fsi.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491
  1. /*
  2. * Fifo-attached Serial Interface (FSI) support for SH7724
  3. *
  4. * Copyright (C) 2009 Renesas Solutions Corp.
  5. * Kuninori Morimoto <morimoto.kuninori@renesas.com>
  6. *
  7. * Based on ssi.c
  8. * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/delay.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <sound/soc.h>
  19. #include <sound/sh_fsi.h>
  20. /* PortA/PortB register */
  21. #define REG_DO_FMT 0x0000
  22. #define REG_DOFF_CTL 0x0004
  23. #define REG_DOFF_ST 0x0008
  24. #define REG_DI_FMT 0x000C
  25. #define REG_DIFF_CTL 0x0010
  26. #define REG_DIFF_ST 0x0014
  27. #define REG_CKG1 0x0018
  28. #define REG_CKG2 0x001C
  29. #define REG_DIDT 0x0020
  30. #define REG_DODT 0x0024
  31. #define REG_MUTE_ST 0x0028
  32. #define REG_OUT_SEL 0x0030
  33. /* master register */
  34. #define MST_CLK_RST 0x0210
  35. #define MST_SOFT_RST 0x0214
  36. #define MST_FIFO_SZ 0x0218
  37. /* core register (depend on FSI version) */
  38. #define A_MST_CTLR 0x0180
  39. #define B_MST_CTLR 0x01A0
  40. #define CPU_INT_ST 0x01F4
  41. #define CPU_IEMSK 0x01F8
  42. #define CPU_IMSK 0x01FC
  43. #define INT_ST 0x0200
  44. #define IEMSK 0x0204
  45. #define IMSK 0x0208
  46. /* DO_FMT */
  47. /* DI_FMT */
  48. #define CR_BWS_24 (0x0 << 20) /* FSI2 */
  49. #define CR_BWS_16 (0x1 << 20) /* FSI2 */
  50. #define CR_BWS_20 (0x2 << 20) /* FSI2 */
  51. #define CR_DTMD_PCM (0x0 << 8) /* FSI2 */
  52. #define CR_DTMD_SPDIF_PCM (0x1 << 8) /* FSI2 */
  53. #define CR_DTMD_SPDIF_STREAM (0x2 << 8) /* FSI2 */
  54. #define CR_MONO (0x0 << 4)
  55. #define CR_MONO_D (0x1 << 4)
  56. #define CR_PCM (0x2 << 4)
  57. #define CR_I2S (0x3 << 4)
  58. #define CR_TDM (0x4 << 4)
  59. #define CR_TDM_D (0x5 << 4)
  60. /* DOFF_CTL */
  61. /* DIFF_CTL */
  62. #define IRQ_HALF 0x00100000
  63. #define FIFO_CLR 0x00000001
  64. /* DOFF_ST */
  65. #define ERR_OVER 0x00000010
  66. #define ERR_UNDER 0x00000001
  67. #define ST_ERR (ERR_OVER | ERR_UNDER)
  68. /* CKG1 */
  69. #define ACKMD_MASK 0x00007000
  70. #define BPFMD_MASK 0x00000700
  71. #define DIMD (1 << 4)
  72. #define DOMD (1 << 0)
  73. /* A/B MST_CTLR */
  74. #define BP (1 << 4) /* Fix the signal of Biphase output */
  75. #define SE (1 << 0) /* Fix the master clock */
  76. /* CLK_RST */
  77. #define CRB (1 << 4)
  78. #define CRA (1 << 0)
  79. /* IO SHIFT / MACRO */
  80. #define BI_SHIFT 12
  81. #define BO_SHIFT 8
  82. #define AI_SHIFT 4
  83. #define AO_SHIFT 0
  84. #define AB_IO(param, shift) (param << shift)
  85. /* SOFT_RST */
  86. #define PBSR (1 << 12) /* Port B Software Reset */
  87. #define PASR (1 << 8) /* Port A Software Reset */
  88. #define IR (1 << 4) /* Interrupt Reset */
  89. #define FSISR (1 << 0) /* Software Reset */
  90. /* OUT_SEL (FSI2) */
  91. #define DMMD (1 << 4) /* SPDIF output timing 0: Biphase only */
  92. /* 1: Biphase and serial */
  93. /* FIFO_SZ */
  94. #define FIFO_SZ_MASK 0x7
  95. #define FSI_RATES SNDRV_PCM_RATE_8000_96000
  96. #define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)
  97. typedef int (*set_rate_func)(struct device *dev, int is_porta, int rate, int enable);
  98. /*
  99. * FSI driver use below type name for variable
  100. *
  101. * xxx_num : number of data
  102. * xxx_pos : position of data
  103. * xxx_capa : capacity of data
  104. */
  105. /*
  106. * period/frame/sample image
  107. *
  108. * ex) PCM (2ch)
  109. *
  110. * period pos period pos
  111. * [n] [n + 1]
  112. * |<-------------------- period--------------------->|
  113. * ==|============================================ ... =|==
  114. * | |
  115. * ||<----- frame ----->|<------ frame ----->| ... |
  116. * |+--------------------+--------------------+- ... |
  117. * ||[ sample ][ sample ]|[ sample ][ sample ]| ... |
  118. * |+--------------------+--------------------+- ... |
  119. * ==|============================================ ... =|==
  120. */
  121. /*
  122. * FSI FIFO image
  123. *
  124. * | |
  125. * | |
  126. * | [ sample ] |
  127. * | [ sample ] |
  128. * | [ sample ] |
  129. * | [ sample ] |
  130. * --> go to codecs
  131. */
  132. /*
  133. * struct
  134. */
  135. struct fsi_stream {
  136. struct snd_pcm_substream *substream;
  137. int fifo_sample_capa; /* sample capacity of FSI FIFO */
  138. int buff_sample_capa; /* sample capacity of ALSA buffer */
  139. int buff_sample_pos; /* sample position of ALSA buffer */
  140. int period_samples; /* sample number / 1 period */
  141. int period_pos; /* current period position */
  142. int uerr_num;
  143. int oerr_num;
  144. };
  145. struct fsi_priv {
  146. void __iomem *base;
  147. struct fsi_master *master;
  148. struct fsi_stream playback;
  149. struct fsi_stream capture;
  150. u32 do_fmt;
  151. u32 di_fmt;
  152. int chan_num:16;
  153. int clk_master:1;
  154. int spdif:1;
  155. long rate;
  156. /* for suspend/resume */
  157. u32 saved_do_fmt;
  158. u32 saved_di_fmt;
  159. u32 saved_ckg1;
  160. u32 saved_ckg2;
  161. u32 saved_out_sel;
  162. };
  163. struct fsi_core {
  164. int ver;
  165. u32 int_st;
  166. u32 iemsk;
  167. u32 imsk;
  168. u32 a_mclk;
  169. u32 b_mclk;
  170. };
  171. struct fsi_master {
  172. void __iomem *base;
  173. int irq;
  174. struct fsi_priv fsia;
  175. struct fsi_priv fsib;
  176. struct fsi_core *core;
  177. struct sh_fsi_platform_info *info;
  178. spinlock_t lock;
  179. /* for suspend/resume */
  180. u32 saved_a_mclk;
  181. u32 saved_b_mclk;
  182. u32 saved_iemsk;
  183. u32 saved_imsk;
  184. u32 saved_clk_rst;
