priority;
  3854. read_unlock(&tasklist_lock);
  3855. /*
  3856. * This one might sleep, we cannot do it with a spinlock held ...
  3857. */
  3858. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3859. return retval;
  3860. out_unlock:
  3861. read_unlock(&tasklist_lock);
  3862. return retval;
  3863. }
  3864. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3865. {
  3866. cpumask_t cpus_allowed;
  3867. struct task_struct *p;
  3868. int retval;
  3869. mutex_lock(&sched_hotcpu_mutex);
  3870. read_lock(&tasklist_lock);
  3871. p = find_process_by_pid(pid);
  3872. if (!p) {
  3873. read_unlock(&tasklist_lock);
  3874. mutex_unlock(&sched_hotcpu_mutex);
  3875. return -ESRCH;
  3876. }
  3877. /*
  3878. * It is not safe to call set_cpus_allowed with the
  3879. * tasklist_lock held. We will bump the task_struct's
  3880. * usage count and then drop tasklist_lock.
  3881. */
  3882. get_task_struct(p);
  3883. read_unlock(&tasklist_lock);
  3884. retval = -EPERM;
  3885. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3886. !capable(CAP_SYS_NICE))
  3887. goto out_unlock;
  3888. retval = security_task_setscheduler(p, 0, NULL);
  3889. if (retval)
  3890. goto out_unlock;
  3891. cpus_allowed = cpuset_cpus_allowed(p);
  3892. cpus_and(new_mask, new_mask, cpus_allowed);
  3893. again:
  3894. retval = set_cpus_allowed(p, new_mask);
  3895. if (!retval) {
  3896. cpus_allowed = cpuset_cpus_allowed(p);
  3897. if (!cpus_subset(new_mask, cpus_allowed)) {
  3898. /*
  3899. * We must have raced with a concurrent cpuset
  3900. * update. Just reset the cpus_allowed to the
  3901. * cpuset's cpus_allowed
  3902. */
  3903. new_mask = cpus_allowed;
  3904. goto again;
  3905. }
  3906. }
  3907. out_unlock:
  3908. put_task_struct(p);
  3909. mutex_unlock(&sched_hotcpu_mutex);
  3910. return retval;
  3911. }
  3912. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3913. cpumask_t *new_mask)
  3914. {
  3915. if (len < sizeof(cpumask_t)) {
  3916. memset(new_mask, 0, sizeof(cpumask_t));
  3917. } else if (len > sizeof(cpumask_t)) {
  3918. len = sizeof(cpumask_t);
  3919. }
  3920. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3921. }
  3922. /**
  3923. * sys_sched_setaffinity - set the cpu affinity of a process
  3924. * @pid: pid of the process
  3925. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3926. * @user_mask_ptr: user-space pointer to the new cpu mask
  3927. */
  3928. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3929. unsigned long __user *user_mask_ptr)
  3930. {
  3931. cpumask_t new_mask;
  3932. int retval;
  3933. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3934. if (retval)
  3935. return retval;
  3936. return sched_setaffinity(pid, new_mask);
  3937. }
  3938. /*
  3939. * Represents all cpu's present in the system
  3940. * In systems capable of hotplug, this map could dynamically grow
  3941. * as new cpu's are detected in the system via any platform specific
  3942. * method, such as ACPI for e.g.
  3943. */
  3944. cpumask_t cpu_present_map __read_mostly;
  3945. EXPORT_SYMBOL(cpu_present_map);
  3946. #ifndef CONFIG_SMP
  3947. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3948. EXPORT_SYMBOL(cpu_online_map);
  3949. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3950. EXPORT_SYMBOL(cpu_possible_map);
  3951. #endif
  3952. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3953. {
  3954. struct task_struct *p;
  3955. int retval;
  3956. mutex_lock(&sched_hotcpu_mutex);
  3957. read_lock(&tasklist_lock);
  3958. retval = -ESRCH;
  3959. p = find_process_by_pid(pid);
  3960. if (!p)
  3961. goto out_unlock;
  3962. retval = security_task_getscheduler(p);
  3963. if (retval)
  3964. goto out_unlock;
  3965. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3966. out_unlock:
  3967. read_unlock(&tasklist_lock);
  3968. mutex_unlock(&sched_hotcpu_mutex);
  3969. return retval;
  3970. }
  3971. /**
  3972. * sys_sched_getaffinity - get the cpu affinity of a process
  3973. * @pid: pid of the process
  3974. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3975. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3976. */
  3977. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3978. unsigned long __user *user_mask_ptr)
  3979. {
  3980. int ret;
  3981. cpumask_t mask;
  3982. if (len < sizeof(cpumask_t))
  3983. return -EINVAL;
  3984. ret = sched_getaffinity(pid, &mask);
  3985. if (ret < 0)
  3986. return ret;
  3987. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3988. return -EFAULT;
  3989. return sizeof(cpumask_t);
  3990. }
  3991. /**
  3992. * sys_sched_yield - yield the current processor to other threads.
  3993. *
  3994. * This function yields the current CPU to other tasks. If there are no
  3995. * other threads running on this CPU then this function will return.
  3996. */
  3997. asmlinkage long sys_sched_yield(void)
  3998. {
  3999. struct rq *rq = this_rq_lock();
  4000. schedstat_inc(rq, yld_count);
  4001. current->sched_class->yield_task(rq);
  4002. /*
  4003. * Since we are going to call schedule() anyway, there's
  4004. * no need to preempt or enable interrupts:
  4005. */
  4006. __release(rq->lock);
  4007. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4008. _raw_spin_unlock(&rq->lock);
  4009. preempt_enable_no_resched();
  4010. schedule();
  4011. return 0;
  4012. }
  4013. static void __cond_resched(void)
  4014. {
  4015. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4016. __might_sleep(__FILE__, __LINE__);
  4017. #endif
  4018. /*
  4019. * The BKS might be reacquired before we have dropped
  4020. * PREEMPT_ACTIVE, which could trigger a second
  4021. * cond_resched() call.
  4022. */
  4023. do {
  4024. add_preempt_count(PREEMPT_ACTIVE);
  4025. schedule();
  4026. sub_preempt_count(PREEMPT_ACTIVE);
  4027. } while (need_resched());
  4028. }
  4029. int __sched cond_resched(void)
  4030. {
  4031. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4032. system_state == SYSTEM_RUNNING) {
  4033. __cond_resched();
  4034. return 1;
  4035. }
  4036. return 0;
  4037. }
  4038. EXPORT_SYMBOL(cond_resched);
  4039. /*
  4040. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4041. * call schedule, and on return reacquire the lock.
  4042. *
  4043. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4044. * operations here to prevent schedule() from being called twice (once via
  4045. * spin_unlock(), once by hand).
  4046. */
  4047. int cond_resched_lock(spinlock_t *lock)
  4048. {
  4049. int ret = 0;
  4050. if (need_lockbreak(lock)) {
  4051. spin_unlock(lock);
  4052. cpu_relax();
  4053. ret = 1;
  4054. spin_lock(lock);
  4055. }
  4056. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4057. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4058. _raw_spin_unlock(lock);
  4059. preempt_enable_no_resched();
  4060. __cond_resched();
  4061. ret = 1;
  4062. spin_lock(lock);
  4063. }
  4064. return ret;
  4065. }
  4066. EXPORT_SYMBOL(cond_resched_lock);
  4067. int __sched cond_resched_softirq(void)
  4068. {
  4069. BUG_ON(!in_softirq());
  4070. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4071. local_bh_enable();
  4072. __cond_resched();
  4073. local_bh_disable();
  4074. return 1;
  4075. }
  4076. return 0;
  4077. }
  4078. EXPORT_SYMBOL(cond_resched_softirq);
  4079. /**
  4080. * yield - yield the current processor to other threads.
  4081. *
  4082. * This is a shortcut for kernel-space yielding - it marks the
  4083. * thread runnable and calls sys_sched_yield().
  4084. */
  4085. void __sched yield(void)
  4086. {
  4087. set_current_state(TASK_RUNNING);
  4088. sys_sched_yield();
  4089. }
  4090. EXPORT_SYMBOL(yield);
  4091. /*
  4092. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4093. * that process accounting knows that this is a task in IO wait state.
  4094. *
  4095. * But don't do that if it is a deliberate, throttling IO wait (this task
  4096. * has set its backing_dev_info: the queue against which it should throttle)
  4097. */
  4098. void __sched io_schedule(void)
  4099. {
  4100. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4101. delayacct_blkio_start();
  4102. atomic_inc(&rq->nr_iowait);
  4103. schedule();
  4104. atomic_dec(&rq->nr_iowait);
  4105. delayacct_blkio_end();
  4106. }
  4107. EXPORT_SYMBOL(io_schedule);
  4108. long __sched io_schedule_timeout(long timeout)
  4109. {
  4110. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4111. long ret;
  4112. delayacct_blkio_start();
  4113. atomic_inc(&rq->nr_iowait);
  4114. ret = schedule_timeout(timeout);
  4115. atomic_dec(&rq->nr_iowait);
  4116. delayacct_blkio_end();
  4117. return ret;
  4118. }
  4119. /**
  4120. * sys_sched_get_priority_max - return maximum RT priority.
  4121. * @policy: scheduling class.
  4122. *
  4123. * this syscall returns the maximum rt_priority that can be used
  4124. * by a given scheduling class.
  4125. */
  4126. asmlinkage long sys_sched_get_priority_max(int policy)
  4127. {
  4128. int ret = -EINVAL;
  4129. switch (policy) {
  4130. case SCHED_FIFO:
  4131. case SCHED_RR:
  4132. ret = MAX_USER_RT_PRIO-1;
  4133. break;
  4134. case SCHED_NORMAL:
  4135. case SCHED_BATCH:
  4136. case SCHED_IDLE:
  4137. ret = 0;
  4138. break;
  4139. }
  4140. return ret;
  4141. }
  4142. /**
  4143. * sys_sched_get_priority_min - return minimum RT priority.
  4144. * @policy: scheduling class.
  4145. *
  4146. * this syscall returns the minimum rt_priority that can be used
  4147. * by a given scheduling class.
  4148. */
  4149. asmlinkage long sys_sched_get_priority_min(int policy)
  4150. {
  4151. int ret = -EINVAL;
  4152. switch (policy) {
  4153. case SCHED_FIFO:
  4154. case SCHED_RR:
  4155. ret = 1;
  4156. break;
  4157. case SCHED_NORMAL:
  4158. case SCHED_BATCH:
  4159. case SCHED_IDLE:
  4160. ret = 0;
  4161. }
  4162. return ret;
  4163. }
  4164. /**
  4165. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4166. * @pid: pid of the process.
  4167. * @interval: userspace pointer to the timeslice value.
  4168. *
  4169. * this syscall writes the default timeslice value of a given process
  4170. * into the user-space timespec buffer. A value of '0' means infinity.
