ctatc.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File ctatc.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of the device resource management
  12. * object.
  13. *
  14. * @Author Liu Chun
  15. * @Date Mar 28 2008
  16. */
  17. #include "ctatc.h"
  18. #include "ctpcm.h"
  19. #include "ctmixer.h"
  20. #include "cthardware.h"
  21. #include "ctsrc.h"
  22. #include "ctamixer.h"
  23. #include "ctdaio.h"
  24. #include "cttimer.h"
  25. #include <linux/delay.h>
  26. #include <sound/pcm.h>
  27. #include <sound/control.h>
  28. #include <sound/asoundef.h>
  29. #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
  30. #define DAIONUM 7
  31. #define MAX_MULTI_CHN 8
  32. #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
  33. | IEC958_AES0_CON_NOT_COPYRIGHT) \
  34. | ((IEC958_AES1_CON_MIXER \
  35. | IEC958_AES1_CON_ORIGINAL) << 8) \
  36. | (0x10 << 16) \
  37. | ((IEC958_AES3_CON_FS_48000) << 24))
  38. static struct snd_pci_quirk __devinitdata subsys_20k1_list[] = {
  39. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0022, "SB055x", CTSB055X),
  40. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x002f, "SB055x", CTSB055X),
  41. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0029, "SB073x", CTSB073X),
  42. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0031, "SB073x", CTSB073X),
  43. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0x6000,
  44. PCI_SUBDEVICE_ID_CREATIVE_HENDRIX, "UAA", CTUAA),
  45. SND_PCI_QUIRK_VENDOR(PCI_VENDOR_ID_CREATIVE,
  46. "Unknown", CT20K1_UNKNOWN),
  47. { } /* terminator */
  48. };
  49. static struct snd_pci_quirk __devinitdata subsys_20k2_list[] = {
  50. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB0760,
  51. "SB0760", CTSB0760),
  52. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08801,
  53. "SB0880", CTSB0880),
  54. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08802,
  55. "SB0880", CTSB0880),
  56. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08803,
  57. "SB0880", CTSB0880),
  58. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0x6000,
  59. PCI_SUBDEVICE_ID_CREATIVE_HENDRIX, "UAA", CTHENDRIX),
  60. { } /* terminator */
  61. };
  62. static const char *ct_subsys_name[NUM_CTCARDS] = {
  63. [CTSB055X] = "SB055x",
  64. [CTSB073X] = "SB073x",
  65. [CTSB0760] = "SB076x",
  66. [CTUAA] = "UAA",
  67. [CT20K1_UNKNOWN] = "Unknown",
  68. [CTHENDRIX] = "Hendrix",
  69. [CTSB0880] = "SB0880",
  70. };
  71. static struct {
  72. int (*create)(struct ct_atc *atc,
  73. enum CTALSADEVS device, const char *device_name);
  74. int (*destroy)(void *alsa_dev);
  75. const char *public_name;
  76. } alsa_dev_funcs[NUM_CTALSADEVS] = {
  77. [FRONT] = { .create = ct_alsa_pcm_create,
  78. .destroy = NULL,
  79. .public_name = "Front/WaveIn"},
  80. [SURROUND] = { .create = ct_alsa_pcm_create,
  81. .destroy = NULL,
  82. .public_name = "Surround"},
  83. [CLFE] = { .create = ct_alsa_pcm_create,
  84. .destroy = NULL,
  85. .public_name = "Center/LFE"},
  86. [SIDE] = { .create = ct_alsa_pcm_create,
  87. .destroy = NULL,
  88. .public_name = "Side"},
  89. [IEC958] = { .create = ct_alsa_pcm_create,
  90. .destroy = NULL,
  91. .public_name = "IEC958 Non-audio"},
  92. [MIXER] = { .create = ct_alsa_mix_create,
  93. .destroy = NULL,
  94. .public_name = "Mixer"}
  95. };
  96. typedef int (*create_t)(void *, void **);
  97. typedef int (*destroy_t)(void *);
  98. static struct {
  99. int (*create)(void *hw, void **rmgr);
  100. int (*destroy)(void *mgr);
  101. } rsc_mgr_funcs[NUM_RSCTYP] = {
  102. [SRC] = { .create = (create_t)src_mgr_create,
  103. .destroy = (destroy_t)src_mgr_destroy },
  104. [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
  105. .destroy = (destroy_t)srcimp_mgr_destroy },
  106. [AMIXER] = { .create = (create_t)amixer_mgr_create,
  107. .destroy = (destroy_t)amixer_mgr_destroy },
  108. [SUM] = { .create = (create_t)sum_mgr_create,
  109. .destroy = (destroy_t)sum_mgr_destroy },
  110. [DAIO] = { .create = (create_t)daio_mgr_create,
  111. .destroy = (destroy_t)daio_mgr_destroy }
  112. };
  113. static int
  114. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
  115. /* *
  116. * Only mono and interleaved modes are supported now.
  117. * Always allocates a contiguous channel block.
