zd_usb.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410
  1. /* zd_usb.c
  2. *
  3. * This program is free software; you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation; either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  16. */
  17. #include <asm/unaligned.h>
  18. #include <linux/kernel.h>
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/firmware.h>
  22. #include <linux/device.h>
  23. #include <linux/errno.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/usb.h>
  26. #include <net/ieee80211.h>
  27. #include "zd_def.h"
  28. #include "zd_netdev.h"
  29. #include "zd_mac.h"
  30. #include "zd_usb.h"
  31. #include "zd_util.h"
  32. static struct usb_device_id usb_ids[] = {
  33. /* ZD1211 */
  34. { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
  35. { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
  36. { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
  37. { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
  38. { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
  39. { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
  40. { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
  41. { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
  42. { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
  43. { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
  44. /* ZD1211B */
  45. { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
  46. { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
  47. { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
  48. { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
  49. /* "Driverless" devices that need ejecting */
  50. { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
  51. {}
  52. };
  53. MODULE_LICENSE("GPL");
  54. MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
  55. MODULE_AUTHOR("Ulrich Kunitz");
  56. MODULE_AUTHOR("Daniel Drake");
  57. MODULE_VERSION("1.0");
  58. MODULE_DEVICE_TABLE(usb, usb_ids);
  59. #define FW_ZD1211_PREFIX "zd1211/zd1211_"
  60. #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
  61. /* register address handling */
  62. #ifdef DEBUG
  63. static int check_addr(struct zd_usb *usb, zd_addr_t addr)
  64. {
  65. u32 base = ZD_ADDR_BASE(addr);
  66. u32 offset = ZD_OFFSET(addr);
  67. if ((u32)addr & ADDR_ZERO_MASK)
  68. goto invalid_address;
  69. switch (base) {
  70. case USB_BASE:
  71. break;
  72. case CR_BASE:
  73. if (offset > CR_MAX_OFFSET) {
  74. dev_dbg(zd_usb_dev(usb),
  75. "CR offset %#010x larger than"
  76. " CR_MAX_OFFSET %#10x\n",
  77. offset, CR_MAX_OFFSET);
  78. goto invalid_address;
  79. }
  80. if (offset & 1) {
  81. dev_dbg(zd_usb_dev(usb),
  82. "CR offset %#010x is not a multiple of 2\n",
  83. offset);
  84. goto invalid_address;
  85. }
  86. break;
  87. case E2P_BASE:
  88. if (offset > E2P_MAX_OFFSET) {
  89. dev_dbg(zd_usb_dev(usb),
  90. "E2P offset %#010x larger than"
  91. " E2P_MAX_OFFSET %#010x\n",
  92. offset, E2P_MAX_OFFSET);
  93. goto invalid_address;
  94. }
  95. break;
  96. case FW_BASE:
  97. if (!usb->fw_base_offset) {
  98. dev_dbg(zd_usb_dev(usb),
  99. "ERROR: fw base offset has not been set\n");
  100. return -EAGAIN;
  101. }
  102. if (offset > FW_MAX_OFFSET) {
  103. dev_dbg(zd_usb_dev(usb),
  104. "FW offset %#10x is larger than"
  105. " FW_MAX_OFFSET %#010x\n",
  106. offset, FW_MAX_OFFSET);
  107. goto invalid_address;
  108. }
  109. break;
  110. default:
  111. dev_dbg(zd_usb_dev(usb),
  112. "address has unsupported base %#010x\n", addr);
  113. goto invalid_address;
  114. }
  115. return 0;
  116. invalid_address:
  117. dev_dbg(zd_usb_dev(usb),
  118. "ERROR: invalid address: %#010x\n", addr);
  119. return -EINVAL;
  120. }
  121. #endif /* DEBUG */
  122. static u16 usb_addr(struct zd_usb *usb, zd_addr_t addr)
  123. {
  124. u32 base;
  125. u16 offset;
  126. base = ZD_ADDR_BASE(addr);
  127. offset = ZD_OFFSET(addr);
  128. ZD_ASSERT(check_addr(usb, addr) == 0);
  129. switch (base) {
  130. case CR_BASE:
  131. offset += CR_BASE_OFFSET;
  132. break;
  133. case E2P_BASE:
  134. offset += E2P_BASE_OFFSET;
  135. break;
  136. case FW_BASE:
  137. offset += usb->fw_base_offset;
  138. break;
  139. }
  140. return offset;
  141. }
  142. /* USB device initialization */
  143. static int request_fw_file(
  144. const struct firmware **fw, const char *name, struct device *device)
  145. {
  146. int r;
  147. dev_dbg_f(device, "fw name %s\n", name);
  148. r = request_firmware(fw, name, device);
  149. if (r)
  150. dev_err(device,
  151. "Could not load firmware file %s. Error number %d\n",
  152. name, r);
  153. return r;
  154. }
  155. static inline u16 get_bcdDevice(const struct usb_device *udev)
  156. {
  157. return le16_to_cpu(udev->descriptor.bcdDevice);
  158. }
  159. enum upload_code_flags {
  160. REBOOT = 1,
  161. };
  162. /* Ensures that MAX_TRANSFER_SIZE is even. */
  163. #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
  164. static int upload_code(struct usb_device *udev,
  165. const u8 *data, size_t size, u16 code_offset, int flags)
  166. {
  167. u8 *p;
  168. int r;
  169. /* USB request blocks need "kmalloced" buffers.
