page_alloc.c 171 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/ftrace_event.h>
  56. #include <linux/memcontrol.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/migrate.h>
  59. #include <linux/page-debug-flags.h>
  60. #include <linux/hugetlb.h>
  61. #include <linux/sched/rt.h>
  62. #include <asm/tlbflush.h>
  63. #include <asm/div64.h>
  64. #include "internal.h"
  65. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  66. DEFINE_PER_CPU(int, numa_node);
  67. EXPORT_PER_CPU_SYMBOL(numa_node);
  68. #endif
  69. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  70. /*
  71. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  72. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  73. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  74. * defined in <linux/topology.h>.
  75. */
  76. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  77. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  78. #endif
  79. /*
  80. * Array of node states.
  81. */
  82. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  83. [N_POSSIBLE] = NODE_MASK_ALL,
  84. [N_ONLINE] = { { [0] = 1UL } },
  85. #ifndef CONFIG_NUMA
  86. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  87. #ifdef CONFIG_HIGHMEM
  88. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  89. #endif
  90. #ifdef CONFIG_MOVABLE_NODE
  91. [N_MEMORY] = { { [0] = 1UL } },
  92. #endif
  93. [N_CPU] = { { [0] = 1UL } },
  94. #endif /* NUMA */
  95. };
  96. EXPORT_SYMBOL(node_states);
  97. unsigned long totalram_pages __read_mostly;
  98. unsigned long totalreserve_pages __read_mostly;
  99. /*
  100. * When calculating the number of globally allowed dirty pages, there
  101. * is a certain number of per-zone reserves that should not be
  102. * considered dirtyable memory. This is the sum of those reserves
  103. * over all existing zones that contribute dirtyable memory.
  104. */
  105. unsigned long dirty_balance_reserve __read_mostly;
  106. int percpu_pagelist_fraction;
  107. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  108. #ifdef CONFIG_PM_SLEEP
  109. /*
  110. * The following functions are used by the suspend/hibernate code to temporarily
  111. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  112. * while devices are suspended. To avoid races with the suspend/hibernate code,
  113. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  114. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  115. * guaranteed not to run in parallel with that modification).
  116. */
  117. static gfp_t saved_gfp_mask;
  118. void pm_restore_gfp_mask(void)
  119. {
  120. WARN_ON(!mutex_is_locked(&pm_mutex));
  121. if (saved_gfp_mask) {
  122. gfp_allowed_mask = saved_gfp_mask;
  123. saved_gfp_mask = 0;
  124. }
  125. }
  126. void pm_restrict_gfp_mask(void)
  127. {
  128. WARN_ON(!mutex_is_locked(&pm_mutex));
  129. WARN_ON(saved_gfp_mask);
  130. saved_gfp_mask = gfp_allowed_mask;
  131. gfp_allowed_mask &= ~GFP_IOFS;
  132. }
  133. bool pm_suspended_storage(void)
  134. {
  135. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  136. return false;
  137. return true;
  138. }
  139. #endif /* CONFIG_PM_SLEEP */
  140. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  141. int pageblock_order __read_mostly;
  142. #endif
  143. static void __free_pages_ok(struct page *page, unsigned int order);
  144. /*
  145. * results with 256, 32 in the lowmem_reserve sysctl:
  146. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  147. * 1G machine -> (16M dma, 784M normal, 224M high)
  148. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  149. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  150. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  151. *
  152. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  153. * don't need any ZONE_NORMAL reservation
  154. */
  155. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  156. #ifdef CONFIG_ZONE_DMA
  157. 256,
  158. #endif
  159. #ifdef CONFIG_ZONE_DMA32
  160. 256,
  161. #endif
  162. #ifdef CONFIG_HIGHMEM
  163. 32,
  164. #endif
  165. 32,
  166. };
  167. EXPORT_SYMBOL(totalram_pages);
  168. static char * const zone_names[MAX_NR_ZONES] = {
  169. #ifdef CONFIG_ZONE_DMA
  170. "DMA",
  171. #endif
  172. #ifdef CONFIG_ZONE_DMA32
  173. "DMA32",
  174. #endif
  175. "Normal",
  176. #ifdef CONFIG_HIGHMEM
  177. "HighMem",
  178. #endif
  179. "Movable",
  180. };
  181. int min_free_kbytes = 1024;
  182. static unsigned long __meminitdata nr_kernel_pages;
  183. static unsigned long __meminitdata nr_all_pages;
  184. static unsigned long __meminitdata dma_reserve;
  185. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  186. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  187. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  188. static unsigned long __initdata required_kernelcore;
  189. static unsigned long __initdata required_movablecore;
  190. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  191. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  192. int movable_zone;
  193. EXPORT_SYMBOL(movable_zone);
  194. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  195. #if MAX_NUMNODES > 1
  196. int nr_node_ids __read_mostly = MAX_NUMNODES;
  197. int nr_online_nodes __read_mostly = 1;
  198. EXPORT_SYMBOL(nr_node_ids);
  199. EXPORT_SYMBOL(nr_online_nodes);
  200. #endif
  201. int page_group_by_mobility_disabled __read_mostly;
  202. void set_pageblock_migratetype(struct page *page, int migratetype)
  203. {
  204. if (unlikely(page_group_by_mobility_disabled))
  205. migratetype = MIGRATE_UNMOVABLE;
  206. set_pageblock_flags_group(page, (unsigned long)migratetype,
  207. PB_migrate, PB_migrate_end);
  208. }
  209. bool oom_killer_disabled __read_mostly;
  210. #ifdef CONFIG_DEBUG_VM
  211. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  212. {
  213. int ret = 0;
  214. unsigned seq;
  215. unsigned long pfn = page_to_pfn(page);
  216. unsigned long sp, start_pfn;
  217. do {
  218. seq = zone_span_seqbegin(zone);
  219. start_pfn = zone->zone_start_pfn;
  220. sp = zone->spanned_pages;
  221. if (!zone_spans_pfn(zone, pfn))
  222. ret = 1;
  223. } while (zone_span_seqretry(zone, seq));
  224. if (ret)
  225. pr_err("page %lu outside zone [ %lu - %lu ]\n",
  226. pfn, start_pfn, start_pfn + sp);
  227. return ret;
  228. }
  229. static int page_is_consistent(struct zone *zone, struct page *page)
  230. {
  231. if (!pfn_valid_within(page_to_pfn(page)))
  232. return 0;
  233. if (zone != page_zone(page))
  234. return 0;
  235. return 1;
  236. }
  237. /*
  238. * Temporary debugging check for pages not lying within a given zone.
  239. */
  240. static int bad_range(struct zone *zone, struct page *page)
  241. {
  242. if (page_outside_zone_boundaries(zone, page))
  243. return 1;
  244. if (!page_is_consistent(zone, page))
  245. return 1;
  246. return 0;
  247. }
  248. #else
  249. static inline int bad_range(struct zone *zone, struct page *page)
  250. {
  251. return 0;
  252. }
  253. #endif
  254. static void bad_page(struct page *page)
  255. {
  256. static unsigned long resume;
  257. static unsigned long nr_shown;
  258. static unsigned long nr_unshown;
  259. /* Don't complain about poisoned pages */
  260. if (PageHWPoison(page)) {
  261. page_mapcount_reset(page); /* remove PageBuddy */
  262. return;
  263. }
  264. /*
  265. * Allow a burst of 60 reports, then keep quiet for that minute;
  266. * or allow a steady drip of one report per second.
  267. */
  268. if (nr_shown == 60) {
  269. if (time_before(jiffies, resume)) {
  270. nr_unshown++;
  271. goto out;
  272. }
  273. if (nr_unshown) {
  274. printk(KERN_ALERT
  275. "BUG: Bad page state: %lu messages suppressed\n",
  276. nr_unshown);
  277. nr_unshown = 0;
  278. }
  279. nr_shown = 0;
  280. }
  281. if (nr_shown++ == 0)
  282. resume = jiffies + 60 * HZ;
  283. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  284. current->comm, page_to_pfn(page));
  285. dump_page(page);
  286. print_modules();
  287. dump_stack();
  288. out:
  289. /* Leave bad fields for debug, except PageBuddy could make trouble */
  290. page_mapcount_reset(page); /* remove PageBuddy */
  291. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  292. }
  293. /*
  294. * Higher-order pages are called "compound pages". They are structured thusly:
  295. *
  296. * The first PAGE_SIZE page is called the "head page".
  297. *
  298. * The remaining PAGE_SIZE pages are called "tail pages".
  299. *
  300. * All pages have PG_compound set. All tail pages have their ->first_page
  301. * pointing at the head page.
  302. *
  303. * The first tail page's ->lru.next holds the address of the compound page's
  304. * put_page() function. Its ->lru.prev holds the order of allocation.
  305. * This usage means that zero-order pages may not be compound.
  306. */
  307. static void free_compound_page(struct page *page)
  308. {
  309. __free_pages_ok(page, compound_order(page));
  310. }
  311. void prep_compound_page(struct page *page, unsigned long order)
  312. {
  313. int i;
  314. int nr_pages = 1 << order;
  315. set_compound_page_dtor(page, free_compound_page);
  316. set_compound_order(page, order);
  317. __SetPageHead(page);
  318. for (i = 1; i < nr_pages; i++) {
  319. struct page *p = page + i;
  320. __SetPageTail(p);
  321. set_page_count(p, 0);
  322. p->first_page = page;
  323. }
  324. }
  325. /* update __split_huge_page_refcount if you change this function */
  326. static int destroy_compound_page(struct page *page, unsigned long order)
  327. {
  328. int i;
  329. int nr_pages = 1 << order;
  330. int bad = 0;
  331. if (unlikely(compound_order(page) != order)) {
  332. bad_page(page);
  333. bad++;
  334. }
  335. __ClearPageHead(page);
  336. for (i = 1; i < nr_pages; i++) {
  337. struct page *p = page + i;
  338. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  339. bad_page(page);
  340. bad++;
  341. }
  342. __ClearPageTail(p);
  343. }
  344. return bad;
  345. }
  346. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  347. {
  348. int i;
  349. /*
  350. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  351. * and __GFP_HIGHMEM from hard or soft interrupt context.
  352. */
  353. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  354. for (i = 0; i < (1 << order); i++)
  355. clear_highpage(page + i);
  356. }
  357. #ifdef CONFIG_DEBUG_PAGEALLOC
  358. unsigned int _debug_guardpage_minorder;
  359. static int __init debug_guardpage_minorder_setup(char *buf)
  360. {
  361. unsigned long res;
  362. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  363. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  364. return 0;
  365. }
  366. _debug_guardpage_minorder = res;
  367. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  368. return 0;
  369. }
  370. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  371. static inline void set_page_guard_flag(struct page *page)
  372. {
  373. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  374. }
  375. static inline void clear_page_guard_flag(struct page *page)
  376. {
  377. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  378. }
  379. #else
  380. static inline void set_page_guard_flag(struct page *page) { }
  381. static inline void clear_page_guard_flag(struct page *page) { }
  382. #endif
  383. static inline void set_page_order(struct page *page, int order)
  384. {
  385. set_page_private(page, order);
  386. __SetPageBuddy(page);
  387. }
  388. static inline void rmv_page_order(struct page *page)
  389. {
  390. __ClearPageBuddy(page);
  391. set_page_private(page, 0);
  392. }
  393. /*
  394. * Locate the struct page for both the matching buddy in our
  395. * pair (buddy1) and the combined O(n+1) page they form (page).
  396. *
  397. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  398. * the following equation:
  399. * B2 = B1 ^ (1 << O)
  400. * For example, if the starting buddy (buddy2) is #8 its order
  401. * 1 buddy is #10:
  402. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  403. *
  404. * 2) Any buddy B will have an order O+1 parent P which
  405. * satisfies the following equation:
  406. * P = B & ~(1 << O)
  407. *
  408. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  409. */
  410. static inline unsigned long
  411. __find_buddy_index(unsigned long page_idx, unsigned int order)
  412. {
  413. return page_idx ^ (1 << order);
  414. }
  415. /*
  416. * This function checks whether a page is free && is the buddy
  417. * we can do coalesce a page and its buddy if
  418. * (a) the buddy is not in a hole &&
  419. * (b) the buddy is in the buddy system &&
  420. * (c) a page and its buddy have the same order &&
  421. * (d) a page and its buddy are in the same zone.
  422. *
  423. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  424. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  425. *
  426. * For recording page's order, we use page_private(page).
  427. */
  428. static inline int page_is_buddy(struct page *page, struct page *buddy,
  429. int order)
  430. {
  431. if (!pfn_valid_within(page_to_pfn(buddy)))
  432. return 0;
  433. if (page_zone_id(page) != page_zone_id(buddy))
  434. return 0;
  435. if (page_is_guard(buddy) && page_order(buddy) == order) {
  436. VM_BUG_ON(page_count(buddy) != 0);
  437. return 1;
  438. }
  439. if (PageBuddy(buddy) && page_order(buddy) == order) {
  440. VM_BUG_ON(page_count(buddy) != 0);
  441. return 1;
  442. }
  443. return 0;
  444. }
  445. /*
  446. * Freeing function for a buddy system allocator.
  447. *
  448. * The concept of a buddy system is to maintain direct-mapped table
  449. * (containing bit values) for memory blocks of various "orders".
  450. * The bottom level table contains the map for the smallest allocatable
  451. * units of memory (here, pages), and each level above it describes
  452. * pairs of units from the levels below, hence, "buddies".
  453. * At a high level, all that happens here is marking the table entry
  454. * at the bottom level available, and propagating the changes upward
  455. * as necessary, plus some accounting needed to play nicely with other
  456. * parts of the VM system.
  457. * At each level, we keep a list of pages, which are heads of continuous
  458. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  459. * order is recorded in page_private(page) field.
  460. * So when we are allocating or freeing one, we can derive the state of the
  461. * other. That is, if we allocate a small block, and both were
  462. * free, the remainder of the region must be split into blocks.
  463. * If a block is freed, and its buddy is also free, then this
  464. * triggers coalescing into a block of larger size.
  465. *
  466. * -- nyc
  467. */
  468. static inline void __free_one_page(struct page *page,
  469. struct zone *zone, unsigned int order,
  470. int migratetype)
  471. {
  472. unsigned long page_idx;
  473. unsigned long combined_idx;
  474. unsigned long uninitialized_var(buddy_idx);
  475. struct page *buddy;
  476. VM_BUG_ON(!zone_is_initialized(zone));
  477. if (unlikely(PageCompound(page)))
  478. if (unlikely(destroy_compound_page(page, order)))
  479. return;
  480. VM_BUG_ON(migratetype == -1);
  481. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  482. VM_BUG_ON(page_idx & ((1 << order) - 1));
  483. VM_BUG_ON(bad_range(zone, page));
  484. while (order < MAX_ORDER-1) {
  485. buddy_idx = __find_buddy_index(page_idx, order);
  486. buddy = page + (buddy_idx - page_idx);
  487. if (!page_is_buddy(page, buddy, order))
  488. break;
  489. /*
  490. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  491. * merge with it and move up one order.
  492. */
  493. if (page_is_guard(buddy)) {
  494. clear_page_guard_flag(buddy);
  495. set_page_private(page, 0);
  496. __mod_zone_freepage_state(zone, 1 << order,
  497. migratetype);
  498. } else {
  499. list_del(&buddy->lru);
  500. zone->free_area[order].nr_free--;
  501. rmv_page_order(buddy);
  502. }
  503. combined_idx = buddy_idx & page_idx;
  504. page = page + (combined_idx - page_idx);
  505. page_idx = combined_idx;
  506. order++;
  507. }
  508. set_page_order(page, order);
  509. /*
  510. * If this is not the largest possible page, check if the buddy
  511. * of the next-highest order is free. If it is, it's possible
  512. * that pages are being freed that will coalesce soon. In case,
  513. * that is happening, add the free page to the tail of the list
  514. * so it's less likely to be used soon and more likely to be merged
  515. * as a higher order page
  516. */
  517. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  518. struct page *higher_page, *higher_buddy;
  519. combined_idx = buddy_idx & page_idx;
  520. higher_page = page + (combined_idx - page_idx);
  521. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  522. higher_buddy = higher_page + (buddy_idx - combined_idx);
  523. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  524. list_add_tail(&page->lru,
  525. &zone->free_area[order].free_list[migratetype]);
  526. goto out;
  527. }
  528. }
  529. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  530. out:
  531. zone->free_area[order].nr_free++;
  532. }
  533. static inline int free_pages_check(struct page *page)
  534. {
  535. if (unlikely(page_mapcount(page) |
  536. (page->mapping != NULL) |
  537. (atomic_read(&page->_count) != 0) |
  538. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  539. (mem_cgroup_bad_page_check(page)))) {
  540. bad_page(page);
  541. return 1;
  542. }
  543. page_nid_reset_last(page);
  544. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  545. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  546. return 0;
  547. }
  548. /*
  549. * Frees a number of pages from the PCP lists
  550. * Assumes all pages on list are in same zone, and of same order.
  551. * count is the number of pages to free.
  552. *
  553. * If the zone was previously in an "all pages pinned" state then look to
  554. * see if this freeing clears that state.
  555. *
  556. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  557. * pinned" detection logic.
  558. */
  559. static void free_pcppages_bulk(struct zone *zone, int count,
  560. struct per_cpu_pages *pcp)
  561. {
  562. int migratetype = 0;
  563. int batch_free = 0;
  564. int to_free = count;
  565. spin_lock(&zone->lock);
  566. zone->all_unreclaimable = 0;
  567. zone->pages_scanned = 0;
  568. while (to_free) {
  569. struct page *page;
  570. struct list_head *list;
  571. /*
  572. * Remove pages from lists in a round-robin fashion. A
  573. * batch_free count is maintained that is incremented when an
  574. * empty list is encountered. This is so more pages are freed
  575. * off fuller lists instead of spinning excessively around empty
  576. * lists
  577. */
  578. do {
  579. batch_free++;
  580. if (++migratetype == MIGRATE_PCPTYPES)
  581. migratetype = 0;
  582. list = &pcp->lists[migratetype];
  583. } while (list_empty(list));
  584. /* This is the only non-empty list. Free them all. */
  585. if (batch_free == MIGRATE_PCPTYPES)
  586. batch_free = to_free;
  587. do {
  588. int mt; /* migratetype of the to-be-freed page */
  589. page = list_entry(list->prev, struct page, lru);
  590. /* must delete as __free_one_page list manipulates */
  591. list_del(&page->lru);
  592. mt = get_freepage_migratetype(page);
  593. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  594. __free_one_page(page, zone, 0, mt);
  595. trace_mm_page_pcpu_drain(page, 0, mt);
  596. if (likely(!is_migrate_isolate_page(page))) {
  597. __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
  598. if (is_migrate_cma(mt))
  599. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
  600. }
  601. } while (--to_free && --batch_free && !list_empty(list));
  602. }
  603. spin_unlock(&zone->lock);
  604. }
  605. static void free_one_page(struct zone *zone, struct page *page, int order,
  606. int migratetype)
  607. {
  608. spin_lock(&zone->lock);
  609. zone->all_unreclaimable = 0;
  610. zone->pages_scanned = 0;
  611. __free_one_page(page, zone, order, migratetype);
  612. if (unlikely(!is_migrate_isolate(migratetype)))
  613. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  614. spin_unlock(&zone->lock);
  615. }
  616. static bool free_pages_prepare(struct page *page, unsigned int order)
  617. {
  618. int i;
  619. int bad = 0;
  620. trace_mm_page_free(page, order);
  621. kmemcheck_free_shadow(page, order);
  622. if (PageAnon(page))
  623. page->mapping = NULL;
  624. for (i = 0; i < (1 << order); i++)
  625. bad += free_pages_check(page + i);
  626. if (bad)
  627. return false;
  628. if (!PageHighMem(page)) {
  629. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  630. debug_check_no_obj_freed(page_address(page),
  631. PAGE_SIZE << order);
  632. }
  633. arch_free_page(page, order);
  634. kernel_map_pages(page, 1 << order, 0);
  635. return true;
  636. }
  637. static void __free_pages_ok(struct page *page, unsigned int order)
  638. {
  639. unsigned long flags;
  640. int migratetype;
  641. if (!free_pages_prepare(page, order))
  642. return;
  643. local_irq_save(flags);
  644. __count_vm_events(PGFREE, 1 << order);
  645. migratetype = get_pageblock_migratetype(page);
  646. set_freepage_migratetype(page, migratetype);
  647. free_one_page(page_zone(page), page, order, migratetype);
  648. local_irq_restore(flags);
  649. }
  650. /*
  651. * Read access to zone->managed_pages is safe because it's unsigned long,
  652. * but we still need to serialize writers. Currently all callers of
  653. * __free_pages_bootmem() except put_page_bootmem() should only be used
  654. * at boot time. So for shorter boot time, we shift the burden to
  655. * put_page_bootmem() to serialize writers.
  656. */
  657. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  658. {
  659. unsigned int nr_pages = 1 << order;
  660. unsigned int loop;
  661. prefetchw(page);
  662. for (loop = 0; loop < nr_pages; loop++) {
  663. struct page *p = &page[loop];
  664. if (loop + 1 < nr_pages)
  665. prefetchw(p + 1);
  666. __ClearPageReserved(p);
  667. set_page_count(p, 0);
  668. }
  669. page_zone(page)->managed_pages += 1 << order;
  670. set_page_refcounted(page);
  671. __free_pages(page, order);
  672. }
  673. #ifdef CONFIG_CMA
  674. /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
  675. void __init init_cma_reserved_pageblock(struct page *page)
  676. {
  677. unsigned i = pageblock_nr_pages;
  678. struct page *p = page;
  679. do {
  680. __ClearPageReserved(p);
  681. set_page_count(p, 0);
  682. } while (++p, --i);
  683. set_page_refcounted(page);
  684. set_pageblock_migratetype(page, MIGRATE_CMA);
  685. __free_pages(page, pageblock_order);
  686. totalram_pages += pageblock_nr_pages;
  687. #ifdef CONFIG_HIGHMEM
  688. if (PageHighMem(page))
  689. totalhigh_pages += pageblock_nr_pages;
  690. #endif
  691. }
  692. #endif
  693. /*
  694. * The order of subdivision here is critical for the IO subsystem.
  695. * Please do not alter this order without good reasons and regression
  696. * testing. Specifically, as large blocks of memory are subdivided,
  697. * the order in which smaller blocks are delivered depends on the order
  698. * they're subdivided in this function. This is the primary factor
  699. * influencing the order in which pages are delivered to the IO
  700. * subsystem according to empirical testing, and this is also justified
  701. * by considering the behavior of a buddy system containing a single
  702. * large block of memory acted on by a series of small allocations.
  703. * This behavior is a critical factor in sglist merging's success.
  704. *
  705. * -- nyc
  706. */
  707. static inline void expand(struct zone *zone, struct page *page,
  708. int low, int high, struct free_area *area,
  709. int migratetype)
  710. {
  711. unsigned long size = 1 << high;
  712. while (high > low) {
  713. area--;
  714. high--;
  715. size >>= 1;
  716. VM_BUG_ON(bad_range(zone, &page[size]));
  717. #ifdef CONFIG_DEBUG_PAGEALLOC
  718. if (high < debug_guardpage_minorder()) {
  719. /*
  720. * Mark as guard pages (or page), that will allow to
  721. * merge back to allocator when buddy will be freed.