  118. * */
  119. static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  120. {
  121. struct snd_pcm_runtime *runtime;
  122. struct ct_vm *vm;
  123. if (NULL == apcm->substream)
  124. return 0;
  125. runtime = apcm->substream->runtime;
  126. vm = atc->vm;
  127. apcm->vm_block = vm->map(vm, apcm->substream, runtime->dma_bytes);
  128. if (NULL == apcm->vm_block)
  129. return -ENOENT;
  130. return 0;
  131. }
  132. static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  133. {
  134. struct ct_vm *vm;
  135. if (NULL == apcm->vm_block)
  136. return;
  137. vm = atc->vm;
  138. vm->unmap(vm, apcm->vm_block);
  139. apcm->vm_block = NULL;
  140. }
  141. static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
  142. {
  143. struct ct_vm *vm;
  144. void *kvirt_addr;
  145. unsigned long phys_addr;
  146. vm = atc->vm;
  147. kvirt_addr = vm->get_ptp_virt(vm, index);
  148. if (kvirt_addr == NULL)
  149. phys_addr = (~0UL);
  150. else
  151. phys_addr = virt_to_phys(kvirt_addr);
  152. return phys_addr;
  153. }
  154. static unsigned int convert_format(snd_pcm_format_t snd_format)
  155. {
  156. switch (snd_format) {
  157. case SNDRV_PCM_FORMAT_U8:
  158. return SRC_SF_U8;
  159. case SNDRV_PCM_FORMAT_S16_LE:
  160. return SRC_SF_S16;
  161. case SNDRV_PCM_FORMAT_S24_3LE:
  162. return SRC_SF_S24;
  163. case SNDRV_PCM_FORMAT_S32_LE:
  164. return SRC_SF_S32;
  165. case SNDRV_PCM_FORMAT_FLOAT_LE:
  166. return SRC_SF_F32;
  167. default:
  168. printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
  169. snd_format);
  170. return SRC_SF_S16;
  171. }
  172. }
  173. static unsigned int
  174. atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
  175. {
  176. unsigned int pitch;
  177. int b;
  178. /* get pitch and convert to fixed-point 8.24 format. */
  179. pitch = (input_rate / output_rate) << 24;
  180. input_rate %= output_rate;
  181. input_rate /= 100;
  182. output_rate /= 100;
  183. for (b = 31; ((b >= 0) && !(input_rate >> b)); )
  184. b--;
  185. if (b >= 0) {
  186. input_rate <<= (31 - b);
  187. input_rate /= output_rate;
  188. b = 24 - (31 - b);
  189. if (b >= 0)
  190. input_rate <<= b;
  191. else
  192. input_rate >>= -b;
  193. pitch |= input_rate;
  194. }
  195. return pitch;
  196. }
  197. static int select_rom(unsigned int pitch)
  198. {
  199. if ((pitch > 0x00428f5c) && (pitch < 0x01b851ec)) {
  200. /* 0.26 <= pitch <= 1.72 */
  201. return 1;
  202. } else if ((0x01d66666 == pitch) || (0x01d66667 == pitch)) {
  203. /* pitch == 1.8375 */
  204. return 2;
  205. } else if (0x02000000 == pitch) {
  206. /* pitch == 2 */
  207. return 3;
  208. } else if ((pitch >= 0x0) && (pitch <= 0x08000000)) {
  209. /* 0 <= pitch <= 8 */
  210. return 0;
  211. } else {
  212. return -ENOENT;
  213. }
  214. }
  215. static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  216. {
  217. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  218. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  219. struct src_desc desc = {0};
  220. struct amixer_desc mix_dsc = {0};
  221. struct src *src;
  222. struct amixer *amixer;
  223. int err;
  224. int n_amixer = apcm->substream->runtime->channels, i = 0;
  225. int device = apcm->substream->pcm->device;
  226. unsigned int pitch;
  227. unsigned long flags;
  228. if (NULL != apcm->src) {
  229. /* Prepared pcm playback */
  230. return 0;
  231. }
  232. /* first release old resources */
  233. atc->pcm_release_resources(atc, apcm);
  234. /* Get SRC resource */
  235. desc.multi = apcm->substream->runtime->channels;
  236. desc.msr = atc->msr;
  237. desc.mode = MEMRD;
  238. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  239. if (err)
  240. goto error1;
  241. pitch = atc_get_pitch(apcm->substream->runtime->rate,
  242. (atc->rsr * atc->msr));
  243. src = apcm->src;
  244. src->ops->set_pitch(src, pitch);
  245. src->ops->set_rom(src, select_rom(pitch));
  246. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  247. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  248. /* Get AMIXER resource */
  249. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  250. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  251. if (NULL == apcm->amixers) {
  252. err = -ENOMEM;
  253. goto error1;
  254. }
  255. mix_dsc.msr = atc->msr;
  256. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  257. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  258. (struct amixer **)&apcm->amixers[i]);
  259. if (err)
  260. goto error1;
  261. apcm->n_amixer++;
  262. }
  263. /* Set up device virtual mem map */
  264. err = ct_map_audio_buffer(atc, apcm);
  265. if (err < 0)
  266. goto error1;
  267. /* Connect resources */
  268. src = apcm->src;
  269. for (i = 0; i < n_amixer; i++) {
  270. amixer = apcm->amixers[i];
  271. spin_lock_irqsave(&atc->atc_lock, flags);
  272. amixer->ops->setup(amixer, &src->rsc,
  273. INIT_VOL, atc->pcm[i+device*2]);
  274. spin_unlock_irqrestore(&atc->atc_lock, flags);
  275. src = src->ops->next_interleave(src);
  276. if (NULL == src)
  277. src = apcm->src;
  278. }
  279. ct_timer_prepare(apcm->timer);
  280. return 0;
  281. error1:
  282. atc_pcm_release_resources(atc, apcm);
  283. return err;
  284. }
  285. static int
  286. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  287. {
  288. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  289. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  290. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  291. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  292. struct srcimp *srcimp;
  293. int i;
  294. if (NULL != apcm->srcimps) {
  295. for (i = 0; i < apcm->n_srcimp; i++) {
  296. srcimp = apcm->srcimps[i];
  297. srcimp->ops->unmap(srcimp);
  298. srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
  299. apcm->srcimps[i] = NULL;
  300. }
  301. kfree(apcm->srcimps);
  302. apcm->srcimps = NULL;
  303. }
  304. if (NULL != apcm->srccs) {
  305. for (i = 0; i < apcm->n_srcc; i++) {
  306. src_mgr->put_src(src_mgr, apcm->srccs[i]);
  307. apcm->srccs[i] = NULL;
  308. }
  309. kfree(apcm->srccs);
