sched.c 159 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/syscalls.h>
  56. #include <linux/times.h>
  57. #include <linux/tsacct_kern.h>
  58. #include <linux/kprobes.h>
  59. #include <linux/delayacct.h>
  60. #include <linux/reciprocal_div.h>
  61. #include <linux/unistd.h>
  62. #include <asm/tlb.h>
  63. /*
  64. * Scheduler clock - returns current time in nanosec units.
  65. * This is default implementation.
  66. * Architectures and sub-architectures can override this.
  67. */
  68. unsigned long long __attribute__((weak)) sched_clock(void)
  69. {
  70. return (unsigned long long)jiffies * (1000000000 / HZ);
  71. }
  72. /*
  73. * Convert user-nice values [ -20 ... 0 ... 19 ]
  74. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  75. * and back.
  76. */
  77. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  78. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  79. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  80. /*
  81. * 'User priority' is the nice value converted to something we
  82. * can work with better when scaling various scheduler parameters,
  83. * it's a [ 0 ... 39 ] range.
  84. */
  85. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  86. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  87. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  88. /*
  89. * Some helpers for converting nanosecond timing to jiffy resolution
  90. */
  91. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  92. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  93. #define NICE_0_LOAD SCHED_LOAD_SCALE
  94. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  95. /*
  96. * These are the 'tuning knobs' of the scheduler:
  97. *
  98. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  99. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  100. * Timeslices get refilled after they expire.
  101. */
  102. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  103. #define DEF_TIMESLICE (100 * HZ / 1000)
  104. #ifdef CONFIG_SMP
  105. /*
  106. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  107. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  108. */
  109. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  110. {
  111. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  112. }
  113. /*
  114. * Each time a sched group cpu_power is changed,
  115. * we must compute its reciprocal value
  116. */
  117. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  118. {
  119. sg->__cpu_power += val;
  120. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  121. }
  122. #endif
  123. #define SCALE_PRIO(x, prio) \
  124. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  125. /*
  126. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  127. * to time slice values: [800ms ... 100ms ... 5ms]
  128. */
  129. static unsigned int static_prio_timeslice(int static_prio)
  130. {
  131. if (static_prio == NICE_TO_PRIO(19))
  132. return 1;
  133. if (static_prio < NICE_TO_PRIO(0))
  134. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  135. else
  136. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  137. }
  138. static inline int rt_policy(int policy)
  139. {
  140. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  141. return 1;
  142. return 0;
  143. }
  144. static inline int task_has_rt_policy(struct task_struct *p)
  145. {
  146. return rt_policy(p->policy);
  147. }
  148. /*
  149. * This is the priority-queue data structure of the RT scheduling class:
  150. */
  151. struct rt_prio_array {
  152. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  153. struct list_head queue[MAX_RT_PRIO];
  154. };
  155. struct load_stat {
  156. struct load_weight load;
  157. u64 load_update_start, load_update_last;
  158. unsigned long delta_fair, delta_exec, delta_stat;
  159. };
  160. /* CFS-related fields in a runqueue */
  161. struct cfs_rq {
  162. struct load_weight load;
  163. unsigned long nr_running;
  164. s64 fair_clock;
  165. u64 exec_clock;
  166. s64 wait_runtime;
  167. u64 sleeper_bonus;
  168. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  169. struct rb_root tasks_timeline;
  170. struct rb_node *rb_leftmost;
  171. struct rb_node *rb_load_balance_curr;
  172. #ifdef CONFIG_FAIR_GROUP_SCHED
  173. /* 'curr' points to currently running entity on this cfs_rq.
  174. * It is set to NULL otherwise (i.e when none are currently running).
  175. */
  176. struct sched_entity *curr;
  177. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  178. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  179. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  180. * (like users, containers etc.)
  181. *
  182. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  183. * list is used during load balance.
  184. */
  185. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  186. #endif
  187. };
  188. /* Real-Time classes' related field in a runqueue: */
  189. struct rt_rq {
  190. struct rt_prio_array active;
  191. int rt_load_balance_idx;
  192. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  193. };
  194. /*
  195. * This is the main, per-CPU runqueue data structure.
  196. *
  197. * Locking rule: those places that want to lock multiple runqueues
  198. * (such as the load balancing or the thread migration code), lock
  199. * acquire operations must be ordered by ascending &runqueue.
  200. */
  201. struct rq {
  202. spinlock_t lock; /* runqueue lock */
  203. /*
  204. * nr_running and cpu_load should be in the same cacheline because
  205. * remote CPUs use both these fields when doing load calculation.
  206. */
  207. unsigned long nr_running;
  208. #define CPU_LOAD_IDX_MAX 5
  209. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  210. unsigned char idle_at_tick;
  211. #ifdef CONFIG_NO_HZ
  212. unsigned char in_nohz_recently;
  213. #endif
  214. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  215. unsigned long nr_load_updates;
  216. u64 nr_switches;
  217. struct cfs_rq cfs;
  218. #ifdef CONFIG_FAIR_GROUP_SCHED
  219. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  220. #endif
  221. struct rt_rq rt;
  222. /*
  223. * This is part of a global counter where only the total sum
  224. * over all CPUs matters. A task can increase this counter on
  225. * one CPU and if it got migrated afterwards it may decrease
  226. * it on another CPU. Always updated under the runqueue lock:
  227. */
  228. unsigned long nr_uninterruptible;
  229. struct task_struct *curr, *idle;
  230. unsigned long next_balance;
  231. struct mm_struct *prev_mm;
  232. u64 clock, prev_clock_raw;
  233. s64 clock_max_delta;
  234. unsigned int clock_warps, clock_overflows;
  235. unsigned int clock_unstable_events;
  236. struct sched_class *load_balance_class;
  237. atomic_t nr_iowait;
  238. #ifdef CONFIG_SMP
  239. struct sched_domain *sd;
  240. /* For active balancing */
  241. int active_balance;
  242. int push_cpu;
  243. int cpu; /* cpu of this runqueue */
  244. struct task_struct *migration_thread;
  245. struct list_head migration_queue;
  246. #endif
  247. #ifdef CONFIG_SCHEDSTATS
  248. /* latency stats */
  249. struct sched_info rq_sched_info;
  250. /* sys_sched_yield() stats */
  251. unsigned long yld_exp_empty;
  252. unsigned long yld_act_empty;
  253. unsigned long yld_both_empty;
  254. unsigned long yld_cnt;
  255. /* schedule() stats */
  256. unsigned long sched_switch;
  257. unsigned long sched_cnt;
  258. unsigned long sched_goidle;
  259. /* try_to_wake_up() stats */
  260. unsigned long ttwu_cnt;
  261. unsigned long ttwu_local;
  262. #endif
  263. struct lock_class_key rq_lock_key;
  264. };
  265. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  266. static DEFINE_MUTEX(sched_hotcpu_mutex);
  267. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  268. {
  269. rq->curr->sched_class->check_preempt_curr(rq, p);
  270. }
  271. static inline int cpu_of(struct rq *rq)
  272. {
  273. #ifdef CONFIG_SMP
  274. return rq->cpu;
  275. #else
  276. return 0;
  277. #endif
  278. }
  279. /*
  280. * Per-runqueue clock, as finegrained as the platform can give us:
  281. */
  282. static unsigned long long __rq_clock(struct rq *rq)
  283. {
  284. u64 prev_raw = rq->prev_clock_raw;
  285. u64 now = sched_clock();
  286. s64 delta = now - prev_raw;
  287. u64 clock = rq->clock;
  288. /*
  289. * Protect against sched_clock() occasionally going backwards:
  290. */
  291. if (unlikely(delta < 0)) {
  292. clock++;
  293. rq->clock_warps++;
  294. } else {
  295. /*
  296. * Catch too large forward jumps too:
  297. */
  298. if (unlikely(delta > 2*TICK_NSEC)) {
  299. clock++;
  300. rq->clock_overflows++;
  301. } else {
  302. if (unlikely(delta > rq->clock_max_delta))
  303. rq->clock_max_delta = delta;
  304. clock += delta;
  305. }
  306. }
  307. rq->prev_clock_raw = now;
  308. rq->clock = clock;
  309. return clock;
  310. }
  311. static inline unsigned long long rq_clock(struct rq *rq)
  312. {
  313. int this_cpu = smp_processor_id();
  314. if (this_cpu == cpu_of(rq))
  315. return __rq_clock(rq);
  316. return rq->clock;
  317. }
  318. /*
  319. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  320. * See detach_destroy_domains: synchronize_sched for details.
  321. *
  322. * The domain tree of any CPU may only be accessed from within
  323. * preempt-disabled sections.
  324. */
  325. #define for_each_domain(cpu, __sd) \
  326. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  327. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  328. #define this_rq() (&__get_cpu_var(runqueues))
  329. #define task_rq(p) cpu_rq(task_cpu(p))
  330. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  331. #ifdef CONFIG_FAIR_GROUP_SCHED
  332. /* Change a task's ->cfs_rq if it moves across CPUs */
  333. static inline void set_task_cfs_rq(struct task_struct *p)
  334. {
  335. p->se.cfs_rq = &task_rq(p)->cfs;
  336. }
  337. #else
  338. static inline void set_task_cfs_rq(struct task_struct *p)
  339. {
  340. }
  341. #endif
  342. #ifndef prepare_arch_switch
  343. # define prepare_arch_switch(next) do { } while (0)
  344. #endif
  345. #ifndef finish_arch_switch
  346. # define finish_arch_switch(prev) do { } while (0)
  347. #endif
  348. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  349. static inline int task_running(struct rq *rq, struct task_struct *p)
  350. {
  351. return rq->curr == p;
  352. }
  353. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  354. {
  355. }
  356. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  357. {
  358. #ifdef CONFIG_DEBUG_SPINLOCK
  359. /* this is a valid case when another task releases the spinlock */
  360. rq->lock.owner = current;
  361. #endif
  362. /*
  363. * If we are tracking spinlock dependencies then we have to
  364. * fix up the runqueue lock - which gets 'carried over' from
  365. * prev into current:
  366. */
  367. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  368. spin_unlock_irq(&rq->lock);
  369. }
  370. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  371. static inline int task_running(struct rq *rq, struct task_struct *p)
  372. {
  373. #ifdef CONFIG_SMP
  374. return p->oncpu;
  375. #else
  376. return rq->curr == p;
  377. #endif
  378. }
  379. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  380. {
  381. #ifdef CONFIG_SMP
  382. /*
  383. * We can optimise this out completely for !SMP, because the
  384. * SMP rebalancing from interrupt is the only thing that cares
  385. * here.
  386. */
  387. next->oncpu = 1;
  388. #endif
  389. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  390. spin_unlock_irq(&rq->lock);
  391. #else
  392. spin_unlock(&rq->lock);
  393. #endif
  394. }
  395. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  396. {
  397. #ifdef CONFIG_SMP
  398. /*
  399. * After ->oncpu is cleared, the task can be moved to a different CPU.
  400. * We must ensure this doesn't happen until the switch is completely
  401. * finished.
  402. */
  403. smp_wmb();
  404. prev->oncpu = 0;
  405. #endif
  406. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  407. local_irq_enable();
  408. #endif
  409. }
  410. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  411. /*
  412. * __task_rq_lock - lock the runqueue a given task resides on.
  413. * Must be called interrupts disabled.
  414. */
  415. static inline struct rq *__task_rq_lock(struct task_struct *p)
  416. __acquires(rq->lock)
  417. {
  418. struct rq *rq;
  419. repeat_lock_task:
  420. rq = task_rq(p);
  421. spin_lock(&rq->lock);
  422. if (unlikely(rq != task_rq(p))) {
  423. spin_unlock(&rq->lock);
  424. goto repeat_lock_task;
  425. }
  426. return rq;
  427. }
  428. /*
  429. * task_rq_lock - lock the runqueue a given task resides on and disable
  430. * interrupts. Note the ordering: we can safely lookup the task_rq without
  431. * explicitly disabling preemption.
  432. */
  433. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  434. __acquires(rq->lock)
  435. {
  436. struct rq *rq;
  437. repeat_lock_task:
  438. local_irq_save(*flags);
  439. rq = task_rq(p);
  440. spin_lock(&rq->lock);
  441. if (unlikely(rq != task_rq(p))) {
  442. spin_unlock_irqrestore(&rq->lock, *flags);
  443. goto repeat_lock_task;
  444. }
  445. return rq;
  446. }
  447. static inline void __task_rq_unlock(struct rq *rq)
  448. __releases(rq->lock)
  449. {
  450. spin_unlock(&rq->lock);
  451. }
  452. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  453. __releases(rq->lock)
  454. {
  455. spin_unlock_irqrestore(&rq->lock, *flags);
  456. }
  457. /*
  458. * this_rq_lock - lock this runqueue and disable interrupts.
  459. */
  460. static inline struct rq *this_rq_lock(void)
  461. __acquires(rq->lock)
  462. {
  463. struct rq *rq;
  464. local_irq_disable();
  465. rq = this_rq();
  466. spin_lock(&rq->lock);
  467. return rq;
  468. }
  469. /*
  470. * CPU frequency is/was unstable - start new by setting prev_clock_raw:
  471. */
  472. void sched_clock_unstable_event(void)
  473. {
  474. unsigned long flags;
  475. struct rq *rq;
  476. rq = task_rq_lock(current, &flags);
  477. rq->prev_clock_raw = sched_clock();
  478. rq->clock_unstable_events++;
  479. task_rq_unlock(rq, &flags);
  480. }
  481. /*
  482. * resched_task - mark a task 'to be rescheduled now'.
  483. *
  484. * On UP this means the setting of the need_resched flag, on SMP it
  485. * might also involve a cross-CPU call to trigger the scheduler on
  486. * the target CPU.
  487. */
  488. #ifdef CONFIG_SMP
  489. #ifndef tsk_is_polling
  490. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  491. #endif
  492. static void resched_task(struct task_struct *p)
  493. {
  494. int cpu;
  495. assert_spin_locked(&task_rq(p)->lock);
  496. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  497. return;
  498. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  499. cpu = task_cpu(p);
  500. if (cpu == smp_processor_id())
  501. return;
  502. /* NEED_RESCHED must be visible before we test polling */
  503. smp_mb();
  504. if (!tsk_is_polling(p))
  505. smp_send_reschedule(cpu);
  506. }
  507. static void resched_cpu(int cpu)
  508. {
  509. struct rq *rq = cpu_rq(cpu);
  510. unsigned long flags;
  511. if (!spin_trylock_irqsave(&rq->lock, flags))
  512. return;
  513. resched_task(cpu_curr(cpu));
  514. spin_unlock_irqrestore(&rq->lock, flags);
  515. }
  516. #else
  517. static inline void resched_task(struct task_struct *p)
  518. {
  519. assert_spin_locked(&task_rq(p)->lock);
  520. set_tsk_need_resched(p);
  521. }
  522. #endif
  523. static u64 div64_likely32(u64 divident, unsigned long divisor)
  524. {
  525. #if BITS_PER_LONG == 32
  526. if (likely(divident <= 0xffffffffULL))
  527. return (u32)divident / divisor;
  528. do_div(divident, divisor);
  529. return divident;
  530. #else
  531. return divident / divisor;
  532. #endif
  533. }
  534. #if BITS_PER_LONG == 32
  535. # define WMULT_CONST (~0UL)
  536. #else
  537. # define WMULT_CONST (1UL << 32)
  538. #endif
  539. #define WMULT_SHIFT 32
  540. static inline unsigned long
  541. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  542. struct load_weight *lw)
  543. {
  544. u64 tmp;
  545. if (unlikely(!lw->inv_weight))
  546. lw->inv_weight = WMULT_CONST / lw->weight;
  547. tmp = (u64)delta_exec * weight;
  548. /*
  549. * Check whether we'd overflow the 64-bit multiplication:
  550. */
  551. if (unlikely(tmp > WMULT_CONST)) {
  552. tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
  553. >> (WMULT_SHIFT/2);
  554. } else {
  555. tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
  556. }
  557. return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
  558. }
  559. static inline unsigned long
  560. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  561. {
  562. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  563. }
  564. static void update_load_add(struct load_weight *lw, unsigned long inc)
  565. {
  566. lw->weight += inc;
  567. lw->inv_weight = 0;
  568. }
  569. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  570. {
  571. lw->weight -= dec;
  572. lw->inv_weight = 0;
  573. }
  574. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  575. {
  576. if (rq->curr != rq->idle && ls->load.weight) {
  577. ls->delta_exec += ls->delta_stat;
  578. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  579. ls->delta_stat = 0;
  580. }
  581. }
  582. /*
  583. * Update delta_exec, delta_fair fields for rq.
  584. *
  585. * delta_fair clock advances at a rate inversely proportional to
  586. * total load (rq->ls.load.weight) on the runqueue, while
  587. * delta_exec advances at the same rate as wall-clock (provided
  588. * cpu is not idle).
  589. *
  590. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  591. * runqueue over any given interval. This (smoothened) load is used
  592. * during load balance.
  593. *
  594. * This function is called /before/ updating rq->ls.load
  595. * and when switching tasks.
  596. */
  597. static void update_curr_load(struct rq *rq, u64 now)
  598. {
  599. struct load_stat *ls = &rq->ls;
  600. u64 start;
  601. start = ls->load_update_start;
  602. ls->load_update_start = now;
  603. ls->delta_stat += now - start;
  604. /*
  605. * Stagger updates to ls->delta_fair. Very frequent updates
  606. * can be expensive.
  607. */
  608. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  609. __update_curr_load(rq, ls);
  610. }
  611. /*
  612. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  613. * of tasks with abnormal "nice" values across CPUs the contribution that
  614. * each task makes to its run queue's load is weighted according to its
  615. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  616. * scaled version of the new time slice allocation that they receive on time
  617. * slice expiry etc.
  618. */
  619. /*
  620. * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
  621. * If static_prio_timeslice() is ever changed to break this assumption then
  622. * this code will need modification
  623. */
  624. #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
  625. #define load_weight(lp) \
  626. (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
  627. #define PRIO_TO_LOAD_WEIGHT(prio) \
  628. load_weight(static_prio_timeslice(prio))
  629. #define RTPRIO_TO_LOAD_WEIGHT(rp) \
  630. (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
  631. #define WEIGHT_IDLEPRIO 2
  632. #define WMULT_IDLEPRIO (1 << 31)
  633. /*
  634. * Nice levels are multiplicative, with a gentle 10% change for every
  635. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  636. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  637. * that remained on nice 0.
  638. *
  639. * The "10% effect" is relative and cumulative: from _any_ nice level,
  640. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  641. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  642. * If a task goes up by ~10% and another task goes down by ~10% then
  643. * the relative distance between them is ~25%.)
  644. */
  645. static const int prio_to_weight[40] = {
  646. /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
  647. /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
  648. /* 0 */ NICE_0_LOAD /* 1024 */,
  649. /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
  650. /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
  651. };
  652. /*
  653. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  654. *
  655. * In cases where the weight does not change often, we can use the
  656. * precalculated inverse to speed up arithmetics by turning divisions
  657. * into multiplications:
  658. */
  659. static const u32 prio_to_wmult[40] = {
  660. /* -20 */ 48356, 60446, 75558, 94446, 118058,
  661. /* -15 */ 147573, 184467, 230589, 288233, 360285,
  662. /* -10 */ 450347, 562979, 703746, 879575, 1099582,
  663. /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
  664. /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
  665. /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
  666. /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
  667. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  668. };
  669. static inline void
  670. inc_load(struct rq *rq, const struct task_struct *p, u64 now)
  671. {
  672. update_curr_load(rq, now);
  673. update_load_add(&rq->ls.load, p->se.load.weight);
  674. }
  675. static inline void
  676. dec_load(struct rq *rq, const struct task_struct *p, u64 now)
  677. {
  678. update_curr_load(rq, now);
  679. update_load_sub(&rq->ls.load, p->se.load.weight);
  680. }
  681. static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  682. {
  683. rq->nr_running++;
  684. inc_load(rq, p, now);
  685. }
  686. static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  687. {
  688. rq->nr_running--;
  689. dec_load(rq, p, now);
  690. }
  691. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  692. /*
  693. * runqueue iterator, to support SMP load-balancing between different
  694. * scheduling classes, without having to expose their internal data
  695. * structures to the load-balancing proper:
  696. */
  697. struct rq_iterator {
  698. void *arg;
  699. struct task_struct *(*start)(void *);
  700. struct task_struct *(*next)(void *);
  701. };
  702. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  703. unsigned long max_nr_move, unsigned long max_load_move,
  704. struct sched_domain *sd, enum cpu_idle_type idle,
  705. int *all_pinned, unsigned long *load_moved,
  706. int this_best_prio, int best_prio, int best_prio_seen,
  707. struct rq_iterator *iterator);
  708. #include "sched_stats.h"
  709. #include "sched_rt.c"
  710. #include "sched_fair.c"
  711. #include "sched_idletask.c"
  712. #ifdef CONFIG_SCHED_DEBUG
  713. # include "sched_debug.c"
  714. #endif
  715. #define sched_class_highest (&rt_sched_class)
  716. static void set_load_weight(struct task_struct *p)
  717. {
  718. task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
  719. p->se.wait_runtime = 0;
  720. if (task_has_rt_policy(p)) {
  721. p->se.load.weight = prio_to_weight[0] * 2;
  722. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  723. return;
  724. }
  725. /*
  726. * SCHED_IDLE tasks get minimal weight:
  727. */
  728. if (p->policy == SCHED_IDLE) {
  729. p->se.load.weight = WEIGHT_IDLEPRIO;
  730. p->se.load.inv_weight = WMULT_IDLEPRIO;
  731. return;
  732. }
  733. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  734. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  735. }
  736. static void
  737. enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
  738. {
  739. sched_info_queued(p);
  740. p->sched_class->enqueue_task(rq, p, wakeup, now);
  741. p->se.on_rq = 1;
  742. }
  743. static void
  744. dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
  745. {
  746. p->sched_class->dequeue_task(rq, p, sleep, now);
  747. p->se.on_rq = 0;
  748. }
  749. /*
  750. * __normal_prio - return the priority that is based on the static prio
  751. */
  752. static inline int __normal_prio(struct task_struct *p)
  753. {
  754. return p->static_prio;
  755. }
  756. /*
  757. * Calculate the expected normal priority: i.e. priority
  758. * without taking RT-inheritance into account. Might be
  759. * boosted by interactivity modifiers. Changes upon fork,
  760. * setprio syscalls, and whenever the interactivity
  761. * estimator recalculates.
  762. */
  763. static inline int normal_prio(struct task_struct *p)
  764. {
  765. int prio;
  766. if (task_has_rt_policy(p))
  767. prio = MAX_RT_PRIO-1 - p->rt_priority;
  768. else
  769. prio = __normal_prio(p);
  770. return prio;
  771. }
  772. /*
  773. * Calculate the current priority, i.e. the priority
  774. * taken into account by the scheduler. This value might
  775. * be boosted by RT tasks, or might be boosted by
  776. * interactivity modifiers. Will be RT if the task got
  777. * RT-boosted. If not then it returns p->normal_prio.
  778. */
  779. static int effective_prio(struct task_struct *p)
  780. {
  781. p->normal_prio = normal_prio(p);
  782. /*
  783. * If we are RT tasks or we were boosted to RT priority,
  784. * keep the priority unchanged. Otherwise, update priority
  785. * to the normal priority:
  786. */
  787. if (!rt_prio(p->prio))
  788. return p->normal_prio;
  789. return p->prio;
  790. }
  791. /*
  792. * activate_task - move a task to the runqueue.
  793. */
  794. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  795. {
  796. u64 now = rq_clock(rq);
  797. if (p->state == TASK_UNINTERRUPTIBLE)
  798. rq->nr_uninterruptible--;
  799. enqueue_task(rq, p, wakeup, now);
  800. inc_nr_running(p, rq, now);
  801. }
  802. /*
  803. * activate_idle_task - move idle task to the _front_ of runqueue.
  804. */
  805. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  806. {
  807. u64 now = rq_clock(rq);
  808. if (p->state == TASK_UNINTERRUPTIBLE)
  809. rq->nr_uninterruptible--;
  810. enqueue_task(rq, p, 0, now);
  811. inc_nr_running(p, rq, now);
  812. }
  813. /*
  814. * deactivate_task - remove a task from the runqueue.
  815. */
  816. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  817. {
  818. u64 now = rq_clock(rq);
  819. if (p->state == TASK_UNINTERRUPTIBLE)
  820. rq->nr_uninterruptible++;
  821. dequeue_task(rq, p, sleep, now);
  822. dec_nr_running(p, rq, now);
  823. }
  824. /**
  825. * task_curr - is this task currently executing on a CPU?
