ctree.c 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. struct btrfs_path *btrfs_alloc_path(void)
  40. {
  41. struct btrfs_path *path;
  42. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  43. if (path)
  44. path->reada = 1;
  45. return path;
  46. }
  47. /*
  48. * set all locked nodes in the path to blocking locks. This should
  49. * be done before scheduling
  50. */
  51. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  52. {
  53. int i;
  54. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  55. if (p->nodes[i] && p->locks[i])
  56. btrfs_set_lock_blocking(p->nodes[i]);
  57. }
  58. }
  59. /*
  60. * reset all the locked nodes in the patch to spinning locks.
  61. *
  62. * held is used to keep lockdep happy, when lockdep is enabled
  63. * we set held to a blocking lock before we go around and
  64. * retake all the spinlocks in the path. You can safely use NULL
  65. * for held
  66. */
  67. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  68. struct extent_buffer *held)
  69. {
  70. int i;
  71. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  72. /* lockdep really cares that we take all of these spinlocks
  73. * in the right order. If any of the locks in the path are not
  74. * currently blocking, it is going to complain. So, make really
  75. * really sure by forcing the path to blocking before we clear
  76. * the path blocking.
  77. */
  78. if (held)
  79. btrfs_set_lock_blocking(held);
  80. btrfs_set_path_blocking(p);
  81. #endif
  82. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  83. if (p->nodes[i] && p->locks[i])
  84. btrfs_clear_lock_blocking(p->nodes[i]);
  85. }
  86. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  87. if (held)
  88. btrfs_clear_lock_blocking(held);
  89. #endif
  90. }
  91. /* this also releases the path */
  92. void btrfs_free_path(struct btrfs_path *p)
  93. {
  94. if (!p)
  95. return;
  96. btrfs_release_path(p);
  97. kmem_cache_free(btrfs_path_cachep, p);
  98. }
  99. /*
  100. * path release drops references on the extent buffers in the path
  101. * and it drops any locks held by this path
  102. *
  103. * It is safe to call this on paths that no locks or extent buffers held.
  104. */
  105. noinline void btrfs_release_path(struct btrfs_path *p)
  106. {
  107. int i;
  108. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  109. p->slots[i] = 0;
  110. if (!p->nodes[i])
  111. continue;
  112. if (p->locks[i]) {
  113. btrfs_tree_unlock(p->nodes[i]);
  114. p->locks[i] = 0;
  115. }
  116. free_extent_buffer(p->nodes[i]);
  117. p->nodes[i] = NULL;
  118. }
  119. }
  120. /*
  121. * safely gets a reference on the root node of a tree. A lock
  122. * is not taken, so a concurrent writer may put a different node
  123. * at the root of the tree. See btrfs_lock_root_node for the
  124. * looping required.
  125. *
  126. * The extent buffer returned by this has a reference taken, so
  127. * it won't disappear. It may stop being the root of the tree
  128. * at any time because there are no locks held.
  129. */
  130. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  131. {
  132. struct extent_buffer *eb;
  133. rcu_read_lock();
  134. eb = rcu_dereference(root->node);
  135. extent_buffer_get(eb);
  136. rcu_read_unlock();
  137. return eb;
  138. }
  139. /* loop around taking references on and locking the root node of the
  140. * tree until you end up with a lock on the root. A locked buffer
  141. * is returned, with a reference held.
  142. */
  143. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  144. {
  145. struct extent_buffer *eb;
  146. while (1) {
  147. eb = btrfs_root_node(root);
  148. btrfs_tree_lock(eb);
  149. if (eb == root->node)
  150. break;
  151. btrfs_tree_unlock(eb);
  152. free_extent_buffer(eb);
  153. }
  154. return eb;
  155. }
  156. /* cowonly root (everything not a reference counted cow subvolume), just get
  157. * put onto a simple dirty list. transaction.c walks this to make sure they
  158. * get properly updated on disk.
  159. */
  160. static void add_root_to_dirty_list(struct btrfs_root *root)
  161. {
  162. if (root->track_dirty && list_empty(&root->dirty_list)) {
  163. list_add(&root->dirty_list,
  164. &root->fs_info->dirty_cowonly_roots);
  165. }
  166. }
  167. /*
  168. * used by snapshot creation to make a copy of a root for a tree with
  169. * a given objectid. The buffer with the new root node is returned in
  170. * cow_ret, and this func returns zero on success or a negative error code.
  171. */
  172. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  173. struct btrfs_root *root,
  174. struct extent_buffer *buf,
  175. struct extent_buffer **cow_ret, u64 new_root_objectid)
  176. {
  177. struct extent_buffer *cow;
  178. int ret = 0;
  179. int level;
  180. struct btrfs_disk_key disk_key;
  181. WARN_ON(root->ref_cows && trans->transid !=
  182. root->fs_info->running_transaction->transid);
  183. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  184. level = btrfs_header_level(buf);
  185. if (level == 0)
  186. btrfs_item_key(buf, &disk_key, 0);
  187. else
  188. btrfs_node_key(buf, &disk_key, 0);
  189. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  190. new_root_objectid, &disk_key, level,
  191. buf->start, 0);
  192. if (IS_ERR(cow))
  193. return PTR_ERR(cow);
  194. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  195. btrfs_set_header_bytenr(cow, cow->start);
  196. btrfs_set_header_generation(cow, trans->transid);
  197. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  198. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  199. BTRFS_HEADER_FLAG_RELOC);
  200. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  201. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  202. else
  203. btrfs_set_header_owner(cow, new_root_objectid);
  204. write_extent_buffer(cow, root->fs_info->fsid,
  205. (unsigned long)btrfs_header_fsid(cow),
  206. BTRFS_FSID_SIZE);
  207. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  208. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  209. ret = btrfs_inc_ref(trans, root, cow, 1);
  210. else
  211. ret = btrfs_inc_ref(trans, root, cow, 0);
  212. if (ret)
  213. return ret;
  214. btrfs_mark_buffer_dirty(cow);
  215. *cow_ret = cow;
  216. return 0;
  217. }
  218. /*
  219. * check if the tree block can be shared by multiple trees
  220. */
  221. int btrfs_block_can_be_shared(struct btrfs_root *root,
  222. struct extent_buffer *buf)
  223. {
  224. /*
  225. * Tree blocks not in refernece counted trees and tree roots
  226. * are never shared. If a block was allocated after the last
  227. * snapshot and the block was not allocated by tree relocation,
  228. * we know the block is not shared.
  229. */
  230. if (root->ref_cows &&
  231. buf != root->node && buf != root->commit_root &&
  232. (btrfs_header_generation(buf) <=
  233. btrfs_root_last_snapshot(&root->root_item) ||
  234. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  235. return 1;
  236. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  237. if (root->ref_cows &&
  238. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  239. return 1;
  240. #endif
  241. return 0;
  242. }
  243. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  244. struct btrfs_root *root,
  245. struct extent_buffer *buf,
  246. struct extent_buffer *cow,
  247. int *last_ref)
  248. {
  249. u64 refs;
  250. u64 owner;
  251. u64 flags;
  252. u64 new_flags = 0;
  253. int ret;
  254. /*
  255. * Backrefs update rules:
  256. *
  257. * Always use full backrefs for extent pointers in tree block
  258. * allocated by tree relocation.
  259. *
  260. * If a shared tree block is no longer referenced by its owner
  261. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  262. * use full backrefs for extent pointers in tree block.
  263. *
  264. * If a tree block is been relocating
  265. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  266. * use full backrefs for extent pointers in tree block.
  267. * The reason for this is some operations (such as drop tree)
  268. * are only allowed for blocks use full backrefs.
  269. */
  270. if (btrfs_block_can_be_shared(root, buf)) {
  271. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  272. buf->len, &refs, &flags);
  273. BUG_ON(ret);
  274. BUG_ON(refs == 0);
  275. } else {
  276. refs = 1;
  277. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  278. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  279. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  280. else
  281. flags = 0;
  282. }
  283. owner = btrfs_header_owner(buf);
  284. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  285. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  286. if (refs > 1) {
  287. if ((owner == root->root_key.objectid ||
  288. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  289. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  290. ret = btrfs_inc_ref(trans, root, buf, 1);
  291. BUG_ON(ret);
  292. if (root->root_key.objectid ==
  293. BTRFS_TREE_RELOC_OBJECTID) {
  294. ret = btrfs_dec_ref(trans, root, buf, 0);
  295. BUG_ON(ret);
  296. ret = btrfs_inc_ref(trans, root, cow, 1);
  297. BUG_ON(ret);
  298. }
  299. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  300. } else {
  301. if (root->root_key.objectid ==
  302. BTRFS_TREE_RELOC_OBJECTID)
  303. ret = btrfs_inc_ref(trans, root, cow, 1);
  304. else
  305. ret = btrfs_inc_ref(trans, root, cow, 0);
  306. BUG_ON(ret);
  307. }
  308. if (new_flags != 0) {
  309. ret = btrfs_set_disk_extent_flags(trans, root,
  310. buf->start,
  311. buf->len,
  312. new_flags, 0);
  313. BUG_ON(ret);
  314. }
  315. } else {
  316. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  317. if (root->root_key.objectid ==
  318. BTRFS_TREE_RELOC_OBJECTID)
  319. ret = btrfs_inc_ref(trans, root, cow, 1);
  320. else
  321. ret = btrfs_inc_ref(trans, root, cow, 0);
  322. BUG_ON(ret);
  323. ret = btrfs_dec_ref(trans, root, buf, 1);
  324. BUG_ON(ret);
  325. }
  326. clean_tree_block(trans, root, buf);
  327. *last_ref = 1;
  328. }
  329. return 0;
  330. }
  331. /*
  332. * does the dirty work in cow of a single block. The parent block (if
  333. * supplied) is updated to point to the new cow copy. The new buffer is marked
  334. * dirty and returned locked. If you modify the block it needs to be marked
  335. * dirty again.
  336. *
  337. * search_start -- an allocation hint for the new block
  338. *
  339. * empty_size -- a hint that you plan on doing more cow. This is the size in
  340. * bytes the allocator should try to find free next to the block it returns.
  341. * This is just a hint and may be ignored by the allocator.
  342. */
  343. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  344. struct btrfs_root *root,
  345. struct extent_buffer *buf,
  346. struct extent_buffer *parent, int parent_slot,
  347. struct extent_buffer **cow_ret,
  348. u64 search_start, u64 empty_size)
  349. {
  350. struct btrfs_disk_key disk_key;
  351. struct extent_buffer *cow;
  352. int level;
  353. int last_ref = 0;
  354. int unlock_orig = 0;
  355. u64 parent_start;
  356. if (*cow_ret == buf)
  357. unlock_orig = 1;
  358. btrfs_assert_tree_locked(buf);
  359. WARN_ON(root->ref_cows && trans->transid !=
  360. root->fs_info->running_transaction->transid);
  361. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  362. level = btrfs_header_level(buf);
  363. if (level == 0)
  364. btrfs_item_key(buf, &disk_key, 0);
  365. else
  366. btrfs_node_key(buf, &disk_key, 0);
  367. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  368. if (parent)
  369. parent_start = parent->start;
  370. else
  371. parent_start = 0;
  372. } else
  373. parent_start = 0;
  374. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  375. root->root_key.objectid, &disk_key,
  376. level, search_start, empty_size);
  377. if (IS_ERR(cow))
  378. return PTR_ERR(cow);
  379. /* cow is set to blocking by btrfs_init_new_buffer */
  380. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  381. btrfs_set_header_bytenr(cow, cow->start);
  382. btrfs_set_header_generation(cow, trans->transid);
  383. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  384. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  385. BTRFS_HEADER_FLAG_RELOC);
  386. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  387. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  388. else
  389. btrfs_set_header_owner(cow, root->root_key.objectid);
  390. write_extent_buffer(cow, root->fs_info->fsid,
  391. (unsigned long)btrfs_header_fsid(cow),
  392. BTRFS_FSID_SIZE);
  393. update_ref_for_cow(trans, root, buf, cow, &last_ref);
  394. if (root->ref_cows)
  395. btrfs_reloc_cow_block(trans, root, buf, cow);
  396. if (buf == root->node) {
  397. WARN_ON(parent && parent != buf);
  398. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  399. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  400. parent_start = buf->start;
  401. else
  402. parent_start = 0;
  403. extent_buffer_get(cow);
  404. rcu_assign_pointer(root->node, cow);
  405. btrfs_free_tree_block(trans, root, buf, parent_start,
  406. last_ref);
  407. free_extent_buffer(buf);
  408. add_root_to_dirty_list(root);
  409. } else {
  410. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  411. parent_start = parent->start;
  412. else
  413. parent_start = 0;
  414. WARN_ON(trans->transid != btrfs_header_generation(parent));
  415. btrfs_set_node_blockptr(parent, parent_slot,
  416. cow->start);
  417. btrfs_set_node_ptr_generation(parent, parent_slot,
  418. trans->transid);
  419. btrfs_mark_buffer_dirty(parent);
  420. btrfs_free_tree_block(trans, root, buf, parent_start,
  421. last_ref);
  422. }
  423. if (unlock_orig)
  424. btrfs_tree_unlock(buf);
  425. free_extent_buffer(buf);
  426. btrfs_mark_buffer_dirty(cow);
  427. *cow_ret = cow;
  428. return 0;
  429. }
  430. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  431. struct btrfs_root *root,
  432. struct extent_buffer *buf)
  433. {
  434. if (btrfs_header_generation(buf) == trans->transid &&
  435. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  436. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  437. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  438. return 0;
  439. return 1;
  440. }
  441. /*
  442. * cows a single block, see __btrfs_cow_block for the real work.