  310. apcm->srccs = NULL;
  311. }
  312. if (NULL != apcm->amixers) {
  313. for (i = 0; i < apcm->n_amixer; i++) {
  314. amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
  315. apcm->amixers[i] = NULL;
  316. }
  317. kfree(apcm->amixers);
  318. apcm->amixers = NULL;
  319. }
  320. if (NULL != apcm->mono) {
  321. sum_mgr->put_sum(sum_mgr, apcm->mono);
  322. apcm->mono = NULL;
  323. }
  324. if (NULL != apcm->src) {
  325. src_mgr->put_src(src_mgr, apcm->src);
  326. apcm->src = NULL;
  327. }
  328. if (NULL != apcm->vm_block) {
  329. /* Undo device virtual mem map */
  330. ct_unmap_audio_buffer(atc, apcm);
  331. apcm->vm_block = NULL;
  332. }
  333. return 0;
  334. }
  335. static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  336. {
  337. unsigned int max_cisz;
  338. struct src *src = apcm->src;
  339. max_cisz = src->multi * src->rsc.msr;
  340. max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
  341. src->ops->set_sa(src, apcm->vm_block->addr);
  342. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  343. src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
  344. src->ops->set_cisz(src, max_cisz);
  345. src->ops->set_bm(src, 1);
  346. src->ops->set_state(src, SRC_STATE_INIT);
  347. src->ops->commit_write(src);
  348. ct_timer_start(apcm->timer);
  349. return 0;
  350. }
  351. static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  352. {
  353. struct src *src;
  354. int i;
  355. ct_timer_stop(apcm->timer);
  356. src = apcm->src;
  357. src->ops->set_bm(src, 0);
  358. src->ops->set_state(src, SRC_STATE_OFF);
  359. src->ops->commit_write(src);
  360. if (NULL != apcm->srccs) {
  361. for (i = 0; i < apcm->n_srcc; i++) {
  362. src = apcm->srccs[i];
  363. src->ops->set_bm(src, 0);
  364. src->ops->set_state(src, SRC_STATE_OFF);
  365. src->ops->commit_write(src);
  366. }
  367. }
  368. apcm->started = 0;
  369. return 0;
  370. }
  371. static int
  372. atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  373. {
  374. struct src *src = apcm->src;
  375. u32 size, max_cisz;
  376. int position;
  377. position = src->ops->get_ca(src);
  378. size = apcm->vm_block->size;
  379. max_cisz = src->multi * src->rsc.msr;
  380. max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
  381. return (position + size - max_cisz - apcm->vm_block->addr) % size;
  382. }
  383. struct src_node_conf_t {
  384. unsigned int pitch;
  385. unsigned int msr:8;
  386. unsigned int mix_msr:8;
  387. unsigned int imp_msr:8;
  388. unsigned int vo:1;
  389. };
  390. static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
  391. struct src_node_conf_t *conf, int *n_srcc)
  392. {
  393. unsigned int pitch;
  394. /* get pitch and convert to fixed-point 8.24 format. */
  395. pitch = atc_get_pitch((atc->rsr * atc->msr),
  396. apcm->substream->runtime->rate);
  397. *n_srcc = 0;
  398. if (1 == atc->msr) {
  399. *n_srcc = apcm->substream->runtime->channels;
  400. conf[0].pitch = pitch;
  401. conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
  402. conf[0].vo = 1;
  403. } else if (2 == atc->msr) {
  404. if (0x8000000 < pitch) {
  405. /* Need two-stage SRCs, SRCIMPs and
  406. * AMIXERs for converting format */
  407. conf[0].pitch = (atc->msr << 24);
  408. conf[0].msr = conf[0].mix_msr = 1;
  409. conf[0].imp_msr = atc->msr;
  410. conf[0].vo = 0;
  411. conf[1].pitch = atc_get_pitch(atc->rsr,
  412. apcm->substream->runtime->rate);
  413. conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
  414. conf[1].vo = 1;
  415. *n_srcc = apcm->substream->runtime->channels * 2;
  416. } else if (0x1000000 < pitch) {
  417. /* Need one-stage SRCs, SRCIMPs and
  418. * AMIXERs for converting format */
  419. conf[0].pitch = pitch;
  420. conf[0].msr = conf[0].mix_msr
  421. = conf[0].imp_msr = atc->msr;
  422. conf[0].vo = 1;
  423. *n_srcc = apcm->substream->runtime->channels;
  424. }
  425. }
  426. }
  427. static int
  428. atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  429. {
  430. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  431. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  432. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  433. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  434. struct src_desc src_dsc = {0};
  435. struct src *src;
  436. struct srcimp_desc srcimp_dsc = {0};
  437. struct srcimp *srcimp;
  438. struct amixer_desc mix_dsc = {0};
  439. struct sum_desc sum_dsc = {0};
  440. unsigned int pitch;
  441. int multi, err, i;
  442. int n_srcimp, n_amixer, n_srcc, n_sum;
  443. struct src_node_conf_t src_node_conf[2] = {{0} };
  444. /* first release old resources */
  445. atc->pcm_release_resources(atc, apcm);
  446. /* The numbers of converting SRCs and SRCIMPs should be determined
  447. * by pitch value. */
  448. multi = apcm->substream->runtime->channels;
  449. /* get pitch and convert to fixed-point 8.24 format. */
  450. pitch = atc_get_pitch((atc->rsr * atc->msr),
  451. apcm->substream->runtime->rate);
  452. setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
  453. n_sum = (1 == multi) ? 1 : 0;
  454. n_amixer = n_sum * 2 + n_srcc;
  455. n_srcimp = n_srcc;
  456. if ((multi > 1) && (0x8000000 >= pitch)) {
  457. /* Need extra AMIXERs and SRCIMPs for special treatment
  458. * of interleaved recording of conjugate channels */
  459. n_amixer += multi * atc->msr;
  460. n_srcimp += multi * atc->msr;
  461. } else {
  462. n_srcimp += multi;
  463. }
  464. if (n_srcc) {
  465. apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
  466. if (NULL == apcm->srccs)
  467. return -ENOMEM;
  468. }
  469. if (n_amixer) {
  470. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  471. if (NULL == apcm->amixers) {
  472. err = -ENOMEM;
  473. goto error1;
  474. }
  475. }
  476. apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
  477. if (NULL == apcm->srcimps) {
  478. err = -ENOMEM;
  479. goto error1;
  480. }
  481. /* Allocate SRCs for sample rate conversion if needed */
  482. src_dsc.multi = 1;
  483. src_dsc.mode = ARCRW;
  484. for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