  185. u32 saved_soft_rst;
  186. };
  187. /*
  188. * basic read write function
  189. */
  190. static void __fsi_reg_write(u32 reg, u32 data)
  191. {
  192. /* valid data area is 24bit */
  193. data &= 0x00ffffff;
  194. __raw_writel(data, reg);
  195. }
  196. static u32 __fsi_reg_read(u32 reg)
  197. {
  198. return __raw_readl(reg);
  199. }
  200. static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
  201. {
  202. u32 val = __fsi_reg_read(reg);
  203. val &= ~mask;
  204. val |= data & mask;
  205. __fsi_reg_write(reg, val);
  206. }
  207. #define fsi_reg_write(p, r, d)\
  208. __fsi_reg_write((u32)(p->base + REG_##r), d)
  209. #define fsi_reg_read(p, r)\
  210. __fsi_reg_read((u32)(p->base + REG_##r))
  211. #define fsi_reg_mask_set(p, r, m, d)\
  212. __fsi_reg_mask_set((u32)(p->base + REG_##r), m, d)
  213. #define fsi_master_read(p, r) _fsi_master_read(p, MST_##r)
  214. #define fsi_core_read(p, r) _fsi_master_read(p, p->core->r)
  215. static u32 _fsi_master_read(struct fsi_master *master, u32 reg)
  216. {
  217. u32 ret;
  218. unsigned long flags;
  219. spin_lock_irqsave(&master->lock, flags);
  220. ret = __fsi_reg_read((u32)(master->base + reg));
  221. spin_unlock_irqrestore(&master->lock, flags);
  222. return ret;
  223. }
  224. #define fsi_master_mask_set(p, r, m, d) _fsi_master_mask_set(p, MST_##r, m, d)
  225. #define fsi_core_mask_set(p, r, m, d) _fsi_master_mask_set(p, p->core->r, m, d)
  226. static void _fsi_master_mask_set(struct fsi_master *master,
  227. u32 reg, u32 mask, u32 data)
  228. {
  229. unsigned long flags;
  230. spin_lock_irqsave(&master->lock, flags);
  231. __fsi_reg_mask_set((u32)(master->base + reg), mask, data);
  232. spin_unlock_irqrestore(&master->lock, flags);
  233. }
  234. /*
  235. * basic function
  236. */
  237. static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
  238. {
  239. return fsi->master;
  240. }
  241. static int fsi_is_clk_master(struct fsi_priv *fsi)
  242. {
  243. return fsi->clk_master;
  244. }
  245. static int fsi_is_port_a(struct fsi_priv *fsi)
  246. {
  247. return fsi->master->base == fsi->base;
  248. }
  249. static int fsi_is_spdif(struct fsi_priv *fsi)
  250. {
  251. return fsi->spdif;
  252. }
  253. static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
  254. {
  255. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  256. return rtd->cpu_dai;
  257. }
  258. static struct fsi_priv *fsi_get_priv_frm_dai(struct snd_soc_dai *dai)
  259. {
  260. struct fsi_master *master = snd_soc_dai_get_drvdata(dai);
  261. if (dai->id == 0)
  262. return &master->fsia;
  263. else
  264. return &master->fsib;
  265. }
  266. static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
  267. {
  268. return fsi_get_priv_frm_dai(fsi_get_dai(substream));
  269. }
  270. static set_rate_func fsi_get_info_set_rate(struct fsi_master *master)
  271. {
  272. if (!master->info)
  273. return NULL;
  274. return master->info->set_rate;
  275. }
  276. static u32 fsi_get_info_flags(struct fsi_priv *fsi)
  277. {
  278. int is_porta = fsi_is_port_a(fsi);
  279. struct fsi_master *master = fsi_get_master(fsi);
  280. if (!master->info)
  281. return 0;
  282. return is_porta ? master->info->porta_flags :
  283. master->info->portb_flags;
  284. }
  285. static inline int fsi_stream_is_play(int stream)
  286. {
  287. return stream == SNDRV_PCM_STREAM_PLAYBACK;
  288. }
  289. static inline int fsi_is_play(struct snd_pcm_substream *substream)
  290. {
  291. return fsi_stream_is_play(substream->stream);
  292. }
  293. static inline struct fsi_stream *fsi_get_stream(struct fsi_priv *fsi,
  294. int is_play)
  295. {
  296. return is_play ? &fsi->playback : &fsi->capture;
  297. }
  298. static u32 fsi_get_port_shift(struct fsi_priv *fsi, int is_play)
  299. {
  300. int is_porta = fsi_is_port_a(fsi);
  301. u32 shift;
  302. if (is_porta)
  303. shift = is_play ? AO_SHIFT : AI_SHIFT;
  304. else
  305. shift = is_play ? BO_SHIFT : BI_SHIFT;
  306. return shift;
  307. }
  308. static int fsi_frame2sample(struct fsi_priv *fsi, int frames)
  309. {
  310. return frames * fsi->chan_num;
  311. }
  312. static int fsi_sample2frame(struct fsi_priv *fsi, int samples)
  313. {
  314. return samples / fsi->chan_num;
  315. }
  316. static void fsi_stream_push(struct fsi_priv *fsi,
  317. int is_play,
  318. struct snd_pcm_substream *substream)
  319. {
  320. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  321. struct snd_pcm_runtime *runtime = substream->runtime;
  322. io->substream = substream;
  323. io->buff_sample_capa = fsi_frame2sample(fsi, runtime->buffer_size);
  324. io->buff_sample_pos = 0;
  325. io->period_samples = fsi_frame2sample(fsi, runtime->period_size);
  326. io->period_pos = 0;
  327. io->oerr_num = -1; /* ignore 1st err */
  328. io->uerr_num = -1; /* ignore 1st err */
  329. }
  330. static void fsi_stream_pop(struct fsi_priv *fsi, int is_play)
  331. {
  332. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  333. struct snd_soc_dai *dai = fsi_get_dai(io->substream);
  334. if (io->oerr_num > 0)
  335. dev_err(dai->dev, "over_run = %d\n", io->oerr_num);
  336. if (io->uerr_num > 0)
  337. dev_err(dai->dev, "under_run = %d\n", io->uerr_num);
  338. io->substream = NULL;
  339. io->buff_sample_capa = 0;
  340. io->buff_sample_pos = 0;
  341. io->period_samples = 0;
  342. io->period_pos = 0;
  343. io->oerr_num = 0;
  344. io->uerr_num = 0;
  345. }
  346. static int fsi_get_current_fifo_samples(struct fsi_priv *fsi, int is_play)
  347. {
  348. u32 status;
  349. int frames;
  350. status = is_play ?
