mmu.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 1;
  57. #endif
  58. #ifndef MMU_DEBUG
  59. #define ASSERT(x) do { } while (0)
  60. #else
  61. #define ASSERT(x) \
  62. if (!(x)) { \
  63. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  64. __FILE__, __LINE__, #x); \
  65. }
  66. #endif
  67. #define PT64_PT_BITS 9
  68. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  69. #define PT32_PT_BITS 10
  70. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  71. #define PT_WRITABLE_SHIFT 1
  72. #define PT_PRESENT_MASK (1ULL << 0)
  73. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  74. #define PT_USER_MASK (1ULL << 2)
  75. #define PT_PWT_MASK (1ULL << 3)
  76. #define PT_PCD_MASK (1ULL << 4)
  77. #define PT_ACCESSED_MASK (1ULL << 5)
  78. #define PT_DIRTY_MASK (1ULL << 6)
  79. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  80. #define PT_PAT_MASK (1ULL << 7)
  81. #define PT_GLOBAL_MASK (1ULL << 8)
  82. #define PT64_NX_SHIFT 63
  83. #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
  84. #define PT_PAT_SHIFT 7
  85. #define PT_DIR_PAT_SHIFT 12
  86. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  87. #define PT32_DIR_PSE36_SIZE 4
  88. #define PT32_DIR_PSE36_SHIFT 13
  89. #define PT32_DIR_PSE36_MASK \
  90. (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  91. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  92. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  93. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  94. #define PT64_LEVEL_BITS 9
  95. #define PT64_LEVEL_SHIFT(level) \
  96. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  97. #define PT64_LEVEL_MASK(level) \
  98. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  99. #define PT64_INDEX(address, level)\
  100. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  101. #define PT32_LEVEL_BITS 10
  102. #define PT32_LEVEL_SHIFT(level) \
  103. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  104. #define PT32_LEVEL_MASK(level) \
  105. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  106. #define PT32_INDEX(address, level)\
  107. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  108. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  109. #define PT64_DIR_BASE_ADDR_MASK \
  110. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  111. #define PT32_BASE_ADDR_MASK PAGE_MASK
  112. #define PT32_DIR_BASE_ADDR_MASK \
  113. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  114. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  115. | PT64_NX_MASK)
  116. #define PFERR_PRESENT_MASK (1U << 0)
  117. #define PFERR_WRITE_MASK (1U << 1)
  118. #define PFERR_USER_MASK (1U << 2)
  119. #define PFERR_FETCH_MASK (1U << 4)
  120. #define PT64_ROOT_LEVEL 4
  121. #define PT32_ROOT_LEVEL 2
  122. #define PT32E_ROOT_LEVEL 3
  123. #define PT_DIRECTORY_LEVEL 2
  124. #define PT_PAGE_TABLE_LEVEL 1
  125. #define RMAP_EXT 4
  126. #define ACC_EXEC_MASK 1
  127. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  128. #define ACC_USER_MASK PT_USER_MASK
  129. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  130. struct kvm_pv_mmu_op_buffer {
  131. void *ptr;
  132. unsigned len;
  133. unsigned processed;
  134. char buf[512] __aligned(sizeof(long));
  135. };
  136. struct kvm_rmap_desc {
  137. u64 *shadow_ptes[RMAP_EXT];
  138. struct kvm_rmap_desc *more;
  139. };
  140. static struct kmem_cache *pte_chain_cache;
  141. static struct kmem_cache *rmap_desc_cache;
  142. static struct kmem_cache *mmu_page_header_cache;
  143. static u64 __read_mostly shadow_trap_nonpresent_pte;
  144. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  145. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  146. {
  147. shadow_trap_nonpresent_pte = trap_pte;
  148. shadow_notrap_nonpresent_pte = notrap_pte;
  149. }
  150. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  151. static int is_write_protection(struct kvm_vcpu *vcpu)
  152. {
  153. return vcpu->arch.cr0 & X86_CR0_WP;
  154. }
  155. static int is_cpuid_PSE36(void)
  156. {
  157. return 1;
  158. }
  159. static int is_nx(struct kvm_vcpu *vcpu)
  160. {
  161. return vcpu->arch.shadow_efer & EFER_NX;
  162. }
  163. static int is_present_pte(unsigned long pte)
  164. {
  165. return pte & PT_PRESENT_MASK;
  166. }
  167. static int is_shadow_present_pte(u64 pte)
  168. {
  169. return pte != shadow_trap_nonpresent_pte
  170. && pte != shadow_notrap_nonpresent_pte;
  171. }
  172. static int is_large_pte(u64 pte)
  173. {
  174. return pte & PT_PAGE_SIZE_MASK;
  175. }
  176. static int is_writeble_pte(unsigned long pte)
  177. {
  178. return pte & PT_WRITABLE_MASK;
  179. }
  180. static int is_dirty_pte(unsigned long pte)
  181. {
  182. return pte & PT_DIRTY_MASK;
  183. }
  184. static int is_rmap_pte(u64 pte)
  185. {
  186. return is_shadow_present_pte(pte);
  187. }
  188. static gfn_t pse36_gfn_delta(u32 gpte)
  189. {
  190. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  191. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  192. }
  193. static void set_shadow_pte(u64 *sptep, u64 spte)
  194. {
  195. #ifdef CONFIG_X86_64
  196. set_64bit((unsigned long *)sptep, spte);
  197. #else
  198. set_64bit((unsigned long long *)sptep, spte);
  199. #endif
  200. }
  201. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  202. struct kmem_cache *base_cache, int min)
  203. {
  204. void *obj;
  205. if (cache->nobjs >= min)
  206. return 0;
  207. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  208. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  209. if (!obj)
  210. return -ENOMEM;
  211. cache->objects[cache->nobjs++] = obj;
  212. }
  213. return 0;
  214. }
  215. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  216. {
  217. while (mc->nobjs)
  218. kfree(mc->objects[--mc->nobjs]);
  219. }
  220. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  221. int min)
  222. {
  223. struct page *page;
  224. if (cache->nobjs >= min)
  225. return 0;
  226. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  227. page = alloc_page(GFP_KERNEL);
  228. if (!page)
  229. return -ENOMEM;
  230. set_page_private(page, 0);
  231. cache->objects[cache->nobjs++] = page_address(page);
  232. }
  233. return 0;
  234. }
  235. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  236. {
  237. while (mc->nobjs)
  238. free_page((unsigned long)mc->objects[--mc->nobjs]);
  239. }
  240. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  241. {
  242. int r;
  243. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  244. pte_chain_cache, 4);
  245. if (r)
  246. goto out;
  247. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  248. rmap_desc_cache, 1);
  249. if (r)
  250. goto out;
  251. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  252. if (r)
  253. goto out;
  254. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  255. mmu_page_header_cache, 4);
  256. out:
  257. return r;
  258. }
  259. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  260. {
  261. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  262. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  263. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  264. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  265. }
  266. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  267. size_t size)
  268. {
  269. void *p;
  270. BUG_ON(!mc->nobjs);
  271. p = mc->objects[--mc->nobjs];
  272. memset(p, 0, size);
  273. return p;
  274. }
  275. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  276. {
  277. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  278. sizeof(struct kvm_pte_chain));
  279. }
  280. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  281. {
  282. kfree(pc);
  283. }
  284. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  285. {
  286. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  287. sizeof(struct kvm_rmap_desc));
  288. }
  289. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  290. {
  291. kfree(rd);
  292. }
  293. /*
  294. * Return the pointer to the largepage write count for a given
  295. * gfn, handling slots that are not large page aligned.