  485. src_dsc.msr = src_node_conf[i/multi].msr;
  486. err = src_mgr->get_src(src_mgr, &src_dsc,
  487. (struct src **)&apcm->srccs[i]);
  488. if (err)
  489. goto error1;
  490. src = apcm->srccs[i];
  491. pitch = src_node_conf[i/multi].pitch;
  492. src->ops->set_pitch(src, pitch);
  493. src->ops->set_rom(src, select_rom(pitch));
  494. src->ops->set_vo(src, src_node_conf[i/multi].vo);
  495. apcm->n_srcc++;
  496. }
  497. /* Allocate AMIXERs for routing SRCs of conversion if needed */
  498. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  499. if (i < (n_sum*2))
  500. mix_dsc.msr = atc->msr;
  501. else if (i < (n_sum*2+n_srcc))
  502. mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
  503. else
  504. mix_dsc.msr = 1;
  505. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  506. (struct amixer **)&apcm->amixers[i]);
  507. if (err)
  508. goto error1;
  509. apcm->n_amixer++;
  510. }
  511. /* Allocate a SUM resource to mix all input channels together */
  512. sum_dsc.msr = atc->msr;
  513. err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
  514. if (err)
  515. goto error1;
  516. pitch = atc_get_pitch((atc->rsr * atc->msr),
  517. apcm->substream->runtime->rate);
  518. /* Allocate SRCIMP resources */
  519. for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
  520. if (i < (n_srcc))
  521. srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
  522. else if (1 == multi)
  523. srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
  524. else
  525. srcimp_dsc.msr = 1;
  526. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
  527. if (err)
  528. goto error1;
  529. apcm->srcimps[i] = srcimp;
  530. apcm->n_srcimp++;
  531. }
  532. /* Allocate a SRC for writing data to host memory */
  533. src_dsc.multi = apcm->substream->runtime->channels;
  534. src_dsc.msr = 1;
  535. src_dsc.mode = MEMWR;
  536. err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
  537. if (err)
  538. goto error1;
  539. src = apcm->src;
  540. src->ops->set_pitch(src, pitch);
  541. /* Set up device virtual mem map */
  542. err = ct_map_audio_buffer(atc, apcm);
  543. if (err < 0)
  544. goto error1;
  545. return 0;
  546. error1:
  547. atc_pcm_release_resources(atc, apcm);
  548. return err;
  549. }
  550. static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  551. {
  552. struct src *src;
  553. struct amixer *amixer;
  554. struct srcimp *srcimp;
  555. struct ct_mixer *mixer = atc->mixer;
  556. struct sum *mono;
  557. struct rsc *out_ports[8] = {NULL};
  558. int err, i, j, n_sum, multi;
  559. unsigned int pitch;
  560. int mix_base = 0, imp_base = 0;
  561. if (NULL != apcm->src) {
  562. /* Prepared pcm capture */
  563. return 0;
  564. }
  565. /* Get needed resources. */
  566. err = atc_pcm_capture_get_resources(atc, apcm);
  567. if (err)
  568. return err;
  569. /* Connect resources */
  570. mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
  571. &out_ports[0], &out_ports[1]);
  572. multi = apcm->substream->runtime->channels;
  573. if (1 == multi) {
  574. mono = apcm->mono;
  575. for (i = 0; i < 2; i++) {
  576. amixer = apcm->amixers[i];
  577. amixer->ops->setup(amixer, out_ports[i],
  578. MONO_SUM_SCALE, mono);
  579. }
  580. out_ports[0] = &mono->rsc;
  581. n_sum = 1;
  582. mix_base = n_sum * 2;
  583. }
  584. for (i = 0; i < apcm->n_srcc; i++) {
  585. src = apcm->srccs[i];
  586. srcimp = apcm->srcimps[imp_base+i];
  587. amixer = apcm->amixers[mix_base+i];
  588. srcimp->ops->map(srcimp, src, out_ports[i%multi]);
  589. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  590. out_ports[i%multi] = &amixer->rsc;
  591. }
  592. pitch = atc_get_pitch((atc->rsr * atc->msr),
  593. apcm->substream->runtime->rate);
  594. if ((multi > 1) && (pitch <= 0x8000000)) {
  595. /* Special connection for interleaved
  596. * recording with conjugate channels */
  597. for (i = 0; i < multi; i++) {
  598. out_ports[i]->ops->master(out_ports[i]);
  599. for (j = 0; j < atc->msr; j++) {
  600. amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
  601. amixer->ops->set_input(amixer, out_ports[i]);
  602. amixer->ops->set_scale(amixer, INIT_VOL);
  603. amixer->ops->set_sum(amixer, NULL);
  604. amixer->ops->commit_raw_write(amixer);
  605. out_ports[i]->ops->next_conj(out_ports[i]);
  606. srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
  607. srcimp->ops->map(srcimp, apcm->src,
  608. &amixer->rsc);
  609. }
  610. }
  611. } else {
  612. for (i = 0; i < multi; i++) {
  613. srcimp = apcm->srcimps[apcm->n_srcc+i];
  614. srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
  615. }
  616. }
  617. ct_timer_prepare(apcm->timer);
  618. return 0;
  619. }
  620. static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  621. {
  622. struct src *src;
  623. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  624. int i, multi;
  625. if (apcm->started)
  626. return 0;
  627. apcm->started = 1;
  628. multi = apcm->substream->runtime->channels;
  629. /* Set up converting SRCs */
  630. for (i = 0; i < apcm->n_srcc; i++) {
  631. src = apcm->srccs[i];
  632. src->ops->set_pm(src, ((i%multi) != (multi-1)));
  633. src_mgr->src_disable(src_mgr, src);
  634. }
  635. /* Set up recording SRC */
  636. src = apcm->src;
  637. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  638. src->ops->set_sa(src, apcm->vm_block->addr);
  639. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  640. src->ops->set_ca(src, apcm->vm_block->addr);
  641. src_mgr->src_disable(src_mgr, src);
  642. /* Disable relevant SRCs firstly */
  643. src_mgr->commit_write(src_mgr);
  644. /* Enable SRCs respectively */
  645. for (i = 0; i < apcm->n_srcc; i++) {
  646. src = apcm->srccs[i];
  647. src->ops->set_state(src, SRC_STATE_RUN);
  648. src->ops->commit_write(src);
  649. src_mgr->src_enable_s(src_mgr, src);
  650. }
  651. src = apcm->src;
  652. src->ops->set_bm(src, 1);
  653. src->ops->set_state(src, SRC_STATE_RUN);
  654. src->ops->commit_write(src);
  655. src_mgr->src_enable_s(src_mgr, src);
  656. /* Enable relevant SRCs synchronously */