  4171. */
  4172. asmlinkage
  4173. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4174. {
  4175. struct task_struct *p;
  4176. unsigned int time_slice;
  4177. int retval;
  4178. struct timespec t;
  4179. if (pid < 0)
  4180. return -EINVAL;
  4181. retval = -ESRCH;
  4182. read_lock(&tasklist_lock);
  4183. p = find_process_by_pid(pid);
  4184. if (!p)
  4185. goto out_unlock;
  4186. retval = security_task_getscheduler(p);
  4187. if (retval)
  4188. goto out_unlock;
  4189. if (p->policy == SCHED_FIFO)
  4190. time_slice = 0;
  4191. else if (p->policy == SCHED_RR)
  4192. time_slice = DEF_TIMESLICE;
  4193. else {
  4194. struct sched_entity *se = &p->se;
  4195. unsigned long flags;
  4196. struct rq *rq;
  4197. rq = task_rq_lock(p, &flags);
  4198. time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  4199. task_rq_unlock(rq, &flags);
  4200. }
  4201. read_unlock(&tasklist_lock);
  4202. jiffies_to_timespec(time_slice, &t);
  4203. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4204. return retval;
  4205. out_unlock:
  4206. read_unlock(&tasklist_lock);
  4207. return retval;
  4208. }
  4209. static const char stat_nam[] = "RSDTtZX";
  4210. static void show_task(struct task_struct *p)
  4211. {
  4212. unsigned long free = 0;
  4213. unsigned state;
  4214. state = p->state ? __ffs(p->state) + 1 : 0;
  4215. printk(KERN_INFO "%-13.13s %c", p->comm,
  4216. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4217. #if BITS_PER_LONG == 32
  4218. if (state == TASK_RUNNING)
  4219. printk(KERN_CONT " running ");
  4220. else
  4221. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4222. #else
  4223. if (state == TASK_RUNNING)
  4224. printk(KERN_CONT " running task ");
  4225. else
  4226. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4227. #endif
  4228. #ifdef CONFIG_DEBUG_STACK_USAGE
  4229. {
  4230. unsigned long *n = end_of_stack(p);
  4231. while (!*n)
  4232. n++;
  4233. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4234. }
  4235. #endif
  4236. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4237. task_pid_nr(p), task_pid_nr(p->parent));
  4238. if (state != TASK_RUNNING)
  4239. show_stack(p, NULL);
  4240. }
  4241. void show_state_filter(unsigned long state_filter)
  4242. {
  4243. struct task_struct *g, *p;
  4244. #if BITS_PER_LONG == 32
  4245. printk(KERN_INFO
  4246. " task PC stack pid father\n");
  4247. #else
  4248. printk(KERN_INFO
  4249. " task PC stack pid father\n");
  4250. #endif
  4251. read_lock(&tasklist_lock);
  4252. do_each_thread(g, p) {
  4253. /*
  4254. * reset the NMI-timeout, listing all files on a slow
  4255. * console might take alot of time:
  4256. */
  4257. touch_nmi_watchdog();
  4258. if (!state_filter || (p->state & state_filter))
  4259. show_task(p);
  4260. } while_each_thread(g, p);
  4261. touch_all_softlockup_watchdogs();
  4262. #ifdef CONFIG_SCHED_DEBUG
  4263. sysrq_sched_debug_show();
  4264. #endif
  4265. read_unlock(&tasklist_lock);
  4266. /*
  4267. * Only show locks if all tasks are dumped:
  4268. */
  4269. if (state_filter == -1)
  4270. debug_show_all_locks();
  4271. }
  4272. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4273. {
  4274. idle->sched_class = &idle_sched_class;
  4275. }
  4276. /**
  4277. * init_idle - set up an idle thread for a given CPU
  4278. * @idle: task in question
  4279. * @cpu: cpu the idle task belongs to
  4280. *
  4281. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4282. * flag, to make booting more robust.
  4283. */
  4284. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4285. {
  4286. struct rq *rq = cpu_rq(cpu);
  4287. unsigned long flags;
  4288. __sched_fork(idle);
  4289. idle->se.exec_start = sched_clock();
  4290. idle->prio = idle->normal_prio = MAX_PRIO;
  4291. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4292. __set_task_cpu(idle, cpu);
  4293. spin_lock_irqsave(&rq->lock, flags);
  4294. rq->curr = rq->idle = idle;
  4295. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4296. idle->oncpu = 1;
  4297. #endif
  4298. spin_unlock_irqrestore(&rq->lock, flags);
  4299. /* Set the preempt count _outside_ the spinlocks! */
  4300. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4301. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4302. #else
  4303. task_thread_info(idle)->preempt_count = 0;
  4304. #endif
  4305. /*
  4306. * The idle tasks have their own, simple scheduling class:
  4307. */
  4308. idle->sched_class = &idle_sched_class;
  4309. }
  4310. /*
  4311. * In a system that switches off the HZ timer nohz_cpu_mask
  4312. * indicates which cpus entered this state. This is used
  4313. * in the rcu update to wait only for active cpus. For system
  4314. * which do not switch off the HZ timer nohz_cpu_mask should
  4315. * always be CPU_MASK_NONE.
  4316. */
  4317. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4318. /*
  4319. * Increase the granularity value when there are more CPUs,
  4320. * because with more CPUs the 'effective latency' as visible
  4321. * to users decreases. But the relationship is not linear,
  4322. * so pick a second-best guess by going with the log2 of the
  4323. * number of CPUs.
  4324. *
  4325. * This idea comes from the SD scheduler of Con Kolivas:
  4326. */
  4327. static inline void sched_init_granularity(void)
  4328. {
  4329. unsigned int factor = 1 + ilog2(num_online_cpus());
  4330. const unsigned long limit = 200000000;
  4331. sysctl_sched_min_granularity *= factor;
  4332. if (sysctl_sched_min_granularity > limit)
  4333. sysctl_sched_min_granularity = limit;
  4334. sysctl_sched_latency *= factor;
  4335. if (sysctl_sched_latency > limit)
  4336. sysctl_sched_latency = limit;
  4337. sysctl_sched_wakeup_granularity *= factor;
  4338. sysctl_sched_batch_wakeup_granularity *= factor;
  4339. }
  4340. #ifdef CONFIG_SMP
  4341. /*
  4342. * This is how migration works:
  4343. *
  4344. * 1) we queue a struct migration_req structure in the source CPU's
  4345. * runqueue and wake up that CPU's migration thread.
  4346. * 2) we down() the locked semaphore => thread blocks.
  4347. * 3) migration thread wakes up (implicitly it forces the migrated
  4348. * thread off the CPU)
  4349. * 4) it gets the migration request and checks whether the migrated
  4350. * task is still in the wrong runqueue.
  4351. * 5) if it's in the wrong runqueue then the migration thread removes
  4352. * it and puts it into the right queue.
  4353. * 6) migration thread up()s the semaphore.
  4354. * 7) we wake up and the migration is done.
  4355. */
  4356. /*
  4357. * Change a given task's CPU affinity. Migrate the thread to a
  4358. * proper CPU and schedule it away if the CPU it's executing on
  4359. * is removed from the allowed bitmask.
  4360. *
  4361. * NOTE: the caller must have a valid reference to the task, the
  4362. * task must not exit() & deallocate itself prematurely. The
  4363. * call is not atomic; no spinlocks may be held.
  4364. */
  4365. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4366. {
  4367. struct migration_req req;
  4368. unsigned long flags;
  4369. struct rq *rq;
  4370. int ret = 0;
  4371. rq = task_rq_lock(p, &flags);
  4372. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4373. ret = -EINVAL;
  4374. goto out;
  4375. }
  4376. p->cpus_allowed = new_mask;
  4377. /* Can the task run on the task's current CPU? If so, we're done */
  4378. if (cpu_isset(task_cpu(p), new_mask))
  4379. goto out;
  4380. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4381. /* Need help from migration thread: drop lock and wait. */
  4382. task_rq_unlock(rq, &flags);
  4383. wake_up_process(rq->migration_thread);
  4384. wait_for_completion(&req.done);
  4385. tlb_migrate_finish(p->mm);
  4386. return 0;
  4387. }
  4388. out:
  4389. task_rq_unlock(rq, &flags);
  4390. return ret;
  4391. }
  4392. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4393. /*
  4394. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4395. * this because either it can't run here any more (set_cpus_allowed()
  4396. * away from this CPU, or CPU going down), or because we're
  4397. * attempting to rebalance this task on exec (sched_exec).
  4398. *
  4399. * So we race with normal scheduler movements, but that's OK, as long
  4400. * as the task is no longer on this CPU.
  4401. *
  4402. * Returns non-zero if task was successfully migrated.
  4403. */
  4404. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4405. {
  4406. struct rq *rq_dest, *rq_src;
  4407. int ret = 0, on_rq;
  4408. if (unlikely(cpu_is_offline(dest_cpu)))
  4409. return ret;
  4410. rq_src = cpu_rq(src_cpu);
  4411. rq_dest = cpu_rq(dest_cpu);
  4412. double_rq_lock(rq_src, rq_dest);
  4413. /* Already moved. */
  4414. if (task_cpu(p) != src_cpu)
  4415. goto out;
  4416. /* Affinity changed (again). */
  4417. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4418. goto out;
  4419. on_rq = p->se.on_rq;
  4420. if (on_rq)
  4421. deactivate_task(rq_src, p, 0);
  4422. set_task_cpu(p, dest_cpu);
  4423. if (on_rq) {
  4424. activate_task(rq_dest, p, 0);
  4425. check_preempt_curr(rq_dest, p);
  4426. }
  4427. ret = 1;
  4428. out:
  4429. double_rq_unlock(rq_src, rq_dest);
  4430. return ret;
  4431. }
  4432. /*
  4433. * migration_thread - this is a highprio system thread that performs
  4434. * thread migration by bumping thread off CPU then 'pushing' onto
  4435. * another runqueue.
  4436. */
  4437. static int migration_thread(void *data)
  4438. {
  4439. int cpu = (long)data;
  4440. struct rq *rq;
  4441. rq = cpu_rq(cpu);
  4442. BUG_ON(rq->migration_thread != current);
  4443. set_current_state(TASK_INTERRUPTIBLE);
  4444. while (!kthread_should_stop()) {
  4445. struct migration_req *req;
  4446. struct list_head *head;
  4447. spin_lock_irq(&rq->lock);
  4448. if (cpu_is_offline(cpu)) {
  4449. spin_unlock_irq(&rq->lock);
  4450. goto wait_to_die;
  4451. }
  4452. if (rq->active_balance) {
  4453. active_load_balance(rq, cpu);
  4454. rq->active_balance = 0;
  4455. }
  4456. head = &rq->migration_queue;
  4457. if (list_empty(head)) {
  4458. spin_unlock_irq(&rq->lock);
  4459. schedule();
  4460. set_current_state(TASK_INTERRUPTIBLE);
  4461. continue;
  4462. }
  4463. req = list_entry(head->next, struct migration_req, list);
  4464. list_del_init(head->next);
  4465. spin_unlock(&rq->lock);
  4466. __migrate_task(req->task, cpu, req->dest_cpu);
  4467. local_irq_enable();
  4468. complete(&req->done);
  4469. }
  4470. __set_current_state(TASK_RUNNING);
  4471. return 0;
  4472. wait_to_die:
  4473. /* Wait for kthread_stop */
  4474. set_current_state(TASK_INTERRUPTIBLE);
  4475. while (!kthread_should_stop()) {
  4476. schedule();
  4477. set_current_state(TASK_INTERRUPTIBLE);
  4478. }
  4479. __set_current_state(TASK_RUNNING);
  4480. return 0;
  4481. }
  4482. #ifdef CONFIG_HOTPLUG_CPU
  4483. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4484. {
  4485. int ret;
  4486. local_irq_disable();
  4487. ret = __migrate_task(p, src_cpu, dest_cpu);
  4488. local_irq_enable();
  4489. return ret;
  4490. }
  4491. /*
  4492. * Figure out where task on dead CPU should go, use force if necessary.