  351. fsi_reg_read(fsi, DOFF_ST) :
  352. fsi_reg_read(fsi, DIFF_ST);
  353. frames = 0x1ff & (status >> 8);
  354. return fsi_frame2sample(fsi, frames);
  355. }
  356. static void fsi_count_fifo_err(struct fsi_priv *fsi)
  357. {
  358. u32 ostatus = fsi_reg_read(fsi, DOFF_ST);
  359. u32 istatus = fsi_reg_read(fsi, DIFF_ST);
  360. if (ostatus & ERR_OVER)
  361. fsi->playback.oerr_num++;
  362. if (ostatus & ERR_UNDER)
  363. fsi->playback.uerr_num++;
  364. if (istatus & ERR_OVER)
  365. fsi->capture.oerr_num++;
  366. if (istatus & ERR_UNDER)
  367. fsi->capture.uerr_num++;
  368. fsi_reg_write(fsi, DOFF_ST, 0);
  369. fsi_reg_write(fsi, DIFF_ST, 0);
  370. }
  371. /*
  372. * dma function
  373. */
  374. static u8 *fsi_dma_get_area(struct fsi_priv *fsi, int stream)
  375. {
  376. int is_play = fsi_stream_is_play(stream);
  377. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  378. struct snd_pcm_runtime *runtime = io->substream->runtime;
  379. return runtime->dma_area +
  380. samples_to_bytes(runtime, io->buff_sample_pos);
  381. }
  382. static void fsi_dma_soft_push16(struct fsi_priv *fsi, int num)
  383. {
  384. u16 *start;
  385. int i;
  386. start = (u16 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_PLAYBACK);
  387. for (i = 0; i < num; i++)
  388. fsi_reg_write(fsi, DODT, ((u32)*(start + i) << 8));
  389. }
  390. static void fsi_dma_soft_pop16(struct fsi_priv *fsi, int num)
  391. {
  392. u16 *start;
  393. int i;
  394. start = (u16 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_CAPTURE);
  395. for (i = 0; i < num; i++)
  396. *(start + i) = (u16)(fsi_reg_read(fsi, DIDT) >> 8);
  397. }
  398. static void fsi_dma_soft_push32(struct fsi_priv *fsi, int num)
  399. {
  400. u32 *start;
  401. int i;
  402. start = (u32 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_PLAYBACK);
  403. for (i = 0; i < num; i++)
  404. fsi_reg_write(fsi, DODT, *(start + i));
  405. }
  406. static void fsi_dma_soft_pop32(struct fsi_priv *fsi, int num)
  407. {
  408. u32 *start;
  409. int i;
  410. start = (u32 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_CAPTURE);
  411. for (i = 0; i < num; i++)
  412. *(start + i) = fsi_reg_read(fsi, DIDT);
  413. }
  414. /*
  415. * irq function
  416. */
  417. static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
  418. {
  419. u32 data = AB_IO(1, fsi_get_port_shift(fsi, is_play));
  420. struct fsi_master *master = fsi_get_master(fsi);
  421. fsi_core_mask_set(master, imsk, data, data);
  422. fsi_core_mask_set(master, iemsk, data, data);
  423. }
  424. static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
  425. {
  426. u32 data = AB_IO(1, fsi_get_port_shift(fsi, is_play));
  427. struct fsi_master *master = fsi_get_master(fsi);
  428. fsi_core_mask_set(master, imsk, data, 0);
  429. fsi_core_mask_set(master, iemsk, data, 0);
  430. }
  431. static u32 fsi_irq_get_status(struct fsi_master *master)
  432. {
  433. return fsi_core_read(master, int_st);
  434. }
  435. static void fsi_irq_clear_status(struct fsi_priv *fsi)
  436. {
  437. u32 data = 0;
  438. struct fsi_master *master = fsi_get_master(fsi);
  439. data |= AB_IO(1, fsi_get_port_shift(fsi, 0));
  440. data |= AB_IO(1, fsi_get_port_shift(fsi, 1));
  441. /* clear interrupt factor */
  442. fsi_core_mask_set(master, int_st, data, 0);
  443. }
  444. /*
  445. * SPDIF master clock function
  446. *
  447. * These functions are used later FSI2
  448. */
  449. static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable)
  450. {
  451. struct fsi_master *master = fsi_get_master(fsi);
  452. u32 mask, val;
  453. if (master->core->ver < 2) {
  454. pr_err("fsi: register access err (%s)\n", __func__);
  455. return;
  456. }
  457. mask = BP | SE;
  458. val = enable ? mask : 0;
  459. fsi_is_port_a(fsi) ?