  722. * Corresponding page table entries will not be touched,
  723. * pages will stay not present in virtual address space
  724. */
  725. INIT_LIST_HEAD(&page[size].lru);
  726. set_page_guard_flag(&page[size]);
  727. set_page_private(&page[size], high);
  728. /* Guard pages are not available for any usage */
  729. __mod_zone_freepage_state(zone, -(1 << high),
  730. migratetype);
  731. continue;
  732. }
  733. #endif
  734. list_add(&page[size].lru, &area->free_list[migratetype]);
  735. area->nr_free++;
  736. set_page_order(&page[size], high);
  737. }
  738. }
  739. /*
  740. * This page is about to be returned from the page allocator
  741. */
  742. static inline int check_new_page(struct page *page)
  743. {
  744. if (unlikely(page_mapcount(page) |
  745. (page->mapping != NULL) |
  746. (atomic_read(&page->_count) != 0) |
  747. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  748. (mem_cgroup_bad_page_check(page)))) {
  749. bad_page(page);
  750. return 1;
  751. }
  752. return 0;
  753. }
  754. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  755. {
  756. int i;
  757. for (i = 0; i < (1 << order); i++) {
  758. struct page *p = page + i;
  759. if (unlikely(check_new_page(p)))
  760. return 1;
  761. }
  762. set_page_private(page, 0);
  763. set_page_refcounted(page);
  764. arch_alloc_page(page, order);
  765. kernel_map_pages(page, 1 << order, 1);
  766. if (gfp_flags & __GFP_ZERO)
  767. prep_zero_page(page, order, gfp_flags);
  768. if (order && (gfp_flags & __GFP_COMP))
  769. prep_compound_page(page, order);
  770. return 0;
  771. }
  772. /*
  773. * Go through the free lists for the given migratetype and remove
  774. * the smallest available page from the freelists
  775. */
  776. static inline
  777. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  778. int migratetype)
  779. {
  780. unsigned int current_order;
  781. struct free_area * area;
  782. struct page *page;
  783. /* Find a page of the appropriate size in the preferred list */
  784. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  785. area = &(zone->free_area[current_order]);
  786. if (list_empty(&area->free_list[migratetype]))
  787. continue;
  788. page = list_entry(area->free_list[migratetype].next,
  789. struct page, lru);
  790. list_del(&page->lru);
  791. rmv_page_order(page);
  792. area->nr_free--;
  793. expand(zone, page, order, current_order, area, migratetype);
  794. return page;
  795. }
  796. return NULL;
  797. }
  798. /*
  799. * This array describes the order lists are fallen back to when
  800. * the free lists for the desirable migrate type are depleted
  801. */
  802. static int fallbacks[MIGRATE_TYPES][4] = {
  803. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  804. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  805. #ifdef CONFIG_CMA
  806. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  807. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  808. #else
  809. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  810. #endif
  811. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  812. #ifdef CONFIG_MEMORY_ISOLATION
  813. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  814. #endif
  815. };
  816. /*
  817. * Move the free pages in a range to the free lists of the requested type.
  818. * Note that start_page and end_pages are not aligned on a pageblock
  819. * boundary. If alignment is required, use move_freepages_block()
  820. */
  821. int move_freepages(struct zone *zone,
  822. struct page *start_page, struct page *end_page,
  823. int migratetype)
  824. {
  825. struct page *page;
  826. unsigned long order;
  827. int pages_moved = 0;
  828. #ifndef CONFIG_HOLES_IN_ZONE
  829. /*
  830. * page_zone is not safe to call in this context when
  831. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  832. * anyway as we check zone boundaries in move_freepages_block().
  833. * Remove at a later date when no bug reports exist related to
  834. * grouping pages by mobility
  835. */
  836. BUG_ON(page_zone(start_page) != page_zone(end_page));
  837. #endif
  838. for (page = start_page; page <= end_page;) {
  839. /* Make sure we are not inadvertently changing nodes */
  840. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  841. if (!pfn_valid_within(page_to_pfn(page))) {
  842. page++;
  843. continue;
  844. }
  845. if (!PageBuddy(page)) {
  846. page++;
  847. continue;
  848. }
  849. order = page_order(page);
  850. list_move(&page->lru,
  851. &zone->free_area[order].free_list[migratetype]);
  852. set_freepage_migratetype(page, migratetype);
  853. page += 1 << order;
  854. pages_moved += 1 << order;
  855. }
  856. return pages_moved;
  857. }
  858. int move_freepages_block(struct zone *zone, struct page *page,
  859. int migratetype)
  860. {
  861. unsigned long start_pfn, end_pfn;
  862. struct page *start_page, *end_page;
  863. start_pfn = page_to_pfn(page);
  864. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  865. start_page = pfn_to_page(start_pfn);
  866. end_page = start_page + pageblock_nr_pages - 1;
  867. end_pfn = start_pfn + pageblock_nr_pages - 1;
  868. /* Do not cross zone boundaries */
  869. if (!zone_spans_pfn(zone, start_pfn))
  870. start_page = page;
  871. if (!zone_spans_pfn(zone, end_pfn))
  872. return 0;
  873. return move_freepages(zone, start_page, end_page, migratetype);
  874. }
  875. static void change_pageblock_range(struct page *pageblock_page,
  876. int start_order, int migratetype)
  877. {
  878. int nr_pageblocks = 1 << (start_order - pageblock_order);
  879. while (nr_pageblocks--) {
  880. set_pageblock_migratetype(pageblock_page, migratetype);
  881. pageblock_page += pageblock_nr_pages;
  882. }
  883. }
  884. /* Remove an element from the buddy allocator from the fallback list */
  885. static inline struct page *
  886. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  887. {
  888. struct free_area * area;
  889. int current_order;
  890. struct page *page;
  891. int migratetype, i;
  892. /* Find the largest possible block of pages in the other list */
  893. for (current_order = MAX_ORDER-1; current_order >= order;
  894. --current_order) {
  895. for (i = 0;; i++) {
  896. migratetype = fallbacks[start_migratetype][i];
  897. /* MIGRATE_RESERVE handled later if necessary */
  898. if (migratetype == MIGRATE_RESERVE)
  899. break;
  900. area = &(zone->free_area[current_order]);
  901. if (list_empty(&area->free_list[migratetype]))
  902. continue;
  903. page = list_entry(area->free_list[migratetype].next,
  904. struct page, lru);
  905. area->nr_free--;
  906. /*
  907. * If breaking a large block of pages, move all free
  908. * pages to the preferred allocation list. If falling
  909. * back for a reclaimable kernel allocation, be more
  910. * aggressive about taking ownership of free pages
  911. *
  912. * On the other hand, never change migration
  913. * type of MIGRATE_CMA pageblocks nor move CMA
  914. * pages on different free lists. We don't
  915. * want unmovable pages to be allocated from
  916. * MIGRATE_CMA areas.
  917. */
  918. if (!is_migrate_cma(migratetype) &&
  919. (unlikely(current_order >= pageblock_order / 2) ||
  920. start_migratetype == MIGRATE_RECLAIMABLE ||
  921. page_group_by_mobility_disabled)) {
  922. int pages;
  923. pages = move_freepages_block(zone, page,
  924. start_migratetype);
  925. /* Claim the whole block if over half of it is free */
  926. if (pages >= (1 << (pageblock_order-1)) ||
  927. page_group_by_mobility_disabled)
  928. set_pageblock_migratetype(page,
  929. start_migratetype);
  930. migratetype = start_migratetype;
  931. }
  932. /* Remove the page from the freelists */
  933. list_del(&page->lru);
  934. rmv_page_order(page);
  935. /* Take ownership for orders >= pageblock_order */
  936. if (current_order >= pageblock_order &&
  937. !is_migrate_cma(migratetype))
  938. change_pageblock_range(page, current_order,
  939. start_migratetype);
  940. expand(zone, page, order, current_order, area,
  941. is_migrate_cma(migratetype)
  942. ? migratetype : start_migratetype);
  943. trace_mm_page_alloc_extfrag(page, order, current_order,
  944. start_migratetype, migratetype);
  945. return page;
  946. }
  947. }
  948. return NULL;
  949. }
  950. /*
  951. * Do the hard work of removing an element from the buddy allocator.
  952. * Call me with the zone->lock already held.
  953. */
  954. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  955. int migratetype)
  956. {
  957. struct page *page;
  958. retry_reserve:
  959. page = __rmqueue_smallest(zone, order, migratetype);
  960. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  961. page = __rmqueue_fallback(zone, order, migratetype);
  962. /*
  963. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  964. * is used because __rmqueue_smallest is an inline function
  965. * and we want just one call site
  966. */
  967. if (!page) {
  968. migratetype = MIGRATE_RESERVE;
  969. goto retry_reserve;
  970. }
  971. }
  972. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  973. return page;
  974. }
  975. /*
  976. * Obtain a specified number of elements from the buddy allocator, all under
  977. * a single hold of the lock, for efficiency. Add them to the supplied list.
  978. * Returns the number of new pages which were placed at *list.
  979. */
  980. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  981. unsigned long count, struct list_head *list,
  982. int migratetype, int cold)
  983. {
  984. int mt = migratetype, i;
  985. spin_lock(&zone->lock);
  986. for (i = 0; i < count; ++i) {
  987. struct page *page = __rmqueue(zone, order, migratetype);
  988. if (unlikely(page == NULL))
  989. break;
  990. /*
  991. * Split buddy pages returned by expand() are received here
  992. * in physical page order. The page is added to the callers and
  993. * list and the list head then moves forward. From the callers
  994. * perspective, the linked list is ordered by page number in
  995. * some conditions. This is useful for IO devices that can
  996. * merge IO requests if the physical pages are ordered
  997. * properly.
  998. */
  999. if (likely(cold == 0))
  1000. list_add(&page->lru, list);
  1001. else
  1002. list_add_tail(&page->lru, list);
  1003. if (IS_ENABLED(CONFIG_CMA)) {
  1004. mt = get_pageblock_migratetype(page);
  1005. if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
  1006. mt = migratetype;
  1007. }
  1008. set_freepage_migratetype(page, mt);
  1009. list = &page->lru;
  1010. if (is_migrate_cma(mt))
  1011. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1012. -(1 << order));
  1013. }
  1014. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1015. spin_unlock(&zone->lock);
  1016. return i;
  1017. }
  1018. #ifdef CONFIG_NUMA
  1019. /*
  1020. * Called from the vmstat counter updater to drain pagesets of this
  1021. * currently executing processor on remote nodes after they have
  1022. * expired.
  1023. *
  1024. * Note that this function must be called with the thread pinned to
  1025. * a single processor.
  1026. */
  1027. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1028. {
  1029. unsigned long flags;
  1030. int to_drain;
  1031. local_irq_save(flags);
  1032. if (pcp->count >= pcp->batch)
  1033. to_drain = pcp->batch;
  1034. else
  1035. to_drain = pcp->count;
  1036. if (to_drain > 0) {
  1037. free_pcppages_bulk(zone, to_drain, pcp);
  1038. pcp->count -= to_drain;
  1039. }
  1040. local_irq_restore(flags);
  1041. }
  1042. #endif
  1043. /*
  1044. * Drain pages of the indicated processor.
  1045. *
  1046. * The processor must either be the current processor and the
  1047. * thread pinned to the current processor or a processor that
  1048. * is not online.
  1049. */
  1050. static void drain_pages(unsigned int cpu)
  1051. {
  1052. unsigned long flags;
  1053. struct zone *zone;
  1054. for_each_populated_zone(zone) {
  1055. struct per_cpu_pageset *pset;
  1056. struct per_cpu_pages *pcp;
  1057. local_irq_save(flags);
  1058. pset = per_cpu_ptr(zone->pageset, cpu);
  1059. pcp = &pset->pcp;
  1060. if (pcp->count) {
  1061. free_pcppages_bulk(zone, pcp->count, pcp);
  1062. pcp->count = 0;
  1063. }
  1064. local_irq_restore(flags);
  1065. }
  1066. }
  1067. /*
  1068. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1069. */
  1070. void drain_local_pages(void *arg)
  1071. {
  1072. drain_pages(smp_processor_id());
  1073. }
  1074. /*
  1075. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1076. *
  1077. * Note that this code is protected against sending an IPI to an offline
  1078. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1079. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1080. * nothing keeps CPUs from showing up after we populated the cpumask and
  1081. * before the call to on_each_cpu_mask().
  1082. */
  1083. void drain_all_pages(void)
  1084. {
  1085. int cpu;
  1086. struct per_cpu_pageset *pcp;
  1087. struct zone *zone;
  1088. /*
  1089. * Allocate in the BSS so we wont require allocation in
  1090. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1091. */
  1092. static cpumask_t cpus_with_pcps;
  1093. /*
  1094. * We don't care about racing with CPU hotplug event
  1095. * as offline notification will cause the notified
  1096. * cpu to drain that CPU pcps and on_each_cpu_mask
  1097. * disables preemption as part of its processing
  1098. */
  1099. for_each_online_cpu(cpu) {
  1100. bool has_pcps = false;
  1101. for_each_populated_zone(zone) {
  1102. pcp = per_cpu_ptr(zone->pageset, cpu);
  1103. if (pcp->pcp.count) {
  1104. has_pcps = true;
  1105. break;
  1106. }
  1107. }
  1108. if (has_pcps)
  1109. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1110. else
  1111. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1112. }
  1113. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1114. }
  1115. #ifdef CONFIG_HIBERNATION
  1116. void mark_free_pages(struct zone *zone)
  1117. {
  1118. unsigned long pfn, max_zone_pfn;
  1119. unsigned long flags;
  1120. int order, t;
  1121. struct list_head *curr;
  1122. if (!zone->spanned_pages)
  1123. return;
  1124. spin_lock_irqsave(&zone->lock, flags);
  1125. max_zone_pfn = zone_end_pfn(zone);
  1126. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1127. if (pfn_valid(pfn)) {
  1128. struct page *page = pfn_to_page(pfn);
  1129. if (!swsusp_page_is_forbidden(page))
  1130. swsusp_unset_page_free(page);
  1131. }
  1132. for_each_migratetype_order(order, t) {
  1133. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1134. unsigned long i;
  1135. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1136. for (i = 0; i < (1UL << order); i++)
  1137. swsusp_set_page_free(pfn_to_page(pfn + i));
  1138. }
  1139. }
  1140. spin_unlock_irqrestore(&zone->lock, flags);
  1141. }
  1142. #endif /* CONFIG_PM */
  1143. /*
  1144. * Free a 0-order page
  1145. * cold == 1 ? free a cold page : free a hot page
  1146. */
  1147. void free_hot_cold_page(struct page *page, int cold)
  1148. {
  1149. struct zone *zone = page_zone(page);
  1150. struct per_cpu_pages *pcp;
  1151. unsigned long flags;
  1152. int migratetype;
  1153. if (!free_pages_prepare(page, 0))
  1154. return;
  1155. migratetype = get_pageblock_migratetype(page);
  1156. set_freepage_migratetype(page, migratetype);
  1157. local_irq_save(flags);
  1158. __count_vm_event(PGFREE);
  1159. /*
  1160. * We only track unmovable, reclaimable and movable on pcp lists.
  1161. * Free ISOLATE pages back to the allocator because they are being
  1162. * offlined but treat RESERVE as movable pages so we can get those
  1163. * areas back if necessary. Otherwise, we may have to free
  1164. * excessively into the page allocator
  1165. */
  1166. if (migratetype >= MIGRATE_PCPTYPES) {
  1167. if (unlikely(is_migrate_isolate(migratetype))) {
  1168. free_one_page(zone, page, 0, migratetype);
  1169. goto out;
  1170. }
  1171. migratetype = MIGRATE_MOVABLE;
  1172. }
  1173. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1174. if (cold)
  1175. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1176. else
  1177. list_add(&page->lru, &pcp->lists[migratetype]);
  1178. pcp->count++;
  1179. if (pcp->count >= pcp->high) {
  1180. free_pcppages_bulk(zone, pcp->batch, pcp);
  1181. pcp->count -= pcp->batch;
  1182. }
  1183. out:
  1184. local_irq_restore(flags);
  1185. }
  1186. /*
  1187. * Free a list of 0-order pages
  1188. */
  1189. void free_hot_cold_page_list(struct list_head *list, int cold)
  1190. {
  1191. struct page *page, *next;
  1192. list_for_each_entry_safe(page, next, list, lru) {
  1193. trace_mm_page_free_batched(page, cold);
  1194. free_hot_cold_page(page, cold);
  1195. }
  1196. }
  1197. /*
  1198. * split_page takes a non-compound higher-order page, and splits it into
  1199. * n (1<<order) sub-pages: page[0..n]
  1200. * Each sub-page must be freed individually.
  1201. *
  1202. * Note: this is probably too low level an operation for use in drivers.
  1203. * Please consult with lkml before using this in your driver.
  1204. */
  1205. void split_page(struct page *page, unsigned int order)
  1206. {
  1207. int i;
  1208. VM_BUG_ON(PageCompound(page));
  1209. VM_BUG_ON(!page_count(page));
  1210. #ifdef CONFIG_KMEMCHECK
  1211. /*
  1212. * Split shadow pages too, because free(page[0]) would
  1213. * otherwise free the whole shadow.
  1214. */
  1215. if (kmemcheck_page_is_tracked(page))
  1216. split_page(virt_to_page(page[0].shadow), order);
  1217. #endif
  1218. for (i = 1; i < (1 << order); i++)
  1219. set_page_refcounted(page + i);
  1220. }
  1221. EXPORT_SYMBOL_GPL(split_page);
  1222. static int __isolate_free_page(struct page *page, unsigned int order)
  1223. {
  1224. unsigned long watermark;
  1225. struct zone *zone;
  1226. int mt;
  1227. BUG_ON(!PageBuddy(page));
  1228. zone = page_zone(page);
  1229. mt = get_pageblock_migratetype(page);
  1230. if (!is_migrate_isolate(mt)) {
  1231. /* Obey watermarks as if the page was being allocated */
  1232. watermark = low_wmark_pages(zone) + (1 << order);
  1233. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1234. return 0;
  1235. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1236. }
  1237. /* Remove page from free list */
  1238. list_del(&page->lru);
  1239. zone->free_area[order].nr_free--;
  1240. rmv_page_order(page);
  1241. /* Set the pageblock if the isolated page is at least a pageblock */
  1242. if (order >= pageblock_order - 1) {
  1243. struct page *endpage = page + (1 << order) - 1;
  1244. for (; page < endpage; page += pageblock_nr_pages) {
  1245. int mt = get_pageblock_migratetype(page);
  1246. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1247. set_pageblock_migratetype(page,
  1248. MIGRATE_MOVABLE);
  1249. }
  1250. }
  1251. return 1UL << order;
  1252. }
  1253. /*
  1254. * Similar to split_page except the page is already free. As this is only
  1255. * being used for migration, the migratetype of the block also changes.
  1256. * As this is called with interrupts disabled, the caller is responsible
  1257. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1258. * are enabled.
  1259. *
  1260. * Note: this is probably too low level an operation for use in drivers.
  1261. * Please consult with lkml before using this in your driver.
  1262. */
  1263. int split_free_page(struct page *page)
  1264. {
  1265. unsigned int order;
  1266. int nr_pages;
  1267. order = page_order(page);
  1268. nr_pages = __isolate_free_page(page, order);
  1269. if (!nr_pages)
  1270. return 0;
  1271. /* Split into individual pages */
  1272. set_page_refcounted(page);
  1273. split_page(page, order);
  1274. return nr_pages;
  1275. }
  1276. /*
  1277. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1278. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1279. * or two.
  1280. */
  1281. static inline
  1282. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1283. struct zone *zone, int order, gfp_t gfp_flags,
  1284. int migratetype)
  1285. {
  1286. unsigned long flags;
  1287. struct page *page;
  1288. int cold = !!(gfp_flags & __GFP_COLD);
  1289. again:
  1290. if (likely(order == 0)) {
  1291. struct per_cpu_pages *pcp;
  1292. struct list_head *list;
  1293. local_irq_save(flags);
  1294. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1295. list = &pcp->lists[migratetype];
  1296. if (list_empty(list)) {
  1297. pcp->count += rmqueue_bulk(zone, 0,
  1298. pcp->batch, list,
  1299. migratetype, cold);
  1300. if (unlikely(list_empty(list)))
  1301. goto failed;
  1302. }
  1303. if (cold)
  1304. page = list_entry(list->prev, struct page, lru);
  1305. else
  1306. page = list_entry(list->next, struct page, lru);
  1307. list_del(&page->lru);
  1308. pcp->count--;
  1309. } else {
  1310. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1311. /*
  1312. * __GFP_NOFAIL is not to be used in new code.
  1313. *
  1314. * All __GFP_NOFAIL callers should be fixed so that they
  1315. * properly detect and handle allocation failures.
  1316. *
  1317. * We most definitely don't want callers attempting to
  1318. * allocate greater than order-1 page units with
  1319. * __GFP_NOFAIL.
  1320. */
  1321. WARN_ON_ONCE(order > 1);
  1322. }
  1323. spin_lock_irqsave(&zone->lock, flags);
  1324. page = __rmqueue(zone, order, migratetype);
  1325. spin_unlock(&zone->lock);
  1326. if (!page)
  1327. goto failed;
  1328. __mod_zone_freepage_state(zone, -(1 << order),
  1329. get_pageblock_migratetype(page));
  1330. }
  1331. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1332. zone_statistics(preferred_zone, zone, gfp_flags);
  1333. local_irq_restore(flags);
  1334. VM_BUG_ON(bad_range(zone, page));
  1335. if (prep_new_page(page, order, gfp_flags))
  1336. goto again;
  1337. return page;
  1338. failed:
  1339. local_irq_restore(flags);
  1340. return NULL;
  1341. }
  1342. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1343. static struct {
  1344. struct fault_attr attr;
  1345. u32 ignore_gfp_highmem;
  1346. u32 ignore_gfp_wait;
  1347. u32 min_order;
  1348. } fail_page_alloc = {
  1349. .attr = FAULT_ATTR_INITIALIZER,
  1350. .ignore_gfp_wait = 1,
  1351. .ignore_gfp_highmem = 1,
  1352. .min_order = 1,
  1353. };
  1354. static int __init setup_fail_page_alloc(char *str)
  1355. {
  1356. return setup_fault_attr(&fail_page_alloc.attr, str);
  1357. }
  1358. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1359. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1360. {
  1361. if (order < fail_page_alloc.min_order)
  1362. return false;
  1363. if (gfp_mask & __GFP_NOFAIL)
  1364. return false;
  1365. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1366. return false;
  1367. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1368. return false;
  1369. return should_fail(&fail_page_alloc.attr, 1 << order);
  1370. }
  1371. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1372. static int __init fail_page_alloc_debugfs(void)
  1373. {
  1374. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1375. struct dentry *dir;
  1376. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1377. &fail_page_alloc.attr);
  1378. if (IS_ERR(dir))
  1379. return PTR_ERR(dir);
  1380. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1381. &fail_page_alloc.ignore_gfp_wait))
  1382. goto fail;
  1383. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1384. &fail_page_alloc.ignore_gfp_highmem))
  1385. goto fail;
  1386. if (!debugfs_create_u32("min-order", mode, dir,
  1387. &fail_page_alloc.min_order))
  1388. goto fail;
  1389. return 0;
  1390. fail:
  1391. debugfs_remove_recursive(dir);
  1392. return -ENOMEM;
  1393. }
  1394. late_initcall(fail_page_alloc_debugfs);
  1395. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1396. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1397. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1398. {
  1399. return false;
  1400. }
  1401. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1402. /*
  1403. * Return true if free pages are above 'mark'. This takes into account the order
  1404. * of the allocation.