  826. * @p: the task in question.
  827. */
  828. inline int task_curr(const struct task_struct *p)
  829. {
  830. return cpu_curr(task_cpu(p)) == p;
  831. }
  832. /* Used instead of source_load when we know the type == 0 */
  833. unsigned long weighted_cpuload(const int cpu)
  834. {
  835. return cpu_rq(cpu)->ls.load.weight;
  836. }
  837. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  838. {
  839. #ifdef CONFIG_SMP
  840. task_thread_info(p)->cpu = cpu;
  841. set_task_cfs_rq(p);
  842. #endif
  843. }
  844. #ifdef CONFIG_SMP
  845. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  846. {
  847. int old_cpu = task_cpu(p);
  848. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  849. u64 clock_offset, fair_clock_offset;
  850. clock_offset = old_rq->clock - new_rq->clock;
  851. fair_clock_offset = old_rq->cfs.fair_clock -
  852. new_rq->cfs.fair_clock;
  853. if (p->se.wait_start)
  854. p->se.wait_start -= clock_offset;
  855. if (p->se.wait_start_fair)
  856. p->se.wait_start_fair -= fair_clock_offset;
  857. if (p->se.sleep_start)
  858. p->se.sleep_start -= clock_offset;
  859. if (p->se.block_start)
  860. p->se.block_start -= clock_offset;
  861. if (p->se.sleep_start_fair)
  862. p->se.sleep_start_fair -= fair_clock_offset;
  863. __set_task_cpu(p, new_cpu);
  864. }
  865. struct migration_req {
  866. struct list_head list;
  867. struct task_struct *task;
  868. int dest_cpu;
  869. struct completion done;
  870. };
  871. /*
  872. * The task's runqueue lock must be held.
  873. * Returns true if you have to wait for migration thread.
  874. */
  875. static int
  876. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  877. {
  878. struct rq *rq = task_rq(p);
  879. /*
  880. * If the task is not on a runqueue (and not running), then
  881. * it is sufficient to simply update the task's cpu field.
  882. */
  883. if (!p->se.on_rq && !task_running(rq, p)) {
  884. set_task_cpu(p, dest_cpu);
  885. return 0;
  886. }
  887. init_completion(&req->done);
  888. req->task = p;
  889. req->dest_cpu = dest_cpu;
  890. list_add(&req->list, &rq->migration_queue);
  891. return 1;
  892. }
  893. /*
  894. * wait_task_inactive - wait for a thread to unschedule.
  895. *
  896. * The caller must ensure that the task *will* unschedule sometime soon,
  897. * else this function might spin for a *long* time. This function can't
  898. * be called with interrupts off, or it may introduce deadlock with
  899. * smp_call_function() if an IPI is sent by the same process we are
  900. * waiting to become inactive.
  901. */
  902. void wait_task_inactive(struct task_struct *p)
  903. {
  904. unsigned long flags;
  905. int running, on_rq;
  906. struct rq *rq;
  907. repeat:
  908. /*
  909. * We do the initial early heuristics without holding
  910. * any task-queue locks at all. We'll only try to get
  911. * the runqueue lock when things look like they will
  912. * work out!
  913. */
  914. rq = task_rq(p);
  915. /*
  916. * If the task is actively running on another CPU
  917. * still, just relax and busy-wait without holding
  918. * any locks.
  919. *
  920. * NOTE! Since we don't hold any locks, it's not
  921. * even sure that "rq" stays as the right runqueue!
  922. * But we don't care, since "task_running()" will
  923. * return false if the runqueue has changed and p
  924. * is actually now running somewhere else!
  925. */
  926. while (task_running(rq, p))
  927. cpu_relax();
  928. /*
  929. * Ok, time to look more closely! We need the rq
  930. * lock now, to be *sure*. If we're wrong, we'll
  931. * just go back and repeat.
  932. */
  933. rq = task_rq_lock(p, &flags);
  934. running = task_running(rq, p);
  935. on_rq = p->se.on_rq;
  936. task_rq_unlock(rq, &flags);
  937. /*
  938. * Was it really running after all now that we
  939. * checked with the proper locks actually held?
  940. *
  941. * Oops. Go back and try again..
  942. */
  943. if (unlikely(running)) {
  944. cpu_relax();
  945. goto repeat;
  946. }
  947. /*
  948. * It's not enough that it's not actively running,
  949. * it must be off the runqueue _entirely_, and not
  950. * preempted!
  951. *
  952. * So if it wa still runnable (but just not actively
  953. * running right now), it's preempted, and we should
  954. * yield - it could be a while.
  955. */
  956. if (unlikely(on_rq)) {
  957. yield();
  958. goto repeat;
  959. }
  960. /*
  961. * Ahh, all good. It wasn't running, and it wasn't
  962. * runnable, which means that it will never become
  963. * running in the future either. We're all done!
  964. */
  965. }
  966. /***
  967. * kick_process - kick a running thread to enter/exit the kernel
  968. * @p: the to-be-kicked thread
  969. *
  970. * Cause a process which is running on another CPU to enter
  971. * kernel-mode, without any delay. (to get signals handled.)
  972. *
  973. * NOTE: this function doesnt have to take the runqueue lock,
  974. * because all it wants to ensure is that the remote task enters
  975. * the kernel. If the IPI races and the task has been migrated
  976. * to another CPU then no harm is done and the purpose has been
  977. * achieved as well.
  978. */
  979. void kick_process(struct task_struct *p)
  980. {
  981. int cpu;
  982. preempt_disable();
  983. cpu = task_cpu(p);
  984. if ((cpu != smp_processor_id()) && task_curr(p))
  985. smp_send_reschedule(cpu);
  986. preempt_enable();
  987. }
  988. /*
  989. * Return a low guess at the load of a migration-source cpu weighted
  990. * according to the scheduling class and "nice" value.
  991. *
  992. * We want to under-estimate the load of migration sources, to
  993. * balance conservatively.
  994. */
  995. static inline unsigned long source_load(int cpu, int type)
  996. {
  997. struct rq *rq = cpu_rq(cpu);
  998. unsigned long total = weighted_cpuload(cpu);
  999. if (type == 0)
  1000. return total;
  1001. return min(rq->cpu_load[type-1], total);
  1002. }
  1003. /*
  1004. * Return a high guess at the load of a migration-target cpu weighted
  1005. * according to the scheduling class and "nice" value.
  1006. */
  1007. static inline unsigned long target_load(int cpu, int type)
  1008. {
  1009. struct rq *rq = cpu_rq(cpu);
  1010. unsigned long total = weighted_cpuload(cpu);
  1011. if (type == 0)
  1012. return total;
  1013. return max(rq->cpu_load[type-1], total);
  1014. }
  1015. /*
  1016. * Return the average load per task on the cpu's run queue
  1017. */
  1018. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1019. {
  1020. struct rq *rq = cpu_rq(cpu);
  1021. unsigned long total = weighted_cpuload(cpu);
  1022. unsigned long n = rq->nr_running;
  1023. return n ? total / n : SCHED_LOAD_SCALE;
  1024. }
  1025. /*
  1026. * find_idlest_group finds and returns the least busy CPU group within the
  1027. * domain.
  1028. */
  1029. static struct sched_group *
  1030. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1031. {
  1032. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1033. unsigned long min_load = ULONG_MAX, this_load = 0;
  1034. int load_idx = sd->forkexec_idx;
  1035. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1036. do {
  1037. unsigned long load, avg_load;
  1038. int local_group;
  1039. int i;
  1040. /* Skip over this group if it has no CPUs allowed */
  1041. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1042. goto nextgroup;
  1043. local_group = cpu_isset(this_cpu, group->cpumask);
  1044. /* Tally up the load of all CPUs in the group */
  1045. avg_load = 0;
  1046. for_each_cpu_mask(i, group->cpumask) {
  1047. /* Bias balancing toward cpus of our domain */
  1048. if (local_group)
  1049. load = source_load(i, load_idx);
  1050. else
  1051. load = target_load(i, load_idx);
  1052. avg_load += load;
  1053. }
  1054. /* Adjust by relative CPU power of the group */
  1055. avg_load = sg_div_cpu_power(group,
  1056. avg_load * SCHED_LOAD_SCALE);
  1057. if (local_group) {
  1058. this_load = avg_load;
  1059. this = group;
  1060. } else if (avg_load < min_load) {
  1061. min_load = avg_load;
  1062. idlest = group;
  1063. }
  1064. nextgroup:
  1065. group = group->next;
  1066. } while (group != sd->groups);
  1067. if (!idlest || 100*this_load < imbalance*min_load)
  1068. return NULL;
  1069. return idlest;
  1070. }
  1071. /*
  1072. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1073. */
  1074. static int
  1075. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1076. {
  1077. cpumask_t tmp;
  1078. unsigned long load, min_load = ULONG_MAX;
  1079. int idlest = -1;
  1080. int i;
  1081. /* Traverse only the allowed CPUs */
  1082. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1083. for_each_cpu_mask(i, tmp) {
  1084. load = weighted_cpuload(i);
  1085. if (load < min_load || (load == min_load && i == this_cpu)) {
  1086. min_load = load;
  1087. idlest = i;
  1088. }
  1089. }
  1090. return idlest;
  1091. }
  1092. /*
  1093. * sched_balance_self: balance the current task (running on cpu) in domains
  1094. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1095. * SD_BALANCE_EXEC.
  1096. *
  1097. * Balance, ie. select the least loaded group.
  1098. *
  1099. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1100. *
  1101. * preempt must be disabled.
  1102. */
  1103. static int sched_balance_self(int cpu, int flag)
  1104. {
  1105. struct task_struct *t = current;
  1106. struct sched_domain *tmp, *sd = NULL;
  1107. for_each_domain(cpu, tmp) {
  1108. /*
  1109. * If power savings logic is enabled for a domain, stop there.
  1110. */
  1111. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1112. break;
  1113. if (tmp->flags & flag)
  1114. sd = tmp;
  1115. }
  1116. while (sd) {
  1117. cpumask_t span;
  1118. struct sched_group *group;
  1119. int new_cpu, weight;
  1120. if (!(sd->flags & flag)) {
  1121. sd = sd->child;
  1122. continue;
  1123. }
  1124. span = sd->span;
  1125. group = find_idlest_group(sd, t, cpu);
  1126. if (!group) {
  1127. sd = sd->child;
  1128. continue;
  1129. }
  1130. new_cpu = find_idlest_cpu(group, t, cpu);
  1131. if (new_cpu == -1 || new_cpu == cpu) {
  1132. /* Now try balancing at a lower domain level of cpu */
  1133. sd = sd->child;
  1134. continue;
  1135. }
  1136. /* Now try balancing at a lower domain level of new_cpu */
  1137. cpu = new_cpu;
  1138. sd = NULL;
  1139. weight = cpus_weight(span);
  1140. for_each_domain(cpu, tmp) {
  1141. if (weight <= cpus_weight(tmp->span))
  1142. break;
  1143. if (tmp->flags & flag)
  1144. sd = tmp;
  1145. }
  1146. /* while loop will break here if sd == NULL */
  1147. }
  1148. return cpu;
  1149. }
  1150. #endif /* CONFIG_SMP */
  1151. /*
  1152. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1153. * not idle and an idle cpu is available. The span of cpus to
  1154. * search starts with cpus closest then further out as needed,
  1155. * so we always favor a closer, idle cpu.
  1156. *
  1157. * Returns the CPU we should wake onto.
  1158. */
  1159. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1160. static int wake_idle(int cpu, struct task_struct *p)
  1161. {
  1162. cpumask_t tmp;
  1163. struct sched_domain *sd;
  1164. int i;
  1165. /*
  1166. * If it is idle, then it is the best cpu to run this task.
  1167. *
  1168. * This cpu is also the best, if it has more than one task already.
  1169. * Siblings must be also busy(in most cases) as they didn't already
  1170. * pickup the extra load from this cpu and hence we need not check
  1171. * sibling runqueue info. This will avoid the checks and cache miss
  1172. * penalities associated with that.
  1173. */
  1174. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1175. return cpu;
  1176. for_each_domain(cpu, sd) {
  1177. if (sd->flags & SD_WAKE_IDLE) {
  1178. cpus_and(tmp, sd->span, p->cpus_allowed);
  1179. for_each_cpu_mask(i, tmp) {
  1180. if (idle_cpu(i))
  1181. return i;
  1182. }
  1183. } else {
  1184. break;
  1185. }
  1186. }
  1187. return cpu;
  1188. }
  1189. #else
  1190. static inline int wake_idle(int cpu, struct task_struct *p)
  1191. {
  1192. return cpu;
  1193. }
  1194. #endif
  1195. /***
  1196. * try_to_wake_up - wake up a thread
  1197. * @p: the to-be-woken-up thread
  1198. * @state: the mask of task states that can be woken
  1199. * @sync: do a synchronous wakeup?
  1200. *
  1201. * Put it on the run-queue if it's not already there. The "current"
  1202. * thread is always on the run-queue (except when the actual
  1203. * re-schedule is in progress), and as such you're allowed to do
  1204. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1205. * runnable without the overhead of this.
  1206. *
  1207. * returns failure only if the task is already active.
  1208. */
  1209. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1210. {
  1211. int cpu, this_cpu, success = 0;
  1212. unsigned long flags;
  1213. long old_state;
  1214. struct rq *rq;
  1215. #ifdef CONFIG_SMP
  1216. struct sched_domain *sd, *this_sd = NULL;
  1217. unsigned long load, this_load;
  1218. int new_cpu;
  1219. #endif
  1220. rq = task_rq_lock(p, &flags);
  1221. old_state = p->state;
  1222. if (!(old_state & state))
  1223. goto out;
  1224. if (p->se.on_rq)
  1225. goto out_running;
  1226. cpu = task_cpu(p);
  1227. this_cpu = smp_processor_id();
  1228. #ifdef CONFIG_SMP
  1229. if (unlikely(task_running(rq, p)))
  1230. goto out_activate;
  1231. new_cpu = cpu;
  1232. schedstat_inc(rq, ttwu_cnt);
  1233. if (cpu == this_cpu) {
  1234. schedstat_inc(rq, ttwu_local);
  1235. goto out_set_cpu;
  1236. }
  1237. for_each_domain(this_cpu, sd) {
  1238. if (cpu_isset(cpu, sd->span)) {
  1239. schedstat_inc(sd, ttwu_wake_remote);
  1240. this_sd = sd;
  1241. break;
  1242. }
  1243. }
  1244. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1245. goto out_set_cpu;
  1246. /*
  1247. * Check for affine wakeup and passive balancing possibilities.
  1248. */
  1249. if (this_sd) {
  1250. int idx = this_sd->wake_idx;
  1251. unsigned int imbalance;
  1252. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1253. load = source_load(cpu, idx);
  1254. this_load = target_load(this_cpu, idx);
  1255. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1256. if (this_sd->flags & SD_WAKE_AFFINE) {
  1257. unsigned long tl = this_load;
  1258. unsigned long tl_per_task;
  1259. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1260. /*
  1261. * If sync wakeup then subtract the (maximum possible)
  1262. * effect of the currently running task from the load
  1263. * of the current CPU:
  1264. */
  1265. if (sync)
  1266. tl -= current->se.load.weight;
  1267. if ((tl <= load &&
  1268. tl + target_load(cpu, idx) <= tl_per_task) ||
  1269. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1270. /*
  1271. * This domain has SD_WAKE_AFFINE and
  1272. * p is cache cold in this domain, and
  1273. * there is no bad imbalance.
  1274. */
  1275. schedstat_inc(this_sd, ttwu_move_affine);
  1276. goto out_set_cpu;
  1277. }
  1278. }
  1279. /*
  1280. * Start passive balancing when half the imbalance_pct
  1281. * limit is reached.
  1282. */
  1283. if (this_sd->flags & SD_WAKE_BALANCE) {
  1284. if (imbalance*this_load <= 100*load) {
  1285. schedstat_inc(this_sd, ttwu_move_balance);
  1286. goto out_set_cpu;
  1287. }
  1288. }
  1289. }
  1290. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1291. out_set_cpu:
  1292. new_cpu = wake_idle(new_cpu, p);
  1293. if (new_cpu != cpu) {
  1294. set_task_cpu(p, new_cpu);
  1295. task_rq_unlock(rq, &flags);
  1296. /* might preempt at this point */
  1297. rq = task_rq_lock(p, &flags);
  1298. old_state = p->state;
  1299. if (!(old_state & state))
  1300. goto out;
  1301. if (p->se.on_rq)
  1302. goto out_running;
  1303. this_cpu = smp_processor_id();
  1304. cpu = task_cpu(p);
  1305. }
  1306. out_activate:
  1307. #endif /* CONFIG_SMP */
  1308. activate_task(rq, p, 1);
  1309. /*
  1310. * Sync wakeups (i.e. those types of wakeups where the waker
  1311. * has indicated that it will leave the CPU in short order)
  1312. * don't trigger a preemption, if the woken up task will run on
  1313. * this cpu. (in this case the 'I will reschedule' promise of
  1314. * the waker guarantees that the freshly woken up task is going
  1315. * to be considered on this CPU.)
  1316. */
  1317. if (!sync || cpu != this_cpu)
  1318. check_preempt_curr(rq, p);
  1319. success = 1;
  1320. out_running:
  1321. p->state = TASK_RUNNING;
  1322. out:
  1323. task_rq_unlock(rq, &flags);
  1324. return success;
  1325. }
  1326. int fastcall wake_up_process(struct task_struct *p)
  1327. {
  1328. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1329. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1330. }
  1331. EXPORT_SYMBOL(wake_up_process);
  1332. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1333. {
  1334. return try_to_wake_up(p, state, 0);
  1335. }
  1336. /*
  1337. * Perform scheduler related setup for a newly forked process p.
  1338. * p is forked by current.
  1339. *
  1340. * __sched_fork() is basic setup used by init_idle() too:
  1341. */
  1342. static void __sched_fork(struct task_struct *p)
  1343. {
  1344. p->se.wait_start_fair = 0;
  1345. p->se.wait_start = 0;
  1346. p->se.exec_start = 0;
  1347. p->se.sum_exec_runtime = 0;
  1348. p->se.delta_exec = 0;
  1349. p->se.delta_fair_run = 0;
  1350. p->se.delta_fair_sleep = 0;
  1351. p->se.wait_runtime = 0;
  1352. p->se.sum_wait_runtime = 0;
  1353. p->se.sum_sleep_runtime = 0;
  1354. p->se.sleep_start = 0;
  1355. p->se.sleep_start_fair = 0;
  1356. p->se.block_start = 0;
  1357. p->se.sleep_max = 0;
  1358. p->se.block_max = 0;
  1359. p->se.exec_max = 0;
  1360. p->se.wait_max = 0;
  1361. p->se.wait_runtime_overruns = 0;
  1362. p->se.wait_runtime_underruns = 0;
  1363. INIT_LIST_HEAD(&p->run_list);
  1364. p->se.on_rq = 0;
  1365. /*
  1366. * We mark the process as running here, but have not actually
  1367. * inserted it onto the runqueue yet. This guarantees that
  1368. * nobody will actually run it, and a signal or other external
  1369. * event cannot wake it up and insert it on the runqueue either.
  1370. */
  1371. p->state = TASK_RUNNING;
  1372. }
  1373. /*
  1374. * fork()/clone()-time setup:
  1375. */
  1376. void sched_fork(struct task_struct *p, int clone_flags)
  1377. {
  1378. int cpu = get_cpu();
  1379. __sched_fork(p);
  1380. #ifdef CONFIG_SMP
  1381. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1382. #endif
  1383. __set_task_cpu(p, cpu);
  1384. /*
  1385. * Make sure we do not leak PI boosting priority to the child:
  1386. */
  1387. p->prio = current->normal_prio;
  1388. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1389. if (likely(sched_info_on()))
  1390. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1391. #endif
  1392. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1393. p->oncpu = 0;
  1394. #endif
  1395. #ifdef CONFIG_PREEMPT
  1396. /* Want to start with kernel preemption disabled. */
  1397. task_thread_info(p)->preempt_count = 1;
  1398. #endif
  1399. put_cpu();
  1400. }
  1401. /*
  1402. * After fork, child runs first. (default) If set to 0 then
  1403. * parent will (try to) run first.
  1404. */
  1405. unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
  1406. /*
  1407. * wake_up_new_task - wake up a newly created task for the first time.
  1408. *
  1409. * This function will do some initial scheduler statistics housekeeping
  1410. * that must be done for every newly created context, then puts the task
  1411. * on the runqueue and wakes it.
  1412. */
  1413. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1414. {
  1415. unsigned long flags;
  1416. struct rq *rq;
  1417. int this_cpu;
  1418. rq = task_rq_lock(p, &flags);
  1419. BUG_ON(p->state != TASK_RUNNING);
  1420. this_cpu = smp_processor_id(); /* parent's CPU */
  1421. p->prio = effective_prio(p);
  1422. if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
  1423. task_cpu(p) != this_cpu || !current->se.on_rq) {
  1424. activate_task(rq, p, 0);
  1425. } else {
  1426. /*
  1427. * Let the scheduling class do new task startup
  1428. * management (if any):
  1429. */
  1430. p->sched_class->task_new(rq, p);
  1431. }
  1432. check_preempt_curr(rq, p);
  1433. task_rq_unlock(rq, &flags);
  1434. }
  1435. /**
  1436. * prepare_task_switch - prepare to switch tasks
  1437. * @rq: the runqueue preparing to switch
  1438. * @next: the task we are going to switch to.
  1439. *
  1440. * This is called with the rq lock held and interrupts off. It must
  1441. * be paired with a subsequent finish_task_switch after the context
  1442. * switch.
  1443. *
  1444. * prepare_task_switch sets up locking and calls architecture specific
  1445. * hooks.
  1446. */
  1447. static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
  1448. {
  1449. prepare_lock_switch(rq, next);
  1450. prepare_arch_switch(next);
  1451. }
  1452. /**
  1453. * finish_task_switch - clean up after a task-switch
  1454. * @rq: runqueue associated with task-switch
  1455. * @prev: the thread we just switched away from.
  1456. *
  1457. * finish_task_switch must be called after the context switch, paired
  1458. * with a prepare_task_switch call before the context switch.
  1459. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1460. * and do any other architecture-specific cleanup actions.
  1461. *
  1462. * Note that we may have delayed dropping an mm in context_switch(). If
  1463. * so, we finish that here outside of the runqueue lock. (Doing it
  1464. * with the lock held can cause deadlocks; see schedule() for
  1465. * details.)
  1466. */
  1467. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1468. __releases(rq->lock)
  1469. {
  1470. struct mm_struct *mm = rq->prev_mm;
  1471. long prev_state;
  1472. rq->prev_mm = NULL;
  1473. /*
  1474. * A task struct has one reference for the use as "current".
  1475. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1476. * schedule one last time. The schedule call will never return, and
  1477. * the scheduled task must drop that reference.
  1478. * The test for TASK_DEAD must occur while the runqueue locks are
  1479. * still held, otherwise prev could be scheduled on another cpu, die
  1480. * there before we look at prev->state, and then the reference would
  1481. * be dropped twice.
  1482. * Manfred Spraul <manfred@colorfullife.com>
  1483. */
  1484. prev_state = prev->state;
  1485. finish_arch_switch(prev);
  1486. finish_lock_switch(rq, prev);
  1487. if (mm)
  1488. mmdrop(mm);
  1489. if (unlikely(prev_state == TASK_DEAD)) {
  1490. /*
  1491. * Remove function-return probe instances associated with this
  1492. * task and put them back on the free list.
  1493. */
  1494. kprobe_flush_task(prev);
  1495. put_task_struct(prev);
  1496. }
  1497. }
  1498. /**
  1499. * schedule_tail - first thing a freshly forked thread must call.
  1500. * @prev: the thread we just switched away from.
  1501. */
  1502. asmlinkage void schedule_tail(struct task_struct *prev)
  1503. __releases(rq->lock)
  1504. {
  1505. struct rq *rq = this_rq();
  1506. finish_task_switch(rq, prev);
  1507. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1508. /* In this case, finish_task_switch does not reenable preemption */
  1509. preempt_enable();
  1510. #endif
  1511. if (current->set_child_tid)
  1512. put_user(current->pid, current->set_child_tid);
  1513. }
  1514. /*
  1515. * context_switch - switch to the new MM and the new
  1516. * thread's register state.