  4493. * NOTE: interrupts should be disabled by the caller
  4494. */
  4495. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4496. {
  4497. unsigned long flags;
  4498. cpumask_t mask;
  4499. struct rq *rq;
  4500. int dest_cpu;
  4501. do {
  4502. /* On same node? */
  4503. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4504. cpus_and(mask, mask, p->cpus_allowed);
  4505. dest_cpu = any_online_cpu(mask);
  4506. /* On any allowed CPU? */
  4507. if (dest_cpu == NR_CPUS)
  4508. dest_cpu = any_online_cpu(p->cpus_allowed);
  4509. /* No more Mr. Nice Guy. */
  4510. if (dest_cpu == NR_CPUS) {
  4511. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4512. /*
  4513. * Try to stay on the same cpuset, where the
  4514. * current cpuset may be a subset of all cpus.
  4515. * The cpuset_cpus_allowed_locked() variant of
  4516. * cpuset_cpus_allowed() will not block. It must be
  4517. * called within calls to cpuset_lock/cpuset_unlock.
  4518. */
  4519. rq = task_rq_lock(p, &flags);
  4520. p->cpus_allowed = cpus_allowed;
  4521. dest_cpu = any_online_cpu(p->cpus_allowed);
  4522. task_rq_unlock(rq, &flags);
  4523. /*
  4524. * Don't tell them about moving exiting tasks or
  4525. * kernel threads (both mm NULL), since they never
  4526. * leave kernel.
  4527. */
  4528. if (p->mm && printk_ratelimit())
  4529. printk(KERN_INFO "process %d (%s) no "
  4530. "longer affine to cpu%d\n",
  4531. task_pid_nr(p), p->comm, dead_cpu);
  4532. }
  4533. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4534. }
  4535. /*
  4536. * While a dead CPU has no uninterruptible tasks queued at this point,
  4537. * it might still have a nonzero ->nr_uninterruptible counter, because
  4538. * for performance reasons the counter is not stricly tracking tasks to
  4539. * their home CPUs. So we just add the counter to another CPU's counter,
  4540. * to keep the global sum constant after CPU-down:
  4541. */
  4542. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4543. {
  4544. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4545. unsigned long flags;
  4546. local_irq_save(flags);
  4547. double_rq_lock(rq_src, rq_dest);
  4548. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4549. rq_src->nr_uninterruptible = 0;
  4550. double_rq_unlock(rq_src, rq_dest);
  4551. local_irq_restore(flags);
  4552. }
  4553. /* Run through task list and migrate tasks from the dead cpu. */
  4554. static void migrate_live_tasks(int src_cpu)
  4555. {
  4556. struct task_struct *p, *t;
  4557. read_lock(&tasklist_lock);
  4558. do_each_thread(t, p) {
  4559. if (p == current)
  4560. continue;
  4561. if (task_cpu(p) == src_cpu)
  4562. move_task_off_dead_cpu(src_cpu, p);
  4563. } while_each_thread(t, p);
  4564. read_unlock(&tasklist_lock);
  4565. }
  4566. /*
  4567. * Schedules idle task to be the next runnable task on current CPU.
  4568. * It does so by boosting its priority to highest possible.
  4569. * Used by CPU offline code.
  4570. */
  4571. void sched_idle_next(void)
  4572. {
  4573. int this_cpu = smp_processor_id();
  4574. struct rq *rq = cpu_rq(this_cpu);
  4575. struct task_struct *p = rq->idle;
  4576. unsigned long flags;
  4577. /* cpu has to be offline */
  4578. BUG_ON(cpu_online(this_cpu));
  4579. /*
  4580. * Strictly not necessary since rest of the CPUs are stopped by now
  4581. * and interrupts disabled on the current cpu.
  4582. */
  4583. spin_lock_irqsave(&rq->lock, flags);
  4584. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4585. update_rq_clock(rq);
  4586. activate_task(rq, p, 0);
  4587. spin_unlock_irqrestore(&rq->lock, flags);
  4588. }
  4589. /*
  4590. * Ensures that the idle task is using init_mm right before its cpu goes
  4591. * offline.
  4592. */
  4593. void idle_task_exit(void)
  4594. {
  4595. struct mm_struct *mm = current->active_mm;
  4596. BUG_ON(cpu_online(smp_processor_id()));
  4597. if (mm != &init_mm)
  4598. switch_mm(mm, &init_mm, current);
  4599. mmdrop(mm);
  4600. }
  4601. /* called under rq->lock with disabled interrupts */
  4602. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4603. {
  4604. struct rq *rq = cpu_rq(dead_cpu);
  4605. /* Must be exiting, otherwise would be on tasklist. */
  4606. BUG_ON(!p->exit_state);
  4607. /* Cannot have done final schedule yet: would have vanished. */
  4608. BUG_ON(p->state == TASK_DEAD);
  4609. get_task_struct(p);
  4610. /*
  4611. * Drop lock around migration; if someone else moves it,
  4612. * that's OK. No task can be added to this CPU, so iteration is
  4613. * fine.
  4614. */
  4615. spin_unlock_irq(&rq->lock);
  4616. move_task_off_dead_cpu(dead_cpu, p);
  4617. spin_lock_irq(&rq->lock);
  4618. put_task_struct(p);
  4619. }
  4620. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4621. static void migrate_dead_tasks(unsigned int dead_cpu)
  4622. {
  4623. struct rq *rq = cpu_rq(dead_cpu);
  4624. struct task_struct *next;
  4625. for ( ; ; ) {
  4626. if (!rq->nr_running)
  4627. break;
  4628. update_rq_clock(rq);
  4629. next = pick_next_task(rq, rq->curr);
  4630. if (!next)
  4631. break;
  4632. migrate_dead(dead_cpu, next);
  4633. }
  4634. }
  4635. #endif /* CONFIG_HOTPLUG_CPU */
  4636. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4637. static struct ctl_table sd_ctl_dir[] = {
  4638. {
  4639. .procname = "sched_domain",
  4640. .mode = 0555,
  4641. },
  4642. {0, },
  4643. };
  4644. static struct ctl_table sd_ctl_root[] = {
  4645. {
  4646. .ctl_name = CTL_KERN,
  4647. .procname = "kernel",
  4648. .mode = 0555,
  4649. .child = sd_ctl_dir,
  4650. },
  4651. {0, },
  4652. };
  4653. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4654. {
  4655. struct ctl_table *entry =
  4656. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4657. return entry;
  4658. }
  4659. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4660. {
  4661. struct ctl_table *entry;
  4662. /*
  4663. * In the intermediate directories, both the child directory and
  4664. * procname are dynamically allocated and could fail but the mode
  4665. * will always be set. In the lowest directory the names are
  4666. * static strings and all have proc handlers.
  4667. */
  4668. for (entry = *tablep; entry->mode; entry++) {
  4669. if (entry->child)
  4670. sd_free_ctl_entry(&entry->child);
  4671. if (entry->proc_handler == NULL)
  4672. kfree(entry->procname);
  4673. }
  4674. kfree(*tablep);
  4675. *tablep = NULL;
  4676. }
  4677. static void
  4678. set_table_entry(struct ctl_table *entry,
  4679. const char *procname, void *data, int maxlen,
  4680. mode_t mode, proc_handler *proc_handler)
  4681. {
  4682. entry->procname = procname;
  4683. entry->data = data;
  4684. entry->maxlen = maxlen;
  4685. entry->mode = mode;
  4686. entry->proc_handler = proc_handler;
  4687. }
  4688. static struct ctl_table *
  4689. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4690. {
  4691. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4692. if (table == NULL)
  4693. return NULL;
  4694. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4695. sizeof(long), 0644, proc_doulongvec_minmax);
  4696. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4697. sizeof(long), 0644, proc_doulongvec_minmax);
  4698. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4699. sizeof(int), 0644, proc_dointvec_minmax);
  4700. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4701. sizeof(int), 0644, proc_dointvec_minmax);
  4702. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4703. sizeof(int), 0644, proc_dointvec_minmax);
  4704. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4705. sizeof(int), 0644, proc_dointvec_minmax);
  4706. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4707. sizeof(int), 0644, proc_dointvec_minmax);
  4708. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4709. sizeof(int), 0644, proc_dointvec_minmax);
  4710. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4711. sizeof(int), 0644, proc_dointvec_minmax);
  4712. set_table_entry(&table[9], "cache_nice_tries",
  4713. &sd->cache_nice_tries,
  4714. sizeof(int), 0644, proc_dointvec_minmax);
  4715. set_table_entry(&table[10], "flags", &sd->flags,
  4716. sizeof(int), 0644, proc_dointvec_minmax);
  4717. /* &table[11] is terminator */
  4718. return table;
  4719. }
  4720. static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
  4721. {
  4722. struct ctl_table *entry, *table;
  4723. struct sched_domain *sd;
  4724. int domain_num = 0, i;
  4725. char buf[32];
  4726. for_each_domain(cpu, sd)
  4727. domain_num++;
  4728. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4729. if (table == NULL)
  4730. return NULL;
  4731. i = 0;
  4732. for_each_domain(cpu, sd) {
  4733. snprintf(buf, 32, "domain%d", i);
  4734. entry->procname = kstrdup(buf, GFP_KERNEL);
  4735. entry->mode = 0555;
  4736. entry->child = sd_alloc_ctl_domain_table(sd);
  4737. entry++;
  4738. i++;
  4739. }
  4740. return table;
  4741. }
  4742. static struct ctl_table_header *sd_sysctl_header;
  4743. static void register_sched_domain_sysctl(void)
  4744. {
  4745. int i, cpu_num = num_online_cpus();
  4746. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4747. char buf[32];
  4748. WARN_ON(sd_ctl_dir[0].child);
  4749. sd_ctl_dir[0].child = entry;
  4750. if (entry == NULL)
  4751. return;
  4752. for_each_online_cpu(i) {
  4753. snprintf(buf, 32, "cpu%d", i);
  4754. entry->procname = kstrdup(buf, GFP_KERNEL);
  4755. entry->mode = 0555;
  4756. entry->child = sd_alloc_ctl_cpu_table(i);
  4757. entry++;
  4758. }
  4759. WARN_ON(sd_sysctl_header);
  4760. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4761. }
  4762. /* may be called multiple times per register */
  4763. static void unregister_sched_domain_sysctl(void)
  4764. {
  4765. if (sd_sysctl_header)
  4766. unregister_sysctl_table(sd_sysctl_header);
  4767. sd_sysctl_header = NULL;
  4768. if (sd_ctl_dir[0].child)
  4769. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4770. }
  4771. #else
  4772. static void register_sched_domain_sysctl(void)
  4773. {
  4774. }
  4775. static void unregister_sched_domain_sysctl(void)
  4776. {
  4777. }
  4778. #endif
  4779. /*
  4780. * migration_call - callback that gets triggered when a CPU is added.