  296. */
  297. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  298. {
  299. unsigned long idx;
  300. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  301. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  302. return &slot->lpage_info[idx].write_count;
  303. }
  304. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  305. {
  306. int *write_count;
  307. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  308. *write_count += 1;
  309. WARN_ON(*write_count > KVM_PAGES_PER_HPAGE);
  310. }
  311. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  312. {
  313. int *write_count;
  314. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  315. *write_count -= 1;
  316. WARN_ON(*write_count < 0);
  317. }
  318. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  319. {
  320. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  321. int *largepage_idx;
  322. if (slot) {
  323. largepage_idx = slot_largepage_idx(gfn, slot);
  324. return *largepage_idx;
  325. }
  326. return 1;
  327. }
  328. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  329. {
  330. struct vm_area_struct *vma;
  331. unsigned long addr;
  332. addr = gfn_to_hva(kvm, gfn);
  333. if (kvm_is_error_hva(addr))
  334. return 0;
  335. vma = find_vma(current->mm, addr);
  336. if (vma && is_vm_hugetlb_page(vma))
  337. return 1;
  338. return 0;
  339. }
  340. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  341. {
  342. struct kvm_memory_slot *slot;
  343. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  344. return 0;
  345. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  346. return 0;
  347. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  348. if (slot && slot->dirty_bitmap)
  349. return 0;
  350. return 1;
  351. }
  352. /*
  353. * Take gfn and return the reverse mapping to it.
  354. * Note: gfn must be unaliased before this function get called
  355. */
  356. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  357. {
  358. struct kvm_memory_slot *slot;
  359. unsigned long idx;
  360. slot = gfn_to_memslot(kvm, gfn);
  361. if (!lpage)
  362. return &slot->rmap[gfn - slot->base_gfn];
  363. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  364. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  365. return &slot->lpage_info[idx].rmap_pde;
  366. }
  367. /*
  368. * Reverse mapping data structures:
  369. *
  370. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  371. * that points to page_address(page).
  372. *
  373. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  374. * containing more mappings.
  375. */
  376. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  377. {
  378. struct kvm_mmu_page *sp;
  379. struct kvm_rmap_desc *desc;
  380. unsigned long *rmapp;
  381. int i;
  382. if (!is_rmap_pte(*spte))
  383. return;
  384. gfn = unalias_gfn(vcpu->kvm, gfn);
  385. sp = page_header(__pa(spte));
  386. sp->gfns[spte - sp->spt] = gfn;
  387. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  388. if (!*rmapp) {
  389. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  390. *rmapp = (unsigned long)spte;
  391. } else if (!(*rmapp & 1)) {
  392. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  393. desc = mmu_alloc_rmap_desc(vcpu);
  394. desc->shadow_ptes[0] = (u64 *)*rmapp;
  395. desc->shadow_ptes[1] = spte;
  396. *rmapp = (unsigned long)desc | 1;
  397. } else {
  398. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  399. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  400. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  401. desc = desc->more;
  402. if (desc->shadow_ptes[RMAP_EXT-1]) {
  403. desc->more = mmu_alloc_rmap_desc(vcpu);
  404. desc = desc->more;
  405. }
  406. for (i = 0; desc->shadow_ptes[i]; ++i)
  407. ;
  408. desc->shadow_ptes[i] = spte;
  409. }
  410. }
  411. static void rmap_desc_remove_entry(unsigned long *rmapp,
  412. struct kvm_rmap_desc *desc,
  413. int i,
  414. struct kvm_rmap_desc *prev_desc)
  415. {
  416. int j;
  417. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  418. ;
  419. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  420. desc->shadow_ptes[j] = NULL;
  421. if (j != 0)
  422. return;
  423. if (!prev_desc && !desc->more)
  424. *rmapp = (unsigned long)desc->shadow_ptes[0];
  425. else
  426. if (prev_desc)
  427. prev_desc->more = desc->more;
  428. else
  429. *rmapp = (unsigned long)desc->more | 1;
  430. mmu_free_rmap_desc(desc);
  431. }
  432. static void rmap_remove(struct kvm *kvm, u64 *spte)
  433. {
  434. struct kvm_rmap_desc *desc;
  435. struct kvm_rmap_desc *prev_desc;
  436. struct kvm_mmu_page *sp;
  437. struct page *page;
  438. unsigned long *rmapp;
  439. int i;
  440. if (!is_rmap_pte(*spte))
  441. return;
  442. sp = page_header(__pa(spte));
  443. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  444. mark_page_accessed(page);
  445. if (is_writeble_pte(*spte))
  446. kvm_release_page_dirty(page);
  447. else
  448. kvm_release_page_clean(page);
  449. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  450. if (!*rmapp) {
  451. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  452. BUG();
  453. } else if (!(*rmapp & 1)) {
  454. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  455. if ((u64 *)*rmapp != spte) {
  456. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  457. spte, *spte);
  458. BUG();
  459. }
  460. *rmapp = 0;
  461. } else {
  462. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  463. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  464. prev_desc = NULL;
  465. while (desc) {
  466. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  467. if (desc->shadow_ptes[i] == spte) {
  468. rmap_desc_remove_entry(rmapp,
  469. desc, i,
  470. prev_desc);
  471. return;
  472. }
  473. prev_desc = desc;
  474. desc = desc->more;
  475. }
  476. BUG();
  477. }
  478. }
  479. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  480. {
  481. struct kvm_rmap_desc *desc;
  482. struct kvm_rmap_desc *prev_desc;
  483. u64 *prev_spte;
  484. int i;
  485. if (!*rmapp)
  486. return NULL;
  487. else if (!(*rmapp & 1)) {
  488. if (!spte)
  489. return (u64 *)*rmapp;
  490. return NULL;
  491. }
  492. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  493. prev_desc = NULL;
  494. prev_spte = NULL;
  495. while (desc) {
  496. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  497. if (prev_spte == spte)
  498. return desc->shadow_ptes[i];
  499. prev_spte = desc->shadow_ptes[i];
  500. }
  501. desc = desc->more;
  502. }
  503. return NULL;
  504. }
  505. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  506. {
  507. unsigned long *rmapp;
  508. u64 *spte;
  509. int write_protected = 0;
  510. gfn = unalias_gfn(kvm, gfn);
  511. rmapp = gfn_to_rmap(kvm, gfn, 0);
  512. spte = rmap_next(kvm, rmapp, NULL);
  513. while (spte) {
  514. BUG_ON(!spte);
  515. BUG_ON(!(*spte & PT_PRESENT_MASK));
  516. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  517. if (is_writeble_pte(*spte)) {
  518. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  519. write_protected = 1;
  520. }
  521. spte = rmap_next(kvm, rmapp, spte);
  522. }
  523. /* check for huge page mappings */
  524. rmapp = gfn_to_rmap(kvm, gfn, 1);
  525. spte = rmap_next(kvm, rmapp, NULL);
  526. while (spte) {
  527. BUG_ON(!spte);
  528. BUG_ON(!(*spte & PT_PRESENT_MASK));
  529. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  530. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  531. if (is_writeble_pte(*spte)) {
  532. rmap_remove(kvm, spte);
  533. --kvm->stat.lpages;
  534. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  535. write_protected = 1;
  536. }
  537. spte = rmap_next(kvm, rmapp, spte);
  538. }
  539. if (write_protected)
  540. kvm_flush_remote_tlbs(kvm);
  541. account_shadowed(kvm, gfn);
  542. }
  543. #ifdef MMU_DEBUG
  544. static int is_empty_shadow_page(u64 *spt)
  545. {
  546. u64 *pos;
  547. u64 *end;
  548. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  549. if (*pos != shadow_trap_nonpresent_pte) {
  550. printk(KERN_ERR "%s: %p %llx\n", __func__,
  551. pos, *pos);
  552. return 0;
  553. }
  554. return 1;
  555. }
  556. #endif
  557. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  558. {
  559. ASSERT(is_empty_shadow_page(sp->spt));
  560. list_del(&sp->link);
  561. __free_page(virt_to_page(sp->spt));
  562. __free_page(virt_to_page(sp->gfns));
  563. kfree(sp);
  564. ++kvm->arch.n_free_mmu_pages;
  565. }
  566. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  567. {
  568. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  569. }
  570. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  571. u64 *parent_pte)
  572. {
  573. struct kvm_mmu_page *sp;
  574. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  575. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  576. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  577. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  578. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  579. ASSERT(is_empty_shadow_page(sp->spt));
  580. sp->slot_bitmap = 0;
  581. sp->multimapped = 0;
  582. sp->parent_pte = parent_pte;
  583. --vcpu->kvm->arch.n_free_mmu_pages;
  584. return sp;
  585. }
  586. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  587. struct kvm_mmu_page *sp, u64 *parent_pte)
  588. {
  589. struct kvm_pte_chain *pte_chain;
  590. struct hlist_node *node;
  591. int i;
  592. if (!parent_pte)
  593. return;
  594. if (!sp->multimapped) {
  595. u64 *old = sp->parent_pte;
  596. if (!old) {
  597. sp->parent_pte = parent_pte;
  598. return;
  599. }