  1405. */
  1406. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1407. int classzone_idx, int alloc_flags, long free_pages)
  1408. {
  1409. /* free_pages my go negative - that's OK */
  1410. long min = mark;
  1411. long lowmem_reserve = z->lowmem_reserve[classzone_idx];
  1412. int o;
  1413. free_pages -= (1 << order) - 1;
  1414. if (alloc_flags & ALLOC_HIGH)
  1415. min -= min / 2;
  1416. if (alloc_flags & ALLOC_HARDER)
  1417. min -= min / 4;
  1418. #ifdef CONFIG_CMA
  1419. /* If allocation can't use CMA areas don't use free CMA pages */
  1420. if (!(alloc_flags & ALLOC_CMA))
  1421. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  1422. #endif
  1423. if (free_pages <= min + lowmem_reserve)
  1424. return false;
  1425. for (o = 0; o < order; o++) {
  1426. /* At the next order, this order's pages become unavailable */
  1427. free_pages -= z->free_area[o].nr_free << o;
  1428. /* Require fewer higher order pages to be free */
  1429. min >>= 1;
  1430. if (free_pages <= min)
  1431. return false;
  1432. }
  1433. return true;
  1434. }
  1435. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1436. int classzone_idx, int alloc_flags)
  1437. {
  1438. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1439. zone_page_state(z, NR_FREE_PAGES));
  1440. }
  1441. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1442. int classzone_idx, int alloc_flags)
  1443. {
  1444. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1445. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1446. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1447. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1448. free_pages);
  1449. }
  1450. #ifdef CONFIG_NUMA
  1451. /*
  1452. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1453. * skip over zones that are not allowed by the cpuset, or that have
  1454. * been recently (in last second) found to be nearly full. See further
  1455. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1456. * that have to skip over a lot of full or unallowed zones.
  1457. *
  1458. * If the zonelist cache is present in the passed in zonelist, then
  1459. * returns a pointer to the allowed node mask (either the current
  1460. * tasks mems_allowed, or node_states[N_MEMORY].)
  1461. *
  1462. * If the zonelist cache is not available for this zonelist, does
  1463. * nothing and returns NULL.
  1464. *
  1465. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1466. * a second since last zap'd) then we zap it out (clear its bits.)
  1467. *
  1468. * We hold off even calling zlc_setup, until after we've checked the
  1469. * first zone in the zonelist, on the theory that most allocations will
  1470. * be satisfied from that first zone, so best to examine that zone as
  1471. * quickly as we can.
  1472. */
  1473. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1474. {
  1475. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1476. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1477. zlc = zonelist->zlcache_ptr;
  1478. if (!zlc)
  1479. return NULL;
  1480. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1481. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1482. zlc->last_full_zap = jiffies;
  1483. }
  1484. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1485. &cpuset_current_mems_allowed :
  1486. &node_states[N_MEMORY];
  1487. return allowednodes;
  1488. }
  1489. /*
  1490. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1491. * if it is worth looking at further for free memory:
  1492. * 1) Check that the zone isn't thought to be full (doesn't have its
  1493. * bit set in the zonelist_cache fullzones BITMAP).
  1494. * 2) Check that the zones node (obtained from the zonelist_cache
  1495. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1496. * Return true (non-zero) if zone is worth looking at further, or
  1497. * else return false (zero) if it is not.
  1498. *
  1499. * This check -ignores- the distinction between various watermarks,
  1500. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1501. * found to be full for any variation of these watermarks, it will
  1502. * be considered full for up to one second by all requests, unless
  1503. * we are so low on memory on all allowed nodes that we are forced
  1504. * into the second scan of the zonelist.
  1505. *
  1506. * In the second scan we ignore this zonelist cache and exactly
  1507. * apply the watermarks to all zones, even it is slower to do so.
  1508. * We are low on memory in the second scan, and should leave no stone
  1509. * unturned looking for a free page.
  1510. */
  1511. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1512. nodemask_t *allowednodes)
  1513. {
  1514. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1515. int i; /* index of *z in zonelist zones */
  1516. int n; /* node that zone *z is on */
  1517. zlc = zonelist->zlcache_ptr;
  1518. if (!zlc)
  1519. return 1;
  1520. i = z - zonelist->_zonerefs;
  1521. n = zlc->z_to_n[i];
  1522. /* This zone is worth trying if it is allowed but not full */
  1523. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1524. }
  1525. /*
  1526. * Given 'z' scanning a zonelist, set the corresponding bit in
  1527. * zlc->fullzones, so that subsequent attempts to allocate a page
  1528. * from that zone don't waste time re-examining it.
  1529. */
  1530. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1531. {
  1532. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1533. int i; /* index of *z in zonelist zones */
  1534. zlc = zonelist->zlcache_ptr;
  1535. if (!zlc)
  1536. return;
  1537. i = z - zonelist->_zonerefs;
  1538. set_bit(i, zlc->fullzones);
  1539. }
  1540. /*
  1541. * clear all zones full, called after direct reclaim makes progress so that
  1542. * a zone that was recently full is not skipped over for up to a second
  1543. */
  1544. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1545. {
  1546. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1547. zlc = zonelist->zlcache_ptr;
  1548. if (!zlc)
  1549. return;
  1550. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1551. }
  1552. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1553. {
  1554. return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
  1555. }
  1556. static void __paginginit init_zone_allows_reclaim(int nid)
  1557. {
  1558. int i;
  1559. for_each_online_node(i)
  1560. if (node_distance(nid, i) <= RECLAIM_DISTANCE)
  1561. node_set(i, NODE_DATA(nid)->reclaim_nodes);
  1562. else
  1563. zone_reclaim_mode = 1;
  1564. }
  1565. #else /* CONFIG_NUMA */
  1566. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1567. {
  1568. return NULL;
  1569. }
  1570. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1571. nodemask_t *allowednodes)
  1572. {
  1573. return 1;
  1574. }
  1575. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1576. {
  1577. }
  1578. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1579. {
  1580. }
  1581. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1582. {
  1583. return true;
  1584. }
  1585. static inline void init_zone_allows_reclaim(int nid)
  1586. {
  1587. }
  1588. #endif /* CONFIG_NUMA */
  1589. /*
  1590. * get_page_from_freelist goes through the zonelist trying to allocate
  1591. * a page.
  1592. */
  1593. static struct page *
  1594. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1595. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1596. struct zone *preferred_zone, int migratetype)
  1597. {
  1598. struct zoneref *z;
  1599. struct page *page = NULL;
  1600. int classzone_idx;
  1601. struct zone *zone;
  1602. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1603. int zlc_active = 0; /* set if using zonelist_cache */
  1604. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1605. classzone_idx = zone_idx(preferred_zone);
  1606. zonelist_scan:
  1607. /*
  1608. * Scan zonelist, looking for a zone with enough free.
  1609. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1610. */
  1611. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1612. high_zoneidx, nodemask) {
  1613. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1614. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1615. continue;
  1616. if ((alloc_flags & ALLOC_CPUSET) &&
  1617. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1618. continue;
  1619. /*
  1620. * When allocating a page cache page for writing, we
  1621. * want to get it from a zone that is within its dirty
  1622. * limit, such that no single zone holds more than its
  1623. * proportional share of globally allowed dirty pages.
  1624. * The dirty limits take into account the zone's
  1625. * lowmem reserves and high watermark so that kswapd
  1626. * should be able to balance it without having to
  1627. * write pages from its LRU list.
  1628. *
  1629. * This may look like it could increase pressure on
  1630. * lower zones by failing allocations in higher zones
  1631. * before they are full. But the pages that do spill
  1632. * over are limited as the lower zones are protected
  1633. * by this very same mechanism. It should not become
  1634. * a practical burden to them.
  1635. *
  1636. * XXX: For now, allow allocations to potentially
  1637. * exceed the per-zone dirty limit in the slowpath
  1638. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1639. * which is important when on a NUMA setup the allowed
  1640. * zones are together not big enough to reach the
  1641. * global limit. The proper fix for these situations
  1642. * will require awareness of zones in the
  1643. * dirty-throttling and the flusher threads.
  1644. */
  1645. if ((alloc_flags & ALLOC_WMARK_LOW) &&
  1646. (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
  1647. goto this_zone_full;
  1648. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1649. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1650. unsigned long mark;
  1651. int ret;
  1652. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1653. if (zone_watermark_ok(zone, order, mark,
  1654. classzone_idx, alloc_flags))
  1655. goto try_this_zone;
  1656. if (IS_ENABLED(CONFIG_NUMA) &&
  1657. !did_zlc_setup && nr_online_nodes > 1) {
  1658. /*
  1659. * we do zlc_setup if there are multiple nodes
  1660. * and before considering the first zone allowed
  1661. * by the cpuset.
  1662. */
  1663. allowednodes = zlc_setup(zonelist, alloc_flags);
  1664. zlc_active = 1;
  1665. did_zlc_setup = 1;
  1666. }
  1667. if (zone_reclaim_mode == 0 ||
  1668. !zone_allows_reclaim(preferred_zone, zone))
  1669. goto this_zone_full;
  1670. /*
  1671. * As we may have just activated ZLC, check if the first
  1672. * eligible zone has failed zone_reclaim recently.
  1673. */
  1674. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1675. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1676. continue;
  1677. ret = zone_reclaim(zone, gfp_mask, order);
  1678. switch (ret) {
  1679. case ZONE_RECLAIM_NOSCAN:
  1680. /* did not scan */
  1681. continue;
  1682. case ZONE_RECLAIM_FULL:
  1683. /* scanned but unreclaimable */
  1684. continue;
  1685. default:
  1686. /* did we reclaim enough */
  1687. if (!zone_watermark_ok(zone, order, mark,
  1688. classzone_idx, alloc_flags))
  1689. goto this_zone_full;
  1690. }
  1691. }
  1692. try_this_zone:
  1693. page = buffered_rmqueue(preferred_zone, zone, order,
  1694. gfp_mask, migratetype);
  1695. if (page)
  1696. break;
  1697. this_zone_full:
  1698. if (IS_ENABLED(CONFIG_NUMA))
  1699. zlc_mark_zone_full(zonelist, z);
  1700. }
  1701. if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
  1702. /* Disable zlc cache for second zonelist scan */
  1703. zlc_active = 0;
  1704. goto zonelist_scan;
  1705. }
  1706. if (page)
  1707. /*
  1708. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
  1709. * necessary to allocate the page. The expectation is
  1710. * that the caller is taking steps that will free more
  1711. * memory. The caller should avoid the page being used
  1712. * for !PFMEMALLOC purposes.
  1713. */
  1714. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  1715. return page;
  1716. }
  1717. /*
  1718. * Large machines with many possible nodes should not always dump per-node
  1719. * meminfo in irq context.
  1720. */
  1721. static inline bool should_suppress_show_mem(void)
  1722. {
  1723. bool ret = false;
  1724. #if NODES_SHIFT > 8
  1725. ret = in_interrupt();
  1726. #endif
  1727. return ret;
  1728. }
  1729. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1730. DEFAULT_RATELIMIT_INTERVAL,
  1731. DEFAULT_RATELIMIT_BURST);
  1732. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1733. {
  1734. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1735. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1736. debug_guardpage_minorder() > 0)
  1737. return;
  1738. /*
  1739. * Walking all memory to count page types is very expensive and should
  1740. * be inhibited in non-blockable contexts.
  1741. */
  1742. if (!(gfp_mask & __GFP_WAIT))
  1743. filter |= SHOW_MEM_FILTER_PAGE_COUNT;
  1744. /*
  1745. * This documents exceptions given to allocations in certain
  1746. * contexts that are allowed to allocate outside current's set
  1747. * of allowed nodes.
  1748. */
  1749. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1750. if (test_thread_flag(TIF_MEMDIE) ||
  1751. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1752. filter &= ~SHOW_MEM_FILTER_NODES;
  1753. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1754. filter &= ~SHOW_MEM_FILTER_NODES;
  1755. if (fmt) {
  1756. struct va_format vaf;
  1757. va_list args;
  1758. va_start(args, fmt);
  1759. vaf.fmt = fmt;
  1760. vaf.va = &args;
  1761. pr_warn("%pV", &vaf);
  1762. va_end(args);
  1763. }
  1764. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1765. current->comm, order, gfp_mask);
  1766. dump_stack();
  1767. if (!should_suppress_show_mem())
  1768. show_mem(filter);
  1769. }
  1770. static inline int
  1771. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1772. unsigned long did_some_progress,
  1773. unsigned long pages_reclaimed)
  1774. {
  1775. /* Do not loop if specifically requested */
  1776. if (gfp_mask & __GFP_NORETRY)
  1777. return 0;
  1778. /* Always retry if specifically requested */
  1779. if (gfp_mask & __GFP_NOFAIL)
  1780. return 1;
  1781. /*
  1782. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1783. * making forward progress without invoking OOM. Suspend also disables
  1784. * storage devices so kswapd will not help. Bail if we are suspending.
  1785. */
  1786. if (!did_some_progress && pm_suspended_storage())
  1787. return 0;
  1788. /*
  1789. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1790. * means __GFP_NOFAIL, but that may not be true in other
  1791. * implementations.
  1792. */
  1793. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1794. return 1;
  1795. /*
  1796. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1797. * specified, then we retry until we no longer reclaim any pages
  1798. * (above), or we've reclaimed an order of pages at least as
  1799. * large as the allocation's order. In both cases, if the
  1800. * allocation still fails, we stop retrying.
  1801. */
  1802. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1803. return 1;
  1804. return 0;
  1805. }
  1806. static inline struct page *
  1807. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1808. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1809. nodemask_t *nodemask, struct zone *preferred_zone,
  1810. int migratetype)
  1811. {
  1812. struct page *page;
  1813. /* Acquire the OOM killer lock for the zones in zonelist */
  1814. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1815. schedule_timeout_uninterruptible(1);
  1816. return NULL;
  1817. }
  1818. /*
  1819. * Go through the zonelist yet one more time, keep very high watermark
  1820. * here, this is only to catch a parallel oom killing, we must fail if
  1821. * we're still under heavy pressure.
  1822. */
  1823. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1824. order, zonelist, high_zoneidx,
  1825. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1826. preferred_zone, migratetype);
  1827. if (page)
  1828. goto out;
  1829. if (!(gfp_mask & __GFP_NOFAIL)) {
  1830. /* The OOM killer will not help higher order allocs */
  1831. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1832. goto out;
  1833. /* The OOM killer does not needlessly kill tasks for lowmem */
  1834. if (high_zoneidx < ZONE_NORMAL)
  1835. goto out;
  1836. /*
  1837. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1838. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1839. * The caller should handle page allocation failure by itself if
  1840. * it specifies __GFP_THISNODE.
  1841. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1842. */
  1843. if (gfp_mask & __GFP_THISNODE)
  1844. goto out;
  1845. }
  1846. /* Exhausted what can be done so it's blamo time */
  1847. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1848. out:
  1849. clear_zonelist_oom(zonelist, gfp_mask);
  1850. return page;
  1851. }
  1852. #ifdef CONFIG_COMPACTION
  1853. /* Try memory compaction for high-order allocations before reclaim */
  1854. static struct page *
  1855. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1856. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1857. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1858. int migratetype, bool sync_migration,
  1859. bool *contended_compaction, bool *deferred_compaction,
  1860. unsigned long *did_some_progress)
  1861. {
  1862. if (!order)
  1863. return NULL;
  1864. if (compaction_deferred(preferred_zone, order)) {
  1865. *deferred_compaction = true;
  1866. return NULL;
  1867. }
  1868. current->flags |= PF_MEMALLOC;
  1869. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1870. nodemask, sync_migration,
  1871. contended_compaction);
  1872. current->flags &= ~PF_MEMALLOC;
  1873. if (*did_some_progress != COMPACT_SKIPPED) {
  1874. struct page *page;
  1875. /* Page migration frees to the PCP lists but we want merging */
  1876. drain_pages(get_cpu());
  1877. put_cpu();
  1878. page = get_page_from_freelist(gfp_mask, nodemask,
  1879. order, zonelist, high_zoneidx,
  1880. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1881. preferred_zone, migratetype);
  1882. if (page) {
  1883. preferred_zone->compact_blockskip_flush = false;
  1884. preferred_zone->compact_considered = 0;
  1885. preferred_zone->compact_defer_shift = 0;
  1886. if (order >= preferred_zone->compact_order_failed)
  1887. preferred_zone->compact_order_failed = order + 1;
  1888. count_vm_event(COMPACTSUCCESS);
  1889. return page;
  1890. }
  1891. /*
  1892. * It's bad if compaction run occurs and fails.
  1893. * The most likely reason is that pages exist,
  1894. * but not enough to satisfy watermarks.
  1895. */
  1896. count_vm_event(COMPACTFAIL);
  1897. /*
  1898. * As async compaction considers a subset of pageblocks, only
  1899. * defer if the failure was a sync compaction failure.
  1900. */
  1901. if (sync_migration)
  1902. defer_compaction(preferred_zone, order);
  1903. cond_resched();
  1904. }
  1905. return NULL;
  1906. }
  1907. #else
  1908. static inline struct page *
  1909. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1910. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1911. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1912. int migratetype, bool sync_migration,
  1913. bool *contended_compaction, bool *deferred_compaction,
  1914. unsigned long *did_some_progress)
  1915. {
  1916. return NULL;
  1917. }
  1918. #endif /* CONFIG_COMPACTION */
  1919. /* Perform direct synchronous page reclaim */
  1920. static int
  1921. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  1922. nodemask_t *nodemask)
  1923. {
  1924. struct reclaim_state reclaim_state;
  1925. int progress;
  1926. cond_resched();
  1927. /* We now go into synchronous reclaim */
  1928. cpuset_memory_pressure_bump();
  1929. current->flags |= PF_MEMALLOC;
  1930. lockdep_set_current_reclaim_state(gfp_mask);
  1931. reclaim_state.reclaimed_slab = 0;
  1932. current->reclaim_state = &reclaim_state;
  1933. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1934. current->reclaim_state = NULL;
  1935. lockdep_clear_current_reclaim_state();
  1936. current->flags &= ~PF_MEMALLOC;
  1937. cond_resched();
  1938. return progress;
  1939. }
  1940. /* The really slow allocator path where we enter direct reclaim */
  1941. static inline struct page *
  1942. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1943. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1944. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1945. int migratetype, unsigned long *did_some_progress)
  1946. {
  1947. struct page *page = NULL;
  1948. bool drained = false;
  1949. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  1950. nodemask);
  1951. if (unlikely(!(*did_some_progress)))
  1952. return NULL;
  1953. /* After successful reclaim, reconsider all zones for allocation */
  1954. if (IS_ENABLED(CONFIG_NUMA))
  1955. zlc_clear_zones_full(zonelist);
  1956. retry:
  1957. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1958. zonelist, high_zoneidx,
  1959. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1960. preferred_zone, migratetype);
  1961. /*
  1962. * If an allocation failed after direct reclaim, it could be because
  1963. * pages are pinned on the per-cpu lists. Drain them and try again
  1964. */
  1965. if (!page && !drained) {
  1966. drain_all_pages();
  1967. drained = true;
  1968. goto retry;
  1969. }
  1970. return page;
  1971. }
  1972. /*
  1973. * This is called in the allocator slow-path if the allocation request is of
  1974. * sufficient urgency to ignore watermarks and take other desperate measures
  1975. */
  1976. static inline struct page *
  1977. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1978. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1979. nodemask_t *nodemask, struct zone *preferred_zone,
  1980. int migratetype)
  1981. {
  1982. struct page *page;
  1983. do {
  1984. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1985. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1986. preferred_zone, migratetype);
  1987. if (!page && gfp_mask & __GFP_NOFAIL)
  1988. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1989. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1990. return page;
  1991. }
  1992. static inline
  1993. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1994. enum zone_type high_zoneidx,
  1995. enum zone_type classzone_idx)
  1996. {
  1997. struct zoneref *z;
  1998. struct zone *zone;
  1999. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  2000. wakeup_kswapd(zone, order, classzone_idx);
  2001. }
  2002. static inline int
  2003. gfp_to_alloc_flags(gfp_t gfp_mask)
  2004. {
  2005. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2006. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2007. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2008. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2009. /*
  2010. * The caller may dip into page reserves a bit more if the caller
  2011. * cannot run direct reclaim, or if the caller has realtime scheduling
  2012. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2013. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  2014. */
  2015. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2016. if (!wait) {
  2017. /*
  2018. * Not worth trying to allocate harder for
  2019. * __GFP_NOMEMALLOC even if it can't schedule.
  2020. */
  2021. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2022. alloc_flags |= ALLOC_HARDER;
  2023. /*
  2024. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  2025. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  2026. */
  2027. alloc_flags &= ~ALLOC_CPUSET;
  2028. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2029. alloc_flags |= ALLOC_HARDER;
  2030. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2031. if (gfp_mask & __GFP_MEMALLOC)
  2032. alloc_flags |= ALLOC_NO_WATERMARKS;
  2033. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2034. alloc_flags |= ALLOC_NO_WATERMARKS;
  2035. else if (!in_interrupt() &&
  2036. ((current->flags & PF_MEMALLOC) ||
  2037. unlikely(test_thread_flag(TIF_MEMDIE))))
  2038. alloc_flags |= ALLOC_NO_WATERMARKS;
  2039. }
  2040. #ifdef CONFIG_CMA
  2041. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2042. alloc_flags |= ALLOC_CMA;
  2043. #endif
  2044. return alloc_flags;
  2045. }
  2046. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2047. {
  2048. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2049. }
  2050. static inline struct page *
  2051. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2052. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2053. nodemask_t *nodemask, struct zone *preferred_zone,
  2054. int migratetype)
  2055. {
  2056. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2057. struct page *page = NULL;
  2058. int alloc_flags;
  2059. unsigned long pages_reclaimed = 0;
  2060. unsigned long did_some_progress;
  2061. bool sync_migration = false;
  2062. bool deferred_compaction = false;
  2063. bool contended_compaction = false;
  2064. /*
  2065. * In the slowpath, we sanity check order to avoid ever trying to
  2066. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2067. * be using allocators in order of preference for an area that is
  2068. * too large.
  2069. */
  2070. if (order >= MAX_ORDER) {
  2071. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2072. return NULL;
  2073. }
  2074. /*
  2075. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2076. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2077. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2078. * using a larger set of nodes after it has established that the
  2079. * allowed per node queues are empty and that nodes are
  2080. * over allocated.
  2081. */
  2082. if (IS_ENABLED(CONFIG_NUMA) &&
  2083. (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2084. goto nopage;
  2085. restart:
  2086. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2087. wake_all_kswapd(order, zonelist, high_zoneidx,
  2088. zone_idx(preferred_zone));
  2089. /*
  2090. * OK, we're below the kswapd watermark and have kicked background
  2091. * reclaim. Now things get more complex, so set up alloc_flags according
  2092. * to how we want to proceed.
  2093. */
  2094. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2095. /*
  2096. * Find the true preferred zone if the allocation is unconstrained by
  2097. * cpusets.
  2098. */
  2099. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  2100. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  2101. &preferred_zone);
  2102. rebalance:
  2103. /* This is the last chance, in general, before the goto nopage. */
  2104. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2105. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2106. preferred_zone, migratetype);
  2107. if (page)
  2108. goto got_pg;
  2109. /* Allocate without watermarks if the context allows */
  2110. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2111. /*
  2112. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2113. * the allocation is high priority and these type of
  2114. * allocations are system rather than user orientated
  2115. */
  2116. zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2117. page = __alloc_pages_high_priority(gfp_mask, order,
  2118. zonelist, high_zoneidx, nodemask,
  2119. preferred_zone, migratetype);
  2120. if (page) {
  2121. goto got_pg;
  2122. }
  2123. }
  2124. /* Atomic allocations - we can't balance anything */
  2125. if (!wait)
  2126. goto nopage;
  2127. /* Avoid recursion of direct reclaim */
  2128. if (current->flags & PF_MEMALLOC)
  2129. goto nopage;
  2130. /* Avoid allocations with no watermarks from looping endlessly */
  2131. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2132. goto nopage;
  2133. /*
  2134. * Try direct compaction. The first pass is asynchronous. Subsequent
  2135. * attempts after direct reclaim are synchronous
  2136. */
  2137. page = __alloc_pages_direct_compact(gfp_mask, order,
  2138. zonelist, high_zoneidx,
  2139. nodemask,
  2140. alloc_flags, preferred_zone,
  2141. migratetype, sync_migration,
  2142. &contended_compaction,
  2143. &deferred_compaction,
  2144. &did_some_progress);
  2145. if (page)
  2146. goto got_pg;
  2147. sync_migration = true;
  2148. /*
  2149. * If compaction is deferred for high-order allocations, it is because
  2150. * sync compaction recently failed. In this is the case and the caller
  2151. * requested a movable allocation that does not heavily disrupt the
  2152. * system then fail the allocation instead of entering direct reclaim.