  170. */
  171. p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
  172. if (!p) {
  173. dev_err(&udev->dev, "out of memory\n");
  174. r = -ENOMEM;
  175. goto error;
  176. }
  177. size &= ~1;
  178. while (size > 0) {
  179. size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
  180. size : MAX_TRANSFER_SIZE;
  181. dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
  182. memcpy(p, data, transfer_size);
  183. r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
  184. USB_REQ_FIRMWARE_DOWNLOAD,
  185. USB_DIR_OUT | USB_TYPE_VENDOR,
  186. code_offset, 0, p, transfer_size, 1000 /* ms */);
  187. if (r < 0) {
  188. dev_err(&udev->dev,
  189. "USB control request for firmware upload"
  190. " failed. Error number %d\n", r);
  191. goto error;
  192. }
  193. transfer_size = r & ~1;
  194. size -= transfer_size;
  195. data += transfer_size;
  196. code_offset += transfer_size/sizeof(u16);
  197. }
  198. if (flags & REBOOT) {
  199. u8 ret;
  200. r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
  201. USB_REQ_FIRMWARE_CONFIRM,
  202. USB_DIR_IN | USB_TYPE_VENDOR,
  203. 0, 0, &ret, sizeof(ret), 5000 /* ms */);
  204. if (r != sizeof(ret)) {
  205. dev_err(&udev->dev,
  206. "control request firmeware confirmation failed."
  207. " Return value %d\n", r);
  208. if (r >= 0)
  209. r = -ENODEV;
  210. goto error;
  211. }
  212. if (ret & 0x80) {
  213. dev_err(&udev->dev,
  214. "Internal error while downloading."
  215. " Firmware confirm return value %#04x\n",
  216. (unsigned int)ret);
  217. r = -ENODEV;
  218. goto error;
  219. }
  220. dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
  221. (unsigned int)ret);
  222. }
  223. r = 0;
  224. error:
  225. kfree(p);
  226. return r;
  227. }
  228. static u16 get_word(const void *data, u16 offset)
  229. {
  230. const __le16 *p = data;
  231. return le16_to_cpu(p[offset]);
  232. }
  233. static char *get_fw_name(char *buffer, size_t size, u8 device_type,
  234. const char* postfix)
  235. {
  236. scnprintf(buffer, size, "%s%s",
  237. device_type == DEVICE_ZD1211B ?
  238. FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
  239. postfix);
  240. return buffer;
  241. }
  242. static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
  243. const struct firmware *ub_fw)
  244. {
  245. const struct firmware *ur_fw = NULL;
  246. int offset;
  247. int r = 0;
  248. char fw_name[128];
  249. r = request_fw_file(&ur_fw,
  250. get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
  251. &udev->dev);
  252. if (r)
  253. goto error;
  254. r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START_OFFSET,
  255. REBOOT);
  256. if (r)
  257. goto error;
  258. offset = ((EEPROM_REGS_OFFSET + EEPROM_REGS_SIZE) * sizeof(u16));
  259. r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
  260. E2P_BASE_OFFSET + EEPROM_REGS_SIZE, REBOOT);
  261. /* At this point, the vendor driver downloads the whole firmware
  262. * image, hacks around with version IDs, and uploads it again,
  263. * completely overwriting the boot code. We do not do this here as
  264. * it is not required on any tested devices, and it is suspected to
  265. * cause problems. */
  266. error:
  267. release_firmware(ur_fw);
  268. return r;
  269. }
  270. static int upload_firmware(struct usb_device *udev, u8 device_type)
  271. {
  272. int r;
  273. u16 fw_bcdDevice;
  274. u16 bcdDevice;
  275. const struct firmware *ub_fw = NULL;
  276. const struct firmware *uph_fw = NULL;
  277. char fw_name[128];
  278. bcdDevice = get_bcdDevice(udev);
  279. r = request_fw_file(&ub_fw,
  280. get_fw_name(fw_name, sizeof(fw_name), device_type, "ub"),
  281. &udev->dev);
  282. if (r)
  283. goto error;
  284. fw_bcdDevice = get_word(ub_fw->data, EEPROM_REGS_OFFSET);
  285. if (fw_bcdDevice != bcdDevice) {
  286. dev_info(&udev->dev,
  287. "firmware version %#06x and device bootcode version "
  288. "%#06x differ\n", fw_bcdDevice, bcdDevice);
  289. if (bcdDevice <= 0x4313)
  290. dev_warn(&udev->dev, "device has old bootcode, please "
  291. "report success or failure\n");
  292. r = handle_version_mismatch(udev, device_type, ub_fw);
  293. if (r)
  294. goto error;
  295. } else {
  296. dev_dbg_f(&udev->dev,
  297. "firmware device id %#06x is equal to the "
  298. "actual device id\n", fw_bcdDevice);
  299. }
  300. r = request_fw_file(&uph_fw,
  301. get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
  302. &udev->dev);
  303. if (r)
  304. goto error;
  305. r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START_OFFSET,
  306. REBOOT);
  307. if (r) {
  308. dev_err(&udev->dev,
  309. "Could not upload firmware code uph. Error number %d\n",
  310. r);
  311. }
  312. /* FALL-THROUGH */
  313. error:
  314. release_firmware(ub_fw);
  315. release_firmware(uph_fw);
  316. return r;
  317. }
  318. static void disable_read_regs_int(struct zd_usb *usb)
  319. {
  320. struct zd_usb_interrupt *intr = &usb->intr;
  321. spin_lock(&intr->lock);
  322. intr->read_regs_enabled = 0;
  323. spin_unlock(&intr->lock);
  324. }
  325. #define urb_dev(urb) (&(urb)->dev->dev)
  326. static inline void handle_regs_int(struct urb *urb)
  327. {
  328. struct zd_usb *usb = urb->context;
  329. struct zd_usb_interrupt *intr = &usb->intr;