  600. sp->multimapped = 1;
  601. pte_chain = mmu_alloc_pte_chain(vcpu);
  602. INIT_HLIST_HEAD(&sp->parent_ptes);
  603. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  604. pte_chain->parent_ptes[0] = old;
  605. }
  606. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  607. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  608. continue;
  609. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  610. if (!pte_chain->parent_ptes[i]) {
  611. pte_chain->parent_ptes[i] = parent_pte;
  612. return;
  613. }
  614. }
  615. pte_chain = mmu_alloc_pte_chain(vcpu);
  616. BUG_ON(!pte_chain);
  617. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  618. pte_chain->parent_ptes[0] = parent_pte;
  619. }
  620. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  621. u64 *parent_pte)
  622. {
  623. struct kvm_pte_chain *pte_chain;
  624. struct hlist_node *node;
  625. int i;
  626. if (!sp->multimapped) {
  627. BUG_ON(sp->parent_pte != parent_pte);
  628. sp->parent_pte = NULL;
  629. return;
  630. }
  631. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  632. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  633. if (!pte_chain->parent_ptes[i])
  634. break;
  635. if (pte_chain->parent_ptes[i] != parent_pte)
  636. continue;
  637. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  638. && pte_chain->parent_ptes[i + 1]) {
  639. pte_chain->parent_ptes[i]
  640. = pte_chain->parent_ptes[i + 1];
  641. ++i;
  642. }
  643. pte_chain->parent_ptes[i] = NULL;
  644. if (i == 0) {
  645. hlist_del(&pte_chain->link);
  646. mmu_free_pte_chain(pte_chain);
  647. if (hlist_empty(&sp->parent_ptes)) {
  648. sp->multimapped = 0;
  649. sp->parent_pte = NULL;
  650. }
  651. }
  652. return;
  653. }
  654. BUG();
  655. }
  656. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  657. {
  658. unsigned index;
  659. struct hlist_head *bucket;
  660. struct kvm_mmu_page *sp;
  661. struct hlist_node *node;
  662. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  663. index = kvm_page_table_hashfn(gfn);
  664. bucket = &kvm->arch.mmu_page_hash[index];
  665. hlist_for_each_entry(sp, node, bucket, hash_link)
  666. if (sp->gfn == gfn && !sp->role.metaphysical
  667. && !sp->role.invalid) {
  668. pgprintk("%s: found role %x\n",
  669. __func__, sp->role.word);
  670. return sp;
  671. }
  672. return NULL;
  673. }
  674. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  675. gfn_t gfn,
  676. gva_t gaddr,
  677. unsigned level,
  678. int metaphysical,
  679. unsigned access,
  680. u64 *parent_pte)
  681. {
  682. union kvm_mmu_page_role role;
  683. unsigned index;
  684. unsigned quadrant;
  685. struct hlist_head *bucket;
  686. struct kvm_mmu_page *sp;
  687. struct hlist_node *node;
  688. role.word = 0;
  689. role.glevels = vcpu->arch.mmu.root_level;
  690. role.level = level;
  691. role.metaphysical = metaphysical;
  692. role.access = access;
  693. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  694. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  695. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  696. role.quadrant = quadrant;
  697. }
  698. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  699. gfn, role.word);
  700. index = kvm_page_table_hashfn(gfn);
  701. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  702. hlist_for_each_entry(sp, node, bucket, hash_link)
  703. if (sp->gfn == gfn && sp->role.word == role.word) {
  704. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  705. pgprintk("%s: found\n", __func__);
  706. return sp;
  707. }
  708. ++vcpu->kvm->stat.mmu_cache_miss;
  709. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  710. if (!sp)
  711. return sp;
  712. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  713. sp->gfn = gfn;
  714. sp->role = role;
  715. hlist_add_head(&sp->hash_link, bucket);
  716. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  717. if (!metaphysical)
  718. rmap_write_protect(vcpu->kvm, gfn);
  719. return sp;
  720. }
  721. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  722. struct kvm_mmu_page *sp)
  723. {
  724. unsigned i;
  725. u64 *pt;
  726. u64 ent;
  727. pt = sp->spt;
  728. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  729. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  730. if (is_shadow_present_pte(pt[i]))
  731. rmap_remove(kvm, &pt[i]);
  732. pt[i] = shadow_trap_nonpresent_pte;
  733. }
  734. kvm_flush_remote_tlbs(kvm);
  735. return;
  736. }
  737. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  738. ent = pt[i];
  739. if (is_shadow_present_pte(ent)) {
  740. if (!is_large_pte(ent)) {
  741. ent &= PT64_BASE_ADDR_MASK;
  742. mmu_page_remove_parent_pte(page_header(ent),
  743. &pt[i]);
  744. } else {
  745. --kvm->stat.lpages;
  746. rmap_remove(kvm, &pt[i]);
  747. }
  748. }
  749. pt[i] = shadow_trap_nonpresent_pte;
  750. }
  751. kvm_flush_remote_tlbs(kvm);
  752. }
  753. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  754. {
  755. mmu_page_remove_parent_pte(sp, parent_pte);
  756. }
  757. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  758. {
  759. int i;
  760. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  761. if (kvm->vcpus[i])
  762. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  763. }
  764. static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  765. {
  766. u64 *parent_pte;
  767. ++kvm->stat.mmu_shadow_zapped;
  768. while (sp->multimapped || sp->parent_pte) {
  769. if (!sp->multimapped)
  770. parent_pte = sp->parent_pte;
  771. else {
  772. struct kvm_pte_chain *chain;
  773. chain = container_of(sp->parent_ptes.first,
  774. struct kvm_pte_chain, link);
  775. parent_pte = chain->parent_ptes[0];
  776. }
  777. BUG_ON(!parent_pte);
  778. kvm_mmu_put_page(sp, parent_pte);
  779. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  780. }
  781. kvm_mmu_page_unlink_children(kvm, sp);
  782. if (!sp->root_count) {
  783. if (!sp->role.metaphysical)
  784. unaccount_shadowed(kvm, sp->gfn);
  785. hlist_del(&sp->hash_link);
  786. kvm_mmu_free_page(kvm, sp);
  787. } else {
  788. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  789. sp->role.invalid = 1;
  790. kvm_reload_remote_mmus(kvm);
  791. }
  792. kvm_mmu_reset_last_pte_updated(kvm);
  793. }
  794. /*
  795. * Changing the number of mmu pages allocated to the vm
  796. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  797. */
  798. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  799. {
  800. /*
  801. * If we set the number of mmu pages to be smaller be than the
  802. * number of actived pages , we must to free some mmu pages before we
  803. * change the value
  804. */
  805. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  806. kvm_nr_mmu_pages) {
  807. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  808. - kvm->arch.n_free_mmu_pages;
  809. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  810. struct kvm_mmu_page *page;
  811. page = container_of(kvm->arch.active_mmu_pages.prev,
  812. struct kvm_mmu_page, link);
  813. kvm_mmu_zap_page(kvm, page);
  814. n_used_mmu_pages--;
  815. }
  816. kvm->arch.n_free_mmu_pages = 0;
  817. }
  818. else
  819. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  820. - kvm->arch.n_alloc_mmu_pages;
  821. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  822. }
  823. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  824. {
  825. unsigned index;
  826. struct hlist_head *bucket;
  827. struct kvm_mmu_page *sp;
  828. struct hlist_node *node, *n;
  829. int r;
  830. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  831. r = 0;
  832. index = kvm_page_table_hashfn(gfn);
  833. bucket = &kvm->arch.mmu_page_hash[index];
  834. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  835. if (sp->gfn == gfn && !sp->role.metaphysical) {
  836. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  837. sp->role.word);
  838. kvm_mmu_zap_page(kvm, sp);
  839. r = 1;
  840. }
  841. return r;
  842. }
  843. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  844. {
  845. struct kvm_mmu_page *sp;
  846. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  847. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  848. kvm_mmu_zap_page(kvm, sp);
  849. }
  850. }
  851. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  852. {
  853. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  854. struct kvm_mmu_page *sp = page_header(__pa(pte));
  855. __set_bit(slot, &sp->slot_bitmap);
  856. }
  857. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  858. {
  859. struct page *page;
  860. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  861. if (gpa == UNMAPPED_GVA)
  862. return NULL;
  863. down_read(&current->mm->mmap_sem);
  864. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  865. up_read(&current->mm->mmap_sem);
  866. return page;
  867. }
  868. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  869. unsigned pt_access, unsigned pte_access,
  870. int user_fault, int write_fault, int dirty,
  871. int *ptwrite, int largepage, gfn_t gfn,
  872. struct page *page, bool speculative)
  873. {
  874. u64 spte;
  875. int was_rmapped = 0;
  876. int was_writeble = is_writeble_pte(*shadow_pte);
  877. hfn_t host_pfn = (*shadow_pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  878. pgprintk("%s: spte %llx access %x write_fault %d"
  879. " user_fault %d gfn %lx\n",
  880. __func__, *shadow_pte, pt_access,
  881. write_fault, user_fault, gfn);
  882. if (is_rmap_pte(*shadow_pte)) {
  883. /*
  884. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  885. * the parent of the now unreachable PTE.