  1517. */
  1518. static inline void
  1519. context_switch(struct rq *rq, struct task_struct *prev,
  1520. struct task_struct *next)
  1521. {
  1522. struct mm_struct *mm, *oldmm;
  1523. prepare_task_switch(rq, next);
  1524. mm = next->mm;
  1525. oldmm = prev->active_mm;
  1526. /*
  1527. * For paravirt, this is coupled with an exit in switch_to to
  1528. * combine the page table reload and the switch backend into
  1529. * one hypercall.
  1530. */
  1531. arch_enter_lazy_cpu_mode();
  1532. if (unlikely(!mm)) {
  1533. next->active_mm = oldmm;
  1534. atomic_inc(&oldmm->mm_count);
  1535. enter_lazy_tlb(oldmm, next);
  1536. } else
  1537. switch_mm(oldmm, mm, next);
  1538. if (unlikely(!prev->mm)) {
  1539. prev->active_mm = NULL;
  1540. rq->prev_mm = oldmm;
  1541. }
  1542. /*
  1543. * Since the runqueue lock will be released by the next
  1544. * task (which is an invalid locking op but in the case
  1545. * of the scheduler it's an obvious special-case), so we
  1546. * do an early lockdep release here:
  1547. */
  1548. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1549. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1550. #endif
  1551. /* Here we just switch the register state and the stack. */
  1552. switch_to(prev, next, prev);
  1553. barrier();
  1554. /*
  1555. * this_rq must be evaluated again because prev may have moved
  1556. * CPUs since it called schedule(), thus the 'rq' on its stack
  1557. * frame will be invalid.
  1558. */
  1559. finish_task_switch(this_rq(), prev);
  1560. }
  1561. /*
  1562. * nr_running, nr_uninterruptible and nr_context_switches:
  1563. *
  1564. * externally visible scheduler statistics: current number of runnable
  1565. * threads, current number of uninterruptible-sleeping threads, total
  1566. * number of context switches performed since bootup.
  1567. */
  1568. unsigned long nr_running(void)
  1569. {
  1570. unsigned long i, sum = 0;
  1571. for_each_online_cpu(i)
  1572. sum += cpu_rq(i)->nr_running;
  1573. return sum;
  1574. }
  1575. unsigned long nr_uninterruptible(void)
  1576. {
  1577. unsigned long i, sum = 0;
  1578. for_each_possible_cpu(i)
  1579. sum += cpu_rq(i)->nr_uninterruptible;
  1580. /*
  1581. * Since we read the counters lockless, it might be slightly
  1582. * inaccurate. Do not allow it to go below zero though:
  1583. */
  1584. if (unlikely((long)sum < 0))
  1585. sum = 0;
  1586. return sum;
  1587. }
  1588. unsigned long long nr_context_switches(void)
  1589. {
  1590. int i;
  1591. unsigned long long sum = 0;
  1592. for_each_possible_cpu(i)
  1593. sum += cpu_rq(i)->nr_switches;
  1594. return sum;
  1595. }
  1596. unsigned long nr_iowait(void)
  1597. {
  1598. unsigned long i, sum = 0;
  1599. for_each_possible_cpu(i)
  1600. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1601. return sum;
  1602. }
  1603. unsigned long nr_active(void)
  1604. {
  1605. unsigned long i, running = 0, uninterruptible = 0;
  1606. for_each_online_cpu(i) {
  1607. running += cpu_rq(i)->nr_running;
  1608. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1609. }
  1610. if (unlikely((long)uninterruptible < 0))
  1611. uninterruptible = 0;
  1612. return running + uninterruptible;
  1613. }
  1614. /*
  1615. * Update rq->cpu_load[] statistics. This function is usually called every
  1616. * scheduler tick (TICK_NSEC).
  1617. */
  1618. static void update_cpu_load(struct rq *this_rq)
  1619. {
  1620. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1621. unsigned long total_load = this_rq->ls.load.weight;
  1622. unsigned long this_load = total_load;
  1623. struct load_stat *ls = &this_rq->ls;
  1624. u64 now = __rq_clock(this_rq);
  1625. int i, scale;
  1626. this_rq->nr_load_updates++;
  1627. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1628. goto do_avg;
  1629. /* Update delta_fair/delta_exec fields first */
  1630. update_curr_load(this_rq, now);
  1631. fair_delta64 = ls->delta_fair + 1;
  1632. ls->delta_fair = 0;
  1633. exec_delta64 = ls->delta_exec + 1;
  1634. ls->delta_exec = 0;
  1635. sample_interval64 = now - ls->load_update_last;
  1636. ls->load_update_last = now;
  1637. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1638. sample_interval64 = TICK_NSEC;
  1639. if (exec_delta64 > sample_interval64)
  1640. exec_delta64 = sample_interval64;
  1641. idle_delta64 = sample_interval64 - exec_delta64;
  1642. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1643. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1644. this_load = (unsigned long)tmp64;
  1645. do_avg:
  1646. /* Update our load: */
  1647. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1648. unsigned long old_load, new_load;
  1649. /* scale is effectively 1 << i now, and >> i divides by scale */
  1650. old_load = this_rq->cpu_load[i];
  1651. new_load = this_load;
  1652. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1653. }
  1654. }
  1655. #ifdef CONFIG_SMP
  1656. /*
  1657. * double_rq_lock - safely lock two runqueues
  1658. *
  1659. * Note this does not disable interrupts like task_rq_lock,
  1660. * you need to do so manually before calling.
  1661. */
  1662. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1663. __acquires(rq1->lock)
  1664. __acquires(rq2->lock)
  1665. {
  1666. BUG_ON(!irqs_disabled());
  1667. if (rq1 == rq2) {
  1668. spin_lock(&rq1->lock);
  1669. __acquire(rq2->lock); /* Fake it out ;) */
  1670. } else {
  1671. if (rq1 < rq2) {
  1672. spin_lock(&rq1->lock);
  1673. spin_lock(&rq2->lock);
  1674. } else {
  1675. spin_lock(&rq2->lock);
  1676. spin_lock(&rq1->lock);
  1677. }
  1678. }
  1679. }
  1680. /*
  1681. * double_rq_unlock - safely unlock two runqueues
  1682. *
  1683. * Note this does not restore interrupts like task_rq_unlock,
  1684. * you need to do so manually after calling.
  1685. */
  1686. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1687. __releases(rq1->lock)
  1688. __releases(rq2->lock)
  1689. {
  1690. spin_unlock(&rq1->lock);
  1691. if (rq1 != rq2)
  1692. spin_unlock(&rq2->lock);
  1693. else
  1694. __release(rq2->lock);
  1695. }
  1696. /*
  1697. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1698. */
  1699. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1700. __releases(this_rq->lock)
  1701. __acquires(busiest->lock)
  1702. __acquires(this_rq->lock)
  1703. {
  1704. if (unlikely(!irqs_disabled())) {
  1705. /* printk() doesn't work good under rq->lock */
  1706. spin_unlock(&this_rq->lock);
  1707. BUG_ON(1);
  1708. }
  1709. if (unlikely(!spin_trylock(&busiest->lock))) {
  1710. if (busiest < this_rq) {
  1711. spin_unlock(&this_rq->lock);
  1712. spin_lock(&busiest->lock);
  1713. spin_lock(&this_rq->lock);
  1714. } else
  1715. spin_lock(&busiest->lock);
  1716. }
  1717. }
  1718. /*
  1719. * If dest_cpu is allowed for this process, migrate the task to it.
  1720. * This is accomplished by forcing the cpu_allowed mask to only
  1721. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1722. * the cpu_allowed mask is restored.
  1723. */
  1724. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1725. {
  1726. struct migration_req req;
  1727. unsigned long flags;
  1728. struct rq *rq;
  1729. rq = task_rq_lock(p, &flags);
  1730. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1731. || unlikely(cpu_is_offline(dest_cpu)))
  1732. goto out;
  1733. /* force the process onto the specified CPU */
  1734. if (migrate_task(p, dest_cpu, &req)) {
  1735. /* Need to wait for migration thread (might exit: take ref). */
  1736. struct task_struct *mt = rq->migration_thread;
  1737. get_task_struct(mt);
  1738. task_rq_unlock(rq, &flags);
  1739. wake_up_process(mt);
  1740. put_task_struct(mt);
  1741. wait_for_completion(&req.done);
  1742. return;
  1743. }
  1744. out:
  1745. task_rq_unlock(rq, &flags);
  1746. }
  1747. /*
  1748. * sched_exec - execve() is a valuable balancing opportunity, because at
  1749. * this point the task has the smallest effective memory and cache footprint.
  1750. */
  1751. void sched_exec(void)
  1752. {
  1753. int new_cpu, this_cpu = get_cpu();
  1754. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1755. put_cpu();
  1756. if (new_cpu != this_cpu)
  1757. sched_migrate_task(current, new_cpu);
  1758. }
  1759. /*
  1760. * pull_task - move a task from a remote runqueue to the local runqueue.
  1761. * Both runqueues must be locked.
  1762. */
  1763. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1764. struct rq *this_rq, int this_cpu)
  1765. {
  1766. deactivate_task(src_rq, p, 0);
  1767. set_task_cpu(p, this_cpu);
  1768. activate_task(this_rq, p, 0);
  1769. /*
  1770. * Note that idle threads have a prio of MAX_PRIO, for this test
  1771. * to be always true for them.
  1772. */
  1773. check_preempt_curr(this_rq, p);
  1774. }
  1775. /*
  1776. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1777. */
  1778. static
  1779. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1780. struct sched_domain *sd, enum cpu_idle_type idle,
  1781. int *all_pinned)
  1782. {
  1783. /*
  1784. * We do not migrate tasks that are:
  1785. * 1) running (obviously), or
  1786. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1787. * 3) are cache-hot on their current CPU.
  1788. */
  1789. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1790. return 0;
  1791. *all_pinned = 0;
  1792. if (task_running(rq, p))
  1793. return 0;
  1794. /*
  1795. * Aggressive migration if too many balance attempts have failed:
  1796. */
  1797. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1798. return 1;
  1799. return 1;
  1800. }
  1801. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1802. unsigned long max_nr_move, unsigned long max_load_move,
  1803. struct sched_domain *sd, enum cpu_idle_type idle,
  1804. int *all_pinned, unsigned long *load_moved,
  1805. int this_best_prio, int best_prio, int best_prio_seen,
  1806. struct rq_iterator *iterator)
  1807. {
  1808. int pulled = 0, pinned = 0, skip_for_load;
  1809. struct task_struct *p;
  1810. long rem_load_move = max_load_move;
  1811. if (max_nr_move == 0 || max_load_move == 0)
  1812. goto out;
  1813. pinned = 1;
  1814. /*
  1815. * Start the load-balancing iterator:
  1816. */
  1817. p = iterator->start(iterator->arg);
  1818. next:
  1819. if (!p)
  1820. goto out;
  1821. /*
  1822. * To help distribute high priority tasks accross CPUs we don't
  1823. * skip a task if it will be the highest priority task (i.e. smallest
  1824. * prio value) on its new queue regardless of its load weight
  1825. */
  1826. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1827. SCHED_LOAD_SCALE_FUZZ;
  1828. if (skip_for_load && p->prio < this_best_prio)
  1829. skip_for_load = !best_prio_seen && p->prio == best_prio;
  1830. if (skip_for_load ||
  1831. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1832. best_prio_seen |= p->prio == best_prio;
  1833. p = iterator->next(iterator->arg);
  1834. goto next;
  1835. }
  1836. pull_task(busiest, p, this_rq, this_cpu);
  1837. pulled++;
  1838. rem_load_move -= p->se.load.weight;
  1839. /*
  1840. * We only want to steal up to the prescribed number of tasks
  1841. * and the prescribed amount of weighted load.
  1842. */
  1843. if (pulled < max_nr_move && rem_load_move > 0) {
  1844. if (p->prio < this_best_prio)
  1845. this_best_prio = p->prio;
  1846. p = iterator->next(iterator->arg);
  1847. goto next;
  1848. }
  1849. out:
  1850. /*
  1851. * Right now, this is the only place pull_task() is called,
  1852. * so we can safely collect pull_task() stats here rather than
  1853. * inside pull_task().
  1854. */
  1855. schedstat_add(sd, lb_gained[idle], pulled);
  1856. if (all_pinned)
  1857. *all_pinned = pinned;
  1858. *load_moved = max_load_move - rem_load_move;
  1859. return pulled;
  1860. }
  1861. /*
  1862. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1863. * load from busiest to this_rq, as part of a balancing operation within
  1864. * "domain". Returns the number of tasks moved.
  1865. *
  1866. * Called with both runqueues locked.
  1867. */
  1868. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1869. unsigned long max_nr_move, unsigned long max_load_move,
  1870. struct sched_domain *sd, enum cpu_idle_type idle,
  1871. int *all_pinned)
  1872. {
  1873. struct sched_class *class = sched_class_highest;
  1874. unsigned long load_moved, total_nr_moved = 0, nr_moved;
  1875. long rem_load_move = max_load_move;
  1876. do {
  1877. nr_moved = class->load_balance(this_rq, this_cpu, busiest,
  1878. max_nr_move, (unsigned long)rem_load_move,
  1879. sd, idle, all_pinned, &load_moved);
  1880. total_nr_moved += nr_moved;
  1881. max_nr_move -= nr_moved;
  1882. rem_load_move -= load_moved;
  1883. class = class->next;
  1884. } while (class && max_nr_move && rem_load_move > 0);
  1885. return total_nr_moved;
  1886. }
  1887. /*
  1888. * find_busiest_group finds and returns the busiest CPU group within the
  1889. * domain. It calculates and returns the amount of weighted load which
  1890. * should be moved to restore balance via the imbalance parameter.
  1891. */
  1892. static struct sched_group *
  1893. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1894. unsigned long *imbalance, enum cpu_idle_type idle,
  1895. int *sd_idle, cpumask_t *cpus, int *balance)
  1896. {
  1897. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1898. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1899. unsigned long max_pull;
  1900. unsigned long busiest_load_per_task, busiest_nr_running;
  1901. unsigned long this_load_per_task, this_nr_running;
  1902. int load_idx;
  1903. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1904. int power_savings_balance = 1;
  1905. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1906. unsigned long min_nr_running = ULONG_MAX;
  1907. struct sched_group *group_min = NULL, *group_leader = NULL;
  1908. #endif
  1909. max_load = this_load = total_load = total_pwr = 0;
  1910. busiest_load_per_task = busiest_nr_running = 0;
  1911. this_load_per_task = this_nr_running = 0;
  1912. if (idle == CPU_NOT_IDLE)
  1913. load_idx = sd->busy_idx;
  1914. else if (idle == CPU_NEWLY_IDLE)
  1915. load_idx = sd->newidle_idx;
  1916. else
  1917. load_idx = sd->idle_idx;
  1918. do {
  1919. unsigned long load, group_capacity;
  1920. int local_group;
  1921. int i;
  1922. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  1923. unsigned long sum_nr_running, sum_weighted_load;
  1924. local_group = cpu_isset(this_cpu, group->cpumask);
  1925. if (local_group)
  1926. balance_cpu = first_cpu(group->cpumask);
  1927. /* Tally up the load of all CPUs in the group */
  1928. sum_weighted_load = sum_nr_running = avg_load = 0;
  1929. for_each_cpu_mask(i, group->cpumask) {
  1930. struct rq *rq;
  1931. if (!cpu_isset(i, *cpus))
  1932. continue;
  1933. rq = cpu_rq(i);
  1934. if (*sd_idle && rq->nr_running)
  1935. *sd_idle = 0;
  1936. /* Bias balancing toward cpus of our domain */
  1937. if (local_group) {
  1938. if (idle_cpu(i) && !first_idle_cpu) {
  1939. first_idle_cpu = 1;
  1940. balance_cpu = i;
  1941. }
  1942. load = target_load(i, load_idx);
  1943. } else
  1944. load = source_load(i, load_idx);
  1945. avg_load += load;
  1946. sum_nr_running += rq->nr_running;
  1947. sum_weighted_load += weighted_cpuload(i);
  1948. }
  1949. /*
  1950. * First idle cpu or the first cpu(busiest) in this sched group
  1951. * is eligible for doing load balancing at this and above
  1952. * domains. In the newly idle case, we will allow all the cpu's
  1953. * to do the newly idle load balance.
  1954. */
  1955. if (idle != CPU_NEWLY_IDLE && local_group &&
  1956. balance_cpu != this_cpu && balance) {
  1957. *balance = 0;
  1958. goto ret;
  1959. }
  1960. total_load += avg_load;
  1961. total_pwr += group->__cpu_power;
  1962. /* Adjust by relative CPU power of the group */
  1963. avg_load = sg_div_cpu_power(group,
  1964. avg_load * SCHED_LOAD_SCALE);
  1965. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  1966. if (local_group) {
  1967. this_load = avg_load;
  1968. this = group;
  1969. this_nr_running = sum_nr_running;
  1970. this_load_per_task = sum_weighted_load;
  1971. } else if (avg_load > max_load &&
  1972. sum_nr_running > group_capacity) {
  1973. max_load = avg_load;
  1974. busiest = group;
  1975. busiest_nr_running = sum_nr_running;
  1976. busiest_load_per_task = sum_weighted_load;
  1977. }
  1978. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1979. /*
  1980. * Busy processors will not participate in power savings
  1981. * balance.
  1982. */
  1983. if (idle == CPU_NOT_IDLE ||
  1984. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1985. goto group_next;
  1986. /*
  1987. * If the local group is idle or completely loaded
  1988. * no need to do power savings balance at this domain
  1989. */
  1990. if (local_group && (this_nr_running >= group_capacity ||
  1991. !this_nr_running))
  1992. power_savings_balance = 0;
  1993. /*
  1994. * If a group is already running at full capacity or idle,
  1995. * don't include that group in power savings calculations
  1996. */
  1997. if (!power_savings_balance || sum_nr_running >= group_capacity
  1998. || !sum_nr_running)
  1999. goto group_next;
  2000. /*
  2001. * Calculate the group which has the least non-idle load.
  2002. * This is the group from where we need to pick up the load
  2003. * for saving power
  2004. */
  2005. if ((sum_nr_running < min_nr_running) ||
  2006. (sum_nr_running == min_nr_running &&
  2007. first_cpu(group->cpumask) <
  2008. first_cpu(group_min->cpumask))) {
  2009. group_min = group;
  2010. min_nr_running = sum_nr_running;
  2011. min_load_per_task = sum_weighted_load /
  2012. sum_nr_running;
  2013. }
  2014. /*
  2015. * Calculate the group which is almost near its
  2016. * capacity but still has some space to pick up some load
  2017. * from other group and save more power
  2018. */
  2019. if (sum_nr_running <= group_capacity - 1) {
  2020. if (sum_nr_running > leader_nr_running ||
  2021. (sum_nr_running == leader_nr_running &&
  2022. first_cpu(group->cpumask) >
  2023. first_cpu(group_leader->cpumask))) {
  2024. group_leader = group;
  2025. leader_nr_running = sum_nr_running;
  2026. }
  2027. }
  2028. group_next:
  2029. #endif
  2030. group = group->next;
  2031. } while (group != sd->groups);
  2032. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2033. goto out_balanced;
  2034. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2035. if (this_load >= avg_load ||
  2036. 100*max_load <= sd->imbalance_pct*this_load)
  2037. goto out_balanced;
  2038. busiest_load_per_task /= busiest_nr_running;
  2039. /*
  2040. * We're trying to get all the cpus to the average_load, so we don't
  2041. * want to push ourselves above the average load, nor do we wish to
  2042. * reduce the max loaded cpu below the average load, as either of these
  2043. * actions would just result in more rebalancing later, and ping-pong
  2044. * tasks around. Thus we look for the minimum possible imbalance.
  2045. * Negative imbalances (*we* are more loaded than anyone else) will
  2046. * be counted as no imbalance for these purposes -- we can't fix that
  2047. * by pulling tasks to us. Be careful of negative numbers as they'll
  2048. * appear as very large values with unsigned longs.
  2049. */
  2050. if (max_load <= busiest_load_per_task)
  2051. goto out_balanced;
  2052. /*
  2053. * In the presence of smp nice balancing, certain scenarios can have
  2054. * max load less than avg load(as we skip the groups at or below
  2055. * its cpu_power, while calculating max_load..)
  2056. */
  2057. if (max_load < avg_load) {
  2058. *imbalance = 0;
  2059. goto small_imbalance;
  2060. }
  2061. /* Don't want to pull so many tasks that a group would go idle */
  2062. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2063. /* How much load to actually move to equalise the imbalance */
  2064. *imbalance = min(max_pull * busiest->__cpu_power,
  2065. (avg_load - this_load) * this->__cpu_power)
  2066. / SCHED_LOAD_SCALE;
  2067. /*
  2068. * if *imbalance is less than the average load per runnable task
  2069. * there is no gaurantee that any tasks will be moved so we'll have
  2070. * a think about bumping its value to force at least one task to be
  2071. * moved
  2072. */
  2073. if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
  2074. unsigned long tmp, pwr_now, pwr_move;
  2075. unsigned int imbn;
  2076. small_imbalance:
  2077. pwr_move = pwr_now = 0;
  2078. imbn = 2;
  2079. if (this_nr_running) {
  2080. this_load_per_task /= this_nr_running;
  2081. if (busiest_load_per_task > this_load_per_task)
  2082. imbn = 1;
  2083. } else
  2084. this_load_per_task = SCHED_LOAD_SCALE;
  2085. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2086. busiest_load_per_task * imbn) {
  2087. *imbalance = busiest_load_per_task;
  2088. return busiest;
  2089. }
  2090. /*
  2091. * OK, we don't have enough imbalance to justify moving tasks,
  2092. * however we may be able to increase total CPU power used by
  2093. * moving them.
  2094. */
  2095. pwr_now += busiest->__cpu_power *
  2096. min(busiest_load_per_task, max_load);
  2097. pwr_now += this->__cpu_power *
  2098. min(this_load_per_task, this_load);
  2099. pwr_now /= SCHED_LOAD_SCALE;
  2100. /* Amount of load we'd subtract */
  2101. tmp = sg_div_cpu_power(busiest,
  2102. busiest_load_per_task * SCHED_LOAD_SCALE);
  2103. if (max_load > tmp)
  2104. pwr_move += busiest->__cpu_power *
  2105. min(busiest_load_per_task, max_load - tmp);
  2106. /* Amount of load we'd add */
  2107. if (max_load * busiest->__cpu_power <
  2108. busiest_load_per_task * SCHED_LOAD_SCALE)
  2109. tmp = sg_div_cpu_power(this,
  2110. max_load * busiest->__cpu_power);
  2111. else
  2112. tmp = sg_div_cpu_power(this,
  2113. busiest_load_per_task * SCHED_LOAD_SCALE);
  2114. pwr_move += this->__cpu_power *
  2115. min(this_load_per_task, this_load + tmp);
  2116. pwr_move /= SCHED_LOAD_SCALE;
  2117. /* Move if we gain throughput */
  2118. if (pwr_move <= pwr_now)
  2119. goto out_balanced;
  2120. *imbalance = busiest_load_per_task;
  2121. }
  2122. return busiest;
  2123. out_balanced:
  2124. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2125. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2126. goto ret;
  2127. if (this == group_leader && group_leader != group_min) {
  2128. *imbalance = min_load_per_task;
  2129. return group_min;
  2130. }
  2131. #endif
  2132. ret:
  2133. *imbalance = 0;
  2134. return NULL;
  2135. }
  2136. /*
  2137. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2138. */
  2139. static struct rq *
  2140. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2141. unsigned long imbalance, cpumask_t *cpus)
  2142. {
  2143. struct rq *busiest = NULL, *rq;
  2144. unsigned long max_load = 0;
  2145. int i;
  2146. for_each_cpu_mask(i, group->cpumask) {
  2147. unsigned long wl;
  2148. if (!cpu_isset(i, *cpus))
  2149. continue;
  2150. rq = cpu_rq(i);
  2151. wl = weighted_cpuload(i);
  2152. if (rq->nr_running == 1 && wl > imbalance)
  2153. continue;
  2154. if (wl > max_load) {
  2155. max_load = wl;
  2156. busiest = rq;
  2157. }
  2158. }
  2159. return busiest;
  2160. }
  2161. /*
  2162. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2163. * so long as it is large enough.
  2164. */
  2165. #define MAX_PINNED_INTERVAL 512
  2166. static inline unsigned long minus_1_or_zero(unsigned long n)
  2167. {
  2168. return n > 0 ? n - 1 : 0;
  2169. }
  2170. /*
  2171. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2172. * tasks if there is an imbalance.