  330. int len;
  331. ZD_ASSERT(in_interrupt());
  332. spin_lock(&intr->lock);
  333. if (intr->read_regs_enabled) {
  334. intr->read_regs.length = len = urb->actual_length;
  335. if (len > sizeof(intr->read_regs.buffer))
  336. len = sizeof(intr->read_regs.buffer);
  337. memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
  338. intr->read_regs_enabled = 0;
  339. complete(&intr->read_regs.completion);
  340. goto out;
  341. }
  342. dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
  343. out:
  344. spin_unlock(&intr->lock);
  345. }
  346. static inline void handle_retry_failed_int(struct urb *urb)
  347. {
  348. dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
  349. }
  350. static void int_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
  351. {
  352. int r;
  353. struct usb_int_header *hdr;
  354. switch (urb->status) {
  355. case 0:
  356. break;
  357. case -ESHUTDOWN:
  358. case -EINVAL:
  359. case -ENODEV:
  360. case -ENOENT:
  361. case -ECONNRESET:
  362. case -EPIPE:
  363. goto kfree;
  364. default:
  365. goto resubmit;
  366. }
  367. if (urb->actual_length < sizeof(hdr)) {
  368. dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
  369. goto resubmit;
  370. }
  371. hdr = urb->transfer_buffer;
  372. if (hdr->type != USB_INT_TYPE) {
  373. dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
  374. goto resubmit;
  375. }
  376. switch (hdr->id) {
  377. case USB_INT_ID_REGS:
  378. handle_regs_int(urb);
  379. break;
  380. case USB_INT_ID_RETRY_FAILED:
  381. handle_retry_failed_int(urb);
  382. break;
  383. default:
  384. dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
  385. (unsigned int)hdr->id);
  386. goto resubmit;
  387. }
  388. resubmit:
  389. r = usb_submit_urb(urb, GFP_ATOMIC);
  390. if (r) {
  391. dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
  392. goto kfree;
  393. }
  394. return;
  395. kfree:
  396. kfree(urb->transfer_buffer);
  397. }
  398. static inline int int_urb_interval(struct usb_device *udev)
  399. {
  400. switch (udev->speed) {
  401. case USB_SPEED_HIGH:
  402. return 4;
  403. case USB_SPEED_LOW:
  404. return 10;
  405. case USB_SPEED_FULL:
  406. default:
  407. return 1;
  408. }
  409. }
  410. static inline int usb_int_enabled(struct zd_usb *usb)
  411. {
  412. unsigned long flags;
  413. struct zd_usb_interrupt *intr = &usb->intr;
  414. struct urb *urb;
  415. spin_lock_irqsave(&intr->lock, flags);
  416. urb = intr->urb;
  417. spin_unlock_irqrestore(&intr->lock, flags);
  418. return urb != NULL;
  419. }
  420. int zd_usb_enable_int(struct zd_usb *usb)
  421. {
  422. int r;
  423. struct usb_device *udev;
  424. struct zd_usb_interrupt *intr = &usb->intr;
  425. void *transfer_buffer = NULL;
  426. struct urb *urb;
  427. dev_dbg_f(zd_usb_dev(usb), "\n");
  428. urb = usb_alloc_urb(0, GFP_NOFS);
  429. if (!urb) {
  430. r = -ENOMEM;
  431. goto out;
  432. }
  433. ZD_ASSERT(!irqs_disabled());
  434. spin_lock_irq(&intr->lock);
  435. if (intr->urb) {
  436. spin_unlock_irq(&intr->lock);
  437. r = 0;
  438. goto error_free_urb;
  439. }
  440. intr->urb = urb;
  441. spin_unlock_irq(&intr->lock);
  442. /* TODO: make it a DMA buffer */
  443. r = -ENOMEM;
  444. transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_NOFS);
  445. if (!transfer_buffer) {
  446. dev_dbg_f(zd_usb_dev(usb),
  447. "couldn't allocate transfer_buffer\n");
  448. goto error_set_urb_null;
  449. }
  450. udev = zd_usb_to_usbdev(usb);
  451. usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
  452. transfer_buffer, USB_MAX_EP_INT_BUFFER,
  453. int_urb_complete, usb,
  454. intr->interval);
  455. dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
  456. r = usb_submit_urb(urb, GFP_NOFS);
  457. if (r) {
  458. dev_dbg_f(zd_usb_dev(usb),
  459. "Couldn't submit urb. Error number %d\n", r);
  460. goto error;
  461. }
  462. return 0;
  463. error:
  464. kfree(transfer_buffer);
  465. error_set_urb_null:
  466. spin_lock_irq(&intr->lock);
  467. intr->urb = NULL;
  468. spin_unlock_irq(&intr->lock);
  469. error_free_urb:
  470. usb_free_urb(urb);
  471. out:
  472. return r;
  473. }
  474. void zd_usb_disable_int(struct zd_usb *usb)
  475. {
  476. unsigned long flags;
  477. struct zd_usb_interrupt *intr = &usb->intr;
  478. struct urb *urb;
  479. spin_lock_irqsave(&intr->lock, flags);
  480. urb = intr->urb;
  481. if (!urb) {
  482. spin_unlock_irqrestore(&intr->lock, flags);
  483. return;
  484. }
  485. intr->urb = NULL;
  486. spin_unlock_irqrestore(&intr->lock, flags);
  487. usb_kill_urb(urb);
  488. dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
  489. usb_free_urb(urb);
  490. }
  491. static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
  492. unsigned int length)
  493. {
  494. int i;
  495. struct zd_mac *mac = zd_usb_to_mac(usb);
  496. const struct rx_length_info *length_info;
  497. if (length < sizeof(struct rx_length_info)) {
  498. /* It's not a complete packet anyhow. */
  499. return;
  500. }
  501. length_info = (struct rx_length_info *)
  502. (buffer + length - sizeof(struct rx_length_info));
  503. /* It might be that three frames are merged into a single URB
  504. * transaction. We have to check for the length info tag.