  886. */
  887. if (largepage && !is_large_pte(*shadow_pte)) {
  888. struct kvm_mmu_page *child;
  889. u64 pte = *shadow_pte;
  890. child = page_header(pte & PT64_BASE_ADDR_MASK);
  891. mmu_page_remove_parent_pte(child, shadow_pte);
  892. } else if (host_pfn != page_to_pfn(page)) {
  893. pgprintk("hfn old %lx new %lx\n",
  894. host_pfn, page_to_pfn(page));
  895. rmap_remove(vcpu->kvm, shadow_pte);
  896. } else {
  897. if (largepage)
  898. was_rmapped = is_large_pte(*shadow_pte);
  899. else
  900. was_rmapped = 1;
  901. }
  902. }
  903. /*
  904. * We don't set the accessed bit, since we sometimes want to see
  905. * whether the guest actually used the pte (in order to detect
  906. * demand paging).
  907. */
  908. spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
  909. if (!speculative)
  910. pte_access |= PT_ACCESSED_MASK;
  911. if (!dirty)
  912. pte_access &= ~ACC_WRITE_MASK;
  913. if (!(pte_access & ACC_EXEC_MASK))
  914. spte |= PT64_NX_MASK;
  915. spte |= PT_PRESENT_MASK;
  916. if (pte_access & ACC_USER_MASK)
  917. spte |= PT_USER_MASK;
  918. if (largepage)
  919. spte |= PT_PAGE_SIZE_MASK;
  920. spte |= page_to_phys(page);
  921. if ((pte_access & ACC_WRITE_MASK)
  922. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  923. struct kvm_mmu_page *shadow;
  924. spte |= PT_WRITABLE_MASK;
  925. if (user_fault) {
  926. mmu_unshadow(vcpu->kvm, gfn);
  927. goto unshadowed;
  928. }
  929. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  930. if (shadow ||
  931. (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
  932. pgprintk("%s: found shadow page for %lx, marking ro\n",
  933. __func__, gfn);
  934. pte_access &= ~ACC_WRITE_MASK;
  935. if (is_writeble_pte(spte)) {
  936. spte &= ~PT_WRITABLE_MASK;
  937. kvm_x86_ops->tlb_flush(vcpu);
  938. }
  939. if (write_fault)
  940. *ptwrite = 1;
  941. }
  942. }
  943. unshadowed:
  944. if (pte_access & ACC_WRITE_MASK)
  945. mark_page_dirty(vcpu->kvm, gfn);
  946. pgprintk("%s: setting spte %llx\n", __func__, spte);
  947. pgprintk("instantiating %s PTE (%s) at %d (%llx) addr %llx\n",
  948. (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
  949. (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
  950. set_shadow_pte(shadow_pte, spte);
  951. if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
  952. && (spte & PT_PRESENT_MASK))
  953. ++vcpu->kvm->stat.lpages;
  954. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  955. if (!was_rmapped) {
  956. rmap_add(vcpu, shadow_pte, gfn, largepage);
  957. if (!is_rmap_pte(*shadow_pte))
  958. kvm_release_page_clean(page);
  959. } else {
  960. if (was_writeble)
  961. kvm_release_page_dirty(page);
  962. else
  963. kvm_release_page_clean(page);
  964. }
  965. if (!ptwrite || !*ptwrite)
  966. vcpu->arch.last_pte_updated = shadow_pte;
  967. }
  968. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  969. {
  970. }
  971. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  972. int largepage, gfn_t gfn, struct page *page,
  973. int level)
  974. {
  975. hpa_t table_addr = vcpu->arch.mmu.root_hpa;
  976. int pt_write = 0;
  977. for (; ; level--) {
  978. u32 index = PT64_INDEX(v, level);
  979. u64 *table;
  980. ASSERT(VALID_PAGE(table_addr));
  981. table = __va(table_addr);
  982. if (level == 1) {
  983. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  984. 0, write, 1, &pt_write, 0, gfn, page, false);
  985. return pt_write;
  986. }
  987. if (largepage && level == 2) {
  988. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  989. 0, write, 1, &pt_write, 1, gfn, page, false);
  990. return pt_write;
  991. }
  992. if (table[index] == shadow_trap_nonpresent_pte) {
  993. struct kvm_mmu_page *new_table;
  994. gfn_t pseudo_gfn;
  995. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  996. >> PAGE_SHIFT;
  997. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  998. v, level - 1,
  999. 1, ACC_ALL, &table[index]);
  1000. if (!new_table) {
  1001. pgprintk("nonpaging_map: ENOMEM\n");
  1002. kvm_release_page_clean(page);
  1003. return -ENOMEM;
  1004. }
  1005. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  1006. | PT_WRITABLE_MASK | PT_USER_MASK;
  1007. }
  1008. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  1009. }
  1010. }
  1011. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1012. {
  1013. int r;
  1014. int largepage = 0;
  1015. struct page *page;
  1016. down_read(&vcpu->kvm->slots_lock);
  1017. down_read(&current->mm->mmap_sem);
  1018. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1019. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1020. largepage = 1;
  1021. }
  1022. page = gfn_to_page(vcpu->kvm, gfn);
  1023. up_read(&current->mm->mmap_sem);
  1024. /* mmio */
  1025. if (is_error_page(page)) {
  1026. kvm_release_page_clean(page);
  1027. up_read(&vcpu->kvm->slots_lock);
  1028. return 1;
  1029. }
  1030. spin_lock(&vcpu->kvm->mmu_lock);
  1031. kvm_mmu_free_some_pages(vcpu);
  1032. r = __direct_map(vcpu, v, write, largepage, gfn, page,
  1033. PT32E_ROOT_LEVEL);
  1034. spin_unlock(&vcpu->kvm->mmu_lock);
  1035. up_read(&vcpu->kvm->slots_lock);
  1036. return r;
  1037. }
  1038. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  1039. struct kvm_mmu_page *sp)
  1040. {
  1041. int i;
  1042. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1043. sp->spt[i] = shadow_trap_nonpresent_pte;
  1044. }
  1045. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1046. {
  1047. int i;
  1048. struct kvm_mmu_page *sp;
  1049. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1050. return;
  1051. spin_lock(&vcpu->kvm->mmu_lock);
  1052. #ifdef CONFIG_X86_64
  1053. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1054. hpa_t root = vcpu->arch.mmu.root_hpa;
  1055. sp = page_header(root);
  1056. --sp->root_count;
  1057. if (!sp->root_count && sp->role.invalid)
  1058. kvm_mmu_zap_page(vcpu->kvm, sp);
  1059. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1060. spin_unlock(&vcpu->kvm->mmu_lock);
  1061. return;
  1062. }
  1063. #endif
  1064. for (i = 0; i < 4; ++i) {
  1065. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1066. if (root) {
  1067. root &= PT64_BASE_ADDR_MASK;
  1068. sp = page_header(root);
  1069. --sp->root_count;
  1070. if (!sp->root_count && sp->role.invalid)
  1071. kvm_mmu_zap_page(vcpu->kvm, sp);
  1072. }
  1073. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1074. }
  1075. spin_unlock(&vcpu->kvm->mmu_lock);
  1076. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1077. }
  1078. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1079. {
  1080. int i;
  1081. gfn_t root_gfn;
  1082. struct kvm_mmu_page *sp;
  1083. int metaphysical = 0;
  1084. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1085. #ifdef CONFIG_X86_64
  1086. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1087. hpa_t root = vcpu->arch.mmu.root_hpa;
  1088. ASSERT(!VALID_PAGE(root));
  1089. if (tdp_enabled)
  1090. metaphysical = 1;
  1091. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1092. PT64_ROOT_LEVEL, metaphysical,