  443. * This version of it has extra checks so that a block isn't cow'd more than
  444. * once per transaction, as long as it hasn't been written yet
  445. */
  446. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  447. struct btrfs_root *root, struct extent_buffer *buf,
  448. struct extent_buffer *parent, int parent_slot,
  449. struct extent_buffer **cow_ret)
  450. {
  451. u64 search_start;
  452. int ret;
  453. if (trans->transaction != root->fs_info->running_transaction) {
  454. printk(KERN_CRIT "trans %llu running %llu\n",
  455. (unsigned long long)trans->transid,
  456. (unsigned long long)
  457. root->fs_info->running_transaction->transid);
  458. WARN_ON(1);
  459. }
  460. if (trans->transid != root->fs_info->generation) {
  461. printk(KERN_CRIT "trans %llu running %llu\n",
  462. (unsigned long long)trans->transid,
  463. (unsigned long long)root->fs_info->generation);
  464. WARN_ON(1);
  465. }
  466. if (!should_cow_block(trans, root, buf)) {
  467. *cow_ret = buf;
  468. return 0;
  469. }
  470. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  471. if (parent)
  472. btrfs_set_lock_blocking(parent);
  473. btrfs_set_lock_blocking(buf);
  474. ret = __btrfs_cow_block(trans, root, buf, parent,
  475. parent_slot, cow_ret, search_start, 0);
  476. trace_btrfs_cow_block(root, buf, *cow_ret);
  477. return ret;
  478. }
  479. /*
  480. * helper function for defrag to decide if two blocks pointed to by a
  481. * node are actually close by
  482. */
  483. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  484. {
  485. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  486. return 1;
  487. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  488. return 1;
  489. return 0;
  490. }
  491. /*
  492. * compare two keys in a memcmp fashion
  493. */
  494. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  495. {
  496. struct btrfs_key k1;
  497. btrfs_disk_key_to_cpu(&k1, disk);
  498. return btrfs_comp_cpu_keys(&k1, k2);
  499. }
  500. /*
  501. * same as comp_keys only with two btrfs_key's
  502. */
  503. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  504. {
  505. if (k1->objectid > k2->objectid)
  506. return 1;
  507. if (k1->objectid < k2->objectid)
  508. return -1;
  509. if (k1->type > k2->type)
  510. return 1;
  511. if (k1->type < k2->type)
  512. return -1;
  513. if (k1->offset > k2->offset)
  514. return 1;
  515. if (k1->offset < k2->offset)
  516. return -1;
  517. return 0;
  518. }
  519. /*
  520. * this is used by the defrag code to go through all the
  521. * leaves pointed to by a node and reallocate them so that
  522. * disk order is close to key order
  523. */
  524. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  525. struct btrfs_root *root, struct extent_buffer *parent,
  526. int start_slot, int cache_only, u64 *last_ret,
  527. struct btrfs_key *progress)
  528. {
  529. struct extent_buffer *cur;
  530. u64 blocknr;
  531. u64 gen;
  532. u64 search_start = *last_ret;
  533. u64 last_block = 0;
  534. u64 other;
  535. u32 parent_nritems;
  536. int end_slot;
  537. int i;
  538. int err = 0;
  539. int parent_level;
  540. int uptodate;
  541. u32 blocksize;
  542. int progress_passed = 0;
  543. struct btrfs_disk_key disk_key;
  544. parent_level = btrfs_header_level(parent);
  545. if (cache_only && parent_level != 1)
  546. return 0;
  547. if (trans->transaction != root->fs_info->running_transaction)
  548. WARN_ON(1);
  549. if (trans->transid != root->fs_info->generation)
  550. WARN_ON(1);
  551. parent_nritems = btrfs_header_nritems(parent);
  552. blocksize = btrfs_level_size(root, parent_level - 1);
  553. end_slot = parent_nritems;
  554. if (parent_nritems == 1)
  555. return 0;
  556. btrfs_set_lock_blocking(parent);
  557. for (i = start_slot; i < end_slot; i++) {
  558. int close = 1;
  559. if (!parent->map_token) {
  560. map_extent_buffer(parent,
  561. btrfs_node_key_ptr_offset(i),
  562. sizeof(struct btrfs_key_ptr),
  563. &parent->map_token, &parent->kaddr,
  564. &parent->map_start, &parent->map_len,
  565. KM_USER1);
  566. }
  567. btrfs_node_key(parent, &disk_key, i);
  568. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  569. continue;
  570. progress_passed = 1;
  571. blocknr = btrfs_node_blockptr(parent, i);
  572. gen = btrfs_node_ptr_generation(parent, i);
  573. if (last_block == 0)
  574. last_block = blocknr;
  575. if (i > 0) {
  576. other = btrfs_node_blockptr(parent, i - 1);
  577. close = close_blocks(blocknr, other, blocksize);
  578. }
  579. if (!close && i < end_slot - 2) {
  580. other = btrfs_node_blockptr(parent, i + 1);
  581. close = close_blocks(blocknr, other, blocksize);
  582. }
  583. if (close) {
  584. last_block = blocknr;
  585. continue;
  586. }
  587. if (parent->map_token) {
  588. unmap_extent_buffer(parent, parent->map_token,
  589. KM_USER1);
  590. parent->map_token = NULL;
  591. }
  592. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  593. if (cur)
  594. uptodate = btrfs_buffer_uptodate(cur, gen);
  595. else
  596. uptodate = 0;
  597. if (!cur || !uptodate) {
  598. if (cache_only) {
  599. free_extent_buffer(cur);
  600. continue;
  601. }
  602. if (!cur) {
  603. cur = read_tree_block(root, blocknr,
  604. blocksize, gen);
  605. if (!cur)
  606. return -EIO;
  607. } else if (!uptodate) {
  608. btrfs_read_buffer(cur, gen);
  609. }
  610. }
  611. if (search_start == 0)
  612. search_start = last_block;
  613. btrfs_tree_lock(cur);
  614. btrfs_set_lock_blocking(cur);
  615. err = __btrfs_cow_block(trans, root, cur, parent, i,
  616. &cur, search_start,
  617. min(16 * blocksize,
  618. (end_slot - i) * blocksize));
  619. if (err) {
  620. btrfs_tree_unlock(cur);
  621. free_extent_buffer(cur);
  622. break;
  623. }
  624. search_start = cur->start;
  625. last_block = cur->start;
  626. *last_ret = search_start;
  627. btrfs_tree_unlock(cur);
  628. free_extent_buffer(cur);
  629. }
  630. if (parent->map_token) {
  631. unmap_extent_buffer(parent, parent->map_token,
  632. KM_USER1);
  633. parent->map_token = NULL;
  634. }
  635. return err;
  636. }
  637. /*
  638. * The leaf data grows from end-to-front in the node.
  639. * this returns the address of the start of the last item,
  640. * which is the stop of the leaf data stack
  641. */
  642. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  643. struct extent_buffer *leaf)
  644. {
  645. u32 nr = btrfs_header_nritems(leaf);
  646. if (nr == 0)
  647. return BTRFS_LEAF_DATA_SIZE(root);
  648. return btrfs_item_offset_nr(leaf, nr - 1);
  649. }
  650. /*
  651. * search for key in the extent_buffer. The items start at offset p,
  652. * and they are item_size apart. There are 'max' items in p.
  653. *
  654. * the slot in the array is returned via slot, and it points to
  655. * the place where you would insert key if it is not found in
  656. * the array.
  657. *
  658. * slot may point to max if the key is bigger than all of the keys
  659. */
  660. static noinline int generic_bin_search(struct extent_buffer *eb,
  661. unsigned long p,
  662. int item_size, struct btrfs_key *key,
  663. int max, int *slot)
  664. {
  665. int low = 0;
  666. int high = max;
  667. int mid;
  668. int ret;
  669. struct btrfs_disk_key *tmp = NULL;
  670. struct btrfs_disk_key unaligned;
  671. unsigned long offset;
  672. char *map_token = NULL;
  673. char *kaddr = NULL;
  674. unsigned long map_start = 0;
  675. unsigned long map_len = 0;
  676. int err;
  677. while (low < high) {
  678. mid = (low + high) / 2;
  679. offset = p + mid * item_size;
  680. if (!map_token || offset < map_start ||
  681. (offset + sizeof(struct btrfs_disk_key)) >
  682. map_start + map_len) {
  683. if (map_token) {
  684. unmap_extent_buffer(eb, map_token, KM_USER0);
  685. map_token = NULL;
  686. }
  687. err = map_private_extent_buffer(eb, offset,
  688. sizeof(struct btrfs_disk_key),
  689. &map_token, &kaddr,
  690. &map_start, &map_len, KM_USER0);
  691. if (!err) {
  692. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  693. map_start);
  694. } else {
  695. read_extent_buffer(eb, &unaligned,
  696. offset, sizeof(unaligned));
  697. tmp = &unaligned;
  698. }
  699. } else {
  700. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  701. map_start);
  702. }
  703. ret = comp_keys(tmp, key);
  704. if (ret < 0)
  705. low = mid + 1;
  706. else if (ret > 0)
  707. high = mid;
  708. else {
  709. *slot = mid;
  710. if (map_token)
  711. unmap_extent_buffer(eb, map_token, KM_USER0);
  712. return 0;
  713. }
  714. }
  715. *slot = low;
  716. if (map_token)
  717. unmap_extent_buffer(eb, map_token, KM_USER0);
  718. return 1;
  719. }
  720. /*
  721. * simple bin_search frontend that does the right thing for
  722. * leaves vs nodes
  723. */
  724. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  725. int level, int *slot)
  726. {
  727. if (level == 0) {
  728. return generic_bin_search(eb,
  729. offsetof(struct btrfs_leaf, items),
  730. sizeof(struct btrfs_item),
  731. key, btrfs_header_nritems(eb),
  732. slot);
  733. } else {
  734. return generic_bin_search(eb,
  735. offsetof(struct btrfs_node, ptrs),
  736. sizeof(struct btrfs_key_ptr),
  737. key, btrfs_header_nritems(eb),
  738. slot);
  739. }
  740. return -1;
  741. }
  742. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  743. int level, int *slot)
  744. {
  745. return bin_search(eb, key, level, slot);
  746. }
  747. static void root_add_used(struct btrfs_root *root, u32 size)
  748. {
  749. spin_lock(&root->accounting_lock);
  750. btrfs_set_root_used(&root->root_item,
  751. btrfs_root_used(&root->root_item) + size);
  752. spin_unlock(&root->accounting_lock);
  753. }
  754. static void root_sub_used(struct btrfs_root *root, u32 size)
  755. {
  756. spin_lock(&root->accounting_lock);
  757. btrfs_set_root_used(&root->root_item,
  758. btrfs_root_used(&root->root_item) - size);
  759. spin_unlock(&root->accounting_lock);
  760. }
  761. /* given a node and slot number, this reads the blocks it points to. The
  762. * extent buffer is returned with a reference taken (but unlocked).
  763. * NULL is returned on error.
  764. */
  765. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  766. struct extent_buffer *parent, int slot)
  767. {
  768. int level = btrfs_header_level(parent);
  769. if (slot < 0)
  770. return NULL;
  771. if (slot >= btrfs_header_nritems(parent))
  772. return NULL;
  773. BUG_ON(level == 0);
  774. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  775. btrfs_level_size(root, level - 1),
  776. btrfs_node_ptr_generation(parent, slot));
  777. }
  778. /*
  779. * node level balancing, used to make sure nodes are in proper order for
  780. * item deletion. We balance from the top down, so we have to make sure
  781. * that a deletion won't leave an node completely empty later on.
  782. */
  783. static noinline int balance_level(struct btrfs_trans_handle *trans,
  784. struct btrfs_root *root,
  785. struct btrfs_path *path, int level)
  786. {
  787. struct extent_buffer *right = NULL;
  788. struct extent_buffer *mid;
  789. struct extent_buffer *left = NULL;
  790. struct extent_buffer *parent = NULL;
  791. int ret = 0;
  792. int wret;
  793. int pslot;
  794. int orig_slot = path->slots[level];
  795. u64 orig_ptr;
  796. if (level == 0)
  797. return 0;
  798. mid = path->nodes[level];
  799. WARN_ON(!path->locks[level]);
  800. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  801. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  802. if (level < BTRFS_MAX_LEVEL - 1)
  803. parent = path->nodes[level + 1];
  804. pslot = path->slots[level + 1];
  805. /*
  806. * deal with the case where there is only one pointer in the root
  807. * by promoting the node below to a root
  808. */
  809. if (!parent) {
  810. struct extent_buffer *child;
  811. if (btrfs_header_nritems(mid) != 1)
  812. return 0;
  813. /* promote the child to a root */
  814. child = read_node_slot(root, mid, 0);
  815. BUG_ON(!child);
  816. btrfs_tree_lock(child);
  817. btrfs_set_lock_blocking(child);
  818. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  819. if (ret) {
  820. btrfs_tree_unlock(child);
  821. free_extent_buffer(child);
  822. goto enospc;
  823. }
  824. rcu_assign_pointer(root->node, child);
  825. add_root_to_dirty_list(root);
  826. btrfs_tree_unlock(child);
  827. path->locks[level] = 0;
  828. path->nodes[level] = NULL;
  829. clean_tree_block(trans, root, mid);
  830. btrfs_tree_unlock(mid);
  831. /* once for the path */
  832. free_extent_buffer(mid);
  833. root_sub_used(root, mid->len);
  834. btrfs_free_tree_block(trans, root, mid, 0, 1);
  835. /* once for the root ptr */
  836. free_extent_buffer(mid);
  837. return 0;
  838. }
  839. if (btrfs_header_nritems(mid) >
  840. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  841. return 0;
  842. btrfs_header_nritems(mid);
  843. left = read_node_slot(root, parent, pslot - 1);
  844. if (left) {
  845. btrfs_tree_lock(left);
  846. btrfs_set_lock_blocking(left);
  847. wret = btrfs_cow_block(trans, root, left,
  848. parent, pslot - 1, &left);
  849. if (wret) {
  850. ret = wret;
  851. goto enospc;
  852. }
  853. }
  854. right = read_node_slot(root, parent, pslot + 1);
  855. if (right) {
  856. btrfs_tree_lock(right);
  857. btrfs_set_lock_blocking(right);
  858. wret = btrfs_cow_block(trans, root, right,
  859. parent, pslot + 1, &right);
  860. if (wret) {
  861. ret = wret;
  862. goto enospc;
  863. }
  864. }
  865. /* first, try to make some room in the middle buffer */
  866. if (left) {
  867. orig_slot += btrfs_header_nritems(left);
  868. wret = push_node_left(trans, root, left, mid, 1);
  869. if (wret < 0)
  870. ret = wret;
  871. btrfs_header_nritems(mid);
  872. }
  873. /*
  874. * then try to empty the right most buffer into the middle
  875. */
  876. if (right) {
  877. wret = push_node_left(trans, root, mid, right, 1);
  878. if (wret < 0 && wret != -ENOSPC)
  879. ret = wret;
  880. if (btrfs_header_nritems(right) == 0) {
  881. clean_tree_block(trans, root, right);
  882. btrfs_tree_unlock(right);
  883. wret = del_ptr(trans, root, path, level + 1, pslot +
  884. 1);
  885. if (wret)
  886. ret = wret;
  887. root_sub_used(root, right->len);
  888. btrfs_free_tree_block(trans, root, right, 0, 1);
  889. free_extent_buffer(right);
  890. right = NULL;
  891. } else {
  892. struct btrfs_disk_key right_key;
  893. btrfs_node_key(right, &right_key, 0);
  894. btrfs_set_node_key(parent, &right_key, pslot + 1);
  895. btrfs_mark_buffer_dirty(parent);
  896. }
  897. }
  898. if (btrfs_header_nritems(mid) == 1) {
  899. /*
  900. * we're not allowed to leave a node with one item in the
  901. * tree during a delete. A deletion from lower in the tree
  902. * could try to delete the only pointer in this node.
  903. * So, pull some keys from the left.
  904. * There has to be a left pointer at this point because
  905. * otherwise we would have pulled some pointers from the
  906. * right
  907. */
  908. BUG_ON(!left);
  909. wret = balance_node_right(trans, root, mid, left);
  910. if (wret < 0) {
  911. ret = wret;
  912. goto enospc;
  913. }
  914. if (wret == 1) {
  915. wret = push_node_left(trans, root, left, mid, 1);
  916. if (wret < 0)
  917. ret = wret;
  918. }
  919. BUG_ON(wret == 1);
  920. }
  921. if (btrfs_header_nritems(mid) == 0) {
  922. clean_tree_block(trans, root, mid);
  923. btrfs_tree_unlock(mid);
  924. wret = del_ptr(trans, root, path, level + 1, pslot);
  925. if (wret)
  926. ret = wret;
  927. root_sub_used(root, mid->len);
  928. btrfs_free_tree_block(trans, root, mid, 0, 1);
  929. free_extent_buffer(mid);
  930. mid = NULL;
  931. } else {
  932. /* update the parent key to reflect our changes */
  933. struct btrfs_disk_key mid_key;
  934. btrfs_node_key(mid, &mid_key, 0);
  935. btrfs_set_node_key(parent, &mid_key, pslot);
  936. btrfs_mark_buffer_dirty(parent);
  937. }
  938. /* update the path */
  939. if (left) {
  940. if (btrfs_header_nritems(left) > orig_slot) {
  941. extent_buffer_get(left);
  942. /* left was locked after cow */
  943. path->nodes[level] = left;
  944. path->slots[level + 1] -= 1;
  945. path->slots[level] = orig_slot;
  946. if (mid) {
  947. btrfs_tree_unlock(mid);
  948. free_extent_buffer(mid);
  949. }
  950. } else {
  951. orig_slot -= btrfs_header_nritems(left);
  952. path->slots[level] = orig_slot;
  953. }
  954. }
  955. /* double check we haven't messed things up */
  956. if (orig_ptr !=
  957. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  958. BUG();
  959. enospc:
  960. if (right) {
  961. btrfs_tree_unlock(right);
  962. free_extent_buffer(right);
  963. }
  964. if (left) {
  965. if (path->nodes[level] != left)
  966. btrfs_tree_unlock(left);
  967. free_extent_buffer(left);
  968. }
  969. return ret;
  970. }
  971. /* Node balancing for insertion. Here we only split or push nodes around
  972. * when they are completely full. This is also done top down, so we
  973. * have to be pessimistic.