  505. *
  506. * While testing we discovered that length_info might be unaligned,
  507. * because if USB transactions are merged, the last packet will not
  508. * be padded. Unaligned access might also happen if the length_info
  509. * structure is not present.
  510. */
  511. if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
  512. {
  513. unsigned int l, k, n;
  514. for (i = 0, l = 0;; i++) {
  515. k = le16_to_cpu(get_unaligned(&length_info->length[i]));
  516. n = l+k;
  517. if (n > length)
  518. return;
  519. zd_mac_rx(mac, buffer+l, k);
  520. if (i >= 2)
  521. return;
  522. l = (n+3) & ~3;
  523. }
  524. } else {
  525. zd_mac_rx(mac, buffer, length);
  526. }
  527. }
  528. static void rx_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
  529. {
  530. struct zd_usb *usb;
  531. struct zd_usb_rx *rx;
  532. const u8 *buffer;
  533. unsigned int length;
  534. switch (urb->status) {
  535. case 0:
  536. break;
  537. case -ESHUTDOWN:
  538. case -EINVAL:
  539. case -ENODEV:
  540. case -ENOENT:
  541. case -ECONNRESET:
  542. case -EPIPE:
  543. return;
  544. default:
  545. dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
  546. goto resubmit;
  547. }
  548. buffer = urb->transfer_buffer;
  549. length = urb->actual_length;
  550. usb = urb->context;
  551. rx = &usb->rx;
  552. if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
  553. /* If there is an old first fragment, we don't care. */
  554. dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
  555. ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
  556. spin_lock(&rx->lock);
  557. memcpy(rx->fragment, buffer, length);
  558. rx->fragment_length = length;
  559. spin_unlock(&rx->lock);
  560. goto resubmit;
  561. }
  562. spin_lock(&rx->lock);
  563. if (rx->fragment_length > 0) {
  564. /* We are on a second fragment, we believe */
  565. ZD_ASSERT(length + rx->fragment_length <=
  566. ARRAY_SIZE(rx->fragment));
  567. dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
  568. memcpy(rx->fragment+rx->fragment_length, buffer, length);
  569. handle_rx_packet(usb, rx->fragment,
  570. rx->fragment_length + length);
  571. rx->fragment_length = 0;
  572. spin_unlock(&rx->lock);
  573. } else {
  574. spin_unlock(&rx->lock);
  575. handle_rx_packet(usb, buffer, length);
  576. }
  577. resubmit:
  578. usb_submit_urb(urb, GFP_ATOMIC);
  579. }
  580. struct urb *alloc_urb(struct zd_usb *usb)
  581. {
  582. struct usb_device *udev = zd_usb_to_usbdev(usb);
  583. struct urb *urb;
  584. void *buffer;
  585. urb = usb_alloc_urb(0, GFP_NOFS);
  586. if (!urb)
  587. return NULL;
  588. buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_NOFS,
  589. &urb->transfer_dma);
  590. if (!buffer) {
  591. usb_free_urb(urb);
  592. return NULL;
  593. }
  594. usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
  595. buffer, USB_MAX_RX_SIZE,
  596. rx_urb_complete, usb);
  597. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  598. return urb;
  599. }
  600. void free_urb(struct urb *urb)
  601. {
  602. if (!urb)
  603. return;
  604. usb_buffer_free(urb->dev, urb->transfer_buffer_length,
  605. urb->transfer_buffer, urb->transfer_dma);
  606. usb_free_urb(urb);
  607. }
  608. int zd_usb_enable_rx(struct zd_usb *usb)
  609. {
  610. int i, r;
  611. struct zd_usb_rx *rx = &usb->rx;
  612. struct urb **urbs;
  613. dev_dbg_f(zd_usb_dev(usb), "\n");
  614. r = -ENOMEM;
  615. urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_NOFS);
  616. if (!urbs)
  617. goto error;
  618. for (i = 0; i < URBS_COUNT; i++) {
  619. urbs[i] = alloc_urb(usb);
  620. if (!urbs[i])
  621. goto error;
  622. }
  623. ZD_ASSERT(!irqs_disabled());
  624. spin_lock_irq(&rx->lock);
  625. if (rx->urbs) {
  626. spin_unlock_irq(&rx->lock);
  627. r = 0;
  628. goto error;
  629. }
  630. rx->urbs = urbs;
  631. rx->urbs_count = URBS_COUNT;
  632. spin_unlock_irq(&rx->lock);
  633. for (i = 0; i < URBS_COUNT; i++) {
  634. r = usb_submit_urb(urbs[i], GFP_NOFS);
  635. if (r)
  636. goto error_submit;
  637. }
  638. return 0;
  639. error_submit:
  640. for (i = 0; i < URBS_COUNT; i++) {
  641. usb_kill_urb(urbs[i]);
  642. }
  643. spin_lock_irq(&rx->lock);
  644. rx->urbs = NULL;
  645. rx->urbs_count = 0;
  646. spin_unlock_irq(&rx->lock);
  647. error:
  648. if (urbs) {
  649. for (i = 0; i < URBS_COUNT; i++)
  650. free_urb(urbs[i]);
  651. }
  652. return r;
  653. }
  654. void zd_usb_disable_rx(struct zd_usb *usb)
  655. {
  656. int i;
  657. unsigned long flags;
  658. struct urb **urbs;
  659. unsigned int count;
  660. struct zd_usb_rx *rx = &usb->rx;
  661. spin_lock_irqsave(&rx->lock, flags);
  662. urbs = rx->urbs;
  663. count = rx->urbs_count;
  664. spin_unlock_irqrestore(&rx->lock, flags);