  2153. */
  2154. if ((deferred_compaction || contended_compaction) &&
  2155. (gfp_mask & __GFP_NO_KSWAPD))
  2156. goto nopage;
  2157. /* Try direct reclaim and then allocating */
  2158. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2159. zonelist, high_zoneidx,
  2160. nodemask,
  2161. alloc_flags, preferred_zone,
  2162. migratetype, &did_some_progress);
  2163. if (page)
  2164. goto got_pg;
  2165. /*
  2166. * If we failed to make any progress reclaiming, then we are
  2167. * running out of options and have to consider going OOM
  2168. */
  2169. if (!did_some_progress) {
  2170. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  2171. if (oom_killer_disabled)
  2172. goto nopage;
  2173. /* Coredumps can quickly deplete all memory reserves */
  2174. if ((current->flags & PF_DUMPCORE) &&
  2175. !(gfp_mask & __GFP_NOFAIL))
  2176. goto nopage;
  2177. page = __alloc_pages_may_oom(gfp_mask, order,
  2178. zonelist, high_zoneidx,
  2179. nodemask, preferred_zone,
  2180. migratetype);
  2181. if (page)
  2182. goto got_pg;
  2183. if (!(gfp_mask & __GFP_NOFAIL)) {
  2184. /*
  2185. * The oom killer is not called for high-order
  2186. * allocations that may fail, so if no progress
  2187. * is being made, there are no other options and
  2188. * retrying is unlikely to help.
  2189. */
  2190. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2191. goto nopage;
  2192. /*
  2193. * The oom killer is not called for lowmem
  2194. * allocations to prevent needlessly killing
  2195. * innocent tasks.
  2196. */
  2197. if (high_zoneidx < ZONE_NORMAL)
  2198. goto nopage;
  2199. }
  2200. goto restart;
  2201. }
  2202. }
  2203. /* Check if we should retry the allocation */
  2204. pages_reclaimed += did_some_progress;
  2205. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2206. pages_reclaimed)) {
  2207. /* Wait for some write requests to complete then retry */
  2208. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2209. goto rebalance;
  2210. } else {
  2211. /*
  2212. * High-order allocations do not necessarily loop after
  2213. * direct reclaim and reclaim/compaction depends on compaction
  2214. * being called after reclaim so call directly if necessary
  2215. */
  2216. page = __alloc_pages_direct_compact(gfp_mask, order,
  2217. zonelist, high_zoneidx,
  2218. nodemask,
  2219. alloc_flags, preferred_zone,
  2220. migratetype, sync_migration,
  2221. &contended_compaction,
  2222. &deferred_compaction,
  2223. &did_some_progress);
  2224. if (page)
  2225. goto got_pg;
  2226. }
  2227. nopage:
  2228. warn_alloc_failed(gfp_mask, order, NULL);
  2229. return page;
  2230. got_pg:
  2231. if (kmemcheck_enabled)
  2232. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2233. return page;
  2234. }
  2235. /*
  2236. * This is the 'heart' of the zoned buddy allocator.
  2237. */
  2238. struct page *
  2239. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2240. struct zonelist *zonelist, nodemask_t *nodemask)
  2241. {
  2242. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2243. struct zone *preferred_zone;
  2244. struct page *page = NULL;
  2245. int migratetype = allocflags_to_migratetype(gfp_mask);
  2246. unsigned int cpuset_mems_cookie;
  2247. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
  2248. struct mem_cgroup *memcg = NULL;
  2249. gfp_mask &= gfp_allowed_mask;
  2250. lockdep_trace_alloc(gfp_mask);
  2251. might_sleep_if(gfp_mask & __GFP_WAIT);
  2252. if (should_fail_alloc_page(gfp_mask, order))
  2253. return NULL;
  2254. /*
  2255. * Check the zones suitable for the gfp_mask contain at least one
  2256. * valid zone. It's possible to have an empty zonelist as a result
  2257. * of GFP_THISNODE and a memoryless node
  2258. */
  2259. if (unlikely(!zonelist->_zonerefs->zone))
  2260. return NULL;
  2261. /*
  2262. * Will only have any effect when __GFP_KMEMCG is set. This is
  2263. * verified in the (always inline) callee
  2264. */
  2265. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2266. return NULL;
  2267. retry_cpuset:
  2268. cpuset_mems_cookie = get_mems_allowed();
  2269. /* The preferred zone is used for statistics later */
  2270. first_zones_zonelist(zonelist, high_zoneidx,
  2271. nodemask ? : &cpuset_current_mems_allowed,
  2272. &preferred_zone);
  2273. if (!preferred_zone)
  2274. goto out;
  2275. #ifdef CONFIG_CMA
  2276. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2277. alloc_flags |= ALLOC_CMA;
  2278. #endif
  2279. /* First allocation attempt */
  2280. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2281. zonelist, high_zoneidx, alloc_flags,
  2282. preferred_zone, migratetype);
  2283. if (unlikely(!page)) {
  2284. /*
  2285. * Runtime PM, block IO and its error handling path
  2286. * can deadlock because I/O on the device might not
  2287. * complete.
  2288. */
  2289. gfp_mask = memalloc_noio_flags(gfp_mask);
  2290. page = __alloc_pages_slowpath(gfp_mask, order,
  2291. zonelist, high_zoneidx, nodemask,
  2292. preferred_zone, migratetype);
  2293. }
  2294. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2295. out:
  2296. /*
  2297. * When updating a task's mems_allowed, it is possible to race with
  2298. * parallel threads in such a way that an allocation can fail while
  2299. * the mask is being updated. If a page allocation is about to fail,
  2300. * check if the cpuset changed during allocation and if so, retry.
  2301. */
  2302. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  2303. goto retry_cpuset;
  2304. memcg_kmem_commit_charge(page, memcg, order);
  2305. return page;
  2306. }
  2307. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2308. /*
  2309. * Common helper functions.
  2310. */
  2311. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2312. {
  2313. struct page *page;
  2314. /*
  2315. * __get_free_pages() returns a 32-bit address, which cannot represent
  2316. * a highmem page
  2317. */
  2318. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2319. page = alloc_pages(gfp_mask, order);
  2320. if (!page)
  2321. return 0;
  2322. return (unsigned long) page_address(page);
  2323. }
  2324. EXPORT_SYMBOL(__get_free_pages);
  2325. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2326. {
  2327. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2328. }
  2329. EXPORT_SYMBOL(get_zeroed_page);
  2330. void __free_pages(struct page *page, unsigned int order)
  2331. {
  2332. if (put_page_testzero(page)) {
  2333. if (order == 0)
  2334. free_hot_cold_page(page, 0);
  2335. else
  2336. __free_pages_ok(page, order);
  2337. }
  2338. }
  2339. EXPORT_SYMBOL(__free_pages);
  2340. void free_pages(unsigned long addr, unsigned int order)
  2341. {
  2342. if (addr != 0) {
  2343. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2344. __free_pages(virt_to_page((void *)addr), order);
  2345. }
  2346. }
  2347. EXPORT_SYMBOL(free_pages);
  2348. /*
  2349. * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
  2350. * pages allocated with __GFP_KMEMCG.
  2351. *
  2352. * Those pages are accounted to a particular memcg, embedded in the
  2353. * corresponding page_cgroup. To avoid adding a hit in the allocator to search
  2354. * for that information only to find out that it is NULL for users who have no
  2355. * interest in that whatsoever, we provide these functions.
  2356. *
  2357. * The caller knows better which flags it relies on.
  2358. */
  2359. void __free_memcg_kmem_pages(struct page *page, unsigned int order)
  2360. {
  2361. memcg_kmem_uncharge_pages(page, order);
  2362. __free_pages(page, order);
  2363. }
  2364. void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
  2365. {
  2366. if (addr != 0) {
  2367. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2368. __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
  2369. }
  2370. }
  2371. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2372. {
  2373. if (addr) {
  2374. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2375. unsigned long used = addr + PAGE_ALIGN(size);
  2376. split_page(virt_to_page((void *)addr), order);
  2377. while (used < alloc_end) {
  2378. free_page(used);
  2379. used += PAGE_SIZE;
  2380. }
  2381. }
  2382. return (void *)addr;
  2383. }
  2384. /**
  2385. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2386. * @size: the number of bytes to allocate
  2387. * @gfp_mask: GFP flags for the allocation
  2388. *
  2389. * This function is similar to alloc_pages(), except that it allocates the
  2390. * minimum number of pages to satisfy the request. alloc_pages() can only
  2391. * allocate memory in power-of-two pages.
  2392. *
  2393. * This function is also limited by MAX_ORDER.
  2394. *
  2395. * Memory allocated by this function must be released by free_pages_exact().
  2396. */
  2397. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2398. {
  2399. unsigned int order = get_order(size);
  2400. unsigned long addr;
  2401. addr = __get_free_pages(gfp_mask, order);
  2402. return make_alloc_exact(addr, order, size);
  2403. }
  2404. EXPORT_SYMBOL(alloc_pages_exact);
  2405. /**
  2406. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2407. * pages on a node.
  2408. * @nid: the preferred node ID where memory should be allocated
  2409. * @size: the number of bytes to allocate
  2410. * @gfp_mask: GFP flags for the allocation
  2411. *
  2412. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2413. * back.
  2414. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2415. * but is not exact.
  2416. */
  2417. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2418. {
  2419. unsigned order = get_order(size);
  2420. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2421. if (!p)
  2422. return NULL;
  2423. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2424. }
  2425. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2426. /**
  2427. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2428. * @virt: the value returned by alloc_pages_exact.
  2429. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2430. *
  2431. * Release the memory allocated by a previous call to alloc_pages_exact.
  2432. */
  2433. void free_pages_exact(void *virt, size_t size)
  2434. {
  2435. unsigned long addr = (unsigned long)virt;
  2436. unsigned long end = addr + PAGE_ALIGN(size);
  2437. while (addr < end) {
  2438. free_page(addr);
  2439. addr += PAGE_SIZE;
  2440. }
  2441. }
  2442. EXPORT_SYMBOL(free_pages_exact);
  2443. /**
  2444. * nr_free_zone_pages - count number of pages beyond high watermark
  2445. * @offset: The zone index of the highest zone
  2446. *
  2447. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  2448. * high watermark within all zones at or below a given zone index. For each
  2449. * zone, the number of pages is calculated as:
  2450. * present_pages - high_pages
  2451. */
  2452. static unsigned long nr_free_zone_pages(int offset)
  2453. {
  2454. struct zoneref *z;
  2455. struct zone *zone;
  2456. /* Just pick one node, since fallback list is circular */
  2457. unsigned long sum = 0;
  2458. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2459. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2460. unsigned long size = zone->managed_pages;
  2461. unsigned long high = high_wmark_pages(zone);
  2462. if (size > high)
  2463. sum += size - high;
  2464. }
  2465. return sum;
  2466. }
  2467. /**
  2468. * nr_free_buffer_pages - count number of pages beyond high watermark
  2469. *
  2470. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  2471. * watermark within ZONE_DMA and ZONE_NORMAL.
  2472. */
  2473. unsigned long nr_free_buffer_pages(void)
  2474. {
  2475. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2476. }
  2477. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2478. /**
  2479. * nr_free_pagecache_pages - count number of pages beyond high watermark
  2480. *
  2481. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  2482. * high watermark within all zones.
  2483. */
  2484. unsigned long nr_free_pagecache_pages(void)
  2485. {
  2486. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2487. }
  2488. static inline void show_node(struct zone *zone)
  2489. {
  2490. if (IS_ENABLED(CONFIG_NUMA))
  2491. printk("Node %d ", zone_to_nid(zone));
  2492. }
  2493. void si_meminfo(struct sysinfo *val)
  2494. {
  2495. val->totalram = totalram_pages;
  2496. val->sharedram = 0;
  2497. val->freeram = global_page_state(NR_FREE_PAGES);
  2498. val->bufferram = nr_blockdev_pages();
  2499. val->totalhigh = totalhigh_pages;
  2500. val->freehigh = nr_free_highpages();
  2501. val->mem_unit = PAGE_SIZE;
  2502. }
  2503. EXPORT_SYMBOL(si_meminfo);
  2504. #ifdef CONFIG_NUMA
  2505. void si_meminfo_node(struct sysinfo *val, int nid)
  2506. {
  2507. pg_data_t *pgdat = NODE_DATA(nid);
  2508. val->totalram = pgdat->node_present_pages;
  2509. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2510. #ifdef CONFIG_HIGHMEM
  2511. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  2512. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2513. NR_FREE_PAGES);
  2514. #else
  2515. val->totalhigh = 0;
  2516. val->freehigh = 0;
  2517. #endif
  2518. val->mem_unit = PAGE_SIZE;
  2519. }
  2520. #endif
  2521. /*
  2522. * Determine whether the node should be displayed or not, depending on whether
  2523. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2524. */
  2525. bool skip_free_areas_node(unsigned int flags, int nid)
  2526. {
  2527. bool ret = false;
  2528. unsigned int cpuset_mems_cookie;
  2529. if (!(flags & SHOW_MEM_FILTER_NODES))
  2530. goto out;
  2531. do {
  2532. cpuset_mems_cookie = get_mems_allowed();
  2533. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2534. } while (!put_mems_allowed(cpuset_mems_cookie));
  2535. out:
  2536. return ret;
  2537. }
  2538. #define K(x) ((x) << (PAGE_SHIFT-10))
  2539. static void show_migration_types(unsigned char type)
  2540. {
  2541. static const char types[MIGRATE_TYPES] = {
  2542. [MIGRATE_UNMOVABLE] = 'U',
  2543. [MIGRATE_RECLAIMABLE] = 'E',
  2544. [MIGRATE_MOVABLE] = 'M',
  2545. [MIGRATE_RESERVE] = 'R',
  2546. #ifdef CONFIG_CMA
  2547. [MIGRATE_CMA] = 'C',
  2548. #endif
  2549. #ifdef CONFIG_MEMORY_ISOLATION
  2550. [MIGRATE_ISOLATE] = 'I',
  2551. #endif
  2552. };
  2553. char tmp[MIGRATE_TYPES + 1];
  2554. char *p = tmp;
  2555. int i;
  2556. for (i = 0; i < MIGRATE_TYPES; i++) {
  2557. if (type & (1 << i))
  2558. *p++ = types[i];
  2559. }
  2560. *p = '\0';
  2561. printk("(%s) ", tmp);
  2562. }
  2563. /*
  2564. * Show free area list (used inside shift_scroll-lock stuff)
  2565. * We also calculate the percentage fragmentation. We do this by counting the
  2566. * memory on each free list with the exception of the first item on the list.
  2567. * Suppresses nodes that are not allowed by current's cpuset if
  2568. * SHOW_MEM_FILTER_NODES is passed.
  2569. */
  2570. void show_free_areas(unsigned int filter)
  2571. {
  2572. int cpu;
  2573. struct zone *zone;
  2574. for_each_populated_zone(zone) {
  2575. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2576. continue;
  2577. show_node(zone);
  2578. printk("%s per-cpu:\n", zone->name);
  2579. for_each_online_cpu(cpu) {
  2580. struct per_cpu_pageset *pageset;
  2581. pageset = per_cpu_ptr(zone->pageset, cpu);
  2582. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2583. cpu, pageset->pcp.high,
  2584. pageset->pcp.batch, pageset->pcp.count);
  2585. }
  2586. }
  2587. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2588. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2589. " unevictable:%lu"
  2590. " dirty:%lu writeback:%lu unstable:%lu\n"
  2591. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2592. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2593. " free_cma:%lu\n",
  2594. global_page_state(NR_ACTIVE_ANON),
  2595. global_page_state(NR_INACTIVE_ANON),
  2596. global_page_state(NR_ISOLATED_ANON),
  2597. global_page_state(NR_ACTIVE_FILE),
  2598. global_page_state(NR_INACTIVE_FILE),
  2599. global_page_state(NR_ISOLATED_FILE),
  2600. global_page_state(NR_UNEVICTABLE),
  2601. global_page_state(NR_FILE_DIRTY),
  2602. global_page_state(NR_WRITEBACK),
  2603. global_page_state(NR_UNSTABLE_NFS),
  2604. global_page_state(NR_FREE_PAGES),
  2605. global_page_state(NR_SLAB_RECLAIMABLE),
  2606. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2607. global_page_state(NR_FILE_MAPPED),
  2608. global_page_state(NR_SHMEM),
  2609. global_page_state(NR_PAGETABLE),
  2610. global_page_state(NR_BOUNCE),
  2611. global_page_state(NR_FREE_CMA_PAGES));
  2612. for_each_populated_zone(zone) {
  2613. int i;
  2614. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2615. continue;
  2616. show_node(zone);
  2617. printk("%s"
  2618. " free:%lukB"
  2619. " min:%lukB"
  2620. " low:%lukB"
  2621. " high:%lukB"
  2622. " active_anon:%lukB"
  2623. " inactive_anon:%lukB"
  2624. " active_file:%lukB"
  2625. " inactive_file:%lukB"
  2626. " unevictable:%lukB"
  2627. " isolated(anon):%lukB"
  2628. " isolated(file):%lukB"
  2629. " present:%lukB"
  2630. " managed:%lukB"
  2631. " mlocked:%lukB"
  2632. " dirty:%lukB"
  2633. " writeback:%lukB"
  2634. " mapped:%lukB"
  2635. " shmem:%lukB"
  2636. " slab_reclaimable:%lukB"
  2637. " slab_unreclaimable:%lukB"
  2638. " kernel_stack:%lukB"
  2639. " pagetables:%lukB"
  2640. " unstable:%lukB"
  2641. " bounce:%lukB"
  2642. " free_cma:%lukB"
  2643. " writeback_tmp:%lukB"
  2644. " pages_scanned:%lu"
  2645. " all_unreclaimable? %s"
  2646. "\n",
  2647. zone->name,
  2648. K(zone_page_state(zone, NR_FREE_PAGES)),
  2649. K(min_wmark_pages(zone)),
  2650. K(low_wmark_pages(zone)),
  2651. K(high_wmark_pages(zone)),
  2652. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2653. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2654. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2655. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2656. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2657. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2658. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2659. K(zone->present_pages),
  2660. K(zone->managed_pages),
  2661. K(zone_page_state(zone, NR_MLOCK)),
  2662. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2663. K(zone_page_state(zone, NR_WRITEBACK)),
  2664. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2665. K(zone_page_state(zone, NR_SHMEM)),
  2666. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2667. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2668. zone_page_state(zone, NR_KERNEL_STACK) *
  2669. THREAD_SIZE / 1024,
  2670. K(zone_page_state(zone, NR_PAGETABLE)),
  2671. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2672. K(zone_page_state(zone, NR_BOUNCE)),
  2673. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2674. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2675. zone->pages_scanned,
  2676. (zone->all_unreclaimable ? "yes" : "no")
  2677. );
  2678. printk("lowmem_reserve[]:");
  2679. for (i = 0; i < MAX_NR_ZONES; i++)
  2680. printk(" %lu", zone->lowmem_reserve[i]);
  2681. printk("\n");
  2682. }
  2683. for_each_populated_zone(zone) {
  2684. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2685. unsigned char types[MAX_ORDER];
  2686. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2687. continue;
  2688. show_node(zone);
  2689. printk("%s: ", zone->name);
  2690. spin_lock_irqsave(&zone->lock, flags);
  2691. for (order = 0; order < MAX_ORDER; order++) {
  2692. struct free_area *area = &zone->free_area[order];
  2693. int type;
  2694. nr[order] = area->nr_free;
  2695. total += nr[order] << order;
  2696. types[order] = 0;
  2697. for (type = 0; type < MIGRATE_TYPES; type++) {
  2698. if (!list_empty(&area->free_list[type]))
  2699. types[order] |= 1 << type;
  2700. }
  2701. }
  2702. spin_unlock_irqrestore(&zone->lock, flags);
  2703. for (order = 0; order < MAX_ORDER; order++) {
  2704. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2705. if (nr[order])
  2706. show_migration_types(types[order]);
  2707. }
  2708. printk("= %lukB\n", K(total));
  2709. }
  2710. hugetlb_show_meminfo();
  2711. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2712. show_swap_cache_info();
  2713. }
  2714. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2715. {
  2716. zoneref->zone = zone;
  2717. zoneref->zone_idx = zone_idx(zone);
  2718. }
  2719. /*
  2720. * Builds allocation fallback zone lists.
  2721. *
  2722. * Add all populated zones of a node to the zonelist.
  2723. */
  2724. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2725. int nr_zones, enum zone_type zone_type)
  2726. {
  2727. struct zone *zone;
  2728. BUG_ON(zone_type >= MAX_NR_ZONES);
  2729. zone_type++;
  2730. do {
  2731. zone_type--;
  2732. zone = pgdat->node_zones + zone_type;
  2733. if (populated_zone(zone)) {
  2734. zoneref_set_zone(zone,
  2735. &zonelist->_zonerefs[nr_zones++]);
  2736. check_highest_zone(zone_type);
  2737. }
  2738. } while (zone_type);
  2739. return nr_zones;
  2740. }
  2741. /*
  2742. * zonelist_order:
  2743. * 0 = automatic detection of better ordering.
  2744. * 1 = order by ([node] distance, -zonetype)
  2745. * 2 = order by (-zonetype, [node] distance)
  2746. *
  2747. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2748. * the same zonelist. So only NUMA can configure this param.
  2749. */
  2750. #define ZONELIST_ORDER_DEFAULT 0
  2751. #define ZONELIST_ORDER_NODE 1
  2752. #define ZONELIST_ORDER_ZONE 2
  2753. /* zonelist order in the kernel.
  2754. * set_zonelist_order() will set this to NODE or ZONE.
  2755. */
  2756. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2757. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2758. #ifdef CONFIG_NUMA
  2759. /* The value user specified ....changed by config */
  2760. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2761. /* string for sysctl */
  2762. #define NUMA_ZONELIST_ORDER_LEN 16
  2763. char numa_zonelist_order[16] = "default";
  2764. /*
  2765. * interface for configure zonelist ordering.
  2766. * command line option "numa_zonelist_order"
  2767. * = "[dD]efault - default, automatic configuration.