  974. */
  975. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  976. struct btrfs_root *root,
  977. struct btrfs_path *path, int level)
  978. {
  979. struct extent_buffer *right = NULL;
  980. struct extent_buffer *mid;
  981. struct extent_buffer *left = NULL;
  982. struct extent_buffer *parent = NULL;
  983. int ret = 0;
  984. int wret;
  985. int pslot;
  986. int orig_slot = path->slots[level];
  987. if (level == 0)
  988. return 1;
  989. mid = path->nodes[level];
  990. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  991. if (level < BTRFS_MAX_LEVEL - 1)
  992. parent = path->nodes[level + 1];
  993. pslot = path->slots[level + 1];
  994. if (!parent)
  995. return 1;
  996. left = read_node_slot(root, parent, pslot - 1);
  997. /* first, try to make some room in the middle buffer */
  998. if (left) {
  999. u32 left_nr;
  1000. btrfs_tree_lock(left);
  1001. btrfs_set_lock_blocking(left);
  1002. left_nr = btrfs_header_nritems(left);
  1003. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1004. wret = 1;
  1005. } else {
  1006. ret = btrfs_cow_block(trans, root, left, parent,
  1007. pslot - 1, &left);
  1008. if (ret)
  1009. wret = 1;
  1010. else {
  1011. wret = push_node_left(trans, root,
  1012. left, mid, 0);
  1013. }
  1014. }
  1015. if (wret < 0)
  1016. ret = wret;
  1017. if (wret == 0) {
  1018. struct btrfs_disk_key disk_key;
  1019. orig_slot += left_nr;
  1020. btrfs_node_key(mid, &disk_key, 0);
  1021. btrfs_set_node_key(parent, &disk_key, pslot);
  1022. btrfs_mark_buffer_dirty(parent);
  1023. if (btrfs_header_nritems(left) > orig_slot) {
  1024. path->nodes[level] = left;
  1025. path->slots[level + 1] -= 1;
  1026. path->slots[level] = orig_slot;
  1027. btrfs_tree_unlock(mid);
  1028. free_extent_buffer(mid);
  1029. } else {
  1030. orig_slot -=
  1031. btrfs_header_nritems(left);
  1032. path->slots[level] = orig_slot;
  1033. btrfs_tree_unlock(left);
  1034. free_extent_buffer(left);
  1035. }
  1036. return 0;
  1037. }
  1038. btrfs_tree_unlock(left);
  1039. free_extent_buffer(left);
  1040. }
  1041. right = read_node_slot(root, parent, pslot + 1);
  1042. /*
  1043. * then try to empty the right most buffer into the middle
  1044. */
  1045. if (right) {
  1046. u32 right_nr;
  1047. btrfs_tree_lock(right);
  1048. btrfs_set_lock_blocking(right);
  1049. right_nr = btrfs_header_nritems(right);
  1050. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1051. wret = 1;
  1052. } else {
  1053. ret = btrfs_cow_block(trans, root, right,
  1054. parent, pslot + 1,
  1055. &right);
  1056. if (ret)
  1057. wret = 1;
  1058. else {
  1059. wret = balance_node_right(trans, root,
  1060. right, mid);
  1061. }
  1062. }
  1063. if (wret < 0)
  1064. ret = wret;
  1065. if (wret == 0) {
  1066. struct btrfs_disk_key disk_key;
  1067. btrfs_node_key(right, &disk_key, 0);
  1068. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1069. btrfs_mark_buffer_dirty(parent);
  1070. if (btrfs_header_nritems(mid) <= orig_slot) {
  1071. path->nodes[level] = right;
  1072. path->slots[level + 1] += 1;
  1073. path->slots[level] = orig_slot -
  1074. btrfs_header_nritems(mid);
  1075. btrfs_tree_unlock(mid);
  1076. free_extent_buffer(mid);
  1077. } else {
  1078. btrfs_tree_unlock(right);
  1079. free_extent_buffer(right);
  1080. }
  1081. return 0;
  1082. }
  1083. btrfs_tree_unlock(right);
  1084. free_extent_buffer(right);
  1085. }
  1086. return 1;
  1087. }
  1088. /*
  1089. * readahead one full node of leaves, finding things that are close
  1090. * to the block in 'slot', and triggering ra on them.
  1091. */
  1092. static void reada_for_search(struct btrfs_root *root,
  1093. struct btrfs_path *path,
  1094. int level, int slot, u64 objectid)
  1095. {
  1096. struct extent_buffer *node;
  1097. struct btrfs_disk_key disk_key;
  1098. u32 nritems;
  1099. u64 search;
  1100. u64 target;
  1101. u64 nread = 0;
  1102. int direction = path->reada;
  1103. struct extent_buffer *eb;
  1104. u32 nr;
  1105. u32 blocksize;
  1106. u32 nscan = 0;
  1107. if (level != 1)
  1108. return;
  1109. if (!path->nodes[level])
  1110. return;
  1111. node = path->nodes[level];
  1112. search = btrfs_node_blockptr(node, slot);
  1113. blocksize = btrfs_level_size(root, level - 1);
  1114. eb = btrfs_find_tree_block(root, search, blocksize);
  1115. if (eb) {
  1116. free_extent_buffer(eb);
  1117. return;
  1118. }
  1119. target = search;
  1120. nritems = btrfs_header_nritems(node);
  1121. nr = slot;
  1122. while (1) {
  1123. if (direction < 0) {
  1124. if (nr == 0)
  1125. break;
  1126. nr--;
  1127. } else if (direction > 0) {
  1128. nr++;
  1129. if (nr >= nritems)
  1130. break;
  1131. }
  1132. if (path->reada < 0 && objectid) {
  1133. btrfs_node_key(node, &disk_key, nr);
  1134. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1135. break;
  1136. }
  1137. search = btrfs_node_blockptr(node, nr);
  1138. if ((search <= target && target - search <= 65536) ||
  1139. (search > target && search - target <= 65536)) {
  1140. readahead_tree_block(root, search, blocksize,
  1141. btrfs_node_ptr_generation(node, nr));
  1142. nread += blocksize;
  1143. }
  1144. nscan++;
  1145. if ((nread > 65536 || nscan > 32))
  1146. break;
  1147. }
  1148. }
  1149. /*
  1150. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1151. * cache
  1152. */
  1153. static noinline int reada_for_balance(struct btrfs_root *root,
  1154. struct btrfs_path *path, int level)
  1155. {
  1156. int slot;
  1157. int nritems;
  1158. struct extent_buffer *parent;
  1159. struct extent_buffer *eb;
  1160. u64 gen;
  1161. u64 block1 = 0;
  1162. u64 block2 = 0;
  1163. int ret = 0;
  1164. int blocksize;
  1165. parent = path->nodes[level + 1];
  1166. if (!parent)
  1167. return 0;
  1168. nritems = btrfs_header_nritems(parent);
  1169. slot = path->slots[level + 1];
  1170. blocksize = btrfs_level_size(root, level);
  1171. if (slot > 0) {
  1172. block1 = btrfs_node_blockptr(parent, slot - 1);
  1173. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1174. eb = btrfs_find_tree_block(root, block1, blocksize);
  1175. if (eb && btrfs_buffer_uptodate(eb, gen))
  1176. block1 = 0;
  1177. free_extent_buffer(eb);
  1178. }
  1179. if (slot + 1 < nritems) {
  1180. block2 = btrfs_node_blockptr(parent, slot + 1);
  1181. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1182. eb = btrfs_find_tree_block(root, block2, blocksize);
  1183. if (eb && btrfs_buffer_uptodate(eb, gen))
  1184. block2 = 0;
  1185. free_extent_buffer(eb);
  1186. }
  1187. if (block1 || block2) {
  1188. ret = -EAGAIN;
  1189. /* release the whole path */
  1190. btrfs_release_path(path);
  1191. /* read the blocks */
  1192. if (block1)
  1193. readahead_tree_block(root, block1, blocksize, 0);
  1194. if (block2)
  1195. readahead_tree_block(root, block2, blocksize, 0);
  1196. if (block1) {
  1197. eb = read_tree_block(root, block1, blocksize, 0);
  1198. free_extent_buffer(eb);
  1199. }
  1200. if (block2) {
  1201. eb = read_tree_block(root, block2, blocksize, 0);
  1202. free_extent_buffer(eb);
  1203. }
  1204. }
  1205. return ret;
  1206. }
  1207. /*
  1208. * when we walk down the tree, it is usually safe to unlock the higher layers
  1209. * in the tree. The exceptions are when our path goes through slot 0, because
  1210. * operations on the tree might require changing key pointers higher up in the
  1211. * tree.
  1212. *
  1213. * callers might also have set path->keep_locks, which tells this code to keep
  1214. * the lock if the path points to the last slot in the block. This is part of
  1215. * walking through the tree, and selecting the next slot in the higher block.
  1216. *
  1217. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1218. * if lowest_unlock is 1, level 0 won't be unlocked
  1219. */
  1220. static noinline void unlock_up(struct btrfs_path *path, int level,
  1221. int lowest_unlock)
  1222. {
  1223. int i;
  1224. int skip_level = level;
  1225. int no_skips = 0;
  1226. struct extent_buffer *t;
  1227. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1228. if (!path->nodes[i])
  1229. break;
  1230. if (!path->locks[i])
  1231. break;
  1232. if (!no_skips && path->slots[i] == 0) {
  1233. skip_level = i + 1;
  1234. continue;
  1235. }
  1236. if (!no_skips && path->keep_locks) {
  1237. u32 nritems;
  1238. t = path->nodes[i];
  1239. nritems = btrfs_header_nritems(t);
  1240. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1241. skip_level = i + 1;
  1242. continue;
  1243. }
  1244. }
  1245. if (skip_level < i && i >= lowest_unlock)
  1246. no_skips = 1;
  1247. t = path->nodes[i];
  1248. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1249. btrfs_tree_unlock(t);
  1250. path->locks[i] = 0;
  1251. }
  1252. }
  1253. }
  1254. /*
  1255. * This releases any locks held in the path starting at level and
  1256. * going all the way up to the root.
  1257. *
  1258. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1259. * corner cases, such as COW of the block at slot zero in the node. This
  1260. * ignores those rules, and it should only be called when there are no
  1261. * more updates to be done higher up in the tree.
  1262. */
  1263. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1264. {
  1265. int i;
  1266. if (path->keep_locks)
  1267. return;
  1268. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1269. if (!path->nodes[i])
  1270. continue;
  1271. if (!path->locks[i])
  1272. continue;
  1273. btrfs_tree_unlock(path->nodes[i]);
  1274. path->locks[i] = 0;
  1275. }
  1276. }
  1277. /*
  1278. * helper function for btrfs_search_slot. The goal is to find a block
  1279. * in cache without setting the path to blocking. If we find the block
  1280. * we return zero and the path is unchanged.
  1281. *
  1282. * If we can't find the block, we set the path blocking and do some
  1283. * reada. -EAGAIN is returned and the search must be repeated.
  1284. */
  1285. static int
  1286. read_block_for_search(struct btrfs_trans_handle *trans,
  1287. struct btrfs_root *root, struct btrfs_path *p,
  1288. struct extent_buffer **eb_ret, int level, int slot,
  1289. struct btrfs_key *key)
  1290. {
  1291. u64 blocknr;
  1292. u64 gen;
  1293. u32 blocksize;
  1294. struct extent_buffer *b = *eb_ret;
  1295. struct extent_buffer *tmp;
  1296. int ret;
  1297. blocknr = btrfs_node_blockptr(b, slot);
  1298. gen = btrfs_node_ptr_generation(b, slot);
  1299. blocksize = btrfs_level_size(root, level - 1);
  1300. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1301. if (tmp) {
  1302. if (btrfs_buffer_uptodate(tmp, 0)) {
  1303. if (btrfs_buffer_uptodate(tmp, gen)) {
  1304. /*
  1305. * we found an up to date block without
  1306. * sleeping, return
  1307. * right away
  1308. */
  1309. *eb_ret = tmp;
  1310. return 0;
  1311. }
  1312. /* the pages were up to date, but we failed
  1313. * the generation number check. Do a full
  1314. * read for the generation number that is correct.
  1315. * We must do this without dropping locks so
  1316. * we can trust our generation number
  1317. */
  1318. free_extent_buffer(tmp);
  1319. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1320. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1321. *eb_ret = tmp;
  1322. return 0;
  1323. }
  1324. free_extent_buffer(tmp);
  1325. btrfs_release_path(p);
  1326. return -EIO;
  1327. }
  1328. }
  1329. /*
  1330. * reduce lock contention at high levels
  1331. * of the btree by dropping locks before
  1332. * we read. Don't release the lock on the current
  1333. * level because we need to walk this node to figure
  1334. * out which blocks to read.
  1335. */
  1336. btrfs_unlock_up_safe(p, level + 1);
  1337. btrfs_set_path_blocking(p);
  1338. free_extent_buffer(tmp);
  1339. if (p->reada)
  1340. reada_for_search(root, p, level, slot, key->objectid);
  1341. btrfs_release_path(p);
  1342. ret = -EAGAIN;
  1343. tmp = read_tree_block(root, blocknr, blocksize, 0);
  1344. if (tmp) {
  1345. /*
  1346. * If the read above didn't mark this buffer up to date,
  1347. * it will never end up being up to date. Set ret to EIO now
  1348. * and give up so that our caller doesn't loop forever
  1349. * on our EAGAINs.
  1350. */
  1351. if (!btrfs_buffer_uptodate(tmp, 0))
  1352. ret = -EIO;
  1353. free_extent_buffer(tmp);
  1354. }
  1355. return ret;
  1356. }
  1357. /*
  1358. * helper function for btrfs_search_slot. This does all of the checks
  1359. * for node-level blocks and does any balancing required based on
  1360. * the ins_len.
  1361. *
  1362. * If no extra work was required, zero is returned. If we had to
  1363. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1364. * start over
  1365. */
  1366. static int
  1367. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1368. struct btrfs_root *root, struct btrfs_path *p,
  1369. struct extent_buffer *b, int level, int ins_len)
  1370. {
  1371. int ret;
  1372. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1373. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1374. int sret;
  1375. sret = reada_for_balance(root, p, level);
  1376. if (sret)
  1377. goto again;
  1378. btrfs_set_path_blocking(p);
  1379. sret = split_node(trans, root, p, level);
  1380. btrfs_clear_path_blocking(p, NULL);
  1381. BUG_ON(sret > 0);
  1382. if (sret) {
  1383. ret = sret;
  1384. goto done;
  1385. }
  1386. b = p->nodes[level];
  1387. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1388. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1389. int sret;
  1390. sret = reada_for_balance(root, p, level);
  1391. if (sret)
  1392. goto again;
  1393. btrfs_set_path_blocking(p);
  1394. sret = balance_level(trans, root, p, level);
  1395. btrfs_clear_path_blocking(p, NULL);
  1396. if (sret) {
  1397. ret = sret;
  1398. goto done;
  1399. }
  1400. b = p->nodes[level];
  1401. if (!b) {
  1402. btrfs_release_path(p);
  1403. goto again;
  1404. }
  1405. BUG_ON(btrfs_header_nritems(b) == 1);
  1406. }
  1407. return 0;
  1408. again:
  1409. ret = -EAGAIN;
  1410. done:
  1411. return ret;
  1412. }
  1413. /*
  1414. * look for key in the tree. path is filled in with nodes along the way
  1415. * if key is found, we return zero and you can find the item in the leaf
  1416. * level of the path (level 0)
  1417. *
  1418. * If the key isn't found, the path points to the slot where it should
  1419. * be inserted, and 1 is returned. If there are other errors during the
  1420. * search a negative error number is returned.
  1421. *
  1422. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1423. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1424. * possible)
  1425. */
  1426. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1427. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1428. ins_len, int cow)
  1429. {
  1430. struct extent_buffer *b;
  1431. int slot;
  1432. int ret;
  1433. int err;
  1434. int level;
  1435. int lowest_unlock = 1;
  1436. u8 lowest_level = 0;
  1437. lowest_level = p->lowest_level;
  1438. WARN_ON(lowest_level && ins_len > 0);
  1439. WARN_ON(p->nodes[0] != NULL);
  1440. if (ins_len < 0)
  1441. lowest_unlock = 2;
  1442. again:
  1443. if (p->search_commit_root) {
  1444. b = root->commit_root;
  1445. extent_buffer_get(b);
  1446. if (!p->skip_locking)
  1447. btrfs_tree_lock(b);
  1448. } else {
  1449. if (p->skip_locking)
  1450. b = btrfs_root_node(root);
  1451. else
  1452. b = btrfs_lock_root_node(root);
  1453. }
  1454. while (b) {
  1455. level = btrfs_header_level(b);
  1456. /*
  1457. * setup the path here so we can release it under lock
  1458. * contention with the cow code
  1459. */
  1460. p->nodes[level] = b;
  1461. if (!p->skip_locking)
  1462. p->locks[level] = 1;
  1463. if (cow) {
  1464. /*
  1465. * if we don't really need to cow this block
  1466. * then we don't want to set the path blocking,
  1467. * so we test it here
  1468. */
  1469. if (!should_cow_block(trans, root, b))
  1470. goto cow_done;
  1471. btrfs_set_path_blocking(p);
  1472. err = btrfs_cow_block(trans, root, b,
  1473. p->nodes[level + 1],
  1474. p->slots[level + 1], &b);
  1475. if (err) {
  1476. ret = err;
  1477. goto done;
  1478. }
  1479. }
  1480. cow_done:
  1481. BUG_ON(!cow && ins_len);
  1482. if (level != btrfs_header_level(b))
  1483. WARN_ON(1);
  1484. level = btrfs_header_level(b);
  1485. p->nodes[level] = b;
  1486. if (!p->skip_locking)
  1487. p->locks[level] = 1;
  1488. btrfs_clear_path_blocking(p, NULL);
  1489. /*
  1490. * we have a lock on b and as long as we aren't changing
  1491. * the tree, there is no way to for the items in b to change.
  1492. * It is safe to drop the lock on our parent before we
  1493. * go through the expensive btree search on b.
  1494. *
  1495. * If cow is true, then we might be changing slot zero,
  1496. * which may require changing the parent. So, we can't
  1497. * drop the lock until after we know which slot we're
  1498. * operating on.
