kprobes-decode.c 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755
  1. /*
  2. * arch/arm/kernel/kprobes-decode.c
  3. *
  4. * Copyright (C) 2006, 2007 Motorola Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. */
  15. /*
  16. * We do not have hardware single-stepping on ARM, This
  17. * effort is further complicated by the ARM not having a
  18. * "next PC" register. Instructions that change the PC
  19. * can't be safely single-stepped in a MP environment, so
  20. * we have a lot of work to do:
  21. *
  22. * In the prepare phase:
  23. * *) If it is an instruction that does anything
  24. * with the CPU mode, we reject it for a kprobe.
  25. * (This is out of laziness rather than need. The
  26. * instructions could be simulated.)
  27. *
  28. * *) Otherwise, decode the instruction rewriting its
  29. * registers to take fixed, ordered registers and
  30. * setting a handler for it to run the instruction.
  31. *
  32. * In the execution phase by an instruction's handler:
  33. *
  34. * *) If the PC is written to by the instruction, the
  35. * instruction must be fully simulated in software.
  36. * If it is a conditional instruction, the handler
  37. * will use insn[0] to copy its condition code to
  38. * set r0 to 1 and insn[1] to "mov pc, lr" to return.
  39. *
  40. * *) Otherwise, a modified form of the instruction is
  41. * directly executed. Its handler calls the
  42. * instruction in insn[0]. In insn[1] is a
  43. * "mov pc, lr" to return.
  44. *
  45. * Before calling, load up the reordered registers
  46. * from the original instruction's registers. If one
  47. * of the original input registers is the PC, compute
  48. * and adjust the appropriate input register.
  49. *
  50. * After call completes, copy the output registers to
  51. * the original instruction's original registers.
  52. *
  53. * We don't use a real breakpoint instruction since that
  54. * would have us in the kernel go from SVC mode to SVC
  55. * mode losing the link register. Instead we use an
  56. * undefined instruction. To simplify processing, the
  57. * undefined instruction used for kprobes must be reserved
  58. * exclusively for kprobes use.
  59. *
  60. * TODO: ifdef out some instruction decoding based on architecture.
  61. */
  62. #include <linux/kernel.h>
  63. #include <linux/kprobes.h>
  64. #define sign_extend(x, signbit) ((x) | (0 - ((x) & (1 << (signbit)))))
  65. #define branch_displacement(insn) sign_extend(((insn) & 0xffffff) << 2, 25)
  66. #define is_r15(insn, bitpos) (((insn) & (0xf << bitpos)) == (0xf << bitpos))
  67. /*
  68. * Test if load/store instructions writeback the address register.
  69. * if P (bit 24) == 0 or W (bit 21) == 1
  70. */
  71. #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
  72. #define PSR_fs (PSR_f|PSR_s)
  73. #define KPROBE_RETURN_INSTRUCTION 0xe1a0f00e /* mov pc, lr */
  74. typedef long (insn_0arg_fn_t)(void);
  75. typedef long (insn_1arg_fn_t)(long);
  76. typedef long (insn_2arg_fn_t)(long, long);
  77. typedef long (insn_3arg_fn_t)(long, long, long);
  78. typedef long (insn_4arg_fn_t)(long, long, long, long);
  79. typedef long long (insn_llret_0arg_fn_t)(void);
  80. typedef long long (insn_llret_3arg_fn_t)(long, long, long);
  81. typedef long long (insn_llret_4arg_fn_t)(long, long, long, long);
  82. union reg_pair {
  83. long long dr;
  84. #ifdef __LITTLE_ENDIAN
  85. struct { long r0, r1; };
  86. #else
  87. struct { long r1, r0; };
  88. #endif
  89. };
  90. /*
  91. * For STR and STM instructions, an ARM core may choose to use either
  92. * a +8 or a +12 displacement from the current instruction's address.
  93. * Whichever value is chosen for a given core, it must be the same for
  94. * both instructions and may not change. This function measures it.
  95. */
  96. static int str_pc_offset;
  97. static void __init find_str_pc_offset(void)
  98. {
  99. int addr, scratch, ret;
  100. __asm__ (
  101. "sub %[ret], pc, #4 \n\t"
  102. "str pc, %[addr] \n\t"
  103. "ldr %[scr], %[addr] \n\t"
  104. "sub %[ret], %[scr], %[ret] \n\t"
  105. : [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr));
  106. str_pc_offset = ret;
  107. }
  108. /*
  109. * The insnslot_?arg_r[w]flags() functions below are to keep the
  110. * msr -> *fn -> mrs instruction sequences indivisible so that
  111. * the state of the CPSR flags aren't inadvertently modified
  112. * just before or just after the call.
  113. */
  114. static inline long __kprobes
  115. insnslot_0arg_rflags(long cpsr, insn_0arg_fn_t *fn)
  116. {
  117. register long ret asm("r0");
  118. __asm__ __volatile__ (
  119. "msr cpsr_fs, %[cpsr] \n\t"
  120. "mov lr, pc \n\t"
  121. "mov pc, %[fn] \n\t"
  122. : "=r" (ret)
  123. : [cpsr] "r" (cpsr), [fn] "r" (fn)
  124. : "lr", "cc"
  125. );
  126. return ret;
  127. }
  128. static inline long long __kprobes
  129. insnslot_llret_0arg_rflags(long cpsr, insn_llret_0arg_fn_t *fn)
  130. {
  131. register long ret0 asm("r0");
  132. register long ret1 asm("r1");
  133. union reg_pair fnr;
  134. __asm__ __volatile__ (
  135. "msr cpsr_fs, %[cpsr] \n\t"
  136. "mov lr, pc \n\t"
  137. "mov pc, %[fn] \n\t"
  138. : "=r" (ret0), "=r" (ret1)
  139. : [cpsr] "r" (cpsr), [fn] "r" (fn)
  140. : "lr", "cc"
  141. );
  142. fnr.r0 = ret0;
  143. fnr.r1 = ret1;
  144. return fnr.dr;
  145. }
  146. static inline long __kprobes
  147. insnslot_1arg_rflags(long r0, long cpsr, insn_1arg_fn_t *fn)
  148. {
  149. register long rr0 asm("r0") = r0;
  150. register long ret asm("r0");
  151. __asm__ __volatile__ (
  152. "msr cpsr_fs, %[cpsr] \n\t"
  153. "mov lr, pc \n\t"
  154. "mov pc, %[fn] \n\t"
  155. : "=r" (ret)
  156. : "0" (rr0), [cpsr] "r" (cpsr), [fn] "r" (fn)
  157. : "lr", "cc"
  158. );
  159. return ret;
  160. }
  161. static inline long __kprobes
  162. insnslot_2arg_rflags(long r0, long r1, long cpsr, insn_2arg_fn_t *fn)
  163. {
  164. register long rr0 asm("r0") = r0;
  165. register long rr1 asm("r1") = r1;
  166. register long ret asm("r0");
  167. __asm__ __volatile__ (
  168. "msr cpsr_fs, %[cpsr] \n\t"
  169. "mov lr, pc \n\t"
  170. "mov pc, %[fn] \n\t"
  171. : "=r" (ret)
  172. : "0" (rr0), "r" (rr1),
  173. [cpsr] "r" (cpsr), [fn] "r" (fn)
  174. : "lr", "cc"
  175. );
  176. return ret;
  177. }
  178. static inline long __kprobes
  179. insnslot_3arg_rflags(long r0, long r1, long r2, long cpsr, insn_3arg_fn_t *fn)
  180. {
  181. register long rr0 asm("r0") = r0;
  182. register long rr1 asm("r1") = r1;
  183. register long rr2 asm("r2") = r2;
  184. register long ret asm("r0");
  185. __asm__ __volatile__ (
  186. "msr cpsr_fs, %[cpsr] \n\t"
  187. "mov lr, pc \n\t"
  188. "mov pc, %[fn] \n\t"
  189. : "=r" (ret)
  190. : "0" (rr0), "r" (rr1), "r" (rr2),
  191. [cpsr] "r" (cpsr), [fn] "r" (fn)
  192. : "lr", "cc"
  193. );
  194. return ret;
  195. }
  196. static inline long long __kprobes
  197. insnslot_llret_3arg_rflags(long r0, long r1, long r2, long cpsr,
  198. insn_llret_3arg_fn_t *fn)
  199. {
  200. register long rr0 asm("r0") = r0;
  201. register long rr1 asm("r1") = r1;
  202. register long rr2 asm("r2") = r2;
  203. register long ret0 asm("r0");
  204. register long ret1 asm("r1");
  205. union reg_pair fnr;
  206. __asm__ __volatile__ (
  207. "msr cpsr_fs, %[cpsr] \n\t"
  208. "mov lr, pc \n\t"
  209. "mov pc, %[fn] \n\t"
  210. : "=r" (ret0), "=r" (ret1)
  211. : "0" (rr0), "r" (rr1), "r" (rr2),
  212. [cpsr] "r" (cpsr), [fn] "r" (fn)
  213. : "lr", "cc"
  214. );
  215. fnr.r0 = ret0;
  216. fnr.r1 = ret1;
  217. return fnr.dr;
  218. }
  219. static inline long __kprobes
  220. insnslot_4arg_rflags(long r0, long r1, long r2, long r3, long cpsr,
  221. insn_4arg_fn_t *fn)
  222. {
  223. register long rr0 asm("r0") = r0;
  224. register long rr1 asm("r1") = r1;
  225. register long rr2 asm("r2") = r2;
  226. register long rr3 asm("r3") = r3;
  227. register long ret asm("r0");
  228. __asm__ __volatile__ (
  229. "msr cpsr_fs, %[cpsr] \n\t"
  230. "mov lr, pc \n\t"
  231. "mov pc, %[fn] \n\t"
  232. : "=r" (ret)
  233. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  234. [cpsr] "r" (cpsr), [fn] "r" (fn)
  235. : "lr", "cc"
  236. );
  237. return ret;
  238. }
  239. static inline long __kprobes
  240. insnslot_1arg_rwflags(long r0, long *cpsr, insn_1arg_fn_t *fn)
  241. {
  242. register long rr0 asm("r0") = r0;
  243. register long ret asm("r0");
  244. long oldcpsr = *cpsr;
  245. long newcpsr;
  246. __asm__ __volatile__ (
  247. "msr cpsr_fs, %[oldcpsr] \n\t"
  248. "mov lr, pc \n\t"
  249. "mov pc, %[fn] \n\t"