  2768. * = "[nN]ode - order by node locality, then by zone within node
  2769. * = "[zZ]one - order by zone, then by locality within zone
  2770. */
  2771. static int __parse_numa_zonelist_order(char *s)
  2772. {
  2773. if (*s == 'd' || *s == 'D') {
  2774. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2775. } else if (*s == 'n' || *s == 'N') {
  2776. user_zonelist_order = ZONELIST_ORDER_NODE;
  2777. } else if (*s == 'z' || *s == 'Z') {
  2778. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2779. } else {
  2780. printk(KERN_WARNING
  2781. "Ignoring invalid numa_zonelist_order value: "
  2782. "%s\n", s);
  2783. return -EINVAL;
  2784. }
  2785. return 0;
  2786. }
  2787. static __init int setup_numa_zonelist_order(char *s)
  2788. {
  2789. int ret;
  2790. if (!s)
  2791. return 0;
  2792. ret = __parse_numa_zonelist_order(s);
  2793. if (ret == 0)
  2794. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2795. return ret;
  2796. }
  2797. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2798. /*
  2799. * sysctl handler for numa_zonelist_order
  2800. */
  2801. int numa_zonelist_order_handler(ctl_table *table, int write,
  2802. void __user *buffer, size_t *length,
  2803. loff_t *ppos)
  2804. {
  2805. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2806. int ret;
  2807. static DEFINE_MUTEX(zl_order_mutex);
  2808. mutex_lock(&zl_order_mutex);
  2809. if (write)
  2810. strcpy(saved_string, (char*)table->data);
  2811. ret = proc_dostring(table, write, buffer, length, ppos);
  2812. if (ret)
  2813. goto out;
  2814. if (write) {
  2815. int oldval = user_zonelist_order;
  2816. if (__parse_numa_zonelist_order((char*)table->data)) {
  2817. /*
  2818. * bogus value. restore saved string
  2819. */
  2820. strncpy((char*)table->data, saved_string,
  2821. NUMA_ZONELIST_ORDER_LEN);
  2822. user_zonelist_order = oldval;
  2823. } else if (oldval != user_zonelist_order) {
  2824. mutex_lock(&zonelists_mutex);
  2825. build_all_zonelists(NULL, NULL);
  2826. mutex_unlock(&zonelists_mutex);
  2827. }
  2828. }
  2829. out:
  2830. mutex_unlock(&zl_order_mutex);
  2831. return ret;
  2832. }
  2833. #define MAX_NODE_LOAD (nr_online_nodes)
  2834. static int node_load[MAX_NUMNODES];
  2835. /**
  2836. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2837. * @node: node whose fallback list we're appending
  2838. * @used_node_mask: nodemask_t of already used nodes
  2839. *
  2840. * We use a number of factors to determine which is the next node that should
  2841. * appear on a given node's fallback list. The node should not have appeared
  2842. * already in @node's fallback list, and it should be the next closest node
  2843. * according to the distance array (which contains arbitrary distance values
  2844. * from each node to each node in the system), and should also prefer nodes
  2845. * with no CPUs, since presumably they'll have very little allocation pressure
  2846. * on them otherwise.
  2847. * It returns -1 if no node is found.
  2848. */
  2849. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2850. {
  2851. int n, val;
  2852. int min_val = INT_MAX;
  2853. int best_node = NUMA_NO_NODE;
  2854. const struct cpumask *tmp = cpumask_of_node(0);
  2855. /* Use the local node if we haven't already */
  2856. if (!node_isset(node, *used_node_mask)) {
  2857. node_set(node, *used_node_mask);
  2858. return node;
  2859. }
  2860. for_each_node_state(n, N_MEMORY) {
  2861. /* Don't want a node to appear more than once */
  2862. if (node_isset(n, *used_node_mask))
  2863. continue;
  2864. /* Use the distance array to find the distance */
  2865. val = node_distance(node, n);
  2866. /* Penalize nodes under us ("prefer the next node") */
  2867. val += (n < node);
  2868. /* Give preference to headless and unused nodes */
  2869. tmp = cpumask_of_node(n);
  2870. if (!cpumask_empty(tmp))
  2871. val += PENALTY_FOR_NODE_WITH_CPUS;
  2872. /* Slight preference for less loaded node */
  2873. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2874. val += node_load[n];
  2875. if (val < min_val) {
  2876. min_val = val;
  2877. best_node = n;
  2878. }
  2879. }
  2880. if (best_node >= 0)
  2881. node_set(best_node, *used_node_mask);
  2882. return best_node;
  2883. }
  2884. /*
  2885. * Build zonelists ordered by node and zones within node.
  2886. * This results in maximum locality--normal zone overflows into local
  2887. * DMA zone, if any--but risks exhausting DMA zone.
  2888. */
  2889. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2890. {
  2891. int j;
  2892. struct zonelist *zonelist;
  2893. zonelist = &pgdat->node_zonelists[0];
  2894. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2895. ;
  2896. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2897. MAX_NR_ZONES - 1);
  2898. zonelist->_zonerefs[j].zone = NULL;
  2899. zonelist->_zonerefs[j].zone_idx = 0;
  2900. }
  2901. /*
  2902. * Build gfp_thisnode zonelists
  2903. */
  2904. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2905. {
  2906. int j;
  2907. struct zonelist *zonelist;
  2908. zonelist = &pgdat->node_zonelists[1];
  2909. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2910. zonelist->_zonerefs[j].zone = NULL;
  2911. zonelist->_zonerefs[j].zone_idx = 0;
  2912. }
  2913. /*
  2914. * Build zonelists ordered by zone and nodes within zones.
  2915. * This results in conserving DMA zone[s] until all Normal memory is
  2916. * exhausted, but results in overflowing to remote node while memory
  2917. * may still exist in local DMA zone.
  2918. */
  2919. static int node_order[MAX_NUMNODES];
  2920. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2921. {
  2922. int pos, j, node;
  2923. int zone_type; /* needs to be signed */
  2924. struct zone *z;
  2925. struct zonelist *zonelist;
  2926. zonelist = &pgdat->node_zonelists[0];
  2927. pos = 0;
  2928. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2929. for (j = 0; j < nr_nodes; j++) {
  2930. node = node_order[j];
  2931. z = &NODE_DATA(node)->node_zones[zone_type];
  2932. if (populated_zone(z)) {
  2933. zoneref_set_zone(z,
  2934. &zonelist->_zonerefs[pos++]);
  2935. check_highest_zone(zone_type);
  2936. }
  2937. }
  2938. }
  2939. zonelist->_zonerefs[pos].zone = NULL;
  2940. zonelist->_zonerefs[pos].zone_idx = 0;
  2941. }
  2942. static int default_zonelist_order(void)
  2943. {
  2944. int nid, zone_type;
  2945. unsigned long low_kmem_size,total_size;
  2946. struct zone *z;
  2947. int average_size;
  2948. /*
  2949. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2950. * If they are really small and used heavily, the system can fall
  2951. * into OOM very easily.
  2952. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2953. */
  2954. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2955. low_kmem_size = 0;
  2956. total_size = 0;
  2957. for_each_online_node(nid) {
  2958. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2959. z = &NODE_DATA(nid)->node_zones[zone_type];
  2960. if (populated_zone(z)) {
  2961. if (zone_type < ZONE_NORMAL)
  2962. low_kmem_size += z->present_pages;
  2963. total_size += z->present_pages;
  2964. } else if (zone_type == ZONE_NORMAL) {
  2965. /*
  2966. * If any node has only lowmem, then node order
  2967. * is preferred to allow kernel allocations
  2968. * locally; otherwise, they can easily infringe
  2969. * on other nodes when there is an abundance of
  2970. * lowmem available to allocate from.
  2971. */
  2972. return ZONELIST_ORDER_NODE;
  2973. }
  2974. }
  2975. }
  2976. if (!low_kmem_size || /* there are no DMA area. */
  2977. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2978. return ZONELIST_ORDER_NODE;
  2979. /*
  2980. * look into each node's config.
  2981. * If there is a node whose DMA/DMA32 memory is very big area on
  2982. * local memory, NODE_ORDER may be suitable.
  2983. */
  2984. average_size = total_size /
  2985. (nodes_weight(node_states[N_MEMORY]) + 1);
  2986. for_each_online_node(nid) {
  2987. low_kmem_size = 0;
  2988. total_size = 0;
  2989. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2990. z = &NODE_DATA(nid)->node_zones[zone_type];
  2991. if (populated_zone(z)) {
  2992. if (zone_type < ZONE_NORMAL)
  2993. low_kmem_size += z->present_pages;
  2994. total_size += z->present_pages;
  2995. }
  2996. }
  2997. if (low_kmem_size &&
  2998. total_size > average_size && /* ignore small node */
  2999. low_kmem_size > total_size * 70/100)
  3000. return ZONELIST_ORDER_NODE;
  3001. }
  3002. return ZONELIST_ORDER_ZONE;
  3003. }
  3004. static void set_zonelist_order(void)
  3005. {
  3006. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3007. current_zonelist_order = default_zonelist_order();
  3008. else
  3009. current_zonelist_order = user_zonelist_order;
  3010. }
  3011. static void build_zonelists(pg_data_t *pgdat)
  3012. {
  3013. int j, node, load;
  3014. enum zone_type i;
  3015. nodemask_t used_mask;
  3016. int local_node, prev_node;
  3017. struct zonelist *zonelist;
  3018. int order = current_zonelist_order;
  3019. /* initialize zonelists */
  3020. for (i = 0; i < MAX_ZONELISTS; i++) {
  3021. zonelist = pgdat->node_zonelists + i;
  3022. zonelist->_zonerefs[0].zone = NULL;
  3023. zonelist->_zonerefs[0].zone_idx = 0;
  3024. }
  3025. /* NUMA-aware ordering of nodes */
  3026. local_node = pgdat->node_id;
  3027. load = nr_online_nodes;
  3028. prev_node = local_node;
  3029. nodes_clear(used_mask);
  3030. memset(node_order, 0, sizeof(node_order));
  3031. j = 0;
  3032. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3033. /*
  3034. * We don't want to pressure a particular node.
  3035. * So adding penalty to the first node in same
  3036. * distance group to make it round-robin.
  3037. */
  3038. if (node_distance(local_node, node) !=
  3039. node_distance(local_node, prev_node))
  3040. node_load[node] = load;
  3041. prev_node = node;
  3042. load--;
  3043. if (order == ZONELIST_ORDER_NODE)
  3044. build_zonelists_in_node_order(pgdat, node);
  3045. else
  3046. node_order[j++] = node; /* remember order */
  3047. }
  3048. if (order == ZONELIST_ORDER_ZONE) {
  3049. /* calculate node order -- i.e., DMA last! */
  3050. build_zonelists_in_zone_order(pgdat, j);
  3051. }
  3052. build_thisnode_zonelists(pgdat);
  3053. }
  3054. /* Construct the zonelist performance cache - see further mmzone.h */
  3055. static void build_zonelist_cache(pg_data_t *pgdat)
  3056. {
  3057. struct zonelist *zonelist;
  3058. struct zonelist_cache *zlc;
  3059. struct zoneref *z;
  3060. zonelist = &pgdat->node_zonelists[0];
  3061. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3062. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3063. for (z = zonelist->_zonerefs; z->zone; z++)
  3064. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3065. }
  3066. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3067. /*
  3068. * Return node id of node used for "local" allocations.
  3069. * I.e., first node id of first zone in arg node's generic zonelist.
  3070. * Used for initializing percpu 'numa_mem', which is used primarily
  3071. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3072. */
  3073. int local_memory_node(int node)
  3074. {
  3075. struct zone *zone;
  3076. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3077. gfp_zone(GFP_KERNEL),
  3078. NULL,
  3079. &zone);
  3080. return zone->node;
  3081. }
  3082. #endif
  3083. #else /* CONFIG_NUMA */
  3084. static void set_zonelist_order(void)
  3085. {
  3086. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3087. }
  3088. static void build_zonelists(pg_data_t *pgdat)
  3089. {
  3090. int node, local_node;
  3091. enum zone_type j;
  3092. struct zonelist *zonelist;
  3093. local_node = pgdat->node_id;
  3094. zonelist = &pgdat->node_zonelists[0];
  3095. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  3096. /*
  3097. * Now we build the zonelist so that it contains the zones
  3098. * of all the other nodes.
  3099. * We don't want to pressure a particular node, so when
  3100. * building the zones for node N, we make sure that the
  3101. * zones coming right after the local ones are those from
  3102. * node N+1 (modulo N)
  3103. */
  3104. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3105. if (!node_online(node))
  3106. continue;
  3107. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3108. MAX_NR_ZONES - 1);
  3109. }
  3110. for (node = 0; node < local_node; node++) {
  3111. if (!node_online(node))
  3112. continue;
  3113. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3114. MAX_NR_ZONES - 1);
  3115. }
  3116. zonelist->_zonerefs[j].zone = NULL;
  3117. zonelist->_zonerefs[j].zone_idx = 0;
  3118. }
  3119. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3120. static void build_zonelist_cache(pg_data_t *pgdat)
  3121. {
  3122. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3123. }
  3124. #endif /* CONFIG_NUMA */
  3125. /*
  3126. * Boot pageset table. One per cpu which is going to be used for all
  3127. * zones and all nodes. The parameters will be set in such a way
  3128. * that an item put on a list will immediately be handed over to
  3129. * the buddy list. This is safe since pageset manipulation is done
  3130. * with interrupts disabled.
  3131. *
  3132. * The boot_pagesets must be kept even after bootup is complete for
  3133. * unused processors and/or zones. They do play a role for bootstrapping
  3134. * hotplugged processors.
  3135. *
  3136. * zoneinfo_show() and maybe other functions do
  3137. * not check if the processor is online before following the pageset pointer.
  3138. * Other parts of the kernel may not check if the zone is available.
  3139. */
  3140. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3141. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3142. static void setup_zone_pageset(struct zone *zone);
  3143. /*
  3144. * Global mutex to protect against size modification of zonelists
  3145. * as well as to serialize pageset setup for the new populated zone.
  3146. */
  3147. DEFINE_MUTEX(zonelists_mutex);
  3148. /* return values int ....just for stop_machine() */
  3149. static int __build_all_zonelists(void *data)
  3150. {
  3151. int nid;
  3152. int cpu;
  3153. pg_data_t *self = data;
  3154. #ifdef CONFIG_NUMA
  3155. memset(node_load, 0, sizeof(node_load));
  3156. #endif
  3157. if (self && !node_online(self->node_id)) {
  3158. build_zonelists(self);
  3159. build_zonelist_cache(self);
  3160. }
  3161. for_each_online_node(nid) {
  3162. pg_data_t *pgdat = NODE_DATA(nid);
  3163. build_zonelists(pgdat);
  3164. build_zonelist_cache(pgdat);
  3165. }
  3166. /*
  3167. * Initialize the boot_pagesets that are going to be used
  3168. * for bootstrapping processors. The real pagesets for
  3169. * each zone will be allocated later when the per cpu
  3170. * allocator is available.
  3171. *
  3172. * boot_pagesets are used also for bootstrapping offline
  3173. * cpus if the system is already booted because the pagesets
  3174. * are needed to initialize allocators on a specific cpu too.
  3175. * F.e. the percpu allocator needs the page allocator which
  3176. * needs the percpu allocator in order to allocate its pagesets
  3177. * (a chicken-egg dilemma).
  3178. */
  3179. for_each_possible_cpu(cpu) {
  3180. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3181. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3182. /*
  3183. * We now know the "local memory node" for each node--
  3184. * i.e., the node of the first zone in the generic zonelist.
  3185. * Set up numa_mem percpu variable for on-line cpus. During
  3186. * boot, only the boot cpu should be on-line; we'll init the
  3187. * secondary cpus' numa_mem as they come on-line. During
  3188. * node/memory hotplug, we'll fixup all on-line cpus.
  3189. */
  3190. if (cpu_online(cpu))
  3191. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3192. #endif
  3193. }
  3194. return 0;
  3195. }
  3196. /*
  3197. * Called with zonelists_mutex held always
  3198. * unless system_state == SYSTEM_BOOTING.
  3199. */
  3200. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3201. {
  3202. set_zonelist_order();
  3203. if (system_state == SYSTEM_BOOTING) {
  3204. __build_all_zonelists(NULL);
  3205. mminit_verify_zonelist();
  3206. cpuset_init_current_mems_allowed();
  3207. } else {
  3208. /* we have to stop all cpus to guarantee there is no user
  3209. of zonelist */
  3210. #ifdef CONFIG_MEMORY_HOTPLUG
  3211. if (zone)
  3212. setup_zone_pageset(zone);
  3213. #endif
  3214. stop_machine(__build_all_zonelists, pgdat, NULL);
  3215. /* cpuset refresh routine should be here */
  3216. }
  3217. vm_total_pages = nr_free_pagecache_pages();
  3218. /*
  3219. * Disable grouping by mobility if the number of pages in the
  3220. * system is too low to allow the mechanism to work. It would be
  3221. * more accurate, but expensive to check per-zone. This check is
  3222. * made on memory-hotadd so a system can start with mobility
  3223. * disabled and enable it later
  3224. */
  3225. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3226. page_group_by_mobility_disabled = 1;
  3227. else
  3228. page_group_by_mobility_disabled = 0;
  3229. printk("Built %i zonelists in %s order, mobility grouping %s. "
  3230. "Total pages: %ld\n",
  3231. nr_online_nodes,
  3232. zonelist_order_name[current_zonelist_order],
  3233. page_group_by_mobility_disabled ? "off" : "on",
  3234. vm_total_pages);
  3235. #ifdef CONFIG_NUMA
  3236. printk("Policy zone: %s\n", zone_names[policy_zone]);
  3237. #endif
  3238. }
  3239. /*
  3240. * Helper functions to size the waitqueue hash table.
  3241. * Essentially these want to choose hash table sizes sufficiently
  3242. * large so that collisions trying to wait on pages are rare.
  3243. * But in fact, the number of active page waitqueues on typical
  3244. * systems is ridiculously low, less than 200. So this is even
  3245. * conservative, even though it seems large.
  3246. *
  3247. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3248. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3249. */
  3250. #define PAGES_PER_WAITQUEUE 256
  3251. #ifndef CONFIG_MEMORY_HOTPLUG
  3252. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3253. {
  3254. unsigned long size = 1;
  3255. pages /= PAGES_PER_WAITQUEUE;
  3256. while (size < pages)
  3257. size <<= 1;
  3258. /*
  3259. * Once we have dozens or even hundreds of threads sleeping
  3260. * on IO we've got bigger problems than wait queue collision.
  3261. * Limit the size of the wait table to a reasonable size.
  3262. */
  3263. size = min(size, 4096UL);
  3264. return max(size, 4UL);
  3265. }
  3266. #else
  3267. /*
  3268. * A zone's size might be changed by hot-add, so it is not possible to determine
  3269. * a suitable size for its wait_table. So we use the maximum size now.
  3270. *
  3271. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3272. *
  3273. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3274. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3275. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3276. *
  3277. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3278. * or more by the traditional way. (See above). It equals:
  3279. *
  3280. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3281. * ia64(16K page size) : = ( 8G + 4M)byte.
  3282. * powerpc (64K page size) : = (32G +16M)byte.
  3283. */
  3284. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3285. {
  3286. return 4096UL;
  3287. }
  3288. #endif
  3289. /*
  3290. * This is an integer logarithm so that shifts can be used later
  3291. * to extract the more random high bits from the multiplicative
  3292. * hash function before the remainder is taken.
  3293. */
  3294. static inline unsigned long wait_table_bits(unsigned long size)
  3295. {
  3296. return ffz(~size);
  3297. }
  3298. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  3299. /*
  3300. * Check if a pageblock contains reserved pages
  3301. */
  3302. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3303. {
  3304. unsigned long pfn;
  3305. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3306. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3307. return 1;
  3308. }
  3309. return 0;
  3310. }
  3311. /*
  3312. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3313. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3314. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3315. * higher will lead to a bigger reserve which will get freed as contiguous
  3316. * blocks as reclaim kicks in
  3317. */
  3318. static void setup_zone_migrate_reserve(struct zone *zone)
  3319. {
  3320. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3321. struct page *page;
  3322. unsigned long block_migratetype;
  3323. int reserve;
  3324. /*
  3325. * Get the start pfn, end pfn and the number of blocks to reserve
  3326. * We have to be careful to be aligned to pageblock_nr_pages to
  3327. * make sure that we always check pfn_valid for the first page in
  3328. * the block.
  3329. */
  3330. start_pfn = zone->zone_start_pfn;
  3331. end_pfn = zone_end_pfn(zone);
  3332. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3333. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3334. pageblock_order;
  3335. /*
  3336. * Reserve blocks are generally in place to help high-order atomic
  3337. * allocations that are short-lived. A min_free_kbytes value that
  3338. * would result in more than 2 reserve blocks for atomic allocations
  3339. * is assumed to be in place to help anti-fragmentation for the
  3340. * future allocation of hugepages at runtime.
  3341. */
  3342. reserve = min(2, reserve);
  3343. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3344. if (!pfn_valid(pfn))
  3345. continue;
  3346. page = pfn_to_page(pfn);
  3347. /* Watch out for overlapping nodes */
  3348. if (page_to_nid(page) != zone_to_nid(zone))
  3349. continue;
  3350. block_migratetype = get_pageblock_migratetype(page);
  3351. /* Only test what is necessary when the reserves are not met */
  3352. if (reserve > 0) {
  3353. /*
  3354. * Blocks with reserved pages will never free, skip
  3355. * them.
  3356. */
  3357. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3358. if (pageblock_is_reserved(pfn, block_end_pfn))
  3359. continue;
  3360. /* If this block is reserved, account for it */
  3361. if (block_migratetype == MIGRATE_RESERVE) {
  3362. reserve--;
  3363. continue;
  3364. }
  3365. /* Suitable for reserving if this block is movable */
  3366. if (block_migratetype == MIGRATE_MOVABLE) {
  3367. set_pageblock_migratetype(page,
  3368. MIGRATE_RESERVE);
  3369. move_freepages_block(zone, page,
  3370. MIGRATE_RESERVE);
  3371. reserve--;
  3372. continue;
  3373. }
  3374. }
  3375. /*
  3376. * If the reserve is met and this is a previous reserved block,
  3377. * take it back
  3378. */
  3379. if (block_migratetype == MIGRATE_RESERVE) {
  3380. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3381. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3382. }
  3383. }
  3384. }
  3385. /*
  3386. * Initially all pages are reserved - free ones are freed
  3387. * up by free_all_bootmem() once the early boot process is
  3388. * done. Non-atomic initialization, single-pass.
  3389. */
  3390. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3391. unsigned long start_pfn, enum memmap_context context)
  3392. {
  3393. struct page *page;
  3394. unsigned long end_pfn = start_pfn + size;
  3395. unsigned long pfn;
  3396. struct zone *z;
  3397. if (highest_memmap_pfn < end_pfn - 1)
  3398. highest_memmap_pfn = end_pfn - 1;
  3399. z = &NODE_DATA(nid)->node_zones[zone];
  3400. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3401. /*
  3402. * There can be holes in boot-time mem_map[]s
  3403. * handed to this function. They do not
  3404. * exist on hotplugged memory.
  3405. */
  3406. if (context == MEMMAP_EARLY) {
  3407. if (!early_pfn_valid(pfn))
  3408. continue;
  3409. if (!early_pfn_in_nid(pfn, nid))
  3410. continue;
  3411. }
  3412. page = pfn_to_page(pfn);
  3413. set_page_links(page, zone, nid, pfn);
  3414. mminit_verify_page_links(page, zone, nid, pfn);
  3415. init_page_count(page);
  3416. page_mapcount_reset(page);
  3417. page_nid_reset_last(page);
  3418. SetPageReserved(page);
  3419. /*
  3420. * Mark the block movable so that blocks are reserved for
  3421. * movable at startup. This will force kernel allocations
  3422. * to reserve their blocks rather than leaking throughout
  3423. * the address space during boot when many long-lived
  3424. * kernel allocations are made. Later some blocks near
  3425. * the start are marked MIGRATE_RESERVE by
  3426. * setup_zone_migrate_reserve()
  3427. *
  3428. * bitmap is created for zone's valid pfn range. but memmap
  3429. * can be created for invalid pages (for alignment)
  3430. * check here not to call set_pageblock_migratetype() against
  3431. * pfn out of zone.