  460. fsi_core_mask_set(master, a_mclk, mask, val) :
  461. fsi_core_mask_set(master, b_mclk, mask, val);
  462. }
  463. /*
  464. * clock function
  465. */
  466. static int fsi_set_master_clk(struct device *dev, struct fsi_priv *fsi,
  467. long rate, int enable)
  468. {
  469. struct fsi_master *master = fsi_get_master(fsi);
  470. set_rate_func set_rate = fsi_get_info_set_rate(master);
  471. int fsi_ver = master->core->ver;
  472. int ret;
  473. ret = set_rate(dev, fsi_is_port_a(fsi), rate, enable);
  474. if (ret < 0) /* error */
  475. return ret;
  476. if (!enable)
  477. return 0;
  478. if (ret > 0) {
  479. u32 data = 0;
  480. switch (ret & SH_FSI_ACKMD_MASK) {
  481. default:
  482. /* FALL THROUGH */
  483. case SH_FSI_ACKMD_512:
  484. data |= (0x0 << 12);
  485. break;
  486. case SH_FSI_ACKMD_256:
  487. data |= (0x1 << 12);
  488. break;
  489. case SH_FSI_ACKMD_128:
  490. data |= (0x2 << 12);
  491. break;
  492. case SH_FSI_ACKMD_64:
  493. data |= (0x3 << 12);
  494. break;
  495. case SH_FSI_ACKMD_32:
  496. if (fsi_ver < 2)
  497. dev_err(dev, "unsupported ACKMD\n");
  498. else
  499. data |= (0x4 << 12);
  500. break;
  501. }
  502. switch (ret & SH_FSI_BPFMD_MASK) {
  503. default:
  504. /* FALL THROUGH */
  505. case SH_FSI_BPFMD_32:
  506. data |= (0x0 << 8);
  507. break;
  508. case SH_FSI_BPFMD_64:
  509. data |= (0x1 << 8);
  510. break;
  511. case SH_FSI_BPFMD_128:
  512. data |= (0x2 << 8);
  513. break;
  514. case SH_FSI_BPFMD_256:
  515. data |= (0x3 << 8);
  516. break;
  517. case SH_FSI_BPFMD_512:
  518. data |= (0x4 << 8);
  519. break;
  520. case SH_FSI_BPFMD_16:
  521. if (fsi_ver < 2)
  522. dev_err(dev, "unsupported ACKMD\n");
  523. else
  524. data |= (0x7 << 8);
  525. break;
  526. }
  527. fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data);
  528. udelay(10);
  529. ret = 0;
  530. }
  531. return ret;
  532. }
  533. #define fsi_module_init(m, d) __fsi_module_clk_ctrl(m, d, 1)
  534. #define fsi_module_kill(m, d) __fsi_module_clk_ctrl(m, d, 0)
  535. static void __fsi_module_clk_ctrl(struct fsi_master *master,
  536. struct device *dev,
  537. int enable)
  538. {
  539. pm_runtime_get_sync(dev);
  540. if (enable) {
  541. /* enable only SR */
  542. fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
  543. fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
  544. } else {
  545. /* clear all registers */
  546. fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
  547. }
  548. pm_runtime_put_sync(dev);
  549. }
  550. #define fsi_port_start(f, i) __fsi_port_clk_ctrl(f, i, 1)
  551. #define fsi_port_stop(f, i) __fsi_port_clk_ctrl(f, i, 0)
  552. static void __fsi_port_clk_ctrl(struct fsi_priv *fsi, int is_play, int enable)
  553. {
  554. struct fsi_master *master = fsi_get_master(fsi);
  555. u32 soft = fsi_is_port_a(fsi) ? PASR : PBSR;
  556. u32 clk = fsi_is_port_a(fsi) ? CRA : CRB;
  557. int is_master = fsi_is_clk_master(fsi);
  558. if (enable)
  559. fsi_irq_enable(fsi, is_play);
  560. else
  561. fsi_irq_disable(fsi, is_play);
  562. fsi_master_mask_set(master, SOFT_RST, soft, (enable) ? soft : 0);
  563. if (is_master)
  564. fsi_master_mask_set(master, CLK_RST, clk, (enable) ? clk : 0);
  565. }
  566. /*
  567. * ctrl function
  568. */
  569. static void fsi_fifo_init(struct fsi_priv *fsi,
  570. int is_play,
  571. struct snd_soc_dai *dai)
  572. {
  573. struct fsi_master *master = fsi_get_master(fsi);
  574. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  575. u32 shift, i;
  576. int frame_capa;
  577. /* get on-chip RAM capacity */
  578. shift = fsi_master_read(master, FIFO_SZ);
  579. shift >>= fsi_get_port_shift(fsi, is_play);
  580. shift &= FIFO_SZ_MASK;
  581. frame_capa = 256 << shift;
  582. dev_dbg(dai->dev, "fifo = %d words\n", frame_capa);
  583. /*
  584. * The maximum number of sample data varies depending
  585. * on the number of channels selected for the format.
  586. *
  587. * FIFOs are used in 4-channel units in 3-channel mode
  588. * and in 8-channel units in 5- to 7-channel mode
  589. * meaning that more FIFOs than the required size of DPRAM
  590. * are used.
  591. *
  592. * ex) if 256 words of DP-RAM is connected
  593. * 1 channel: 256 (256 x 1 = 256)
  594. * 2 channels: 128 (128 x 2 = 256)
  595. * 3 channels: 64 ( 64 x 3 = 192)
  596. * 4 channels: 64 ( 64 x 4 = 256)
  597. * 5 channels: 32 ( 32 x 5 = 160)
  598. * 6 channels: 32 ( 32 x 6 = 192)
  599. * 7 channels: 32 ( 32 x 7 = 224)
  600. * 8 channels: 32 ( 32 x 8 = 256)
  601. */
  602. for (i = 1; i < fsi->chan_num; i <<= 1)
  603. frame_capa >>= 1;
  604. dev_dbg(dai->dev, "%d channel %d store\n",
  605. fsi->chan_num, frame_capa);
  606. io->fifo_sample_capa = fsi_frame2sample(fsi, frame_capa);
  607. /*
  608. * set interrupt generation factor
  609. * clear FIFO
  610. */
  611. if (is_play) {
  612. fsi_reg_write(fsi, DOFF_CTL, IRQ_HALF);
  613. fsi_reg_mask_set(fsi, DOFF_CTL, FIFO_CLR, FIFO_CLR);
  614. } else {
  615. fsi_reg_write(fsi, DIFF_CTL, IRQ_HALF);
  616. fsi_reg_mask_set(fsi, DIFF_CTL, FIFO_CLR, FIFO_CLR);
  617. }
  618. }
  619. static int fsi_fifo_data_ctrl(struct fsi_priv *fsi, int stream)
  620. {
  621. struct snd_pcm_runtime *runtime;
  622. struct snd_pcm_substream *substream = NULL;
  623. int is_play = fsi_stream_is_play(stream);
  624. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  625. int sample_residues;
  626. int sample_width;
  627. int samples;
  628. int samples_max;
  629. int over_period;
  630. void (*fn)(struct fsi_priv *fsi, int size);
  631. if (!fsi ||
  632. !io->substream ||
  633. !io->substream->runtime)
  634. return -EINVAL;
  635. over_period = 0;
  636. substream = io->substream;
  637. runtime = substream->runtime;
  638. /* FSI FIFO has limit.