  665. if (!urbs)
  666. return;
  667. for (i = 0; i < count; i++) {
  668. usb_kill_urb(urbs[i]);
  669. free_urb(urbs[i]);
  670. }
  671. kfree(urbs);
  672. spin_lock_irqsave(&rx->lock, flags);
  673. rx->urbs = NULL;
  674. rx->urbs_count = 0;
  675. spin_unlock_irqrestore(&rx->lock, flags);
  676. }
  677. static void tx_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
  678. {
  679. int r;
  680. switch (urb->status) {
  681. case 0:
  682. break;
  683. case -ESHUTDOWN:
  684. case -EINVAL:
  685. case -ENODEV:
  686. case -ENOENT:
  687. case -ECONNRESET:
  688. case -EPIPE:
  689. dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
  690. break;
  691. default:
  692. dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
  693. goto resubmit;
  694. }
  695. free_urb:
  696. usb_buffer_free(urb->dev, urb->transfer_buffer_length,
  697. urb->transfer_buffer, urb->transfer_dma);
  698. usb_free_urb(urb);
  699. return;
  700. resubmit:
  701. r = usb_submit_urb(urb, GFP_ATOMIC);
  702. if (r) {
  703. dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
  704. goto free_urb;
  705. }
  706. }
  707. /* Puts the frame on the USB endpoint. It doesn't wait for
  708. * completion. The frame must contain the control set.
  709. */
  710. int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
  711. {
  712. int r;
  713. struct usb_device *udev = zd_usb_to_usbdev(usb);
  714. struct urb *urb;
  715. void *buffer;
  716. urb = usb_alloc_urb(0, GFP_ATOMIC);
  717. if (!urb) {
  718. r = -ENOMEM;
  719. goto out;
  720. }
  721. buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
  722. &urb->transfer_dma);
  723. if (!buffer) {
  724. r = -ENOMEM;
  725. goto error_free_urb;
  726. }
  727. memcpy(buffer, frame, length);
  728. usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
  729. buffer, length, tx_urb_complete, NULL);
  730. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  731. r = usb_submit_urb(urb, GFP_ATOMIC);
  732. if (r)
  733. goto error;
  734. return 0;
  735. error:
  736. usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
  737. urb->transfer_dma);
  738. error_free_urb:
  739. usb_free_urb(urb);
  740. out:
  741. return r;
  742. }
  743. static inline void init_usb_interrupt(struct zd_usb *usb)
  744. {
  745. struct zd_usb_interrupt *intr = &usb->intr;
  746. spin_lock_init(&intr->lock);
  747. intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
  748. init_completion(&intr->read_regs.completion);
  749. intr->read_regs.cr_int_addr = cpu_to_le16(usb_addr(usb, CR_INTERRUPT));
  750. }
  751. static inline void init_usb_rx(struct zd_usb *usb)
  752. {
  753. struct zd_usb_rx *rx = &usb->rx;
  754. spin_lock_init(&rx->lock);
  755. if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
  756. rx->usb_packet_size = 512;
  757. } else {
  758. rx->usb_packet_size = 64;
  759. }
  760. ZD_ASSERT(rx->fragment_length == 0);
  761. }
  762. static inline void init_usb_tx(struct zd_usb *usb)
  763. {
  764. /* FIXME: at this point we will allocate a fixed number of urb's for
  765. * use in a cyclic scheme */
  766. }
  767. void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
  768. struct usb_interface *intf)
  769. {
  770. memset(usb, 0, sizeof(*usb));
  771. usb->intf = usb_get_intf(intf);
  772. usb_set_intfdata(usb->intf, netdev);
  773. init_usb_interrupt(usb);
  774. init_usb_tx(usb);
  775. init_usb_rx(usb);
  776. }
  777. int zd_usb_init_hw(struct zd_usb *usb)
  778. {
  779. int r;
  780. struct zd_chip *chip = zd_usb_to_chip(usb);
  781. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  782. r = zd_ioread16_locked(chip, &usb->fw_base_offset,
  783. USB_REG((u16)FW_BASE_ADDR_OFFSET));
  784. if (r)
  785. return r;
  786. dev_dbg_f(zd_usb_dev(usb), "fw_base_offset: %#06hx\n",
  787. usb->fw_base_offset);
  788. return 0;
  789. }
  790. void zd_usb_clear(struct zd_usb *usb)
  791. {
  792. usb_set_intfdata(usb->intf, NULL);
  793. usb_put_intf(usb->intf);
  794. memset(usb, 0, sizeof(*usb));
  795. /* FIXME: usb_interrupt, usb_tx, usb_rx? */
  796. }
  797. static const char *speed(enum usb_device_speed speed)
  798. {
  799. switch (speed) {
  800. case USB_SPEED_LOW:
  801. return "low";
  802. case USB_SPEED_FULL:
  803. return "full";
  804. case USB_SPEED_HIGH:
  805. return "high";
  806. default:
  807. return "unknown speed";
  808. }
  809. }
  810. static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
  811. {
  812. return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
  813. le16_to_cpu(udev->descriptor.idVendor),
  814. le16_to_cpu(udev->descriptor.idProduct),
  815. get_bcdDevice(udev),
  816. speed(udev->speed));
  817. }
  818. int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