  1093. ACC_ALL, NULL);
  1094. root = __pa(sp->spt);
  1095. ++sp->root_count;
  1096. vcpu->arch.mmu.root_hpa = root;
  1097. return;
  1098. }
  1099. #endif
  1100. metaphysical = !is_paging(vcpu);
  1101. if (tdp_enabled)
  1102. metaphysical = 1;
  1103. for (i = 0; i < 4; ++i) {
  1104. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1105. ASSERT(!VALID_PAGE(root));
  1106. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1107. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1108. vcpu->arch.mmu.pae_root[i] = 0;
  1109. continue;
  1110. }
  1111. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1112. } else if (vcpu->arch.mmu.root_level == 0)
  1113. root_gfn = 0;
  1114. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1115. PT32_ROOT_LEVEL, metaphysical,
  1116. ACC_ALL, NULL);
  1117. root = __pa(sp->spt);
  1118. ++sp->root_count;
  1119. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1120. }
  1121. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1122. }
  1123. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1124. {
  1125. return vaddr;
  1126. }
  1127. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1128. u32 error_code)
  1129. {
  1130. gfn_t gfn;
  1131. int r;
  1132. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1133. r = mmu_topup_memory_caches(vcpu);
  1134. if (r)
  1135. return r;
  1136. ASSERT(vcpu);
  1137. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1138. gfn = gva >> PAGE_SHIFT;
  1139. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1140. error_code & PFERR_WRITE_MASK, gfn);
  1141. }
  1142. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1143. u32 error_code)
  1144. {
  1145. struct page *page;
  1146. int r;
  1147. int largepage = 0;
  1148. gfn_t gfn = gpa >> PAGE_SHIFT;
  1149. ASSERT(vcpu);
  1150. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1151. r = mmu_topup_memory_caches(vcpu);
  1152. if (r)
  1153. return r;
  1154. down_read(&current->mm->mmap_sem);
  1155. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1156. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1157. largepage = 1;
  1158. }
  1159. page = gfn_to_page(vcpu->kvm, gfn);
  1160. if (is_error_page(page)) {
  1161. kvm_release_page_clean(page);
  1162. up_read(&current->mm->mmap_sem);
  1163. return 1;
  1164. }
  1165. spin_lock(&vcpu->kvm->mmu_lock);
  1166. kvm_mmu_free_some_pages(vcpu);
  1167. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1168. largepage, gfn, page, TDP_ROOT_LEVEL);
  1169. spin_unlock(&vcpu->kvm->mmu_lock);
  1170. up_read(&current->mm->mmap_sem);
  1171. return r;
  1172. }
  1173. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1174. {
  1175. mmu_free_roots(vcpu);
  1176. }
  1177. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1178. {
  1179. struct kvm_mmu *context = &vcpu->arch.mmu;
  1180. context->new_cr3 = nonpaging_new_cr3;
  1181. context->page_fault = nonpaging_page_fault;
  1182. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1183. context->free = nonpaging_free;
  1184. context->prefetch_page = nonpaging_prefetch_page;
  1185. context->root_level = 0;
  1186. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1187. context->root_hpa = INVALID_PAGE;
  1188. return 0;
  1189. }
  1190. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1191. {
  1192. ++vcpu->stat.tlb_flush;
  1193. kvm_x86_ops->tlb_flush(vcpu);
  1194. }
  1195. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1196. {
  1197. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1198. mmu_free_roots(vcpu);
  1199. }
  1200. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1201. u64 addr,
  1202. u32 err_code)
  1203. {
  1204. kvm_inject_page_fault(vcpu, addr, err_code);
  1205. }
  1206. static void paging_free(struct kvm_vcpu *vcpu)
  1207. {
  1208. nonpaging_free(vcpu);
  1209. }
  1210. #define PTTYPE 64
  1211. #include "paging_tmpl.h"
  1212. #undef PTTYPE
  1213. #define PTTYPE 32
  1214. #include "paging_tmpl.h"
  1215. #undef PTTYPE
  1216. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1217. {
  1218. struct kvm_mmu *context = &vcpu->arch.mmu;
  1219. ASSERT(is_pae(vcpu));
  1220. context->new_cr3 = paging_new_cr3;
  1221. context->page_fault = paging64_page_fault;
  1222. context->gva_to_gpa = paging64_gva_to_gpa;
  1223. context->prefetch_page = paging64_prefetch_page;
  1224. context->free = paging_free;
  1225. context->root_level = level;
  1226. context->shadow_root_level = level;
  1227. context->root_hpa = INVALID_PAGE;
  1228. return 0;
  1229. }
  1230. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1231. {
  1232. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1233. }
  1234. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1235. {
  1236. struct kvm_mmu *context = &vcpu->arch.mmu;
  1237. context->new_cr3 = paging_new_cr3;
  1238. context->page_fault = paging32_page_fault;
  1239. context->gva_to_gpa = paging32_gva_to_gpa;
  1240. context->free = paging_free;
  1241. context->prefetch_page = paging32_prefetch_page;
  1242. context->root_level = PT32_ROOT_LEVEL;
  1243. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1244. context->root_hpa = INVALID_PAGE;
  1245. return 0;
  1246. }
  1247. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1248. {
  1249. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1250. }
  1251. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1252. {
  1253. struct kvm_mmu *context = &vcpu->arch.mmu;
  1254. context->new_cr3 = nonpaging_new_cr3;
  1255. context->page_fault = tdp_page_fault;
  1256. context->free = nonpaging_free;
  1257. context->prefetch_page = nonpaging_prefetch_page;
  1258. context->shadow_root_level = TDP_ROOT_LEVEL;
  1259. context->root_hpa = INVALID_PAGE;
  1260. if (!is_paging(vcpu)) {
  1261. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1262. context->root_level = 0;
  1263. } else if (is_long_mode(vcpu)) {
  1264. context->gva_to_gpa = paging64_gva_to_gpa;
  1265. context->root_level = PT64_ROOT_LEVEL;
  1266. } else if (is_pae(vcpu)) {
  1267. context->gva_to_gpa = paging64_gva_to_gpa;
  1268. context->root_level = PT32E_ROOT_LEVEL;
  1269. } else {
  1270. context->gva_to_gpa = paging32_gva_to_gpa;
  1271. context->root_level = PT32_ROOT_LEVEL;
  1272. }
  1273. return 0;
  1274. }
  1275. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1276. {
  1277. ASSERT(vcpu);
  1278. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1279. if (!is_paging(vcpu))
  1280. return nonpaging_init_context(vcpu);
  1281. else if (is_long_mode(vcpu))
  1282. return paging64_init_context(vcpu);
  1283. else if (is_pae(vcpu))
  1284. return paging32E_init_context(vcpu);
  1285. else
  1286. return paging32_init_context(vcpu);
  1287. }
  1288. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1289. {
  1290. if (tdp_enabled)
  1291. return init_kvm_tdp_mmu(vcpu);
  1292. else
  1293. return init_kvm_softmmu(vcpu);
  1294. }
  1295. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1296. {
  1297. ASSERT(vcpu);