  250. "mrs %[newcpsr], cpsr \n\t"
  251. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  252. : "0" (rr0), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  253. : "lr", "cc"
  254. );
  255. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  256. return ret;
  257. }
  258. static inline long __kprobes
  259. insnslot_2arg_rwflags(long r0, long r1, long *cpsr, insn_2arg_fn_t *fn)
  260. {
  261. register long rr0 asm("r0") = r0;
  262. register long rr1 asm("r1") = r1;
  263. register long ret asm("r0");
  264. long oldcpsr = *cpsr;
  265. long newcpsr;
  266. __asm__ __volatile__ (
  267. "msr cpsr_fs, %[oldcpsr] \n\t"
  268. "mov lr, pc \n\t"
  269. "mov pc, %[fn] \n\t"
  270. "mrs %[newcpsr], cpsr \n\t"
  271. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  272. : "0" (rr0), "r" (rr1), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  273. : "lr", "cc"
  274. );
  275. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  276. return ret;
  277. }
  278. static inline long __kprobes
  279. insnslot_3arg_rwflags(long r0, long r1, long r2, long *cpsr,
  280. insn_3arg_fn_t *fn)
  281. {
  282. register long rr0 asm("r0") = r0;
  283. register long rr1 asm("r1") = r1;
  284. register long rr2 asm("r2") = r2;
  285. register long ret asm("r0");
  286. long oldcpsr = *cpsr;
  287. long newcpsr;
  288. __asm__ __volatile__ (
  289. "msr cpsr_fs, %[oldcpsr] \n\t"
  290. "mov lr, pc \n\t"
  291. "mov pc, %[fn] \n\t"
  292. "mrs %[newcpsr], cpsr \n\t"
  293. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  294. : "0" (rr0), "r" (rr1), "r" (rr2),
  295. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  296. : "lr", "cc"
  297. );
  298. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  299. return ret;
  300. }
  301. static inline long __kprobes
  302. insnslot_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
  303. insn_4arg_fn_t *fn)
  304. {
  305. register long rr0 asm("r0") = r0;
  306. register long rr1 asm("r1") = r1;
  307. register long rr2 asm("r2") = r2;
  308. register long rr3 asm("r3") = r3;
  309. register long ret asm("r0");
  310. long oldcpsr = *cpsr;
  311. long newcpsr;
  312. __asm__ __volatile__ (
  313. "msr cpsr_fs, %[oldcpsr] \n\t"
  314. "mov lr, pc \n\t"
  315. "mov pc, %[fn] \n\t"
  316. "mrs %[newcpsr], cpsr \n\t"
  317. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  318. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  319. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  320. : "lr", "cc"
  321. );
  322. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  323. return ret;
  324. }
  325. static inline long long __kprobes
  326. insnslot_llret_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
  327. insn_llret_4arg_fn_t *fn)
  328. {
  329. register long rr0 asm("r0") = r0;
  330. register long rr1 asm("r1") = r1;
  331. register long rr2 asm("r2") = r2;
  332. register long rr3 asm("r3") = r3;
  333. register long ret0 asm("r0");
  334. register long ret1 asm("r1");
  335. long oldcpsr = *cpsr;
  336. long newcpsr;
  337. union reg_pair fnr;
  338. __asm__ __volatile__ (
  339. "msr cpsr_fs, %[oldcpsr] \n\t"
  340. "mov lr, pc \n\t"
  341. "mov pc, %[fn] \n\t"
  342. "mrs %[newcpsr], cpsr \n\t"
  343. : "=r" (ret0), "=r" (ret1), [newcpsr] "=r" (newcpsr)
  344. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  345. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  346. : "lr", "cc"
  347. );
  348. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  349. fnr.r0 = ret0;
  350. fnr.r1 = ret1;
  351. return fnr.dr;
  352. }
  353. /*
  354. * To avoid the complications of mimicing single-stepping on a
  355. * processor without a Next-PC or a single-step mode, and to
  356. * avoid having to deal with the side-effects of boosting, we
  357. * simulate or emulate (almost) all ARM instructions.
  358. *
  359. * "Simulation" is where the instruction's behavior is duplicated in
  360. * C code. "Emulation" is where the original instruction is rewritten
  361. * and executed, often by altering its registers.
  362. *
  363. * By having all behavior of the kprobe'd instruction completed before
  364. * returning from the kprobe_handler(), all locks (scheduler and
  365. * interrupt) can safely be released. There is no need for secondary
  366. * breakpoints, no race with MP or preemptable kernels, nor having to
  367. * clean up resources counts at a later time impacting overall system
  368. * performance. By rewriting the instruction, only the minimum registers
  369. * need to be loaded and saved back optimizing performance.
  370. *
  371. * Calling the insnslot_*_rwflags version of a function doesn't hurt
  372. * anything even when the CPSR flags aren't updated by the
  373. * instruction. It's just a little slower in return for saving
  374. * a little space by not having a duplicate function that doesn't
  375. * update the flags. (The same optimization can be said for
  376. * instructions that do or don't perform register writeback)
  377. * Also, instructions can either read the flags, only write the
  378. * flags, or read and write the flags. To save combinations
  379. * rather than for sheer performance, flag functions just assume
  380. * read and write of flags.
  381. */
  382. static void __kprobes simulate_bbl(struct kprobe *p, struct pt_regs *regs)
  383. {
  384. kprobe_opcode_t insn = p->opcode;
  385. long iaddr = (long)p->addr;
  386. int disp = branch_displacement(insn);
  387. if (insn & (1 << 24))
  388. regs->ARM_lr = iaddr + 4;
  389. regs->ARM_pc = iaddr + 8 + disp;
  390. }
  391. static void __kprobes simulate_blx1(struct kprobe *p, struct pt_regs *regs)
  392. {
  393. kprobe_opcode_t insn = p->opcode;
  394. long iaddr = (long)p->addr;
  395. int disp = branch_displacement(insn);
  396. regs->ARM_lr = iaddr + 4;
  397. regs->ARM_pc = iaddr + 8 + disp + ((insn >> 23) & 0x2);
  398. regs->ARM_cpsr |= PSR_T_BIT;
  399. }
  400. static void __kprobes simulate_blx2bx(struct kprobe *p, struct pt_regs *regs)
  401. {
  402. kprobe_opcode_t insn = p->opcode;
  403. int rm = insn & 0xf;
  404. long rmv = regs->uregs[rm];
  405. if (insn & (1 << 5))
  406. regs->ARM_lr = (long)p->addr + 4;
  407. regs->ARM_pc = rmv & ~0x1;
  408. regs->ARM_cpsr &= ~PSR_T_BIT;
  409. if (rmv & 0x1)
  410. regs->ARM_cpsr |= PSR_T_BIT;
  411. }
  412. static void __kprobes simulate_mrs(struct kprobe *p, struct pt_regs *regs)
  413. {
  414. kprobe_opcode_t insn = p->opcode;
  415. int rd = (insn >> 12) & 0xf;
  416. unsigned long mask = 0xf8ff03df; /* Mask out execution state */
  417. regs->uregs[rd] = regs->ARM_cpsr & mask;
  418. }
  419. static void __kprobes simulate_ldm1stm1(struct kprobe *p, struct pt_regs *regs)
  420. {
  421. kprobe_opcode_t insn = p->opcode;
  422. int rn = (insn >> 16) & 0xf;
  423. int lbit = insn & (1 << 20);
  424. int wbit = insn & (1 << 21);
  425. int ubit = insn & (1 << 23);
  426. int pbit = insn & (1 << 24);
  427. long *addr = (long *)regs->uregs[rn];
  428. int reg_bit_vector;
  429. int reg_count;
  430. reg_count = 0;
  431. reg_bit_vector = insn & 0xffff;
  432. while (reg_bit_vector) {
  433. reg_bit_vector &= (reg_bit_vector - 1);
  434. ++reg_count;
  435. }
  436. if (!ubit)
  437. addr -= reg_count;
  438. addr += (!pbit == !ubit);
  439. reg_bit_vector = insn & 0xffff;
  440. while (reg_bit_vector) {
  441. int reg = __ffs(reg_bit_vector);
  442. reg_bit_vector &= (reg_bit_vector - 1);
  443. if (lbit)
  444. regs->uregs[reg] = *addr++;
  445. else
  446. *addr++ = regs->uregs[reg];
  447. }
  448. if (wbit) {
  449. if (!ubit)
  450. addr -= reg_count;
  451. addr -= (!pbit == !ubit);
  452. regs->uregs[rn] = (long)addr;
  453. }
  454. }
  455. static void __kprobes simulate_stm1_pc(struct kprobe *p, struct pt_regs *regs)
  456. {
  457. regs->ARM_pc = (long)p->addr + str_pc_offset;
  458. simulate_ldm1stm1(p, regs);
  459. regs->ARM_pc = (long)p->addr + 4;
  460. }
  461. static void __kprobes simulate_mov_ipsp(struct kprobe *p, struct pt_regs *regs)
  462. {
  463. regs->uregs[12] = regs->uregs[13];
  464. }
  465. static void __kprobes emulate_ldrd(struct kprobe *p, struct pt_regs *regs)
  466. {
  467. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  468. kprobe_opcode_t insn = p->opcode;
  469. long ppc = (long)p->addr + 8;
  470. int rd = (insn >> 12) & 0xf;
  471. int rn = (insn >> 16) & 0xf;
  472. int rm = insn & 0xf; /* rm may be invalid, don't care. */
  473. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  474. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  475. /* Not following the C calling convention here, so need asm(). */