  819. {
  820. struct usb_device *udev = interface_to_usbdev(usb->intf);
  821. return scnprint_id(udev, buffer, size);
  822. }
  823. #ifdef DEBUG
  824. static void print_id(struct usb_device *udev)
  825. {
  826. char buffer[40];
  827. scnprint_id(udev, buffer, sizeof(buffer));
  828. buffer[sizeof(buffer)-1] = 0;
  829. dev_dbg_f(&udev->dev, "%s\n", buffer);
  830. }
  831. #else
  832. #define print_id(udev) do { } while (0)
  833. #endif
  834. static int eject_installer(struct usb_interface *intf)
  835. {
  836. struct usb_device *udev = interface_to_usbdev(intf);
  837. struct usb_host_interface *iface_desc = &intf->altsetting[0];
  838. struct usb_endpoint_descriptor *endpoint;
  839. unsigned char *cmd;
  840. u8 bulk_out_ep;
  841. int r;
  842. /* Find bulk out endpoint */
  843. endpoint = &iface_desc->endpoint[1].desc;
  844. if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
  845. (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
  846. USB_ENDPOINT_XFER_BULK) {
  847. bulk_out_ep = endpoint->bEndpointAddress;
  848. } else {
  849. dev_err(&udev->dev,
  850. "zd1211rw: Could not find bulk out endpoint\n");
  851. return -ENODEV;
  852. }
  853. cmd = kzalloc(31, GFP_KERNEL);
  854. if (cmd == NULL)
  855. return -ENODEV;
  856. /* USB bulk command block */
  857. cmd[0] = 0x55; /* bulk command signature */
  858. cmd[1] = 0x53; /* bulk command signature */
  859. cmd[2] = 0x42; /* bulk command signature */
  860. cmd[3] = 0x43; /* bulk command signature */
  861. cmd[14] = 6; /* command length */
  862. cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
  863. cmd[19] = 0x2; /* eject disc */
  864. dev_info(&udev->dev, "Ejecting virtual installer media...\n");
  865. r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
  866. cmd, 31, NULL, 2000);
  867. kfree(cmd);
  868. if (r)
  869. return r;
  870. /* At this point, the device disconnects and reconnects with the real
  871. * ID numbers. */
  872. usb_set_intfdata(intf, NULL);
  873. return 0;
  874. }
  875. static int probe(struct usb_interface *intf, const struct usb_device_id *id)
  876. {
  877. int r;
  878. struct usb_device *udev = interface_to_usbdev(intf);
  879. struct net_device *netdev = NULL;
  880. print_id(udev);
  881. if (id->driver_info & DEVICE_INSTALLER)
  882. return eject_installer(intf);
  883. switch (udev->speed) {
  884. case USB_SPEED_LOW:
  885. case USB_SPEED_FULL:
  886. case USB_SPEED_HIGH:
  887. break;
  888. default:
  889. dev_dbg_f(&intf->dev, "Unknown USB speed\n");
  890. r = -ENODEV;
  891. goto error;
  892. }
  893. netdev = zd_netdev_alloc(intf);
  894. if (netdev == NULL) {
  895. r = -ENOMEM;
  896. goto error;
  897. }
  898. r = upload_firmware(udev, id->driver_info);
  899. if (r) {
  900. dev_err(&intf->dev,
  901. "couldn't load firmware. Error number %d\n", r);
  902. goto error;
  903. }
  904. r = usb_reset_configuration(udev);
  905. if (r) {
  906. dev_dbg_f(&intf->dev,
  907. "couldn't reset configuration. Error number %d\n", r);
  908. goto error;
  909. }
  910. /* At this point the interrupt endpoint is not generally enabled. We
  911. * save the USB bandwidth until the network device is opened. But
  912. * notify that the initialization of the MAC will require the
  913. * interrupts to be temporary enabled.
  914. */
  915. r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
  916. if (r) {
  917. dev_dbg_f(&intf->dev,
  918. "couldn't initialize mac. Error number %d\n", r);
  919. goto error;
  920. }
  921. r = register_netdev(netdev);
  922. if (r) {
  923. dev_dbg_f(&intf->dev,
  924. "couldn't register netdev. Error number %d\n", r);
  925. goto error;
  926. }
  927. dev_dbg_f(&intf->dev, "successful\n");
  928. dev_info(&intf->dev,"%s\n", netdev->name);
  929. return 0;
  930. error:
  931. usb_reset_device(interface_to_usbdev(intf));
  932. zd_netdev_free(netdev);
  933. return r;
  934. }
  935. static void disconnect(struct usb_interface *intf)
  936. {
  937. struct net_device *netdev = zd_intf_to_netdev(intf);
  938. struct zd_mac *mac = zd_netdev_mac(netdev);
  939. struct zd_usb *usb = &mac->chip.usb;
  940. /* Either something really bad happened, or we're just dealing with
  941. * a DEVICE_INSTALLER. */
  942. if (netdev == NULL)
  943. return;
  944. dev_dbg_f(zd_usb_dev(usb), "\n");
  945. zd_netdev_disconnect(netdev);
  946. /* Just in case something has gone wrong! */
  947. zd_usb_disable_rx(usb);
  948. zd_usb_disable_int(usb);
  949. /* If the disconnect has been caused by a removal of the
  950. * driver module, the reset allows reloading of the driver. If the
  951. * reset will not be executed here, the upload of the firmware in the
  952. * probe function caused by the reloading of the driver will fail.