  639. * So, this driver can not send periods data at a time
  640. */
  641. if (io->buff_sample_pos >=
  642. io->period_samples * (io->period_pos + 1)) {
  643. over_period = 1;
  644. io->period_pos = (io->period_pos + 1) % runtime->periods;
  645. if (0 == io->period_pos)
  646. io->buff_sample_pos = 0;
  647. }
  648. /* get 1 sample data width */
  649. sample_width = samples_to_bytes(runtime, 1);
  650. /* get number of residue samples */
  651. sample_residues = io->buff_sample_capa - io->buff_sample_pos;
  652. if (is_play) {
  653. /*
  654. * for play-back
  655. *
  656. * samples_max : number of FSI fifo free samples space
  657. * samples : number of ALSA residue samples
  658. */
  659. samples_max = io->fifo_sample_capa;
  660. samples_max -= fsi_get_current_fifo_samples(fsi, is_play);
  661. samples = sample_residues;
  662. switch (sample_width) {
  663. case 2:
  664. fn = fsi_dma_soft_push16;
  665. break;
  666. case 4:
  667. fn = fsi_dma_soft_push32;
  668. break;
  669. default:
  670. return -EINVAL;
  671. }
  672. } else {
  673. /*
  674. * for capture
  675. *
  676. * samples_max : number of ALSA free samples space
  677. * samples : number of samples in FSI fifo
  678. */
  679. samples_max = sample_residues;
  680. samples = fsi_get_current_fifo_samples(fsi, is_play);
  681. switch (sample_width) {
  682. case 2:
  683. fn = fsi_dma_soft_pop16;
  684. break;
  685. case 4:
  686. fn = fsi_dma_soft_pop32;
  687. break;
  688. default:
  689. return -EINVAL;
  690. }
  691. }
  692. samples = min(samples, samples_max);
  693. fn(fsi, samples);
  694. /* update buff_sample_pos */
  695. io->buff_sample_pos += samples;
  696. if (over_period)
  697. snd_pcm_period_elapsed(substream);
  698. return 0;
  699. }
  700. static int fsi_data_pop(struct fsi_priv *fsi)
  701. {
  702. return fsi_fifo_data_ctrl(fsi, SNDRV_PCM_STREAM_CAPTURE);
  703. }
  704. static int fsi_data_push(struct fsi_priv *fsi)
  705. {
  706. return fsi_fifo_data_ctrl(fsi, SNDRV_PCM_STREAM_PLAYBACK);
  707. }
  708. static irqreturn_t fsi_interrupt(int irq, void *data)
  709. {
  710. struct fsi_master *master = data;
  711. u32 int_st = fsi_irq_get_status(master);
  712. /* clear irq status */
  713. fsi_master_mask_set(master, SOFT_RST, IR, 0);
  714. fsi_master_mask_set(master, SOFT_RST, IR, IR);
  715. if (int_st & AB_IO(1, AO_SHIFT))
  716. fsi_data_push(&master->fsia);
  717. if (int_st & AB_IO(1, BO_SHIFT))
  718. fsi_data_push(&master->fsib);
  719. if (int_st & AB_IO(1, AI_SHIFT))
  720. fsi_data_pop(&master->fsia);
  721. if (int_st & AB_IO(1, BI_SHIFT))
  722. fsi_data_pop(&master->fsib);
  723. fsi_count_fifo_err(&master->fsia);
  724. fsi_count_fifo_err(&master->fsib);
  725. fsi_irq_clear_status(&master->fsia);
  726. fsi_irq_clear_status(&master->fsib);
  727. return IRQ_HANDLED;
  728. }
  729. /*
  730. * dai ops
  731. */
  732. static int fsi_dai_startup(struct snd_pcm_substream *substream,
  733. struct snd_soc_dai *dai)
  734. {
  735. struct fsi_priv *fsi = fsi_get_priv(substream);
  736. u32 flags = fsi_get_info_flags(fsi);
  737. u32 data = 0;
  738. int is_play = fsi_is_play(substream);
  739. pm_runtime_get_sync(dai->dev);
  740. /* clock setting */
  741. if (fsi_is_clk_master(fsi))
  742. data = DIMD | DOMD;
  743. fsi_reg_mask_set(fsi, CKG1, (DIMD | DOMD), data);
  744. /* clock inversion (CKG2) */
  745. data = 0;
  746. if (SH_FSI_LRM_INV & flags)
  747. data |= 1 << 12;
  748. if (SH_FSI_BRM_INV & flags)
  749. data |= 1 << 8;
  750. if (SH_FSI_LRS_INV & flags)
  751. data |= 1 << 4;
  752. if (SH_FSI_BRS_INV & flags)
  753. data |= 1 << 0;
  754. fsi_reg_write(fsi, CKG2, data);
  755. /* set format */
  756. fsi_reg_write(fsi, DO_FMT, fsi->do_fmt);
  757. fsi_reg_write(fsi, DI_FMT, fsi->di_fmt);
  758. /* spdif ? */
  759. if (fsi_is_spdif(fsi)) {
  760. fsi_spdif_clk_ctrl(fsi, 1);
  761. fsi_reg_mask_set(fsi, OUT_SEL, DMMD, DMMD);
  762. }
  763. /* irq clear */
  764. fsi_irq_disable(fsi, is_play);
  765. fsi_irq_clear_status(fsi);
  766. /* fifo init */
  767. fsi_fifo_init(fsi, is_play, dai);
  768. return 0;
  769. }
  770. static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
  771. struct snd_soc_dai *dai)
  772. {
  773. struct fsi_priv *fsi = fsi_get_priv(substream);
  774. if (fsi_is_clk_master(fsi))
  775. fsi_set_master_clk(dai->dev, fsi, fsi->rate, 0);
  776. fsi->rate = 0;
  777. pm_runtime_put_sync(dai->dev);
  778. }
  779. static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
  780. struct snd_soc_dai *dai)
  781. {
  782. struct fsi_priv *fsi = fsi_get_priv(substream);
  783. int is_play = fsi_is_play(substream);
  784. int ret = 0;
  785. switch (cmd) {