  4781. * Here we can start up the necessary migration thread for the new CPU.
  4782. */
  4783. static int __cpuinit
  4784. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4785. {
  4786. struct task_struct *p;
  4787. int cpu = (long)hcpu;
  4788. unsigned long flags;
  4789. struct rq *rq;
  4790. switch (action) {
  4791. case CPU_LOCK_ACQUIRE:
  4792. mutex_lock(&sched_hotcpu_mutex);
  4793. break;
  4794. case CPU_UP_PREPARE:
  4795. case CPU_UP_PREPARE_FROZEN:
  4796. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4797. if (IS_ERR(p))
  4798. return NOTIFY_BAD;
  4799. kthread_bind(p, cpu);
  4800. /* Must be high prio: stop_machine expects to yield to it. */
  4801. rq = task_rq_lock(p, &flags);
  4802. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4803. task_rq_unlock(rq, &flags);
  4804. cpu_rq(cpu)->migration_thread = p;
  4805. break;
  4806. case CPU_ONLINE:
  4807. case CPU_ONLINE_FROZEN:
  4808. /* Strictly unnecessary, as first user will wake it. */
  4809. wake_up_process(cpu_rq(cpu)->migration_thread);
  4810. break;
  4811. #ifdef CONFIG_HOTPLUG_CPU
  4812. case CPU_UP_CANCELED:
  4813. case CPU_UP_CANCELED_FROZEN:
  4814. if (!cpu_rq(cpu)->migration_thread)
  4815. break;
  4816. /* Unbind it from offline cpu so it can run. Fall thru. */
  4817. kthread_bind(cpu_rq(cpu)->migration_thread,
  4818. any_online_cpu(cpu_online_map));
  4819. kthread_stop(cpu_rq(cpu)->migration_thread);
  4820. cpu_rq(cpu)->migration_thread = NULL;
  4821. break;
  4822. case CPU_DEAD:
  4823. case CPU_DEAD_FROZEN:
  4824. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4825. migrate_live_tasks(cpu);
  4826. rq = cpu_rq(cpu);
  4827. kthread_stop(rq->migration_thread);
  4828. rq->migration_thread = NULL;
  4829. /* Idle task back to normal (off runqueue, low prio) */
  4830. spin_lock_irq(&rq->lock);
  4831. update_rq_clock(rq);
  4832. deactivate_task(rq, rq->idle, 0);
  4833. rq->idle->static_prio = MAX_PRIO;
  4834. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4835. rq->idle->sched_class = &idle_sched_class;
  4836. migrate_dead_tasks(cpu);
  4837. spin_unlock_irq(&rq->lock);
  4838. cpuset_unlock();
  4839. migrate_nr_uninterruptible(rq);
  4840. BUG_ON(rq->nr_running != 0);
  4841. /* No need to migrate the tasks: it was best-effort if
  4842. * they didn't take sched_hotcpu_mutex. Just wake up
  4843. * the requestors. */
  4844. spin_lock_irq(&rq->lock);
  4845. while (!list_empty(&rq->migration_queue)) {
  4846. struct migration_req *req;
  4847. req = list_entry(rq->migration_queue.next,
  4848. struct migration_req, list);
  4849. list_del_init(&req->list);
  4850. complete(&req->done);
  4851. }
  4852. spin_unlock_irq(&rq->lock);
  4853. break;
  4854. #endif
  4855. case CPU_LOCK_RELEASE:
  4856. mutex_unlock(&sched_hotcpu_mutex);
  4857. break;
  4858. }
  4859. return NOTIFY_OK;
  4860. }
  4861. /* Register at highest priority so that task migration (migrate_all_tasks)
  4862. * happens before everything else.
  4863. */
  4864. static struct notifier_block __cpuinitdata migration_notifier = {
  4865. .notifier_call = migration_call,
  4866. .priority = 10
  4867. };
  4868. void __init migration_init(void)
  4869. {
  4870. void *cpu = (void *)(long)smp_processor_id();
  4871. int err;
  4872. /* Start one for the boot CPU: */
  4873. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4874. BUG_ON(err == NOTIFY_BAD);
  4875. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4876. register_cpu_notifier(&migration_notifier);
  4877. }
  4878. #endif
  4879. #ifdef CONFIG_SMP
  4880. /* Number of possible processor ids */
  4881. int nr_cpu_ids __read_mostly = NR_CPUS;
  4882. EXPORT_SYMBOL(nr_cpu_ids);
  4883. #ifdef CONFIG_SCHED_DEBUG
  4884. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4885. {
  4886. struct sched_group *group = sd->groups;
  4887. cpumask_t groupmask;
  4888. char str[NR_CPUS];
  4889. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4890. cpus_clear(groupmask);
  4891. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4892. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4893. printk("does not load-balance\n");
  4894. if (sd->parent)
  4895. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4896. " has parent");
  4897. return -1;
  4898. }
  4899. printk(KERN_CONT "span %s\n", str);
  4900. if (!cpu_isset(cpu, sd->span)) {
  4901. printk(KERN_ERR "ERROR: domain->span does not contain "
  4902. "CPU%d\n", cpu);
  4903. }
  4904. if (!cpu_isset(cpu, group->cpumask)) {
  4905. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4906. " CPU%d\n", cpu);
  4907. }
  4908. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4909. do {
  4910. if (!group) {
  4911. printk("\n");
  4912. printk(KERN_ERR "ERROR: group is NULL\n");
  4913. break;
  4914. }
  4915. if (!group->__cpu_power) {
  4916. printk(KERN_CONT "\n");
  4917. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4918. "set\n");
  4919. break;
  4920. }
  4921. if (!cpus_weight(group->cpumask)) {
  4922. printk(KERN_CONT "\n");
  4923. printk(KERN_ERR "ERROR: empty group\n");
  4924. break;
  4925. }
  4926. if (cpus_intersects(groupmask, group->cpumask)) {
  4927. printk(KERN_CONT "\n");
  4928. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4929. break;
  4930. }
  4931. cpus_or(groupmask, groupmask, group->cpumask);
  4932. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4933. printk(KERN_CONT " %s", str);
  4934. group = group->next;
  4935. } while (group != sd->groups);
  4936. printk(KERN_CONT "\n");
  4937. if (!cpus_equal(sd->span, groupmask))
  4938. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4939. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  4940. printk(KERN_ERR "ERROR: parent span is not a superset "
  4941. "of domain->span\n");
  4942. return 0;
  4943. }
  4944. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4945. {
  4946. int level = 0;
  4947. if (!sd) {
  4948. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4949. return;
  4950. }
  4951. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4952. for (;;) {
  4953. if (sched_domain_debug_one(sd, cpu, level))
  4954. break;
  4955. level++;
  4956. sd = sd->parent;
  4957. if (!sd)
  4958. break;
  4959. }
  4960. }
  4961. #else
  4962. # define sched_domain_debug(sd, cpu) do { } while (0)
  4963. #endif
  4964. static int sd_degenerate(struct sched_domain *sd)
  4965. {
  4966. if (cpus_weight(sd->span) == 1)
  4967. return 1;
  4968. /* Following flags need at least 2 groups */
  4969. if (sd->flags & (SD_LOAD_BALANCE |
  4970. SD_BALANCE_NEWIDLE |
  4971. SD_BALANCE_FORK |
  4972. SD_BALANCE_EXEC |
  4973. SD_SHARE_CPUPOWER |
  4974. SD_SHARE_PKG_RESOURCES)) {
  4975. if (sd->groups != sd->groups->next)
  4976. return 0;
  4977. }
  4978. /* Following flags don't use groups */
  4979. if (sd->flags & (SD_WAKE_IDLE |
  4980. SD_WAKE_AFFINE |
  4981. SD_WAKE_BALANCE))
  4982. return 0;
  4983. return 1;
  4984. }
  4985. static int
  4986. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4987. {
  4988. unsigned long cflags = sd->flags, pflags = parent->flags;
  4989. if (sd_degenerate(parent))
  4990. return 1;
  4991. if (!cpus_equal(sd->span, parent->span))
  4992. return 0;
  4993. /* Does parent contain flags not in child? */
  4994. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4995. if (cflags & SD_WAKE_AFFINE)
  4996. pflags &= ~SD_WAKE_BALANCE;
  4997. /* Flags needing groups don't count if only 1 group in parent */
  4998. if (parent->groups == parent->groups->next) {
  4999. pflags &= ~(SD_LOAD_BALANCE |
  5000. SD_BALANCE_NEWIDLE |
  5001. SD_BALANCE_FORK |
  5002. SD_BALANCE_EXEC |
  5003. SD_SHARE_CPUPOWER |
  5004. SD_SHARE_PKG_RESOURCES);
  5005. }
  5006. if (~cflags & pflags)
  5007. return 0;
  5008. return 1;
  5009. }
  5010. /*
  5011. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5012. * hold the hotplug lock.
  5013. */
  5014. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  5015. {
  5016. struct rq *rq = cpu_rq(cpu);
  5017. struct sched_domain *tmp;
  5018. /* Remove the sched domains which do not contribute to scheduling. */
  5019. for (tmp = sd; tmp; tmp = tmp->parent) {
  5020. struct sched_domain *parent = tmp->parent;
  5021. if (!parent)
  5022. break;
  5023. if (sd_parent_degenerate(tmp, parent)) {
  5024. tmp->parent = parent->parent;
  5025. if (parent->parent)
  5026. parent->parent->child = tmp;
  5027. }
  5028. }
  5029. if (sd && sd_degenerate(sd)) {
  5030. sd = sd->parent;
  5031. if (sd)
  5032. sd->child = NULL;
  5033. }
  5034. sched_domain_debug(sd, cpu);
  5035. rcu_assign_pointer(rq->sd, sd);
  5036. }
  5037. /* cpus with isolated domains */
  5038. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5039. /* Setup the mask of cpus configured for isolated domains */
  5040. static int __init isolated_cpu_setup(char *str)
  5041. {
  5042. int ints[NR_CPUS], i;
  5043. str = get_options(str, ARRAY_SIZE(ints), ints);
  5044. cpus_clear(cpu_isolated_map);
  5045. for (i = 1; i <= ints[0]; i++)
  5046. if (ints[i] < NR_CPUS)
  5047. cpu_set(ints[i], cpu_isolated_map);
  5048. return 1;
  5049. }
  5050. __setup("isolcpus=", isolated_cpu_setup);
  5051. /*
  5052. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5053. * to a function which identifies what group(along with sched group) a CPU
  5054. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5055. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5056. *
  5057. * init_sched_build_groups will build a circular linked list of the groups
  5058. * covered by the given span, and will set each group's ->cpumask correctly,
  5059. * and ->cpu_power to 0.