  953. */
  954. usb_reset_device(interface_to_usbdev(intf));
  955. /* If somebody still waits on this lock now, this is an error. */
  956. zd_netdev_free(netdev);
  957. dev_dbg(&intf->dev, "disconnected\n");
  958. }
  959. static struct usb_driver driver = {
  960. .name = "zd1211rw",
  961. .id_table = usb_ids,
  962. .probe = probe,
  963. .disconnect = disconnect,
  964. };
  965. static int __init usb_init(void)
  966. {
  967. int r;
  968. pr_debug("usb_init()\n");
  969. r = usb_register(&driver);
  970. if (r) {
  971. printk(KERN_ERR "usb_register() failed. Error number %d\n", r);
  972. return r;
  973. }
  974. pr_debug("zd1211rw initialized\n");
  975. return 0;
  976. }
  977. static void __exit usb_exit(void)
  978. {
  979. pr_debug("usb_exit()\n");
  980. usb_deregister(&driver);
  981. }
  982. module_init(usb_init);
  983. module_exit(usb_exit);
  984. static int usb_int_regs_length(unsigned int count)
  985. {
  986. return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
  987. }
  988. static void prepare_read_regs_int(struct zd_usb *usb)
  989. {
  990. struct zd_usb_interrupt *intr = &usb->intr;
  991. spin_lock(&intr->lock);
  992. intr->read_regs_enabled = 1;
  993. INIT_COMPLETION(intr->read_regs.completion);
  994. spin_unlock(&intr->lock);
  995. }
  996. static int get_results(struct zd_usb *usb, u16 *values,
  997. struct usb_req_read_regs *req, unsigned int count)
  998. {
  999. int r;
  1000. int i;
  1001. struct zd_usb_interrupt *intr = &usb->intr;
  1002. struct read_regs_int *rr = &intr->read_regs;
  1003. struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
  1004. spin_lock(&intr->lock);
  1005. r = -EIO;
  1006. /* The created block size seems to be larger than expected.
  1007. * However results appear to be correct.
  1008. */
  1009. if (rr->length < usb_int_regs_length(count)) {
  1010. dev_dbg_f(zd_usb_dev(usb),
  1011. "error: actual length %d less than expected %d\n",
  1012. rr->length, usb_int_regs_length(count));
  1013. goto error_unlock;
  1014. }
  1015. if (rr->length > sizeof(rr->buffer)) {
  1016. dev_dbg_f(zd_usb_dev(usb),
  1017. "error: actual length %d exceeds buffer size %zu\n",
  1018. rr->length, sizeof(rr->buffer));
  1019. goto error_unlock;
  1020. }
  1021. for (i = 0; i < count; i++) {
  1022. struct reg_data *rd = &regs->regs[i];
  1023. if (rd->addr != req->addr[i]) {
  1024. dev_dbg_f(zd_usb_dev(usb),
  1025. "rd[%d] addr %#06hx expected %#06hx\n", i,
  1026. le16_to_cpu(rd->addr),
  1027. le16_to_cpu(req->addr[i]));
  1028. goto error_unlock;
  1029. }
  1030. values[i] = le16_to_cpu(rd->value);
  1031. }
  1032. r = 0;
  1033. error_unlock:
  1034. spin_unlock(&intr->lock);
  1035. return r;
  1036. }
  1037. int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
  1038. const zd_addr_t *addresses, unsigned int count)
  1039. {
  1040. int r;
  1041. int i, req_len, actual_req_len;
  1042. struct usb_device *udev;
  1043. struct usb_req_read_regs *req = NULL;
  1044. unsigned long timeout;
  1045. if (count < 1) {
  1046. dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
  1047. return -EINVAL;
  1048. }
  1049. if (count > USB_MAX_IOREAD16_COUNT) {
  1050. dev_dbg_f(zd_usb_dev(usb),
  1051. "error: count %u exceeds possible max %u\n",
  1052. count, USB_MAX_IOREAD16_COUNT);
  1053. return -EINVAL;
  1054. }
  1055. if (in_atomic()) {
  1056. dev_dbg_f(zd_usb_dev(usb),
  1057. "error: io in atomic context not supported\n");
  1058. return -EWOULDBLOCK;
  1059. }
  1060. if (!usb_int_enabled(usb)) {
  1061. dev_dbg_f(zd_usb_dev(usb),
  1062. "error: usb interrupt not enabled\n");
  1063. return -EWOULDBLOCK;
  1064. }
  1065. req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
  1066. req = kmalloc(req_len, GFP_NOFS);
  1067. if (!req)
  1068. return -ENOMEM;
  1069. req->id = cpu_to_le16(USB_REQ_READ_REGS);
  1070. for (i = 0; i < count; i++)
  1071. req->addr[i] = cpu_to_le16(usb_addr(usb, addresses[i]));
  1072. udev = zd_usb_to_usbdev(usb);
  1073. prepare_read_regs_int(usb);
  1074. r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
  1075. req, req_len, &actual_req_len, 1000 /* ms */);
  1076. if (r) {
  1077. dev_dbg_f(zd_usb_dev(usb),
  1078. "error in usb_bulk_msg(). Error number %d\n", r);
  1079. goto error;
  1080. }
  1081. if (req_len != actual_req_len) {
  1082. dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
  1083. " req_len %d != actual_req_len %d\n",
  1084. req_len, actual_req_len);
  1085. r = -EIO;
  1086. goto error;
  1087. }
  1088. timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
  1089. msecs_to_jiffies(1000));