  3432. */
  3433. if ((z->zone_start_pfn <= pfn)
  3434. && (pfn < zone_end_pfn(z))
  3435. && !(pfn & (pageblock_nr_pages - 1)))
  3436. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3437. INIT_LIST_HEAD(&page->lru);
  3438. #ifdef WANT_PAGE_VIRTUAL
  3439. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3440. if (!is_highmem_idx(zone))
  3441. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3442. #endif
  3443. }
  3444. }
  3445. static void __meminit zone_init_free_lists(struct zone *zone)
  3446. {
  3447. int order, t;
  3448. for_each_migratetype_order(order, t) {
  3449. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3450. zone->free_area[order].nr_free = 0;
  3451. }
  3452. }
  3453. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3454. #define memmap_init(size, nid, zone, start_pfn) \
  3455. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3456. #endif
  3457. static int __meminit zone_batchsize(struct zone *zone)
  3458. {
  3459. #ifdef CONFIG_MMU
  3460. int batch;
  3461. /*
  3462. * The per-cpu-pages pools are set to around 1000th of the
  3463. * size of the zone. But no more than 1/2 of a meg.
  3464. *
  3465. * OK, so we don't know how big the cache is. So guess.
  3466. */
  3467. batch = zone->managed_pages / 1024;
  3468. if (batch * PAGE_SIZE > 512 * 1024)
  3469. batch = (512 * 1024) / PAGE_SIZE;
  3470. batch /= 4; /* We effectively *= 4 below */
  3471. if (batch < 1)
  3472. batch = 1;
  3473. /*
  3474. * Clamp the batch to a 2^n - 1 value. Having a power
  3475. * of 2 value was found to be more likely to have
  3476. * suboptimal cache aliasing properties in some cases.
  3477. *
  3478. * For example if 2 tasks are alternately allocating
  3479. * batches of pages, one task can end up with a lot
  3480. * of pages of one half of the possible page colors
  3481. * and the other with pages of the other colors.
  3482. */
  3483. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3484. return batch;
  3485. #else
  3486. /* The deferral and batching of frees should be suppressed under NOMMU
  3487. * conditions.
  3488. *
  3489. * The problem is that NOMMU needs to be able to allocate large chunks
  3490. * of contiguous memory as there's no hardware page translation to
  3491. * assemble apparent contiguous memory from discontiguous pages.
  3492. *
  3493. * Queueing large contiguous runs of pages for batching, however,
  3494. * causes the pages to actually be freed in smaller chunks. As there
  3495. * can be a significant delay between the individual batches being
  3496. * recycled, this leads to the once large chunks of space being
  3497. * fragmented and becoming unavailable for high-order allocations.
  3498. */
  3499. return 0;
  3500. #endif
  3501. }
  3502. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3503. {
  3504. struct per_cpu_pages *pcp;
  3505. int migratetype;
  3506. memset(p, 0, sizeof(*p));
  3507. pcp = &p->pcp;
  3508. pcp->count = 0;
  3509. pcp->high = 6 * batch;
  3510. pcp->batch = max(1UL, 1 * batch);
  3511. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3512. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3513. }
  3514. /*
  3515. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  3516. * to the value high for the pageset p.
  3517. */
  3518. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  3519. unsigned long high)
  3520. {
  3521. struct per_cpu_pages *pcp;
  3522. pcp = &p->pcp;
  3523. pcp->high = high;
  3524. pcp->batch = max(1UL, high/4);
  3525. if ((high/4) > (PAGE_SHIFT * 8))
  3526. pcp->batch = PAGE_SHIFT * 8;
  3527. }
  3528. static void __meminit setup_zone_pageset(struct zone *zone)
  3529. {
  3530. int cpu;
  3531. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3532. for_each_possible_cpu(cpu) {
  3533. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3534. setup_pageset(pcp, zone_batchsize(zone));
  3535. if (percpu_pagelist_fraction)
  3536. setup_pagelist_highmark(pcp,
  3537. (zone->managed_pages /
  3538. percpu_pagelist_fraction));
  3539. }
  3540. }
  3541. /*
  3542. * Allocate per cpu pagesets and initialize them.
  3543. * Before this call only boot pagesets were available.
  3544. */
  3545. void __init setup_per_cpu_pageset(void)
  3546. {
  3547. struct zone *zone;
  3548. for_each_populated_zone(zone)
  3549. setup_zone_pageset(zone);
  3550. }
  3551. static noinline __init_refok
  3552. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3553. {
  3554. int i;
  3555. struct pglist_data *pgdat = zone->zone_pgdat;
  3556. size_t alloc_size;
  3557. /*
  3558. * The per-page waitqueue mechanism uses hashed waitqueues
  3559. * per zone.
  3560. */
  3561. zone->wait_table_hash_nr_entries =
  3562. wait_table_hash_nr_entries(zone_size_pages);
  3563. zone->wait_table_bits =
  3564. wait_table_bits(zone->wait_table_hash_nr_entries);
  3565. alloc_size = zone->wait_table_hash_nr_entries
  3566. * sizeof(wait_queue_head_t);
  3567. if (!slab_is_available()) {
  3568. zone->wait_table = (wait_queue_head_t *)
  3569. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3570. } else {
  3571. /*
  3572. * This case means that a zone whose size was 0 gets new memory
  3573. * via memory hot-add.
  3574. * But it may be the case that a new node was hot-added. In
  3575. * this case vmalloc() will not be able to use this new node's
  3576. * memory - this wait_table must be initialized to use this new
  3577. * node itself as well.
  3578. * To use this new node's memory, further consideration will be
  3579. * necessary.
  3580. */
  3581. zone->wait_table = vmalloc(alloc_size);
  3582. }
  3583. if (!zone->wait_table)
  3584. return -ENOMEM;
  3585. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3586. init_waitqueue_head(zone->wait_table + i);
  3587. return 0;
  3588. }
  3589. static __meminit void zone_pcp_init(struct zone *zone)
  3590. {
  3591. /*
  3592. * per cpu subsystem is not up at this point. The following code
  3593. * relies on the ability of the linker to provide the
  3594. * offset of a (static) per cpu variable into the per cpu area.
  3595. */
  3596. zone->pageset = &boot_pageset;
  3597. if (zone->present_pages)
  3598. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3599. zone->name, zone->present_pages,
  3600. zone_batchsize(zone));
  3601. }
  3602. int __meminit init_currently_empty_zone(struct zone *zone,
  3603. unsigned long zone_start_pfn,
  3604. unsigned long size,
  3605. enum memmap_context context)
  3606. {
  3607. struct pglist_data *pgdat = zone->zone_pgdat;
  3608. int ret;
  3609. ret = zone_wait_table_init(zone, size);
  3610. if (ret)
  3611. return ret;
  3612. pgdat->nr_zones = zone_idx(zone) + 1;
  3613. zone->zone_start_pfn = zone_start_pfn;
  3614. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3615. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3616. pgdat->node_id,
  3617. (unsigned long)zone_idx(zone),
  3618. zone_start_pfn, (zone_start_pfn + size));
  3619. zone_init_free_lists(zone);
  3620. return 0;
  3621. }
  3622. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3623. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3624. /*
  3625. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3626. * Architectures may implement their own version but if add_active_range()
  3627. * was used and there are no special requirements, this is a convenient
  3628. * alternative
  3629. */
  3630. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3631. {
  3632. unsigned long start_pfn, end_pfn;
  3633. int i, nid;
  3634. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  3635. if (start_pfn <= pfn && pfn < end_pfn)
  3636. return nid;
  3637. /* This is a memory hole */
  3638. return -1;
  3639. }
  3640. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3641. int __meminit early_pfn_to_nid(unsigned long pfn)
  3642. {
  3643. int nid;
  3644. nid = __early_pfn_to_nid(pfn);
  3645. if (nid >= 0)
  3646. return nid;
  3647. /* just returns 0 */
  3648. return 0;
  3649. }
  3650. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3651. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3652. {
  3653. int nid;
  3654. nid = __early_pfn_to_nid(pfn);
  3655. if (nid >= 0 && nid != node)
  3656. return false;
  3657. return true;
  3658. }
  3659. #endif
  3660. /**
  3661. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3662. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3663. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3664. *
  3665. * If an architecture guarantees that all ranges registered with
  3666. * add_active_ranges() contain no holes and may be freed, this
  3667. * this function may be used instead of calling free_bootmem() manually.
  3668. */
  3669. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3670. {
  3671. unsigned long start_pfn, end_pfn;
  3672. int i, this_nid;
  3673. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3674. start_pfn = min(start_pfn, max_low_pfn);
  3675. end_pfn = min(end_pfn, max_low_pfn);
  3676. if (start_pfn < end_pfn)
  3677. free_bootmem_node(NODE_DATA(this_nid),
  3678. PFN_PHYS(start_pfn),
  3679. (end_pfn - start_pfn) << PAGE_SHIFT);
  3680. }
  3681. }
  3682. /**
  3683. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3684. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3685. *
  3686. * If an architecture guarantees that all ranges registered with
  3687. * add_active_ranges() contain no holes and may be freed, this
  3688. * function may be used instead of calling memory_present() manually.
  3689. */
  3690. void __init sparse_memory_present_with_active_regions(int nid)
  3691. {
  3692. unsigned long start_pfn, end_pfn;
  3693. int i, this_nid;
  3694. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3695. memory_present(this_nid, start_pfn, end_pfn);
  3696. }
  3697. /**
  3698. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3699. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3700. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3701. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3702. *
  3703. * It returns the start and end page frame of a node based on information
  3704. * provided by an arch calling add_active_range(). If called for a node
  3705. * with no available memory, a warning is printed and the start and end
  3706. * PFNs will be 0.
  3707. */
  3708. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3709. unsigned long *start_pfn, unsigned long *end_pfn)
  3710. {
  3711. unsigned long this_start_pfn, this_end_pfn;
  3712. int i;
  3713. *start_pfn = -1UL;
  3714. *end_pfn = 0;
  3715. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3716. *start_pfn = min(*start_pfn, this_start_pfn);
  3717. *end_pfn = max(*end_pfn, this_end_pfn);
  3718. }
  3719. if (*start_pfn == -1UL)
  3720. *start_pfn = 0;
  3721. }
  3722. /*
  3723. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3724. * assumption is made that zones within a node are ordered in monotonic
  3725. * increasing memory addresses so that the "highest" populated zone is used
  3726. */
  3727. static void __init find_usable_zone_for_movable(void)
  3728. {
  3729. int zone_index;
  3730. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3731. if (zone_index == ZONE_MOVABLE)
  3732. continue;
  3733. if (arch_zone_highest_possible_pfn[zone_index] >
  3734. arch_zone_lowest_possible_pfn[zone_index])
  3735. break;
  3736. }
  3737. VM_BUG_ON(zone_index == -1);
  3738. movable_zone = zone_index;
  3739. }
  3740. /*
  3741. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3742. * because it is sized independent of architecture. Unlike the other zones,
  3743. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3744. * in each node depending on the size of each node and how evenly kernelcore
  3745. * is distributed. This helper function adjusts the zone ranges
  3746. * provided by the architecture for a given node by using the end of the
  3747. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3748. * zones within a node are in order of monotonic increases memory addresses
  3749. */
  3750. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3751. unsigned long zone_type,
  3752. unsigned long node_start_pfn,
  3753. unsigned long node_end_pfn,
  3754. unsigned long *zone_start_pfn,
  3755. unsigned long *zone_end_pfn)
  3756. {
  3757. /* Only adjust if ZONE_MOVABLE is on this node */
  3758. if (zone_movable_pfn[nid]) {
  3759. /* Size ZONE_MOVABLE */
  3760. if (zone_type == ZONE_MOVABLE) {
  3761. *zone_start_pfn = zone_movable_pfn[nid];
  3762. *zone_end_pfn = min(node_end_pfn,
  3763. arch_zone_highest_possible_pfn[movable_zone]);
  3764. /* Adjust for ZONE_MOVABLE starting within this range */
  3765. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3766. *zone_end_pfn > zone_movable_pfn[nid]) {
  3767. *zone_end_pfn = zone_movable_pfn[nid];
  3768. /* Check if this whole range is within ZONE_MOVABLE */
  3769. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3770. *zone_start_pfn = *zone_end_pfn;
  3771. }
  3772. }
  3773. /*
  3774. * Return the number of pages a zone spans in a node, including holes
  3775. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3776. */
  3777. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3778. unsigned long zone_type,
  3779. unsigned long *ignored)
  3780. {
  3781. unsigned long node_start_pfn, node_end_pfn;
  3782. unsigned long zone_start_pfn, zone_end_pfn;
  3783. /* Get the start and end of the node and zone */
  3784. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3785. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3786. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3787. adjust_zone_range_for_zone_movable(nid, zone_type,
  3788. node_start_pfn, node_end_pfn,
  3789. &zone_start_pfn, &zone_end_pfn);
  3790. /* Check that this node has pages within the zone's required range */
  3791. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3792. return 0;
  3793. /* Move the zone boundaries inside the node if necessary */
  3794. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3795. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3796. /* Return the spanned pages */
  3797. return zone_end_pfn - zone_start_pfn;
  3798. }
  3799. /*
  3800. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3801. * then all holes in the requested range will be accounted for.
  3802. */
  3803. unsigned long __meminit __absent_pages_in_range(int nid,
  3804. unsigned long range_start_pfn,
  3805. unsigned long range_end_pfn)
  3806. {
  3807. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3808. unsigned long start_pfn, end_pfn;
  3809. int i;
  3810. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3811. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3812. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3813. nr_absent -= end_pfn - start_pfn;
  3814. }
  3815. return nr_absent;
  3816. }
  3817. /**
  3818. * absent_pages_in_range - Return number of page frames in holes within a range
  3819. * @start_pfn: The start PFN to start searching for holes
  3820. * @end_pfn: The end PFN to stop searching for holes
  3821. *
  3822. * It returns the number of pages frames in memory holes within a range.
  3823. */
  3824. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3825. unsigned long end_pfn)
  3826. {
  3827. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3828. }
  3829. /* Return the number of page frames in holes in a zone on a node */
  3830. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3831. unsigned long zone_type,
  3832. unsigned long *ignored)
  3833. {
  3834. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3835. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3836. unsigned long node_start_pfn, node_end_pfn;
  3837. unsigned long zone_start_pfn, zone_end_pfn;
  3838. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3839. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3840. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3841. adjust_zone_range_for_zone_movable(nid, zone_type,
  3842. node_start_pfn, node_end_pfn,
  3843. &zone_start_pfn, &zone_end_pfn);
  3844. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3845. }
  3846. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3847. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3848. unsigned long zone_type,
  3849. unsigned long *zones_size)
  3850. {
  3851. return zones_size[zone_type];
  3852. }
  3853. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3854. unsigned long zone_type,
  3855. unsigned long *zholes_size)
  3856. {
  3857. if (!zholes_size)
  3858. return 0;
  3859. return zholes_size[zone_type];
  3860. }
  3861. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3862. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3863. unsigned long *zones_size, unsigned long *zholes_size)
  3864. {
  3865. unsigned long realtotalpages, totalpages = 0;
  3866. enum zone_type i;
  3867. for (i = 0; i < MAX_NR_ZONES; i++)
  3868. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3869. zones_size);
  3870. pgdat->node_spanned_pages = totalpages;
  3871. realtotalpages = totalpages;
  3872. for (i = 0; i < MAX_NR_ZONES; i++)
  3873. realtotalpages -=
  3874. zone_absent_pages_in_node(pgdat->node_id, i,
  3875. zholes_size);
  3876. pgdat->node_present_pages = realtotalpages;
  3877. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3878. realtotalpages);
  3879. }
  3880. #ifndef CONFIG_SPARSEMEM
  3881. /*
  3882. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3883. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3884. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3885. * round what is now in bits to nearest long in bits, then return it in
  3886. * bytes.
  3887. */
  3888. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  3889. {
  3890. unsigned long usemapsize;
  3891. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  3892. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3893. usemapsize = usemapsize >> pageblock_order;
  3894. usemapsize *= NR_PAGEBLOCK_BITS;
  3895. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3896. return usemapsize / 8;
  3897. }
  3898. static void __init setup_usemap(struct pglist_data *pgdat,
  3899. struct zone *zone,
  3900. unsigned long zone_start_pfn,
  3901. unsigned long zonesize)
  3902. {
  3903. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  3904. zone->pageblock_flags = NULL;
  3905. if (usemapsize)
  3906. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  3907. usemapsize);
  3908. }
  3909. #else
  3910. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  3911. unsigned long zone_start_pfn, unsigned long zonesize) {}
  3912. #endif /* CONFIG_SPARSEMEM */
  3913. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3914. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3915. void __init set_pageblock_order(void)
  3916. {
  3917. unsigned int order;
  3918. /* Check that pageblock_nr_pages has not already been setup */
  3919. if (pageblock_order)
  3920. return;
  3921. if (HPAGE_SHIFT > PAGE_SHIFT)
  3922. order = HUGETLB_PAGE_ORDER;
  3923. else
  3924. order = MAX_ORDER - 1;
  3925. /*
  3926. * Assume the largest contiguous order of interest is a huge page.
  3927. * This value may be variable depending on boot parameters on IA64 and
  3928. * powerpc.
  3929. */
  3930. pageblock_order = order;
  3931. }
  3932. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3933. /*
  3934. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3935. * is unused as pageblock_order is set at compile-time. See
  3936. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  3937. * the kernel config
  3938. */
  3939. void __init set_pageblock_order(void)
  3940. {
  3941. }
  3942. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3943. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  3944. unsigned long present_pages)
  3945. {
  3946. unsigned long pages = spanned_pages;
  3947. /*
  3948. * Provide a more accurate estimation if there are holes within
  3949. * the zone and SPARSEMEM is in use. If there are holes within the
  3950. * zone, each populated memory region may cost us one or two extra
  3951. * memmap pages due to alignment because memmap pages for each
  3952. * populated regions may not naturally algined on page boundary.
  3953. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  3954. */
  3955. if (spanned_pages > present_pages + (present_pages >> 4) &&
  3956. IS_ENABLED(CONFIG_SPARSEMEM))
  3957. pages = present_pages;
  3958. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  3959. }
  3960. /*
  3961. * Set up the zone data structures:
  3962. * - mark all pages reserved
  3963. * - mark all memory queues empty
  3964. * - clear the memory bitmaps
  3965. *
  3966. * NOTE: pgdat should get zeroed by caller.
  3967. */
  3968. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3969. unsigned long *zones_size, unsigned long *zholes_size)
  3970. {
  3971. enum zone_type j;
  3972. int nid = pgdat->node_id;
  3973. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3974. int ret;
  3975. pgdat_resize_init(pgdat);
  3976. #ifdef CONFIG_NUMA_BALANCING
  3977. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  3978. pgdat->numabalancing_migrate_nr_pages = 0;
  3979. pgdat->numabalancing_migrate_next_window = jiffies;
  3980. #endif
  3981. init_waitqueue_head(&pgdat->kswapd_wait);
  3982. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  3983. pgdat_page_cgroup_init(pgdat);
  3984. for (j = 0; j < MAX_NR_ZONES; j++) {
  3985. struct zone *zone = pgdat->node_zones + j;
  3986. unsigned long size, realsize, freesize, memmap_pages;
  3987. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3988. realsize = freesize = size - zone_absent_pages_in_node(nid, j,
  3989. zholes_size);
  3990. /*
  3991. * Adjust freesize so that it accounts for how much memory
  3992. * is used by this zone for memmap. This affects the watermark
  3993. * and per-cpu initialisations
  3994. */
  3995. memmap_pages = calc_memmap_size(size, realsize);
  3996. if (freesize >= memmap_pages) {
  3997. freesize -= memmap_pages;
  3998. if (memmap_pages)
  3999. printk(KERN_DEBUG
  4000. " %s zone: %lu pages used for memmap\n",
  4001. zone_names[j], memmap_pages);
  4002. } else
  4003. printk(KERN_WARNING
  4004. " %s zone: %lu pages exceeds freesize %lu\n",
  4005. zone_names[j], memmap_pages, freesize);
  4006. /* Account for reserved pages */
  4007. if (j == 0 && freesize > dma_reserve) {
  4008. freesize -= dma_reserve;
  4009. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4010. zone_names[0], dma_reserve);
  4011. }
  4012. if (!is_highmem_idx(j))
  4013. nr_kernel_pages += freesize;
  4014. /* Charge for highmem memmap if there are enough kernel pages */
  4015. else if (nr_kernel_pages > memmap_pages * 2)
  4016. nr_kernel_pages -= memmap_pages;
  4017. nr_all_pages += freesize;
  4018. zone->spanned_pages = size;
  4019. zone->present_pages = realsize;
  4020. /*
  4021. * Set an approximate value for lowmem here, it will be adjusted
  4022. * when the bootmem allocator frees pages into the buddy system.
  4023. * And all highmem pages will be managed by the buddy system.
  4024. */
  4025. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4026. #ifdef CONFIG_NUMA
  4027. zone->node = nid;
  4028. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4029. / 100;
  4030. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4031. #endif
  4032. zone->name = zone_names[j];
  4033. spin_lock_init(&zone->lock);
  4034. spin_lock_init(&zone->lru_lock);
  4035. zone_seqlock_init(zone);
  4036. zone->zone_pgdat = pgdat;
  4037. zone_pcp_init(zone);
  4038. lruvec_init(&zone->lruvec);
  4039. if (!size)
  4040. continue;
  4041. set_pageblock_order();
  4042. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4043. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4044. size, MEMMAP_EARLY);
  4045. BUG_ON(ret);
  4046. memmap_init(size, nid, j, zone_start_pfn);
  4047. zone_start_pfn += size;
  4048. }
  4049. }
  4050. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4051. {
  4052. /* Skip empty nodes */
  4053. if (!pgdat->node_spanned_pages)
  4054. return;
  4055. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4056. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4057. if (!pgdat->node_mem_map) {
  4058. unsigned long size, start, end;
  4059. struct page *map;
  4060. /*
  4061. * The zone's endpoints aren't required to be MAX_ORDER
  4062. * aligned but the node_mem_map endpoints must be in order
  4063. * for the buddy allocator to function correctly.
  4064. */
  4065. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4066. end = pgdat_end_pfn(pgdat);
  4067. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4068. size = (end - start) * sizeof(struct page);
  4069. map = alloc_remap(pgdat->node_id, size);
  4070. if (!map)
  4071. map = alloc_bootmem_node_nopanic(pgdat, size);
  4072. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4073. }
  4074. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4075. /*
  4076. * With no DISCONTIG, the global mem_map is just set as node 0's
  4077. */
  4078. if (pgdat == NODE_DATA(0)) {
  4079. mem_map = NODE_DATA(0)->node_mem_map;
  4080. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4081. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4082. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4083. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4084. }
  4085. #endif
  4086. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4087. }
  4088. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4089. unsigned long node_start_pfn, unsigned long *zholes_size)
  4090. {
  4091. pg_data_t *pgdat = NODE_DATA(nid);
  4092. /* pg_data_t should be reset to zero when it's allocated */
  4093. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4094. pgdat->node_id = nid;
  4095. pgdat->node_start_pfn = node_start_pfn;
  4096. init_zone_allows_reclaim(nid);
  4097. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  4098. alloc_node_mem_map(pgdat);
  4099. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4100. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4101. nid, (unsigned long)pgdat,
  4102. (unsigned long)pgdat->node_mem_map);
  4103. #endif
  4104. free_area_init_core(pgdat, zones_size, zholes_size);
  4105. }
  4106. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4107. #if MAX_NUMNODES > 1
  4108. /*
  4109. * Figure out the number of possible node ids.
  4110. */
  4111. static void __init setup_nr_node_ids(void)
  4112. {
  4113. unsigned int node;
  4114. unsigned int highest = 0;
  4115. for_each_node_mask(node, node_possible_map)
  4116. highest = node;
  4117. nr_node_ids = highest + 1;
  4118. }
  4119. #else
  4120. static inline void setup_nr_node_ids(void)
  4121. {
  4122. }
  4123. #endif
  4124. /**
  4125. * node_map_pfn_alignment - determine the maximum internode alignment
  4126. *
  4127. * This function should be called after node map is populated and sorted.
  4128. * It calculates the maximum power of two alignment which can distinguish
  4129. * all the nodes.