  5060. */
  5061. static void
  5062. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5063. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5064. struct sched_group **sg))
  5065. {
  5066. struct sched_group *first = NULL, *last = NULL;
  5067. cpumask_t covered = CPU_MASK_NONE;
  5068. int i;
  5069. for_each_cpu_mask(i, span) {
  5070. struct sched_group *sg;
  5071. int group = group_fn(i, cpu_map, &sg);
  5072. int j;
  5073. if (cpu_isset(i, covered))
  5074. continue;
  5075. sg->cpumask = CPU_MASK_NONE;
  5076. sg->__cpu_power = 0;
  5077. for_each_cpu_mask(j, span) {
  5078. if (group_fn(j, cpu_map, NULL) != group)
  5079. continue;
  5080. cpu_set(j, covered);
  5081. cpu_set(j, sg->cpumask);
  5082. }
  5083. if (!first)
  5084. first = sg;
  5085. if (last)
  5086. last->next = sg;
  5087. last = sg;
  5088. }
  5089. last->next = first;
  5090. }
  5091. #define SD_NODES_PER_DOMAIN 16
  5092. #ifdef CONFIG_NUMA
  5093. /**
  5094. * find_next_best_node - find the next node to include in a sched_domain
  5095. * @node: node whose sched_domain we're building
  5096. * @used_nodes: nodes already in the sched_domain
  5097. *
  5098. * Find the next node to include in a given scheduling domain. Simply
  5099. * finds the closest node not already in the @used_nodes map.
  5100. *
  5101. * Should use nodemask_t.
  5102. */
  5103. static int find_next_best_node(int node, unsigned long *used_nodes)
  5104. {
  5105. int i, n, val, min_val, best_node = 0;
  5106. min_val = INT_MAX;
  5107. for (i = 0; i < MAX_NUMNODES; i++) {
  5108. /* Start at @node */
  5109. n = (node + i) % MAX_NUMNODES;
  5110. if (!nr_cpus_node(n))
  5111. continue;
  5112. /* Skip already used nodes */
  5113. if (test_bit(n, used_nodes))
  5114. continue;
  5115. /* Simple min distance search */
  5116. val = node_distance(node, n);
  5117. if (val < min_val) {
  5118. min_val = val;
  5119. best_node = n;
  5120. }
  5121. }
  5122. set_bit(best_node, used_nodes);
  5123. return best_node;
  5124. }
  5125. /**
  5126. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5127. * @node: node whose cpumask we're constructing
  5128. * @size: number of nodes to include in this span
  5129. *
  5130. * Given a node, construct a good cpumask for its sched_domain to span. It
  5131. * should be one that prevents unnecessary balancing, but also spreads tasks
  5132. * out optimally.
  5133. */
  5134. static cpumask_t sched_domain_node_span(int node)
  5135. {
  5136. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5137. cpumask_t span, nodemask;
  5138. int i;
  5139. cpus_clear(span);
  5140. bitmap_zero(used_nodes, MAX_NUMNODES);
  5141. nodemask = node_to_cpumask(node);
  5142. cpus_or(span, span, nodemask);
  5143. set_bit(node, used_nodes);
  5144. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5145. int next_node = find_next_best_node(node, used_nodes);
  5146. nodemask = node_to_cpumask(next_node);
  5147. cpus_or(span, span, nodemask);
  5148. }
  5149. return span;
  5150. }
  5151. #endif
  5152. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5153. /*
  5154. * SMT sched-domains:
  5155. */
  5156. #ifdef CONFIG_SCHED_SMT
  5157. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5158. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5159. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5160. struct sched_group **sg)
  5161. {
  5162. if (sg)
  5163. *sg = &per_cpu(sched_group_cpus, cpu);
  5164. return cpu;
  5165. }
  5166. #endif
  5167. /*
  5168. * multi-core sched-domains:
  5169. */
  5170. #ifdef CONFIG_SCHED_MC
  5171. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5172. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5173. #endif
  5174. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5175. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5176. struct sched_group **sg)
  5177. {
  5178. int group;
  5179. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5180. cpus_and(mask, mask, *cpu_map);
  5181. group = first_cpu(mask);
  5182. if (sg)
  5183. *sg = &per_cpu(sched_group_core, group);
  5184. return group;
  5185. }
  5186. #elif defined(CONFIG_SCHED_MC)
  5187. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5188. struct sched_group **sg)
  5189. {
  5190. if (sg)
  5191. *sg = &per_cpu(sched_group_core, cpu);
  5192. return cpu;
  5193. }
  5194. #endif
  5195. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5196. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5197. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5198. struct sched_group **sg)
  5199. {
  5200. int group;
  5201. #ifdef CONFIG_SCHED_MC
  5202. cpumask_t mask = cpu_coregroup_map(cpu);
  5203. cpus_and(mask, mask, *cpu_map);
  5204. group = first_cpu(mask);
  5205. #elif defined(CONFIG_SCHED_SMT)
  5206. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5207. cpus_and(mask, mask, *cpu_map);
  5208. group = first_cpu(mask);
  5209. #else
  5210. group = cpu;
  5211. #endif
  5212. if (sg)
  5213. *sg = &per_cpu(sched_group_phys, group);
  5214. return group;
  5215. }
  5216. #ifdef CONFIG_NUMA
  5217. /*
  5218. * The init_sched_build_groups can't handle what we want to do with node
  5219. * groups, so roll our own. Now each node has its own list of groups which
  5220. * gets dynamically allocated.
  5221. */
  5222. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5223. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5224. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5225. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5226. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5227. struct sched_group **sg)
  5228. {
  5229. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5230. int group;
  5231. cpus_and(nodemask, nodemask, *cpu_map);
  5232. group = first_cpu(nodemask);
  5233. if (sg)
  5234. *sg = &per_cpu(sched_group_allnodes, group);
  5235. return group;
  5236. }
  5237. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5238. {
  5239. struct sched_group *sg = group_head;
  5240. int j;
  5241. if (!sg)
  5242. return;
  5243. do {
  5244. for_each_cpu_mask(j, sg->cpumask) {
  5245. struct sched_domain *sd;
  5246. sd = &per_cpu(phys_domains, j);
  5247. if (j != first_cpu(sd->groups->cpumask)) {
  5248. /*
  5249. * Only add "power" once for each
  5250. * physical package.
  5251. */
  5252. continue;
  5253. }
  5254. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5255. }
  5256. sg = sg->next;
  5257. } while (sg != group_head);
  5258. }
  5259. #endif
  5260. #ifdef CONFIG_NUMA
  5261. /* Free memory allocated for various sched_group structures */
  5262. static void free_sched_groups(const cpumask_t *cpu_map)
  5263. {
  5264. int cpu, i;
  5265. for_each_cpu_mask(cpu, *cpu_map) {
  5266. struct sched_group **sched_group_nodes
  5267. = sched_group_nodes_bycpu[cpu];
  5268. if (!sched_group_nodes)
  5269. continue;
  5270. for (i = 0; i < MAX_NUMNODES; i++) {
  5271. cpumask_t nodemask = node_to_cpumask(i);
  5272. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5273. cpus_and(nodemask, nodemask, *cpu_map);
  5274. if (cpus_empty(nodemask))
  5275. continue;
  5276. if (sg == NULL)
  5277. continue;
  5278. sg = sg->next;
  5279. next_sg:
  5280. oldsg = sg;
  5281. sg = sg->next;
  5282. kfree(oldsg);
  5283. if (oldsg != sched_group_nodes[i])
  5284. goto next_sg;
  5285. }
  5286. kfree(sched_group_nodes);
  5287. sched_group_nodes_bycpu[cpu] = NULL;
  5288. }
  5289. }
  5290. #else
  5291. static void free_sched_groups(const cpumask_t *cpu_map)
  5292. {
  5293. }
  5294. #endif
  5295. /*
  5296. * Initialize sched groups cpu_power.
  5297. *
  5298. * cpu_power indicates the capacity of sched group, which is used while
  5299. * distributing the load between different sched groups in a sched domain.
  5300. * Typically cpu_power for all the groups in a sched domain will be same unless
  5301. * there are asymmetries in the topology. If there are asymmetries, group
  5302. * having more cpu_power will pickup more load compared to the group having
  5303. * less cpu_power.
  5304. *
  5305. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5306. * the maximum number of tasks a group can handle in the presence of other idle
  5307. * or lightly loaded groups in the same sched domain.
  5308. */
  5309. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5310. {
  5311. struct sched_domain *child;
  5312. struct sched_group *group;
  5313. WARN_ON(!sd || !sd->groups);
  5314. if (cpu != first_cpu(sd->groups->cpumask))
  5315. return;
  5316. child = sd->child;
  5317. sd->groups->__cpu_power = 0;
  5318. /*
  5319. * For perf policy, if the groups in child domain share resources
  5320. * (for example cores sharing some portions of the cache hierarchy
  5321. * or SMT), then set this domain groups cpu_power such that each group
  5322. * can handle only one task, when there are other idle groups in the
  5323. * same sched domain.
  5324. */
  5325. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5326. (child->flags &
  5327. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5328. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5329. return;
  5330. }
  5331. /*
  5332. * add cpu_power of each child group to this groups cpu_power
  5333. */
  5334. group = child->groups;
  5335. do {
  5336. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5337. group = group->next;
  5338. } while (group != child->groups);
  5339. }
  5340. /*
  5341. * Build sched domains for a given set of cpus and attach the sched domains
  5342. * to the individual cpus
  5343. */
  5344. static int build_sched_domains(const cpumask_t *cpu_map)
  5345. {
  5346. int i;
  5347. #ifdef CONFIG_NUMA
  5348. struct sched_group **sched_group_nodes = NULL;
  5349. int sd_allnodes = 0;
  5350. /*
  5351. * Allocate the per-node list of sched groups
  5352. */
  5353. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5354. GFP_KERNEL);
  5355. if (!sched_group_nodes) {
  5356. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5357. return -ENOMEM;
  5358. }
  5359. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5360. #endif
  5361. /*
  5362. * Set up domains for cpus specified by the cpu_map.