  1090. if (!timeout) {
  1091. disable_read_regs_int(usb);
  1092. dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
  1093. r = -ETIMEDOUT;
  1094. goto error;
  1095. }
  1096. r = get_results(usb, values, req, count);
  1097. error:
  1098. kfree(req);
  1099. return r;
  1100. }
  1101. int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
  1102. unsigned int count)
  1103. {
  1104. int r;
  1105. struct usb_device *udev;
  1106. struct usb_req_write_regs *req = NULL;
  1107. int i, req_len, actual_req_len;
  1108. if (count == 0)
  1109. return 0;
  1110. if (count > USB_MAX_IOWRITE16_COUNT) {
  1111. dev_dbg_f(zd_usb_dev(usb),
  1112. "error: count %u exceeds possible max %u\n",
  1113. count, USB_MAX_IOWRITE16_COUNT);
  1114. return -EINVAL;
  1115. }
  1116. if (in_atomic()) {
  1117. dev_dbg_f(zd_usb_dev(usb),
  1118. "error: io in atomic context not supported\n");
  1119. return -EWOULDBLOCK;
  1120. }
  1121. req_len = sizeof(struct usb_req_write_regs) +
  1122. count * sizeof(struct reg_data);
  1123. req = kmalloc(req_len, GFP_NOFS);
  1124. if (!req)
  1125. return -ENOMEM;
  1126. req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
  1127. for (i = 0; i < count; i++) {
  1128. struct reg_data *rw = &req->reg_writes[i];
  1129. rw->addr = cpu_to_le16(usb_addr(usb, ioreqs[i].addr));
  1130. rw->value = cpu_to_le16(ioreqs[i].value);
  1131. }
  1132. udev = zd_usb_to_usbdev(usb);
  1133. r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
  1134. req, req_len, &actual_req_len, 1000 /* ms */);
  1135. if (r) {
  1136. dev_dbg_f(zd_usb_dev(usb),
  1137. "error in usb_bulk_msg(). Error number %d\n", r);
  1138. goto error;
  1139. }
  1140. if (req_len != actual_req_len) {
  1141. dev_dbg_f(zd_usb_dev(usb),
  1142. "error in usb_bulk_msg()"
  1143. " req_len %d != actual_req_len %d\n",
  1144. req_len, actual_req_len);
  1145. r = -EIO;
  1146. goto error;
  1147. }
  1148. /* FALL-THROUGH with r == 0 */
  1149. error:
  1150. kfree(req);
  1151. return r;
  1152. }
  1153. int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
  1154. {
  1155. int r;
  1156. struct usb_device *udev;
  1157. struct usb_req_rfwrite *req = NULL;
  1158. int i, req_len, actual_req_len;
  1159. u16 bit_value_template;
  1160. if (in_atomic()) {
  1161. dev_dbg_f(zd_usb_dev(usb),
  1162. "error: io in atomic context not supported\n");
  1163. return -EWOULDBLOCK;
  1164. }
  1165. if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
  1166. dev_dbg_f(zd_usb_dev(usb),
  1167. "error: bits %d are smaller than"
  1168. " USB_MIN_RFWRITE_BIT_COUNT %d\n",
  1169. bits, USB_MIN_RFWRITE_BIT_COUNT);
  1170. return -EINVAL;
  1171. }
  1172. if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
  1173. dev_dbg_f(zd_usb_dev(usb),
  1174. "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
  1175. bits, USB_MAX_RFWRITE_BIT_COUNT);
  1176. return -EINVAL;
  1177. }
  1178. #ifdef DEBUG
  1179. if (value & (~0UL << bits)) {
  1180. dev_dbg_f(zd_usb_dev(usb),
  1181. "error: value %#09x has bits >= %d set\n",
  1182. value, bits);
  1183. return -EINVAL;
  1184. }
  1185. #endif /* DEBUG */
  1186. dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
  1187. r = zd_usb_ioread16(usb, &bit_value_template, CR203);
  1188. if (r) {
  1189. dev_dbg_f(zd_usb_dev(usb),
  1190. "error %d: Couldn't read CR203\n", r);
  1191. goto out;
  1192. }
  1193. bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
  1194. req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
  1195. req = kmalloc(req_len, GFP_NOFS);
  1196. if (!req)
  1197. return -ENOMEM;
  1198. req->id = cpu_to_le16(USB_REQ_WRITE_RF);
  1199. /* 1: 3683a, but not used in ZYDAS driver */
  1200. req->value = cpu_to_le16(2);
  1201. req->bits = cpu_to_le16(bits);
  1202. for (i = 0; i < bits; i++) {
  1203. u16 bv = bit_value_template;
  1204. if (value & (1 << (bits-1-i)))
  1205. bv |= RF_DATA;
  1206. req->bit_values[i] = cpu_to_le16(bv);
  1207. }
  1208. udev = zd_usb_to_usbdev(usb);
  1209. r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
  1210. req, req_len, &actual_req_len, 1000 /* ms */);
  1211. if (r) {
  1212. dev_dbg_f(zd_usb_dev(usb),
  1213. "error in usb_bulk_msg(). Error number %d\n", r);
  1214. goto out;
  1215. }
  1216. if (req_len != actual_req_len) {
  1217. dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
  1218. " req_len %d != actual_req_len %d\n",
  1219. req_len, actual_req_len);
  1220. r = -EIO;
  1221. goto out;
  1222. }
  1223. /* FALL-THROUGH with r == 0 */
  1224. out:
  1225. kfree(req);
  1226. return r;
  1227. }