  4130. *
  4131. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4132. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4133. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4134. * shifted, 1GiB is enough and this function will indicate so.
  4135. *
  4136. * This is used to test whether pfn -> nid mapping of the chosen memory
  4137. * model has fine enough granularity to avoid incorrect mapping for the
  4138. * populated node map.
  4139. *
  4140. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4141. * requirement (single node).
  4142. */
  4143. unsigned long __init node_map_pfn_alignment(void)
  4144. {
  4145. unsigned long accl_mask = 0, last_end = 0;
  4146. unsigned long start, end, mask;
  4147. int last_nid = -1;
  4148. int i, nid;
  4149. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4150. if (!start || last_nid < 0 || last_nid == nid) {
  4151. last_nid = nid;
  4152. last_end = end;
  4153. continue;
  4154. }
  4155. /*
  4156. * Start with a mask granular enough to pin-point to the
  4157. * start pfn and tick off bits one-by-one until it becomes
  4158. * too coarse to separate the current node from the last.
  4159. */
  4160. mask = ~((1 << __ffs(start)) - 1);
  4161. while (mask && last_end <= (start & (mask << 1)))
  4162. mask <<= 1;
  4163. /* accumulate all internode masks */
  4164. accl_mask |= mask;
  4165. }
  4166. /* convert mask to number of pages */
  4167. return ~accl_mask + 1;
  4168. }
  4169. /* Find the lowest pfn for a node */
  4170. static unsigned long __init find_min_pfn_for_node(int nid)
  4171. {
  4172. unsigned long min_pfn = ULONG_MAX;
  4173. unsigned long start_pfn;
  4174. int i;
  4175. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4176. min_pfn = min(min_pfn, start_pfn);
  4177. if (min_pfn == ULONG_MAX) {
  4178. printk(KERN_WARNING
  4179. "Could not find start_pfn for node %d\n", nid);
  4180. return 0;
  4181. }
  4182. return min_pfn;
  4183. }
  4184. /**
  4185. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4186. *
  4187. * It returns the minimum PFN based on information provided via
  4188. * add_active_range().
  4189. */
  4190. unsigned long __init find_min_pfn_with_active_regions(void)
  4191. {
  4192. return find_min_pfn_for_node(MAX_NUMNODES);
  4193. }
  4194. /*
  4195. * early_calculate_totalpages()
  4196. * Sum pages in active regions for movable zone.
  4197. * Populate N_MEMORY for calculating usable_nodes.
  4198. */
  4199. static unsigned long __init early_calculate_totalpages(void)
  4200. {
  4201. unsigned long totalpages = 0;
  4202. unsigned long start_pfn, end_pfn;
  4203. int i, nid;
  4204. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4205. unsigned long pages = end_pfn - start_pfn;
  4206. totalpages += pages;
  4207. if (pages)
  4208. node_set_state(nid, N_MEMORY);
  4209. }
  4210. return totalpages;
  4211. }
  4212. /*
  4213. * Find the PFN the Movable zone begins in each node. Kernel memory
  4214. * is spread evenly between nodes as long as the nodes have enough
  4215. * memory. When they don't, some nodes will have more kernelcore than
  4216. * others
  4217. */
  4218. static void __init find_zone_movable_pfns_for_nodes(void)
  4219. {
  4220. int i, nid;
  4221. unsigned long usable_startpfn;
  4222. unsigned long kernelcore_node, kernelcore_remaining;
  4223. /* save the state before borrow the nodemask */
  4224. nodemask_t saved_node_state = node_states[N_MEMORY];
  4225. unsigned long totalpages = early_calculate_totalpages();
  4226. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4227. /*
  4228. * If movablecore was specified, calculate what size of
  4229. * kernelcore that corresponds so that memory usable for
  4230. * any allocation type is evenly spread. If both kernelcore
  4231. * and movablecore are specified, then the value of kernelcore
  4232. * will be used for required_kernelcore if it's greater than
  4233. * what movablecore would have allowed.
  4234. */
  4235. if (required_movablecore) {
  4236. unsigned long corepages;
  4237. /*
  4238. * Round-up so that ZONE_MOVABLE is at least as large as what
  4239. * was requested by the user
  4240. */
  4241. required_movablecore =
  4242. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4243. corepages = totalpages - required_movablecore;
  4244. required_kernelcore = max(required_kernelcore, corepages);
  4245. }
  4246. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4247. if (!required_kernelcore)
  4248. goto out;
  4249. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4250. find_usable_zone_for_movable();
  4251. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4252. restart:
  4253. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4254. kernelcore_node = required_kernelcore / usable_nodes;
  4255. for_each_node_state(nid, N_MEMORY) {
  4256. unsigned long start_pfn, end_pfn;
  4257. /*
  4258. * Recalculate kernelcore_node if the division per node
  4259. * now exceeds what is necessary to satisfy the requested
  4260. * amount of memory for the kernel
  4261. */
  4262. if (required_kernelcore < kernelcore_node)
  4263. kernelcore_node = required_kernelcore / usable_nodes;
  4264. /*
  4265. * As the map is walked, we track how much memory is usable
  4266. * by the kernel using kernelcore_remaining. When it is
  4267. * 0, the rest of the node is usable by ZONE_MOVABLE
  4268. */
  4269. kernelcore_remaining = kernelcore_node;
  4270. /* Go through each range of PFNs within this node */
  4271. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4272. unsigned long size_pages;
  4273. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4274. if (start_pfn >= end_pfn)
  4275. continue;
  4276. /* Account for what is only usable for kernelcore */
  4277. if (start_pfn < usable_startpfn) {
  4278. unsigned long kernel_pages;
  4279. kernel_pages = min(end_pfn, usable_startpfn)
  4280. - start_pfn;
  4281. kernelcore_remaining -= min(kernel_pages,
  4282. kernelcore_remaining);
  4283. required_kernelcore -= min(kernel_pages,
  4284. required_kernelcore);
  4285. /* Continue if range is now fully accounted */
  4286. if (end_pfn <= usable_startpfn) {
  4287. /*
  4288. * Push zone_movable_pfn to the end so
  4289. * that if we have to rebalance
  4290. * kernelcore across nodes, we will
  4291. * not double account here
  4292. */
  4293. zone_movable_pfn[nid] = end_pfn;
  4294. continue;
  4295. }
  4296. start_pfn = usable_startpfn;
  4297. }
  4298. /*
  4299. * The usable PFN range for ZONE_MOVABLE is from
  4300. * start_pfn->end_pfn. Calculate size_pages as the
  4301. * number of pages used as kernelcore
  4302. */
  4303. size_pages = end_pfn - start_pfn;
  4304. if (size_pages > kernelcore_remaining)
  4305. size_pages = kernelcore_remaining;
  4306. zone_movable_pfn[nid] = start_pfn + size_pages;
  4307. /*
  4308. * Some kernelcore has been met, update counts and
  4309. * break if the kernelcore for this node has been
  4310. * satisified
  4311. */
  4312. required_kernelcore -= min(required_kernelcore,
  4313. size_pages);
  4314. kernelcore_remaining -= size_pages;
  4315. if (!kernelcore_remaining)
  4316. break;
  4317. }
  4318. }
  4319. /*
  4320. * If there is still required_kernelcore, we do another pass with one
  4321. * less node in the count. This will push zone_movable_pfn[nid] further
  4322. * along on the nodes that still have memory until kernelcore is
  4323. * satisified
  4324. */
  4325. usable_nodes--;
  4326. if (usable_nodes && required_kernelcore > usable_nodes)
  4327. goto restart;
  4328. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4329. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4330. zone_movable_pfn[nid] =
  4331. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4332. out:
  4333. /* restore the node_state */
  4334. node_states[N_MEMORY] = saved_node_state;
  4335. }
  4336. /* Any regular or high memory on that node ? */
  4337. static void check_for_memory(pg_data_t *pgdat, int nid)
  4338. {
  4339. enum zone_type zone_type;
  4340. if (N_MEMORY == N_NORMAL_MEMORY)
  4341. return;
  4342. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4343. struct zone *zone = &pgdat->node_zones[zone_type];
  4344. if (zone->present_pages) {
  4345. node_set_state(nid, N_HIGH_MEMORY);
  4346. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4347. zone_type <= ZONE_NORMAL)
  4348. node_set_state(nid, N_NORMAL_MEMORY);
  4349. break;
  4350. }
  4351. }
  4352. }
  4353. /**
  4354. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4355. * @max_zone_pfn: an array of max PFNs for each zone
  4356. *
  4357. * This will call free_area_init_node() for each active node in the system.
  4358. * Using the page ranges provided by add_active_range(), the size of each
  4359. * zone in each node and their holes is calculated. If the maximum PFN
  4360. * between two adjacent zones match, it is assumed that the zone is empty.
  4361. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4362. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4363. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4364. * at arch_max_dma_pfn.
  4365. */
  4366. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4367. {
  4368. unsigned long start_pfn, end_pfn;
  4369. int i, nid;
  4370. /* Record where the zone boundaries are */
  4371. memset(arch_zone_lowest_possible_pfn, 0,
  4372. sizeof(arch_zone_lowest_possible_pfn));
  4373. memset(arch_zone_highest_possible_pfn, 0,
  4374. sizeof(arch_zone_highest_possible_pfn));
  4375. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4376. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4377. for (i = 1; i < MAX_NR_ZONES; i++) {
  4378. if (i == ZONE_MOVABLE)
  4379. continue;
  4380. arch_zone_lowest_possible_pfn[i] =
  4381. arch_zone_highest_possible_pfn[i-1];
  4382. arch_zone_highest_possible_pfn[i] =
  4383. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4384. }
  4385. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4386. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4387. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4388. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4389. find_zone_movable_pfns_for_nodes();
  4390. /* Print out the zone ranges */
  4391. printk("Zone ranges:\n");
  4392. for (i = 0; i < MAX_NR_ZONES; i++) {
  4393. if (i == ZONE_MOVABLE)
  4394. continue;
  4395. printk(KERN_CONT " %-8s ", zone_names[i]);
  4396. if (arch_zone_lowest_possible_pfn[i] ==
  4397. arch_zone_highest_possible_pfn[i])
  4398. printk(KERN_CONT "empty\n");
  4399. else
  4400. printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
  4401. arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
  4402. (arch_zone_highest_possible_pfn[i]
  4403. << PAGE_SHIFT) - 1);
  4404. }
  4405. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4406. printk("Movable zone start for each node\n");
  4407. for (i = 0; i < MAX_NUMNODES; i++) {
  4408. if (zone_movable_pfn[i])
  4409. printk(" Node %d: %#010lx\n", i,
  4410. zone_movable_pfn[i] << PAGE_SHIFT);
  4411. }
  4412. /* Print out the early node map */
  4413. printk("Early memory node ranges\n");
  4414. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4415. printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
  4416. start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
  4417. /* Initialise every node */
  4418. mminit_verify_pageflags_layout();
  4419. setup_nr_node_ids();
  4420. for_each_online_node(nid) {
  4421. pg_data_t *pgdat = NODE_DATA(nid);
  4422. free_area_init_node(nid, NULL,
  4423. find_min_pfn_for_node(nid), NULL);
  4424. /* Any memory on that node */
  4425. if (pgdat->node_present_pages)
  4426. node_set_state(nid, N_MEMORY);
  4427. check_for_memory(pgdat, nid);
  4428. }
  4429. }
  4430. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4431. {
  4432. unsigned long long coremem;
  4433. if (!p)
  4434. return -EINVAL;
  4435. coremem = memparse(p, &p);
  4436. *core = coremem >> PAGE_SHIFT;
  4437. /* Paranoid check that UL is enough for the coremem value */
  4438. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4439. return 0;
  4440. }
  4441. /*
  4442. * kernelcore=size sets the amount of memory for use for allocations that
  4443. * cannot be reclaimed or migrated.
  4444. */
  4445. static int __init cmdline_parse_kernelcore(char *p)
  4446. {
  4447. return cmdline_parse_core(p, &required_kernelcore);
  4448. }
  4449. /*
  4450. * movablecore=size sets the amount of memory for use for allocations that
  4451. * can be reclaimed or migrated.
  4452. */
  4453. static int __init cmdline_parse_movablecore(char *p)
  4454. {
  4455. return cmdline_parse_core(p, &required_movablecore);
  4456. }
  4457. early_param("kernelcore", cmdline_parse_kernelcore);
  4458. early_param("movablecore", cmdline_parse_movablecore);
  4459. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4460. unsigned long free_reserved_area(unsigned long start, unsigned long end,
  4461. int poison, char *s)
  4462. {
  4463. unsigned long pages, pos;
  4464. pos = start = PAGE_ALIGN(start);
  4465. end &= PAGE_MASK;
  4466. for (pages = 0; pos < end; pos += PAGE_SIZE, pages++) {
  4467. if (poison)
  4468. memset((void *)pos, poison, PAGE_SIZE);
  4469. free_reserved_page(virt_to_page(pos));
  4470. }
  4471. if (pages && s)
  4472. pr_info("Freeing %s memory: %ldK (%lx - %lx)\n",
  4473. s, pages << (PAGE_SHIFT - 10), start, end);
  4474. return pages;
  4475. }
  4476. #ifdef CONFIG_HIGHMEM
  4477. void free_highmem_page(struct page *page)
  4478. {
  4479. __free_reserved_page(page);
  4480. totalram_pages++;
  4481. totalhigh_pages++;
  4482. }
  4483. #endif
  4484. /**
  4485. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4486. * @new_dma_reserve: The number of pages to mark reserved
  4487. *
  4488. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4489. * In the DMA zone, a significant percentage may be consumed by kernel image
  4490. * and other unfreeable allocations which can skew the watermarks badly. This
  4491. * function may optionally be used to account for unfreeable pages in the
  4492. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4493. * smaller per-cpu batchsize.
  4494. */
  4495. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4496. {
  4497. dma_reserve = new_dma_reserve;
  4498. }
  4499. void __init free_area_init(unsigned long *zones_size)
  4500. {
  4501. free_area_init_node(0, zones_size,
  4502. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4503. }
  4504. static int page_alloc_cpu_notify(struct notifier_block *self,
  4505. unsigned long action, void *hcpu)
  4506. {
  4507. int cpu = (unsigned long)hcpu;
  4508. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4509. lru_add_drain_cpu(cpu);
  4510. drain_pages(cpu);
  4511. /*
  4512. * Spill the event counters of the dead processor
  4513. * into the current processors event counters.
  4514. * This artificially elevates the count of the current
  4515. * processor.
  4516. */
  4517. vm_events_fold_cpu(cpu);
  4518. /*
  4519. * Zero the differential counters of the dead processor
  4520. * so that the vm statistics are consistent.
  4521. *
  4522. * This is only okay since the processor is dead and cannot
  4523. * race with what we are doing.
  4524. */
  4525. refresh_cpu_vm_stats(cpu);
  4526. }
  4527. return NOTIFY_OK;
  4528. }
  4529. void __init page_alloc_init(void)
  4530. {
  4531. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4532. }
  4533. /*
  4534. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4535. * or min_free_kbytes changes.
  4536. */
  4537. static void calculate_totalreserve_pages(void)
  4538. {
  4539. struct pglist_data *pgdat;
  4540. unsigned long reserve_pages = 0;
  4541. enum zone_type i, j;
  4542. for_each_online_pgdat(pgdat) {
  4543. for (i = 0; i < MAX_NR_ZONES; i++) {
  4544. struct zone *zone = pgdat->node_zones + i;
  4545. unsigned long max = 0;
  4546. /* Find valid and maximum lowmem_reserve in the zone */
  4547. for (j = i; j < MAX_NR_ZONES; j++) {
  4548. if (zone->lowmem_reserve[j] > max)
  4549. max = zone->lowmem_reserve[j];
  4550. }
  4551. /* we treat the high watermark as reserved pages. */
  4552. max += high_wmark_pages(zone);
  4553. if (max > zone->managed_pages)
  4554. max = zone->managed_pages;
  4555. reserve_pages += max;
  4556. /*
  4557. * Lowmem reserves are not available to
  4558. * GFP_HIGHUSER page cache allocations and
  4559. * kswapd tries to balance zones to their high
  4560. * watermark. As a result, neither should be
  4561. * regarded as dirtyable memory, to prevent a
  4562. * situation where reclaim has to clean pages
  4563. * in order to balance the zones.
  4564. */
  4565. zone->dirty_balance_reserve = max;
  4566. }
  4567. }
  4568. dirty_balance_reserve = reserve_pages;
  4569. totalreserve_pages = reserve_pages;
  4570. }
  4571. /*
  4572. * setup_per_zone_lowmem_reserve - called whenever
  4573. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4574. * has a correct pages reserved value, so an adequate number of
  4575. * pages are left in the zone after a successful __alloc_pages().
  4576. */
  4577. static void setup_per_zone_lowmem_reserve(void)
  4578. {
  4579. struct pglist_data *pgdat;
  4580. enum zone_type j, idx;
  4581. for_each_online_pgdat(pgdat) {
  4582. for (j = 0; j < MAX_NR_ZONES; j++) {
  4583. struct zone *zone = pgdat->node_zones + j;
  4584. unsigned long managed_pages = zone->managed_pages;
  4585. zone->lowmem_reserve[j] = 0;
  4586. idx = j;
  4587. while (idx) {
  4588. struct zone *lower_zone;
  4589. idx--;
  4590. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4591. sysctl_lowmem_reserve_ratio[idx] = 1;
  4592. lower_zone = pgdat->node_zones + idx;
  4593. lower_zone->lowmem_reserve[j] = managed_pages /
  4594. sysctl_lowmem_reserve_ratio[idx];
  4595. managed_pages += lower_zone->managed_pages;
  4596. }
  4597. }
  4598. }
  4599. /* update totalreserve_pages */
  4600. calculate_totalreserve_pages();
  4601. }
  4602. static void __setup_per_zone_wmarks(void)
  4603. {
  4604. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4605. unsigned long lowmem_pages = 0;
  4606. struct zone *zone;
  4607. unsigned long flags;
  4608. /* Calculate total number of !ZONE_HIGHMEM pages */
  4609. for_each_zone(zone) {
  4610. if (!is_highmem(zone))
  4611. lowmem_pages += zone->managed_pages;
  4612. }
  4613. for_each_zone(zone) {
  4614. u64 tmp;
  4615. spin_lock_irqsave(&zone->lock, flags);
  4616. tmp = (u64)pages_min * zone->managed_pages;
  4617. do_div(tmp, lowmem_pages);
  4618. if (is_highmem(zone)) {
  4619. /*
  4620. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4621. * need highmem pages, so cap pages_min to a small
  4622. * value here.
  4623. *
  4624. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4625. * deltas controls asynch page reclaim, and so should
  4626. * not be capped for highmem.
  4627. */
  4628. unsigned long min_pages;
  4629. min_pages = zone->managed_pages / 1024;
  4630. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  4631. zone->watermark[WMARK_MIN] = min_pages;
  4632. } else {
  4633. /*
  4634. * If it's a lowmem zone, reserve a number of pages
  4635. * proportionate to the zone's size.
  4636. */
  4637. zone->watermark[WMARK_MIN] = tmp;
  4638. }
  4639. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4640. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4641. setup_zone_migrate_reserve(zone);
  4642. spin_unlock_irqrestore(&zone->lock, flags);
  4643. }
  4644. /* update totalreserve_pages */
  4645. calculate_totalreserve_pages();
  4646. }
  4647. /**
  4648. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4649. * or when memory is hot-{added|removed}
  4650. *
  4651. * Ensures that the watermark[min,low,high] values for each zone are set
  4652. * correctly with respect to min_free_kbytes.
  4653. */
  4654. void setup_per_zone_wmarks(void)
  4655. {
  4656. mutex_lock(&zonelists_mutex);
  4657. __setup_per_zone_wmarks();
  4658. mutex_unlock(&zonelists_mutex);
  4659. }
  4660. /*
  4661. * The inactive anon list should be small enough that the VM never has to
  4662. * do too much work, but large enough that each inactive page has a chance
  4663. * to be referenced again before it is swapped out.
  4664. *
  4665. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4666. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4667. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4668. * the anonymous pages are kept on the inactive list.
  4669. *
  4670. * total target max
  4671. * memory ratio inactive anon
  4672. * -------------------------------------
  4673. * 10MB 1 5MB
  4674. * 100MB 1 50MB
  4675. * 1GB 3 250MB
  4676. * 10GB 10 0.9GB
  4677. * 100GB 31 3GB
  4678. * 1TB 101 10GB
  4679. * 10TB 320 32GB
  4680. */
  4681. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4682. {
  4683. unsigned int gb, ratio;
  4684. /* Zone size in gigabytes */
  4685. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  4686. if (gb)
  4687. ratio = int_sqrt(10 * gb);
  4688. else
  4689. ratio = 1;
  4690. zone->inactive_ratio = ratio;
  4691. }
  4692. static void __meminit setup_per_zone_inactive_ratio(void)
  4693. {
  4694. struct zone *zone;
  4695. for_each_zone(zone)
  4696. calculate_zone_inactive_ratio(zone);
  4697. }
  4698. /*
  4699. * Initialise min_free_kbytes.
  4700. *
  4701. * For small machines we want it small (128k min). For large machines
  4702. * we want it large (64MB max). But it is not linear, because network
  4703. * bandwidth does not increase linearly with machine size. We use
  4704. *
  4705. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4706. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4707. *
  4708. * which yields
  4709. *
  4710. * 16MB: 512k
  4711. * 32MB: 724k
  4712. * 64MB: 1024k
  4713. * 128MB: 1448k
  4714. * 256MB: 2048k
  4715. * 512MB: 2896k
  4716. * 1024MB: 4096k
  4717. * 2048MB: 5792k
  4718. * 4096MB: 8192k
  4719. * 8192MB: 11584k
  4720. * 16384MB: 16384k
  4721. */
  4722. int __meminit init_per_zone_wmark_min(void)
  4723. {
  4724. unsigned long lowmem_kbytes;
  4725. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4726. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4727. if (min_free_kbytes < 128)
  4728. min_free_kbytes = 128;
  4729. if (min_free_kbytes > 65536)
  4730. min_free_kbytes = 65536;
  4731. setup_per_zone_wmarks();
  4732. refresh_zone_stat_thresholds();
  4733. setup_per_zone_lowmem_reserve();
  4734. setup_per_zone_inactive_ratio();
  4735. return 0;
  4736. }
  4737. module_init(init_per_zone_wmark_min)
  4738. /*
  4739. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4740. * that we can call two helper functions whenever min_free_kbytes
  4741. * changes.
  4742. */
  4743. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4744. void __user *buffer, size_t *length, loff_t *ppos)
  4745. {
  4746. proc_dointvec(table, write, buffer, length, ppos);
  4747. if (write)
  4748. setup_per_zone_wmarks();
  4749. return 0;
  4750. }
  4751. #ifdef CONFIG_NUMA
  4752. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4753. void __user *buffer, size_t *length, loff_t *ppos)
  4754. {
  4755. struct zone *zone;
  4756. int rc;
  4757. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4758. if (rc)
  4759. return rc;
  4760. for_each_zone(zone)
  4761. zone->min_unmapped_pages = (zone->managed_pages *
  4762. sysctl_min_unmapped_ratio) / 100;
  4763. return 0;
  4764. }
  4765. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4766. void __user *buffer, size_t *length, loff_t *ppos)
  4767. {
  4768. struct zone *zone;
  4769. int rc;
  4770. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4771. if (rc)
  4772. return rc;
  4773. for_each_zone(zone)
  4774. zone->min_slab_pages = (zone->managed_pages *
  4775. sysctl_min_slab_ratio) / 100;
  4776. return 0;
  4777. }
  4778. #endif
  4779. /*
  4780. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4781. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4782. * whenever sysctl_lowmem_reserve_ratio changes.