  2173. */
  2174. static int load_balance(int this_cpu, struct rq *this_rq,
  2175. struct sched_domain *sd, enum cpu_idle_type idle,
  2176. int *balance)
  2177. {
  2178. int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2179. struct sched_group *group;
  2180. unsigned long imbalance;
  2181. struct rq *busiest;
  2182. cpumask_t cpus = CPU_MASK_ALL;
  2183. unsigned long flags;
  2184. /*
  2185. * When power savings policy is enabled for the parent domain, idle
  2186. * sibling can pick up load irrespective of busy siblings. In this case,
  2187. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2188. * portraying it as CPU_NOT_IDLE.
  2189. */
  2190. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2191. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2192. sd_idle = 1;
  2193. schedstat_inc(sd, lb_cnt[idle]);
  2194. redo:
  2195. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2196. &cpus, balance);
  2197. if (*balance == 0)
  2198. goto out_balanced;
  2199. if (!group) {
  2200. schedstat_inc(sd, lb_nobusyg[idle]);
  2201. goto out_balanced;
  2202. }
  2203. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2204. if (!busiest) {
  2205. schedstat_inc(sd, lb_nobusyq[idle]);
  2206. goto out_balanced;
  2207. }
  2208. BUG_ON(busiest == this_rq);
  2209. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2210. nr_moved = 0;
  2211. if (busiest->nr_running > 1) {
  2212. /*
  2213. * Attempt to move tasks. If find_busiest_group has found
  2214. * an imbalance but busiest->nr_running <= 1, the group is
  2215. * still unbalanced. nr_moved simply stays zero, so it is
  2216. * correctly treated as an imbalance.
  2217. */
  2218. local_irq_save(flags);
  2219. double_rq_lock(this_rq, busiest);
  2220. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2221. minus_1_or_zero(busiest->nr_running),
  2222. imbalance, sd, idle, &all_pinned);
  2223. double_rq_unlock(this_rq, busiest);
  2224. local_irq_restore(flags);
  2225. /*
  2226. * some other cpu did the load balance for us.
  2227. */
  2228. if (nr_moved && this_cpu != smp_processor_id())
  2229. resched_cpu(this_cpu);
  2230. /* All tasks on this runqueue were pinned by CPU affinity */
  2231. if (unlikely(all_pinned)) {
  2232. cpu_clear(cpu_of(busiest), cpus);
  2233. if (!cpus_empty(cpus))
  2234. goto redo;
  2235. goto out_balanced;
  2236. }
  2237. }
  2238. if (!nr_moved) {
  2239. schedstat_inc(sd, lb_failed[idle]);
  2240. sd->nr_balance_failed++;
  2241. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2242. spin_lock_irqsave(&busiest->lock, flags);
  2243. /* don't kick the migration_thread, if the curr
  2244. * task on busiest cpu can't be moved to this_cpu
  2245. */
  2246. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2247. spin_unlock_irqrestore(&busiest->lock, flags);
  2248. all_pinned = 1;
  2249. goto out_one_pinned;
  2250. }
  2251. if (!busiest->active_balance) {
  2252. busiest->active_balance = 1;
  2253. busiest->push_cpu = this_cpu;
  2254. active_balance = 1;
  2255. }
  2256. spin_unlock_irqrestore(&busiest->lock, flags);
  2257. if (active_balance)
  2258. wake_up_process(busiest->migration_thread);
  2259. /*
  2260. * We've kicked active balancing, reset the failure
  2261. * counter.
  2262. */
  2263. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2264. }
  2265. } else
  2266. sd->nr_balance_failed = 0;
  2267. if (likely(!active_balance)) {
  2268. /* We were unbalanced, so reset the balancing interval */
  2269. sd->balance_interval = sd->min_interval;
  2270. } else {
  2271. /*
  2272. * If we've begun active balancing, start to back off. This
  2273. * case may not be covered by the all_pinned logic if there
  2274. * is only 1 task on the busy runqueue (because we don't call
  2275. * move_tasks).
  2276. */
  2277. if (sd->balance_interval < sd->max_interval)
  2278. sd->balance_interval *= 2;
  2279. }
  2280. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2281. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2282. return -1;
  2283. return nr_moved;
  2284. out_balanced:
  2285. schedstat_inc(sd, lb_balanced[idle]);
  2286. sd->nr_balance_failed = 0;
  2287. out_one_pinned:
  2288. /* tune up the balancing interval */
  2289. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2290. (sd->balance_interval < sd->max_interval))
  2291. sd->balance_interval *= 2;
  2292. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2293. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2294. return -1;
  2295. return 0;
  2296. }
  2297. /*
  2298. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2299. * tasks if there is an imbalance.
  2300. *
  2301. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2302. * this_rq is locked.
  2303. */
  2304. static int
  2305. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2306. {
  2307. struct sched_group *group;
  2308. struct rq *busiest = NULL;
  2309. unsigned long imbalance;
  2310. int nr_moved = 0;
  2311. int sd_idle = 0;
  2312. cpumask_t cpus = CPU_MASK_ALL;
  2313. /*
  2314. * When power savings policy is enabled for the parent domain, idle
  2315. * sibling can pick up load irrespective of busy siblings. In this case,
  2316. * let the state of idle sibling percolate up as IDLE, instead of
  2317. * portraying it as CPU_NOT_IDLE.
  2318. */
  2319. if (sd->flags & SD_SHARE_CPUPOWER &&
  2320. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2321. sd_idle = 1;
  2322. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2323. redo:
  2324. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2325. &sd_idle, &cpus, NULL);
  2326. if (!group) {
  2327. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2328. goto out_balanced;
  2329. }
  2330. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2331. &cpus);
  2332. if (!busiest) {
  2333. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2334. goto out_balanced;
  2335. }
  2336. BUG_ON(busiest == this_rq);
  2337. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2338. nr_moved = 0;
  2339. if (busiest->nr_running > 1) {
  2340. /* Attempt to move tasks */
  2341. double_lock_balance(this_rq, busiest);
  2342. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2343. minus_1_or_zero(busiest->nr_running),
  2344. imbalance, sd, CPU_NEWLY_IDLE, NULL);
  2345. spin_unlock(&busiest->lock);
  2346. if (!nr_moved) {
  2347. cpu_clear(cpu_of(busiest), cpus);
  2348. if (!cpus_empty(cpus))
  2349. goto redo;
  2350. }
  2351. }
  2352. if (!nr_moved) {
  2353. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2354. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2355. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2356. return -1;
  2357. } else
  2358. sd->nr_balance_failed = 0;
  2359. return nr_moved;
  2360. out_balanced:
  2361. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2362. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2363. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2364. return -1;
  2365. sd->nr_balance_failed = 0;
  2366. return 0;
  2367. }
  2368. /*
  2369. * idle_balance is called by schedule() if this_cpu is about to become
  2370. * idle. Attempts to pull tasks from other CPUs.
  2371. */
  2372. static void idle_balance(int this_cpu, struct rq *this_rq)
  2373. {
  2374. struct sched_domain *sd;
  2375. int pulled_task = -1;
  2376. unsigned long next_balance = jiffies + HZ;
  2377. for_each_domain(this_cpu, sd) {
  2378. unsigned long interval;
  2379. if (!(sd->flags & SD_LOAD_BALANCE))
  2380. continue;
  2381. if (sd->flags & SD_BALANCE_NEWIDLE)
  2382. /* If we've pulled tasks over stop searching: */
  2383. pulled_task = load_balance_newidle(this_cpu,
  2384. this_rq, sd);
  2385. interval = msecs_to_jiffies(sd->balance_interval);
  2386. if (time_after(next_balance, sd->last_balance + interval))
  2387. next_balance = sd->last_balance + interval;
  2388. if (pulled_task)
  2389. break;
  2390. }
  2391. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2392. /*
  2393. * We are going idle. next_balance may be set based on
  2394. * a busy processor. So reset next_balance.
  2395. */
  2396. this_rq->next_balance = next_balance;
  2397. }
  2398. }
  2399. /*
  2400. * active_load_balance is run by migration threads. It pushes running tasks
  2401. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2402. * running on each physical CPU where possible, and avoids physical /
  2403. * logical imbalances.
  2404. *
  2405. * Called with busiest_rq locked.
  2406. */
  2407. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2408. {
  2409. int target_cpu = busiest_rq->push_cpu;
  2410. struct sched_domain *sd;
  2411. struct rq *target_rq;
  2412. /* Is there any task to move? */
  2413. if (busiest_rq->nr_running <= 1)
  2414. return;
  2415. target_rq = cpu_rq(target_cpu);
  2416. /*
  2417. * This condition is "impossible", if it occurs
  2418. * we need to fix it. Originally reported by
  2419. * Bjorn Helgaas on a 128-cpu setup.
  2420. */
  2421. BUG_ON(busiest_rq == target_rq);
  2422. /* move a task from busiest_rq to target_rq */
  2423. double_lock_balance(busiest_rq, target_rq);
  2424. /* Search for an sd spanning us and the target CPU. */
  2425. for_each_domain(target_cpu, sd) {
  2426. if ((sd->flags & SD_LOAD_BALANCE) &&
  2427. cpu_isset(busiest_cpu, sd->span))
  2428. break;
  2429. }
  2430. if (likely(sd)) {
  2431. schedstat_inc(sd, alb_cnt);
  2432. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2433. RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
  2434. NULL))
  2435. schedstat_inc(sd, alb_pushed);
  2436. else
  2437. schedstat_inc(sd, alb_failed);
  2438. }
  2439. spin_unlock(&target_rq->lock);
  2440. }
  2441. #ifdef CONFIG_NO_HZ
  2442. static struct {
  2443. atomic_t load_balancer;
  2444. cpumask_t cpu_mask;
  2445. } nohz ____cacheline_aligned = {
  2446. .load_balancer = ATOMIC_INIT(-1),
  2447. .cpu_mask = CPU_MASK_NONE,
  2448. };
  2449. /*
  2450. * This routine will try to nominate the ilb (idle load balancing)
  2451. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2452. * load balancing on behalf of all those cpus. If all the cpus in the system
  2453. * go into this tickless mode, then there will be no ilb owner (as there is
  2454. * no need for one) and all the cpus will sleep till the next wakeup event
  2455. * arrives...
  2456. *
  2457. * For the ilb owner, tick is not stopped. And this tick will be used
  2458. * for idle load balancing. ilb owner will still be part of
  2459. * nohz.cpu_mask..
  2460. *
  2461. * While stopping the tick, this cpu will become the ilb owner if there
  2462. * is no other owner. And will be the owner till that cpu becomes busy
  2463. * or if all cpus in the system stop their ticks at which point
  2464. * there is no need for ilb owner.
  2465. *
  2466. * When the ilb owner becomes busy, it nominates another owner, during the
  2467. * next busy scheduler_tick()
  2468. */
  2469. int select_nohz_load_balancer(int stop_tick)
  2470. {
  2471. int cpu = smp_processor_id();
  2472. if (stop_tick) {
  2473. cpu_set(cpu, nohz.cpu_mask);
  2474. cpu_rq(cpu)->in_nohz_recently = 1;
  2475. /*
  2476. * If we are going offline and still the leader, give up!
  2477. */
  2478. if (cpu_is_offline(cpu) &&
  2479. atomic_read(&nohz.load_balancer) == cpu) {
  2480. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2481. BUG();
  2482. return 0;
  2483. }
  2484. /* time for ilb owner also to sleep */
  2485. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2486. if (atomic_read(&nohz.load_balancer) == cpu)
  2487. atomic_set(&nohz.load_balancer, -1);
  2488. return 0;
  2489. }
  2490. if (atomic_read(&nohz.load_balancer) == -1) {
  2491. /* make me the ilb owner */
  2492. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2493. return 1;
  2494. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2495. return 1;
  2496. } else {
  2497. if (!cpu_isset(cpu, nohz.cpu_mask))
  2498. return 0;
  2499. cpu_clear(cpu, nohz.cpu_mask);
  2500. if (atomic_read(&nohz.load_balancer) == cpu)
  2501. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2502. BUG();
  2503. }
  2504. return 0;
  2505. }
  2506. #endif
  2507. static DEFINE_SPINLOCK(balancing);
  2508. /*
  2509. * It checks each scheduling domain to see if it is due to be balanced,
  2510. * and initiates a balancing operation if so.
  2511. *
  2512. * Balancing parameters are set up in arch_init_sched_domains.
  2513. */
  2514. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2515. {
  2516. int balance = 1;
  2517. struct rq *rq = cpu_rq(cpu);
  2518. unsigned long interval;
  2519. struct sched_domain *sd;
  2520. /* Earliest time when we have to do rebalance again */
  2521. unsigned long next_balance = jiffies + 60*HZ;
  2522. for_each_domain(cpu, sd) {
  2523. if (!(sd->flags & SD_LOAD_BALANCE))
  2524. continue;
  2525. interval = sd->balance_interval;
  2526. if (idle != CPU_IDLE)
  2527. interval *= sd->busy_factor;
  2528. /* scale ms to jiffies */
  2529. interval = msecs_to_jiffies(interval);
  2530. if (unlikely(!interval))
  2531. interval = 1;
  2532. if (interval > HZ*NR_CPUS/10)
  2533. interval = HZ*NR_CPUS/10;
  2534. if (sd->flags & SD_SERIALIZE) {
  2535. if (!spin_trylock(&balancing))
  2536. goto out;
  2537. }
  2538. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2539. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2540. /*
  2541. * We've pulled tasks over so either we're no
  2542. * longer idle, or one of our SMT siblings is
  2543. * not idle.
  2544. */
  2545. idle = CPU_NOT_IDLE;
  2546. }
  2547. sd->last_balance = jiffies;
  2548. }
  2549. if (sd->flags & SD_SERIALIZE)
  2550. spin_unlock(&balancing);
  2551. out:
  2552. if (time_after(next_balance, sd->last_balance + interval))
  2553. next_balance = sd->last_balance + interval;
  2554. /*
  2555. * Stop the load balance at this level. There is another
  2556. * CPU in our sched group which is doing load balancing more
  2557. * actively.
  2558. */
  2559. if (!balance)
  2560. break;
  2561. }
  2562. rq->next_balance = next_balance;
  2563. }
  2564. /*
  2565. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2566. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2567. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2568. */
  2569. static void run_rebalance_domains(struct softirq_action *h)
  2570. {
  2571. int this_cpu = smp_processor_id();
  2572. struct rq *this_rq = cpu_rq(this_cpu);
  2573. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2574. CPU_IDLE : CPU_NOT_IDLE;
  2575. rebalance_domains(this_cpu, idle);
  2576. #ifdef CONFIG_NO_HZ
  2577. /*
  2578. * If this cpu is the owner for idle load balancing, then do the
  2579. * balancing on behalf of the other idle cpus whose ticks are
  2580. * stopped.
  2581. */
  2582. if (this_rq->idle_at_tick &&
  2583. atomic_read(&nohz.load_balancer) == this_cpu) {
  2584. cpumask_t cpus = nohz.cpu_mask;
  2585. struct rq *rq;
  2586. int balance_cpu;
  2587. cpu_clear(this_cpu, cpus);
  2588. for_each_cpu_mask(balance_cpu, cpus) {
  2589. /*
  2590. * If this cpu gets work to do, stop the load balancing
  2591. * work being done for other cpus. Next load
  2592. * balancing owner will pick it up.
  2593. */
  2594. if (need_resched())
  2595. break;
  2596. rebalance_domains(balance_cpu, SCHED_IDLE);
  2597. rq = cpu_rq(balance_cpu);
  2598. if (time_after(this_rq->next_balance, rq->next_balance))
  2599. this_rq->next_balance = rq->next_balance;
  2600. }
  2601. }
  2602. #endif
  2603. }
  2604. /*
  2605. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2606. *
  2607. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2608. * idle load balancing owner or decide to stop the periodic load balancing,
  2609. * if the whole system is idle.
  2610. */
  2611. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2612. {
  2613. #ifdef CONFIG_NO_HZ
  2614. /*
  2615. * If we were in the nohz mode recently and busy at the current
  2616. * scheduler tick, then check if we need to nominate new idle
  2617. * load balancer.
  2618. */
  2619. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2620. rq->in_nohz_recently = 0;
  2621. if (atomic_read(&nohz.load_balancer) == cpu) {
  2622. cpu_clear(cpu, nohz.cpu_mask);
  2623. atomic_set(&nohz.load_balancer, -1);
  2624. }
  2625. if (atomic_read(&nohz.load_balancer) == -1) {
  2626. /*
  2627. * simple selection for now: Nominate the
  2628. * first cpu in the nohz list to be the next
  2629. * ilb owner.
  2630. *
  2631. * TBD: Traverse the sched domains and nominate
  2632. * the nearest cpu in the nohz.cpu_mask.
  2633. */
  2634. int ilb = first_cpu(nohz.cpu_mask);
  2635. if (ilb != NR_CPUS)
  2636. resched_cpu(ilb);
  2637. }
  2638. }
  2639. /*
  2640. * If this cpu is idle and doing idle load balancing for all the
  2641. * cpus with ticks stopped, is it time for that to stop?
  2642. */
  2643. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2644. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2645. resched_cpu(cpu);
  2646. return;
  2647. }
  2648. /*
  2649. * If this cpu is idle and the idle load balancing is done by
  2650. * someone else, then no need raise the SCHED_SOFTIRQ
  2651. */
  2652. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2653. cpu_isset(cpu, nohz.cpu_mask))
  2654. return;
  2655. #endif
  2656. if (time_after_eq(jiffies, rq->next_balance))
  2657. raise_softirq(SCHED_SOFTIRQ);
  2658. }
  2659. #else /* CONFIG_SMP */
  2660. /*
  2661. * on UP we do not need to balance between CPUs:
  2662. */
  2663. static inline void idle_balance(int cpu, struct rq *rq)
  2664. {
  2665. }
  2666. /* Avoid "used but not defined" warning on UP */
  2667. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2668. unsigned long max_nr_move, unsigned long max_load_move,
  2669. struct sched_domain *sd, enum cpu_idle_type idle,
  2670. int *all_pinned, unsigned long *load_moved,
  2671. int this_best_prio, int best_prio, int best_prio_seen,
  2672. struct rq_iterator *iterator)
  2673. {
  2674. *load_moved = 0;
  2675. return 0;
  2676. }
  2677. #endif
  2678. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2679. EXPORT_PER_CPU_SYMBOL(kstat);
  2680. /*
  2681. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2682. * that have not yet been banked in case the task is currently running.
  2683. */
  2684. unsigned long long task_sched_runtime(struct task_struct *p)
  2685. {
  2686. unsigned long flags;
  2687. u64 ns, delta_exec;
  2688. struct rq *rq;
  2689. rq = task_rq_lock(p, &flags);
  2690. ns = p->se.sum_exec_runtime;
  2691. if (rq->curr == p) {
  2692. delta_exec = rq_clock(rq) - p->se.exec_start;
  2693. if ((s64)delta_exec > 0)
  2694. ns += delta_exec;
  2695. }
  2696. task_rq_unlock(rq, &flags);
  2697. return ns;
  2698. }
  2699. /*
  2700. * Account user cpu time to a process.
  2701. * @p: the process that the cpu time gets accounted to
  2702. * @hardirq_offset: the offset to subtract from hardirq_count()
  2703. * @cputime: the cpu time spent in user space since the last update
  2704. */
  2705. void account_user_time(struct task_struct *p, cputime_t cputime)
  2706. {
  2707. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2708. cputime64_t tmp;
  2709. p->utime = cputime_add(p->utime, cputime);
  2710. /* Add user time to cpustat. */
  2711. tmp = cputime_to_cputime64(cputime);
  2712. if (TASK_NICE(p) > 0)
  2713. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2714. else
  2715. cpustat->user = cputime64_add(cpustat->user, tmp);
  2716. }
  2717. /*
  2718. * Account system cpu time to a process.
  2719. * @p: the process that the cpu time gets accounted to
  2720. * @hardirq_offset: the offset to subtract from hardirq_count()
  2721. * @cputime: the cpu time spent in kernel space since the last update
  2722. */
  2723. void account_system_time(struct task_struct *p, int hardirq_offset,
  2724. cputime_t cputime)
  2725. {
  2726. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2727. struct rq *rq = this_rq();
  2728. cputime64_t tmp;
  2729. p->stime = cputime_add(p->stime, cputime);
  2730. /* Add system time to cpustat. */
  2731. tmp = cputime_to_cputime64(cputime);
  2732. if (hardirq_count() - hardirq_offset)
  2733. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2734. else if (softirq_count())
  2735. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2736. else if (p != rq->idle)
  2737. cpustat->system = cputime64_add(cpustat->system, tmp);
  2738. else if (atomic_read(&rq->nr_iowait) > 0)
  2739. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2740. else
  2741. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2742. /* Account for system time used */
  2743. acct_update_integrals(p);
  2744. }
  2745. /*
  2746. * Account for involuntary wait time.
  2747. * @p: the process from which the cpu time has been stolen
  2748. * @steal: the cpu time spent in involuntary wait
  2749. */
  2750. void account_steal_time(struct task_struct *p, cputime_t steal)
  2751. {
  2752. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2753. cputime64_t tmp = cputime_to_cputime64(steal);
  2754. struct rq *rq = this_rq();
  2755. if (p == rq->idle) {
  2756. p->stime = cputime_add(p->stime, steal);
  2757. if (atomic_read(&rq->nr_iowait) > 0)
  2758. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2759. else
  2760. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2761. } else
  2762. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2763. }
  2764. /*
  2765. * This function gets called by the timer code, with HZ frequency.
  2766. * We call it with interrupts disabled.
  2767. *
  2768. * It also gets called by the fork code, when changing the parent's
  2769. * timeslices.
  2770. */
  2771. void scheduler_tick(void)
  2772. {
  2773. int cpu = smp_processor_id();
  2774. struct rq *rq = cpu_rq(cpu);
  2775. struct task_struct *curr = rq->curr;
  2776. spin_lock(&rq->lock);
  2777. if (curr != rq->idle) /* FIXME: needed? */
  2778. curr->sched_class->task_tick(rq, curr);
  2779. update_cpu_load(rq);
  2780. spin_unlock(&rq->lock);
  2781. #ifdef CONFIG_SMP
  2782. rq->idle_at_tick = idle_cpu(cpu);
  2783. trigger_load_balance(rq, cpu);
  2784. #endif
  2785. }
  2786. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2787. void fastcall add_preempt_count(int val)
  2788. {
  2789. /*
  2790. * Underflow?
  2791. */
  2792. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2793. return;
  2794. preempt_count() += val;
  2795. /*
  2796. * Spinlock count overflowing soon?
  2797. */
  2798. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2799. PREEMPT_MASK - 10);
  2800. }
  2801. EXPORT_SYMBOL(add_preempt_count);
  2802. void fastcall sub_preempt_count(int val)
  2803. {
  2804. /*
  2805. * Underflow?
  2806. */
  2807. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2808. return;
  2809. /*
  2810. * Is the spinlock portion underflowing?
  2811. */
  2812. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2813. !(preempt_count() & PREEMPT_MASK)))
  2814. return;
  2815. preempt_count() -= val;
  2816. }
  2817. EXPORT_SYMBOL(sub_preempt_count);
  2818. #endif
  2819. /*
  2820. * Print scheduling while atomic bug:
  2821. */
  2822. static noinline void __schedule_bug(struct task_struct *prev)
  2823. {
  2824. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2825. prev->comm, preempt_count(), prev->pid);
  2826. debug_show_held_locks(prev);
  2827. if (irqs_disabled())
  2828. print_irqtrace_events(prev);
  2829. dump_stack();
  2830. }
  2831. /*
  2832. * Various schedule()-time debugging checks and statistics:
  2833. */
  2834. static inline void schedule_debug(struct task_struct *prev)
  2835. {
  2836. /*
  2837. * Test if we are atomic. Since do_exit() needs to call into
  2838. * schedule() atomically, we ignore that path for now.
  2839. * Otherwise, whine if we are scheduling when we should not be.
  2840. */
  2841. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2842. __schedule_bug(prev);
  2843. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2844. schedstat_inc(this_rq(), sched_cnt);
  2845. }
  2846. /*
  2847. * Pick up the highest-prio task:
  2848. */
  2849. static inline struct task_struct *
  2850. pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
  2851. {
  2852. struct sched_class *class;
  2853. struct task_struct *p;
  2854. /*
  2855. * Optimization: we know that if all tasks are in
  2856. * the fair class we can call that function directly:
  2857. */
  2858. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2859. p = fair_sched_class.pick_next_task(rq, now);
  2860. if (likely(p))
  2861. return p;
  2862. }
  2863. class = sched_class_highest;
  2864. for ( ; ; ) {
  2865. p = class->pick_next_task(rq, now);
  2866. if (p)
  2867. return p;
  2868. /*
  2869. * Will never be NULL as the idle class always
  2870. * returns a non-NULL p:
  2871. */
  2872. class = class->next;
  2873. }
  2874. }
  2875. /*
  2876. * schedule() is the main scheduler function.