  476. __asm__ __volatile__ (
  477. "ldr r0, %[rn] \n\t"
  478. "ldr r1, %[rm] \n\t"
  479. "msr cpsr_fs, %[cpsr]\n\t"
  480. "mov lr, pc \n\t"
  481. "mov pc, %[i_fn] \n\t"
  482. "str r0, %[rn] \n\t" /* in case of writeback */
  483. "str r2, %[rd0] \n\t"
  484. "str r3, %[rd1] \n\t"
  485. : [rn] "+m" (rnv),
  486. [rd0] "=m" (regs->uregs[rd]),
  487. [rd1] "=m" (regs->uregs[rd+1])
  488. : [rm] "m" (rmv),
  489. [cpsr] "r" (regs->ARM_cpsr),
  490. [i_fn] "r" (i_fn)
  491. : "r0", "r1", "r2", "r3", "lr", "cc"
  492. );
  493. if (is_writeback(insn))
  494. regs->uregs[rn] = rnv;
  495. }
  496. static void __kprobes emulate_strd(struct kprobe *p, struct pt_regs *regs)
  497. {
  498. insn_4arg_fn_t *i_fn = (insn_4arg_fn_t *)&p->ainsn.insn[0];
  499. kprobe_opcode_t insn = p->opcode;
  500. long ppc = (long)p->addr + 8;
  501. int rd = (insn >> 12) & 0xf;
  502. int rn = (insn >> 16) & 0xf;
  503. int rm = insn & 0xf;
  504. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  505. /* rm/rmv may be invalid, don't care. */
  506. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  507. long rnv_wb;
  508. rnv_wb = insnslot_4arg_rflags(rnv, rmv, regs->uregs[rd],
  509. regs->uregs[rd+1],
  510. regs->ARM_cpsr, i_fn);
  511. if (is_writeback(insn))
  512. regs->uregs[rn] = rnv_wb;
  513. }
  514. static void __kprobes emulate_ldr(struct kprobe *p, struct pt_regs *regs)
  515. {
  516. insn_llret_3arg_fn_t *i_fn = (insn_llret_3arg_fn_t *)&p->ainsn.insn[0];
  517. kprobe_opcode_t insn = p->opcode;
  518. long ppc = (long)p->addr + 8;
  519. union reg_pair fnr;
  520. int rd = (insn >> 12) & 0xf;
  521. int rn = (insn >> 16) & 0xf;
  522. int rm = insn & 0xf;
  523. long rdv;
  524. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  525. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  526. long cpsr = regs->ARM_cpsr;
  527. fnr.dr = insnslot_llret_3arg_rflags(rnv, 0, rmv, cpsr, i_fn);
  528. if (rn != 15)
  529. regs->uregs[rn] = fnr.r0; /* Save Rn in case of writeback. */
  530. rdv = fnr.r1;
  531. if (rd == 15) {
  532. #if __LINUX_ARM_ARCH__ >= 5
  533. cpsr &= ~PSR_T_BIT;
  534. if (rdv & 0x1)
  535. cpsr |= PSR_T_BIT;
  536. regs->ARM_cpsr = cpsr;
  537. rdv &= ~0x1;
  538. #else
  539. rdv &= ~0x2;
  540. #endif
  541. }
  542. regs->uregs[rd] = rdv;
  543. }
  544. static void __kprobes emulate_str(struct kprobe *p, struct pt_regs *regs)
  545. {
  546. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  547. kprobe_opcode_t insn = p->opcode;
  548. long iaddr = (long)p->addr;
  549. int rd = (insn >> 12) & 0xf;
  550. int rn = (insn >> 16) & 0xf;
  551. int rm = insn & 0xf;
  552. long rdv = (rd == 15) ? iaddr + str_pc_offset : regs->uregs[rd];
  553. long rnv = (rn == 15) ? iaddr + 8 : regs->uregs[rn];
  554. long rmv = regs->uregs[rm]; /* rm/rmv may be invalid, don't care. */
  555. long rnv_wb;
  556. rnv_wb = insnslot_3arg_rflags(rnv, rdv, rmv, regs->ARM_cpsr, i_fn);
  557. if (rn != 15)
  558. regs->uregs[rn] = rnv_wb; /* Save Rn in case of writeback. */
  559. }
  560. static void __kprobes emulate_sat(struct kprobe *p, struct pt_regs *regs)
  561. {
  562. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  563. kprobe_opcode_t insn = p->opcode;
  564. int rd = (insn >> 12) & 0xf;
  565. int rm = insn & 0xf;
  566. long rmv = regs->uregs[rm];
  567. /* Writes Q flag */
  568. regs->uregs[rd] = insnslot_1arg_rwflags(rmv, &regs->ARM_cpsr, i_fn);
  569. }
  570. static void __kprobes emulate_sel(struct kprobe *p, struct pt_regs *regs)
  571. {
  572. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  573. kprobe_opcode_t insn = p->opcode;
  574. int rd = (insn >> 12) & 0xf;
  575. int rn = (insn >> 16) & 0xf;
  576. int rm = insn & 0xf;
  577. long rnv = regs->uregs[rn];
  578. long rmv = regs->uregs[rm];
  579. /* Reads GE bits */
  580. regs->uregs[rd] = insnslot_2arg_rflags(rnv, rmv, regs->ARM_cpsr, i_fn);
  581. }
  582. static void __kprobes emulate_none(struct kprobe *p, struct pt_regs *regs)
  583. {
  584. insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0];
  585. insnslot_0arg_rflags(regs->ARM_cpsr, i_fn);
  586. }
  587. static void __kprobes emulate_nop(struct kprobe *p, struct pt_regs *regs)
  588. {
  589. }
  590. static void __kprobes
  591. emulate_rd12_modify(struct kprobe *p, struct pt_regs *regs)
  592. {
  593. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  594. kprobe_opcode_t insn = p->opcode;
  595. int rd = (insn >> 12) & 0xf;
  596. long rdv = regs->uregs[rd];
  597. regs->uregs[rd] = insnslot_1arg_rflags(rdv, regs->ARM_cpsr, i_fn);
  598. }
  599. static void __kprobes
  600. emulate_rd12rn0_modify(struct kprobe *p, struct pt_regs *regs)
  601. {
  602. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  603. kprobe_opcode_t insn = p->opcode;
  604. int rd = (insn >> 12) & 0xf;
  605. int rn = insn & 0xf;
  606. long rdv = regs->uregs[rd];
  607. long rnv = regs->uregs[rn];
  608. regs->uregs[rd] = insnslot_2arg_rflags(rdv, rnv, regs->ARM_cpsr, i_fn);
  609. }
  610. static void __kprobes emulate_rd12rm0(struct kprobe *p, struct pt_regs *regs)
  611. {
  612. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  613. kprobe_opcode_t insn = p->opcode;
  614. int rd = (insn >> 12) & 0xf;
  615. int rm = insn & 0xf;
  616. long rmv = regs->uregs[rm];
  617. regs->uregs[rd] = insnslot_1arg_rflags(rmv, regs->ARM_cpsr, i_fn);
  618. }
  619. static void __kprobes
  620. emulate_rd12rn16rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  621. {
  622. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  623. kprobe_opcode_t insn = p->opcode;
  624. int rd = (insn >> 12) & 0xf;
  625. int rn = (insn >> 16) & 0xf;
  626. int rm = insn & 0xf;
  627. long rnv = regs->uregs[rn];
  628. long rmv = regs->uregs[rm];
  629. regs->uregs[rd] =
  630. insnslot_2arg_rwflags(rnv, rmv, &regs->ARM_cpsr, i_fn);
  631. }
  632. static void __kprobes
  633. emulate_rd16rn12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  634. {
  635. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  636. kprobe_opcode_t insn = p->opcode;
  637. int rd = (insn >> 16) & 0xf;
  638. int rn = (insn >> 12) & 0xf;
  639. int rs = (insn >> 8) & 0xf;
  640. int rm = insn & 0xf;
  641. long rnv = regs->uregs[rn];
  642. long rsv = regs->uregs[rs];
  643. long rmv = regs->uregs[rm];
  644. regs->uregs[rd] =
  645. insnslot_3arg_rwflags(rnv, rsv, rmv, &regs->ARM_cpsr, i_fn);
  646. }
  647. static void __kprobes
  648. emulate_rd16rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  649. {
  650. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  651. kprobe_opcode_t insn = p->opcode;
  652. int rd = (insn >> 16) & 0xf;
  653. int rs = (insn >> 8) & 0xf;
  654. int rm = insn & 0xf;
  655. long rsv = regs->uregs[rs];
  656. long rmv = regs->uregs[rm];
  657. regs->uregs[rd] =
  658. insnslot_2arg_rwflags(rsv, rmv, &regs->ARM_cpsr, i_fn);
  659. }
  660. static void __kprobes
  661. emulate_rdhi16rdlo12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  662. {
  663. insn_llret_4arg_fn_t *i_fn = (insn_llret_4arg_fn_t *)&p->ainsn.insn[0];
  664. kprobe_opcode_t insn = p->opcode;
  665. union reg_pair fnr;
  666. int rdhi = (insn >> 16) & 0xf;
  667. int rdlo = (insn >> 12) & 0xf;
  668. int rs = (insn >> 8) & 0xf;
  669. int rm = insn & 0xf;
  670. long rsv = regs->uregs[rs];
  671. long rmv = regs->uregs[rm];
  672. fnr.dr = insnslot_llret_4arg_rwflags(regs->uregs[rdhi],
  673. regs->uregs[rdlo], rsv, rmv,
  674. &regs->ARM_cpsr, i_fn);
  675. regs->uregs[rdhi] = fnr.r0;
  676. regs->uregs[rdlo] = fnr.r1;
  677. }
  678. static void __kprobes
  679. emulate_alu_imm_rflags(struct kprobe *p, struct pt_regs *regs)
  680. {
  681. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  682. kprobe_opcode_t insn = p->opcode;
  683. int rd = (insn >> 12) & 0xf;
  684. int rn = (insn >> 16) & 0xf;
  685. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  686. regs->uregs[rd] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
  687. }
  688. static void __kprobes
  689. emulate_alu_imm_rwflags(struct kprobe *p, struct pt_regs *regs)
  690. {
  691. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  692. kprobe_opcode_t insn = p->opcode;
  693. int rd = (insn >> 12) & 0xf;
  694. int rn = (insn >> 16) & 0xf;
  695. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  696. regs->uregs[rd] = insnslot_1arg_rwflags(rnv, &regs->ARM_cpsr, i_fn);
  697. }
  698. static void __kprobes
  699. emulate_alu_tests_imm(struct kprobe *p, struct pt_regs *regs)
  700. {