  4783. *
  4784. * The reserve ratio obviously has absolutely no relation with the
  4785. * minimum watermarks. The lowmem reserve ratio can only make sense
  4786. * if in function of the boot time zone sizes.
  4787. */
  4788. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4789. void __user *buffer, size_t *length, loff_t *ppos)
  4790. {
  4791. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4792. setup_per_zone_lowmem_reserve();
  4793. return 0;
  4794. }
  4795. /*
  4796. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4797. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4798. * can have before it gets flushed back to buddy allocator.
  4799. */
  4800. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4801. void __user *buffer, size_t *length, loff_t *ppos)
  4802. {
  4803. struct zone *zone;
  4804. unsigned int cpu;
  4805. int ret;
  4806. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4807. if (!write || (ret < 0))
  4808. return ret;
  4809. for_each_populated_zone(zone) {
  4810. for_each_possible_cpu(cpu) {
  4811. unsigned long high;
  4812. high = zone->managed_pages / percpu_pagelist_fraction;
  4813. setup_pagelist_highmark(
  4814. per_cpu_ptr(zone->pageset, cpu), high);
  4815. }
  4816. }
  4817. return 0;
  4818. }
  4819. int hashdist = HASHDIST_DEFAULT;
  4820. #ifdef CONFIG_NUMA
  4821. static int __init set_hashdist(char *str)
  4822. {
  4823. if (!str)
  4824. return 0;
  4825. hashdist = simple_strtoul(str, &str, 0);
  4826. return 1;
  4827. }
  4828. __setup("hashdist=", set_hashdist);
  4829. #endif
  4830. /*
  4831. * allocate a large system hash table from bootmem
  4832. * - it is assumed that the hash table must contain an exact power-of-2
  4833. * quantity of entries
  4834. * - limit is the number of hash buckets, not the total allocation size
  4835. */
  4836. void *__init alloc_large_system_hash(const char *tablename,
  4837. unsigned long bucketsize,
  4838. unsigned long numentries,
  4839. int scale,
  4840. int flags,
  4841. unsigned int *_hash_shift,
  4842. unsigned int *_hash_mask,
  4843. unsigned long low_limit,
  4844. unsigned long high_limit)
  4845. {
  4846. unsigned long long max = high_limit;
  4847. unsigned long log2qty, size;
  4848. void *table = NULL;
  4849. /* allow the kernel cmdline to have a say */
  4850. if (!numentries) {
  4851. /* round applicable memory size up to nearest megabyte */
  4852. numentries = nr_kernel_pages;
  4853. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4854. numentries >>= 20 - PAGE_SHIFT;
  4855. numentries <<= 20 - PAGE_SHIFT;
  4856. /* limit to 1 bucket per 2^scale bytes of low memory */
  4857. if (scale > PAGE_SHIFT)
  4858. numentries >>= (scale - PAGE_SHIFT);
  4859. else
  4860. numentries <<= (PAGE_SHIFT - scale);
  4861. /* Make sure we've got at least a 0-order allocation.. */
  4862. if (unlikely(flags & HASH_SMALL)) {
  4863. /* Makes no sense without HASH_EARLY */
  4864. WARN_ON(!(flags & HASH_EARLY));
  4865. if (!(numentries >> *_hash_shift)) {
  4866. numentries = 1UL << *_hash_shift;
  4867. BUG_ON(!numentries);
  4868. }
  4869. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4870. numentries = PAGE_SIZE / bucketsize;
  4871. }
  4872. numentries = roundup_pow_of_two(numentries);
  4873. /* limit allocation size to 1/16 total memory by default */
  4874. if (max == 0) {
  4875. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4876. do_div(max, bucketsize);
  4877. }
  4878. max = min(max, 0x80000000ULL);
  4879. if (numentries < low_limit)
  4880. numentries = low_limit;
  4881. if (numentries > max)
  4882. numentries = max;
  4883. log2qty = ilog2(numentries);
  4884. do {
  4885. size = bucketsize << log2qty;
  4886. if (flags & HASH_EARLY)
  4887. table = alloc_bootmem_nopanic(size);
  4888. else if (hashdist)
  4889. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4890. else {
  4891. /*
  4892. * If bucketsize is not a power-of-two, we may free
  4893. * some pages at the end of hash table which
  4894. * alloc_pages_exact() automatically does
  4895. */
  4896. if (get_order(size) < MAX_ORDER) {
  4897. table = alloc_pages_exact(size, GFP_ATOMIC);
  4898. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4899. }
  4900. }
  4901. } while (!table && size > PAGE_SIZE && --log2qty);
  4902. if (!table)
  4903. panic("Failed to allocate %s hash table\n", tablename);
  4904. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4905. tablename,
  4906. (1UL << log2qty),
  4907. ilog2(size) - PAGE_SHIFT,
  4908. size);
  4909. if (_hash_shift)
  4910. *_hash_shift = log2qty;
  4911. if (_hash_mask)
  4912. *_hash_mask = (1 << log2qty) - 1;
  4913. return table;
  4914. }
  4915. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4916. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4917. unsigned long pfn)
  4918. {
  4919. #ifdef CONFIG_SPARSEMEM
  4920. return __pfn_to_section(pfn)->pageblock_flags;
  4921. #else
  4922. return zone->pageblock_flags;
  4923. #endif /* CONFIG_SPARSEMEM */
  4924. }
  4925. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4926. {
  4927. #ifdef CONFIG_SPARSEMEM
  4928. pfn &= (PAGES_PER_SECTION-1);
  4929. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4930. #else
  4931. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  4932. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4933. #endif /* CONFIG_SPARSEMEM */
  4934. }
  4935. /**
  4936. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4937. * @page: The page within the block of interest
  4938. * @start_bitidx: The first bit of interest to retrieve
  4939. * @end_bitidx: The last bit of interest
  4940. * returns pageblock_bits flags
  4941. */
  4942. unsigned long get_pageblock_flags_group(struct page *page,
  4943. int start_bitidx, int end_bitidx)
  4944. {
  4945. struct zone *zone;
  4946. unsigned long *bitmap;
  4947. unsigned long pfn, bitidx;
  4948. unsigned long flags = 0;
  4949. unsigned long value = 1;
  4950. zone = page_zone(page);
  4951. pfn = page_to_pfn(page);
  4952. bitmap = get_pageblock_bitmap(zone, pfn);
  4953. bitidx = pfn_to_bitidx(zone, pfn);
  4954. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4955. if (test_bit(bitidx + start_bitidx, bitmap))
  4956. flags |= value;
  4957. return flags;
  4958. }
  4959. /**
  4960. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4961. * @page: The page within the block of interest
  4962. * @start_bitidx: The first bit of interest
  4963. * @end_bitidx: The last bit of interest
  4964. * @flags: The flags to set
  4965. */
  4966. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4967. int start_bitidx, int end_bitidx)
  4968. {
  4969. struct zone *zone;
  4970. unsigned long *bitmap;
  4971. unsigned long pfn, bitidx;
  4972. unsigned long value = 1;
  4973. zone = page_zone(page);
  4974. pfn = page_to_pfn(page);
  4975. bitmap = get_pageblock_bitmap(zone, pfn);
  4976. bitidx = pfn_to_bitidx(zone, pfn);
  4977. VM_BUG_ON(!zone_spans_pfn(zone, pfn));
  4978. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4979. if (flags & value)
  4980. __set_bit(bitidx + start_bitidx, bitmap);
  4981. else
  4982. __clear_bit(bitidx + start_bitidx, bitmap);
  4983. }
  4984. /*
  4985. * This function checks whether pageblock includes unmovable pages or not.
  4986. * If @count is not zero, it is okay to include less @count unmovable pages
  4987. *
  4988. * PageLRU check wihtout isolation or lru_lock could race so that
  4989. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  4990. * expect this function should be exact.
  4991. */
  4992. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  4993. bool skip_hwpoisoned_pages)
  4994. {
  4995. unsigned long pfn, iter, found;
  4996. int mt;
  4997. /*
  4998. * For avoiding noise data, lru_add_drain_all() should be called
  4999. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5000. */
  5001. if (zone_idx(zone) == ZONE_MOVABLE)
  5002. return false;
  5003. mt = get_pageblock_migratetype(page);
  5004. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5005. return false;
  5006. pfn = page_to_pfn(page);
  5007. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5008. unsigned long check = pfn + iter;
  5009. if (!pfn_valid_within(check))
  5010. continue;
  5011. page = pfn_to_page(check);
  5012. /*
  5013. * We can't use page_count without pin a page
  5014. * because another CPU can free compound page.
  5015. * This check already skips compound tails of THP
  5016. * because their page->_count is zero at all time.
  5017. */
  5018. if (!atomic_read(&page->_count)) {
  5019. if (PageBuddy(page))
  5020. iter += (1 << page_order(page)) - 1;
  5021. continue;
  5022. }
  5023. /*
  5024. * The HWPoisoned page may be not in buddy system, and
  5025. * page_count() is not 0.
  5026. */
  5027. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5028. continue;
  5029. if (!PageLRU(page))
  5030. found++;
  5031. /*
  5032. * If there are RECLAIMABLE pages, we need to check it.
  5033. * But now, memory offline itself doesn't call shrink_slab()
  5034. * and it still to be fixed.
  5035. */
  5036. /*
  5037. * If the page is not RAM, page_count()should be 0.
  5038. * we don't need more check. This is an _used_ not-movable page.
  5039. *
  5040. * The problematic thing here is PG_reserved pages. PG_reserved
  5041. * is set to both of a memory hole page and a _used_ kernel
  5042. * page at boot.
  5043. */
  5044. if (found > count)
  5045. return true;
  5046. }
  5047. return false;
  5048. }
  5049. bool is_pageblock_removable_nolock(struct page *page)
  5050. {
  5051. struct zone *zone;
  5052. unsigned long pfn;
  5053. /*
  5054. * We have to be careful here because we are iterating over memory
  5055. * sections which are not zone aware so we might end up outside of
  5056. * the zone but still within the section.
  5057. * We have to take care about the node as well. If the node is offline
  5058. * its NODE_DATA will be NULL - see page_zone.
  5059. */
  5060. if (!node_online(page_to_nid(page)))
  5061. return false;
  5062. zone = page_zone(page);
  5063. pfn = page_to_pfn(page);
  5064. if (!zone_spans_pfn(zone, pfn))
  5065. return false;
  5066. return !has_unmovable_pages(zone, page, 0, true);
  5067. }
  5068. #ifdef CONFIG_CMA
  5069. static unsigned long pfn_max_align_down(unsigned long pfn)
  5070. {
  5071. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5072. pageblock_nr_pages) - 1);
  5073. }
  5074. static unsigned long pfn_max_align_up(unsigned long pfn)
  5075. {
  5076. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5077. pageblock_nr_pages));
  5078. }
  5079. /* [start, end) must belong to a single zone. */
  5080. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5081. unsigned long start, unsigned long end)
  5082. {
  5083. /* This function is based on compact_zone() from compaction.c. */
  5084. unsigned long nr_reclaimed;
  5085. unsigned long pfn = start;
  5086. unsigned int tries = 0;
  5087. int ret = 0;
  5088. migrate_prep();
  5089. while (pfn < end || !list_empty(&cc->migratepages)) {
  5090. if (fatal_signal_pending(current)) {
  5091. ret = -EINTR;
  5092. break;
  5093. }
  5094. if (list_empty(&cc->migratepages)) {
  5095. cc->nr_migratepages = 0;
  5096. pfn = isolate_migratepages_range(cc->zone, cc,
  5097. pfn, end, true);
  5098. if (!pfn) {
  5099. ret = -EINTR;
  5100. break;
  5101. }
  5102. tries = 0;
  5103. } else if (++tries == 5) {
  5104. ret = ret < 0 ? ret : -EBUSY;
  5105. break;
  5106. }
  5107. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5108. &cc->migratepages);
  5109. cc->nr_migratepages -= nr_reclaimed;
  5110. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5111. 0, MIGRATE_SYNC, MR_CMA);
  5112. }
  5113. if (ret < 0) {
  5114. putback_movable_pages(&cc->migratepages);
  5115. return ret;
  5116. }
  5117. return 0;
  5118. }
  5119. /**
  5120. * alloc_contig_range() -- tries to allocate given range of pages
  5121. * @start: start PFN to allocate
  5122. * @end: one-past-the-last PFN to allocate
  5123. * @migratetype: migratetype of the underlaying pageblocks (either
  5124. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5125. * in range must have the same migratetype and it must
  5126. * be either of the two.
  5127. *
  5128. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5129. * aligned, however it's the caller's responsibility to guarantee that
  5130. * we are the only thread that changes migrate type of pageblocks the
  5131. * pages fall in.
  5132. *
  5133. * The PFN range must belong to a single zone.
  5134. *
  5135. * Returns zero on success or negative error code. On success all
  5136. * pages which PFN is in [start, end) are allocated for the caller and
  5137. * need to be freed with free_contig_range().
  5138. */
  5139. int alloc_contig_range(unsigned long start, unsigned long end,
  5140. unsigned migratetype)
  5141. {
  5142. unsigned long outer_start, outer_end;
  5143. int ret = 0, order;
  5144. struct compact_control cc = {
  5145. .nr_migratepages = 0,
  5146. .order = -1,
  5147. .zone = page_zone(pfn_to_page(start)),
  5148. .sync = true,
  5149. .ignore_skip_hint = true,
  5150. };
  5151. INIT_LIST_HEAD(&cc.migratepages);
  5152. /*
  5153. * What we do here is we mark all pageblocks in range as
  5154. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5155. * have different sizes, and due to the way page allocator
  5156. * work, we align the range to biggest of the two pages so
  5157. * that page allocator won't try to merge buddies from
  5158. * different pageblocks and change MIGRATE_ISOLATE to some
  5159. * other migration type.
  5160. *
  5161. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5162. * migrate the pages from an unaligned range (ie. pages that
  5163. * we are interested in). This will put all the pages in
  5164. * range back to page allocator as MIGRATE_ISOLATE.
  5165. *
  5166. * When this is done, we take the pages in range from page
  5167. * allocator removing them from the buddy system. This way
  5168. * page allocator will never consider using them.
  5169. *
  5170. * This lets us mark the pageblocks back as
  5171. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5172. * aligned range but not in the unaligned, original range are
  5173. * put back to page allocator so that buddy can use them.
  5174. */
  5175. ret = start_isolate_page_range(pfn_max_align_down(start),
  5176. pfn_max_align_up(end), migratetype,
  5177. false);
  5178. if (ret)
  5179. return ret;
  5180. ret = __alloc_contig_migrate_range(&cc, start, end);
  5181. if (ret)
  5182. goto done;
  5183. /*
  5184. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5185. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5186. * more, all pages in [start, end) are free in page allocator.
  5187. * What we are going to do is to allocate all pages from
  5188. * [start, end) (that is remove them from page allocator).
  5189. *
  5190. * The only problem is that pages at the beginning and at the
  5191. * end of interesting range may be not aligned with pages that
  5192. * page allocator holds, ie. they can be part of higher order
  5193. * pages. Because of this, we reserve the bigger range and
  5194. * once this is done free the pages we are not interested in.
  5195. *
  5196. * We don't have to hold zone->lock here because the pages are
  5197. * isolated thus they won't get removed from buddy.
  5198. */
  5199. lru_add_drain_all();
  5200. drain_all_pages();
  5201. order = 0;
  5202. outer_start = start;
  5203. while (!PageBuddy(pfn_to_page(outer_start))) {
  5204. if (++order >= MAX_ORDER) {
  5205. ret = -EBUSY;
  5206. goto done;
  5207. }
  5208. outer_start &= ~0UL << order;
  5209. }
  5210. /* Make sure the range is really isolated. */
  5211. if (test_pages_isolated(outer_start, end, false)) {
  5212. pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
  5213. outer_start, end);
  5214. ret = -EBUSY;
  5215. goto done;
  5216. }
  5217. /* Grab isolated pages from freelists. */
  5218. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5219. if (!outer_end) {
  5220. ret = -EBUSY;
  5221. goto done;
  5222. }
  5223. /* Free head and tail (if any) */
  5224. if (start != outer_start)
  5225. free_contig_range(outer_start, start - outer_start);
  5226. if (end != outer_end)
  5227. free_contig_range(end, outer_end - end);
  5228. done:
  5229. undo_isolate_page_range(pfn_max_align_down(start),
  5230. pfn_max_align_up(end), migratetype);
  5231. return ret;
  5232. }
  5233. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5234. {
  5235. unsigned int count = 0;
  5236. for (; nr_pages--; pfn++) {
  5237. struct page *page = pfn_to_page(pfn);
  5238. count += page_count(page) != 1;
  5239. __free_page(page);
  5240. }
  5241. WARN(count != 0, "%d pages are still in use!\n", count);
  5242. }
  5243. #endif
  5244. #ifdef CONFIG_MEMORY_HOTPLUG
  5245. static int __meminit __zone_pcp_update(void *data)
  5246. {
  5247. struct zone *zone = data;
  5248. int cpu;
  5249. unsigned long batch = zone_batchsize(zone), flags;
  5250. for_each_possible_cpu(cpu) {
  5251. struct per_cpu_pageset *pset;
  5252. struct per_cpu_pages *pcp;
  5253. pset = per_cpu_ptr(zone->pageset, cpu);
  5254. pcp = &pset->pcp;
  5255. local_irq_save(flags);
  5256. if (pcp->count > 0)
  5257. free_pcppages_bulk(zone, pcp->count, pcp);
  5258. drain_zonestat(zone, pset);
  5259. setup_pageset(pset, batch);
  5260. local_irq_restore(flags);
  5261. }
  5262. return 0;
  5263. }
  5264. void __meminit zone_pcp_update(struct zone *zone)
  5265. {
  5266. stop_machine(__zone_pcp_update, zone, NULL);
  5267. }
  5268. #endif
  5269. void zone_pcp_reset(struct zone *zone)
  5270. {
  5271. unsigned long flags;
  5272. int cpu;
  5273. struct per_cpu_pageset *pset;
  5274. /* avoid races with drain_pages() */
  5275. local_irq_save(flags);
  5276. if (zone->pageset != &boot_pageset) {
  5277. for_each_online_cpu(cpu) {
  5278. pset = per_cpu_ptr(zone->pageset, cpu);
  5279. drain_zonestat(zone, pset);
  5280. }
  5281. free_percpu(zone->pageset);
  5282. zone->pageset = &boot_pageset;
  5283. }
  5284. local_irq_restore(flags);
  5285. }
  5286. #ifdef CONFIG_MEMORY_HOTREMOVE
  5287. /*
  5288. * All pages in the range must be isolated before calling this.
  5289. */
  5290. void
  5291. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5292. {
  5293. struct page *page;
  5294. struct zone *zone;
  5295. int order, i;
  5296. unsigned long pfn;
  5297. unsigned long flags;
  5298. /* find the first valid pfn */
  5299. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5300. if (pfn_valid(pfn))
  5301. break;
  5302. if (pfn == end_pfn)
  5303. return;
  5304. zone = page_zone(pfn_to_page(pfn));
  5305. spin_lock_irqsave(&zone->lock, flags);
  5306. pfn = start_pfn;
  5307. while (pfn < end_pfn) {
  5308. if (!pfn_valid(pfn)) {
  5309. pfn++;
  5310. continue;
  5311. }
  5312. page = pfn_to_page(pfn);
  5313. /*
  5314. * The HWPoisoned page may be not in buddy system, and
  5315. * page_count() is not 0.
  5316. */
  5317. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  5318. pfn++;
  5319. SetPageReserved(page);
  5320. continue;
  5321. }
  5322. BUG_ON(page_count(page));
  5323. BUG_ON(!PageBuddy(page));
  5324. order = page_order(page);
  5325. #ifdef CONFIG_DEBUG_VM
  5326. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5327. pfn, 1 << order, end_pfn);
  5328. #endif
  5329. list_del(&page->lru);
  5330. rmv_page_order(page);
  5331. zone->free_area[order].nr_free--;
  5332. for (i = 0; i < (1 << order); i++)
  5333. SetPageReserved((page+i));
  5334. pfn += (1 << order);
  5335. }
  5336. spin_unlock_irqrestore(&zone->lock, flags);
  5337. }
  5338. #endif
  5339. #ifdef CONFIG_MEMORY_FAILURE
  5340. bool is_free_buddy_page(struct page *page)
  5341. {
  5342. struct zone *zone = page_zone(page);
  5343. unsigned long pfn = page_to_pfn(page);
  5344. unsigned long flags;
  5345. int order;
  5346. spin_lock_irqsave(&zone->lock, flags);
  5347. for (order = 0; order < MAX_ORDER; order++) {
  5348. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5349. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5350. break;
  5351. }
  5352. spin_unlock_irqrestore(&zone->lock, flags);
  5353. return order < MAX_ORDER;
  5354. }
  5355. #endif
  5356. static const struct trace_print_flags pageflag_names[] = {
  5357. {1UL << PG_locked, "locked" },
  5358. {1UL << PG_error, "error" },
  5359. {1UL << PG_referenced, "referenced" },
  5360. {1UL << PG_uptodate, "uptodate" },
  5361. {1UL << PG_dirty, "dirty" },
  5362. {1UL << PG_lru, "lru" },
  5363. {1UL << PG_active, "active" },
  5364. {1UL << PG_slab, "slab" },
  5365. {1UL << PG_owner_priv_1, "owner_priv_1" },
  5366. {1UL << PG_arch_1, "arch_1" },
  5367. {1UL << PG_reserved, "reserved" },
  5368. {1UL << PG_private, "private" },
  5369. {1UL << PG_private_2, "private_2" },
  5370. {1UL << PG_writeback, "writeback" },
  5371. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  5372. {1UL << PG_head, "head" },
  5373. {1UL << PG_tail, "tail" },
  5374. #else
  5375. {1UL << PG_compound, "compound" },
  5376. #endif
  5377. {1UL << PG_swapcache, "swapcache" },
  5378. {1UL << PG_mappedtodisk, "mappedtodisk" },
  5379. {1UL << PG_reclaim, "reclaim" },
  5380. {1UL << PG_swapbacked, "swapbacked" },
  5381. {1UL << PG_unevictable, "unevictable" },
  5382. #ifdef CONFIG_MMU
  5383. {1UL << PG_mlocked, "mlocked" },
  5384. #endif
  5385. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  5386. {1UL << PG_uncached, "uncached" },
  5387. #endif
  5388. #ifdef CONFIG_MEMORY_FAILURE
  5389. {1UL << PG_hwpoison, "hwpoison" },
  5390. #endif
  5391. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5392. {1UL << PG_compound_lock, "compound_lock" },
  5393. #endif
  5394. };
  5395. static void dump_page_flags(unsigned long flags)
  5396. {
  5397. const char *delim = "";
  5398. unsigned long mask;
  5399. int i;
  5400. BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
  5401. printk(KERN_ALERT "page flags: %#lx(", flags);
  5402. /* remove zone id */
  5403. flags &= (1UL << NR_PAGEFLAGS) - 1;
  5404. for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
  5405. mask = pageflag_names[i].mask;
  5406. if ((flags & mask) != mask)
  5407. continue;
  5408. flags &= ~mask;
  5409. printk("%s%s", delim, pageflag_names[i].name);
  5410. delim = "|";
  5411. }
  5412. /* check for left over flags */
  5413. if (flags)
  5414. printk("%s%#lx", delim, flags);
  5415. printk(")\n");
  5416. }
  5417. void dump_page(struct page *page)
  5418. {
  5419. printk(KERN_ALERT
  5420. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  5421. page, atomic_read(&page->_count), page_mapcount(page),
  5422. page->mapping, page->index);
  5423. dump_page_flags(page->flags);
  5424. mem_cgroup_print_bad_page(page);
  5425. }