  657. src_mgr->commit_write(src_mgr);
  658. ct_timer_start(apcm->timer);
  659. return 0;
  660. }
  661. static int
  662. atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  663. {
  664. struct src *src = apcm->src;
  665. return src->ops->get_ca(src) - apcm->vm_block->addr;
  666. }
  667. static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
  668. struct ct_atc_pcm *apcm)
  669. {
  670. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  671. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  672. struct src_desc desc = {0};
  673. struct amixer_desc mix_dsc = {0};
  674. struct src *src;
  675. int err;
  676. int n_amixer = apcm->substream->runtime->channels, i;
  677. unsigned int pitch, rsr = atc->pll_rate;
  678. /* first release old resources */
  679. atc->pcm_release_resources(atc, apcm);
  680. /* Get SRC resource */
  681. desc.multi = apcm->substream->runtime->channels;
  682. desc.msr = 1;
  683. while (apcm->substream->runtime->rate > (rsr * desc.msr))
  684. desc.msr <<= 1;
  685. desc.mode = MEMRD;
  686. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  687. if (err)
  688. goto error1;
  689. pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
  690. src = apcm->src;
  691. src->ops->set_pitch(src, pitch);
  692. src->ops->set_rom(src, select_rom(pitch));
  693. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  694. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  695. src->ops->set_bp(src, 1);
  696. /* Get AMIXER resource */
  697. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  698. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  699. if (NULL == apcm->amixers) {
  700. err = -ENOMEM;
  701. goto error1;
  702. }
  703. mix_dsc.msr = desc.msr;
  704. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  705. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  706. (struct amixer **)&apcm->amixers[i]);
  707. if (err)
  708. goto error1;
  709. apcm->n_amixer++;
  710. }
  711. /* Set up device virtual mem map */
  712. err = ct_map_audio_buffer(atc, apcm);
  713. if (err < 0)
  714. goto error1;
  715. return 0;
  716. error1:
  717. atc_pcm_release_resources(atc, apcm);
  718. return err;
  719. }
  720. static int atc_pll_init(struct ct_atc *atc, int rate)
  721. {
  722. struct hw *hw = atc->hw;
  723. int err;
  724. err = hw->pll_init(hw, rate);
  725. atc->pll_rate = err ? 0 : rate;
  726. return err;
  727. }
  728. static int
  729. spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  730. {
  731. struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  732. unsigned long flags;
  733. unsigned int rate = apcm->substream->runtime->rate;
  734. unsigned int status;
  735. int err;
  736. unsigned char iec958_con_fs;
  737. switch (rate) {
  738. case 48000:
  739. iec958_con_fs = IEC958_AES3_CON_FS_48000;
  740. break;
  741. case 44100:
  742. iec958_con_fs = IEC958_AES3_CON_FS_44100;
  743. break;
  744. case 32000:
  745. iec958_con_fs = IEC958_AES3_CON_FS_32000;
  746. break;
  747. default:
  748. return -ENOENT;
  749. }
  750. spin_lock_irqsave(&atc->atc_lock, flags);
  751. dao->ops->get_spos(dao, &status);
  752. if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
  753. status &= ((~IEC958_AES3_CON_FS) << 24);
  754. status |= (iec958_con_fs << 24);
  755. dao->ops->set_spos(dao, status);
  756. dao->ops->commit_write(dao);
  757. }
  758. if ((rate != atc->pll_rate) && (32000 != rate))
  759. err = atc_pll_init(atc, rate);
  760. spin_unlock_irqrestore(&atc->atc_lock, flags);
  761. return err;
  762. }
  763. static int
  764. spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  765. {
  766. struct src *src;
  767. struct amixer *amixer;
  768. struct dao *dao;
  769. int err;
  770. int i;
  771. unsigned long flags;
  772. if (NULL != apcm->src)
  773. return 0;
  774. /* Configure SPDIFOO and PLL to passthrough mode;
  775. * determine pll_rate. */
  776. err = spdif_passthru_playback_setup(atc, apcm);
  777. if (err)
  778. return err;
  779. /* Get needed resources. */
  780. err = spdif_passthru_playback_get_resources(atc, apcm);
  781. if (err)
  782. return err;
  783. /* Connect resources */
  784. src = apcm->src;
  785. for (i = 0; i < apcm->n_amixer; i++) {
  786. amixer = apcm->amixers[i];
  787. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  788. src = src->ops->next_interleave(src);
  789. if (NULL == src)
  790. src = apcm->src;
  791. }
  792. /* Connect to SPDIFOO */
  793. spin_lock_irqsave(&atc->atc_lock, flags);
  794. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  795. amixer = apcm->amixers[0];
  796. dao->ops->set_left_input(dao, &amixer->rsc);
  797. amixer = apcm->amixers[1];
  798. dao->ops->set_right_input(dao, &amixer->rsc);
  799. spin_unlock_irqrestore(&atc->atc_lock, flags);
  800. ct_timer_prepare(apcm->timer);
  801. return 0;
  802. }
  803. static int atc_select_line_in(struct ct_atc *atc)
  804. {
  805. struct hw *hw = atc->hw;
  806. struct ct_mixer *mixer = atc->mixer;
  807. struct src *src;
  808. if (hw->is_adc_source_selected(hw, ADC_LINEIN))
  809. return 0;
  810. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  811. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  812. hw->select_adc_source(hw, ADC_LINEIN);
  813. src = atc->srcs[2];
  814. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  815. src = atc->srcs[3];
  816. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  817. return 0;
  818. }
  819. static int atc_select_mic_in(struct ct_atc *atc)
  820. {
  821. struct hw *hw = atc->hw;
  822. struct ct_mixer *mixer = atc->mixer;
  823. struct src *src;
  824. if (hw->is_adc_source_selected(hw, ADC_MICIN))
  825. return 0;
  826. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  827. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  828. hw->select_adc_source(hw, ADC_MICIN);
  829. src = atc->srcs[2];
  830. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  831. src = atc->srcs[3];
  832. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  833. return 0;
  834. }
  835. static int atc_have_digit_io_switch(struct ct_atc *atc)