  1499. */
  1500. if (!cow)
  1501. btrfs_unlock_up_safe(p, level + 1);
  1502. ret = bin_search(b, key, level, &slot);
  1503. if (level != 0) {
  1504. int dec = 0;
  1505. if (ret && slot > 0) {
  1506. dec = 1;
  1507. slot -= 1;
  1508. }
  1509. p->slots[level] = slot;
  1510. err = setup_nodes_for_search(trans, root, p, b, level,
  1511. ins_len);
  1512. if (err == -EAGAIN)
  1513. goto again;
  1514. if (err) {
  1515. ret = err;
  1516. goto done;
  1517. }
  1518. b = p->nodes[level];
  1519. slot = p->slots[level];
  1520. unlock_up(p, level, lowest_unlock);
  1521. if (level == lowest_level) {
  1522. if (dec)
  1523. p->slots[level]++;
  1524. goto done;
  1525. }
  1526. err = read_block_for_search(trans, root, p,
  1527. &b, level, slot, key);
  1528. if (err == -EAGAIN)
  1529. goto again;
  1530. if (err) {
  1531. ret = err;
  1532. goto done;
  1533. }
  1534. if (!p->skip_locking) {
  1535. btrfs_clear_path_blocking(p, NULL);
  1536. err = btrfs_try_spin_lock(b);
  1537. if (!err) {
  1538. btrfs_set_path_blocking(p);
  1539. btrfs_tree_lock(b);
  1540. btrfs_clear_path_blocking(p, b);
  1541. }
  1542. }
  1543. } else {
  1544. p->slots[level] = slot;
  1545. if (ins_len > 0 &&
  1546. btrfs_leaf_free_space(root, b) < ins_len) {
  1547. btrfs_set_path_blocking(p);
  1548. err = split_leaf(trans, root, key,
  1549. p, ins_len, ret == 0);
  1550. btrfs_clear_path_blocking(p, NULL);
  1551. BUG_ON(err > 0);
  1552. if (err) {
  1553. ret = err;
  1554. goto done;
  1555. }
  1556. }
  1557. if (!p->search_for_split)
  1558. unlock_up(p, level, lowest_unlock);
  1559. goto done;
  1560. }
  1561. }
  1562. ret = 1;
  1563. done:
  1564. /*
  1565. * we don't really know what they plan on doing with the path
  1566. * from here on, so for now just mark it as blocking
  1567. */
  1568. if (!p->leave_spinning)
  1569. btrfs_set_path_blocking(p);
  1570. if (ret < 0)
  1571. btrfs_release_path(p);
  1572. return ret;
  1573. }
  1574. /*
  1575. * adjust the pointers going up the tree, starting at level
  1576. * making sure the right key of each node is points to 'key'.
  1577. * This is used after shifting pointers to the left, so it stops
  1578. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1579. * higher levels
  1580. *
  1581. * If this fails to write a tree block, it returns -1, but continues
  1582. * fixing up the blocks in ram so the tree is consistent.
  1583. */
  1584. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1585. struct btrfs_root *root, struct btrfs_path *path,
  1586. struct btrfs_disk_key *key, int level)
  1587. {
  1588. int i;
  1589. int ret = 0;
  1590. struct extent_buffer *t;
  1591. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1592. int tslot = path->slots[i];
  1593. if (!path->nodes[i])
  1594. break;
  1595. t = path->nodes[i];
  1596. btrfs_set_node_key(t, key, tslot);
  1597. btrfs_mark_buffer_dirty(path->nodes[i]);
  1598. if (tslot != 0)
  1599. break;
  1600. }
  1601. return ret;
  1602. }
  1603. /*
  1604. * update item key.
  1605. *
  1606. * This function isn't completely safe. It's the caller's responsibility
  1607. * that the new key won't break the order
  1608. */
  1609. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1610. struct btrfs_root *root, struct btrfs_path *path,
  1611. struct btrfs_key *new_key)
  1612. {
  1613. struct btrfs_disk_key disk_key;
  1614. struct extent_buffer *eb;
  1615. int slot;
  1616. eb = path->nodes[0];
  1617. slot = path->slots[0];
  1618. if (slot > 0) {
  1619. btrfs_item_key(eb, &disk_key, slot - 1);
  1620. if (comp_keys(&disk_key, new_key) >= 0)
  1621. return -1;
  1622. }
  1623. if (slot < btrfs_header_nritems(eb) - 1) {
  1624. btrfs_item_key(eb, &disk_key, slot + 1);
  1625. if (comp_keys(&disk_key, new_key) <= 0)
  1626. return -1;
  1627. }
  1628. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1629. btrfs_set_item_key(eb, &disk_key, slot);
  1630. btrfs_mark_buffer_dirty(eb);
  1631. if (slot == 0)
  1632. fixup_low_keys(trans, root, path, &disk_key, 1);
  1633. return 0;
  1634. }
  1635. /*
  1636. * try to push data from one node into the next node left in the
  1637. * tree.
  1638. *
  1639. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1640. * error, and > 0 if there was no room in the left hand block.
  1641. */
  1642. static int push_node_left(struct btrfs_trans_handle *trans,
  1643. struct btrfs_root *root, struct extent_buffer *dst,
  1644. struct extent_buffer *src, int empty)
  1645. {
  1646. int push_items = 0;
  1647. int src_nritems;
  1648. int dst_nritems;
  1649. int ret = 0;
  1650. src_nritems = btrfs_header_nritems(src);
  1651. dst_nritems = btrfs_header_nritems(dst);
  1652. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1653. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1654. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1655. if (!empty && src_nritems <= 8)
  1656. return 1;
  1657. if (push_items <= 0)
  1658. return 1;
  1659. if (empty) {
  1660. push_items = min(src_nritems, push_items);
  1661. if (push_items < src_nritems) {
  1662. /* leave at least 8 pointers in the node if
  1663. * we aren't going to empty it
  1664. */
  1665. if (src_nritems - push_items < 8) {
  1666. if (push_items <= 8)
  1667. return 1;
  1668. push_items -= 8;
  1669. }
  1670. }
  1671. } else
  1672. push_items = min(src_nritems - 8, push_items);
  1673. copy_extent_buffer(dst, src,
  1674. btrfs_node_key_ptr_offset(dst_nritems),
  1675. btrfs_node_key_ptr_offset(0),
  1676. push_items * sizeof(struct btrfs_key_ptr));
  1677. if (push_items < src_nritems) {
  1678. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1679. btrfs_node_key_ptr_offset(push_items),
  1680. (src_nritems - push_items) *
  1681. sizeof(struct btrfs_key_ptr));
  1682. }
  1683. btrfs_set_header_nritems(src, src_nritems - push_items);
  1684. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1685. btrfs_mark_buffer_dirty(src);
  1686. btrfs_mark_buffer_dirty(dst);
  1687. return ret;
  1688. }
  1689. /*
  1690. * try to push data from one node into the next node right in the
  1691. * tree.
  1692. *
  1693. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1694. * error, and > 0 if there was no room in the right hand block.
  1695. *
  1696. * this will only push up to 1/2 the contents of the left node over
  1697. */
  1698. static int balance_node_right(struct btrfs_trans_handle *trans,
  1699. struct btrfs_root *root,
  1700. struct extent_buffer *dst,
  1701. struct extent_buffer *src)
  1702. {
  1703. int push_items = 0;
  1704. int max_push;
  1705. int src_nritems;
  1706. int dst_nritems;
  1707. int ret = 0;
  1708. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1709. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1710. src_nritems = btrfs_header_nritems(src);
  1711. dst_nritems = btrfs_header_nritems(dst);
  1712. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1713. if (push_items <= 0)
  1714. return 1;
  1715. if (src_nritems < 4)
  1716. return 1;
  1717. max_push = src_nritems / 2 + 1;
  1718. /* don't try to empty the node */
  1719. if (max_push >= src_nritems)
  1720. return 1;
  1721. if (max_push < push_items)
  1722. push_items = max_push;
  1723. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1724. btrfs_node_key_ptr_offset(0),
  1725. (dst_nritems) *
  1726. sizeof(struct btrfs_key_ptr));
  1727. copy_extent_buffer(dst, src,
  1728. btrfs_node_key_ptr_offset(0),
  1729. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1730. push_items * sizeof(struct btrfs_key_ptr));
  1731. btrfs_set_header_nritems(src, src_nritems - push_items);
  1732. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1733. btrfs_mark_buffer_dirty(src);
  1734. btrfs_mark_buffer_dirty(dst);
  1735. return ret;
  1736. }
  1737. /*
  1738. * helper function to insert a new root level in the tree.
  1739. * A new node is allocated, and a single item is inserted to
  1740. * point to the existing root
  1741. *
  1742. * returns zero on success or < 0 on failure.
  1743. */
  1744. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1745. struct btrfs_root *root,
  1746. struct btrfs_path *path, int level)
  1747. {
  1748. u64 lower_gen;
  1749. struct extent_buffer *lower;
  1750. struct extent_buffer *c;
  1751. struct extent_buffer *old;
  1752. struct btrfs_disk_key lower_key;
  1753. BUG_ON(path->nodes[level]);
  1754. BUG_ON(path->nodes[level-1] != root->node);
  1755. lower = path->nodes[level-1];
  1756. if (level == 1)
  1757. btrfs_item_key(lower, &lower_key, 0);
  1758. else
  1759. btrfs_node_key(lower, &lower_key, 0);
  1760. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1761. root->root_key.objectid, &lower_key,
  1762. level, root->node->start, 0);
  1763. if (IS_ERR(c))
  1764. return PTR_ERR(c);
  1765. root_add_used(root, root->nodesize);
  1766. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1767. btrfs_set_header_nritems(c, 1);
  1768. btrfs_set_header_level(c, level);
  1769. btrfs_set_header_bytenr(c, c->start);
  1770. btrfs_set_header_generation(c, trans->transid);
  1771. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1772. btrfs_set_header_owner(c, root->root_key.objectid);
  1773. write_extent_buffer(c, root->fs_info->fsid,
  1774. (unsigned long)btrfs_header_fsid(c),
  1775. BTRFS_FSID_SIZE);
  1776. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1777. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1778. BTRFS_UUID_SIZE);
  1779. btrfs_set_node_key(c, &lower_key, 0);
  1780. btrfs_set_node_blockptr(c, 0, lower->start);
  1781. lower_gen = btrfs_header_generation(lower);
  1782. WARN_ON(lower_gen != trans->transid);
  1783. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1784. btrfs_mark_buffer_dirty(c);
  1785. old = root->node;
  1786. rcu_assign_pointer(root->node, c);
  1787. /* the super has an extra ref to root->node */
  1788. free_extent_buffer(old);
  1789. add_root_to_dirty_list(root);
  1790. extent_buffer_get(c);
  1791. path->nodes[level] = c;
  1792. path->locks[level] = 1;
  1793. path->slots[level] = 0;
  1794. return 0;
  1795. }
  1796. /*
  1797. * worker function to insert a single pointer in a node.
  1798. * the node should have enough room for the pointer already
  1799. *
  1800. * slot and level indicate where you want the key to go, and
  1801. * blocknr is the block the key points to.
  1802. *
  1803. * returns zero on success and < 0 on any error
  1804. */
  1805. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1806. *root, struct btrfs_path *path, struct btrfs_disk_key
  1807. *key, u64 bytenr, int slot, int level)
  1808. {
  1809. struct extent_buffer *lower;
  1810. int nritems;
  1811. BUG_ON(!path->nodes[level]);
  1812. btrfs_assert_tree_locked(path->nodes[level]);
  1813. lower = path->nodes[level];
  1814. nritems = btrfs_header_nritems(lower);
  1815. BUG_ON(slot > nritems);
  1816. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1817. BUG();
  1818. if (slot != nritems) {
  1819. memmove_extent_buffer(lower,
  1820. btrfs_node_key_ptr_offset(slot + 1),
  1821. btrfs_node_key_ptr_offset(slot),
  1822. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1823. }
  1824. btrfs_set_node_key(lower, key, slot);
  1825. btrfs_set_node_blockptr(lower, slot, bytenr);
  1826. WARN_ON(trans->transid == 0);
  1827. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1828. btrfs_set_header_nritems(lower, nritems + 1);
  1829. btrfs_mark_buffer_dirty(lower);
  1830. return 0;
  1831. }
  1832. /*
  1833. * split the node at the specified level in path in two.
  1834. * The path is corrected to point to the appropriate node after the split
  1835. *
  1836. * Before splitting this tries to make some room in the node by pushing
  1837. * left and right, if either one works, it returns right away.