  786. case SNDRV_PCM_TRIGGER_START:
  787. fsi_stream_push(fsi, is_play, substream);
  788. ret = is_play ? fsi_data_push(fsi) : fsi_data_pop(fsi);
  789. fsi_port_start(fsi, is_play);
  790. break;
  791. case SNDRV_PCM_TRIGGER_STOP:
  792. fsi_port_stop(fsi, is_play);
  793. fsi_stream_pop(fsi, is_play);
  794. break;
  795. }
  796. return ret;
  797. }
  798. static int fsi_set_fmt_dai(struct fsi_priv *fsi, unsigned int fmt)
  799. {
  800. u32 data = 0;
  801. switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
  802. case SND_SOC_DAIFMT_I2S:
  803. data = CR_I2S;
  804. fsi->chan_num = 2;
  805. break;
  806. case SND_SOC_DAIFMT_LEFT_J:
  807. data = CR_PCM;
  808. fsi->chan_num = 2;
  809. break;
  810. default:
  811. return -EINVAL;
  812. }
  813. fsi->do_fmt = data;
  814. fsi->di_fmt = data;
  815. return 0;
  816. }
  817. static int fsi_set_fmt_spdif(struct fsi_priv *fsi)
  818. {
  819. struct fsi_master *master = fsi_get_master(fsi);
  820. u32 data = 0;
  821. if (master->core->ver < 2)
  822. return -EINVAL;
  823. data = CR_BWS_16 | CR_DTMD_SPDIF_PCM | CR_PCM;
  824. fsi->chan_num = 2;
  825. fsi->spdif = 1;
  826. fsi->do_fmt = data;
  827. fsi->di_fmt = data;
  828. return 0;
  829. }
  830. static int fsi_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
  831. {
  832. struct fsi_priv *fsi = fsi_get_priv_frm_dai(dai);
  833. struct fsi_master *master = fsi_get_master(fsi);
  834. set_rate_func set_rate = fsi_get_info_set_rate(master);
  835. u32 flags = fsi_get_info_flags(fsi);
  836. int ret;
  837. /* set master/slave audio interface */
  838. switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
  839. case SND_SOC_DAIFMT_CBM_CFM:
  840. fsi->clk_master = 1;
  841. break;
  842. case SND_SOC_DAIFMT_CBS_CFS:
  843. break;
  844. default:
  845. return -EINVAL;
  846. }
  847. if (fsi_is_clk_master(fsi) && !set_rate) {
  848. dev_err(dai->dev, "platform doesn't have set_rate\n");
  849. return -EINVAL;
  850. }
  851. /* set format */
  852. switch (flags & SH_FSI_FMT_MASK) {
  853. case SH_FSI_FMT_DAI:
  854. ret = fsi_set_fmt_dai(fsi, fmt & SND_SOC_DAIFMT_FORMAT_MASK);
  855. break;
  856. case SH_FSI_FMT_SPDIF:
  857. ret = fsi_set_fmt_spdif(fsi);
  858. break;
  859. default:
  860. ret = -EINVAL;
  861. }
  862. return ret;
  863. }
  864. static int fsi_dai_hw_params(struct snd_pcm_substream *substream,
  865. struct snd_pcm_hw_params *params,
  866. struct snd_soc_dai *dai)
  867. {
  868. struct fsi_priv *fsi = fsi_get_priv(substream);
  869. long rate = params_rate(params);
  870. int ret;
  871. if (!fsi_is_clk_master(fsi))
  872. return 0;
  873. ret = fsi_set_master_clk(dai->dev, fsi, rate, 1);
  874. if (ret < 0)
  875. return ret;
  876. fsi->rate = rate;
  877. return ret;
  878. }
  879. static struct snd_soc_dai_ops fsi_dai_ops = {
  880. .startup = fsi_dai_startup,
  881. .shutdown = fsi_dai_shutdown,
  882. .trigger = fsi_dai_trigger,
  883. .set_fmt = fsi_dai_set_fmt,
  884. .hw_params = fsi_dai_hw_params,
  885. };
  886. /*
  887. * pcm ops
  888. */
  889. static struct snd_pcm_hardware fsi_pcm_hardware = {
  890. .info = SNDRV_PCM_INFO_INTERLEAVED |
  891. SNDRV_PCM_INFO_MMAP |
  892. SNDRV_PCM_INFO_MMAP_VALID |
  893. SNDRV_PCM_INFO_PAUSE,
  894. .formats = FSI_FMTS,
  895. .rates = FSI_RATES,
  896. .rate_min = 8000,
  897. .rate_max = 192000,
  898. .channels_min = 1,
  899. .channels_max = 2,
  900. .buffer_bytes_max = 64 * 1024,
  901. .period_bytes_min = 32,
  902. .period_bytes_max = 8192,
  903. .periods_min = 1,
  904. .periods_max = 32,
  905. .fifo_size = 256,
  906. };
  907. static int fsi_pcm_open(struct snd_pcm_substream *substream)
  908. {
  909. struct snd_pcm_runtime *runtime = substream->runtime;
  910. int ret = 0;
  911. snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);
  912. ret = snd_pcm_hw_constraint_integer(runtime,
  913. SNDRV_PCM_HW_PARAM_PERIODS);
  914. return ret;
  915. }
  916. static int fsi_hw_params(struct snd_pcm_substream *substream,
  917. struct snd_pcm_hw_params *hw_params)
  918. {
  919. return snd_pcm_lib_malloc_pages(substream,
  920. params_buffer_bytes(hw_params));
  921. }
  922. static int fsi_hw_free(struct snd_pcm_substream *substream)
  923. {
  924. return snd_pcm_lib_free_pages(substream);
  925. }
  926. static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
  927. {
  928. struct fsi_priv *fsi = fsi_get_priv(substream);
  929. struct fsi_stream *io = fsi_get_stream(fsi, fsi_is_play(substream));
  930. int samples_pos = io->buff_sample_pos - 1;
  931. if (samples_pos < 0)
  932. samples_pos = 0;
  933. return fsi_sample2frame(fsi, samples_pos);
  934. }
  935. static struct snd_pcm_ops fsi_pcm_ops = {