  701. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  702. kprobe_opcode_t insn = p->opcode;
  703. int rn = (insn >> 16) & 0xf;
  704. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  705. insnslot_1arg_rwflags(rnv, &regs->ARM_cpsr, i_fn);
  706. }
  707. static void __kprobes
  708. emulate_alu_rflags(struct kprobe *p, struct pt_regs *regs)
  709. {
  710. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  711. kprobe_opcode_t insn = p->opcode;
  712. long ppc = (long)p->addr + 8;
  713. int rd = (insn >> 12) & 0xf;
  714. int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
  715. int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
  716. int rm = insn & 0xf;
  717. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  718. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  719. long rsv = regs->uregs[rs];
  720. regs->uregs[rd] =
  721. insnslot_3arg_rflags(rnv, rmv, rsv, regs->ARM_cpsr, i_fn);
  722. }
  723. static void __kprobes
  724. emulate_alu_rwflags(struct kprobe *p, struct pt_regs *regs)
  725. {
  726. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  727. kprobe_opcode_t insn = p->opcode;
  728. long ppc = (long)p->addr + 8;
  729. int rd = (insn >> 12) & 0xf;
  730. int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
  731. int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
  732. int rm = insn & 0xf;
  733. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  734. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  735. long rsv = regs->uregs[rs];
  736. regs->uregs[rd] =
  737. insnslot_3arg_rwflags(rnv, rmv, rsv, &regs->ARM_cpsr, i_fn);
  738. }
  739. static void __kprobes
  740. emulate_alu_tests(struct kprobe *p, struct pt_regs *regs)
  741. {
  742. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  743. kprobe_opcode_t insn = p->opcode;
  744. long ppc = (long)p->addr + 8;
  745. int rn = (insn >> 16) & 0xf;
  746. int rs = (insn >> 8) & 0xf; /* rs/rsv may be invalid, don't care. */
  747. int rm = insn & 0xf;
  748. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  749. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  750. long rsv = regs->uregs[rs];
  751. insnslot_3arg_rwflags(rnv, rmv, rsv, &regs->ARM_cpsr, i_fn);
  752. }
  753. static enum kprobe_insn __kprobes
  754. prep_emulate_ldr_str(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  755. {
  756. int not_imm = (insn & (1 << 26)) ? (insn & (1 << 25))
  757. : (~insn & (1 << 22));
  758. if (is_writeback(insn) && is_r15(insn, 16))
  759. return INSN_REJECTED; /* Writeback to PC */
  760. insn &= 0xfff00fff;
  761. insn |= 0x00001000; /* Rn = r0, Rd = r1 */
  762. if (not_imm) {
  763. insn &= ~0xf;
  764. insn |= 2; /* Rm = r2 */
  765. }
  766. asi->insn[0] = insn;
  767. asi->insn_handler = (insn & (1 << 20)) ? emulate_ldr : emulate_str;
  768. return INSN_GOOD;
  769. }
  770. static enum kprobe_insn __kprobes
  771. prep_emulate_rd12_modify(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  772. {
  773. if (is_r15(insn, 12))
  774. return INSN_REJECTED; /* Rd is PC */
  775. insn &= 0xffff0fff; /* Rd = r0 */
  776. asi->insn[0] = insn;
  777. asi->insn_handler = emulate_rd12_modify;
  778. return INSN_GOOD;
  779. }
  780. static enum kprobe_insn __kprobes
  781. prep_emulate_rd12rn0_modify(kprobe_opcode_t insn,
  782. struct arch_specific_insn *asi)
  783. {
  784. if (is_r15(insn, 12))
  785. return INSN_REJECTED; /* Rd is PC */
  786. insn &= 0xffff0ff0; /* Rd = r0 */
  787. insn |= 0x00000001; /* Rn = r1 */
  788. asi->insn[0] = insn;
  789. asi->insn_handler = emulate_rd12rn0_modify;
  790. return INSN_GOOD;
  791. }
  792. static enum kprobe_insn __kprobes
  793. prep_emulate_rd12rm0(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  794. {
  795. if (is_r15(insn, 12))
  796. return INSN_REJECTED; /* Rd is PC */
  797. insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */
  798. asi->insn[0] = insn;
  799. asi->insn_handler = emulate_rd12rm0;
  800. return INSN_GOOD;
  801. }
  802. static enum kprobe_insn __kprobes
  803. prep_emulate_rd12rn16rm0_wflags(kprobe_opcode_t insn,
  804. struct arch_specific_insn *asi)
  805. {
  806. if (is_r15(insn, 12))
  807. return INSN_REJECTED; /* Rd is PC */
  808. insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */
  809. insn |= 0x00000001; /* Rm = r1 */
  810. asi->insn[0] = insn;
  811. asi->insn_handler = emulate_rd12rn16rm0_rwflags;
  812. return INSN_GOOD;
  813. }
  814. static enum kprobe_insn __kprobes
  815. prep_emulate_rd16rs8rm0_wflags(kprobe_opcode_t insn,
  816. struct arch_specific_insn *asi)
  817. {
  818. if (is_r15(insn, 16))
  819. return INSN_REJECTED; /* Rd is PC */
  820. insn &= 0xfff0f0f0; /* Rd = r0, Rs = r0 */
  821. insn |= 0x00000001; /* Rm = r1 */
  822. asi->insn[0] = insn;
  823. asi->insn_handler = emulate_rd16rs8rm0_rwflags;
  824. return INSN_GOOD;
  825. }
  826. static enum kprobe_insn __kprobes
  827. prep_emulate_rd16rn12rs8rm0_wflags(kprobe_opcode_t insn,
  828. struct arch_specific_insn *asi)
  829. {
  830. if (is_r15(insn, 16))
  831. return INSN_REJECTED; /* Rd is PC */
  832. insn &= 0xfff000f0; /* Rd = r0, Rn = r0 */
  833. insn |= 0x00000102; /* Rs = r1, Rm = r2 */
  834. asi->insn[0] = insn;
  835. asi->insn_handler = emulate_rd16rn12rs8rm0_rwflags;
  836. return INSN_GOOD;
  837. }
  838. static enum kprobe_insn __kprobes
  839. prep_emulate_rdhi16rdlo12rs8rm0_wflags(kprobe_opcode_t insn,
  840. struct arch_specific_insn *asi)
  841. {
  842. if (is_r15(insn, 16) || is_r15(insn, 12))
  843. return INSN_REJECTED; /* RdHi or RdLo is PC */
  844. insn &= 0xfff000f0; /* RdHi = r0, RdLo = r1 */
  845. insn |= 0x00001203; /* Rs = r2, Rm = r3 */
  846. asi->insn[0] = insn;
  847. asi->insn_handler = emulate_rdhi16rdlo12rs8rm0_rwflags;
  848. return INSN_GOOD;
  849. }
  850. /*
  851. * For the instruction masking and comparisons in all the "space_*"
  852. * functions below, Do _not_ rearrange the order of tests unless
  853. * you're very, very sure of what you are doing. For the sake of
  854. * efficiency, the masks for some tests sometimes assume other test
  855. * have been done prior to them so the number of patterns to test
  856. * for an instruction set can be as broad as possible to reduce the
  857. * number of tests needed.
  858. */
  859. static enum kprobe_insn __kprobes
  860. space_1111(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  861. {
  862. /* memory hint : 1111 0100 x001 xxxx xxxx xxxx xxxx xxxx : */
  863. /* PLDI : 1111 0100 x101 xxxx xxxx xxxx xxxx xxxx : */
  864. /* PLDW : 1111 0101 x001 xxxx xxxx xxxx xxxx xxxx : */
  865. /* PLD : 1111 0101 x101 xxxx xxxx xxxx xxxx xxxx : */
  866. if ((insn & 0xfe300000) == 0xf4100000) {
  867. asi->insn_handler = emulate_nop;
  868. return INSN_GOOD_NO_SLOT;
  869. }
  870. /* BLX(1) : 1111 101x xxxx xxxx xxxx xxxx xxxx xxxx : */
  871. if ((insn & 0xfe000000) == 0xfa000000) {
  872. asi->insn_handler = simulate_blx1;
  873. return INSN_GOOD_NO_SLOT;
  874. }
  875. /* CPS : 1111 0001 0000 xxx0 xxxx xxxx xx0x xxxx */
  876. /* SETEND: 1111 0001 0000 0001 xxxx xxxx 0000 xxxx */
  877. /* SRS : 1111 100x x1x0 xxxx xxxx xxxx xxxx xxxx */
  878. /* RFE : 1111 100x x0x1 xxxx xxxx xxxx xxxx xxxx */
  879. /* Coprocessor instructions... */
  880. /* MCRR2 : 1111 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */
  881. /* MRRC2 : 1111 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */
  882. /* LDC2 : 1111 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
  883. /* STC2 : 1111 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
  884. /* CDP2 : 1111 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
  885. /* MCR2 : 1111 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
  886. /* MRC2 : 1111 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
  887. return INSN_REJECTED;
  888. }
  889. static enum kprobe_insn __kprobes
  890. space_cccc_000x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  891. {
  892. /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx xxx0 xxxx */
  893. if ((insn & 0x0f900010) == 0x01000000) {
  894. /* MRS cpsr : cccc 0001 0000 xxxx xxxx xxxx 0000 xxxx */
  895. if ((insn & 0x0ff000f0) == 0x01000000) {
  896. if (is_r15(insn, 12))
  897. return INSN_REJECTED; /* Rd is PC */
  898. asi->insn_handler = simulate_mrs;
  899. return INSN_GOOD_NO_SLOT;
  900. }
  901. /* SMLALxy : cccc 0001 0100 xxxx xxxx xxxx 1xx0 xxxx */
  902. if ((insn & 0x0ff00090) == 0x01400080)
  903. return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
  904. /* SMULWy : cccc 0001 0010 xxxx xxxx xxxx 1x10 xxxx */
  905. /* SMULxy : cccc 0001 0110 xxxx xxxx xxxx 1xx0 xxxx */