  836. {
  837. struct hw *hw = atc->hw;
  838. return hw->have_digit_io_switch(hw);
  839. }
  840. static int atc_select_digit_io(struct ct_atc *atc)
  841. {
  842. struct hw *hw = atc->hw;
  843. if (hw->is_adc_source_selected(hw, ADC_NONE))
  844. return 0;
  845. hw->select_adc_source(hw, ADC_NONE);
  846. return 0;
  847. }
  848. static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
  849. {
  850. struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
  851. if (state)
  852. daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
  853. else
  854. daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
  855. daio_mgr->commit_write(daio_mgr);
  856. return 0;
  857. }
  858. static int
  859. atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
  860. {
  861. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  862. return dao->ops->get_spos(dao, status);
  863. }
  864. static int
  865. atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
  866. {
  867. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  868. dao->ops->set_spos(dao, status);
  869. dao->ops->commit_write(dao);
  870. return 0;
  871. }
  872. static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
  873. {
  874. return atc_daio_unmute(atc, state, LINEO1);
  875. }
  876. static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
  877. {
  878. return atc_daio_unmute(atc, state, LINEO4);
  879. }
  880. static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
  881. {
  882. return atc_daio_unmute(atc, state, LINEO3);
  883. }
  884. static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
  885. {
  886. return atc_daio_unmute(atc, state, LINEO2);
  887. }
  888. static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
  889. {
  890. return atc_daio_unmute(atc, state, LINEIM);
  891. }
  892. static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
  893. {
  894. return atc_daio_unmute(atc, state, SPDIFOO);
  895. }
  896. static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
  897. {
  898. return atc_daio_unmute(atc, state, SPDIFIO);
  899. }
  900. static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
  901. {
  902. return atc_dao_get_status(atc, status, SPDIFOO);
  903. }
  904. static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
  905. {
  906. return atc_dao_set_status(atc, status, SPDIFOO);
  907. }
  908. static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
  909. {
  910. unsigned long flags;
  911. struct dao_desc da_dsc = {0};
  912. struct dao *dao;
  913. int err;
  914. struct ct_mixer *mixer = atc->mixer;
  915. struct rsc *rscs[2] = {NULL};
  916. unsigned int spos = 0;
  917. spin_lock_irqsave(&atc->atc_lock, flags);
  918. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  919. da_dsc.msr = state ? 1 : atc->msr;
  920. da_dsc.passthru = state ? 1 : 0;
  921. err = dao->ops->reinit(dao, &da_dsc);
  922. if (state) {
  923. spos = IEC958_DEFAULT_CON;
  924. } else {
  925. mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
  926. &rscs[0], &rscs[1]);
  927. dao->ops->set_left_input(dao, rscs[0]);
  928. dao->ops->set_right_input(dao, rscs[1]);
  929. /* Restore PLL to atc->rsr if needed. */
  930. if (atc->pll_rate != atc->rsr)
  931. err = atc_pll_init(atc, atc->rsr);
  932. }
  933. dao->ops->set_spos(dao, spos);
  934. dao->ops->commit_write(dao);
  935. spin_unlock_irqrestore(&atc->atc_lock, flags);
  936. return err;
  937. }
  938. static int ct_atc_destroy(struct ct_atc *atc)
  939. {
  940. struct daio_mgr *daio_mgr;
  941. struct dao *dao;
  942. struct dai *dai;
  943. struct daio *daio;
  944. struct sum_mgr *sum_mgr;
  945. struct src_mgr *src_mgr;
  946. struct srcimp_mgr *srcimp_mgr;
  947. struct srcimp *srcimp;
  948. struct ct_mixer *mixer;
  949. int i = 0;
  950. if (NULL == atc)
  951. return 0;
  952. if (atc->timer) {
  953. ct_timer_free(atc->timer);
  954. atc->timer = NULL;
  955. }
  956. /* Stop hardware and disable all interrupts */
  957. if (NULL != atc->hw)
  958. ((struct hw *)atc->hw)->card_stop(atc->hw);
  959. /* Destroy internal mixer objects */
  960. if (NULL != atc->mixer) {
  961. mixer = atc->mixer;
  962. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  963. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  964. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  965. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  966. mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
  967. mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
  968. ct_mixer_destroy(atc->mixer);
  969. }
  970. if (NULL != atc->daios) {
  971. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  972. for (i = 0; i < atc->n_daio; i++) {
  973. daio = atc->daios[i];
  974. if (daio->type < LINEIM) {
  975. dao = container_of(daio, struct dao, daio);
  976. dao->ops->clear_left_input(dao);
  977. dao->ops->clear_right_input(dao);
  978. } else {
  979. dai = container_of(daio, struct dai, daio);
  980. /* some thing to do for dai ... */
  981. }
  982. daio_mgr->put_daio(daio_mgr, daio);
  983. }
  984. kfree(atc->daios);
  985. }
  986. if (NULL != atc->pcm) {
  987. sum_mgr = atc->rsc_mgrs[SUM];
  988. for (i = 0; i < atc->n_pcm; i++)
  989. sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
  990. kfree(atc->pcm);
  991. }
  992. if (NULL != atc->srcs) {
  993. src_mgr = atc->rsc_mgrs[SRC];
  994. for (i = 0; i < atc->n_src; i++)
  995. src_mgr->put_src(src_mgr, atc->srcs[i]);
  996. kfree(atc->srcs);
  997. }
  998. if (NULL != atc->srcimps) {
  999. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1000. for (i = 0; i < atc->n_srcimp; i++) {
  1001. srcimp = atc->srcimps[i];
  1002. srcimp->ops->unmap(srcimp);
  1003. srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
  1004. }
  1005. kfree(atc->srcimps);
  1006. }
  1007. for (i = 0; i < NUM_RSCTYP; i++) {
  1008. if ((NULL != rsc_mgr_funcs[i].destroy) &&
  1009. (NULL != atc->rsc_mgrs[i]))
  1010. rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
  1011. }
  1012. if (NULL != atc->hw)
  1013. destroy_hw_obj((struct hw *)atc->hw);