  936. .open = fsi_pcm_open,
  937. .ioctl = snd_pcm_lib_ioctl,
  938. .hw_params = fsi_hw_params,
  939. .hw_free = fsi_hw_free,
  940. .pointer = fsi_pointer,
  941. };
  942. /*
  943. * snd_soc_platform
  944. */
  945. #define PREALLOC_BUFFER (32 * 1024)
  946. #define PREALLOC_BUFFER_MAX (32 * 1024)
  947. static void fsi_pcm_free(struct snd_pcm *pcm)
  948. {
  949. snd_pcm_lib_preallocate_free_for_all(pcm);
  950. }
  951. static int fsi_pcm_new(struct snd_card *card,
  952. struct snd_soc_dai *dai,
  953. struct snd_pcm *pcm)
  954. {
  955. /*
  956. * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
  957. * in MMAP mode (i.e. aplay -M)
  958. */
  959. return snd_pcm_lib_preallocate_pages_for_all(
  960. pcm,
  961. SNDRV_DMA_TYPE_CONTINUOUS,
  962. snd_dma_continuous_data(GFP_KERNEL),
  963. PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
  964. }
  965. /*
  966. * alsa struct
  967. */
  968. static struct snd_soc_dai_driver fsi_soc_dai[] = {
  969. {
  970. .name = "fsia-dai",
  971. .playback = {
  972. .rates = FSI_RATES,
  973. .formats = FSI_FMTS,
  974. .channels_min = 1,
  975. .channels_max = 8,
  976. },
  977. .capture = {
  978. .rates = FSI_RATES,
  979. .formats = FSI_FMTS,
  980. .channels_min = 1,
  981. .channels_max = 8,
  982. },
  983. .ops = &fsi_dai_ops,
  984. },
  985. {
  986. .name = "fsib-dai",
  987. .playback = {
  988. .rates = FSI_RATES,
  989. .formats = FSI_FMTS,
  990. .channels_min = 1,
  991. .channels_max = 8,
  992. },
  993. .capture = {
  994. .rates = FSI_RATES,
  995. .formats = FSI_FMTS,
  996. .channels_min = 1,
  997. .channels_max = 8,
  998. },
  999. .ops = &fsi_dai_ops,
  1000. },
  1001. };
  1002. static struct snd_soc_platform_driver fsi_soc_platform = {
  1003. .ops = &fsi_pcm_ops,
  1004. .pcm_new = fsi_pcm_new,
  1005. .pcm_free = fsi_pcm_free,
  1006. };
  1007. /*
  1008. * platform function
  1009. */
  1010. static int fsi_probe(struct platform_device *pdev)
  1011. {
  1012. struct fsi_master *master;
  1013. const struct platform_device_id *id_entry;
  1014. struct resource *res;
  1015. unsigned int irq;
  1016. int ret;
  1017. id_entry = pdev->id_entry;
  1018. if (!id_entry) {
  1019. dev_err(&pdev->dev, "unknown fsi device\n");
  1020. return -ENODEV;
  1021. }
  1022. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1023. irq = platform_get_irq(pdev, 0);
  1024. if (!res || (int)irq <= 0) {
  1025. dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
  1026. ret = -ENODEV;
  1027. goto exit;
  1028. }
  1029. master = kzalloc(sizeof(*master), GFP_KERNEL);
  1030. if (!master) {
  1031. dev_err(&pdev->dev, "Could not allocate master\n");
  1032. ret = -ENOMEM;
  1033. goto exit;
  1034. }
  1035. master->base = ioremap_nocache(res->start, resource_size(res));
  1036. if (!master->base) {
  1037. ret = -ENXIO;
  1038. dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
  1039. goto exit_kfree;
  1040. }
  1041. /* master setting */
  1042. master->irq = irq;
  1043. master->info = pdev->dev.platform_data;
  1044. master->core = (struct fsi_core *)id_entry->driver_data;
  1045. spin_lock_init(&master->lock);
  1046. /* FSI A setting */
  1047. master->fsia.base = master->base;
  1048. master->fsia.master = master;
  1049. /* FSI B setting */
  1050. master->fsib.base = master->base + 0x40;
  1051. master->fsib.master = master;
  1052. pm_runtime_enable(&pdev->dev);
  1053. dev_set_drvdata(&pdev->dev, master);
  1054. fsi_module_init(master, &pdev->dev);
  1055. ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
  1056. id_entry->name, master);
  1057. if (ret) {
  1058. dev_err(&pdev->dev, "irq request err\n");
  1059. goto exit_iounmap;
  1060. }
  1061. ret = snd_soc_register_platform(&pdev->dev, &fsi_soc_platform);
  1062. if (ret < 0) {
  1063. dev_err(&pdev->dev, "cannot snd soc register\n");
  1064. goto exit_free_irq;
  1065. }
  1066. ret = snd_soc_register_dais(&pdev->dev, fsi_soc_dai,
  1067. ARRAY_SIZE(fsi_soc_dai));
  1068. if (ret < 0) {
  1069. dev_err(&pdev->dev, "cannot snd dai register\n");
  1070. goto exit_snd_soc;
  1071. }
  1072. return ret;
  1073. exit_snd_soc:
  1074. snd_soc_unregister_platform(&pdev->dev);
  1075. exit_free_irq:
  1076. free_irq(irq, master);
  1077. exit_iounmap:
  1078. iounmap(master->base);
  1079. pm_runtime_disable(&pdev->dev);
  1080. exit_kfree:
  1081. kfree(master);
  1082. master = NULL;
  1083. exit:
  1084. return ret;
  1085. }
  1086. static int fsi_remove(struct platform_device *pdev)
  1087. {
  1088. struct fsi_master *master;
  1089. master = dev_get_drvdata(&pdev->dev);
  1090. fsi_module_kill(master, &pdev->dev);
  1091. free_irq(master->irq, master);