  906. if ((insn & 0x0ff000b0) == 0x012000a0 ||
  907. (insn & 0x0ff00090) == 0x01600080)
  908. return prep_emulate_rd16rs8rm0_wflags(insn, asi);
  909. /* SMLAxy : cccc 0001 0000 xxxx xxxx xxxx 1xx0 xxxx : Q */
  910. /* SMLAWy : cccc 0001 0010 xxxx xxxx xxxx 1x00 xxxx : Q */
  911. if ((insn & 0x0ff00090) == 0x01000080 ||
  912. (insn & 0x0ff000b0) == 0x01200080)
  913. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  914. /* BXJ : cccc 0001 0010 xxxx xxxx xxxx 0010 xxxx */
  915. /* MSR : cccc 0001 0x10 xxxx xxxx xxxx 0000 xxxx */
  916. /* MRS spsr : cccc 0001 0100 xxxx xxxx xxxx 0000 xxxx */
  917. /* Other instruction encodings aren't yet defined */
  918. return INSN_REJECTED;
  919. }
  920. /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx 0xx1 xxxx */
  921. else if ((insn & 0x0f900090) == 0x01000010) {
  922. /* BLX(2) : cccc 0001 0010 xxxx xxxx xxxx 0011 xxxx */
  923. /* BX : cccc 0001 0010 xxxx xxxx xxxx 0001 xxxx */
  924. if ((insn & 0x0ff000d0) == 0x01200010) {
  925. if ((insn & 0x0ff000ff) == 0x0120003f)
  926. return INSN_REJECTED; /* BLX pc */
  927. asi->insn_handler = simulate_blx2bx;
  928. return INSN_GOOD_NO_SLOT;
  929. }
  930. /* CLZ : cccc 0001 0110 xxxx xxxx xxxx 0001 xxxx */
  931. if ((insn & 0x0ff000f0) == 0x01600010)
  932. return prep_emulate_rd12rm0(insn, asi);
  933. /* QADD : cccc 0001 0000 xxxx xxxx xxxx 0101 xxxx :Q */
  934. /* QSUB : cccc 0001 0010 xxxx xxxx xxxx 0101 xxxx :Q */
  935. /* QDADD : cccc 0001 0100 xxxx xxxx xxxx 0101 xxxx :Q */
  936. /* QDSUB : cccc 0001 0110 xxxx xxxx xxxx 0101 xxxx :Q */
  937. if ((insn & 0x0f9000f0) == 0x01000050)
  938. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  939. /* BKPT : 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */
  940. /* SMC : cccc 0001 0110 xxxx xxxx xxxx 0111 xxxx */
  941. /* Other instruction encodings aren't yet defined */
  942. return INSN_REJECTED;
  943. }
  944. /* cccc 0000 xxxx xxxx xxxx xxxx xxxx 1001 xxxx */
  945. else if ((insn & 0x0f0000f0) == 0x00000090) {
  946. /* MUL : cccc 0000 0000 xxxx xxxx xxxx 1001 xxxx : */
  947. /* MULS : cccc 0000 0001 xxxx xxxx xxxx 1001 xxxx :cc */
  948. /* MLA : cccc 0000 0010 xxxx xxxx xxxx 1001 xxxx : */
  949. /* MLAS : cccc 0000 0011 xxxx xxxx xxxx 1001 xxxx :cc */
  950. /* UMAAL : cccc 0000 0100 xxxx xxxx xxxx 1001 xxxx : */
  951. /* undef : cccc 0000 0101 xxxx xxxx xxxx 1001 xxxx : */
  952. /* MLS : cccc 0000 0110 xxxx xxxx xxxx 1001 xxxx : */
  953. /* undef : cccc 0000 0111 xxxx xxxx xxxx 1001 xxxx : */
  954. /* UMULL : cccc 0000 1000 xxxx xxxx xxxx 1001 xxxx : */
  955. /* UMULLS : cccc 0000 1001 xxxx xxxx xxxx 1001 xxxx :cc */
  956. /* UMLAL : cccc 0000 1010 xxxx xxxx xxxx 1001 xxxx : */
  957. /* UMLALS : cccc 0000 1011 xxxx xxxx xxxx 1001 xxxx :cc */
  958. /* SMULL : cccc 0000 1100 xxxx xxxx xxxx 1001 xxxx : */
  959. /* SMULLS : cccc 0000 1101 xxxx xxxx xxxx 1001 xxxx :cc */
  960. /* SMLAL : cccc 0000 1110 xxxx xxxx xxxx 1001 xxxx : */
  961. /* SMLALS : cccc 0000 1111 xxxx xxxx xxxx 1001 xxxx :cc */
  962. if ((insn & 0x00d00000) == 0x00500000) {
  963. return INSN_REJECTED;
  964. } else if ((insn & 0x00e00000) == 0x00000000) {
  965. return prep_emulate_rd16rs8rm0_wflags(insn, asi);
  966. } else if ((insn & 0x00a00000) == 0x00200000) {
  967. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  968. } else {
  969. return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
  970. }
  971. }
  972. /* cccc 000x xxxx xxxx xxxx xxxx xxxx 1xx1 xxxx */
  973. else if ((insn & 0x0e000090) == 0x00000090) {
  974. /* SWP : cccc 0001 0000 xxxx xxxx xxxx 1001 xxxx */
  975. /* SWPB : cccc 0001 0100 xxxx xxxx xxxx 1001 xxxx */
  976. /* ??? : cccc 0001 0x01 xxxx xxxx xxxx 1001 xxxx */
  977. /* ??? : cccc 0001 0x10 xxxx xxxx xxxx 1001 xxxx */
  978. /* ??? : cccc 0001 0x11 xxxx xxxx xxxx 1001 xxxx */
  979. /* STREX : cccc 0001 1000 xxxx xxxx xxxx 1001 xxxx */
  980. /* LDREX : cccc 0001 1001 xxxx xxxx xxxx 1001 xxxx */
  981. /* STREXD: cccc 0001 1010 xxxx xxxx xxxx 1001 xxxx */
  982. /* LDREXD: cccc 0001 1011 xxxx xxxx xxxx 1001 xxxx */
  983. /* STREXB: cccc 0001 1100 xxxx xxxx xxxx 1001 xxxx */
  984. /* LDREXB: cccc 0001 1101 xxxx xxxx xxxx 1001 xxxx */
  985. /* STREXH: cccc 0001 1110 xxxx xxxx xxxx 1001 xxxx */
  986. /* LDREXH: cccc 0001 1111 xxxx xxxx xxxx 1001 xxxx */
  987. /* LDRD : cccc 000x xxx0 xxxx xxxx xxxx 1101 xxxx */
  988. /* STRD : cccc 000x xxx0 xxxx xxxx xxxx 1111 xxxx */
  989. /* LDRH : cccc 000x xxx1 xxxx xxxx xxxx 1011 xxxx */
  990. /* STRH : cccc 000x xxx0 xxxx xxxx xxxx 1011 xxxx */
  991. /* LDRSB : cccc 000x xxx1 xxxx xxxx xxxx 1101 xxxx */
  992. /* LDRSH : cccc 000x xxx1 xxxx xxxx xxxx 1111 xxxx */
  993. if ((insn & 0x0f0000f0) == 0x01000090) {
  994. if ((insn & 0x0fb000f0) == 0x01000090) {
  995. /* SWP/SWPB */
  996. return prep_emulate_rd12rn16rm0_wflags(insn,
  997. asi);
  998. } else {
  999. /* STREX/LDREX variants and unallocaed space */
  1000. return INSN_REJECTED;
  1001. }
  1002. } else if ((insn & 0x0e1000d0) == 0x00000d0) {
  1003. /* STRD/LDRD */
  1004. if ((insn & 0x0000e000) == 0x0000e000)
  1005. return INSN_REJECTED; /* Rd is LR or PC */
  1006. if (is_writeback(insn) && is_r15(insn, 16))
  1007. return INSN_REJECTED; /* Writeback to PC */
  1008. insn &= 0xfff00fff;
  1009. insn |= 0x00002000; /* Rn = r0, Rd = r2 */
  1010. if (!(insn & (1 << 22))) {
  1011. /* Register index */
  1012. insn &= ~0xf;
  1013. insn |= 1; /* Rm = r1 */
  1014. }
  1015. asi->insn[0] = insn;
  1016. asi->insn_handler =
  1017. (insn & (1 << 5)) ? emulate_strd : emulate_ldrd;
  1018. return INSN_GOOD;
  1019. }
  1020. /* LDRH/STRH/LDRSB/LDRSH */
  1021. if (is_r15(insn, 12))
  1022. return INSN_REJECTED; /* Rd is PC */
  1023. return prep_emulate_ldr_str(insn, asi);
  1024. }
  1025. /* cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx xxxx */
  1026. /*
  1027. * ALU op with S bit and Rd == 15 :
  1028. * cccc 000x xxx1 xxxx 1111 xxxx xxxx xxxx
  1029. */
  1030. if ((insn & 0x0e10f000) == 0x0010f000)
  1031. return INSN_REJECTED;
  1032. /*
  1033. * "mov ip, sp" is the most common kprobe'd instruction by far.
  1034. * Check and optimize for it explicitly.
  1035. */
  1036. if (insn == 0xe1a0c00d) {
  1037. asi->insn_handler = simulate_mov_ipsp;
  1038. return INSN_GOOD_NO_SLOT;
  1039. }
  1040. /*
  1041. * Data processing: Immediate-shift / Register-shift
  1042. * ALU op : cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx
  1043. * CPY : cccc 0001 1010 xxxx xxxx 0000 0000 xxxx
  1044. * MOV : cccc 0001 101x xxxx xxxx xxxx xxxx xxxx
  1045. * *S (bit 20) updates condition codes
  1046. * ADC/SBC/RSC reads the C flag
  1047. */
  1048. insn &= 0xfff00ff0; /* Rn = r0, Rd = r0 */
  1049. insn |= 0x00000001; /* Rm = r1 */
  1050. if (insn & 0x010) {
  1051. insn &= 0xfffff0ff; /* register shift */
  1052. insn |= 0x00000200; /* Rs = r2 */
  1053. }
  1054. asi->insn[0] = insn;
  1055. if ((insn & 0x0f900000) == 0x01100000) {
  1056. /*
  1057. * TST : cccc 0001 0001 xxxx xxxx xxxx xxxx xxxx
  1058. * TEQ : cccc 0001 0011 xxxx xxxx xxxx xxxx xxxx
  1059. * CMP : cccc 0001 0101 xxxx xxxx xxxx xxxx xxxx
  1060. * CMN : cccc 0001 0111 xxxx xxxx xxxx xxxx xxxx
  1061. */
  1062. asi->insn_handler = emulate_alu_tests;
  1063. } else {
  1064. /* ALU ops which write to Rd */
  1065. asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */
  1066. emulate_alu_rwflags : emulate_alu_rflags;
  1067. }
  1068. return INSN_GOOD;
  1069. }
  1070. static enum kprobe_insn __kprobes
  1071. space_cccc_001x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1072. {
  1073. /* MOVW : cccc 0011 0000 xxxx xxxx xxxx xxxx xxxx */
  1074. /* MOVT : cccc 0011 0100 xxxx xxxx xxxx xxxx xxxx */
  1075. if ((insn & 0x0fb00000) == 0x03000000)
  1076. return prep_emulate_rd12_modify(insn, asi);
  1077. /* hints : cccc 0011 0010 0000 xxxx xxxx xxxx xxxx */
  1078. if ((insn & 0x0fff0000) == 0x03200000) {
  1079. unsigned op2 = insn & 0x000000ff;
  1080. if (op2 == 0x01 || op2 == 0x04) {
  1081. /* YIELD : cccc 0011 0010 0000 xxxx xxxx 0000 0001 */
  1082. /* SEV : cccc 0011 0010 0000 xxxx xxxx 0000 0100 */
  1083. asi->insn[0] = insn;
  1084. asi->insn_handler = emulate_none;
  1085. return INSN_GOOD;
  1086. } else if (op2 <= 0x03) {
  1087. /* NOP : cccc 0011 0010 0000 xxxx xxxx 0000 0000 */
  1088. /* WFE : cccc 0011 0010 0000 xxxx xxxx 0000 0010 */
  1089. /* WFI : cccc 0011 0010 0000 xxxx xxxx 0000 0011 */
  1090. /*
  1091. * We make WFE and WFI true NOPs to avoid stalls due
  1092. * to missing events whilst processing the probe.