  5363. */
  5364. for_each_cpu_mask(i, *cpu_map) {
  5365. struct sched_domain *sd = NULL, *p;
  5366. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5367. cpus_and(nodemask, nodemask, *cpu_map);
  5368. #ifdef CONFIG_NUMA
  5369. if (cpus_weight(*cpu_map) >
  5370. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5371. sd = &per_cpu(allnodes_domains, i);
  5372. *sd = SD_ALLNODES_INIT;
  5373. sd->span = *cpu_map;
  5374. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5375. p = sd;
  5376. sd_allnodes = 1;
  5377. } else
  5378. p = NULL;
  5379. sd = &per_cpu(node_domains, i);
  5380. *sd = SD_NODE_INIT;
  5381. sd->span = sched_domain_node_span(cpu_to_node(i));
  5382. sd->parent = p;
  5383. if (p)
  5384. p->child = sd;
  5385. cpus_and(sd->span, sd->span, *cpu_map);
  5386. #endif
  5387. p = sd;
  5388. sd = &per_cpu(phys_domains, i);
  5389. *sd = SD_CPU_INIT;
  5390. sd->span = nodemask;
  5391. sd->parent = p;
  5392. if (p)
  5393. p->child = sd;
  5394. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5395. #ifdef CONFIG_SCHED_MC
  5396. p = sd;
  5397. sd = &per_cpu(core_domains, i);
  5398. *sd = SD_MC_INIT;
  5399. sd->span = cpu_coregroup_map(i);
  5400. cpus_and(sd->span, sd->span, *cpu_map);
  5401. sd->parent = p;
  5402. p->child = sd;
  5403. cpu_to_core_group(i, cpu_map, &sd->groups);
  5404. #endif
  5405. #ifdef CONFIG_SCHED_SMT
  5406. p = sd;
  5407. sd = &per_cpu(cpu_domains, i);
  5408. *sd = SD_SIBLING_INIT;
  5409. sd->span = per_cpu(cpu_sibling_map, i);
  5410. cpus_and(sd->span, sd->span, *cpu_map);
  5411. sd->parent = p;
  5412. p->child = sd;
  5413. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5414. #endif
  5415. }
  5416. #ifdef CONFIG_SCHED_SMT
  5417. /* Set up CPU (sibling) groups */
  5418. for_each_cpu_mask(i, *cpu_map) {
  5419. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5420. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5421. if (i != first_cpu(this_sibling_map))
  5422. continue;
  5423. init_sched_build_groups(this_sibling_map, cpu_map,
  5424. &cpu_to_cpu_group);
  5425. }
  5426. #endif
  5427. #ifdef CONFIG_SCHED_MC
  5428. /* Set up multi-core groups */
  5429. for_each_cpu_mask(i, *cpu_map) {
  5430. cpumask_t this_core_map = cpu_coregroup_map(i);
  5431. cpus_and(this_core_map, this_core_map, *cpu_map);
  5432. if (i != first_cpu(this_core_map))
  5433. continue;
  5434. init_sched_build_groups(this_core_map, cpu_map,
  5435. &cpu_to_core_group);
  5436. }
  5437. #endif
  5438. /* Set up physical groups */
  5439. for (i = 0; i < MAX_NUMNODES; i++) {
  5440. cpumask_t nodemask = node_to_cpumask(i);
  5441. cpus_and(nodemask, nodemask, *cpu_map);
  5442. if (cpus_empty(nodemask))
  5443. continue;
  5444. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5445. }
  5446. #ifdef CONFIG_NUMA
  5447. /* Set up node groups */
  5448. if (sd_allnodes)
  5449. init_sched_build_groups(*cpu_map, cpu_map,
  5450. &cpu_to_allnodes_group);
  5451. for (i = 0; i < MAX_NUMNODES; i++) {
  5452. /* Set up node groups */
  5453. struct sched_group *sg, *prev;
  5454. cpumask_t nodemask = node_to_cpumask(i);
  5455. cpumask_t domainspan;
  5456. cpumask_t covered = CPU_MASK_NONE;
  5457. int j;
  5458. cpus_and(nodemask, nodemask, *cpu_map);
  5459. if (cpus_empty(nodemask)) {
  5460. sched_group_nodes[i] = NULL;
  5461. continue;
  5462. }
  5463. domainspan = sched_domain_node_span(i);
  5464. cpus_and(domainspan, domainspan, *cpu_map);
  5465. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5466. if (!sg) {
  5467. printk(KERN_WARNING "Can not alloc domain group for "
  5468. "node %d\n", i);
  5469. goto error;
  5470. }
  5471. sched_group_nodes[i] = sg;
  5472. for_each_cpu_mask(j, nodemask) {
  5473. struct sched_domain *sd;
  5474. sd = &per_cpu(node_domains, j);
  5475. sd->groups = sg;
  5476. }
  5477. sg->__cpu_power = 0;
  5478. sg->cpumask = nodemask;
  5479. sg->next = sg;
  5480. cpus_or(covered, covered, nodemask);
  5481. prev = sg;
  5482. for (j = 0; j < MAX_NUMNODES; j++) {
  5483. cpumask_t tmp, notcovered;
  5484. int n = (i + j) % MAX_NUMNODES;
  5485. cpus_complement(notcovered, covered);
  5486. cpus_and(tmp, notcovered, *cpu_map);
  5487. cpus_and(tmp, tmp, domainspan);
  5488. if (cpus_empty(tmp))
  5489. break;
  5490. nodemask = node_to_cpumask(n);
  5491. cpus_and(tmp, tmp, nodemask);
  5492. if (cpus_empty(tmp))
  5493. continue;
  5494. sg = kmalloc_node(sizeof(struct sched_group),
  5495. GFP_KERNEL, i);
  5496. if (!sg) {
  5497. printk(KERN_WARNING
  5498. "Can not alloc domain group for node %d\n", j);
  5499. goto error;
  5500. }
  5501. sg->__cpu_power = 0;
  5502. sg->cpumask = tmp;
  5503. sg->next = prev->next;
  5504. cpus_or(covered, covered, tmp);
  5505. prev->next = sg;
  5506. prev = sg;
  5507. }
  5508. }
  5509. #endif
  5510. /* Calculate CPU power for physical packages and nodes */
  5511. #ifdef CONFIG_SCHED_SMT
  5512. for_each_cpu_mask(i, *cpu_map) {
  5513. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5514. init_sched_groups_power(i, sd);
  5515. }
  5516. #endif
  5517. #ifdef CONFIG_SCHED_MC
  5518. for_each_cpu_mask(i, *cpu_map) {
  5519. struct sched_domain *sd = &per_cpu(core_domains, i);
  5520. init_sched_groups_power(i, sd);
  5521. }
  5522. #endif
  5523. for_each_cpu_mask(i, *cpu_map) {
  5524. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5525. init_sched_groups_power(i, sd);
  5526. }
  5527. #ifdef CONFIG_NUMA
  5528. for (i = 0; i < MAX_NUMNODES; i++)
  5529. init_numa_sched_groups_power(sched_group_nodes[i]);
  5530. if (sd_allnodes) {
  5531. struct sched_group *sg;
  5532. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5533. init_numa_sched_groups_power(sg);
  5534. }
  5535. #endif
  5536. /* Attach the domains */
  5537. for_each_cpu_mask(i, *cpu_map) {
  5538. struct sched_domain *sd;
  5539. #ifdef CONFIG_SCHED_SMT
  5540. sd = &per_cpu(cpu_domains, i);
  5541. #elif defined(CONFIG_SCHED_MC)
  5542. sd = &per_cpu(core_domains, i);
  5543. #else
  5544. sd = &per_cpu(phys_domains, i);
  5545. #endif
  5546. cpu_attach_domain(sd, i);
  5547. }
  5548. return 0;
  5549. #ifdef CONFIG_NUMA
  5550. error:
  5551. free_sched_groups(cpu_map);
  5552. return -ENOMEM;
  5553. #endif
  5554. }
  5555. static cpumask_t *doms_cur; /* current sched domains */
  5556. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5557. /*
  5558. * Special case: If a kmalloc of a doms_cur partition (array of
  5559. * cpumask_t) fails, then fallback to a single sched domain,
  5560. * as determined by the single cpumask_t fallback_doms.
  5561. */
  5562. static cpumask_t fallback_doms;
  5563. /*
  5564. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5565. * For now this just excludes isolated cpus, but could be used to
  5566. * exclude other special cases in the future.
  5567. */
  5568. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5569. {
  5570. int err;
  5571. ndoms_cur = 1;
  5572. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5573. if (!doms_cur)
  5574. doms_cur = &fallback_doms;
  5575. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5576. err = build_sched_domains(doms_cur);
  5577. register_sched_domain_sysctl();
  5578. return err;
  5579. }
  5580. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5581. {
  5582. free_sched_groups(cpu_map);
  5583. }
  5584. /*
  5585. * Detach sched domains from a group of cpus specified in cpu_map
  5586. * These cpus will now be attached to the NULL domain
  5587. */
  5588. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5589. {
  5590. int i;
  5591. unregister_sched_domain_sysctl();
  5592. for_each_cpu_mask(i, *cpu_map)
  5593. cpu_attach_domain(NULL, i);
  5594. synchronize_sched();
  5595. arch_destroy_sched_domains(cpu_map);
  5596. }
  5597. /*
  5598. * Partition sched domains as specified by the 'ndoms_new'
  5599. * cpumasks in the array doms_new[] of cpumasks. This compares
  5600. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5601. * It destroys each deleted domain and builds each new domain.
  5602. *
  5603. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5604. * The masks don't intersect (don't overlap.) We should setup one
  5605. * sched domain for each mask. CPUs not in any of the cpumasks will
  5606. * not be load balanced. If the same cpumask appears both in the
  5607. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5608. * it as it is.
  5609. *
  5610. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5611. * ownership of it and will kfree it when done with it. If the caller
  5612. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5613. * and partition_sched_domains() will fallback to the single partition
  5614. * 'fallback_doms'.