  1092. pm_runtime_disable(&pdev->dev);
  1093. snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(fsi_soc_dai));
  1094. snd_soc_unregister_platform(&pdev->dev);
  1095. iounmap(master->base);
  1096. kfree(master);
  1097. return 0;
  1098. }
  1099. static void __fsi_suspend(struct fsi_priv *fsi,
  1100. struct device *dev)
  1101. {
  1102. fsi->saved_do_fmt = fsi_reg_read(fsi, DO_FMT);
  1103. fsi->saved_di_fmt = fsi_reg_read(fsi, DI_FMT);
  1104. fsi->saved_ckg1 = fsi_reg_read(fsi, CKG1);
  1105. fsi->saved_ckg2 = fsi_reg_read(fsi, CKG2);
  1106. fsi->saved_out_sel = fsi_reg_read(fsi, OUT_SEL);
  1107. if (fsi_is_clk_master(fsi))
  1108. fsi_set_master_clk(dev, fsi, fsi->rate, 0);
  1109. }
  1110. static void __fsi_resume(struct fsi_priv *fsi,
  1111. struct device *dev)
  1112. {
  1113. fsi_reg_write(fsi, DO_FMT, fsi->saved_do_fmt);
  1114. fsi_reg_write(fsi, DI_FMT, fsi->saved_di_fmt);
  1115. fsi_reg_write(fsi, CKG1, fsi->saved_ckg1);
  1116. fsi_reg_write(fsi, CKG2, fsi->saved_ckg2);
  1117. fsi_reg_write(fsi, OUT_SEL, fsi->saved_out_sel);
  1118. if (fsi_is_clk_master(fsi))
  1119. fsi_set_master_clk(dev, fsi, fsi->rate, 1);
  1120. }
  1121. static int fsi_suspend(struct device *dev)
  1122. {
  1123. struct fsi_master *master = dev_get_drvdata(dev);
  1124. pm_runtime_get_sync(dev);
  1125. __fsi_suspend(&master->fsia, dev);
  1126. __fsi_suspend(&master->fsib, dev);
  1127. master->saved_a_mclk = fsi_core_read(master, a_mclk);
  1128. master->saved_b_mclk = fsi_core_read(master, b_mclk);
  1129. master->saved_iemsk = fsi_core_read(master, iemsk);
  1130. master->saved_imsk = fsi_core_read(master, imsk);
  1131. master->saved_clk_rst = fsi_master_read(master, CLK_RST);
  1132. master->saved_soft_rst = fsi_master_read(master, SOFT_RST);
  1133. fsi_module_kill(master, dev);
  1134. pm_runtime_put_sync(dev);
  1135. return 0;
  1136. }
  1137. static int fsi_resume(struct device *dev)
  1138. {
  1139. struct fsi_master *master = dev_get_drvdata(dev);
  1140. pm_runtime_get_sync(dev);
  1141. fsi_module_init(master, dev);
  1142. fsi_master_mask_set(master, SOFT_RST, 0xffff, master->saved_soft_rst);
  1143. fsi_master_mask_set(master, CLK_RST, 0xffff, master->saved_clk_rst);
  1144. fsi_core_mask_set(master, a_mclk, 0xffff, master->saved_a_mclk);
  1145. fsi_core_mask_set(master, b_mclk, 0xffff, master->saved_b_mclk);
  1146. fsi_core_mask_set(master, iemsk, 0xffff, master->saved_iemsk);
  1147. fsi_core_mask_set(master, imsk, 0xffff, master->saved_imsk);
  1148. __fsi_resume(&master->fsia, dev);
  1149. __fsi_resume(&master->fsib, dev);
  1150. pm_runtime_put_sync(dev);
  1151. return 0;
  1152. }
  1153. static int fsi_runtime_nop(struct device *dev)
  1154. {
  1155. /* Runtime PM callback shared between ->runtime_suspend()
  1156. * and ->runtime_resume(). Simply returns success.
  1157. *
  1158. * This driver re-initializes all registers after
  1159. * pm_runtime_get_sync() anyway so there is no need
  1160. * to save and restore registers here.
  1161. */
  1162. return 0;
  1163. }
  1164. static struct dev_pm_ops fsi_pm_ops = {
  1165. .suspend = fsi_suspend,
  1166. .resume = fsi_resume,
  1167. .runtime_suspend = fsi_runtime_nop,
  1168. .runtime_resume = fsi_runtime_nop,
  1169. };
  1170. static struct fsi_core fsi1_core = {
  1171. .ver = 1,
  1172. /* Interrupt */
  1173. .int_st = INT_ST,
  1174. .iemsk = IEMSK,
  1175. .imsk = IMSK,
  1176. };
  1177. static struct fsi_core fsi2_core = {
  1178. .ver = 2,
  1179. /* Interrupt */
  1180. .int_st = CPU_INT_ST,
  1181. .iemsk = CPU_IEMSK,
  1182. .imsk = CPU_IMSK,
  1183. .a_mclk = A_MST_CTLR,
  1184. .b_mclk = B_MST_CTLR,
  1185. };
  1186. static struct platform_device_id fsi_id_table[] = {
  1187. { "sh_fsi", (kernel_ulong_t)&fsi1_core },
  1188. { "sh_fsi2", (kernel_ulong_t)&fsi2_core },
  1189. {},
  1190. };
  1191. MODULE_DEVICE_TABLE(platform, fsi_id_table);
  1192. static struct platform_driver fsi_driver = {
  1193. .driver = {
  1194. .name = "fsi-pcm-audio",
  1195. .pm = &fsi_pm_ops,
  1196. },
  1197. .probe = fsi_probe,
  1198. .remove = fsi_remove,
  1199. .id_table = fsi_id_table,
  1200. };
  1201. static int __init fsi_mobile_init(void)
  1202. {
  1203. return platform_driver_register(&fsi_driver);
  1204. }
  1205. static void __exit fsi_mobile_exit(void)
  1206. {
  1207. platform_driver_unregister(&fsi_driver);
  1208. }
  1209. module_init(fsi_mobile_init);
  1210. module_exit(fsi_mobile_exit);
  1211. MODULE_LICENSE("GPL");
  1212. MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
  1213. MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");
  1214. MODULE_ALIAS("platform:fsi-pcm-audio");