  1093. */
  1094. asi->insn_handler = emulate_nop;
  1095. return INSN_GOOD_NO_SLOT;
  1096. }
  1097. /* For DBG and unallocated hints it's safest to reject them */
  1098. return INSN_REJECTED;
  1099. }
  1100. /*
  1101. * MSR : cccc 0011 0x10 xxxx xxxx xxxx xxxx xxxx
  1102. * ALU op with S bit and Rd == 15 :
  1103. * cccc 001x xxx1 xxxx 1111 xxxx xxxx xxxx
  1104. */
  1105. if ((insn & 0x0fb00000) == 0x03200000 || /* MSR */
  1106. (insn & 0x0e10f000) == 0x0210f000) /* ALU s-bit, R15 */
  1107. return INSN_REJECTED;
  1108. /*
  1109. * Data processing: 32-bit Immediate
  1110. * ALU op : cccc 001x xxxx xxxx xxxx xxxx xxxx xxxx
  1111. * MOV : cccc 0011 101x xxxx xxxx xxxx xxxx xxxx
  1112. * *S (bit 20) updates condition codes
  1113. * ADC/SBC/RSC reads the C flag
  1114. */
  1115. insn &= 0xfff00fff; /* Rn = r0 and Rd = r0 */
  1116. asi->insn[0] = insn;
  1117. if ((insn & 0x0f900000) == 0x03100000) {
  1118. /*
  1119. * TST : cccc 0011 0001 xxxx xxxx xxxx xxxx xxxx
  1120. * TEQ : cccc 0011 0011 xxxx xxxx xxxx xxxx xxxx
  1121. * CMP : cccc 0011 0101 xxxx xxxx xxxx xxxx xxxx
  1122. * CMN : cccc 0011 0111 xxxx xxxx xxxx xxxx xxxx
  1123. */
  1124. asi->insn_handler = emulate_alu_tests_imm;
  1125. } else {
  1126. /* ALU ops which write to Rd */
  1127. asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */
  1128. emulate_alu_imm_rwflags : emulate_alu_imm_rflags;
  1129. }
  1130. return INSN_GOOD;
  1131. }
  1132. static enum kprobe_insn __kprobes
  1133. space_cccc_0110__1(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1134. {
  1135. /* SEL : cccc 0110 1000 xxxx xxxx xxxx 1011 xxxx GE: !!! */
  1136. if ((insn & 0x0ff000f0) == 0x068000b0) {
  1137. if (is_r15(insn, 12))
  1138. return INSN_REJECTED; /* Rd is PC */
  1139. insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */
  1140. insn |= 0x00000001; /* Rm = r1 */
  1141. asi->insn[0] = insn;
  1142. asi->insn_handler = emulate_sel;
  1143. return INSN_GOOD;
  1144. }
  1145. /* SSAT : cccc 0110 101x xxxx xxxx xxxx xx01 xxxx :Q */
  1146. /* USAT : cccc 0110 111x xxxx xxxx xxxx xx01 xxxx :Q */
  1147. /* SSAT16 : cccc 0110 1010 xxxx xxxx xxxx 0011 xxxx :Q */
  1148. /* USAT16 : cccc 0110 1110 xxxx xxxx xxxx 0011 xxxx :Q */
  1149. if ((insn & 0x0fa00030) == 0x06a00010 ||
  1150. (insn & 0x0fb000f0) == 0x06a00030) {
  1151. if (is_r15(insn, 12))
  1152. return INSN_REJECTED; /* Rd is PC */
  1153. insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */
  1154. asi->insn[0] = insn;
  1155. asi->insn_handler = emulate_sat;
  1156. return INSN_GOOD;
  1157. }
  1158. /* REV : cccc 0110 1011 xxxx xxxx xxxx 0011 xxxx */
  1159. /* REV16 : cccc 0110 1011 xxxx xxxx xxxx 1011 xxxx */
  1160. /* RBIT : cccc 0110 1111 xxxx xxxx xxxx 0011 xxxx */
  1161. /* REVSH : cccc 0110 1111 xxxx xxxx xxxx 1011 xxxx */
  1162. if ((insn & 0x0ff00070) == 0x06b00030 ||
  1163. (insn & 0x0ff00070) == 0x06f00030)
  1164. return prep_emulate_rd12rm0(insn, asi);
  1165. /* ??? : cccc 0110 0000 xxxx xxxx xxxx xxx1 xxxx : */
  1166. /* SADD16 : cccc 0110 0001 xxxx xxxx xxxx 0001 xxxx :GE */
  1167. /* SADDSUBX : cccc 0110 0001 xxxx xxxx xxxx 0011 xxxx :GE */
  1168. /* SSUBADDX : cccc 0110 0001 xxxx xxxx xxxx 0101 xxxx :GE */
  1169. /* SSUB16 : cccc 0110 0001 xxxx xxxx xxxx 0111 xxxx :GE */
  1170. /* SADD8 : cccc 0110 0001 xxxx xxxx xxxx 1001 xxxx :GE */
  1171. /* ??? : cccc 0110 0001 xxxx xxxx xxxx 1011 xxxx : */
  1172. /* ??? : cccc 0110 0001 xxxx xxxx xxxx 1101 xxxx : */
  1173. /* SSUB8 : cccc 0110 0001 xxxx xxxx xxxx 1111 xxxx :GE */
  1174. /* QADD16 : cccc 0110 0010 xxxx xxxx xxxx 0001 xxxx : */
  1175. /* QADDSUBX : cccc 0110 0010 xxxx xxxx xxxx 0011 xxxx : */
  1176. /* QSUBADDX : cccc 0110 0010 xxxx xxxx xxxx 0101 xxxx : */
  1177. /* QSUB16 : cccc 0110 0010 xxxx xxxx xxxx 0111 xxxx : */
  1178. /* QADD8 : cccc 0110 0010 xxxx xxxx xxxx 1001 xxxx : */
  1179. /* ??? : cccc 0110 0010 xxxx xxxx xxxx 1011 xxxx : */
  1180. /* ??? : cccc 0110 0010 xxxx xxxx xxxx 1101 xxxx : */
  1181. /* QSUB8 : cccc 0110 0010 xxxx xxxx xxxx 1111 xxxx : */
  1182. /* SHADD16 : cccc 0110 0011 xxxx xxxx xxxx 0001 xxxx : */
  1183. /* SHADDSUBX : cccc 0110 0011 xxxx xxxx xxxx 0011 xxxx : */
  1184. /* SHSUBADDX : cccc 0110 0011 xxxx xxxx xxxx 0101 xxxx : */
  1185. /* SHSUB16 : cccc 0110 0011 xxxx xxxx xxxx 0111 xxxx : */
  1186. /* SHADD8 : cccc 0110 0011 xxxx xxxx xxxx 1001 xxxx : */
  1187. /* ??? : cccc 0110 0011 xxxx xxxx xxxx 1011 xxxx : */
  1188. /* ??? : cccc 0110 0011 xxxx xxxx xxxx 1101 xxxx : */
  1189. /* SHSUB8 : cccc 0110 0011 xxxx xxxx xxxx 1111 xxxx : */
  1190. /* ??? : cccc 0110 0100 xxxx xxxx xxxx xxx1 xxxx : */
  1191. /* UADD16 : cccc 0110 0101 xxxx xxxx xxxx 0001 xxxx :GE */
  1192. /* UADDSUBX : cccc 0110 0101 xxxx xxxx xxxx 0011 xxxx :GE */
  1193. /* USUBADDX : cccc 0110 0101 xxxx xxxx xxxx 0101 xxxx :GE */
  1194. /* USUB16 : cccc 0110 0101 xxxx xxxx xxxx 0111 xxxx :GE */
  1195. /* UADD8 : cccc 0110 0101 xxxx xxxx xxxx 1001 xxxx :GE */
  1196. /* ??? : cccc 0110 0101 xxxx xxxx xxxx 1011 xxxx : */
  1197. /* ??? : cccc 0110 0101 xxxx xxxx xxxx 1101 xxxx : */
  1198. /* USUB8 : cccc 0110 0101 xxxx xxxx xxxx 1111 xxxx :GE */
  1199. /* UQADD16 : cccc 0110 0110 xxxx xxxx xxxx 0001 xxxx : */
  1200. /* UQADDSUBX : cccc 0110 0110 xxxx xxxx xxxx 0011 xxxx : */
  1201. /* UQSUBADDX : cccc 0110 0110 xxxx xxxx xxxx 0101 xxxx : */
  1202. /* UQSUB16 : cccc 0110 0110 xxxx xxxx xxxx 0111 xxxx : */
  1203. /* UQADD8 : cccc 0110 0110 xxxx xxxx xxxx 1001 xxxx : */
  1204. /* ??? : cccc 0110 0110 xxxx xxxx xxxx 1011 xxxx : */
  1205. /* ??? : cccc 0110 0110 xxxx xxxx xxxx 1101 xxxx : */
  1206. /* UQSUB8 : cccc 0110 0110 xxxx xxxx xxxx 1111 xxxx : */
  1207. /* UHADD16 : cccc 0110 0111 xxxx xxxx xxxx 0001 xxxx : */
  1208. /* UHADDSUBX : cccc 0110 0111 xxxx xxxx xxxx 0011 xxxx : */
  1209. /* UHSUBADDX : cccc 0110 0111 xxxx xxxx xxxx 0101 xxxx : */
  1210. /* UHSUB16 : cccc 0110 0111 xxxx xxxx xxxx 0111 xxxx : */
  1211. /* UHADD8 : cccc 0110 0111 xxxx xxxx xxxx 1001 xxxx : */
  1212. /* ??? : cccc 0110 0111 xxxx xxxx xxxx 1011 xxxx : */
  1213. /* ??? : cccc 0110 0111 xxxx xxxx xxxx 1101 xxxx : */
  1214. /* UHSUB8 : cccc 0110 0111 xxxx xxxx xxxx 1111 xxxx : */
  1215. if ((insn & 0x0f800010) == 0x06000010) {
  1216. if ((insn & 0x00300000) == 0x00000000 ||
  1217. (insn & 0x000000e0) == 0x000000a0 ||
  1218. (insn & 0x000000e0) == 0x000000c0)
  1219. return INSN_REJECTED; /* Unallocated space */
  1220. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  1221. }
  1222. /* PKHBT : cccc 0110 1000 xxxx xxxx xxxx x001 xxxx : */
  1223. /* PKHTB : cccc 0110 1000 xxxx xxxx xxxx x101 xxxx : */
  1224. if ((insn & 0x0ff00030) == 0x06800010)
  1225. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  1226. /* SXTAB16 : cccc 0110 1000 xxxx xxxx xxxx 0111 xxxx : */
  1227. /* SXTB16 : cccc 0110 1000 1111 xxxx xxxx 0111 xxxx : */
  1228. /* ??? : cccc 0110 1001 xxxx xxxx xxxx 0111 xxxx : */
  1229. /* SXTAB : cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx : */
  1230. /* SXTB : cccc 0110 1010 1111 xxxx xxxx 0111 xxxx : */
  1231. /* SXTAH : cccc 0110 1011 xxxx xxxx xxxx 0111 xxxx : */
  1232. /* SXTH : cccc 0110 1011 1111 xxxx xxxx 0111 xxxx : */
  1233. /* UXTAB16 : cccc 0110 1100 xxxx xxxx xxxx 0111 xxxx : */
  1234. /* UXTB16 : cccc 0110 1100 1111 xxxx xxxx 0111 xxxx : */
  1235. /* ??? : cccc 0110 1101 xxxx xxxx xxxx 0111 xxxx : */
  1236. /* UXTAB : cccc 0110 1110 xxxx xxxx xxxx 0111 xxxx : */
  1237. /* UXTB : cccc 0110 1110 1111 xxxx xxxx 0111 xxxx : */
  1238. /* UXTAH : cccc 0110 1111 xxxx xxxx xxxx 0111 xxxx : */
  1239. /* UXTH : cccc 0110 1111 1111 xxxx xxxx 0111 xxxx : */
  1240. if ((insn & 0x0f8000f0) == 0x06800070) {
  1241. if ((insn & 0x00300000) == 0x00100000)
  1242. return INSN_REJECTED; /* Unallocated space */
  1243. if ((insn & 0x000f0000) == 0x000f0000) {