  1014. /* Destroy device virtual memory manager object */
  1015. if (NULL != atc->vm) {
  1016. ct_vm_destroy(atc->vm);
  1017. atc->vm = NULL;
  1018. }
  1019. kfree(atc);
  1020. return 0;
  1021. }
  1022. static int atc_dev_free(struct snd_device *dev)
  1023. {
  1024. struct ct_atc *atc = dev->device_data;
  1025. return ct_atc_destroy(atc);
  1026. }
  1027. static int __devinit atc_identify_card(struct ct_atc *atc)
  1028. {
  1029. const struct snd_pci_quirk *p;
  1030. const struct snd_pci_quirk *list;
  1031. switch (atc->chip_type) {
  1032. case ATC20K1:
  1033. atc->chip_name = "20K1";
  1034. list = subsys_20k1_list;
  1035. break;
  1036. case ATC20K2:
  1037. atc->chip_name = "20K2";
  1038. list = subsys_20k2_list;
  1039. break;
  1040. default:
  1041. return -ENOENT;
  1042. }
  1043. p = snd_pci_quirk_lookup(atc->pci, list);
  1044. if (!p)
  1045. return -ENOENT;
  1046. atc->model = p->value;
  1047. atc->model_name = ct_subsys_name[atc->model];
  1048. snd_printd("ctxfi: chip %s model %s (%04x:%04x) is found\n",
  1049. atc->chip_name, atc->model_name,
  1050. atc->pci->subsystem_vendor,
  1051. atc->pci->subsystem_device);
  1052. return 0;
  1053. }
  1054. int __devinit ct_atc_create_alsa_devs(struct ct_atc *atc)
  1055. {
  1056. enum CTALSADEVS i;
  1057. int err;
  1058. alsa_dev_funcs[MIXER].public_name = atc->chip_name;
  1059. for (i = 0; i < NUM_CTALSADEVS; i++) {
  1060. if (NULL == alsa_dev_funcs[i].create)
  1061. continue;
  1062. err = alsa_dev_funcs[i].create(atc, i,
  1063. alsa_dev_funcs[i].public_name);
  1064. if (err) {
  1065. printk(KERN_ERR "ctxfi: "
  1066. "Creating alsa device %d failed!\n", i);
  1067. return err;
  1068. }
  1069. }
  1070. return 0;
  1071. }
  1072. static int __devinit atc_create_hw_devs(struct ct_atc *atc)
  1073. {
  1074. struct hw *hw;
  1075. struct card_conf info = {0};
  1076. int i, err;
  1077. err = create_hw_obj(atc->pci, atc->chip_type, atc->model, &hw);
  1078. if (err) {
  1079. printk(KERN_ERR "Failed to create hw obj!!!\n");
  1080. return err;
  1081. }
  1082. atc->hw = hw;
  1083. /* Initialize card hardware. */
  1084. info.rsr = atc->rsr;
  1085. info.msr = atc->msr;
  1086. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1087. err = hw->card_init(hw, &info);
  1088. if (err < 0)
  1089. return err;
  1090. for (i = 0; i < NUM_RSCTYP; i++) {
  1091. if (NULL == rsc_mgr_funcs[i].create)
  1092. continue;
  1093. err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
  1094. if (err) {
  1095. printk(KERN_ERR "ctxfi: "
  1096. "Failed to create rsc_mgr %d!!!\n", i);
  1097. return err;
  1098. }
  1099. }
  1100. return 0;
  1101. }
  1102. static int __devinit atc_get_resources(struct ct_atc *atc)
  1103. {
  1104. struct daio_desc da_desc = {0};
  1105. struct daio_mgr *daio_mgr;
  1106. struct src_desc src_dsc = {0};
  1107. struct src_mgr *src_mgr;
  1108. struct srcimp_desc srcimp_dsc = {0};
  1109. struct srcimp_mgr *srcimp_mgr;
  1110. struct sum_desc sum_dsc = {0};
  1111. struct sum_mgr *sum_mgr;
  1112. int err, i;
  1113. atc->daios = kzalloc(sizeof(void *)*(DAIONUM), GFP_KERNEL);
  1114. if (NULL == atc->daios)
  1115. return -ENOMEM;
  1116. atc->srcs = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1117. if (NULL == atc->srcs)
  1118. return -ENOMEM;
  1119. atc->srcimps = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1120. if (NULL == atc->srcimps)
  1121. return -ENOMEM;
  1122. atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
  1123. if (NULL == atc->pcm)
  1124. return -ENOMEM;
  1125. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  1126. da_desc.msr = atc->msr;
  1127. for (i = 0, atc->n_daio = 0; i < DAIONUM-1; i++) {
  1128. da_desc.type = i;
  1129. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1130. (struct daio **)&atc->daios[i]);
  1131. if (err) {
  1132. printk(KERN_ERR "ctxfi: Failed to get DAIO "
  1133. "resource %d!!!\n", i);
  1134. return err;
  1135. }
  1136. atc->n_daio++;
  1137. }
  1138. if (atc->model == CTSB073X)
  1139. da_desc.type = SPDIFI1;
  1140. else
  1141. da_desc.type = SPDIFIO;
  1142. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1143. (struct daio **)&atc->daios[i]);
  1144. if (err) {
  1145. printk(KERN_ERR "ctxfi: Failed to get S/PDIF-in resource!!!\n");
  1146. return err;
  1147. }
  1148. atc->n_daio++;
  1149. src_mgr = atc->rsc_mgrs[SRC];
  1150. src_dsc.multi = 1;
  1151. src_dsc.msr = atc->msr;
  1152. src_dsc.mode = ARCRW;
  1153. for (i = 0, atc->n_src = 0; i < (2*2); i++) {
  1154. err = src_mgr->get_src(src_mgr, &src_dsc,
  1155. (struct src **)&atc->srcs[i]);
  1156. if (err)
  1157. return err;
  1158. atc->n_src++;
  1159. }
  1160. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1161. srcimp_dsc.msr = 8; /* SRCIMPs for S/PDIFIn SRT */
  1162. for (i = 0, atc->n_srcimp = 0; i < (2*1); i++) {
  1163. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1164. (struct srcimp **)&atc->srcimps[i]);
  1165. if (err)
  1166. return err;
  1167. atc->n_srcimp++;
  1168. }
  1169. srcimp_dsc.msr = 8; /* SRCIMPs for LINE/MICIn SRT */
  1170. for (i = 0; i < (2*1); i++) {
  1171. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1172. (struct srcimp **)&atc->srcimps[2*1+i]);
  1173. if (err)
  1174. return err;
  1175. atc->n_srcimp++;
  1176. }
  1177. sum_mgr = atc->rsc_mgrs[SUM];
  1178. sum_dsc.msr = atc->msr;
  1179. for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
  1180. err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
  1181. (struct sum **)&atc->pcm[i]);
  1182. if (err)
  1183. return err;
  1184. atc->n_pcm++;
  1185. }
  1186. err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
  1187. if (err) {
  1188. printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
  1189. return err;
  1190. }
  1191. return 0;
  1192. }
  1193. static void __devinit
  1194. atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
  1195. struct src **srcs, struct srcimp **srcimps)
  1196. {
  1197. struct rsc *rscs[2] = {NULL};
  1198. struct src *src;
  1199. struct srcimp *srcimp;
  1200. int i = 0;