  2877. */
  2878. asmlinkage void __sched schedule(void)
  2879. {
  2880. struct task_struct *prev, *next;
  2881. long *switch_count;
  2882. struct rq *rq;
  2883. u64 now;
  2884. int cpu;
  2885. need_resched:
  2886. preempt_disable();
  2887. cpu = smp_processor_id();
  2888. rq = cpu_rq(cpu);
  2889. rcu_qsctr_inc(cpu);
  2890. prev = rq->curr;
  2891. switch_count = &prev->nivcsw;
  2892. release_kernel_lock(prev);
  2893. need_resched_nonpreemptible:
  2894. schedule_debug(prev);
  2895. spin_lock_irq(&rq->lock);
  2896. clear_tsk_need_resched(prev);
  2897. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2898. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2899. unlikely(signal_pending(prev)))) {
  2900. prev->state = TASK_RUNNING;
  2901. } else {
  2902. deactivate_task(rq, prev, 1);
  2903. }
  2904. switch_count = &prev->nvcsw;
  2905. }
  2906. if (unlikely(!rq->nr_running))
  2907. idle_balance(cpu, rq);
  2908. now = __rq_clock(rq);
  2909. prev->sched_class->put_prev_task(rq, prev, now);
  2910. next = pick_next_task(rq, prev, now);
  2911. sched_info_switch(prev, next);
  2912. if (likely(prev != next)) {
  2913. rq->nr_switches++;
  2914. rq->curr = next;
  2915. ++*switch_count;
  2916. context_switch(rq, prev, next); /* unlocks the rq */
  2917. } else
  2918. spin_unlock_irq(&rq->lock);
  2919. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  2920. cpu = smp_processor_id();
  2921. rq = cpu_rq(cpu);
  2922. goto need_resched_nonpreemptible;
  2923. }
  2924. preempt_enable_no_resched();
  2925. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2926. goto need_resched;
  2927. }
  2928. EXPORT_SYMBOL(schedule);
  2929. #ifdef CONFIG_PREEMPT
  2930. /*
  2931. * this is the entry point to schedule() from in-kernel preemption
  2932. * off of preempt_enable. Kernel preemptions off return from interrupt
  2933. * occur there and call schedule directly.
  2934. */
  2935. asmlinkage void __sched preempt_schedule(void)
  2936. {
  2937. struct thread_info *ti = current_thread_info();
  2938. #ifdef CONFIG_PREEMPT_BKL
  2939. struct task_struct *task = current;
  2940. int saved_lock_depth;
  2941. #endif
  2942. /*
  2943. * If there is a non-zero preempt_count or interrupts are disabled,
  2944. * we do not want to preempt the current task. Just return..
  2945. */
  2946. if (likely(ti->preempt_count || irqs_disabled()))
  2947. return;
  2948. need_resched:
  2949. add_preempt_count(PREEMPT_ACTIVE);
  2950. /*
  2951. * We keep the big kernel semaphore locked, but we
  2952. * clear ->lock_depth so that schedule() doesnt
  2953. * auto-release the semaphore:
  2954. */
  2955. #ifdef CONFIG_PREEMPT_BKL
  2956. saved_lock_depth = task->lock_depth;
  2957. task->lock_depth = -1;
  2958. #endif
  2959. schedule();
  2960. #ifdef CONFIG_PREEMPT_BKL
  2961. task->lock_depth = saved_lock_depth;
  2962. #endif
  2963. sub_preempt_count(PREEMPT_ACTIVE);
  2964. /* we could miss a preemption opportunity between schedule and now */
  2965. barrier();
  2966. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2967. goto need_resched;
  2968. }
  2969. EXPORT_SYMBOL(preempt_schedule);
  2970. /*
  2971. * this is the entry point to schedule() from kernel preemption
  2972. * off of irq context.
  2973. * Note, that this is called and return with irqs disabled. This will
  2974. * protect us against recursive calling from irq.
  2975. */
  2976. asmlinkage void __sched preempt_schedule_irq(void)
  2977. {
  2978. struct thread_info *ti = current_thread_info();
  2979. #ifdef CONFIG_PREEMPT_BKL
  2980. struct task_struct *task = current;
  2981. int saved_lock_depth;
  2982. #endif
  2983. /* Catch callers which need to be fixed */
  2984. BUG_ON(ti->preempt_count || !irqs_disabled());
  2985. need_resched:
  2986. add_preempt_count(PREEMPT_ACTIVE);
  2987. /*
  2988. * We keep the big kernel semaphore locked, but we
  2989. * clear ->lock_depth so that schedule() doesnt
  2990. * auto-release the semaphore:
  2991. */
  2992. #ifdef CONFIG_PREEMPT_BKL
  2993. saved_lock_depth = task->lock_depth;
  2994. task->lock_depth = -1;
  2995. #endif
  2996. local_irq_enable();
  2997. schedule();
  2998. local_irq_disable();
  2999. #ifdef CONFIG_PREEMPT_BKL
  3000. task->lock_depth = saved_lock_depth;
  3001. #endif
  3002. sub_preempt_count(PREEMPT_ACTIVE);
  3003. /* we could miss a preemption opportunity between schedule and now */
  3004. barrier();
  3005. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3006. goto need_resched;
  3007. }
  3008. #endif /* CONFIG_PREEMPT */
  3009. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3010. void *key)
  3011. {
  3012. return try_to_wake_up(curr->private, mode, sync);
  3013. }
  3014. EXPORT_SYMBOL(default_wake_function);
  3015. /*
  3016. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3017. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3018. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3019. *
  3020. * There are circumstances in which we can try to wake a task which has already
  3021. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3022. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3023. */
  3024. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3025. int nr_exclusive, int sync, void *key)
  3026. {
  3027. struct list_head *tmp, *next;
  3028. list_for_each_safe(tmp, next, &q->task_list) {
  3029. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3030. unsigned flags = curr->flags;
  3031. if (curr->func(curr, mode, sync, key) &&
  3032. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3033. break;
  3034. }
  3035. }
  3036. /**
  3037. * __wake_up - wake up threads blocked on a waitqueue.
  3038. * @q: the waitqueue
  3039. * @mode: which threads
  3040. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3041. * @key: is directly passed to the wakeup function
  3042. */
  3043. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3044. int nr_exclusive, void *key)
  3045. {
  3046. unsigned long flags;
  3047. spin_lock_irqsave(&q->lock, flags);
  3048. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3049. spin_unlock_irqrestore(&q->lock, flags);
  3050. }
  3051. EXPORT_SYMBOL(__wake_up);
  3052. /*
  3053. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3054. */
  3055. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3056. {
  3057. __wake_up_common(q, mode, 1, 0, NULL);
  3058. }
  3059. /**
  3060. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3061. * @q: the waitqueue
  3062. * @mode: which threads
  3063. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3064. *
  3065. * The sync wakeup differs that the waker knows that it will schedule
  3066. * away soon, so while the target thread will be woken up, it will not
  3067. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3068. * with each other. This can prevent needless bouncing between CPUs.
  3069. *
  3070. * On UP it can prevent extra preemption.
  3071. */
  3072. void fastcall
  3073. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3074. {
  3075. unsigned long flags;
  3076. int sync = 1;
  3077. if (unlikely(!q))
  3078. return;
  3079. if (unlikely(!nr_exclusive))
  3080. sync = 0;
  3081. spin_lock_irqsave(&q->lock, flags);
  3082. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3083. spin_unlock_irqrestore(&q->lock, flags);
  3084. }
  3085. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3086. void fastcall complete(struct completion *x)
  3087. {
  3088. unsigned long flags;
  3089. spin_lock_irqsave(&x->wait.lock, flags);
  3090. x->done++;
  3091. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3092. 1, 0, NULL);
  3093. spin_unlock_irqrestore(&x->wait.lock, flags);
  3094. }
  3095. EXPORT_SYMBOL(complete);
  3096. void fastcall complete_all(struct completion *x)
  3097. {
  3098. unsigned long flags;
  3099. spin_lock_irqsave(&x->wait.lock, flags);
  3100. x->done += UINT_MAX/2;
  3101. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3102. 0, 0, NULL);
  3103. spin_unlock_irqrestore(&x->wait.lock, flags);
  3104. }
  3105. EXPORT_SYMBOL(complete_all);
  3106. void fastcall __sched wait_for_completion(struct completion *x)
  3107. {
  3108. might_sleep();
  3109. spin_lock_irq(&x->wait.lock);
  3110. if (!x->done) {
  3111. DECLARE_WAITQUEUE(wait, current);
  3112. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3113. __add_wait_queue_tail(&x->wait, &wait);
  3114. do {
  3115. __set_current_state(TASK_UNINTERRUPTIBLE);
  3116. spin_unlock_irq(&x->wait.lock);
  3117. schedule();
  3118. spin_lock_irq(&x->wait.lock);
  3119. } while (!x->done);
  3120. __remove_wait_queue(&x->wait, &wait);
  3121. }
  3122. x->done--;
  3123. spin_unlock_irq(&x->wait.lock);
  3124. }
  3125. EXPORT_SYMBOL(wait_for_completion);
  3126. unsigned long fastcall __sched
  3127. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3128. {
  3129. might_sleep();
  3130. spin_lock_irq(&x->wait.lock);
  3131. if (!x->done) {
  3132. DECLARE_WAITQUEUE(wait, current);
  3133. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3134. __add_wait_queue_tail(&x->wait, &wait);
  3135. do {
  3136. __set_current_state(TASK_UNINTERRUPTIBLE);
  3137. spin_unlock_irq(&x->wait.lock);
  3138. timeout = schedule_timeout(timeout);
  3139. spin_lock_irq(&x->wait.lock);
  3140. if (!timeout) {
  3141. __remove_wait_queue(&x->wait, &wait);
  3142. goto out;
  3143. }
  3144. } while (!x->done);
  3145. __remove_wait_queue(&x->wait, &wait);
  3146. }
  3147. x->done--;
  3148. out:
  3149. spin_unlock_irq(&x->wait.lock);
  3150. return timeout;
  3151. }
  3152. EXPORT_SYMBOL(wait_for_completion_timeout);
  3153. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3154. {
  3155. int ret = 0;
  3156. might_sleep();
  3157. spin_lock_irq(&x->wait.lock);
  3158. if (!x->done) {
  3159. DECLARE_WAITQUEUE(wait, current);
  3160. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3161. __add_wait_queue_tail(&x->wait, &wait);
  3162. do {
  3163. if (signal_pending(current)) {
  3164. ret = -ERESTARTSYS;
  3165. __remove_wait_queue(&x->wait, &wait);
  3166. goto out;
  3167. }
  3168. __set_current_state(TASK_INTERRUPTIBLE);
  3169. spin_unlock_irq(&x->wait.lock);
  3170. schedule();
  3171. spin_lock_irq(&x->wait.lock);
  3172. } while (!x->done);
  3173. __remove_wait_queue(&x->wait, &wait);
  3174. }
  3175. x->done--;
  3176. out:
  3177. spin_unlock_irq(&x->wait.lock);
  3178. return ret;
  3179. }
  3180. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3181. unsigned long fastcall __sched
  3182. wait_for_completion_interruptible_timeout(struct completion *x,
  3183. unsigned long timeout)
  3184. {
  3185. might_sleep();
  3186. spin_lock_irq(&x->wait.lock);
  3187. if (!x->done) {
  3188. DECLARE_WAITQUEUE(wait, current);
  3189. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3190. __add_wait_queue_tail(&x->wait, &wait);
  3191. do {
  3192. if (signal_pending(current)) {
  3193. timeout = -ERESTARTSYS;
  3194. __remove_wait_queue(&x->wait, &wait);
  3195. goto out;
  3196. }
  3197. __set_current_state(TASK_INTERRUPTIBLE);
  3198. spin_unlock_irq(&x->wait.lock);
  3199. timeout = schedule_timeout(timeout);
  3200. spin_lock_irq(&x->wait.lock);
  3201. if (!timeout) {
  3202. __remove_wait_queue(&x->wait, &wait);
  3203. goto out;
  3204. }
  3205. } while (!x->done);
  3206. __remove_wait_queue(&x->wait, &wait);
  3207. }
  3208. x->done--;
  3209. out:
  3210. spin_unlock_irq(&x->wait.lock);
  3211. return timeout;
  3212. }
  3213. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3214. static inline void
  3215. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3216. {
  3217. spin_lock_irqsave(&q->lock, *flags);
  3218. __add_wait_queue(q, wait);
  3219. spin_unlock(&q->lock);
  3220. }
  3221. static inline void
  3222. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3223. {
  3224. spin_lock_irq(&q->lock);
  3225. __remove_wait_queue(q, wait);
  3226. spin_unlock_irqrestore(&q->lock, *flags);
  3227. }
  3228. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3229. {
  3230. unsigned long flags;
  3231. wait_queue_t wait;
  3232. init_waitqueue_entry(&wait, current);
  3233. current->state = TASK_INTERRUPTIBLE;
  3234. sleep_on_head(q, &wait, &flags);
  3235. schedule();
  3236. sleep_on_tail(q, &wait, &flags);
  3237. }
  3238. EXPORT_SYMBOL(interruptible_sleep_on);
  3239. long __sched
  3240. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3241. {
  3242. unsigned long flags;
  3243. wait_queue_t wait;
  3244. init_waitqueue_entry(&wait, current);
  3245. current->state = TASK_INTERRUPTIBLE;
  3246. sleep_on_head(q, &wait, &flags);
  3247. timeout = schedule_timeout(timeout);
  3248. sleep_on_tail(q, &wait, &flags);
  3249. return timeout;
  3250. }
  3251. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3252. void __sched sleep_on(wait_queue_head_t *q)
  3253. {
  3254. unsigned long flags;
  3255. wait_queue_t wait;
  3256. init_waitqueue_entry(&wait, current);
  3257. current->state = TASK_UNINTERRUPTIBLE;
  3258. sleep_on_head(q, &wait, &flags);
  3259. schedule();
  3260. sleep_on_tail(q, &wait, &flags);
  3261. }
  3262. EXPORT_SYMBOL(sleep_on);
  3263. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3264. {
  3265. unsigned long flags;
  3266. wait_queue_t wait;
  3267. init_waitqueue_entry(&wait, current);
  3268. current->state = TASK_UNINTERRUPTIBLE;
  3269. sleep_on_head(q, &wait, &flags);
  3270. timeout = schedule_timeout(timeout);
  3271. sleep_on_tail(q, &wait, &flags);
  3272. return timeout;
  3273. }
  3274. EXPORT_SYMBOL(sleep_on_timeout);
  3275. #ifdef CONFIG_RT_MUTEXES
  3276. /*
  3277. * rt_mutex_setprio - set the current priority of a task
  3278. * @p: task
  3279. * @prio: prio value (kernel-internal form)
  3280. *
  3281. * This function changes the 'effective' priority of a task. It does
  3282. * not touch ->normal_prio like __setscheduler().
  3283. *
  3284. * Used by the rt_mutex code to implement priority inheritance logic.
  3285. */
  3286. void rt_mutex_setprio(struct task_struct *p, int prio)
  3287. {
  3288. unsigned long flags;
  3289. int oldprio, on_rq;
  3290. struct rq *rq;
  3291. u64 now;
  3292. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3293. rq = task_rq_lock(p, &flags);
  3294. now = rq_clock(rq);
  3295. oldprio = p->prio;
  3296. on_rq = p->se.on_rq;
  3297. if (on_rq)
  3298. dequeue_task(rq, p, 0, now);
  3299. if (rt_prio(prio))
  3300. p->sched_class = &rt_sched_class;
  3301. else
  3302. p->sched_class = &fair_sched_class;
  3303. p->prio = prio;
  3304. if (on_rq) {
  3305. enqueue_task(rq, p, 0, now);
  3306. /*
  3307. * Reschedule if we are currently running on this runqueue and
  3308. * our priority decreased, or if we are not currently running on
  3309. * this runqueue and our priority is higher than the current's
  3310. */
  3311. if (task_running(rq, p)) {
  3312. if (p->prio > oldprio)
  3313. resched_task(rq->curr);
  3314. } else {
  3315. check_preempt_curr(rq, p);
  3316. }
  3317. }
  3318. task_rq_unlock(rq, &flags);
  3319. }
  3320. #endif
  3321. void set_user_nice(struct task_struct *p, long nice)
  3322. {
  3323. int old_prio, delta, on_rq;
  3324. unsigned long flags;
  3325. struct rq *rq;
  3326. u64 now;
  3327. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3328. return;
  3329. /*
  3330. * We have to be careful, if called from sys_setpriority(),
  3331. * the task might be in the middle of scheduling on another CPU.
  3332. */
  3333. rq = task_rq_lock(p, &flags);
  3334. now = rq_clock(rq);
  3335. /*
  3336. * The RT priorities are set via sched_setscheduler(), but we still
  3337. * allow the 'normal' nice value to be set - but as expected
  3338. * it wont have any effect on scheduling until the task is
  3339. * SCHED_FIFO/SCHED_RR:
  3340. */
  3341. if (task_has_rt_policy(p)) {
  3342. p->static_prio = NICE_TO_PRIO(nice);
  3343. goto out_unlock;
  3344. }
  3345. on_rq = p->se.on_rq;
  3346. if (on_rq) {
  3347. dequeue_task(rq, p, 0, now);
  3348. dec_load(rq, p, now);
  3349. }
  3350. p->static_prio = NICE_TO_PRIO(nice);
  3351. set_load_weight(p);
  3352. old_prio = p->prio;
  3353. p->prio = effective_prio(p);
  3354. delta = p->prio - old_prio;
  3355. if (on_rq) {
  3356. enqueue_task(rq, p, 0, now);
  3357. inc_load(rq, p, now);
  3358. /*
  3359. * If the task increased its priority or is running and
  3360. * lowered its priority, then reschedule its CPU:
  3361. */
  3362. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3363. resched_task(rq->curr);
  3364. }
  3365. out_unlock:
  3366. task_rq_unlock(rq, &flags);
  3367. }
  3368. EXPORT_SYMBOL(set_user_nice);
  3369. /*
  3370. * can_nice - check if a task can reduce its nice value
  3371. * @p: task
  3372. * @nice: nice value
  3373. */
  3374. int can_nice(const struct task_struct *p, const int nice)
  3375. {
  3376. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3377. int nice_rlim = 20 - nice;
  3378. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3379. capable(CAP_SYS_NICE));
  3380. }
  3381. #ifdef __ARCH_WANT_SYS_NICE
  3382. /*
  3383. * sys_nice - change the priority of the current process.
  3384. * @increment: priority increment
  3385. *
  3386. * sys_setpriority is a more generic, but much slower function that
  3387. * does similar things.
  3388. */
  3389. asmlinkage long sys_nice(int increment)
  3390. {
  3391. long nice, retval;
  3392. /*
  3393. * Setpriority might change our priority at the same moment.
  3394. * We don't have to worry. Conceptually one call occurs first
  3395. * and we have a single winner.
  3396. */
  3397. if (increment < -40)
  3398. increment = -40;
  3399. if (increment > 40)
  3400. increment = 40;
  3401. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3402. if (nice < -20)
  3403. nice = -20;
  3404. if (nice > 19)
  3405. nice = 19;
  3406. if (increment < 0 && !can_nice(current, nice))
  3407. return -EPERM;
  3408. retval = security_task_setnice(current, nice);
  3409. if (retval)
  3410. return retval;
  3411. set_user_nice(current, nice);
  3412. return 0;
  3413. }
  3414. #endif
  3415. /**
  3416. * task_prio - return the priority value of a given task.
  3417. * @p: the task in question.
  3418. *
  3419. * This is the priority value as seen by users in /proc.
  3420. * RT tasks are offset by -200. Normal tasks are centered
  3421. * around 0, value goes from -16 to +15.
  3422. */
  3423. int task_prio(const struct task_struct *p)
  3424. {
  3425. return p->prio - MAX_RT_PRIO;
  3426. }
  3427. /**
  3428. * task_nice - return the nice value of a given task.
  3429. * @p: the task in question.
  3430. */
  3431. int task_nice(const struct task_struct *p)
  3432. {
  3433. return TASK_NICE(p);
  3434. }
  3435. EXPORT_SYMBOL_GPL(task_nice);
  3436. /**
  3437. * idle_cpu - is a given cpu idle currently?
  3438. * @cpu: the processor in question.
  3439. */
  3440. int idle_cpu(int cpu)
  3441. {
  3442. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3443. }
  3444. /**
  3445. * idle_task - return the idle task for a given cpu.
  3446. * @cpu: the processor in question.
  3447. */
  3448. struct task_struct *idle_task(int cpu)
  3449. {
  3450. return cpu_rq(cpu)->idle;
  3451. }
  3452. /**
  3453. * find_process_by_pid - find a process with a matching PID value.
  3454. * @pid: the pid in question.
  3455. */
  3456. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3457. {
  3458. return pid ? find_task_by_pid(pid) : current;
  3459. }
  3460. /* Actually do priority change: must hold rq lock. */
  3461. static void
  3462. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3463. {
  3464. BUG_ON(p->se.on_rq);
  3465. p->policy = policy;
  3466. switch (p->policy) {
  3467. case SCHED_NORMAL:
  3468. case SCHED_BATCH:
  3469. case SCHED_IDLE:
  3470. p->sched_class = &fair_sched_class;
  3471. break;
  3472. case SCHED_FIFO:
  3473. case SCHED_RR:
  3474. p->sched_class = &rt_sched_class;
  3475. break;
  3476. }
  3477. p->rt_priority = prio;
  3478. p->normal_prio = normal_prio(p);
  3479. /* we are holding p->pi_lock already */
  3480. p->prio = rt_mutex_getprio(p);
  3481. set_load_weight(p);
  3482. }
  3483. /**
  3484. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3485. * @p: the task in question.
  3486. * @policy: new policy.
  3487. * @param: structure containing the new RT priority.
  3488. *
  3489. * NOTE that the task may be already dead.
  3490. */
  3491. int sched_setscheduler(struct task_struct *p, int policy,
  3492. struct sched_param *param)
  3493. {
  3494. int retval, oldprio, oldpolicy = -1, on_rq;
  3495. unsigned long flags;
  3496. struct rq *rq;
  3497. /* may grab non-irq protected spin_locks */
  3498. BUG_ON(in_interrupt());
  3499. recheck:
  3500. /* double check policy once rq lock held */
  3501. if (policy < 0)
  3502. policy = oldpolicy = p->policy;
  3503. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3504. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3505. policy != SCHED_IDLE)
  3506. return -EINVAL;
  3507. /*
  3508. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3509. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3510. * SCHED_BATCH and SCHED_IDLE is 0.
  3511. */
  3512. if (param->sched_priority < 0 ||
  3513. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3514. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3515. return -EINVAL;
  3516. if (rt_policy(policy) != (param->sched_priority != 0))
  3517. return -EINVAL;
  3518. /*
  3519. * Allow unprivileged RT tasks to decrease priority:
  3520. */
  3521. if (!capable(CAP_SYS_NICE)) {
  3522. if (rt_policy(policy)) {
  3523. unsigned long rlim_rtprio;
  3524. if (!lock_task_sighand(p, &flags))
  3525. return -ESRCH;
  3526. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3527. unlock_task_sighand(p, &flags);
  3528. /* can't set/change the rt policy */
  3529. if (policy != p->policy && !rlim_rtprio)
  3530. return -EPERM;
  3531. /* can't increase priority */
  3532. if (param->sched_priority > p->rt_priority &&
  3533. param->sched_priority > rlim_rtprio)
  3534. return -EPERM;
  3535. }
  3536. /*
  3537. * Like positive nice levels, dont allow tasks to
  3538. * move out of SCHED_IDLE either:
  3539. */
  3540. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3541. return -EPERM;
  3542. /* can't change other user's priorities */
  3543. if ((current->euid != p->euid) &&
  3544. (current->euid != p->uid))
  3545. return -EPERM;
  3546. }
  3547. retval = security_task_setscheduler(p, policy, param);
  3548. if (retval)
  3549. return retval;
  3550. /*
  3551. * make sure no PI-waiters arrive (or leave) while we are
  3552. * changing the priority of the task:
  3553. */
  3554. spin_lock_irqsave(&p->pi_lock, flags);
  3555. /*
  3556. * To be able to change p->policy safely, the apropriate
  3557. * runqueue lock must be held.