  1244. return prep_emulate_rd12rm0(insn, asi);
  1245. } else {
  1246. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  1247. }
  1248. }
  1249. /* Other instruction encodings aren't yet defined */
  1250. return INSN_REJECTED;
  1251. }
  1252. static enum kprobe_insn __kprobes
  1253. space_cccc_0111__1(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1254. {
  1255. /* Undef : cccc 0111 1111 xxxx xxxx xxxx 1111 xxxx */
  1256. if ((insn & 0x0ff000f0) == 0x03f000f0)
  1257. return INSN_REJECTED;
  1258. /* SMLALD : cccc 0111 0100 xxxx xxxx xxxx 00x1 xxxx */
  1259. /* SMLSLD : cccc 0111 0100 xxxx xxxx xxxx 01x1 xxxx */
  1260. if ((insn & 0x0ff00090) == 0x07400010)
  1261. return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
  1262. /* SMLAD : cccc 0111 0000 xxxx xxxx xxxx 00x1 xxxx :Q */
  1263. /* SMUAD : cccc 0111 0000 xxxx 1111 xxxx 00x1 xxxx :Q */
  1264. /* SMLSD : cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx :Q */
  1265. /* SMUSD : cccc 0111 0000 xxxx 1111 xxxx 01x1 xxxx : */
  1266. /* SMMLA : cccc 0111 0101 xxxx xxxx xxxx 00x1 xxxx : */
  1267. /* SMMUL : cccc 0111 0101 xxxx 1111 xxxx 00x1 xxxx : */
  1268. /* USADA8 : cccc 0111 1000 xxxx xxxx xxxx 0001 xxxx : */
  1269. /* USAD8 : cccc 0111 1000 xxxx 1111 xxxx 0001 xxxx : */
  1270. if ((insn & 0x0ff00090) == 0x07000010 ||
  1271. (insn & 0x0ff000d0) == 0x07500010 ||
  1272. (insn & 0x0ff000f0) == 0x07800010) {
  1273. if ((insn & 0x0000f000) == 0x0000f000) {
  1274. return prep_emulate_rd16rs8rm0_wflags(insn, asi);
  1275. } else {
  1276. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  1277. }
  1278. }
  1279. /* SMMLS : cccc 0111 0101 xxxx xxxx xxxx 11x1 xxxx : */
  1280. if ((insn & 0x0ff000d0) == 0x075000d0)
  1281. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  1282. /* SBFX : cccc 0111 101x xxxx xxxx xxxx x101 xxxx : */
  1283. /* UBFX : cccc 0111 111x xxxx xxxx xxxx x101 xxxx : */
  1284. if ((insn & 0x0fa00070) == 0x07a00050)
  1285. return prep_emulate_rd12rm0(insn, asi);
  1286. /* BFI : cccc 0111 110x xxxx xxxx xxxx x001 xxxx : */
  1287. /* BFC : cccc 0111 110x xxxx xxxx xxxx x001 1111 : */
  1288. if ((insn & 0x0fe00070) == 0x07c00010) {
  1289. if ((insn & 0x0000000f) == 0x0000000f)
  1290. return prep_emulate_rd12_modify(insn, asi);
  1291. else
  1292. return prep_emulate_rd12rn0_modify(insn, asi);
  1293. }
  1294. return INSN_REJECTED;
  1295. }
  1296. static enum kprobe_insn __kprobes
  1297. space_cccc_01xx(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1298. {
  1299. /* LDR : cccc 01xx x0x1 xxxx xxxx xxxx xxxx xxxx */
  1300. /* LDRB : cccc 01xx x1x1 xxxx xxxx xxxx xxxx xxxx */
  1301. /* LDRBT : cccc 01x0 x111 xxxx xxxx xxxx xxxx xxxx */
  1302. /* LDRT : cccc 01x0 x011 xxxx xxxx xxxx xxxx xxxx */
  1303. /* STR : cccc 01xx x0x0 xxxx xxxx xxxx xxxx xxxx */
  1304. /* STRB : cccc 01xx x1x0 xxxx xxxx xxxx xxxx xxxx */
  1305. /* STRBT : cccc 01x0 x110 xxxx xxxx xxxx xxxx xxxx */
  1306. /* STRT : cccc 01x0 x010 xxxx xxxx xxxx xxxx xxxx */
  1307. if ((insn & 0x00500000) == 0x00500000 && is_r15(insn, 12))
  1308. return INSN_REJECTED; /* LDRB into PC */
  1309. return prep_emulate_ldr_str(insn, asi);
  1310. }
  1311. static enum kprobe_insn __kprobes
  1312. space_cccc_100x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1313. {
  1314. /* LDM(2) : cccc 100x x101 xxxx 0xxx xxxx xxxx xxxx */
  1315. /* LDM(3) : cccc 100x x1x1 xxxx 1xxx xxxx xxxx xxxx */
  1316. if ((insn & 0x0e708000) == 0x85000000 ||
  1317. (insn & 0x0e508000) == 0x85010000)
  1318. return INSN_REJECTED;
  1319. /* LDM(1) : cccc 100x x0x1 xxxx xxxx xxxx xxxx xxxx */
  1320. /* STM(1) : cccc 100x x0x0 xxxx xxxx xxxx xxxx xxxx */
  1321. asi->insn_handler = ((insn & 0x108000) == 0x008000) ? /* STM & R15 */
  1322. simulate_stm1_pc : simulate_ldm1stm1;
  1323. return INSN_GOOD_NO_SLOT;
  1324. }
  1325. static enum kprobe_insn __kprobes
  1326. space_cccc_101x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1327. {
  1328. /* B : cccc 1010 xxxx xxxx xxxx xxxx xxxx xxxx */
  1329. /* BL : cccc 1011 xxxx xxxx xxxx xxxx xxxx xxxx */
  1330. asi->insn_handler = simulate_bbl;
  1331. return INSN_GOOD_NO_SLOT;
  1332. }
  1333. static enum kprobe_insn __kprobes
  1334. space_cccc_11xx(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1335. {
  1336. /* Coprocessor instructions... */
  1337. /* MCRR : cccc 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
  1338. /* MRRC : cccc 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
  1339. /* LDC : cccc 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
  1340. /* STC : cccc 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
  1341. /* CDP : cccc 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
  1342. /* MCR : cccc 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
  1343. /* MRC : cccc 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
  1344. /* SVC : cccc 1111 xxxx xxxx xxxx xxxx xxxx xxxx */
  1345. return INSN_REJECTED;
  1346. }
  1347. static unsigned long __kprobes __check_eq(unsigned long cpsr)
  1348. {
  1349. return cpsr & PSR_Z_BIT;
  1350. }
  1351. static unsigned long __kprobes __check_ne(unsigned long cpsr)
  1352. {
  1353. return (~cpsr) & PSR_Z_BIT;
  1354. }
  1355. static unsigned long __kprobes __check_cs(unsigned long cpsr)
  1356. {
  1357. return cpsr & PSR_C_BIT;
  1358. }
  1359. static unsigned long __kprobes __check_cc(unsigned long cpsr)
  1360. {
  1361. return (~cpsr) & PSR_C_BIT;
  1362. }
  1363. static unsigned long __kprobes __check_mi(unsigned long cpsr)
  1364. {
  1365. return cpsr & PSR_N_BIT;
  1366. }
  1367. static unsigned long __kprobes __check_pl(unsigned long cpsr)
  1368. {
  1369. return (~cpsr) & PSR_N_BIT;
  1370. }
  1371. static unsigned long __kprobes __check_vs(unsigned long cpsr)
  1372. {
  1373. return cpsr & PSR_V_BIT;
  1374. }
  1375. static unsigned long __kprobes __check_vc(unsigned long cpsr)
  1376. {
  1377. return (~cpsr) & PSR_V_BIT;
  1378. }
  1379. static unsigned long __kprobes __check_hi(unsigned long cpsr)
  1380. {
  1381. cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
  1382. return cpsr & PSR_C_BIT;
  1383. }
  1384. static unsigned long __kprobes __check_ls(unsigned long cpsr)
  1385. {
  1386. cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
  1387. return (~cpsr) & PSR_C_BIT;
  1388. }
  1389. static unsigned long __kprobes __check_ge(unsigned long cpsr)
  1390. {
  1391. cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
  1392. return (~cpsr) & PSR_N_BIT;
  1393. }
  1394. static unsigned long __kprobes __check_lt(unsigned long cpsr)
  1395. {
  1396. cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
  1397. return cpsr & PSR_N_BIT;
  1398. }
  1399. static unsigned long __kprobes __check_gt(unsigned long cpsr)
  1400. {
  1401. unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
  1402. temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
  1403. return (~temp) & PSR_N_BIT;
  1404. }
  1405. static unsigned long __kprobes __check_le(unsigned long cpsr)
  1406. {
  1407. unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
  1408. temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
  1409. return temp & PSR_N_BIT;
  1410. }
  1411. static unsigned long __kprobes __check_al(unsigned long cpsr)
  1412. {
  1413. return true;
  1414. }
  1415. static kprobe_check_cc * const condition_checks[16] = {
  1416. &__check_eq, &__check_ne, &__check_cs, &__check_cc,
  1417. &__check_mi, &__check_pl, &__check_vs, &__check_vc,
  1418. &__check_hi, &__check_ls, &__check_ge, &__check_lt,
  1419. &__check_gt, &__check_le, &__check_al, &__check_al
  1420. };
  1421. /* Return:
  1422. * INSN_REJECTED If instruction is one not allowed to kprobe,
  1423. * INSN_GOOD If instruction is supported and uses instruction slot,
  1424. * INSN_GOOD_NO_SLOT If instruction is supported but doesn't use its slot.