  1298. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1299. vcpu->arch.mmu.free(vcpu);
  1300. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1301. }
  1302. }
  1303. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1304. {
  1305. destroy_kvm_mmu(vcpu);
  1306. return init_kvm_mmu(vcpu);
  1307. }
  1308. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1309. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1310. {
  1311. int r;
  1312. r = mmu_topup_memory_caches(vcpu);
  1313. if (r)
  1314. goto out;
  1315. spin_lock(&vcpu->kvm->mmu_lock);
  1316. kvm_mmu_free_some_pages(vcpu);
  1317. mmu_alloc_roots(vcpu);
  1318. spin_unlock(&vcpu->kvm->mmu_lock);
  1319. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1320. kvm_mmu_flush_tlb(vcpu);
  1321. out:
  1322. return r;
  1323. }
  1324. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1325. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1326. {
  1327. mmu_free_roots(vcpu);
  1328. }
  1329. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1330. struct kvm_mmu_page *sp,
  1331. u64 *spte)
  1332. {
  1333. u64 pte;
  1334. struct kvm_mmu_page *child;
  1335. pte = *spte;
  1336. if (is_shadow_present_pte(pte)) {
  1337. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1338. is_large_pte(pte))
  1339. rmap_remove(vcpu->kvm, spte);
  1340. else {
  1341. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1342. mmu_page_remove_parent_pte(child, spte);
  1343. }
  1344. }
  1345. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1346. if (is_large_pte(pte))
  1347. --vcpu->kvm->stat.lpages;
  1348. }
  1349. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1350. struct kvm_mmu_page *sp,
  1351. u64 *spte,
  1352. const void *new)
  1353. {
  1354. if ((sp->role.level != PT_PAGE_TABLE_LEVEL)
  1355. && !vcpu->arch.update_pte.largepage) {
  1356. ++vcpu->kvm->stat.mmu_pde_zapped;
  1357. return;
  1358. }
  1359. ++vcpu->kvm->stat.mmu_pte_updated;
  1360. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1361. paging32_update_pte(vcpu, sp, spte, new);
  1362. else
  1363. paging64_update_pte(vcpu, sp, spte, new);
  1364. }
  1365. static bool need_remote_flush(u64 old, u64 new)
  1366. {
  1367. if (!is_shadow_present_pte(old))
  1368. return false;
  1369. if (!is_shadow_present_pte(new))
  1370. return true;
  1371. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  1372. return true;
  1373. old ^= PT64_NX_MASK;
  1374. new ^= PT64_NX_MASK;
  1375. return (old & ~new & PT64_PERM_MASK) != 0;
  1376. }
  1377. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  1378. {
  1379. if (need_remote_flush(old, new))
  1380. kvm_flush_remote_tlbs(vcpu->kvm);
  1381. else
  1382. kvm_mmu_flush_tlb(vcpu);
  1383. }
  1384. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1385. {
  1386. u64 *spte = vcpu->arch.last_pte_updated;
  1387. return !!(spte && (*spte & PT_ACCESSED_MASK));
  1388. }
  1389. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1390. const u8 *new, int bytes)
  1391. {
  1392. gfn_t gfn;
  1393. int r;
  1394. u64 gpte = 0;
  1395. struct page *page;
  1396. vcpu->arch.update_pte.largepage = 0;
  1397. if (bytes != 4 && bytes != 8)
  1398. return;
  1399. /*
  1400. * Assume that the pte write on a page table of the same type
  1401. * as the current vcpu paging mode. This is nearly always true
  1402. * (might be false while changing modes). Note it is verified later
  1403. * by update_pte().
  1404. */
  1405. if (is_pae(vcpu)) {
  1406. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  1407. if ((bytes == 4) && (gpa % 4 == 0)) {
  1408. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  1409. if (r)
  1410. return;
  1411. memcpy((void *)&gpte + (gpa % 8), new, 4);
  1412. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  1413. memcpy((void *)&gpte, new, 8);
  1414. }
  1415. } else {
  1416. if ((bytes == 4) && (gpa % 4 == 0))
  1417. memcpy((void *)&gpte, new, 4);
  1418. }
  1419. if (!is_present_pte(gpte))
  1420. return;
  1421. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1422. down_read(&current->mm->mmap_sem);
  1423. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  1424. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1425. vcpu->arch.update_pte.largepage = 1;
  1426. }
  1427. page = gfn_to_page(vcpu->kvm, gfn);
  1428. up_read(&current->mm->mmap_sem);
  1429. if (is_error_page(page)) {
  1430. kvm_release_page_clean(page);
  1431. return;
  1432. }
  1433. vcpu->arch.update_pte.gfn = gfn;
  1434. vcpu->arch.update_pte.page = page;
  1435. }
  1436. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1437. const u8 *new, int bytes)
  1438. {
  1439. gfn_t gfn = gpa >> PAGE_SHIFT;
  1440. struct kvm_mmu_page *sp;
  1441. struct hlist_node *node, *n;
  1442. struct hlist_head *bucket;
  1443. unsigned index;
  1444. u64 entry, gentry;
  1445. u64 *spte;
  1446. unsigned offset = offset_in_page(gpa);
  1447. unsigned pte_size;
  1448. unsigned page_offset;
  1449. unsigned misaligned;
  1450. unsigned quadrant;
  1451. int level;
  1452. int flooded = 0;
  1453. int npte;
  1454. int r;
  1455. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  1456. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  1457. spin_lock(&vcpu->kvm->mmu_lock);
  1458. kvm_mmu_free_some_pages(vcpu);
  1459. ++vcpu->kvm->stat.mmu_pte_write;
  1460. kvm_mmu_audit(vcpu, "pre pte write");
  1461. if (gfn == vcpu->arch.last_pt_write_gfn
  1462. && !last_updated_pte_accessed(vcpu)) {
  1463. ++vcpu->arch.last_pt_write_count;
  1464. if (vcpu->arch.last_pt_write_count >= 3)
  1465. flooded = 1;
  1466. } else {
  1467. vcpu->arch.last_pt_write_gfn = gfn;
  1468. vcpu->arch.last_pt_write_count = 1;
  1469. vcpu->arch.last_pte_updated = NULL;
  1470. }
  1471. index = kvm_page_table_hashfn(gfn);
  1472. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1473. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  1474. if (sp->gfn != gfn || sp->role.metaphysical)
  1475. continue;
  1476. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1477. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1478. misaligned |= bytes < 4;
  1479. if (misaligned || flooded) {
  1480. /*
  1481. * Misaligned accesses are too much trouble to fix
  1482. * up; also, they usually indicate a page is not used
  1483. * as a page table.
  1484. *
  1485. * If we're seeing too many writes to a page,
  1486. * it may no longer be a page table, or we may be
  1487. * forking, in which case it is better to unmap the
  1488. * page.
  1489. */
  1490. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1491. gpa, bytes, sp->role.word);
  1492. kvm_mmu_zap_page(vcpu->kvm, sp);
  1493. ++vcpu->kvm->stat.mmu_flooded;
  1494. continue;
  1495. }
  1496. page_offset = offset;
  1497. level = sp->role.level;
  1498. npte = 1;
  1499. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  1500. page_offset <<= 1; /* 32->64 */
  1501. /*
  1502. * A 32-bit pde maps 4MB while the shadow pdes map
  1503. * only 2MB. So we need to double the offset again
  1504. * and zap two pdes instead of one.