  5615. *
  5616. * Call with hotplug lock held
  5617. */
  5618. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5619. {
  5620. int i, j;
  5621. /* always unregister in case we don't destroy any domains */
  5622. unregister_sched_domain_sysctl();
  5623. if (doms_new == NULL) {
  5624. ndoms_new = 1;
  5625. doms_new = &fallback_doms;
  5626. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5627. }
  5628. /* Destroy deleted domains */
  5629. for (i = 0; i < ndoms_cur; i++) {
  5630. for (j = 0; j < ndoms_new; j++) {
  5631. if (cpus_equal(doms_cur[i], doms_new[j]))
  5632. goto match1;
  5633. }
  5634. /* no match - a current sched domain not in new doms_new[] */
  5635. detach_destroy_domains(doms_cur + i);
  5636. match1:
  5637. ;
  5638. }
  5639. /* Build new domains */
  5640. for (i = 0; i < ndoms_new; i++) {
  5641. for (j = 0; j < ndoms_cur; j++) {
  5642. if (cpus_equal(doms_new[i], doms_cur[j]))
  5643. goto match2;
  5644. }
  5645. /* no match - add a new doms_new */
  5646. build_sched_domains(doms_new + i);
  5647. match2:
  5648. ;
  5649. }
  5650. /* Remember the new sched domains */
  5651. if (doms_cur != &fallback_doms)
  5652. kfree(doms_cur);
  5653. doms_cur = doms_new;
  5654. ndoms_cur = ndoms_new;
  5655. register_sched_domain_sysctl();
  5656. }
  5657. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5658. static int arch_reinit_sched_domains(void)
  5659. {
  5660. int err;
  5661. mutex_lock(&sched_hotcpu_mutex);
  5662. detach_destroy_domains(&cpu_online_map);
  5663. err = arch_init_sched_domains(&cpu_online_map);
  5664. mutex_unlock(&sched_hotcpu_mutex);
  5665. return err;
  5666. }
  5667. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5668. {
  5669. int ret;
  5670. if (buf[0] != '0' && buf[0] != '1')
  5671. return -EINVAL;
  5672. if (smt)
  5673. sched_smt_power_savings = (buf[0] == '1');
  5674. else
  5675. sched_mc_power_savings = (buf[0] == '1');
  5676. ret = arch_reinit_sched_domains();
  5677. return ret ? ret : count;
  5678. }
  5679. #ifdef CONFIG_SCHED_MC
  5680. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5681. {
  5682. return sprintf(page, "%u\n", sched_mc_power_savings);
  5683. }
  5684. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5685. const char *buf, size_t count)
  5686. {
  5687. return sched_power_savings_store(buf, count, 0);
  5688. }
  5689. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5690. sched_mc_power_savings_store);
  5691. #endif
  5692. #ifdef CONFIG_SCHED_SMT
  5693. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5694. {
  5695. return sprintf(page, "%u\n", sched_smt_power_savings);
  5696. }
  5697. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5698. const char *buf, size_t count)
  5699. {
  5700. return sched_power_savings_store(buf, count, 1);
  5701. }
  5702. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5703. sched_smt_power_savings_store);
  5704. #endif
  5705. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5706. {
  5707. int err = 0;
  5708. #ifdef CONFIG_SCHED_SMT
  5709. if (smt_capable())
  5710. err = sysfs_create_file(&cls->kset.kobj,
  5711. &attr_sched_smt_power_savings.attr);
  5712. #endif
  5713. #ifdef CONFIG_SCHED_MC
  5714. if (!err && mc_capable())
  5715. err = sysfs_create_file(&cls->kset.kobj,
  5716. &attr_sched_mc_power_savings.attr);
  5717. #endif
  5718. return err;
  5719. }
  5720. #endif
  5721. /*
  5722. * Force a reinitialization of the sched domains hierarchy. The domains
  5723. * and groups cannot be updated in place without racing with the balancing
  5724. * code, so we temporarily attach all running cpus to the NULL domain
  5725. * which will prevent rebalancing while the sched domains are recalculated.
  5726. */
  5727. static int update_sched_domains(struct notifier_block *nfb,
  5728. unsigned long action, void *hcpu)
  5729. {
  5730. switch (action) {
  5731. case CPU_UP_PREPARE:
  5732. case CPU_UP_PREPARE_FROZEN:
  5733. case CPU_DOWN_PREPARE:
  5734. case CPU_DOWN_PREPARE_FROZEN:
  5735. detach_destroy_domains(&cpu_online_map);
  5736. return NOTIFY_OK;
  5737. case CPU_UP_CANCELED:
  5738. case CPU_UP_CANCELED_FROZEN:
  5739. case CPU_DOWN_FAILED:
  5740. case CPU_DOWN_FAILED_FROZEN:
  5741. case CPU_ONLINE:
  5742. case CPU_ONLINE_FROZEN:
  5743. case CPU_DEAD:
  5744. case CPU_DEAD_FROZEN:
  5745. /*
  5746. * Fall through and re-initialise the domains.
  5747. */
  5748. break;
  5749. default:
  5750. return NOTIFY_DONE;
  5751. }
  5752. /* The hotplug lock is already held by cpu_up/cpu_down */
  5753. arch_init_sched_domains(&cpu_online_map);
  5754. return NOTIFY_OK;
  5755. }
  5756. void __init sched_init_smp(void)
  5757. {
  5758. cpumask_t non_isolated_cpus;
  5759. mutex_lock(&sched_hotcpu_mutex);
  5760. arch_init_sched_domains(&cpu_online_map);
  5761. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5762. if (cpus_empty(non_isolated_cpus))
  5763. cpu_set(smp_processor_id(), non_isolated_cpus);
  5764. mutex_unlock(&sched_hotcpu_mutex);
  5765. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5766. hotcpu_notifier(update_sched_domains, 0);
  5767. /* Move init over to a non-isolated CPU */
  5768. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5769. BUG();
  5770. sched_init_granularity();
  5771. }
  5772. #else
  5773. void __init sched_init_smp(void)
  5774. {
  5775. sched_init_granularity();
  5776. }
  5777. #endif /* CONFIG_SMP */
  5778. int in_sched_functions(unsigned long addr)
  5779. {
  5780. /* Linker adds these: start and end of __sched functions */
  5781. extern char __sched_text_start[], __sched_text_end[];
  5782. return in_lock_functions(addr) ||
  5783. (addr >= (unsigned long)__sched_text_start
  5784. && addr < (unsigned long)__sched_text_end);
  5785. }
  5786. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5787. {
  5788. cfs_rq->tasks_timeline = RB_ROOT;
  5789. #ifdef CONFIG_FAIR_GROUP_SCHED
  5790. cfs_rq->rq = rq;
  5791. #endif
  5792. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5793. }
  5794. void __init sched_init(void)
  5795. {
  5796. int highest_cpu = 0;
  5797. int i, j;
  5798. for_each_possible_cpu(i) {
  5799. struct rt_prio_array *array;
  5800. struct rq *rq;
  5801. rq = cpu_rq(i);
  5802. spin_lock_init(&rq->lock);
  5803. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5804. rq->nr_running = 0;
  5805. rq->clock = 1;
  5806. init_cfs_rq(&rq->cfs, rq);
  5807. #ifdef CONFIG_FAIR_GROUP_SCHED
  5808. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5809. {
  5810. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5811. struct sched_entity *se =
  5812. &per_cpu(init_sched_entity, i);
  5813. init_cfs_rq_p[i] = cfs_rq;
  5814. init_cfs_rq(cfs_rq, rq);
  5815. cfs_rq->tg = &init_task_group;
  5816. list_add(&cfs_rq->leaf_cfs_rq_list,
  5817. &rq->leaf_cfs_rq_list);
  5818. init_sched_entity_p[i] = se;
  5819. se->cfs_rq = &rq->cfs;
  5820. se->my_q = cfs_rq;
  5821. se->load.weight = init_task_group_load;
  5822. se->load.inv_weight =
  5823. div64_64(1ULL<<32, init_task_group_load);
  5824. se->parent = NULL;
  5825. }
  5826. init_task_group.shares = init_task_group_load;
  5827. spin_lock_init(&init_task_group.lock);
  5828. #endif
  5829. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5830. rq->cpu_load[j] = 0;
  5831. #ifdef CONFIG_SMP
  5832. rq->sd = NULL;
  5833. rq->active_balance = 0;
  5834. rq->next_balance = jiffies;
  5835. rq->push_cpu = 0;
  5836. rq->cpu = i;
  5837. rq->migration_thread = NULL;
  5838. INIT_LIST_HEAD(&rq->migration_queue);
  5839. #endif
  5840. atomic_set(&rq->nr_iowait, 0);
  5841. array = &rq->rt.active;
  5842. for (j = 0; j < MAX_RT_PRIO; j++) {
  5843. INIT_LIST_HEAD(array->queue + j);
  5844. __clear_bit(j, array->bitmap);
  5845. }
  5846. highest_cpu = i;
  5847. /* delimiter for bitsearch: */
  5848. __set_bit(MAX_RT_PRIO, array->bitmap);
  5849. }
  5850. set_load_weight(&init_task);
  5851. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5852. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5853. #endif
  5854. #ifdef CONFIG_SMP
  5855. nr_cpu_ids = highest_cpu + 1;
  5856. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5857. #endif
  5858. #ifdef CONFIG_RT_MUTEXES
  5859. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5860. #endif
  5861. /*
  5862. * The boot idle thread does lazy MMU switching as well:
  5863. */
  5864. atomic_inc(&init_mm.mm_count);
  5865. enter_lazy_tlb(&init_mm, current);
  5866. /*
  5867. * Make us the idle thread. Technically, schedule() should not be
  5868. * called from this thread, however somewhere below it might be,
  5869. * but because we are the idle thread, we just pick up running again
  5870. * when this runqueue becomes "idle".
  5871. */
  5872. init_idle(current, smp_processor_id());
  5873. /*
  5874. * During early bootup we pretend to be a normal task:
  5875. */
  5876. current->sched_class = &fair_sched_class;
  5877. }
  5878. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5879. void __might_sleep(char *file, int line)
  5880. {
  5881. #ifdef in_atomic
  5882. static unsigned long prev_jiffy; /* ratelimiting */
  5883. if ((in_atomic() || irqs_disabled()) &&
  5884. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5885. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5886. return;
  5887. prev_jiffy = jiffies;
  5888. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5889. " context at %s:%d\n", file, line);
  5890. printk("in_atomic():%d, irqs_disabled():%d\n",
  5891. in_atomic(), irqs_disabled());
  5892. debug_show_held_locks(current);
  5893. if (irqs_disabled())
  5894. print_irqtrace_events(current);
  5895. dump_stack();
  5896. }
  5897. #endif
  5898. }
  5899. EXPORT_SYMBOL(__might_sleep);
  5900. #endif
  5901. #ifdef CONFIG_MAGIC_SYSRQ
  5902. static void normalize_task(struct rq *rq, struct task_struct *p)
  5903. {
  5904. int on_rq;
  5905. update_rq_clock(rq);
  5906. on_rq = p->se.on_rq;
  5907. if (on_rq)
  5908. deactivate_task(rq, p, 0);
  5909. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5910. if (on_rq) {
  5911. activate_task(rq, p, 0);
  5912. resched_task(rq->curr);
  5913. }
  5914. }
  5915. void normalize_rt_tasks(void)
  5916. {
  5917. struct task_struct *g, *p;
  5918. unsigned long flags;
  5919. struct rq *rq;
  5920. read_lock_irq(&tasklist_lock);
  5921. do_each_thread(g, p) {
  5922. /*
  5923. * Only normalize user tasks:
  5924. */
  5925. if (!p->mm)
  5926. continue;
  5927. p->se.exec_start = 0;
  5928. #ifdef CONFIG_SCHEDSTATS
  5929. p->se.wait_start = 0;
  5930. p->se.sleep_start = 0;
  5931. p->se.block_start = 0;
  5932. #endif
  5933. task_rq(p)->clock = 0;
  5934. if (!rt_task(p)) {
  5935. /*
  5936. * Renice negative nice level userspace
  5937. * tasks back to 0:
  5938. */
  5939. if (TASK_NICE(p) < 0 && p->mm)
  5940. set_user_nice(p, 0);
  5941. continue;
  5942. }
  5943. spin_lock_irqsave(&p->pi_lock, flags);
  5944. rq = __task_rq_lock(p);
  5945. normalize_task(rq, p);
  5946. __task_rq_unlock(rq);
  5947. spin_unlock_irqrestore(&p->pi_lock, flags);
  5948. } while_each_thread(g, p);
  5949. read_unlock_irq(&tasklist_lock);
  5950. }
  5951. #endif /* CONFIG_MAGIC_SYSRQ */
  5952. #ifdef CONFIG_IA64
  5953. /*
  5954. * These functions are only useful for the IA64 MCA handling.