  1425. *
  1426. * For instructions we don't want to kprobe (INSN_REJECTED return result):
  1427. * These are generally ones that modify the processor state making
  1428. * them "hard" to simulate such as switches processor modes or
  1429. * make accesses in alternate modes. Any of these could be simulated
  1430. * if the work was put into it, but low return considering they
  1431. * should also be very rare.
  1432. */
  1433. enum kprobe_insn __kprobes
  1434. arm_kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1435. {
  1436. asi->insn_check_cc = condition_checks[insn>>28];
  1437. asi->insn[1] = KPROBE_RETURN_INSTRUCTION;
  1438. if ((insn & 0xf0000000) == 0xf0000000) {
  1439. return space_1111(insn, asi);
  1440. } else if ((insn & 0x0e000000) == 0x00000000) {
  1441. return space_cccc_000x(insn, asi);
  1442. } else if ((insn & 0x0e000000) == 0x02000000) {
  1443. return space_cccc_001x(insn, asi);
  1444. } else if ((insn & 0x0f000010) == 0x06000010) {
  1445. return space_cccc_0110__1(insn, asi);
  1446. } else if ((insn & 0x0f000010) == 0x07000010) {
  1447. return space_cccc_0111__1(insn, asi);
  1448. } else if ((insn & 0x0c000000) == 0x04000000) {
  1449. return space_cccc_01xx(insn, asi);
  1450. } else if ((insn & 0x0e000000) == 0x08000000) {
  1451. return space_cccc_100x(insn, asi);
  1452. } else if ((insn & 0x0e000000) == 0x0a000000) {
  1453. return space_cccc_101x(insn, asi);
  1454. }
  1455. return space_cccc_11xx(insn, asi);
  1456. }
  1457. void __init arm_kprobe_decode_init(void)
  1458. {
  1459. find_str_pc_offset();
  1460. }
  1461. /*
  1462. * All ARM instructions listed below.
  1463. *
  1464. * Instructions and their general purpose registers are given.
  1465. * If a particular register may not use R15, it is prefixed with a "!".
  1466. * If marked with a "*" means the value returned by reading R15
  1467. * is implementation defined.
  1468. *
  1469. * ADC/ADD/AND/BIC/CMN/CMP/EOR/MOV/MVN/ORR/RSB/RSC/SBC/SUB/TEQ
  1470. * TST: Rd, Rn, Rm, !Rs
  1471. * BX: Rm
  1472. * BLX(2): !Rm
  1473. * BX: Rm (R15 legal, but discouraged)
  1474. * BXJ: !Rm,
  1475. * CLZ: !Rd, !Rm
  1476. * CPY: Rd, Rm
  1477. * LDC/2,STC/2 immediate offset & unindex: Rn
  1478. * LDC/2,STC/2 immediate pre/post-indexed: !Rn
  1479. * LDM(1/3): !Rn, register_list
  1480. * LDM(2): !Rn, !register_list
  1481. * LDR,STR,PLD immediate offset: Rd, Rn
  1482. * LDR,STR,PLD register offset: Rd, Rn, !Rm
  1483. * LDR,STR,PLD scaled register offset: Rd, !Rn, !Rm
  1484. * LDR,STR immediate pre/post-indexed: Rd, !Rn
  1485. * LDR,STR register pre/post-indexed: Rd, !Rn, !Rm
  1486. * LDR,STR scaled register pre/post-indexed: Rd, !Rn, !Rm
  1487. * LDRB,STRB immediate offset: !Rd, Rn
  1488. * LDRB,STRB register offset: !Rd, Rn, !Rm
  1489. * LDRB,STRB scaled register offset: !Rd, !Rn, !Rm
  1490. * LDRB,STRB immediate pre/post-indexed: !Rd, !Rn
  1491. * LDRB,STRB register pre/post-indexed: !Rd, !Rn, !Rm
  1492. * LDRB,STRB scaled register pre/post-indexed: !Rd, !Rn, !Rm
  1493. * LDRT,LDRBT,STRBT immediate pre/post-indexed: !Rd, !Rn
  1494. * LDRT,LDRBT,STRBT register pre/post-indexed: !Rd, !Rn, !Rm
  1495. * LDRT,LDRBT,STRBT scaled register pre/post-indexed: !Rd, !Rn, !Rm
  1496. * LDRH/SH/SB/D,STRH/SH/SB/D immediate offset: !Rd, Rn
  1497. * LDRH/SH/SB/D,STRH/SH/SB/D register offset: !Rd, Rn, !Rm
  1498. * LDRH/SH/SB/D,STRH/SH/SB/D immediate pre/post-indexed: !Rd, !Rn
  1499. * LDRH/SH/SB/D,STRH/SH/SB/D register pre/post-indexed: !Rd, !Rn, !Rm
  1500. * LDREX: !Rd, !Rn
  1501. * MCR/2: !Rd
  1502. * MCRR/2,MRRC/2: !Rd, !Rn
  1503. * MLA: !Rd, !Rn, !Rm, !Rs
  1504. * MOV: Rd
  1505. * MRC/2: !Rd (if Rd==15, only changes cond codes, not the register)
  1506. * MRS,MSR: !Rd
  1507. * MUL: !Rd, !Rm, !Rs
  1508. * PKH{BT,TB}: !Rd, !Rn, !Rm
  1509. * QDADD,[U]QADD/16/8/SUBX: !Rd, !Rm, !Rn
  1510. * QDSUB,[U]QSUB/16/8/ADDX: !Rd, !Rm, !Rn
  1511. * REV/16/SH: !Rd, !Rm
  1512. * RFE: !Rn
  1513. * {S,U}[H]ADD{16,8,SUBX},{S,U}[H]SUB{16,8,ADDX}: !Rd, !Rn, !Rm
  1514. * SEL: !Rd, !Rn, !Rm
  1515. * SMLA<x><y>,SMLA{D,W<y>},SMLSD,SMML{A,S}: !Rd, !Rn, !Rm, !Rs
  1516. * SMLAL<x><y>,SMLA{D,LD},SMLSLD,SMMULL,SMULW<y>: !RdHi, !RdLo, !Rm, !Rs
  1517. * SMMUL,SMUAD,SMUL<x><y>,SMUSD: !Rd, !Rm, !Rs
  1518. * SSAT/16: !Rd, !Rm
  1519. * STM(1/2): !Rn, register_list* (R15 in reg list not recommended)
  1520. * STRT immediate pre/post-indexed: Rd*, !Rn
  1521. * STRT register pre/post-indexed: Rd*, !Rn, !Rm
  1522. * STRT scaled register pre/post-indexed: Rd*, !Rn, !Rm
  1523. * STREX: !Rd, !Rn, !Rm
  1524. * SWP/B: !Rd, !Rn, !Rm
  1525. * {S,U}XTA{B,B16,H}: !Rd, !Rn, !Rm
  1526. * {S,U}XT{B,B16,H}: !Rd, !Rm
  1527. * UM{AA,LA,UL}L: !RdHi, !RdLo, !Rm, !Rs
  1528. * USA{D8,A8,T,T16}: !Rd, !Rm, !Rs
  1529. *
  1530. * May transfer control by writing R15 (possible mode changes or alternate
  1531. * mode accesses marked by "*"):
  1532. * ALU op (* with s-bit), B, BL, BKPT, BLX(1/2), BX, BXJ, CPS*, CPY,
  1533. * LDM(1), LDM(2/3)*, LDR, MOV, RFE*, SWI*
  1534. *
  1535. * Instructions that do not take general registers, nor transfer control:
  1536. * CDP/2, SETEND, SRS*
  1537. */