  3558. */
  3559. rq = __task_rq_lock(p);
  3560. /* recheck policy now with rq lock held */
  3561. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3562. policy = oldpolicy = -1;
  3563. __task_rq_unlock(rq);
  3564. spin_unlock_irqrestore(&p->pi_lock, flags);
  3565. goto recheck;
  3566. }
  3567. on_rq = p->se.on_rq;
  3568. if (on_rq)
  3569. deactivate_task(rq, p, 0);
  3570. oldprio = p->prio;
  3571. __setscheduler(rq, p, policy, param->sched_priority);
  3572. if (on_rq) {
  3573. activate_task(rq, p, 0);
  3574. /*
  3575. * Reschedule if we are currently running on this runqueue and
  3576. * our priority decreased, or if we are not currently running on
  3577. * this runqueue and our priority is higher than the current's
  3578. */
  3579. if (task_running(rq, p)) {
  3580. if (p->prio > oldprio)
  3581. resched_task(rq->curr);
  3582. } else {
  3583. check_preempt_curr(rq, p);
  3584. }
  3585. }
  3586. __task_rq_unlock(rq);
  3587. spin_unlock_irqrestore(&p->pi_lock, flags);
  3588. rt_mutex_adjust_pi(p);
  3589. return 0;
  3590. }
  3591. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3592. static int
  3593. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3594. {
  3595. struct sched_param lparam;
  3596. struct task_struct *p;
  3597. int retval;
  3598. if (!param || pid < 0)
  3599. return -EINVAL;
  3600. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3601. return -EFAULT;
  3602. rcu_read_lock();
  3603. retval = -ESRCH;
  3604. p = find_process_by_pid(pid);
  3605. if (p != NULL)
  3606. retval = sched_setscheduler(p, policy, &lparam);
  3607. rcu_read_unlock();
  3608. return retval;
  3609. }
  3610. /**
  3611. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3612. * @pid: the pid in question.
  3613. * @policy: new policy.
  3614. * @param: structure containing the new RT priority.
  3615. */
  3616. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3617. struct sched_param __user *param)
  3618. {
  3619. /* negative values for policy are not valid */
  3620. if (policy < 0)
  3621. return -EINVAL;
  3622. return do_sched_setscheduler(pid, policy, param);
  3623. }
  3624. /**
  3625. * sys_sched_setparam - set/change the RT priority of a thread
  3626. * @pid: the pid in question.
  3627. * @param: structure containing the new RT priority.
  3628. */
  3629. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3630. {
  3631. return do_sched_setscheduler(pid, -1, param);
  3632. }
  3633. /**
  3634. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3635. * @pid: the pid in question.
  3636. */
  3637. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3638. {
  3639. struct task_struct *p;
  3640. int retval = -EINVAL;
  3641. if (pid < 0)
  3642. goto out_nounlock;
  3643. retval = -ESRCH;
  3644. read_lock(&tasklist_lock);
  3645. p = find_process_by_pid(pid);
  3646. if (p) {
  3647. retval = security_task_getscheduler(p);
  3648. if (!retval)
  3649. retval = p->policy;
  3650. }
  3651. read_unlock(&tasklist_lock);
  3652. out_nounlock:
  3653. return retval;
  3654. }
  3655. /**
  3656. * sys_sched_getscheduler - get the RT priority of a thread
  3657. * @pid: the pid in question.
  3658. * @param: structure containing the RT priority.
  3659. */
  3660. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3661. {
  3662. struct sched_param lp;
  3663. struct task_struct *p;
  3664. int retval = -EINVAL;
  3665. if (!param || pid < 0)
  3666. goto out_nounlock;
  3667. read_lock(&tasklist_lock);
  3668. p = find_process_by_pid(pid);
  3669. retval = -ESRCH;
  3670. if (!p)
  3671. goto out_unlock;
  3672. retval = security_task_getscheduler(p);
  3673. if (retval)
  3674. goto out_unlock;
  3675. lp.sched_priority = p->rt_priority;
  3676. read_unlock(&tasklist_lock);
  3677. /*
  3678. * This one might sleep, we cannot do it with a spinlock held ...
  3679. */
  3680. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3681. out_nounlock:
  3682. return retval;
  3683. out_unlock:
  3684. read_unlock(&tasklist_lock);
  3685. return retval;
  3686. }
  3687. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3688. {
  3689. cpumask_t cpus_allowed;
  3690. struct task_struct *p;
  3691. int retval;
  3692. mutex_lock(&sched_hotcpu_mutex);
  3693. read_lock(&tasklist_lock);
  3694. p = find_process_by_pid(pid);
  3695. if (!p) {
  3696. read_unlock(&tasklist_lock);
  3697. mutex_unlock(&sched_hotcpu_mutex);
  3698. return -ESRCH;
  3699. }
  3700. /*
  3701. * It is not safe to call set_cpus_allowed with the
  3702. * tasklist_lock held. We will bump the task_struct's
  3703. * usage count and then drop tasklist_lock.
  3704. */
  3705. get_task_struct(p);
  3706. read_unlock(&tasklist_lock);
  3707. retval = -EPERM;
  3708. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3709. !capable(CAP_SYS_NICE))
  3710. goto out_unlock;
  3711. retval = security_task_setscheduler(p, 0, NULL);
  3712. if (retval)
  3713. goto out_unlock;
  3714. cpus_allowed = cpuset_cpus_allowed(p);
  3715. cpus_and(new_mask, new_mask, cpus_allowed);
  3716. retval = set_cpus_allowed(p, new_mask);
  3717. out_unlock:
  3718. put_task_struct(p);
  3719. mutex_unlock(&sched_hotcpu_mutex);
  3720. return retval;
  3721. }
  3722. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3723. cpumask_t *new_mask)
  3724. {
  3725. if (len < sizeof(cpumask_t)) {
  3726. memset(new_mask, 0, sizeof(cpumask_t));
  3727. } else if (len > sizeof(cpumask_t)) {
  3728. len = sizeof(cpumask_t);
  3729. }
  3730. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3731. }
  3732. /**
  3733. * sys_sched_setaffinity - set the cpu affinity of a process
  3734. * @pid: pid of the process
  3735. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3736. * @user_mask_ptr: user-space pointer to the new cpu mask
  3737. */
  3738. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3739. unsigned long __user *user_mask_ptr)
  3740. {
  3741. cpumask_t new_mask;
  3742. int retval;
  3743. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3744. if (retval)
  3745. return retval;
  3746. return sched_setaffinity(pid, new_mask);
  3747. }
  3748. /*
  3749. * Represents all cpu's present in the system
  3750. * In systems capable of hotplug, this map could dynamically grow
  3751. * as new cpu's are detected in the system via any platform specific
  3752. * method, such as ACPI for e.g.
  3753. */
  3754. cpumask_t cpu_present_map __read_mostly;
  3755. EXPORT_SYMBOL(cpu_present_map);
  3756. #ifndef CONFIG_SMP
  3757. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3758. EXPORT_SYMBOL(cpu_online_map);
  3759. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3760. EXPORT_SYMBOL(cpu_possible_map);
  3761. #endif
  3762. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3763. {
  3764. struct task_struct *p;
  3765. int retval;
  3766. mutex_lock(&sched_hotcpu_mutex);
  3767. read_lock(&tasklist_lock);
  3768. retval = -ESRCH;
  3769. p = find_process_by_pid(pid);
  3770. if (!p)
  3771. goto out_unlock;
  3772. retval = security_task_getscheduler(p);
  3773. if (retval)
  3774. goto out_unlock;
  3775. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3776. out_unlock:
  3777. read_unlock(&tasklist_lock);
  3778. mutex_unlock(&sched_hotcpu_mutex);
  3779. if (retval)
  3780. return retval;
  3781. return 0;
  3782. }
  3783. /**
  3784. * sys_sched_getaffinity - get the cpu affinity of a process
  3785. * @pid: pid of the process
  3786. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3787. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3788. */
  3789. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3790. unsigned long __user *user_mask_ptr)
  3791. {
  3792. int ret;
  3793. cpumask_t mask;
  3794. if (len < sizeof(cpumask_t))
  3795. return -EINVAL;
  3796. ret = sched_getaffinity(pid, &mask);
  3797. if (ret < 0)
  3798. return ret;
  3799. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3800. return -EFAULT;
  3801. return sizeof(cpumask_t);
  3802. }
  3803. /**
  3804. * sys_sched_yield - yield the current processor to other threads.
  3805. *
  3806. * This function yields the current CPU to other tasks. If there are no
  3807. * other threads running on this CPU then this function will return.
  3808. */
  3809. asmlinkage long sys_sched_yield(void)
  3810. {
  3811. struct rq *rq = this_rq_lock();
  3812. schedstat_inc(rq, yld_cnt);
  3813. if (unlikely(rq->nr_running == 1))
  3814. schedstat_inc(rq, yld_act_empty);
  3815. else
  3816. current->sched_class->yield_task(rq, current);
  3817. /*
  3818. * Since we are going to call schedule() anyway, there's
  3819. * no need to preempt or enable interrupts:
  3820. */
  3821. __release(rq->lock);
  3822. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3823. _raw_spin_unlock(&rq->lock);
  3824. preempt_enable_no_resched();
  3825. schedule();
  3826. return 0;
  3827. }
  3828. static void __cond_resched(void)
  3829. {
  3830. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3831. __might_sleep(__FILE__, __LINE__);
  3832. #endif
  3833. /*
  3834. * The BKS might be reacquired before we have dropped
  3835. * PREEMPT_ACTIVE, which could trigger a second
  3836. * cond_resched() call.
  3837. */
  3838. do {
  3839. add_preempt_count(PREEMPT_ACTIVE);
  3840. schedule();
  3841. sub_preempt_count(PREEMPT_ACTIVE);
  3842. } while (need_resched());
  3843. }
  3844. int __sched cond_resched(void)
  3845. {
  3846. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3847. system_state == SYSTEM_RUNNING) {
  3848. __cond_resched();
  3849. return 1;
  3850. }
  3851. return 0;
  3852. }
  3853. EXPORT_SYMBOL(cond_resched);
  3854. /*
  3855. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3856. * call schedule, and on return reacquire the lock.
  3857. *
  3858. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3859. * operations here to prevent schedule() from being called twice (once via
  3860. * spin_unlock(), once by hand).
  3861. */
  3862. int cond_resched_lock(spinlock_t *lock)
  3863. {
  3864. int ret = 0;
  3865. if (need_lockbreak(lock)) {
  3866. spin_unlock(lock);
  3867. cpu_relax();
  3868. ret = 1;
  3869. spin_lock(lock);
  3870. }
  3871. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3872. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3873. _raw_spin_unlock(lock);
  3874. preempt_enable_no_resched();
  3875. __cond_resched();
  3876. ret = 1;
  3877. spin_lock(lock);
  3878. }
  3879. return ret;
  3880. }
  3881. EXPORT_SYMBOL(cond_resched_lock);
  3882. int __sched cond_resched_softirq(void)
  3883. {
  3884. BUG_ON(!in_softirq());
  3885. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3886. local_bh_enable();
  3887. __cond_resched();
  3888. local_bh_disable();
  3889. return 1;
  3890. }
  3891. return 0;
  3892. }
  3893. EXPORT_SYMBOL(cond_resched_softirq);
  3894. /**
  3895. * yield - yield the current processor to other threads.
  3896. *
  3897. * This is a shortcut for kernel-space yielding - it marks the
  3898. * thread runnable and calls sys_sched_yield().
  3899. */
  3900. void __sched yield(void)
  3901. {
  3902. set_current_state(TASK_RUNNING);
  3903. sys_sched_yield();
  3904. }
  3905. EXPORT_SYMBOL(yield);
  3906. /*
  3907. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3908. * that process accounting knows that this is a task in IO wait state.
  3909. *
  3910. * But don't do that if it is a deliberate, throttling IO wait (this task
  3911. * has set its backing_dev_info: the queue against which it should throttle)
  3912. */
  3913. void __sched io_schedule(void)
  3914. {
  3915. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3916. delayacct_blkio_start();
  3917. atomic_inc(&rq->nr_iowait);
  3918. schedule();
  3919. atomic_dec(&rq->nr_iowait);
  3920. delayacct_blkio_end();
  3921. }
  3922. EXPORT_SYMBOL(io_schedule);
  3923. long __sched io_schedule_timeout(long timeout)
  3924. {
  3925. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3926. long ret;
  3927. delayacct_blkio_start();
  3928. atomic_inc(&rq->nr_iowait);
  3929. ret = schedule_timeout(timeout);
  3930. atomic_dec(&rq->nr_iowait);
  3931. delayacct_blkio_end();
  3932. return ret;
  3933. }
  3934. /**
  3935. * sys_sched_get_priority_max - return maximum RT priority.
  3936. * @policy: scheduling class.
  3937. *
  3938. * this syscall returns the maximum rt_priority that can be used
  3939. * by a given scheduling class.
  3940. */
  3941. asmlinkage long sys_sched_get_priority_max(int policy)
  3942. {
  3943. int ret = -EINVAL;
  3944. switch (policy) {
  3945. case SCHED_FIFO:
  3946. case SCHED_RR:
  3947. ret = MAX_USER_RT_PRIO-1;
  3948. break;
  3949. case SCHED_NORMAL:
  3950. case SCHED_BATCH:
  3951. case SCHED_IDLE:
  3952. ret = 0;
  3953. break;
  3954. }
  3955. return ret;
  3956. }
  3957. /**
  3958. * sys_sched_get_priority_min - return minimum RT priority.
  3959. * @policy: scheduling class.
  3960. *
  3961. * this syscall returns the minimum rt_priority that can be used
  3962. * by a given scheduling class.
  3963. */
  3964. asmlinkage long sys_sched_get_priority_min(int policy)
  3965. {
  3966. int ret = -EINVAL;
  3967. switch (policy) {
  3968. case SCHED_FIFO:
  3969. case SCHED_RR:
  3970. ret = 1;
  3971. break;
  3972. case SCHED_NORMAL:
  3973. case SCHED_BATCH:
  3974. case SCHED_IDLE:
  3975. ret = 0;
  3976. }
  3977. return ret;
  3978. }
  3979. /**
  3980. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3981. * @pid: pid of the process.
  3982. * @interval: userspace pointer to the timeslice value.
  3983. *
  3984. * this syscall writes the default timeslice value of a given process
  3985. * into the user-space timespec buffer. A value of '0' means infinity.
  3986. */
  3987. asmlinkage
  3988. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  3989. {
  3990. struct task_struct *p;
  3991. int retval = -EINVAL;
  3992. struct timespec t;
  3993. if (pid < 0)
  3994. goto out_nounlock;
  3995. retval = -ESRCH;
  3996. read_lock(&tasklist_lock);
  3997. p = find_process_by_pid(pid);
  3998. if (!p)
  3999. goto out_unlock;
  4000. retval = security_task_getscheduler(p);
  4001. if (retval)
  4002. goto out_unlock;
  4003. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4004. 0 : static_prio_timeslice(p->static_prio), &t);
  4005. read_unlock(&tasklist_lock);
  4006. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4007. out_nounlock:
  4008. return retval;
  4009. out_unlock:
  4010. read_unlock(&tasklist_lock);
  4011. return retval;
  4012. }
  4013. static const char stat_nam[] = "RSDTtZX";
  4014. static void show_task(struct task_struct *p)
  4015. {
  4016. unsigned long free = 0;
  4017. unsigned state;
  4018. state = p->state ? __ffs(p->state) + 1 : 0;
  4019. printk("%-13.13s %c", p->comm,
  4020. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4021. #if BITS_PER_LONG == 32
  4022. if (state == TASK_RUNNING)
  4023. printk(" running ");
  4024. else
  4025. printk(" %08lx ", thread_saved_pc(p));
  4026. #else
  4027. if (state == TASK_RUNNING)
  4028. printk(" running task ");
  4029. else
  4030. printk(" %016lx ", thread_saved_pc(p));
  4031. #endif
  4032. #ifdef CONFIG_DEBUG_STACK_USAGE
  4033. {
  4034. unsigned long *n = end_of_stack(p);
  4035. while (!*n)
  4036. n++;
  4037. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4038. }
  4039. #endif
  4040. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4041. if (state != TASK_RUNNING)
  4042. show_stack(p, NULL);
  4043. }
  4044. void show_state_filter(unsigned long state_filter)
  4045. {
  4046. struct task_struct *g, *p;
  4047. #if BITS_PER_LONG == 32
  4048. printk(KERN_INFO
  4049. " task PC stack pid father\n");
  4050. #else
  4051. printk(KERN_INFO
  4052. " task PC stack pid father\n");
  4053. #endif
  4054. read_lock(&tasklist_lock);
  4055. do_each_thread(g, p) {
  4056. /*
  4057. * reset the NMI-timeout, listing all files on a slow
  4058. * console might take alot of time:
  4059. */
  4060. touch_nmi_watchdog();
  4061. if (!state_filter || (p->state & state_filter))
  4062. show_task(p);
  4063. } while_each_thread(g, p);
  4064. touch_all_softlockup_watchdogs();
  4065. #ifdef CONFIG_SCHED_DEBUG
  4066. sysrq_sched_debug_show();
  4067. #endif
  4068. read_unlock(&tasklist_lock);
  4069. /*
  4070. * Only show locks if all tasks are dumped:
  4071. */
  4072. if (state_filter == -1)
  4073. debug_show_all_locks();
  4074. }
  4075. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4076. {
  4077. idle->sched_class = &idle_sched_class;
  4078. }
  4079. /**
  4080. * init_idle - set up an idle thread for a given CPU
  4081. * @idle: task in question
  4082. * @cpu: cpu the idle task belongs to
  4083. *
  4084. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4085. * flag, to make booting more robust.
  4086. */
  4087. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4088. {
  4089. struct rq *rq = cpu_rq(cpu);
  4090. unsigned long flags;
  4091. __sched_fork(idle);
  4092. idle->se.exec_start = sched_clock();
  4093. idle->prio = idle->normal_prio = MAX_PRIO;
  4094. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4095. __set_task_cpu(idle, cpu);
  4096. spin_lock_irqsave(&rq->lock, flags);
  4097. rq->curr = rq->idle = idle;
  4098. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4099. idle->oncpu = 1;
  4100. #endif
  4101. spin_unlock_irqrestore(&rq->lock, flags);
  4102. /* Set the preempt count _outside_ the spinlocks! */
  4103. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4104. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4105. #else
  4106. task_thread_info(idle)->preempt_count = 0;
  4107. #endif
  4108. /*
  4109. * The idle tasks have their own, simple scheduling class:
  4110. */
  4111. idle->sched_class = &idle_sched_class;
  4112. }
  4113. /*
  4114. * In a system that switches off the HZ timer nohz_cpu_mask
  4115. * indicates which cpus entered this state. This is used
  4116. * in the rcu update to wait only for active cpus. For system
  4117. * which do not switch off the HZ timer nohz_cpu_mask should
  4118. * always be CPU_MASK_NONE.
  4119. */
  4120. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4121. /*
  4122. * Increase the granularity value when there are more CPUs,
  4123. * because with more CPUs the 'effective latency' as visible
  4124. * to users decreases. But the relationship is not linear,
  4125. * so pick a second-best guess by going with the log2 of the
  4126. * number of CPUs.
  4127. *
  4128. * This idea comes from the SD scheduler of Con Kolivas:
  4129. */
  4130. static inline void sched_init_granularity(void)
  4131. {
  4132. unsigned int factor = 1 + ilog2(num_online_cpus());
  4133. const unsigned long gran_limit = 100000000;
  4134. sysctl_sched_granularity *= factor;
  4135. if (sysctl_sched_granularity > gran_limit)
  4136. sysctl_sched_granularity = gran_limit;
  4137. sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
  4138. sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
  4139. }
  4140. #ifdef CONFIG_SMP
  4141. /*
  4142. * This is how migration works:
  4143. *
  4144. * 1) we queue a struct migration_req structure in the source CPU's
  4145. * runqueue and wake up that CPU's migration thread.
  4146. * 2) we down() the locked semaphore => thread blocks.
  4147. * 3) migration thread wakes up (implicitly it forces the migrated
  4148. * thread off the CPU)
  4149. * 4) it gets the migration request and checks whether the migrated
  4150. * task is still in the wrong runqueue.
  4151. * 5) if it's in the wrong runqueue then the migration thread removes
  4152. * it and puts it into the right queue.
  4153. * 6) migration thread up()s the semaphore.
  4154. * 7) we wake up and the migration is done.
  4155. */
  4156. /*
  4157. * Change a given task's CPU affinity. Migrate the thread to a
  4158. * proper CPU and schedule it away if the CPU it's executing on
  4159. * is removed from the allowed bitmask.
  4160. *
  4161. * NOTE: the caller must have a valid reference to the task, the
  4162. * task must not exit() & deallocate itself prematurely. The
  4163. * call is not atomic; no spinlocks may be held.
  4164. */
  4165. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4166. {
  4167. struct migration_req req;
  4168. unsigned long flags;
  4169. struct rq *rq;
  4170. int ret = 0;
  4171. rq = task_rq_lock(p, &flags);
  4172. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4173. ret = -EINVAL;
  4174. goto out;
  4175. }
  4176. p->cpus_allowed = new_mask;
  4177. /* Can the task run on the task's current CPU? If so, we're done */
  4178. if (cpu_isset(task_cpu(p), new_mask))
  4179. goto out;
  4180. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4181. /* Need help from migration thread: drop lock and wait. */
  4182. task_rq_unlock(rq, &flags);
  4183. wake_up_process(rq->migration_thread);
  4184. wait_for_completion(&req.done);
  4185. tlb_migrate_finish(p->mm);
  4186. return 0;
  4187. }
  4188. out:
  4189. task_rq_unlock(rq, &flags);
  4190. return ret;
  4191. }
  4192. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4193. /*
  4194. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4195. * this because either it can't run here any more (set_cpus_allowed()
  4196. * away from this CPU, or CPU going down), or because we're
  4197. * attempting to rebalance this task on exec (sched_exec).
  4198. *
  4199. * So we race with normal scheduler movements, but that's OK, as long
  4200. * as the task is no longer on this CPU.
  4201. *
  4202. * Returns non-zero if task was successfully migrated.
  4203. */
  4204. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4205. {
  4206. struct rq *rq_dest, *rq_src;
  4207. int ret = 0, on_rq;
  4208. if (unlikely(cpu_is_offline(dest_cpu)))
  4209. return ret;
  4210. rq_src = cpu_rq(src_cpu);
  4211. rq_dest = cpu_rq(dest_cpu);
  4212. double_rq_lock(rq_src, rq_dest);
  4213. /* Already moved. */
  4214. if (task_cpu(p) != src_cpu)
  4215. goto out;
  4216. /* Affinity changed (again). */
  4217. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4218. goto out;
  4219. on_rq = p->se.on_rq;
  4220. if (on_rq)
  4221. deactivate_task(rq_src, p, 0);
  4222. set_task_cpu(p, dest_cpu);
  4223. if (on_rq) {
  4224. activate_task(rq_dest, p, 0);
  4225. check_preempt_curr(rq_dest, p);
  4226. }
  4227. ret = 1;
  4228. out:
  4229. double_rq_unlock(rq_src, rq_dest);
  4230. return ret;
  4231. }
  4232. /*
  4233. * migration_thread - this is a highprio system thread that performs
  4234. * thread migration by bumping thread off CPU then 'pushing' onto
  4235. * another runqueue.
  4236. */
  4237. static int migration_thread(void *data)
  4238. {
  4239. int cpu = (long)data;
  4240. struct rq *rq;
  4241. rq = cpu_rq(cpu);
  4242. BUG_ON(rq->migration_thread != current);
  4243. set_current_state(TASK_INTERRUPTIBLE);
  4244. while (!kthread_should_stop()) {
  4245. struct migration_req *req;
  4246. struct list_head *head;
  4247. spin_lock_irq(&rq->lock);
  4248. if (cpu_is_offline(cpu)) {
  4249. spin_unlock_irq(&rq->lock);
  4250. goto wait_to_die;
  4251. }
  4252. if (rq->active_balance) {
  4253. active_load_balance(rq, cpu);
  4254. rq->active_balance = 0;
  4255. }
  4256. head = &rq->migration_queue;
  4257. if (list_empty(head)) {
  4258. spin_unlock_irq(&rq->lock);
  4259. schedule();
  4260. set_current_state(TASK_INTERRUPTIBLE);
  4261. continue;
  4262. }
  4263. req = list_entry(head->next, struct migration_req, list);
  4264. list_del_init(head->next);
  4265. spin_unlock(&rq->lock);
  4266. __migrate_task(req->task, cpu, req->dest_cpu);
  4267. local_irq_enable();
  4268. complete(&req->done);
  4269. }
  4270. __set_current_state(TASK_RUNNING);
  4271. return 0;
  4272. wait_to_die:
  4273. /* Wait for kthread_stop */
  4274. set_current_state(TASK_INTERRUPTIBLE);
  4275. while (!kthread_should_stop()) {
  4276. schedule();
  4277. set_current_state(TASK_INTERRUPTIBLE);
  4278. }
  4279. __set_current_state(TASK_RUNNING);
  4280. return 0;
  4281. }
  4282. #ifdef CONFIG_HOTPLUG_CPU
  4283. /*
  4284. * Figure out where task on dead CPU should go, use force if neccessary.