  5955. *
  5956. * They can only be called when the whole system has been
  5957. * stopped - every CPU needs to be quiescent, and no scheduling
  5958. * activity can take place. Using them for anything else would
  5959. * be a serious bug, and as a result, they aren't even visible
  5960. * under any other configuration.
  5961. */
  5962. /**
  5963. * curr_task - return the current task for a given cpu.
  5964. * @cpu: the processor in question.
  5965. *
  5966. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5967. */
  5968. struct task_struct *curr_task(int cpu)
  5969. {
  5970. return cpu_curr(cpu);
  5971. }
  5972. /**
  5973. * set_curr_task - set the current task for a given cpu.
  5974. * @cpu: the processor in question.
  5975. * @p: the task pointer to set.
  5976. *
  5977. * Description: This function must only be used when non-maskable interrupts
  5978. * are serviced on a separate stack. It allows the architecture to switch the
  5979. * notion of the current task on a cpu in a non-blocking manner. This function
  5980. * must be called with all CPU's synchronized, and interrupts disabled, the
  5981. * and caller must save the original value of the current task (see
  5982. * curr_task() above) and restore that value before reenabling interrupts and
  5983. * re-starting the system.
  5984. *
  5985. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5986. */
  5987. void set_curr_task(int cpu, struct task_struct *p)
  5988. {
  5989. cpu_curr(cpu) = p;
  5990. }
  5991. #endif
  5992. #ifdef CONFIG_FAIR_GROUP_SCHED
  5993. /* allocate runqueue etc for a new task group */
  5994. struct task_group *sched_create_group(void)
  5995. {
  5996. struct task_group *tg;
  5997. struct cfs_rq *cfs_rq;
  5998. struct sched_entity *se;
  5999. struct rq *rq;
  6000. int i;
  6001. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6002. if (!tg)
  6003. return ERR_PTR(-ENOMEM);
  6004. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6005. if (!tg->cfs_rq)
  6006. goto err;
  6007. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6008. if (!tg->se)
  6009. goto err;
  6010. for_each_possible_cpu(i) {
  6011. rq = cpu_rq(i);
  6012. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6013. cpu_to_node(i));
  6014. if (!cfs_rq)
  6015. goto err;
  6016. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6017. cpu_to_node(i));
  6018. if (!se)
  6019. goto err;
  6020. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6021. memset(se, 0, sizeof(struct sched_entity));
  6022. tg->cfs_rq[i] = cfs_rq;
  6023. init_cfs_rq(cfs_rq, rq);
  6024. cfs_rq->tg = tg;
  6025. tg->se[i] = se;
  6026. se->cfs_rq = &rq->cfs;
  6027. se->my_q = cfs_rq;
  6028. se->load.weight = NICE_0_LOAD;
  6029. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6030. se->parent = NULL;
  6031. }
  6032. for_each_possible_cpu(i) {
  6033. rq = cpu_rq(i);
  6034. cfs_rq = tg->cfs_rq[i];
  6035. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6036. }
  6037. tg->shares = NICE_0_LOAD;
  6038. spin_lock_init(&tg->lock);
  6039. return tg;
  6040. err:
  6041. for_each_possible_cpu(i) {
  6042. if (tg->cfs_rq)
  6043. kfree(tg->cfs_rq[i]);
  6044. if (tg->se)
  6045. kfree(tg->se[i]);
  6046. }
  6047. kfree(tg->cfs_rq);
  6048. kfree(tg->se);
  6049. kfree(tg);
  6050. return ERR_PTR(-ENOMEM);
  6051. }
  6052. /* rcu callback to free various structures associated with a task group */
  6053. static void free_sched_group(struct rcu_head *rhp)
  6054. {
  6055. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6056. struct cfs_rq *cfs_rq;
  6057. struct sched_entity *se;
  6058. int i;
  6059. /* now it should be safe to free those cfs_rqs */
  6060. for_each_possible_cpu(i) {
  6061. cfs_rq = tg->cfs_rq[i];
  6062. kfree(cfs_rq);
  6063. se = tg->se[i];
  6064. kfree(se);
  6065. }
  6066. kfree(tg->cfs_rq);
  6067. kfree(tg->se);
  6068. kfree(tg);
  6069. }
  6070. /* Destroy runqueue etc associated with a task group */
  6071. void sched_destroy_group(struct task_group *tg)
  6072. {
  6073. struct cfs_rq *cfs_rq = NULL;
  6074. int i;
  6075. for_each_possible_cpu(i) {
  6076. cfs_rq = tg->cfs_rq[i];
  6077. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6078. }
  6079. BUG_ON(!cfs_rq);
  6080. /* wait for possible concurrent references to cfs_rqs complete */
  6081. call_rcu(&tg->rcu, free_sched_group);
  6082. }
  6083. /* change task's runqueue when it moves between groups.
  6084. * The caller of this function should have put the task in its new group
  6085. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6086. * reflect its new group.
  6087. */
  6088. void sched_move_task(struct task_struct *tsk)
  6089. {
  6090. int on_rq, running;
  6091. unsigned long flags;
  6092. struct rq *rq;
  6093. rq = task_rq_lock(tsk, &flags);
  6094. if (tsk->sched_class != &fair_sched_class) {
  6095. set_task_cfs_rq(tsk, task_cpu(tsk));
  6096. goto done;
  6097. }
  6098. update_rq_clock(rq);
  6099. running = task_running(rq, tsk);
  6100. on_rq = tsk->se.on_rq;
  6101. if (on_rq) {
  6102. dequeue_task(rq, tsk, 0);
  6103. if (unlikely(running))
  6104. tsk->sched_class->put_prev_task(rq, tsk);
  6105. }
  6106. set_task_cfs_rq(tsk, task_cpu(tsk));
  6107. if (on_rq) {
  6108. if (unlikely(running))
  6109. tsk->sched_class->set_curr_task(rq);
  6110. enqueue_task(rq, tsk, 0);
  6111. }
  6112. done:
  6113. task_rq_unlock(rq, &flags);
  6114. }
  6115. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6116. {
  6117. struct cfs_rq *cfs_rq = se->cfs_rq;
  6118. struct rq *rq = cfs_rq->rq;
  6119. int on_rq;
  6120. spin_lock_irq(&rq->lock);
  6121. on_rq = se->on_rq;
  6122. if (on_rq)
  6123. dequeue_entity(cfs_rq, se, 0);
  6124. se->load.weight = shares;
  6125. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6126. if (on_rq)
  6127. enqueue_entity(cfs_rq, se, 0);
  6128. spin_unlock_irq(&rq->lock);
  6129. }
  6130. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6131. {
  6132. int i;
  6133. spin_lock(&tg->lock);
  6134. if (tg->shares == shares)
  6135. goto done;
  6136. tg->shares = shares;
  6137. for_each_possible_cpu(i)
  6138. set_se_shares(tg->se[i], shares);
  6139. done:
  6140. spin_unlock(&tg->lock);
  6141. return 0;
  6142. }
  6143. unsigned long sched_group_shares(struct task_group *tg)
  6144. {
  6145. return tg->shares;
  6146. }
  6147. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6148. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6149. /* return corresponding task_group object of a cgroup */
  6150. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6151. {
  6152. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6153. struct task_group, css);
  6154. }
  6155. static struct cgroup_subsys_state *
  6156. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6157. {
  6158. struct task_group *tg;
  6159. if (!cgrp->parent) {
  6160. /* This is early initialization for the top cgroup */
  6161. init_task_group.css.cgroup = cgrp;
  6162. return &init_task_group.css;
  6163. }
  6164. /* we support only 1-level deep hierarchical scheduler atm */
  6165. if (cgrp->parent->parent)
  6166. return ERR_PTR(-EINVAL);
  6167. tg = sched_create_group();
  6168. if (IS_ERR(tg))
  6169. return ERR_PTR(-ENOMEM);
  6170. /* Bind the cgroup to task_group object we just created */
  6171. tg->css.cgroup = cgrp;
  6172. return &tg->css;
  6173. }
  6174. static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
  6175. struct cgroup *cgrp)
  6176. {
  6177. struct task_group *tg = cgroup_tg(cgrp);
  6178. sched_destroy_group(tg);
  6179. }
  6180. static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
  6181. struct cgroup *cgrp, struct task_struct *tsk)
  6182. {
  6183. /* We don't support RT-tasks being in separate groups */
  6184. if (tsk->sched_class != &fair_sched_class)
  6185. return -EINVAL;
  6186. return 0;
  6187. }
  6188. static void
  6189. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6190. struct cgroup *old_cont, struct task_struct *tsk)
  6191. {
  6192. sched_move_task(tsk);
  6193. }
  6194. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6195. u64 shareval)
  6196. {
  6197. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6198. }
  6199. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6200. {
  6201. struct task_group *tg = cgroup_tg(cgrp);
  6202. return (u64) tg->shares;
  6203. }
  6204. static u64 cpu_usage_read(struct cgroup *cgrp, struct cftype *cft)
  6205. {
  6206. struct task_group *tg = cgroup_tg(cgrp);
  6207. unsigned long flags;
  6208. u64 res = 0;
  6209. int i;
  6210. for_each_possible_cpu(i) {
  6211. /*
  6212. * Lock to prevent races with updating 64-bit counters
  6213. * on 32-bit arches.
  6214. */
  6215. spin_lock_irqsave(&cpu_rq(i)->lock, flags);
  6216. res += tg->se[i]->sum_exec_runtime;
  6217. spin_unlock_irqrestore(&cpu_rq(i)->lock, flags);
  6218. }
  6219. /* Convert from ns to ms */
  6220. do_div(res, NSEC_PER_MSEC);
  6221. return res;
  6222. }
  6223. static struct cftype cpu_files[] = {
  6224. {
  6225. .name = "shares",
  6226. .read_uint = cpu_shares_read_uint,
  6227. .write_uint = cpu_shares_write_uint,
  6228. },
  6229. {
  6230. .name = "usage",
  6231. .read_uint = cpu_usage_read,
  6232. },
  6233. };
  6234. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6235. {
  6236. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6237. }
  6238. struct cgroup_subsys cpu_cgroup_subsys = {
  6239. .name = "cpu",
  6240. .create = cpu_cgroup_create,
  6241. .destroy = cpu_cgroup_destroy,
  6242. .can_attach = cpu_cgroup_can_attach,
  6243. .attach = cpu_cgroup_attach,
  6244. .populate = cpu_cgroup_populate,
  6245. .subsys_id = cpu_cgroup_subsys_id,
  6246. .early_init = 1,
  6247. };
  6248. #endif /* CONFIG_FAIR_CGROUP_SCHED */