  1201. rscs[0] = &dai->daio.rscl;
  1202. rscs[1] = &dai->daio.rscr;
  1203. for (i = 0; i < 2; i++) {
  1204. src = srcs[i];
  1205. srcimp = srcimps[i];
  1206. srcimp->ops->map(srcimp, src, rscs[i]);
  1207. src_mgr->src_disable(src_mgr, src);
  1208. }
  1209. src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
  1210. src = srcs[0];
  1211. src->ops->set_pm(src, 1);
  1212. for (i = 0; i < 2; i++) {
  1213. src = srcs[i];
  1214. src->ops->set_state(src, SRC_STATE_RUN);
  1215. src->ops->commit_write(src);
  1216. src_mgr->src_enable_s(src_mgr, src);
  1217. }
  1218. dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
  1219. dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
  1220. dai->ops->set_enb_src(dai, 1);
  1221. dai->ops->set_enb_srt(dai, 1);
  1222. dai->ops->commit_write(dai);
  1223. src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
  1224. }
  1225. static void __devinit atc_connect_resources(struct ct_atc *atc)
  1226. {
  1227. struct dai *dai;
  1228. struct dao *dao;
  1229. struct src *src;
  1230. struct sum *sum;
  1231. struct ct_mixer *mixer;
  1232. struct rsc *rscs[2] = {NULL};
  1233. int i, j;
  1234. mixer = atc->mixer;
  1235. for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
  1236. mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
  1237. dao = container_of(atc->daios[j], struct dao, daio);
  1238. dao->ops->set_left_input(dao, rscs[0]);
  1239. dao->ops->set_right_input(dao, rscs[1]);
  1240. }
  1241. dai = container_of(atc->daios[LINEIM], struct dai, daio);
  1242. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1243. (struct src **)&atc->srcs[2],
  1244. (struct srcimp **)&atc->srcimps[2]);
  1245. src = atc->srcs[2];
  1246. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  1247. src = atc->srcs[3];
  1248. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  1249. dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
  1250. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1251. (struct src **)&atc->srcs[0],
  1252. (struct srcimp **)&atc->srcimps[0]);
  1253. src = atc->srcs[0];
  1254. mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
  1255. src = atc->srcs[1];
  1256. mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
  1257. for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
  1258. sum = atc->pcm[j];
  1259. mixer->set_input_left(mixer, i, &sum->rsc);
  1260. sum = atc->pcm[j+1];
  1261. mixer->set_input_right(mixer, i, &sum->rsc);
  1262. }
  1263. }
  1264. static struct ct_atc atc_preset __devinitdata = {
  1265. .map_audio_buffer = ct_map_audio_buffer,
  1266. .unmap_audio_buffer = ct_unmap_audio_buffer,
  1267. .pcm_playback_prepare = atc_pcm_playback_prepare,
  1268. .pcm_release_resources = atc_pcm_release_resources,
  1269. .pcm_playback_start = atc_pcm_playback_start,
  1270. .pcm_playback_stop = atc_pcm_stop,
  1271. .pcm_playback_position = atc_pcm_playback_position,
  1272. .pcm_capture_prepare = atc_pcm_capture_prepare,
  1273. .pcm_capture_start = atc_pcm_capture_start,
  1274. .pcm_capture_stop = atc_pcm_stop,
  1275. .pcm_capture_position = atc_pcm_capture_position,
  1276. .spdif_passthru_playback_prepare = spdif_passthru_playback_prepare,
  1277. .get_ptp_phys = atc_get_ptp_phys,
  1278. .select_line_in = atc_select_line_in,
  1279. .select_mic_in = atc_select_mic_in,
  1280. .select_digit_io = atc_select_digit_io,
  1281. .line_front_unmute = atc_line_front_unmute,
  1282. .line_surround_unmute = atc_line_surround_unmute,
  1283. .line_clfe_unmute = atc_line_clfe_unmute,
  1284. .line_rear_unmute = atc_line_rear_unmute,
  1285. .line_in_unmute = atc_line_in_unmute,
  1286. .spdif_out_unmute = atc_spdif_out_unmute,
  1287. .spdif_in_unmute = atc_spdif_in_unmute,
  1288. .spdif_out_get_status = atc_spdif_out_get_status,
  1289. .spdif_out_set_status = atc_spdif_out_set_status,
  1290. .spdif_out_passthru = atc_spdif_out_passthru,
  1291. .have_digit_io_switch = atc_have_digit_io_switch,
  1292. };
  1293. /**
  1294. * ct_atc_create - create and initialize a hardware manager
  1295. * @card: corresponding alsa card object
  1296. * @pci: corresponding kernel pci device object
  1297. * @ratc: return created object address in it
  1298. *
  1299. * Creates and initializes a hardware manager.
  1300. *
  1301. * Creates kmallocated ct_atc structure. Initializes hardware.
  1302. * Returns 0 if suceeds, or negative error code if fails.
  1303. */
  1304. int __devinit ct_atc_create(struct snd_card *card, struct pci_dev *pci,
  1305. unsigned int rsr, unsigned int msr,
  1306. int chip_type, struct ct_atc **ratc)
  1307. {
  1308. struct ct_atc *atc;
  1309. static struct snd_device_ops ops = {
  1310. .dev_free = atc_dev_free,
  1311. };
  1312. int err;
  1313. *ratc = NULL;
  1314. atc = kzalloc(sizeof(*atc), GFP_KERNEL);
  1315. if (NULL == atc)
  1316. return -ENOMEM;
  1317. /* Set operations */
  1318. *atc = atc_preset;
  1319. atc->card = card;
  1320. atc->pci = pci;
  1321. atc->rsr = rsr;
  1322. atc->msr = msr;
  1323. atc->chip_type = chip_type;
  1324. spin_lock_init(&atc->atc_lock);
  1325. /* Find card model */
  1326. err = atc_identify_card(atc);
  1327. if (err < 0) {
  1328. printk(KERN_ERR "ctatc: Card not recognised\n");
  1329. goto error1;
  1330. }
  1331. /* Set up device virtual memory management object */
  1332. err = ct_vm_create(&atc->vm);
  1333. if (err < 0)
  1334. goto error1;
  1335. /* Create all atc hw devices */
  1336. err = atc_create_hw_devs(atc);
  1337. if (err < 0)
  1338. goto error1;
  1339. /* Get resources */
  1340. err = atc_get_resources(atc);
  1341. if (err < 0)
  1342. goto error1;
  1343. /* Build topology */
  1344. atc_connect_resources(atc);
  1345. atc->timer = ct_timer_new(atc);
  1346. if (!atc->timer)
  1347. goto error1;
  1348. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
  1349. if (err < 0)
  1350. goto error1;
  1351. snd_card_set_dev(card, &pci->dev);
  1352. *ratc = atc;
  1353. return 0;
  1354. error1:
  1355. ct_atc_destroy(atc);
  1356. printk(KERN_ERR "ctxfi: Something wrong!!!\n");
  1357. return err;
  1358. }