  1838. *
  1839. * returns 0 on success and < 0 on failure
  1840. */
  1841. static noinline int split_node(struct btrfs_trans_handle *trans,
  1842. struct btrfs_root *root,
  1843. struct btrfs_path *path, int level)
  1844. {
  1845. struct extent_buffer *c;
  1846. struct extent_buffer *split;
  1847. struct btrfs_disk_key disk_key;
  1848. int mid;
  1849. int ret;
  1850. int wret;
  1851. u32 c_nritems;
  1852. c = path->nodes[level];
  1853. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1854. if (c == root->node) {
  1855. /* trying to split the root, lets make a new one */
  1856. ret = insert_new_root(trans, root, path, level + 1);
  1857. if (ret)
  1858. return ret;
  1859. } else {
  1860. ret = push_nodes_for_insert(trans, root, path, level);
  1861. c = path->nodes[level];
  1862. if (!ret && btrfs_header_nritems(c) <
  1863. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1864. return 0;
  1865. if (ret < 0)
  1866. return ret;
  1867. }
  1868. c_nritems = btrfs_header_nritems(c);
  1869. mid = (c_nritems + 1) / 2;
  1870. btrfs_node_key(c, &disk_key, mid);
  1871. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1872. root->root_key.objectid,
  1873. &disk_key, level, c->start, 0);
  1874. if (IS_ERR(split))
  1875. return PTR_ERR(split);
  1876. root_add_used(root, root->nodesize);
  1877. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  1878. btrfs_set_header_level(split, btrfs_header_level(c));
  1879. btrfs_set_header_bytenr(split, split->start);
  1880. btrfs_set_header_generation(split, trans->transid);
  1881. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  1882. btrfs_set_header_owner(split, root->root_key.objectid);
  1883. write_extent_buffer(split, root->fs_info->fsid,
  1884. (unsigned long)btrfs_header_fsid(split),
  1885. BTRFS_FSID_SIZE);
  1886. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1887. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1888. BTRFS_UUID_SIZE);
  1889. copy_extent_buffer(split, c,
  1890. btrfs_node_key_ptr_offset(0),
  1891. btrfs_node_key_ptr_offset(mid),
  1892. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1893. btrfs_set_header_nritems(split, c_nritems - mid);
  1894. btrfs_set_header_nritems(c, mid);
  1895. ret = 0;
  1896. btrfs_mark_buffer_dirty(c);
  1897. btrfs_mark_buffer_dirty(split);
  1898. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1899. path->slots[level + 1] + 1,
  1900. level + 1);
  1901. if (wret)
  1902. ret = wret;
  1903. if (path->slots[level] >= mid) {
  1904. path->slots[level] -= mid;
  1905. btrfs_tree_unlock(c);
  1906. free_extent_buffer(c);
  1907. path->nodes[level] = split;
  1908. path->slots[level + 1] += 1;
  1909. } else {
  1910. btrfs_tree_unlock(split);
  1911. free_extent_buffer(split);
  1912. }
  1913. return ret;
  1914. }
  1915. /*
  1916. * how many bytes are required to store the items in a leaf. start
  1917. * and nr indicate which items in the leaf to check. This totals up the
  1918. * space used both by the item structs and the item data
  1919. */
  1920. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1921. {
  1922. int data_len;
  1923. int nritems = btrfs_header_nritems(l);
  1924. int end = min(nritems, start + nr) - 1;
  1925. if (!nr)
  1926. return 0;
  1927. data_len = btrfs_item_end_nr(l, start);
  1928. data_len = data_len - btrfs_item_offset_nr(l, end);
  1929. data_len += sizeof(struct btrfs_item) * nr;
  1930. WARN_ON(data_len < 0);
  1931. return data_len;
  1932. }
  1933. /*
  1934. * The space between the end of the leaf items and
  1935. * the start of the leaf data. IOW, how much room
  1936. * the leaf has left for both items and data
  1937. */
  1938. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  1939. struct extent_buffer *leaf)
  1940. {
  1941. int nritems = btrfs_header_nritems(leaf);
  1942. int ret;
  1943. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1944. if (ret < 0) {
  1945. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  1946. "used %d nritems %d\n",
  1947. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  1948. leaf_space_used(leaf, 0, nritems), nritems);
  1949. }
  1950. return ret;
  1951. }
  1952. /*
  1953. * min slot controls the lowest index we're willing to push to the
  1954. * right. We'll push up to and including min_slot, but no lower
  1955. */
  1956. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  1957. struct btrfs_root *root,
  1958. struct btrfs_path *path,
  1959. int data_size, int empty,
  1960. struct extent_buffer *right,
  1961. int free_space, u32 left_nritems,
  1962. u32 min_slot)
  1963. {
  1964. struct extent_buffer *left = path->nodes[0];
  1965. struct extent_buffer *upper = path->nodes[1];
  1966. struct btrfs_disk_key disk_key;
  1967. int slot;
  1968. u32 i;
  1969. int push_space = 0;
  1970. int push_items = 0;
  1971. struct btrfs_item *item;
  1972. u32 nr;
  1973. u32 right_nritems;
  1974. u32 data_end;
  1975. u32 this_item_size;
  1976. if (empty)
  1977. nr = 0;
  1978. else
  1979. nr = max_t(u32, 1, min_slot);
  1980. if (path->slots[0] >= left_nritems)
  1981. push_space += data_size;
  1982. slot = path->slots[1];
  1983. i = left_nritems - 1;
  1984. while (i >= nr) {
  1985. item = btrfs_item_nr(left, i);
  1986. if (!empty && push_items > 0) {
  1987. if (path->slots[0] > i)
  1988. break;
  1989. if (path->slots[0] == i) {
  1990. int space = btrfs_leaf_free_space(root, left);
  1991. if (space + push_space * 2 > free_space)
  1992. break;
  1993. }
  1994. }
  1995. if (path->slots[0] == i)
  1996. push_space += data_size;
  1997. if (!left->map_token) {
  1998. map_extent_buffer(left, (unsigned long)item,
  1999. sizeof(struct btrfs_item),
  2000. &left->map_token, &left->kaddr,
  2001. &left->map_start, &left->map_len,
  2002. KM_USER1);
  2003. }
  2004. this_item_size = btrfs_item_size(left, item);
  2005. if (this_item_size + sizeof(*item) + push_space > free_space)
  2006. break;
  2007. push_items++;
  2008. push_space += this_item_size + sizeof(*item);
  2009. if (i == 0)
  2010. break;
  2011. i--;
  2012. }
  2013. if (left->map_token) {
  2014. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2015. left->map_token = NULL;
  2016. }
  2017. if (push_items == 0)
  2018. goto out_unlock;
  2019. if (!empty && push_items == left_nritems)
  2020. WARN_ON(1);
  2021. /* push left to right */
  2022. right_nritems = btrfs_header_nritems(right);
  2023. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2024. push_space -= leaf_data_end(root, left);
  2025. /* make room in the right data area */
  2026. data_end = leaf_data_end(root, right);
  2027. memmove_extent_buffer(right,
  2028. btrfs_leaf_data(right) + data_end - push_space,
  2029. btrfs_leaf_data(right) + data_end,
  2030. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2031. /* copy from the left data area */
  2032. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2033. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2034. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2035. push_space);
  2036. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2037. btrfs_item_nr_offset(0),
  2038. right_nritems * sizeof(struct btrfs_item));
  2039. /* copy the items from left to right */
  2040. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2041. btrfs_item_nr_offset(left_nritems - push_items),
  2042. push_items * sizeof(struct btrfs_item));
  2043. /* update the item pointers */
  2044. right_nritems += push_items;
  2045. btrfs_set_header_nritems(right, right_nritems);
  2046. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2047. for (i = 0; i < right_nritems; i++) {
  2048. item = btrfs_item_nr(right, i);
  2049. if (!right->map_token) {
  2050. map_extent_buffer(right, (unsigned long)item,
  2051. sizeof(struct btrfs_item),
  2052. &right->map_token, &right->kaddr,
  2053. &right->map_start, &right->map_len,
  2054. KM_USER1);
  2055. }
  2056. push_space -= btrfs_item_size(right, item);
  2057. btrfs_set_item_offset(right, item, push_space);
  2058. }
  2059. if (right->map_token) {
  2060. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2061. right->map_token = NULL;
  2062. }
  2063. left_nritems -= push_items;
  2064. btrfs_set_header_nritems(left, left_nritems);
  2065. if (left_nritems)
  2066. btrfs_mark_buffer_dirty(left);
  2067. else
  2068. clean_tree_block(trans, root, left);
  2069. btrfs_mark_buffer_dirty(right);
  2070. btrfs_item_key(right, &disk_key, 0);
  2071. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2072. btrfs_mark_buffer_dirty(upper);
  2073. /* then fixup the leaf pointer in the path */
  2074. if (path->slots[0] >= left_nritems) {
  2075. path->slots[0] -= left_nritems;
  2076. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2077. clean_tree_block(trans, root, path->nodes[0]);
  2078. btrfs_tree_unlock(path->nodes[0]);
  2079. free_extent_buffer(path->nodes[0]);
  2080. path->nodes[0] = right;
  2081. path->slots[1] += 1;
  2082. } else {
  2083. btrfs_tree_unlock(right);
  2084. free_extent_buffer(right);
  2085. }
  2086. return 0;
  2087. out_unlock:
  2088. btrfs_tree_unlock(right);
  2089. free_extent_buffer(right);
  2090. return 1;
  2091. }
  2092. /*
  2093. * push some data in the path leaf to the right, trying to free up at
  2094. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2095. *
  2096. * returns 1 if the push failed because the other node didn't have enough
  2097. * room, 0 if everything worked out and < 0 if there were major errors.
  2098. *
  2099. * this will push starting from min_slot to the end of the leaf. It won't
  2100. * push any slot lower than min_slot
  2101. */
  2102. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2103. *root, struct btrfs_path *path,
  2104. int min_data_size, int data_size,
  2105. int empty, u32 min_slot)
  2106. {
  2107. struct extent_buffer *left = path->nodes[0];
  2108. struct extent_buffer *right;
  2109. struct extent_buffer *upper;
  2110. int slot;
  2111. int free_space;
  2112. u32 left_nritems;
  2113. int ret;
  2114. if (!path->nodes[1])
  2115. return 1;
  2116. slot = path->slots[1];
  2117. upper = path->nodes[1];
  2118. if (slot >= btrfs_header_nritems(upper) - 1)
  2119. return 1;
  2120. btrfs_assert_tree_locked(path->nodes[1]);
  2121. right = read_node_slot(root, upper, slot + 1);
  2122. if (right == NULL)
  2123. return 1;
  2124. btrfs_tree_lock(right);
  2125. btrfs_set_lock_blocking(right);
  2126. free_space = btrfs_leaf_free_space(root, right);
  2127. if (free_space < data_size)
  2128. goto out_unlock;
  2129. /* cow and double check */
  2130. ret = btrfs_cow_block(trans, root, right, upper,
  2131. slot + 1, &right);
  2132. if (ret)
  2133. goto out_unlock;
  2134. free_space = btrfs_leaf_free_space(root, right);
  2135. if (free_space < data_size)
  2136. goto out_unlock;
  2137. left_nritems = btrfs_header_nritems(left);
  2138. if (left_nritems == 0)
  2139. goto out_unlock;
  2140. return __push_leaf_right(trans, root, path, min_data_size, empty,
  2141. right, free_space, left_nritems, min_slot);
  2142. out_unlock:
  2143. btrfs_tree_unlock(right);
  2144. free_extent_buffer(right);
  2145. return 1;
  2146. }
  2147. /*
  2148. * push some data in the path leaf to the left, trying to free up at
  2149. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2150. *
  2151. * max_slot can put a limit on how far into the leaf we'll push items. The
  2152. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  2153. * items
  2154. */
  2155. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2156. struct btrfs_root *root,
  2157. struct btrfs_path *path, int data_size,
  2158. int empty, struct extent_buffer *left,
  2159. int free_space, u32 right_nritems,
  2160. u32 max_slot)
  2161. {
  2162. struct btrfs_disk_key disk_key;
  2163. struct extent_buffer *right = path->nodes[0];
  2164. int i;
  2165. int push_space = 0;
  2166. int push_items = 0;
  2167. struct btrfs_item *item;
  2168. u32 old_left_nritems;
  2169. u32 nr;
  2170. int ret = 0;
  2171. int wret;
  2172. u32 this_item_size;
  2173. u32 old_left_item_size;
  2174. if (empty)
  2175. nr = min(right_nritems, max_slot);
  2176. else
  2177. nr = min(right_nritems - 1, max_slot);
  2178. for (i = 0; i < nr; i++) {
  2179. item = btrfs_item_nr(right, i);
  2180. if (!right->map_token) {
  2181. map_extent_buffer(right, (unsigned long)item,
  2182. sizeof(struct btrfs_item),
  2183. &right->map_token, &right->kaddr,
  2184. &right->map_start, &right->map_len,
  2185. KM_USER1);
  2186. }
  2187. if (!empty && push_items > 0) {
  2188. if (path->slots[0] < i)
  2189. break;
  2190. if (path->slots[0] == i) {
  2191. int space = btrfs_leaf_free_space(root, right);
  2192. if (space + push_space * 2 > free_space)
  2193. break;
  2194. }
  2195. }
  2196. if (path->slots[0] == i)
  2197. push_space += data_size;
  2198. this_item_size = btrfs_item_size(right, item);
  2199. if (this_item_size + sizeof(*item) + push_space > free_space)
  2200. break;
  2201. push_items++;
  2202. push_space += this_item_size + sizeof(*item);
  2203. }
  2204. if (right->map_token) {
  2205. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2206. right->map_token = NULL;
  2207. }
  2208. if (push_items == 0) {
  2209. ret = 1;
  2210. goto out;
  2211. }
  2212. if (!empty && push_items == btrfs_header_nritems(right))
  2213. WARN_ON(1);
  2214. /* push data from right to left */
  2215. copy_extent_buffer(left, right,
  2216. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2217. btrfs_item_nr_offset(0),
  2218. push_items * sizeof(struct btrfs_item));
  2219. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2220. btrfs_item_offset_nr(right, push_items - 1);
  2221. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2222. leaf_data_end(root, left) - push_space,
  2223. btrfs_leaf_data(right) +
  2224. btrfs_item_offset_nr(right, push_items - 1),
  2225. push_space);
  2226. old_left_nritems = btrfs_header_nritems(left);
  2227. BUG_ON(old_left_nritems <= 0);
  2228. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2229. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2230. u32 ioff;
  2231. item = btrfs_item_nr(left, i);
  2232. if (!left->map_token) {
  2233. map_extent_buffer(left, (unsigned long)item,
  2234. sizeof(struct btrfs_item),
  2235. &left->map_token, &left->kaddr,
  2236. &left->map_start, &left->map_len,
  2237. KM_USER1);
  2238. }
  2239. ioff = btrfs_item_offset(left, item);
  2240. btrfs_set_item_offset(left, item,
  2241. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2242. }
  2243. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2244. if (left->map_token) {
  2245. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2246. left->map_token = NULL;
  2247. }
  2248. /* fixup right node */
  2249. if (push_items > right_nritems) {
  2250. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2251. right_nritems);
  2252. WARN_ON(1);
  2253. }
  2254. if (push_items < right_nritems) {
  2255. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2256. leaf_data_end(root, right);
  2257. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2258. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2259. btrfs_leaf_data(right) +
  2260. leaf_data_end(root, right), push_space);
  2261. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2262. btrfs_item_nr_offset(push_items),
  2263. (btrfs_header_nritems(right) - push_items) *
  2264. sizeof(struct btrfs_item));
  2265. }
  2266. right_nritems -= push_items;
  2267. btrfs_set_header_nritems(right, right_nritems);
  2268. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2269. for (i = 0; i < right_nritems; i++) {
  2270. item = btrfs_item_nr(right, i);
  2271. if (!right->map_token) {
  2272. map_extent_buffer(right, (unsigned long)item,
  2273. sizeof(struct btrfs_item),
  2274. &right->map_token, &right->kaddr,
  2275. &right->map_start, &right->map_len,
  2276. KM_USER1);
  2277. }
  2278. push_space = push_space - btrfs_item_size(right, item);
  2279. btrfs_set_item_offset(right, item, push_space);
  2280. }
  2281. if (right->map_token) {
  2282. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2283. right->map_token = NULL;
  2284. }
  2285. btrfs_mark_buffer_dirty(left);
  2286. if (right_nritems)
  2287. btrfs_mark_buffer_dirty(right);
  2288. else
  2289. clean_tree_block(trans, root, right);
  2290. btrfs_item_key(right, &disk_key, 0);
  2291. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2292. if (wret)
  2293. ret = wret;
  2294. /* then fixup the leaf pointer in the path */
  2295. if (path->slots[0] < push_items) {
  2296. path->slots[0] += old_left_nritems;
  2297. btrfs_tree_unlock(path->nodes[0]);
  2298. free_extent_buffer(path->nodes[0]);
  2299. path->nodes[0] = left;
  2300. path->slots[1] -= 1;
  2301. } else {
  2302. btrfs_tree_unlock(left);
  2303. free_extent_buffer(left);
  2304. path->slots[0] -= push_items;
  2305. }
  2306. BUG_ON(path->slots[0] < 0);
  2307. return ret;
  2308. out:
  2309. btrfs_tree_unlock(left);
  2310. free_extent_buffer(left);
  2311. return ret;
  2312. }
  2313. /*
  2314. * push some data in the path leaf to the left, trying to free up at
  2315. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2316. *
  2317. * max_slot can put a limit on how far into the leaf we'll push items. The
  2318. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  2319. * items
  2320. */
  2321. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2322. *root, struct btrfs_path *path, int min_data_size,
  2323. int data_size, int empty, u32 max_slot)
  2324. {
  2325. struct extent_buffer *right = path->nodes[0];
  2326. struct extent_buffer *left;
  2327. int slot;
  2328. int free_space;
  2329. u32 right_nritems;
  2330. int ret = 0;
  2331. slot = path->slots[1];
  2332. if (slot == 0)
  2333. return 1;
  2334. if (!path->nodes[1])
  2335. return 1;
  2336. right_nritems = btrfs_header_nritems(right);
  2337. if (right_nritems == 0)
  2338. return 1;
  2339. btrfs_assert_tree_locked(path->nodes[1]);
  2340. left = read_node_slot(root, path->nodes[1], slot - 1);
  2341. if (left == NULL)
  2342. return 1;
  2343. btrfs_tree_lock(left);
  2344. btrfs_set_lock_blocking(left);
  2345. free_space = btrfs_leaf_free_space(root, left);
  2346. if (free_space < data_size) {
  2347. ret = 1;
  2348. goto out;
  2349. }
  2350. /* cow and double check */
  2351. ret = btrfs_cow_block(trans, root, left,
  2352. path->nodes[1], slot - 1, &left);
  2353. if (ret) {
  2354. /* we hit -ENOSPC, but it isn't fatal here */
  2355. ret = 1;
  2356. goto out;
  2357. }
  2358. free_space = btrfs_leaf_free_space(root, left);
  2359. if (free_space < data_size) {
  2360. ret = 1;
  2361. goto out;
  2362. }
  2363. return __push_leaf_left(trans, root, path, min_data_size,
  2364. empty, left, free_space, right_nritems,
  2365. max_slot);
  2366. out:
  2367. btrfs_tree_unlock(left);
  2368. free_extent_buffer(left);
  2369. return ret;
  2370. }
  2371. /*
  2372. * split the path's leaf in two, making sure there is at least data_size
  2373. * available for the resulting leaf level of the path.
  2374. *
  2375. * returns 0 if all went well and < 0 on failure.
  2376. */
  2377. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2378. struct btrfs_root *root,
  2379. struct btrfs_path *path,
  2380. struct extent_buffer *l,
  2381. struct extent_buffer *right,
  2382. int slot, int mid, int nritems)
  2383. {
  2384. int data_copy_size;
  2385. int rt_data_off;
  2386. int i;
  2387. int ret = 0;
  2388. int wret;
  2389. struct btrfs_disk_key disk_key;
  2390. nritems = nritems - mid;
  2391. btrfs_set_header_nritems(right, nritems);
  2392. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2393. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2394. btrfs_item_nr_offset(mid),
  2395. nritems * sizeof(struct btrfs_item));
  2396. copy_extent_buffer(right, l,
  2397. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2398. data_copy_size, btrfs_leaf_data(l) +
  2399. leaf_data_end(root, l), data_copy_size);
  2400. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2401. btrfs_item_end_nr(l, mid);
  2402. for (i = 0; i < nritems; i++) {
  2403. struct btrfs_item *item = btrfs_item_nr(right, i);
  2404. u32 ioff;
  2405. if (!right->map_token) {
  2406. map_extent_buffer(right, (unsigned long)item,
  2407. sizeof(struct btrfs_item),
  2408. &right->map_token, &right->kaddr,
  2409. &right->map_start, &right->map_len,
  2410. KM_USER1);
  2411. }
  2412. ioff = btrfs_item_offset(right, item);
  2413. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2414. }
  2415. if (right->map_token) {
  2416. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2417. right->map_token = NULL;
  2418. }
  2419. btrfs_set_header_nritems(l, mid);
  2420. ret = 0;
  2421. btrfs_item_key(right, &disk_key, 0);
  2422. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2423. path->slots[1] + 1, 1);
  2424. if (wret)
  2425. ret = wret;
  2426. btrfs_mark_buffer_dirty(right);
  2427. btrfs_mark_buffer_dirty(l);
  2428. BUG_ON(path->slots[0] != slot);
  2429. if (mid <= slot) {
  2430. btrfs_tree_unlock(path->nodes[0]);
  2431. free_extent_buffer(path->nodes[0]);
  2432. path->nodes[0] = right;
  2433. path->slots[0] -= mid;
  2434. path->slots[1] += 1;
  2435. } else {
  2436. btrfs_tree_unlock(right);
  2437. free_extent_buffer(right);
  2438. }
  2439. BUG_ON(path->slots[0] < 0);
  2440. return ret;
  2441. }
  2442. /*
  2443. * double splits happen when we need to insert a big item in the middle
  2444. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  2445. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  2446. * A B C
  2447. *
  2448. * We avoid this by trying to push the items on either side of our target
  2449. * into the adjacent leaves. If all goes well we can avoid the double split
  2450. * completely.