  1505. */
  1506. if (level == PT32_ROOT_LEVEL) {
  1507. page_offset &= ~7; /* kill rounding error */
  1508. page_offset <<= 1;
  1509. npte = 2;
  1510. }
  1511. quadrant = page_offset >> PAGE_SHIFT;
  1512. page_offset &= ~PAGE_MASK;
  1513. if (quadrant != sp->role.quadrant)
  1514. continue;
  1515. }
  1516. spte = &sp->spt[page_offset / sizeof(*spte)];
  1517. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  1518. gentry = 0;
  1519. r = kvm_read_guest_atomic(vcpu->kvm,
  1520. gpa & ~(u64)(pte_size - 1),
  1521. &gentry, pte_size);
  1522. new = (const void *)&gentry;
  1523. if (r < 0)
  1524. new = NULL;
  1525. }
  1526. while (npte--) {
  1527. entry = *spte;
  1528. mmu_pte_write_zap_pte(vcpu, sp, spte);
  1529. if (new)
  1530. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  1531. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  1532. ++spte;
  1533. }
  1534. }
  1535. kvm_mmu_audit(vcpu, "post pte write");
  1536. spin_unlock(&vcpu->kvm->mmu_lock);
  1537. if (vcpu->arch.update_pte.page) {
  1538. kvm_release_page_clean(vcpu->arch.update_pte.page);
  1539. vcpu->arch.update_pte.page = NULL;
  1540. }
  1541. }
  1542. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1543. {
  1544. gpa_t gpa;
  1545. int r;
  1546. down_read(&vcpu->kvm->slots_lock);
  1547. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1548. up_read(&vcpu->kvm->slots_lock);
  1549. spin_lock(&vcpu->kvm->mmu_lock);
  1550. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1551. spin_unlock(&vcpu->kvm->mmu_lock);
  1552. return r;
  1553. }
  1554. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1555. {
  1556. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  1557. struct kvm_mmu_page *sp;
  1558. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  1559. struct kvm_mmu_page, link);
  1560. kvm_mmu_zap_page(vcpu->kvm, sp);
  1561. ++vcpu->kvm->stat.mmu_recycled;
  1562. }
  1563. }
  1564. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  1565. {
  1566. int r;
  1567. enum emulation_result er;
  1568. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  1569. if (r < 0)
  1570. goto out;
  1571. if (!r) {
  1572. r = 1;
  1573. goto out;
  1574. }
  1575. r = mmu_topup_memory_caches(vcpu);
  1576. if (r)
  1577. goto out;
  1578. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  1579. switch (er) {
  1580. case EMULATE_DONE:
  1581. return 1;
  1582. case EMULATE_DO_MMIO:
  1583. ++vcpu->stat.mmio_exits;
  1584. return 0;
  1585. case EMULATE_FAIL:
  1586. kvm_report_emulation_failure(vcpu, "pagetable");
  1587. return 1;
  1588. default:
  1589. BUG();
  1590. }
  1591. out:
  1592. return r;
  1593. }
  1594. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  1595. void kvm_enable_tdp(void)
  1596. {
  1597. tdp_enabled = true;
  1598. }
  1599. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  1600. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1601. {
  1602. struct kvm_mmu_page *sp;
  1603. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  1604. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  1605. struct kvm_mmu_page, link);
  1606. kvm_mmu_zap_page(vcpu->kvm, sp);
  1607. }
  1608. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  1609. }
  1610. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1611. {
  1612. struct page *page;
  1613. int i;
  1614. ASSERT(vcpu);
  1615. if (vcpu->kvm->arch.n_requested_mmu_pages)
  1616. vcpu->kvm->arch.n_free_mmu_pages =
  1617. vcpu->kvm->arch.n_requested_mmu_pages;
  1618. else
  1619. vcpu->kvm->arch.n_free_mmu_pages =
  1620. vcpu->kvm->arch.n_alloc_mmu_pages;
  1621. /*
  1622. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1623. * Therefore we need to allocate shadow page tables in the first
  1624. * 4GB of memory, which happens to fit the DMA32 zone.
  1625. */
  1626. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1627. if (!page)
  1628. goto error_1;
  1629. vcpu->arch.mmu.pae_root = page_address(page);
  1630. for (i = 0; i < 4; ++i)
  1631. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1632. return 0;
  1633. error_1:
  1634. free_mmu_pages(vcpu);
  1635. return -ENOMEM;
  1636. }
  1637. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1638. {
  1639. ASSERT(vcpu);
  1640. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1641. return alloc_mmu_pages(vcpu);
  1642. }
  1643. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1644. {
  1645. ASSERT(vcpu);
  1646. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1647. return init_kvm_mmu(vcpu);
  1648. }
  1649. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1650. {
  1651. ASSERT(vcpu);
  1652. destroy_kvm_mmu(vcpu);
  1653. free_mmu_pages(vcpu);
  1654. mmu_free_memory_caches(vcpu);
  1655. }
  1656. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1657. {
  1658. struct kvm_mmu_page *sp;
  1659. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  1660. int i;
  1661. u64 *pt;
  1662. if (!test_bit(slot, &sp->slot_bitmap))
  1663. continue;
  1664. pt = sp->spt;
  1665. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1666. /* avoid RMW */
  1667. if (pt[i] & PT_WRITABLE_MASK)
  1668. pt[i] &= ~PT_WRITABLE_MASK;
  1669. }
  1670. }
  1671. void kvm_mmu_zap_all(struct kvm *kvm)
  1672. {
  1673. struct kvm_mmu_page *sp, *node;
  1674. spin_lock(&kvm->mmu_lock);
  1675. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  1676. kvm_mmu_zap_page(kvm, sp);
  1677. spin_unlock(&kvm->mmu_lock);
  1678. kvm_flush_remote_tlbs(kvm);
  1679. }
  1680. void kvm_mmu_module_exit(void)
  1681. {
  1682. if (pte_chain_cache)
  1683. kmem_cache_destroy(pte_chain_cache);
  1684. if (rmap_desc_cache)
  1685. kmem_cache_destroy(rmap_desc_cache);
  1686. if (mmu_page_header_cache)
  1687. kmem_cache_destroy(mmu_page_header_cache);
  1688. }
  1689. int kvm_mmu_module_init(void)
  1690. {
  1691. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1692. sizeof(struct kvm_pte_chain),
  1693. 0, 0, NULL);
  1694. if (!pte_chain_cache)
  1695. goto nomem;
  1696. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1697. sizeof(struct kvm_rmap_desc),
  1698. 0, 0, NULL);
  1699. if (!rmap_desc_cache)
  1700. goto nomem;
  1701. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1702. sizeof(struct kvm_mmu_page),
  1703. 0, 0, NULL);
  1704. if (!mmu_page_header_cache)
  1705. goto nomem;
  1706. return 0;
  1707. nomem:
  1708. kvm_mmu_module_exit();
  1709. return -ENOMEM;
  1710. }
  1711. /*
  1712. * Caculate mmu pages needed for kvm.