  4285. * NOTE: interrupts should be disabled by the caller
  4286. */
  4287. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4288. {
  4289. unsigned long flags;
  4290. cpumask_t mask;
  4291. struct rq *rq;
  4292. int dest_cpu;
  4293. restart:
  4294. /* On same node? */
  4295. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4296. cpus_and(mask, mask, p->cpus_allowed);
  4297. dest_cpu = any_online_cpu(mask);
  4298. /* On any allowed CPU? */
  4299. if (dest_cpu == NR_CPUS)
  4300. dest_cpu = any_online_cpu(p->cpus_allowed);
  4301. /* No more Mr. Nice Guy. */
  4302. if (dest_cpu == NR_CPUS) {
  4303. rq = task_rq_lock(p, &flags);
  4304. cpus_setall(p->cpus_allowed);
  4305. dest_cpu = any_online_cpu(p->cpus_allowed);
  4306. task_rq_unlock(rq, &flags);
  4307. /*
  4308. * Don't tell them about moving exiting tasks or
  4309. * kernel threads (both mm NULL), since they never
  4310. * leave kernel.
  4311. */
  4312. if (p->mm && printk_ratelimit())
  4313. printk(KERN_INFO "process %d (%s) no "
  4314. "longer affine to cpu%d\n",
  4315. p->pid, p->comm, dead_cpu);
  4316. }
  4317. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4318. goto restart;
  4319. }
  4320. /*
  4321. * While a dead CPU has no uninterruptible tasks queued at this point,
  4322. * it might still have a nonzero ->nr_uninterruptible counter, because
  4323. * for performance reasons the counter is not stricly tracking tasks to
  4324. * their home CPUs. So we just add the counter to another CPU's counter,
  4325. * to keep the global sum constant after CPU-down:
  4326. */
  4327. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4328. {
  4329. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4330. unsigned long flags;
  4331. local_irq_save(flags);
  4332. double_rq_lock(rq_src, rq_dest);
  4333. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4334. rq_src->nr_uninterruptible = 0;
  4335. double_rq_unlock(rq_src, rq_dest);
  4336. local_irq_restore(flags);
  4337. }
  4338. /* Run through task list and migrate tasks from the dead cpu. */
  4339. static void migrate_live_tasks(int src_cpu)
  4340. {
  4341. struct task_struct *p, *t;
  4342. write_lock_irq(&tasklist_lock);
  4343. do_each_thread(t, p) {
  4344. if (p == current)
  4345. continue;
  4346. if (task_cpu(p) == src_cpu)
  4347. move_task_off_dead_cpu(src_cpu, p);
  4348. } while_each_thread(t, p);
  4349. write_unlock_irq(&tasklist_lock);
  4350. }
  4351. /*
  4352. * Schedules idle task to be the next runnable task on current CPU.
  4353. * It does so by boosting its priority to highest possible and adding it to
  4354. * the _front_ of the runqueue. Used by CPU offline code.
  4355. */
  4356. void sched_idle_next(void)
  4357. {
  4358. int this_cpu = smp_processor_id();
  4359. struct rq *rq = cpu_rq(this_cpu);
  4360. struct task_struct *p = rq->idle;
  4361. unsigned long flags;
  4362. /* cpu has to be offline */
  4363. BUG_ON(cpu_online(this_cpu));
  4364. /*
  4365. * Strictly not necessary since rest of the CPUs are stopped by now
  4366. * and interrupts disabled on the current cpu.
  4367. */
  4368. spin_lock_irqsave(&rq->lock, flags);
  4369. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4370. /* Add idle task to the _front_ of its priority queue: */
  4371. activate_idle_task(p, rq);
  4372. spin_unlock_irqrestore(&rq->lock, flags);
  4373. }
  4374. /*
  4375. * Ensures that the idle task is using init_mm right before its cpu goes
  4376. * offline.
  4377. */
  4378. void idle_task_exit(void)
  4379. {
  4380. struct mm_struct *mm = current->active_mm;
  4381. BUG_ON(cpu_online(smp_processor_id()));
  4382. if (mm != &init_mm)
  4383. switch_mm(mm, &init_mm, current);
  4384. mmdrop(mm);
  4385. }
  4386. /* called under rq->lock with disabled interrupts */
  4387. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4388. {
  4389. struct rq *rq = cpu_rq(dead_cpu);
  4390. /* Must be exiting, otherwise would be on tasklist. */
  4391. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4392. /* Cannot have done final schedule yet: would have vanished. */
  4393. BUG_ON(p->state == TASK_DEAD);
  4394. get_task_struct(p);
  4395. /*
  4396. * Drop lock around migration; if someone else moves it,
  4397. * that's OK. No task can be added to this CPU, so iteration is
  4398. * fine.
  4399. * NOTE: interrupts should be left disabled --dev@
  4400. */
  4401. spin_unlock(&rq->lock);
  4402. move_task_off_dead_cpu(dead_cpu, p);
  4403. spin_lock(&rq->lock);
  4404. put_task_struct(p);
  4405. }
  4406. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4407. static void migrate_dead_tasks(unsigned int dead_cpu)
  4408. {
  4409. struct rq *rq = cpu_rq(dead_cpu);
  4410. struct task_struct *next;
  4411. for ( ; ; ) {
  4412. if (!rq->nr_running)
  4413. break;
  4414. next = pick_next_task(rq, rq->curr, rq_clock(rq));
  4415. if (!next)
  4416. break;
  4417. migrate_dead(dead_cpu, next);
  4418. }
  4419. }
  4420. #endif /* CONFIG_HOTPLUG_CPU */
  4421. /*
  4422. * migration_call - callback that gets triggered when a CPU is added.
  4423. * Here we can start up the necessary migration thread for the new CPU.
  4424. */
  4425. static int __cpuinit
  4426. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4427. {
  4428. struct task_struct *p;
  4429. int cpu = (long)hcpu;
  4430. unsigned long flags;
  4431. struct rq *rq;
  4432. switch (action) {
  4433. case CPU_LOCK_ACQUIRE:
  4434. mutex_lock(&sched_hotcpu_mutex);
  4435. break;
  4436. case CPU_UP_PREPARE:
  4437. case CPU_UP_PREPARE_FROZEN:
  4438. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4439. if (IS_ERR(p))
  4440. return NOTIFY_BAD;
  4441. kthread_bind(p, cpu);
  4442. /* Must be high prio: stop_machine expects to yield to it. */
  4443. rq = task_rq_lock(p, &flags);
  4444. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4445. task_rq_unlock(rq, &flags);
  4446. cpu_rq(cpu)->migration_thread = p;
  4447. break;
  4448. case CPU_ONLINE:
  4449. case CPU_ONLINE_FROZEN:
  4450. /* Strictly unneccessary, as first user will wake it. */
  4451. wake_up_process(cpu_rq(cpu)->migration_thread);
  4452. break;
  4453. #ifdef CONFIG_HOTPLUG_CPU
  4454. case CPU_UP_CANCELED:
  4455. case CPU_UP_CANCELED_FROZEN:
  4456. if (!cpu_rq(cpu)->migration_thread)
  4457. break;
  4458. /* Unbind it from offline cpu so it can run. Fall thru. */
  4459. kthread_bind(cpu_rq(cpu)->migration_thread,
  4460. any_online_cpu(cpu_online_map));
  4461. kthread_stop(cpu_rq(cpu)->migration_thread);
  4462. cpu_rq(cpu)->migration_thread = NULL;
  4463. break;
  4464. case CPU_DEAD:
  4465. case CPU_DEAD_FROZEN:
  4466. migrate_live_tasks(cpu);
  4467. rq = cpu_rq(cpu);
  4468. kthread_stop(rq->migration_thread);
  4469. rq->migration_thread = NULL;
  4470. /* Idle task back to normal (off runqueue, low prio) */
  4471. rq = task_rq_lock(rq->idle, &flags);
  4472. deactivate_task(rq, rq->idle, 0);
  4473. rq->idle->static_prio = MAX_PRIO;
  4474. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4475. rq->idle->sched_class = &idle_sched_class;
  4476. migrate_dead_tasks(cpu);
  4477. task_rq_unlock(rq, &flags);
  4478. migrate_nr_uninterruptible(rq);
  4479. BUG_ON(rq->nr_running != 0);
  4480. /* No need to migrate the tasks: it was best-effort if
  4481. * they didn't take sched_hotcpu_mutex. Just wake up
  4482. * the requestors. */
  4483. spin_lock_irq(&rq->lock);
  4484. while (!list_empty(&rq->migration_queue)) {
  4485. struct migration_req *req;
  4486. req = list_entry(rq->migration_queue.next,
  4487. struct migration_req, list);
  4488. list_del_init(&req->list);
  4489. complete(&req->done);
  4490. }
  4491. spin_unlock_irq(&rq->lock);
  4492. break;
  4493. #endif
  4494. case CPU_LOCK_RELEASE:
  4495. mutex_unlock(&sched_hotcpu_mutex);
  4496. break;
  4497. }
  4498. return NOTIFY_OK;
  4499. }
  4500. /* Register at highest priority so that task migration (migrate_all_tasks)
  4501. * happens before everything else.
  4502. */
  4503. static struct notifier_block __cpuinitdata migration_notifier = {
  4504. .notifier_call = migration_call,
  4505. .priority = 10
  4506. };
  4507. int __init migration_init(void)
  4508. {
  4509. void *cpu = (void *)(long)smp_processor_id();
  4510. int err;
  4511. /* Start one for the boot CPU: */
  4512. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4513. BUG_ON(err == NOTIFY_BAD);
  4514. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4515. register_cpu_notifier(&migration_notifier);
  4516. return 0;
  4517. }
  4518. #endif
  4519. #ifdef CONFIG_SMP
  4520. /* Number of possible processor ids */
  4521. int nr_cpu_ids __read_mostly = NR_CPUS;
  4522. EXPORT_SYMBOL(nr_cpu_ids);
  4523. #undef SCHED_DOMAIN_DEBUG
  4524. #ifdef SCHED_DOMAIN_DEBUG
  4525. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4526. {
  4527. int level = 0;
  4528. if (!sd) {
  4529. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4530. return;
  4531. }
  4532. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4533. do {
  4534. int i;
  4535. char str[NR_CPUS];
  4536. struct sched_group *group = sd->groups;
  4537. cpumask_t groupmask;
  4538. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4539. cpus_clear(groupmask);
  4540. printk(KERN_DEBUG);
  4541. for (i = 0; i < level + 1; i++)
  4542. printk(" ");
  4543. printk("domain %d: ", level);
  4544. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4545. printk("does not load-balance\n");
  4546. if (sd->parent)
  4547. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4548. " has parent");
  4549. break;
  4550. }
  4551. printk("span %s\n", str);
  4552. if (!cpu_isset(cpu, sd->span))
  4553. printk(KERN_ERR "ERROR: domain->span does not contain "
  4554. "CPU%d\n", cpu);
  4555. if (!cpu_isset(cpu, group->cpumask))
  4556. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4557. " CPU%d\n", cpu);
  4558. printk(KERN_DEBUG);
  4559. for (i = 0; i < level + 2; i++)
  4560. printk(" ");
  4561. printk("groups:");
  4562. do {
  4563. if (!group) {
  4564. printk("\n");
  4565. printk(KERN_ERR "ERROR: group is NULL\n");
  4566. break;
  4567. }
  4568. if (!group->__cpu_power) {
  4569. printk("\n");
  4570. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4571. "set\n");
  4572. }
  4573. if (!cpus_weight(group->cpumask)) {
  4574. printk("\n");
  4575. printk(KERN_ERR "ERROR: empty group\n");
  4576. }
  4577. if (cpus_intersects(groupmask, group->cpumask)) {
  4578. printk("\n");
  4579. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4580. }
  4581. cpus_or(groupmask, groupmask, group->cpumask);
  4582. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4583. printk(" %s", str);
  4584. group = group->next;
  4585. } while (group != sd->groups);
  4586. printk("\n");
  4587. if (!cpus_equal(sd->span, groupmask))
  4588. printk(KERN_ERR "ERROR: groups don't span "
  4589. "domain->span\n");
  4590. level++;
  4591. sd = sd->parent;
  4592. if (!sd)
  4593. continue;
  4594. if (!cpus_subset(groupmask, sd->span))
  4595. printk(KERN_ERR "ERROR: parent span is not a superset "
  4596. "of domain->span\n");
  4597. } while (sd);
  4598. }
  4599. #else
  4600. # define sched_domain_debug(sd, cpu) do { } while (0)
  4601. #endif
  4602. static int sd_degenerate(struct sched_domain *sd)
  4603. {
  4604. if (cpus_weight(sd->span) == 1)
  4605. return 1;
  4606. /* Following flags need at least 2 groups */
  4607. if (sd->flags & (SD_LOAD_BALANCE |
  4608. SD_BALANCE_NEWIDLE |
  4609. SD_BALANCE_FORK |
  4610. SD_BALANCE_EXEC |
  4611. SD_SHARE_CPUPOWER |
  4612. SD_SHARE_PKG_RESOURCES)) {
  4613. if (sd->groups != sd->groups->next)
  4614. return 0;
  4615. }
  4616. /* Following flags don't use groups */
  4617. if (sd->flags & (SD_WAKE_IDLE |
  4618. SD_WAKE_AFFINE |
  4619. SD_WAKE_BALANCE))
  4620. return 0;
  4621. return 1;
  4622. }
  4623. static int
  4624. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4625. {
  4626. unsigned long cflags = sd->flags, pflags = parent->flags;
  4627. if (sd_degenerate(parent))
  4628. return 1;
  4629. if (!cpus_equal(sd->span, parent->span))
  4630. return 0;
  4631. /* Does parent contain flags not in child? */
  4632. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4633. if (cflags & SD_WAKE_AFFINE)
  4634. pflags &= ~SD_WAKE_BALANCE;
  4635. /* Flags needing groups don't count if only 1 group in parent */
  4636. if (parent->groups == parent->groups->next) {
  4637. pflags &= ~(SD_LOAD_BALANCE |
  4638. SD_BALANCE_NEWIDLE |
  4639. SD_BALANCE_FORK |
  4640. SD_BALANCE_EXEC |
  4641. SD_SHARE_CPUPOWER |
  4642. SD_SHARE_PKG_RESOURCES);
  4643. }
  4644. if (~cflags & pflags)
  4645. return 0;
  4646. return 1;
  4647. }
  4648. /*
  4649. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4650. * hold the hotplug lock.
  4651. */
  4652. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4653. {
  4654. struct rq *rq = cpu_rq(cpu);
  4655. struct sched_domain *tmp;
  4656. /* Remove the sched domains which do not contribute to scheduling. */
  4657. for (tmp = sd; tmp; tmp = tmp->parent) {
  4658. struct sched_domain *parent = tmp->parent;
  4659. if (!parent)
  4660. break;
  4661. if (sd_parent_degenerate(tmp, parent)) {
  4662. tmp->parent = parent->parent;
  4663. if (parent->parent)
  4664. parent->parent->child = tmp;
  4665. }
  4666. }
  4667. if (sd && sd_degenerate(sd)) {
  4668. sd = sd->parent;
  4669. if (sd)
  4670. sd->child = NULL;
  4671. }
  4672. sched_domain_debug(sd, cpu);
  4673. rcu_assign_pointer(rq->sd, sd);
  4674. }
  4675. /* cpus with isolated domains */
  4676. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4677. /* Setup the mask of cpus configured for isolated domains */
  4678. static int __init isolated_cpu_setup(char *str)
  4679. {
  4680. int ints[NR_CPUS], i;
  4681. str = get_options(str, ARRAY_SIZE(ints), ints);
  4682. cpus_clear(cpu_isolated_map);
  4683. for (i = 1; i <= ints[0]; i++)
  4684. if (ints[i] < NR_CPUS)
  4685. cpu_set(ints[i], cpu_isolated_map);
  4686. return 1;
  4687. }
  4688. __setup ("isolcpus=", isolated_cpu_setup);
  4689. /*
  4690. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4691. * to a function which identifies what group(along with sched group) a CPU
  4692. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4693. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4694. *
  4695. * init_sched_build_groups will build a circular linked list of the groups
  4696. * covered by the given span, and will set each group's ->cpumask correctly,
  4697. * and ->cpu_power to 0.
  4698. */
  4699. static void
  4700. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4701. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4702. struct sched_group **sg))
  4703. {
  4704. struct sched_group *first = NULL, *last = NULL;
  4705. cpumask_t covered = CPU_MASK_NONE;
  4706. int i;
  4707. for_each_cpu_mask(i, span) {
  4708. struct sched_group *sg;
  4709. int group = group_fn(i, cpu_map, &sg);
  4710. int j;
  4711. if (cpu_isset(i, covered))
  4712. continue;
  4713. sg->cpumask = CPU_MASK_NONE;
  4714. sg->__cpu_power = 0;
  4715. for_each_cpu_mask(j, span) {
  4716. if (group_fn(j, cpu_map, NULL) != group)
  4717. continue;
  4718. cpu_set(j, covered);
  4719. cpu_set(j, sg->cpumask);
  4720. }
  4721. if (!first)
  4722. first = sg;
  4723. if (last)
  4724. last->next = sg;
  4725. last = sg;
  4726. }
  4727. last->next = first;
  4728. }
  4729. #define SD_NODES_PER_DOMAIN 16
  4730. #ifdef CONFIG_NUMA
  4731. /**
  4732. * find_next_best_node - find the next node to include in a sched_domain
  4733. * @node: node whose sched_domain we're building
  4734. * @used_nodes: nodes already in the sched_domain
  4735. *
  4736. * Find the next node to include in a given scheduling domain. Simply
  4737. * finds the closest node not already in the @used_nodes map.
  4738. *
  4739. * Should use nodemask_t.
  4740. */
  4741. static int find_next_best_node(int node, unsigned long *used_nodes)
  4742. {
  4743. int i, n, val, min_val, best_node = 0;
  4744. min_val = INT_MAX;
  4745. for (i = 0; i < MAX_NUMNODES; i++) {
  4746. /* Start at @node */
  4747. n = (node + i) % MAX_NUMNODES;
  4748. if (!nr_cpus_node(n))
  4749. continue;
  4750. /* Skip already used nodes */
  4751. if (test_bit(n, used_nodes))
  4752. continue;
  4753. /* Simple min distance search */
  4754. val = node_distance(node, n);
  4755. if (val < min_val) {
  4756. min_val = val;
  4757. best_node = n;
  4758. }
  4759. }
  4760. set_bit(best_node, used_nodes);
  4761. return best_node;
  4762. }
  4763. /**
  4764. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4765. * @node: node whose cpumask we're constructing
  4766. * @size: number of nodes to include in this span
  4767. *
  4768. * Given a node, construct a good cpumask for its sched_domain to span. It
  4769. * should be one that prevents unnecessary balancing, but also spreads tasks
  4770. * out optimally.
  4771. */
  4772. static cpumask_t sched_domain_node_span(int node)
  4773. {
  4774. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4775. cpumask_t span, nodemask;
  4776. int i;
  4777. cpus_clear(span);
  4778. bitmap_zero(used_nodes, MAX_NUMNODES);
  4779. nodemask = node_to_cpumask(node);
  4780. cpus_or(span, span, nodemask);
  4781. set_bit(node, used_nodes);
  4782. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4783. int next_node = find_next_best_node(node, used_nodes);
  4784. nodemask = node_to_cpumask(next_node);
  4785. cpus_or(span, span, nodemask);
  4786. }
  4787. return span;
  4788. }
  4789. #endif
  4790. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4791. /*
  4792. * SMT sched-domains:
  4793. */
  4794. #ifdef CONFIG_SCHED_SMT
  4795. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4796. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4797. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4798. struct sched_group **sg)
  4799. {
  4800. if (sg)
  4801. *sg = &per_cpu(sched_group_cpus, cpu);
  4802. return cpu;
  4803. }
  4804. #endif
  4805. /*
  4806. * multi-core sched-domains:
  4807. */
  4808. #ifdef CONFIG_SCHED_MC
  4809. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  4810. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  4811. #endif
  4812. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  4813. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4814. struct sched_group **sg)
  4815. {
  4816. int group;
  4817. cpumask_t mask = cpu_sibling_map[cpu];
  4818. cpus_and(mask, mask, *cpu_map);
  4819. group = first_cpu(mask);
  4820. if (sg)
  4821. *sg = &per_cpu(sched_group_core, group);
  4822. return group;
  4823. }
  4824. #elif defined(CONFIG_SCHED_MC)
  4825. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4826. struct sched_group **sg)
  4827. {
  4828. if (sg)
  4829. *sg = &per_cpu(sched_group_core, cpu);
  4830. return cpu;
  4831. }
  4832. #endif
  4833. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  4834. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  4835. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  4836. struct sched_group **sg)
  4837. {
  4838. int group;
  4839. #ifdef CONFIG_SCHED_MC
  4840. cpumask_t mask = cpu_coregroup_map(cpu);
  4841. cpus_and(mask, mask, *cpu_map);
  4842. group = first_cpu(mask);
  4843. #elif defined(CONFIG_SCHED_SMT)
  4844. cpumask_t mask = cpu_sibling_map[cpu];
  4845. cpus_and(mask, mask, *cpu_map);
  4846. group = first_cpu(mask);
  4847. #else
  4848. group = cpu;
  4849. #endif
  4850. if (sg)
  4851. *sg = &per_cpu(sched_group_phys, group);
  4852. return group;
  4853. }
  4854. #ifdef CONFIG_NUMA
  4855. /*
  4856. * The init_sched_build_groups can't handle what we want to do with node
  4857. * groups, so roll our own. Now each node has its own list of groups which
  4858. * gets dynamically allocated.
  4859. */
  4860. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  4861. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  4862. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  4863. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  4864. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  4865. struct sched_group **sg)
  4866. {
  4867. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  4868. int group;
  4869. cpus_and(nodemask, nodemask, *cpu_map);
  4870. group = first_cpu(nodemask);
  4871. if (sg)
  4872. *sg = &per_cpu(sched_group_allnodes, group);
  4873. return group;
  4874. }
  4875. static void init_numa_sched_groups_power(struct sched_group *group_head)
  4876. {
  4877. struct sched_group *sg = group_head;
  4878. int j;
  4879. if (!sg)
  4880. return;
  4881. next_sg:
  4882. for_each_cpu_mask(j, sg->cpumask) {
  4883. struct sched_domain *sd;
  4884. sd = &per_cpu(phys_domains, j);
  4885. if (j != first_cpu(sd->groups->cpumask)) {
  4886. /*
  4887. * Only add "power" once for each
  4888. * physical package.
  4889. */
  4890. continue;
  4891. }
  4892. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  4893. }
  4894. sg = sg->next;
  4895. if (sg != group_head)
  4896. goto next_sg;
  4897. }
  4898. #endif
  4899. #ifdef CONFIG_NUMA
  4900. /* Free memory allocated for various sched_group structures */
  4901. static void free_sched_groups(const cpumask_t *cpu_map)
  4902. {
  4903. int cpu, i;
  4904. for_each_cpu_mask(cpu, *cpu_map) {
  4905. struct sched_group **sched_group_nodes
  4906. = sched_group_nodes_bycpu[cpu];
  4907. if (!sched_group_nodes)
  4908. continue;
  4909. for (i = 0; i < MAX_NUMNODES; i++) {
  4910. cpumask_t nodemask = node_to_cpumask(i);
  4911. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  4912. cpus_and(nodemask, nodemask, *cpu_map);
  4913. if (cpus_empty(nodemask))
  4914. continue;
  4915. if (sg == NULL)
  4916. continue;
  4917. sg = sg->next;
  4918. next_sg:
  4919. oldsg = sg;
  4920. sg = sg->next;
  4921. kfree(oldsg);
  4922. if (oldsg != sched_group_nodes[i])
  4923. goto next_sg;
  4924. }
  4925. kfree(sched_group_nodes);
  4926. sched_group_nodes_bycpu[cpu] = NULL;
  4927. }
  4928. }
  4929. #else
  4930. static void free_sched_groups(const cpumask_t *cpu_map)
  4931. {
  4932. }
  4933. #endif
  4934. /*
  4935. * Initialize sched groups cpu_power.