  2451. */
  2452. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  2453. struct btrfs_root *root,
  2454. struct btrfs_path *path,
  2455. int data_size)
  2456. {
  2457. int ret;
  2458. int progress = 0;
  2459. int slot;
  2460. u32 nritems;
  2461. slot = path->slots[0];
  2462. /*
  2463. * try to push all the items after our slot into the
  2464. * right leaf
  2465. */
  2466. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  2467. if (ret < 0)
  2468. return ret;
  2469. if (ret == 0)
  2470. progress++;
  2471. nritems = btrfs_header_nritems(path->nodes[0]);
  2472. /*
  2473. * our goal is to get our slot at the start or end of a leaf. If
  2474. * we've done so we're done
  2475. */
  2476. if (path->slots[0] == 0 || path->slots[0] == nritems)
  2477. return 0;
  2478. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2479. return 0;
  2480. /* try to push all the items before our slot into the next leaf */
  2481. slot = path->slots[0];
  2482. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  2483. if (ret < 0)
  2484. return ret;
  2485. if (ret == 0)
  2486. progress++;
  2487. if (progress)
  2488. return 0;
  2489. return 1;
  2490. }
  2491. /*
  2492. * split the path's leaf in two, making sure there is at least data_size
  2493. * available for the resulting leaf level of the path.
  2494. *
  2495. * returns 0 if all went well and < 0 on failure.
  2496. */
  2497. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2498. struct btrfs_root *root,
  2499. struct btrfs_key *ins_key,
  2500. struct btrfs_path *path, int data_size,
  2501. int extend)
  2502. {
  2503. struct btrfs_disk_key disk_key;
  2504. struct extent_buffer *l;
  2505. u32 nritems;
  2506. int mid;
  2507. int slot;
  2508. struct extent_buffer *right;
  2509. int ret = 0;
  2510. int wret;
  2511. int split;
  2512. int num_doubles = 0;
  2513. int tried_avoid_double = 0;
  2514. l = path->nodes[0];
  2515. slot = path->slots[0];
  2516. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2517. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2518. return -EOVERFLOW;
  2519. /* first try to make some room by pushing left and right */
  2520. if (data_size) {
  2521. wret = push_leaf_right(trans, root, path, data_size,
  2522. data_size, 0, 0);
  2523. if (wret < 0)
  2524. return wret;
  2525. if (wret) {
  2526. wret = push_leaf_left(trans, root, path, data_size,
  2527. data_size, 0, (u32)-1);
  2528. if (wret < 0)
  2529. return wret;
  2530. }
  2531. l = path->nodes[0];
  2532. /* did the pushes work? */
  2533. if (btrfs_leaf_free_space(root, l) >= data_size)
  2534. return 0;
  2535. }
  2536. if (!path->nodes[1]) {
  2537. ret = insert_new_root(trans, root, path, 1);
  2538. if (ret)
  2539. return ret;
  2540. }
  2541. again:
  2542. split = 1;
  2543. l = path->nodes[0];
  2544. slot = path->slots[0];
  2545. nritems = btrfs_header_nritems(l);
  2546. mid = (nritems + 1) / 2;
  2547. if (mid <= slot) {
  2548. if (nritems == 1 ||
  2549. leaf_space_used(l, mid, nritems - mid) + data_size >
  2550. BTRFS_LEAF_DATA_SIZE(root)) {
  2551. if (slot >= nritems) {
  2552. split = 0;
  2553. } else {
  2554. mid = slot;
  2555. if (mid != nritems &&
  2556. leaf_space_used(l, mid, nritems - mid) +
  2557. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2558. if (data_size && !tried_avoid_double)
  2559. goto push_for_double;
  2560. split = 2;
  2561. }
  2562. }
  2563. }
  2564. } else {
  2565. if (leaf_space_used(l, 0, mid) + data_size >
  2566. BTRFS_LEAF_DATA_SIZE(root)) {
  2567. if (!extend && data_size && slot == 0) {
  2568. split = 0;
  2569. } else if ((extend || !data_size) && slot == 0) {
  2570. mid = 1;
  2571. } else {
  2572. mid = slot;
  2573. if (mid != nritems &&
  2574. leaf_space_used(l, mid, nritems - mid) +
  2575. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2576. if (data_size && !tried_avoid_double)
  2577. goto push_for_double;
  2578. split = 2 ;
  2579. }
  2580. }
  2581. }
  2582. }
  2583. if (split == 0)
  2584. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2585. else
  2586. btrfs_item_key(l, &disk_key, mid);
  2587. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2588. root->root_key.objectid,
  2589. &disk_key, 0, l->start, 0);
  2590. if (IS_ERR(right))
  2591. return PTR_ERR(right);
  2592. root_add_used(root, root->leafsize);
  2593. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2594. btrfs_set_header_bytenr(right, right->start);
  2595. btrfs_set_header_generation(right, trans->transid);
  2596. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2597. btrfs_set_header_owner(right, root->root_key.objectid);
  2598. btrfs_set_header_level(right, 0);
  2599. write_extent_buffer(right, root->fs_info->fsid,
  2600. (unsigned long)btrfs_header_fsid(right),
  2601. BTRFS_FSID_SIZE);
  2602. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2603. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2604. BTRFS_UUID_SIZE);
  2605. if (split == 0) {
  2606. if (mid <= slot) {
  2607. btrfs_set_header_nritems(right, 0);
  2608. wret = insert_ptr(trans, root, path,
  2609. &disk_key, right->start,
  2610. path->slots[1] + 1, 1);
  2611. if (wret)
  2612. ret = wret;
  2613. btrfs_tree_unlock(path->nodes[0]);
  2614. free_extent_buffer(path->nodes[0]);
  2615. path->nodes[0] = right;
  2616. path->slots[0] = 0;
  2617. path->slots[1] += 1;
  2618. } else {
  2619. btrfs_set_header_nritems(right, 0);
  2620. wret = insert_ptr(trans, root, path,
  2621. &disk_key,
  2622. right->start,
  2623. path->slots[1], 1);
  2624. if (wret)
  2625. ret = wret;
  2626. btrfs_tree_unlock(path->nodes[0]);
  2627. free_extent_buffer(path->nodes[0]);
  2628. path->nodes[0] = right;
  2629. path->slots[0] = 0;
  2630. if (path->slots[1] == 0) {
  2631. wret = fixup_low_keys(trans, root,
  2632. path, &disk_key, 1);
  2633. if (wret)
  2634. ret = wret;
  2635. }
  2636. }
  2637. btrfs_mark_buffer_dirty(right);
  2638. return ret;
  2639. }
  2640. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2641. BUG_ON(ret);
  2642. if (split == 2) {
  2643. BUG_ON(num_doubles != 0);
  2644. num_doubles++;
  2645. goto again;
  2646. }
  2647. return ret;
  2648. push_for_double:
  2649. push_for_double_split(trans, root, path, data_size);
  2650. tried_avoid_double = 1;
  2651. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2652. return 0;
  2653. goto again;
  2654. }
  2655. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2656. struct btrfs_root *root,
  2657. struct btrfs_path *path, int ins_len)
  2658. {
  2659. struct btrfs_key key;
  2660. struct extent_buffer *leaf;
  2661. struct btrfs_file_extent_item *fi;
  2662. u64 extent_len = 0;
  2663. u32 item_size;
  2664. int ret;
  2665. leaf = path->nodes[0];
  2666. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2667. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2668. key.type != BTRFS_EXTENT_CSUM_KEY);
  2669. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2670. return 0;
  2671. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2672. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2673. fi = btrfs_item_ptr(leaf, path->slots[0],
  2674. struct btrfs_file_extent_item);
  2675. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2676. }
  2677. btrfs_release_path(path);
  2678. path->keep_locks = 1;
  2679. path->search_for_split = 1;
  2680. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2681. path->search_for_split = 0;
  2682. if (ret < 0)
  2683. goto err;
  2684. ret = -EAGAIN;
  2685. leaf = path->nodes[0];
  2686. /* if our item isn't there or got smaller, return now */
  2687. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2688. goto err;
  2689. /* the leaf has changed, it now has room. return now */
  2690. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2691. goto err;
  2692. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2693. fi = btrfs_item_ptr(leaf, path->slots[0],
  2694. struct btrfs_file_extent_item);
  2695. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2696. goto err;
  2697. }
  2698. btrfs_set_path_blocking(path);
  2699. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2700. if (ret)
  2701. goto err;
  2702. path->keep_locks = 0;
  2703. btrfs_unlock_up_safe(path, 1);
  2704. return 0;
  2705. err:
  2706. path->keep_locks = 0;
  2707. return ret;
  2708. }
  2709. static noinline int split_item(struct btrfs_trans_handle *trans,
  2710. struct btrfs_root *root,
  2711. struct btrfs_path *path,
  2712. struct btrfs_key *new_key,
  2713. unsigned long split_offset)
  2714. {
  2715. struct extent_buffer *leaf;
  2716. struct btrfs_item *item;
  2717. struct btrfs_item *new_item;
  2718. int slot;
  2719. char *buf;
  2720. u32 nritems;
  2721. u32 item_size;
  2722. u32 orig_offset;
  2723. struct btrfs_disk_key disk_key;
  2724. leaf = path->nodes[0];
  2725. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2726. btrfs_set_path_blocking(path);
  2727. item = btrfs_item_nr(leaf, path->slots[0]);
  2728. orig_offset = btrfs_item_offset(leaf, item);
  2729. item_size = btrfs_item_size(leaf, item);
  2730. buf = kmalloc(item_size, GFP_NOFS);
  2731. if (!buf)
  2732. return -ENOMEM;
  2733. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2734. path->slots[0]), item_size);
  2735. slot = path->slots[0] + 1;
  2736. nritems = btrfs_header_nritems(leaf);
  2737. if (slot != nritems) {
  2738. /* shift the items */
  2739. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2740. btrfs_item_nr_offset(slot),
  2741. (nritems - slot) * sizeof(struct btrfs_item));
  2742. }
  2743. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2744. btrfs_set_item_key(leaf, &disk_key, slot);
  2745. new_item = btrfs_item_nr(leaf, slot);
  2746. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2747. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2748. btrfs_set_item_offset(leaf, item,
  2749. orig_offset + item_size - split_offset);
  2750. btrfs_set_item_size(leaf, item, split_offset);
  2751. btrfs_set_header_nritems(leaf, nritems + 1);
  2752. /* write the data for the start of the original item */
  2753. write_extent_buffer(leaf, buf,
  2754. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2755. split_offset);
  2756. /* write the data for the new item */
  2757. write_extent_buffer(leaf, buf + split_offset,
  2758. btrfs_item_ptr_offset(leaf, slot),
  2759. item_size - split_offset);
  2760. btrfs_mark_buffer_dirty(leaf);
  2761. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2762. kfree(buf);
  2763. return 0;
  2764. }
  2765. /*
  2766. * This function splits a single item into two items,
  2767. * giving 'new_key' to the new item and splitting the
  2768. * old one at split_offset (from the start of the item).
  2769. *
  2770. * The path may be released by this operation. After
  2771. * the split, the path is pointing to the old item. The
  2772. * new item is going to be in the same node as the old one.
  2773. *
  2774. * Note, the item being split must be smaller enough to live alone on
  2775. * a tree block with room for one extra struct btrfs_item
  2776. *
  2777. * This allows us to split the item in place, keeping a lock on the
  2778. * leaf the entire time.
  2779. */
  2780. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2781. struct btrfs_root *root,
  2782. struct btrfs_path *path,
  2783. struct btrfs_key *new_key,
  2784. unsigned long split_offset)
  2785. {
  2786. int ret;
  2787. ret = setup_leaf_for_split(trans, root, path,
  2788. sizeof(struct btrfs_item));
  2789. if (ret)
  2790. return ret;
  2791. ret = split_item(trans, root, path, new_key, split_offset);
  2792. return ret;
  2793. }
  2794. /*
  2795. * This function duplicate a item, giving 'new_key' to the new item.
  2796. * It guarantees both items live in the same tree leaf and the new item
  2797. * is contiguous with the original item.
  2798. *
  2799. * This allows us to split file extent in place, keeping a lock on the
  2800. * leaf the entire time.
  2801. */
  2802. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2803. struct btrfs_root *root,
  2804. struct btrfs_path *path,
  2805. struct btrfs_key *new_key)
  2806. {
  2807. struct extent_buffer *leaf;
  2808. int ret;
  2809. u32 item_size;
  2810. leaf = path->nodes[0];
  2811. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2812. ret = setup_leaf_for_split(trans, root, path,
  2813. item_size + sizeof(struct btrfs_item));
  2814. if (ret)
  2815. return ret;
  2816. path->slots[0]++;
  2817. ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
  2818. item_size, item_size +
  2819. sizeof(struct btrfs_item), 1);
  2820. BUG_ON(ret);
  2821. leaf = path->nodes[0];
  2822. memcpy_extent_buffer(leaf,
  2823. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2824. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2825. item_size);
  2826. return 0;
  2827. }
  2828. /*
  2829. * make the item pointed to by the path smaller. new_size indicates
  2830. * how small to make it, and from_end tells us if we just chop bytes
  2831. * off the end of the item or if we shift the item to chop bytes off
  2832. * the front.
  2833. */
  2834. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2835. struct btrfs_root *root,
  2836. struct btrfs_path *path,
  2837. u32 new_size, int from_end)
  2838. {
  2839. int ret = 0;
  2840. int slot;
  2841. struct extent_buffer *leaf;
  2842. struct btrfs_item *item;
  2843. u32 nritems;
  2844. unsigned int data_end;
  2845. unsigned int old_data_start;
  2846. unsigned int old_size;
  2847. unsigned int size_diff;
  2848. int i;
  2849. leaf = path->nodes[0];
  2850. slot = path->slots[0];
  2851. old_size = btrfs_item_size_nr(leaf, slot);
  2852. if (old_size == new_size)
  2853. return 0;
  2854. nritems = btrfs_header_nritems(leaf);
  2855. data_end = leaf_data_end(root, leaf);
  2856. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2857. size_diff = old_size - new_size;
  2858. BUG_ON(slot < 0);
  2859. BUG_ON(slot >= nritems);
  2860. /*
  2861. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2862. */
  2863. /* first correct the data pointers */
  2864. for (i = slot; i < nritems; i++) {
  2865. u32 ioff;
  2866. item = btrfs_item_nr(leaf, i);
  2867. if (!leaf->map_token) {
  2868. map_extent_buffer(leaf, (unsigned long)item,
  2869. sizeof(struct btrfs_item),
  2870. &leaf->map_token, &leaf->kaddr,
  2871. &leaf->map_start, &leaf->map_len,
  2872. KM_USER1);
  2873. }
  2874. ioff = btrfs_item_offset(leaf, item);
  2875. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2876. }
  2877. if (leaf->map_token) {
  2878. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2879. leaf->map_token = NULL;
  2880. }
  2881. /* shift the data */
  2882. if (from_end) {
  2883. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2884. data_end + size_diff, btrfs_leaf_data(leaf) +
  2885. data_end, old_data_start + new_size - data_end);
  2886. } else {
  2887. struct btrfs_disk_key disk_key;
  2888. u64 offset;
  2889. btrfs_item_key(leaf, &disk_key, slot);
  2890. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2891. unsigned long ptr;
  2892. struct btrfs_file_extent_item *fi;
  2893. fi = btrfs_item_ptr(leaf, slot,
  2894. struct btrfs_file_extent_item);
  2895. fi = (struct btrfs_file_extent_item *)(
  2896. (unsigned long)fi - size_diff);
  2897. if (btrfs_file_extent_type(leaf, fi) ==
  2898. BTRFS_FILE_EXTENT_INLINE) {
  2899. ptr = btrfs_item_ptr_offset(leaf, slot);
  2900. memmove_extent_buffer(leaf, ptr,
  2901. (unsigned long)fi,
  2902. offsetof(struct btrfs_file_extent_item,
  2903. disk_bytenr));
  2904. }
  2905. }
  2906. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2907. data_end + size_diff, btrfs_leaf_data(leaf) +
  2908. data_end, old_data_start - data_end);
  2909. offset = btrfs_disk_key_offset(&disk_key);
  2910. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2911. btrfs_set_item_key(leaf, &disk_key, slot);
  2912. if (slot == 0)
  2913. fixup_low_keys(trans, root, path, &disk_key, 1);
  2914. }
  2915. item = btrfs_item_nr(leaf, slot);
  2916. btrfs_set_item_size(leaf, item, new_size);
  2917. btrfs_mark_buffer_dirty(leaf);
  2918. ret = 0;
  2919. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2920. btrfs_print_leaf(root, leaf);
  2921. BUG();
  2922. }
  2923. return ret;
  2924. }
  2925. /*
  2926. * make the item pointed to by the path bigger, data_size is the new size.