  1713. */
  1714. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  1715. {
  1716. int i;
  1717. unsigned int nr_mmu_pages;
  1718. unsigned int nr_pages = 0;
  1719. for (i = 0; i < kvm->nmemslots; i++)
  1720. nr_pages += kvm->memslots[i].npages;
  1721. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  1722. nr_mmu_pages = max(nr_mmu_pages,
  1723. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  1724. return nr_mmu_pages;
  1725. }
  1726. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1727. unsigned len)
  1728. {
  1729. if (len > buffer->len)
  1730. return NULL;
  1731. return buffer->ptr;
  1732. }
  1733. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1734. unsigned len)
  1735. {
  1736. void *ret;
  1737. ret = pv_mmu_peek_buffer(buffer, len);
  1738. if (!ret)
  1739. return ret;
  1740. buffer->ptr += len;
  1741. buffer->len -= len;
  1742. buffer->processed += len;
  1743. return ret;
  1744. }
  1745. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  1746. gpa_t addr, gpa_t value)
  1747. {
  1748. int bytes = 8;
  1749. int r;
  1750. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  1751. bytes = 4;
  1752. r = mmu_topup_memory_caches(vcpu);
  1753. if (r)
  1754. return r;
  1755. if (!__emulator_write_phys(vcpu, addr, &value, bytes))
  1756. return -EFAULT;
  1757. return 1;
  1758. }
  1759. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1760. {
  1761. kvm_x86_ops->tlb_flush(vcpu);
  1762. return 1;
  1763. }
  1764. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  1765. {
  1766. spin_lock(&vcpu->kvm->mmu_lock);
  1767. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  1768. spin_unlock(&vcpu->kvm->mmu_lock);
  1769. return 1;
  1770. }
  1771. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  1772. struct kvm_pv_mmu_op_buffer *buffer)
  1773. {
  1774. struct kvm_mmu_op_header *header;
  1775. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  1776. if (!header)
  1777. return 0;
  1778. switch (header->op) {
  1779. case KVM_MMU_OP_WRITE_PTE: {
  1780. struct kvm_mmu_op_write_pte *wpte;
  1781. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  1782. if (!wpte)
  1783. return 0;
  1784. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  1785. wpte->pte_val);
  1786. }
  1787. case KVM_MMU_OP_FLUSH_TLB: {
  1788. struct kvm_mmu_op_flush_tlb *ftlb;
  1789. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  1790. if (!ftlb)
  1791. return 0;
  1792. return kvm_pv_mmu_flush_tlb(vcpu);
  1793. }
  1794. case KVM_MMU_OP_RELEASE_PT: {
  1795. struct kvm_mmu_op_release_pt *rpt;
  1796. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  1797. if (!rpt)
  1798. return 0;
  1799. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  1800. }
  1801. default: return 0;
  1802. }
  1803. }
  1804. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  1805. gpa_t addr, unsigned long *ret)
  1806. {
  1807. int r;
  1808. struct kvm_pv_mmu_op_buffer buffer;
  1809. down_read(&vcpu->kvm->slots_lock);
  1810. down_read(&current->mm->mmap_sem);
  1811. buffer.ptr = buffer.buf;
  1812. buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf);
  1813. buffer.processed = 0;
  1814. r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len);
  1815. if (r)
  1816. goto out;
  1817. while (buffer.len) {
  1818. r = kvm_pv_mmu_op_one(vcpu, &buffer);
  1819. if (r < 0)
  1820. goto out;
  1821. if (r == 0)
  1822. break;
  1823. }
  1824. r = 1;
  1825. out:
  1826. *ret = buffer.processed;
  1827. up_read(&current->mm->mmap_sem);
  1828. up_read(&vcpu->kvm->slots_lock);
  1829. return r;
  1830. }
  1831. #ifdef AUDIT
  1832. static const char *audit_msg;
  1833. static gva_t canonicalize(gva_t gva)
  1834. {
  1835. #ifdef CONFIG_X86_64
  1836. gva = (long long)(gva << 16) >> 16;
  1837. #endif
  1838. return gva;
  1839. }
  1840. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1841. gva_t va, int level)
  1842. {
  1843. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1844. int i;
  1845. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1846. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1847. u64 ent = pt[i];
  1848. if (ent == shadow_trap_nonpresent_pte)
  1849. continue;
  1850. va = canonicalize(va);
  1851. if (level > 1) {
  1852. if (ent == shadow_notrap_nonpresent_pte)
  1853. printk(KERN_ERR "audit: (%s) nontrapping pte"
  1854. " in nonleaf level: levels %d gva %lx"
  1855. " level %d pte %llx\n", audit_msg,
  1856. vcpu->arch.mmu.root_level, va, level, ent);
  1857. audit_mappings_page(vcpu, ent, va, level - 1);
  1858. } else {
  1859. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  1860. struct page *page = gpa_to_page(vcpu, gpa);
  1861. hpa_t hpa = page_to_phys(page);
  1862. if (is_shadow_present_pte(ent)
  1863. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1864. printk(KERN_ERR "xx audit error: (%s) levels %d"
  1865. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  1866. audit_msg, vcpu->arch.mmu.root_level,
  1867. va, gpa, hpa, ent,
  1868. is_shadow_present_pte(ent));
  1869. else if (ent == shadow_notrap_nonpresent_pte
  1870. && !is_error_hpa(hpa))
  1871. printk(KERN_ERR "audit: (%s) notrap shadow,"
  1872. " valid guest gva %lx\n", audit_msg, va);
  1873. kvm_release_page_clean(page);
  1874. }
  1875. }
  1876. }
  1877. static void audit_mappings(struct kvm_vcpu *vcpu)
  1878. {
  1879. unsigned i;
  1880. if (vcpu->arch.mmu.root_level == 4)
  1881. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  1882. else
  1883. for (i = 0; i < 4; ++i)
  1884. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  1885. audit_mappings_page(vcpu,
  1886. vcpu->arch.mmu.pae_root[i],
  1887. i << 30,
  1888. 2);
  1889. }
  1890. static int count_rmaps(struct kvm_vcpu *vcpu)
  1891. {
  1892. int nmaps = 0;
  1893. int i, j, k;
  1894. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1895. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1896. struct kvm_rmap_desc *d;
  1897. for (j = 0; j < m->npages; ++j) {
  1898. unsigned long *rmapp = &m->rmap[j];
  1899. if (!*rmapp)
  1900. continue;
  1901. if (!(*rmapp & 1)) {
  1902. ++nmaps;
  1903. continue;
  1904. }
  1905. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  1906. while (d) {
  1907. for (k = 0; k < RMAP_EXT; ++k)
  1908. if (d->shadow_ptes[k])
  1909. ++nmaps;
  1910. else
  1911. break;
  1912. d = d->more;
  1913. }
  1914. }
  1915. }
  1916. return nmaps;
  1917. }
  1918. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1919. {
  1920. int nmaps = 0;
  1921. struct kvm_mmu_page *sp;
  1922. int i;
  1923. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  1924. u64 *pt = sp->spt;
  1925. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  1926. continue;
  1927. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1928. u64 ent = pt[i];
  1929. if (!(ent & PT_PRESENT_MASK))
  1930. continue;
  1931. if (!(ent & PT_WRITABLE_MASK))
  1932. continue;
  1933. ++nmaps;
  1934. }
  1935. }
  1936. return nmaps;
  1937. }
  1938. static void audit_rmap(struct kvm_vcpu *vcpu)
  1939. {
  1940. int n_rmap = count_rmaps(vcpu);
  1941. int n_actual = count_writable_mappings(vcpu);
  1942. if (n_rmap != n_actual)
  1943. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1944. __func__, audit_msg, n_rmap, n_actual);
  1945. }
  1946. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1947. {
  1948. struct kvm_mmu_page *sp;
  1949. struct kvm_memory_slot *slot;
  1950. unsigned long *rmapp;
  1951. gfn_t gfn;
  1952. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  1953. if (sp->role.metaphysical)
  1954. continue;
  1955. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  1956. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  1957. rmapp = &slot->rmap[gfn - slot->base_gfn];
  1958. if (*rmapp)
  1959. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1960. " mappings: gfn %lx role %x\n",
  1961. __func__, audit_msg, sp->gfn,
  1962. sp->role.word);
  1963. }
  1964. }
  1965. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1966. {
  1967. int olddbg = dbg;
  1968. dbg = 0;
  1969. audit_msg = msg;
  1970. audit_rmap(vcpu);
  1971. audit_write_protection(vcpu);
  1972. audit_mappings(vcpu);
  1973. dbg = olddbg;
  1974. }
  1975. #endif