  4936. *
  4937. * cpu_power indicates the capacity of sched group, which is used while
  4938. * distributing the load between different sched groups in a sched domain.
  4939. * Typically cpu_power for all the groups in a sched domain will be same unless
  4940. * there are asymmetries in the topology. If there are asymmetries, group
  4941. * having more cpu_power will pickup more load compared to the group having
  4942. * less cpu_power.
  4943. *
  4944. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  4945. * the maximum number of tasks a group can handle in the presence of other idle
  4946. * or lightly loaded groups in the same sched domain.
  4947. */
  4948. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4949. {
  4950. struct sched_domain *child;
  4951. struct sched_group *group;
  4952. WARN_ON(!sd || !sd->groups);
  4953. if (cpu != first_cpu(sd->groups->cpumask))
  4954. return;
  4955. child = sd->child;
  4956. sd->groups->__cpu_power = 0;
  4957. /*
  4958. * For perf policy, if the groups in child domain share resources
  4959. * (for example cores sharing some portions of the cache hierarchy
  4960. * or SMT), then set this domain groups cpu_power such that each group
  4961. * can handle only one task, when there are other idle groups in the
  4962. * same sched domain.
  4963. */
  4964. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  4965. (child->flags &
  4966. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  4967. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  4968. return;
  4969. }
  4970. /*
  4971. * add cpu_power of each child group to this groups cpu_power
  4972. */
  4973. group = child->groups;
  4974. do {
  4975. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  4976. group = group->next;
  4977. } while (group != child->groups);
  4978. }
  4979. /*
  4980. * Build sched domains for a given set of cpus and attach the sched domains
  4981. * to the individual cpus
  4982. */
  4983. static int build_sched_domains(const cpumask_t *cpu_map)
  4984. {
  4985. int i;
  4986. #ifdef CONFIG_NUMA
  4987. struct sched_group **sched_group_nodes = NULL;
  4988. int sd_allnodes = 0;
  4989. /*
  4990. * Allocate the per-node list of sched groups
  4991. */
  4992. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  4993. GFP_KERNEL);
  4994. if (!sched_group_nodes) {
  4995. printk(KERN_WARNING "Can not alloc sched group node list\n");
  4996. return -ENOMEM;
  4997. }
  4998. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  4999. #endif
  5000. /*
  5001. * Set up domains for cpus specified by the cpu_map.
  5002. */
  5003. for_each_cpu_mask(i, *cpu_map) {
  5004. struct sched_domain *sd = NULL, *p;
  5005. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5006. cpus_and(nodemask, nodemask, *cpu_map);
  5007. #ifdef CONFIG_NUMA
  5008. if (cpus_weight(*cpu_map) >
  5009. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5010. sd = &per_cpu(allnodes_domains, i);
  5011. *sd = SD_ALLNODES_INIT;
  5012. sd->span = *cpu_map;
  5013. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5014. p = sd;
  5015. sd_allnodes = 1;
  5016. } else
  5017. p = NULL;
  5018. sd = &per_cpu(node_domains, i);
  5019. *sd = SD_NODE_INIT;
  5020. sd->span = sched_domain_node_span(cpu_to_node(i));
  5021. sd->parent = p;
  5022. if (p)
  5023. p->child = sd;
  5024. cpus_and(sd->span, sd->span, *cpu_map);
  5025. #endif
  5026. p = sd;
  5027. sd = &per_cpu(phys_domains, i);
  5028. *sd = SD_CPU_INIT;
  5029. sd->span = nodemask;
  5030. sd->parent = p;
  5031. if (p)
  5032. p->child = sd;
  5033. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5034. #ifdef CONFIG_SCHED_MC
  5035. p = sd;
  5036. sd = &per_cpu(core_domains, i);
  5037. *sd = SD_MC_INIT;
  5038. sd->span = cpu_coregroup_map(i);
  5039. cpus_and(sd->span, sd->span, *cpu_map);
  5040. sd->parent = p;
  5041. p->child = sd;
  5042. cpu_to_core_group(i, cpu_map, &sd->groups);
  5043. #endif
  5044. #ifdef CONFIG_SCHED_SMT
  5045. p = sd;
  5046. sd = &per_cpu(cpu_domains, i);
  5047. *sd = SD_SIBLING_INIT;
  5048. sd->span = cpu_sibling_map[i];
  5049. cpus_and(sd->span, sd->span, *cpu_map);
  5050. sd->parent = p;
  5051. p->child = sd;
  5052. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5053. #endif
  5054. }
  5055. #ifdef CONFIG_SCHED_SMT
  5056. /* Set up CPU (sibling) groups */
  5057. for_each_cpu_mask(i, *cpu_map) {
  5058. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5059. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5060. if (i != first_cpu(this_sibling_map))
  5061. continue;
  5062. init_sched_build_groups(this_sibling_map, cpu_map,
  5063. &cpu_to_cpu_group);
  5064. }
  5065. #endif
  5066. #ifdef CONFIG_SCHED_MC
  5067. /* Set up multi-core groups */
  5068. for_each_cpu_mask(i, *cpu_map) {
  5069. cpumask_t this_core_map = cpu_coregroup_map(i);
  5070. cpus_and(this_core_map, this_core_map, *cpu_map);
  5071. if (i != first_cpu(this_core_map))
  5072. continue;
  5073. init_sched_build_groups(this_core_map, cpu_map,
  5074. &cpu_to_core_group);
  5075. }
  5076. #endif
  5077. /* Set up physical groups */
  5078. for (i = 0; i < MAX_NUMNODES; i++) {
  5079. cpumask_t nodemask = node_to_cpumask(i);
  5080. cpus_and(nodemask, nodemask, *cpu_map);
  5081. if (cpus_empty(nodemask))
  5082. continue;
  5083. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5084. }
  5085. #ifdef CONFIG_NUMA
  5086. /* Set up node groups */
  5087. if (sd_allnodes)
  5088. init_sched_build_groups(*cpu_map, cpu_map,
  5089. &cpu_to_allnodes_group);
  5090. for (i = 0; i < MAX_NUMNODES; i++) {
  5091. /* Set up node groups */
  5092. struct sched_group *sg, *prev;
  5093. cpumask_t nodemask = node_to_cpumask(i);
  5094. cpumask_t domainspan;
  5095. cpumask_t covered = CPU_MASK_NONE;
  5096. int j;
  5097. cpus_and(nodemask, nodemask, *cpu_map);
  5098. if (cpus_empty(nodemask)) {
  5099. sched_group_nodes[i] = NULL;
  5100. continue;
  5101. }
  5102. domainspan = sched_domain_node_span(i);
  5103. cpus_and(domainspan, domainspan, *cpu_map);
  5104. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5105. if (!sg) {
  5106. printk(KERN_WARNING "Can not alloc domain group for "
  5107. "node %d\n", i);
  5108. goto error;
  5109. }
  5110. sched_group_nodes[i] = sg;
  5111. for_each_cpu_mask(j, nodemask) {
  5112. struct sched_domain *sd;
  5113. sd = &per_cpu(node_domains, j);
  5114. sd->groups = sg;
  5115. }
  5116. sg->__cpu_power = 0;
  5117. sg->cpumask = nodemask;
  5118. sg->next = sg;
  5119. cpus_or(covered, covered, nodemask);
  5120. prev = sg;
  5121. for (j = 0; j < MAX_NUMNODES; j++) {
  5122. cpumask_t tmp, notcovered;
  5123. int n = (i + j) % MAX_NUMNODES;
  5124. cpus_complement(notcovered, covered);
  5125. cpus_and(tmp, notcovered, *cpu_map);
  5126. cpus_and(tmp, tmp, domainspan);
  5127. if (cpus_empty(tmp))
  5128. break;
  5129. nodemask = node_to_cpumask(n);
  5130. cpus_and(tmp, tmp, nodemask);
  5131. if (cpus_empty(tmp))
  5132. continue;
  5133. sg = kmalloc_node(sizeof(struct sched_group),
  5134. GFP_KERNEL, i);
  5135. if (!sg) {
  5136. printk(KERN_WARNING
  5137. "Can not alloc domain group for node %d\n", j);
  5138. goto error;
  5139. }
  5140. sg->__cpu_power = 0;
  5141. sg->cpumask = tmp;
  5142. sg->next = prev->next;
  5143. cpus_or(covered, covered, tmp);
  5144. prev->next = sg;
  5145. prev = sg;
  5146. }
  5147. }
  5148. #endif
  5149. /* Calculate CPU power for physical packages and nodes */
  5150. #ifdef CONFIG_SCHED_SMT
  5151. for_each_cpu_mask(i, *cpu_map) {
  5152. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5153. init_sched_groups_power(i, sd);
  5154. }
  5155. #endif
  5156. #ifdef CONFIG_SCHED_MC
  5157. for_each_cpu_mask(i, *cpu_map) {
  5158. struct sched_domain *sd = &per_cpu(core_domains, i);
  5159. init_sched_groups_power(i, sd);
  5160. }
  5161. #endif
  5162. for_each_cpu_mask(i, *cpu_map) {
  5163. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5164. init_sched_groups_power(i, sd);
  5165. }
  5166. #ifdef CONFIG_NUMA
  5167. for (i = 0; i < MAX_NUMNODES; i++)
  5168. init_numa_sched_groups_power(sched_group_nodes[i]);
  5169. if (sd_allnodes) {
  5170. struct sched_group *sg;
  5171. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5172. init_numa_sched_groups_power(sg);
  5173. }
  5174. #endif
  5175. /* Attach the domains */
  5176. for_each_cpu_mask(i, *cpu_map) {
  5177. struct sched_domain *sd;
  5178. #ifdef CONFIG_SCHED_SMT
  5179. sd = &per_cpu(cpu_domains, i);
  5180. #elif defined(CONFIG_SCHED_MC)
  5181. sd = &per_cpu(core_domains, i);
  5182. #else
  5183. sd = &per_cpu(phys_domains, i);
  5184. #endif
  5185. cpu_attach_domain(sd, i);
  5186. }
  5187. return 0;
  5188. #ifdef CONFIG_NUMA
  5189. error:
  5190. free_sched_groups(cpu_map);
  5191. return -ENOMEM;
  5192. #endif
  5193. }
  5194. /*
  5195. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5196. */
  5197. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5198. {
  5199. cpumask_t cpu_default_map;
  5200. int err;
  5201. /*
  5202. * Setup mask for cpus without special case scheduling requirements.
  5203. * For now this just excludes isolated cpus, but could be used to
  5204. * exclude other special cases in the future.
  5205. */
  5206. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5207. err = build_sched_domains(&cpu_default_map);
  5208. return err;
  5209. }
  5210. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5211. {
  5212. free_sched_groups(cpu_map);
  5213. }
  5214. /*
  5215. * Detach sched domains from a group of cpus specified in cpu_map
  5216. * These cpus will now be attached to the NULL domain
  5217. */
  5218. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5219. {
  5220. int i;
  5221. for_each_cpu_mask(i, *cpu_map)
  5222. cpu_attach_domain(NULL, i);
  5223. synchronize_sched();
  5224. arch_destroy_sched_domains(cpu_map);
  5225. }
  5226. /*
  5227. * Partition sched domains as specified by the cpumasks below.
  5228. * This attaches all cpus from the cpumasks to the NULL domain,
  5229. * waits for a RCU quiescent period, recalculates sched
  5230. * domain information and then attaches them back to the
  5231. * correct sched domains
  5232. * Call with hotplug lock held
  5233. */
  5234. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5235. {
  5236. cpumask_t change_map;
  5237. int err = 0;
  5238. cpus_and(*partition1, *partition1, cpu_online_map);
  5239. cpus_and(*partition2, *partition2, cpu_online_map);
  5240. cpus_or(change_map, *partition1, *partition2);
  5241. /* Detach sched domains from all of the affected cpus */
  5242. detach_destroy_domains(&change_map);
  5243. if (!cpus_empty(*partition1))
  5244. err = build_sched_domains(partition1);
  5245. if (!err && !cpus_empty(*partition2))
  5246. err = build_sched_domains(partition2);
  5247. return err;
  5248. }
  5249. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5250. int arch_reinit_sched_domains(void)
  5251. {
  5252. int err;
  5253. mutex_lock(&sched_hotcpu_mutex);
  5254. detach_destroy_domains(&cpu_online_map);
  5255. err = arch_init_sched_domains(&cpu_online_map);
  5256. mutex_unlock(&sched_hotcpu_mutex);
  5257. return err;
  5258. }
  5259. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5260. {
  5261. int ret;
  5262. if (buf[0] != '0' && buf[0] != '1')
  5263. return -EINVAL;
  5264. if (smt)
  5265. sched_smt_power_savings = (buf[0] == '1');
  5266. else
  5267. sched_mc_power_savings = (buf[0] == '1');
  5268. ret = arch_reinit_sched_domains();
  5269. return ret ? ret : count;
  5270. }
  5271. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5272. {
  5273. int err = 0;
  5274. #ifdef CONFIG_SCHED_SMT
  5275. if (smt_capable())
  5276. err = sysfs_create_file(&cls->kset.kobj,
  5277. &attr_sched_smt_power_savings.attr);
  5278. #endif
  5279. #ifdef CONFIG_SCHED_MC
  5280. if (!err && mc_capable())
  5281. err = sysfs_create_file(&cls->kset.kobj,
  5282. &attr_sched_mc_power_savings.attr);
  5283. #endif
  5284. return err;
  5285. }
  5286. #endif
  5287. #ifdef CONFIG_SCHED_MC
  5288. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5289. {
  5290. return sprintf(page, "%u\n", sched_mc_power_savings);
  5291. }
  5292. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5293. const char *buf, size_t count)
  5294. {
  5295. return sched_power_savings_store(buf, count, 0);
  5296. }
  5297. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5298. sched_mc_power_savings_store);
  5299. #endif
  5300. #ifdef CONFIG_SCHED_SMT
  5301. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5302. {
  5303. return sprintf(page, "%u\n", sched_smt_power_savings);
  5304. }
  5305. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5306. const char *buf, size_t count)
  5307. {
  5308. return sched_power_savings_store(buf, count, 1);
  5309. }
  5310. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5311. sched_smt_power_savings_store);
  5312. #endif
  5313. /*
  5314. * Force a reinitialization of the sched domains hierarchy. The domains
  5315. * and groups cannot be updated in place without racing with the balancing
  5316. * code, so we temporarily attach all running cpus to the NULL domain
  5317. * which will prevent rebalancing while the sched domains are recalculated.
  5318. */
  5319. static int update_sched_domains(struct notifier_block *nfb,
  5320. unsigned long action, void *hcpu)
  5321. {
  5322. switch (action) {
  5323. case CPU_UP_PREPARE:
  5324. case CPU_UP_PREPARE_FROZEN:
  5325. case CPU_DOWN_PREPARE:
  5326. case CPU_DOWN_PREPARE_FROZEN:
  5327. detach_destroy_domains(&cpu_online_map);
  5328. return NOTIFY_OK;
  5329. case CPU_UP_CANCELED:
  5330. case CPU_UP_CANCELED_FROZEN:
  5331. case CPU_DOWN_FAILED:
  5332. case CPU_DOWN_FAILED_FROZEN:
  5333. case CPU_ONLINE:
  5334. case CPU_ONLINE_FROZEN:
  5335. case CPU_DEAD:
  5336. case CPU_DEAD_FROZEN:
  5337. /*
  5338. * Fall through and re-initialise the domains.
  5339. */
  5340. break;
  5341. default:
  5342. return NOTIFY_DONE;
  5343. }
  5344. /* The hotplug lock is already held by cpu_up/cpu_down */
  5345. arch_init_sched_domains(&cpu_online_map);
  5346. return NOTIFY_OK;
  5347. }
  5348. void __init sched_init_smp(void)
  5349. {
  5350. cpumask_t non_isolated_cpus;
  5351. mutex_lock(&sched_hotcpu_mutex);
  5352. arch_init_sched_domains(&cpu_online_map);
  5353. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5354. if (cpus_empty(non_isolated_cpus))
  5355. cpu_set(smp_processor_id(), non_isolated_cpus);
  5356. mutex_unlock(&sched_hotcpu_mutex);
  5357. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5358. hotcpu_notifier(update_sched_domains, 0);
  5359. /* Move init over to a non-isolated CPU */
  5360. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5361. BUG();
  5362. sched_init_granularity();
  5363. }
  5364. #else
  5365. void __init sched_init_smp(void)
  5366. {
  5367. sched_init_granularity();
  5368. }
  5369. #endif /* CONFIG_SMP */
  5370. int in_sched_functions(unsigned long addr)
  5371. {
  5372. /* Linker adds these: start and end of __sched functions */
  5373. extern char __sched_text_start[], __sched_text_end[];
  5374. return in_lock_functions(addr) ||
  5375. (addr >= (unsigned long)__sched_text_start
  5376. && addr < (unsigned long)__sched_text_end);
  5377. }
  5378. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5379. {
  5380. cfs_rq->tasks_timeline = RB_ROOT;
  5381. cfs_rq->fair_clock = 1;
  5382. #ifdef CONFIG_FAIR_GROUP_SCHED
  5383. cfs_rq->rq = rq;
  5384. #endif
  5385. }
  5386. void __init sched_init(void)
  5387. {
  5388. u64 now = sched_clock();
  5389. int highest_cpu = 0;
  5390. int i, j;
  5391. /*
  5392. * Link up the scheduling class hierarchy:
  5393. */
  5394. rt_sched_class.next = &fair_sched_class;
  5395. fair_sched_class.next = &idle_sched_class;
  5396. idle_sched_class.next = NULL;
  5397. for_each_possible_cpu(i) {
  5398. struct rt_prio_array *array;
  5399. struct rq *rq;
  5400. rq = cpu_rq(i);
  5401. spin_lock_init(&rq->lock);
  5402. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5403. rq->nr_running = 0;
  5404. rq->clock = 1;
  5405. init_cfs_rq(&rq->cfs, rq);
  5406. #ifdef CONFIG_FAIR_GROUP_SCHED
  5407. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5408. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5409. #endif
  5410. rq->ls.load_update_last = now;
  5411. rq->ls.load_update_start = now;
  5412. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5413. rq->cpu_load[j] = 0;
  5414. #ifdef CONFIG_SMP
  5415. rq->sd = NULL;
  5416. rq->active_balance = 0;
  5417. rq->next_balance = jiffies;
  5418. rq->push_cpu = 0;
  5419. rq->cpu = i;
  5420. rq->migration_thread = NULL;
  5421. INIT_LIST_HEAD(&rq->migration_queue);
  5422. #endif
  5423. atomic_set(&rq->nr_iowait, 0);
  5424. array = &rq->rt.active;
  5425. for (j = 0; j < MAX_RT_PRIO; j++) {
  5426. INIT_LIST_HEAD(array->queue + j);
  5427. __clear_bit(j, array->bitmap);
  5428. }
  5429. highest_cpu = i;
  5430. /* delimiter for bitsearch: */
  5431. __set_bit(MAX_RT_PRIO, array->bitmap);
  5432. }
  5433. set_load_weight(&init_task);
  5434. #ifdef CONFIG_SMP
  5435. nr_cpu_ids = highest_cpu + 1;
  5436. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5437. #endif
  5438. #ifdef CONFIG_RT_MUTEXES
  5439. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5440. #endif
  5441. /*
  5442. * The boot idle thread does lazy MMU switching as well:
  5443. */
  5444. atomic_inc(&init_mm.mm_count);
  5445. enter_lazy_tlb(&init_mm, current);
  5446. /*
  5447. * Make us the idle thread. Technically, schedule() should not be
  5448. * called from this thread, however somewhere below it might be,
  5449. * but because we are the idle thread, we just pick up running again
  5450. * when this runqueue becomes "idle".
  5451. */
  5452. init_idle(current, smp_processor_id());
  5453. /*
  5454. * During early bootup we pretend to be a normal task:
  5455. */
  5456. current->sched_class = &fair_sched_class;
  5457. }
  5458. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5459. void __might_sleep(char *file, int line)
  5460. {
  5461. #ifdef in_atomic
  5462. static unsigned long prev_jiffy; /* ratelimiting */
  5463. if ((in_atomic() || irqs_disabled()) &&
  5464. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5465. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5466. return;
  5467. prev_jiffy = jiffies;
  5468. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5469. " context at %s:%d\n", file, line);
  5470. printk("in_atomic():%d, irqs_disabled():%d\n",
  5471. in_atomic(), irqs_disabled());
  5472. debug_show_held_locks(current);
  5473. if (irqs_disabled())
  5474. print_irqtrace_events(current);
  5475. dump_stack();
  5476. }
  5477. #endif
  5478. }
  5479. EXPORT_SYMBOL(__might_sleep);
  5480. #endif
  5481. #ifdef CONFIG_MAGIC_SYSRQ
  5482. void normalize_rt_tasks(void)
  5483. {
  5484. struct task_struct *g, *p;
  5485. unsigned long flags;
  5486. struct rq *rq;
  5487. int on_rq;
  5488. read_lock_irq(&tasklist_lock);
  5489. do_each_thread(g, p) {
  5490. p->se.fair_key = 0;
  5491. p->se.wait_runtime = 0;
  5492. p->se.wait_start_fair = 0;
  5493. p->se.wait_start = 0;
  5494. p->se.exec_start = 0;
  5495. p->se.sleep_start = 0;
  5496. p->se.sleep_start_fair = 0;
  5497. p->se.block_start = 0;
  5498. task_rq(p)->cfs.fair_clock = 0;
  5499. task_rq(p)->clock = 0;
  5500. if (!rt_task(p)) {
  5501. /*
  5502. * Renice negative nice level userspace
  5503. * tasks back to 0:
  5504. */
  5505. if (TASK_NICE(p) < 0 && p->mm)
  5506. set_user_nice(p, 0);
  5507. continue;
  5508. }
  5509. spin_lock_irqsave(&p->pi_lock, flags);
  5510. rq = __task_rq_lock(p);
  5511. #ifdef CONFIG_SMP
  5512. /*
  5513. * Do not touch the migration thread:
  5514. */
  5515. if (p == rq->migration_thread)
  5516. goto out_unlock;
  5517. #endif
  5518. on_rq = p->se.on_rq;
  5519. if (on_rq)
  5520. deactivate_task(task_rq(p), p, 0);
  5521. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5522. if (on_rq) {
  5523. activate_task(task_rq(p), p, 0);
  5524. resched_task(rq->curr);
  5525. }
  5526. #ifdef CONFIG_SMP
  5527. out_unlock:
  5528. #endif
  5529. __task_rq_unlock(rq);
  5530. spin_unlock_irqrestore(&p->pi_lock, flags);
  5531. } while_each_thread(g, p);
  5532. read_unlock_irq(&tasklist_lock);
  5533. }
  5534. #endif /* CONFIG_MAGIC_SYSRQ */
  5535. #ifdef CONFIG_IA64
  5536. /*
  5537. * These functions are only useful for the IA64 MCA handling.
  5538. *
  5539. * They can only be called when the whole system has been
  5540. * stopped - every CPU needs to be quiescent, and no scheduling
  5541. * activity can take place. Using them for anything else would
  5542. * be a serious bug, and as a result, they aren't even visible
  5543. * under any other configuration.
  5544. */
  5545. /**
  5546. * curr_task - return the current task for a given cpu.
  5547. * @cpu: the processor in question.
  5548. *
  5549. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5550. */
  5551. struct task_struct *curr_task(int cpu)
  5552. {
  5553. return cpu_curr(cpu);
  5554. }
  5555. /**
  5556. * set_curr_task - set the current task for a given cpu.
  5557. * @cpu: the processor in question.
  5558. * @p: the task pointer to set.
  5559. *
  5560. * Description: This function must only be used when non-maskable interrupts
  5561. * are serviced on a separate stack. It allows the architecture to switch the
  5562. * notion of the current task on a cpu in a non-blocking manner. This function
  5563. * must be called with all CPU's synchronized, and interrupts disabled, the
  5564. * and caller must save the original value of the current task (see
  5565. * curr_task() above) and restore that value before reenabling interrupts and
  5566. * re-starting the system.
  5567. *
  5568. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5569. */
  5570. void set_curr_task(int cpu, struct task_struct *p)
  5571. {
  5572. cpu_curr(cpu) = p;
  5573. }
  5574. #endif