  2927. */
  2928. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2929. struct btrfs_root *root, struct btrfs_path *path,
  2930. u32 data_size)
  2931. {
  2932. int ret = 0;
  2933. int slot;
  2934. struct extent_buffer *leaf;
  2935. struct btrfs_item *item;
  2936. u32 nritems;
  2937. unsigned int data_end;
  2938. unsigned int old_data;
  2939. unsigned int old_size;
  2940. int i;
  2941. leaf = path->nodes[0];
  2942. nritems = btrfs_header_nritems(leaf);
  2943. data_end = leaf_data_end(root, leaf);
  2944. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2945. btrfs_print_leaf(root, leaf);
  2946. BUG();
  2947. }
  2948. slot = path->slots[0];
  2949. old_data = btrfs_item_end_nr(leaf, slot);
  2950. BUG_ON(slot < 0);
  2951. if (slot >= nritems) {
  2952. btrfs_print_leaf(root, leaf);
  2953. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2954. slot, nritems);
  2955. BUG_ON(1);
  2956. }
  2957. /*
  2958. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2959. */
  2960. /* first correct the data pointers */
  2961. for (i = slot; i < nritems; i++) {
  2962. u32 ioff;
  2963. item = btrfs_item_nr(leaf, i);
  2964. if (!leaf->map_token) {
  2965. map_extent_buffer(leaf, (unsigned long)item,
  2966. sizeof(struct btrfs_item),
  2967. &leaf->map_token, &leaf->kaddr,
  2968. &leaf->map_start, &leaf->map_len,
  2969. KM_USER1);
  2970. }
  2971. ioff = btrfs_item_offset(leaf, item);
  2972. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2973. }
  2974. if (leaf->map_token) {
  2975. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2976. leaf->map_token = NULL;
  2977. }
  2978. /* shift the data */
  2979. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2980. data_end - data_size, btrfs_leaf_data(leaf) +
  2981. data_end, old_data - data_end);
  2982. data_end = old_data;
  2983. old_size = btrfs_item_size_nr(leaf, slot);
  2984. item = btrfs_item_nr(leaf, slot);
  2985. btrfs_set_item_size(leaf, item, old_size + data_size);
  2986. btrfs_mark_buffer_dirty(leaf);
  2987. ret = 0;
  2988. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2989. btrfs_print_leaf(root, leaf);
  2990. BUG();
  2991. }
  2992. return ret;
  2993. }
  2994. /*
  2995. * Given a key and some data, insert items into the tree.
  2996. * This does all the path init required, making room in the tree if needed.
  2997. * Returns the number of keys that were inserted.
  2998. */
  2999. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3000. struct btrfs_root *root,
  3001. struct btrfs_path *path,
  3002. struct btrfs_key *cpu_key, u32 *data_size,
  3003. int nr)
  3004. {
  3005. struct extent_buffer *leaf;
  3006. struct btrfs_item *item;
  3007. int ret = 0;
  3008. int slot;
  3009. int i;
  3010. u32 nritems;
  3011. u32 total_data = 0;
  3012. u32 total_size = 0;
  3013. unsigned int data_end;
  3014. struct btrfs_disk_key disk_key;
  3015. struct btrfs_key found_key;
  3016. for (i = 0; i < nr; i++) {
  3017. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3018. BTRFS_LEAF_DATA_SIZE(root)) {
  3019. break;
  3020. nr = i;
  3021. }
  3022. total_data += data_size[i];
  3023. total_size += data_size[i] + sizeof(struct btrfs_item);
  3024. }
  3025. BUG_ON(nr == 0);
  3026. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3027. if (ret == 0)
  3028. return -EEXIST;
  3029. if (ret < 0)
  3030. goto out;
  3031. leaf = path->nodes[0];
  3032. nritems = btrfs_header_nritems(leaf);
  3033. data_end = leaf_data_end(root, leaf);
  3034. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3035. for (i = nr; i >= 0; i--) {
  3036. total_data -= data_size[i];
  3037. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3038. if (total_size < btrfs_leaf_free_space(root, leaf))
  3039. break;
  3040. }
  3041. nr = i;
  3042. }
  3043. slot = path->slots[0];
  3044. BUG_ON(slot < 0);
  3045. if (slot != nritems) {
  3046. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3047. item = btrfs_item_nr(leaf, slot);
  3048. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3049. /* figure out how many keys we can insert in here */
  3050. total_data = data_size[0];
  3051. for (i = 1; i < nr; i++) {
  3052. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3053. break;
  3054. total_data += data_size[i];
  3055. }
  3056. nr = i;
  3057. if (old_data < data_end) {
  3058. btrfs_print_leaf(root, leaf);
  3059. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3060. slot, old_data, data_end);
  3061. BUG_ON(1);
  3062. }
  3063. /*
  3064. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3065. */
  3066. /* first correct the data pointers */
  3067. WARN_ON(leaf->map_token);
  3068. for (i = slot; i < nritems; i++) {
  3069. u32 ioff;
  3070. item = btrfs_item_nr(leaf, i);
  3071. if (!leaf->map_token) {
  3072. map_extent_buffer(leaf, (unsigned long)item,
  3073. sizeof(struct btrfs_item),
  3074. &leaf->map_token, &leaf->kaddr,
  3075. &leaf->map_start, &leaf->map_len,
  3076. KM_USER1);
  3077. }
  3078. ioff = btrfs_item_offset(leaf, item);
  3079. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3080. }
  3081. if (leaf->map_token) {
  3082. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3083. leaf->map_token = NULL;
  3084. }
  3085. /* shift the items */
  3086. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3087. btrfs_item_nr_offset(slot),
  3088. (nritems - slot) * sizeof(struct btrfs_item));
  3089. /* shift the data */
  3090. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3091. data_end - total_data, btrfs_leaf_data(leaf) +
  3092. data_end, old_data - data_end);
  3093. data_end = old_data;
  3094. } else {
  3095. /*
  3096. * this sucks but it has to be done, if we are inserting at
  3097. * the end of the leaf only insert 1 of the items, since we
  3098. * have no way of knowing whats on the next leaf and we'd have
  3099. * to drop our current locks to figure it out
  3100. */
  3101. nr = 1;
  3102. }
  3103. /* setup the item for the new data */
  3104. for (i = 0; i < nr; i++) {
  3105. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3106. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3107. item = btrfs_item_nr(leaf, slot + i);
  3108. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3109. data_end -= data_size[i];
  3110. btrfs_set_item_size(leaf, item, data_size[i]);
  3111. }
  3112. btrfs_set_header_nritems(leaf, nritems + nr);
  3113. btrfs_mark_buffer_dirty(leaf);
  3114. ret = 0;
  3115. if (slot == 0) {
  3116. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3117. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3118. }
  3119. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3120. btrfs_print_leaf(root, leaf);
  3121. BUG();
  3122. }
  3123. out:
  3124. if (!ret)
  3125. ret = nr;
  3126. return ret;
  3127. }
  3128. /*
  3129. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3130. * to save stack depth by doing the bulk of the work in a function
  3131. * that doesn't call btrfs_search_slot
  3132. */
  3133. int setup_items_for_insert(struct btrfs_trans_handle *trans,
  3134. struct btrfs_root *root, struct btrfs_path *path,
  3135. struct btrfs_key *cpu_key, u32 *data_size,
  3136. u32 total_data, u32 total_size, int nr)
  3137. {
  3138. struct btrfs_item *item;
  3139. int i;
  3140. u32 nritems;
  3141. unsigned int data_end;
  3142. struct btrfs_disk_key disk_key;
  3143. int ret;
  3144. struct extent_buffer *leaf;
  3145. int slot;
  3146. leaf = path->nodes[0];
  3147. slot = path->slots[0];
  3148. nritems = btrfs_header_nritems(leaf);
  3149. data_end = leaf_data_end(root, leaf);
  3150. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3151. btrfs_print_leaf(root, leaf);
  3152. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3153. total_size, btrfs_leaf_free_space(root, leaf));
  3154. BUG();
  3155. }
  3156. if (slot != nritems) {
  3157. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3158. if (old_data < data_end) {
  3159. btrfs_print_leaf(root, leaf);
  3160. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3161. slot, old_data, data_end);
  3162. BUG_ON(1);
  3163. }
  3164. /*
  3165. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3166. */
  3167. /* first correct the data pointers */
  3168. WARN_ON(leaf->map_token);
  3169. for (i = slot; i < nritems; i++) {
  3170. u32 ioff;
  3171. item = btrfs_item_nr(leaf, i);
  3172. if (!leaf->map_token) {
  3173. map_extent_buffer(leaf, (unsigned long)item,
  3174. sizeof(struct btrfs_item),
  3175. &leaf->map_token, &leaf->kaddr,
  3176. &leaf->map_start, &leaf->map_len,
  3177. KM_USER1);
  3178. }
  3179. ioff = btrfs_item_offset(leaf, item);
  3180. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3181. }
  3182. if (leaf->map_token) {
  3183. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3184. leaf->map_token = NULL;
  3185. }
  3186. /* shift the items */
  3187. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3188. btrfs_item_nr_offset(slot),
  3189. (nritems - slot) * sizeof(struct btrfs_item));
  3190. /* shift the data */
  3191. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3192. data_end - total_data, btrfs_leaf_data(leaf) +
  3193. data_end, old_data - data_end);
  3194. data_end = old_data;
  3195. }
  3196. /* setup the item for the new data */
  3197. for (i = 0; i < nr; i++) {
  3198. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3199. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3200. item = btrfs_item_nr(leaf, slot + i);
  3201. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3202. data_end -= data_size[i];
  3203. btrfs_set_item_size(leaf, item, data_size[i]);
  3204. }
  3205. btrfs_set_header_nritems(leaf, nritems + nr);
  3206. ret = 0;
  3207. if (slot == 0) {
  3208. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3209. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3210. }
  3211. btrfs_unlock_up_safe(path, 1);
  3212. btrfs_mark_buffer_dirty(leaf);
  3213. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3214. btrfs_print_leaf(root, leaf);
  3215. BUG();
  3216. }
  3217. return ret;
  3218. }
  3219. /*
  3220. * Given a key and some data, insert items into the tree.
  3221. * This does all the path init required, making room in the tree if needed.
  3222. */
  3223. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3224. struct btrfs_root *root,
  3225. struct btrfs_path *path,
  3226. struct btrfs_key *cpu_key, u32 *data_size,
  3227. int nr)
  3228. {
  3229. int ret = 0;
  3230. int slot;
  3231. int i;
  3232. u32 total_size = 0;
  3233. u32 total_data = 0;
  3234. for (i = 0; i < nr; i++)
  3235. total_data += data_size[i];
  3236. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3237. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3238. if (ret == 0)
  3239. return -EEXIST;
  3240. if (ret < 0)
  3241. goto out;
  3242. slot = path->slots[0];
  3243. BUG_ON(slot < 0);
  3244. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3245. total_data, total_size, nr);
  3246. out:
  3247. return ret;
  3248. }
  3249. /*
  3250. * Given a key and some data, insert an item into the tree.
  3251. * This does all the path init required, making room in the tree if needed.
  3252. */
  3253. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3254. *root, struct btrfs_key *cpu_key, void *data, u32
  3255. data_size)
  3256. {
  3257. int ret = 0;
  3258. struct btrfs_path *path;
  3259. struct extent_buffer *leaf;
  3260. unsigned long ptr;
  3261. path = btrfs_alloc_path();
  3262. if (!path)
  3263. return -ENOMEM;
  3264. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3265. if (!ret) {
  3266. leaf = path->nodes[0];
  3267. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3268. write_extent_buffer(leaf, data, ptr, data_size);
  3269. btrfs_mark_buffer_dirty(leaf);
  3270. }
  3271. btrfs_free_path(path);
  3272. return ret;
  3273. }
  3274. /*
  3275. * delete the pointer from a given node.
  3276. *
  3277. * the tree should have been previously balanced so the deletion does not
  3278. * empty a node.
  3279. */
  3280. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3281. struct btrfs_path *path, int level, int slot)
  3282. {
  3283. struct extent_buffer *parent = path->nodes[level];
  3284. u32 nritems;
  3285. int ret = 0;
  3286. int wret;
  3287. nritems = btrfs_header_nritems(parent);
  3288. if (slot != nritems - 1) {
  3289. memmove_extent_buffer(parent,
  3290. btrfs_node_key_ptr_offset(slot),
  3291. btrfs_node_key_ptr_offset(slot + 1),
  3292. sizeof(struct btrfs_key_ptr) *
  3293. (nritems - slot - 1));
  3294. }
  3295. nritems--;
  3296. btrfs_set_header_nritems(parent, nritems);
  3297. if (nritems == 0 && parent == root->node) {
  3298. BUG_ON(btrfs_header_level(root->node) != 1);
  3299. /* just turn the root into a leaf and break */
  3300. btrfs_set_header_level(root->node, 0);
  3301. } else if (slot == 0) {
  3302. struct btrfs_disk_key disk_key;
  3303. btrfs_node_key(parent, &disk_key, 0);
  3304. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3305. if (wret)
  3306. ret = wret;
  3307. }
  3308. btrfs_mark_buffer_dirty(parent);
  3309. return ret;
  3310. }
  3311. /*
  3312. * a helper function to delete the leaf pointed to by path->slots[1] and
  3313. * path->nodes[1].
  3314. *
  3315. * This deletes the pointer in path->nodes[1] and frees the leaf
  3316. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3317. *
  3318. * The path must have already been setup for deleting the leaf, including
  3319. * all the proper balancing. path->nodes[1] must be locked.
  3320. */
  3321. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3322. struct btrfs_root *root,
  3323. struct btrfs_path *path,
  3324. struct extent_buffer *leaf)
  3325. {
  3326. int ret;
  3327. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3328. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3329. if (ret)
  3330. return ret;
  3331. /*
  3332. * btrfs_free_extent is expensive, we want to make sure we
  3333. * aren't holding any locks when we call it
  3334. */
  3335. btrfs_unlock_up_safe(path, 0);
  3336. root_sub_used(root, leaf->len);
  3337. btrfs_free_tree_block(trans, root, leaf, 0, 1);
  3338. return 0;
  3339. }
  3340. /*
  3341. * delete the item at the leaf level in path. If that empties
  3342. * the leaf, remove it from the tree
  3343. */
  3344. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3345. struct btrfs_path *path, int slot, int nr)
  3346. {
  3347. struct extent_buffer *leaf;
  3348. struct btrfs_item *item;
  3349. int last_off;
  3350. int dsize = 0;
  3351. int ret = 0;
  3352. int wret;
  3353. int i;
  3354. u32 nritems;
  3355. leaf = path->nodes[0];
  3356. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3357. for (i = 0; i < nr; i++)
  3358. dsize += btrfs_item_size_nr(leaf, slot + i);
  3359. nritems = btrfs_header_nritems(leaf);
  3360. if (slot + nr != nritems) {
  3361. int data_end = leaf_data_end(root, leaf);
  3362. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3363. data_end + dsize,
  3364. btrfs_leaf_data(leaf) + data_end,
  3365. last_off - data_end);
  3366. for (i = slot + nr; i < nritems; i++) {
  3367. u32 ioff;
  3368. item = btrfs_item_nr(leaf, i);
  3369. if (!leaf->map_token) {
  3370. map_extent_buffer(leaf, (unsigned long)item,
  3371. sizeof(struct btrfs_item),
  3372. &leaf->map_token, &leaf->kaddr,
  3373. &leaf->map_start, &leaf->map_len,
  3374. KM_USER1);
  3375. }
  3376. ioff = btrfs_item_offset(leaf, item);
  3377. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3378. }
  3379. if (leaf->map_token) {
  3380. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3381. leaf->map_token = NULL;
  3382. }
  3383. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3384. btrfs_item_nr_offset(slot + nr),
  3385. sizeof(struct btrfs_item) *
  3386. (nritems - slot - nr));
  3387. }
  3388. btrfs_set_header_nritems(leaf, nritems - nr);
  3389. nritems -= nr;
  3390. /* delete the leaf if we've emptied it */
  3391. if (nritems == 0) {
  3392. if (leaf == root->node) {
  3393. btrfs_set_header_level(leaf, 0);
  3394. } else {
  3395. btrfs_set_path_blocking(path);
  3396. clean_tree_block(trans, root, leaf);
  3397. ret = btrfs_del_leaf(trans, root, path, leaf);
  3398. BUG_ON(ret);
  3399. }
  3400. } else {
  3401. int used = leaf_space_used(leaf, 0, nritems);
  3402. if (slot == 0) {
  3403. struct btrfs_disk_key disk_key;
  3404. btrfs_item_key(leaf, &disk_key, 0);
  3405. wret = fixup_low_keys(trans, root, path,
  3406. &disk_key, 1);
  3407. if (wret)
  3408. ret = wret;
  3409. }
  3410. /* delete the leaf if it is mostly empty */
  3411. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3412. /* push_leaf_left fixes the path.
  3413. * make sure the path still points to our leaf
  3414. * for possible call to del_ptr below
  3415. */
  3416. slot = path->slots[1];
  3417. extent_buffer_get(leaf);
  3418. btrfs_set_path_blocking(path);
  3419. wret = push_leaf_left(trans, root, path, 1, 1,
  3420. 1, (u32)-1);
  3421. if (wret < 0 && wret != -ENOSPC)
  3422. ret = wret;
  3423. if (path->nodes[0] == leaf &&
  3424. btrfs_header_nritems(leaf)) {
  3425. wret = push_leaf_right(trans, root, path, 1,
  3426. 1, 1, 0);
  3427. if (wret < 0 && wret != -ENOSPC)
  3428. ret = wret;
  3429. }
  3430. if (btrfs_header_nritems(leaf) == 0) {
  3431. path->slots[1] = slot;
  3432. ret = btrfs_del_leaf(trans, root, path, leaf);
  3433. BUG_ON(ret);
  3434. free_extent_buffer(leaf);
  3435. } else {
  3436. /* if we're still in the path, make sure
  3437. * we're dirty. Otherwise, one of the
  3438. * push_leaf functions must have already
  3439. * dirtied this buffer
  3440. */
  3441. if (path->nodes[0] == leaf)
  3442. btrfs_mark_buffer_dirty(leaf);
  3443. free_extent_buffer(leaf);
  3444. }
  3445. } else {
  3446. btrfs_mark_buffer_dirty(leaf);
  3447. }
  3448. }
  3449. return ret;
  3450. }
  3451. /*
  3452. * search the tree again to find a leaf with lesser keys
  3453. * returns 0 if it found something or 1 if there are no lesser leaves.
  3454. * returns < 0 on io errors.
  3455. *
  3456. * This may release the path, and so you may lose any locks held at the
  3457. * time you call it.
  3458. */
  3459. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3460. {
  3461. struct btrfs_key key;
  3462. struct btrfs_disk_key found_key;
  3463. int ret;
  3464. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3465. if (key.offset > 0)
  3466. key.offset--;
  3467. else if (key.type > 0)
  3468. key.type--;
  3469. else if (key.objectid > 0)
  3470. key.objectid--;
  3471. else
  3472. return 1;
  3473. btrfs_release_path(path);
  3474. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3475. if (ret < 0)
  3476. return ret;
  3477. btrfs_item_key(path->nodes[0], &found_key, 0);
  3478. ret = comp_keys(&found_key, &key);
  3479. if (ret < 0)
  3480. return 0;
  3481. return 1;
  3482. }
  3483. /*
  3484. * A helper function to walk down the tree starting at min_key, and looking
  3485. * for nodes or leaves that are either in cache or have a minimum
  3486. * transaction id. This is used by the btree defrag code, and tree logging
  3487. *
  3488. * This does not cow, but it does stuff the starting key it finds back
  3489. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3490. * key and get a writable path.
  3491. *
  3492. * This does lock as it descends, and path->keep_locks should be set
  3493. * to 1 by the caller.
  3494. *
  3495. * This honors path->lowest_level to prevent descent past a given level
  3496. * of the tree.
  3497. *
  3498. * min_trans indicates the oldest transaction that you are interested
  3499. * in walking through. Any nodes or leaves older than min_trans are
  3500. * skipped over (without reading them).
  3501. *
  3502. * returns zero if something useful was found, < 0 on error and 1 if there
  3503. * was nothing in the tree that matched the search criteria.
  3504. */
  3505. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3506. struct btrfs_key *max_key,
  3507. struct btrfs_path *path, int cache_only,
  3508. u64 min_trans)
  3509. {
  3510. struct extent_buffer *cur;
  3511. struct btrfs_key found_key;
  3512. int slot;
  3513. int sret;
  3514. u32 nritems;
  3515. int level;
  3516. int ret = 1;
  3517. WARN_ON(!path->keep_locks);
  3518. again:
  3519. cur = btrfs_lock_root_node(root);
  3520. level = btrfs_header_level(cur);
  3521. WARN_ON(path->nodes[level]);
  3522. path->nodes[level] = cur;
  3523. path->locks[level] = 1;
  3524. if (btrfs_header_generation(cur) < min_trans) {
  3525. ret = 1;
  3526. goto out;
  3527. }
  3528. while (1) {
  3529. nritems = btrfs_header_nritems(cur);
  3530. level = btrfs_header_level(cur);
  3531. sret = bin_search(cur, min_key, level, &slot);
  3532. /* at the lowest level, we're done, setup the path and exit */
  3533. if (level == path->lowest_level) {
  3534. if (slot >= nritems)
  3535. goto find_next_key;
  3536. ret = 0;
  3537. path->slots[level] = slot;
  3538. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3539. goto out;
  3540. }
  3541. if (sret && slot > 0)
  3542. slot--;
  3543. /*
  3544. * check this node pointer against the cache_only and
  3545. * min_trans parameters. If it isn't in cache or is too
  3546. * old, skip to the next one.
  3547. */
  3548. while (slot < nritems) {
  3549. u64 blockptr;
  3550. u64 gen;
  3551. struct extent_buffer *tmp;
  3552. struct btrfs_disk_key disk_key;
  3553. blockptr = btrfs_node_blockptr(cur, slot);
  3554. gen = btrfs_node_ptr_generation(cur, slot);
  3555. if (gen < min_trans) {
  3556. slot++;
  3557. continue;
  3558. }
  3559. if (!cache_only)
  3560. break;
  3561. if (max_key) {
  3562. btrfs_node_key(cur, &disk_key, slot);
  3563. if (comp_keys(&disk_key, max_key) >= 0) {
  3564. ret = 1;
  3565. goto out;
  3566. }
  3567. }
  3568. tmp = btrfs_find_tree_block(root, blockptr,
  3569. btrfs_level_size(root, level - 1));
  3570. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3571. free_extent_buffer(tmp);
  3572. break;
  3573. }
  3574. if (tmp)
  3575. free_extent_buffer(tmp);
  3576. slot++;
  3577. }
  3578. find_next_key:
  3579. /*
  3580. * we didn't find a candidate key in this node, walk forward
  3581. * and find another one
  3582. */
  3583. if (slot >= nritems) {
  3584. path->slots[level] = slot;
  3585. btrfs_set_path_blocking(path);
  3586. sret = btrfs_find_next_key(root, path, min_key, level,
  3587. cache_only, min_trans);
  3588. if (sret == 0) {
  3589. btrfs_release_path(path);
  3590. goto again;
  3591. } else {
  3592. goto out;
  3593. }
  3594. }
  3595. /* save our key for returning back */
  3596. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3597. path->slots[level] = slot;
  3598. if (level == path->lowest_level) {
  3599. ret = 0;
  3600. unlock_up(path, level, 1);
  3601. goto out;
  3602. }
  3603. btrfs_set_path_blocking(path);
  3604. cur = read_node_slot(root, cur, slot);
  3605. BUG_ON(!cur);
  3606. btrfs_tree_lock(cur);
  3607. path->locks[level - 1] = 1;
  3608. path->nodes[level - 1] = cur;
  3609. unlock_up(path, level, 1);
  3610. btrfs_clear_path_blocking(path, NULL);
  3611. }
  3612. out:
  3613. if (ret == 0)
  3614. memcpy(min_key, &found_key, sizeof(found_key));
  3615. btrfs_set_path_blocking(path);
  3616. return ret;
  3617. }
  3618. /*
  3619. * this is similar to btrfs_next_leaf, but does not try to preserve
  3620. * and fixup the path. It looks for and returns the next key in the
  3621. * tree based on the current path and the cache_only and min_trans
  3622. * parameters.
  3623. *
  3624. * 0 is returned if another key is found, < 0 if there are any errors
  3625. * and 1 is returned if there are no higher keys in the tree
  3626. *
  3627. * path->keep_locks should be set to 1 on the search made before
  3628. * calling this function.
  3629. */
  3630. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3631. struct btrfs_key *key, int level,
  3632. int cache_only, u64 min_trans)
  3633. {
  3634. int slot;
  3635. struct extent_buffer *c;
  3636. WARN_ON(!path->keep_locks);
  3637. while (level < BTRFS_MAX_LEVEL) {
  3638. if (!path->nodes[level])
  3639. return 1;
  3640. slot = path->slots[level] + 1;
  3641. c = path->nodes[level];
  3642. next:
  3643. if (slot >= btrfs_header_nritems(c)) {
  3644. int ret;
  3645. int orig_lowest;
  3646. struct btrfs_key cur_key;
  3647. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3648. !path->nodes[level + 1])
  3649. return 1;
  3650. if (path->locks[level + 1]) {
  3651. level++;
  3652. continue;
  3653. }
  3654. slot = btrfs_header_nritems(c) - 1;
  3655. if (level == 0)
  3656. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3657. else
  3658. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3659. orig_lowest = path->lowest_level;
  3660. btrfs_release_path(path);
  3661. path->lowest_level = level;
  3662. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3663. 0, 0);
  3664. path->lowest_level = orig_lowest;
  3665. if (ret < 0)
  3666. return ret;
  3667. c = path->nodes[level];
  3668. slot = path->slots[level];
  3669. if (ret == 0)
  3670. slot++;
  3671. goto next;
  3672. }
  3673. if (level == 0)
  3674. btrfs_item_key_to_cpu(c, key, slot);
  3675. else {
  3676. u64 blockptr = btrfs_node_blockptr(c, slot);
  3677. u64 gen = btrfs_node_ptr_generation(c, slot);
  3678. if (cache_only) {
  3679. struct extent_buffer *cur;
  3680. cur = btrfs_find_tree_block(root, blockptr,
  3681. btrfs_level_size(root, level - 1));
  3682. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3683. slot++;
  3684. if (cur)
  3685. free_extent_buffer(cur);
  3686. goto next;
  3687. }
  3688. free_extent_buffer(cur);
  3689. }
  3690. if (gen < min_trans) {
  3691. slot++;
  3692. goto next;
  3693. }
  3694. btrfs_node_key_to_cpu(c, key, slot);
  3695. }
  3696. return 0;
  3697. }
  3698. return 1;
  3699. }
  3700. /*
  3701. * search the tree again to find a leaf with greater keys
  3702. * returns 0 if it found something or 1 if there are no greater leaves.
  3703. * returns < 0 on io errors.
  3704. */
  3705. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3706. {
  3707. int slot;
  3708. int level;
  3709. struct extent_buffer *c;
  3710. struct extent_buffer *next;
  3711. struct btrfs_key key;
  3712. u32 nritems;
  3713. int ret;
  3714. int old_spinning = path->leave_spinning;
  3715. int force_blocking = 0;
  3716. nritems = btrfs_header_nritems(path->nodes[0]);
  3717. if (nritems == 0)
  3718. return 1;
  3719. /*
  3720. * we take the blocks in an order that upsets lockdep. Using
  3721. * blocking mode is the only way around it.
  3722. */
  3723. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  3724. force_blocking = 1;
  3725. #endif
  3726. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3727. again:
  3728. level = 1;
  3729. next = NULL;
  3730. btrfs_release_path(path);
  3731. path->keep_locks = 1;
  3732. if (!force_blocking)
  3733. path->leave_spinning = 1;
  3734. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3735. path->keep_locks = 0;
  3736. if (ret < 0)
  3737. return ret;
  3738. nritems = btrfs_header_nritems(path->nodes[0]);
  3739. /*
  3740. * by releasing the path above we dropped all our locks. A balance
  3741. * could have added more items next to the key that used to be
  3742. * at the very end of the block. So, check again here and
  3743. * advance the path if there are now more items available.
  3744. */
  3745. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3746. if (ret == 0)
  3747. path->slots[0]++;
  3748. ret = 0;
  3749. goto done;
  3750. }
  3751. while (level < BTRFS_MAX_LEVEL) {
  3752. if (!path->nodes[level]) {
  3753. ret = 1;
  3754. goto done;
  3755. }
  3756. slot = path->slots[level] + 1;
  3757. c = path->nodes[level];
  3758. if (slot >= btrfs_header_nritems(c)) {
  3759. level++;
  3760. if (level == BTRFS_MAX_LEVEL) {
  3761. ret = 1;
  3762. goto done;
  3763. }
  3764. continue;
  3765. }
  3766. if (next) {
  3767. btrfs_tree_unlock(next);
  3768. free_extent_buffer(next);
  3769. }
  3770. next = c;
  3771. ret = read_block_for_search(NULL, root, path, &next, level,
  3772. slot, &key);
  3773. if (ret == -EAGAIN)
  3774. goto again;
  3775. if (ret < 0) {
  3776. btrfs_release_path(path);
  3777. goto done;
  3778. }
  3779. if (!path->skip_locking) {
  3780. ret = btrfs_try_spin_lock(next);
  3781. if (!ret) {
  3782. btrfs_set_path_blocking(path);
  3783. btrfs_tree_lock(next);
  3784. if (!force_blocking)
  3785. btrfs_clear_path_blocking(path, next);
  3786. }
  3787. if (force_blocking)
  3788. btrfs_set_lock_blocking(next);
  3789. }
  3790. break;
  3791. }
  3792. path->slots[level] = slot;
  3793. while (1) {
  3794. level--;
  3795. c = path->nodes[level];
  3796. if (path->locks[level])
  3797. btrfs_tree_unlock(c);
  3798. free_extent_buffer(c);
  3799. path->nodes[level] = next;
  3800. path->slots[level] = 0;
  3801. if (!path->skip_locking)
  3802. path->locks[level] = 1;
  3803. if (!level)
  3804. break;
  3805. ret = read_block_for_search(NULL, root, path, &next, level,
  3806. 0, &key);
  3807. if (ret == -EAGAIN)
  3808. goto again;
  3809. if (ret < 0) {
  3810. btrfs_release_path(path);
  3811. goto done;
  3812. }
  3813. if (!path->skip_locking) {
  3814. btrfs_assert_tree_locked(path->nodes[level]);
  3815. ret = btrfs_try_spin_lock(next);
  3816. if (!ret) {
  3817. btrfs_set_path_blocking(path);
  3818. btrfs_tree_lock(next);
  3819. if (!force_blocking)
  3820. btrfs_clear_path_blocking(path, next);
  3821. }
  3822. if (force_blocking)
  3823. btrfs_set_lock_blocking(next);
  3824. }
  3825. }
  3826. ret = 0;
  3827. done:
  3828. unlock_up(path, 0, 1);
  3829. path->leave_spinning = old_spinning;
  3830. if (!old_spinning)
  3831. btrfs_set_path_blocking(path);
  3832. return ret;
  3833. }
  3834. /*
  3835. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3836. * searching until it gets past min_objectid or finds an item of 'type'
  3837. *
  3838. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3839. */
  3840. int btrfs_previous_item(struct btrfs_root *root,
  3841. struct btrfs_path *path, u64 min_objectid,
  3842. int type)
  3843. {
  3844. struct btrfs_key found_key;
  3845. struct extent_buffer *leaf;
  3846. u32 nritems;
  3847. int ret;
  3848. while (1) {
  3849. if (path->slots[0] == 0) {
  3850. btrfs_set_path_blocking(path);
  3851. ret = btrfs_prev_leaf(root, path);
  3852. if (ret != 0)
  3853. return ret;
  3854. } else {
  3855. path->slots[0]--;
  3856. }
  3857. leaf = path->nodes[0];
  3858. nritems = btrfs_header_nritems(leaf);
  3859. if (nritems == 0)
  3860. return 1;
  3861. if (path->slots[0] == nritems)
  3862. path->slots[0]--;
  3863. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3864. if (found_key.objectid < min_objectid)
  3865. break;
  3866. if (found_key.type == type)
  3867. return 0;
  3868. if (found_key.objectid == min_objectid &&
  3869. found_key.type < type)
  3870. break;
  3871. }
  3872. return 1;
  3873. }