fault.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Derived from "arch/i386/mm/fault.c"
  6. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  7. *
  8. * Modified by Cort Dougan and Paul Mackerras.
  9. *
  10. * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. #include <linux/signal.h>
  18. #include <linux/sched.h>
  19. #include <linux/kernel.h>
  20. #include <linux/errno.h>
  21. #include <linux/string.h>
  22. #include <linux/types.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/mman.h>
  25. #include <linux/mm.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/kprobes.h>
  30. #include <linux/kdebug.h>
  31. #include <linux/perf_event.h>
  32. #include <linux/magic.h>
  33. #include <linux/ratelimit.h>
  34. #include <asm/firmware.h>
  35. #include <asm/page.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/mmu.h>
  38. #include <asm/mmu_context.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/siginfo.h>
  42. #include <asm/debug.h>
  43. #include <mm/mmu_decl.h>
  44. #include "icswx.h"
  45. #ifdef CONFIG_KPROBES
  46. static inline int notify_page_fault(struct pt_regs *regs)
  47. {
  48. int ret = 0;
  49. /* kprobe_running() needs smp_processor_id() */
  50. if (!user_mode(regs)) {
  51. preempt_disable();
  52. if (kprobe_running() && kprobe_fault_handler(regs, 11))
  53. ret = 1;
  54. preempt_enable();
  55. }
  56. return ret;
  57. }
  58. #else
  59. static inline int notify_page_fault(struct pt_regs *regs)
  60. {
  61. return 0;
  62. }
  63. #endif
  64. /*
  65. * Check whether the instruction at regs->nip is a store using
  66. * an update addressing form which will update r1.
  67. */
  68. static int store_updates_sp(struct pt_regs *regs)
  69. {
  70. unsigned int inst;
  71. if (get_user(inst, (unsigned int __user *)regs->nip))
  72. return 0;
  73. /* check for 1 in the rA field */
  74. if (((inst >> 16) & 0x1f) != 1)
  75. return 0;
  76. /* check major opcode */
  77. switch (inst >> 26) {
  78. case 37: /* stwu */
  79. case 39: /* stbu */
  80. case 45: /* sthu */
  81. case 53: /* stfsu */
  82. case 55: /* stfdu */
  83. return 1;
  84. case 62: /* std or stdu */
  85. return (inst & 3) == 1;
  86. case 31:
  87. /* check minor opcode */
  88. switch ((inst >> 1) & 0x3ff) {
  89. case 181: /* stdux */
  90. case 183: /* stwux */
  91. case 247: /* stbux */
  92. case 439: /* sthux */
  93. case 695: /* stfsux */
  94. case 759: /* stfdux */
  95. return 1;
  96. }
  97. }
  98. return 0;
  99. }
  100. /*
  101. * do_page_fault error handling helpers
  102. */
  103. #define MM_FAULT_RETURN 0
  104. #define MM_FAULT_CONTINUE -1
  105. #define MM_FAULT_ERR(sig) (sig)
  106. static int do_sigbus(struct pt_regs *regs, unsigned long address)
  107. {
  108. siginfo_t info;
  109. up_read(&current->mm->mmap_sem);
  110. if (user_mode(regs)) {
  111. current->thread.trap_nr = BUS_ADRERR;
  112. info.si_signo = SIGBUS;
  113. info.si_errno = 0;
  114. info.si_code = BUS_ADRERR;
  115. info.si_addr = (void __user *)address;
  116. force_sig_info(SIGBUS, &info, current);
  117. return MM_FAULT_RETURN;
  118. }
  119. return MM_FAULT_ERR(SIGBUS);
  120. }
  121. static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
  122. {
  123. /*
  124. * Pagefault was interrupted by SIGKILL. We have no reason to
  125. * continue the pagefault.
  126. */
  127. if (fatal_signal_pending(current)) {
  128. /*
  129. * If we have retry set, the mmap semaphore will have
  130. * alrady been released in __lock_page_or_retry(). Else
  131. * we release it now.
  132. */
  133. if (!(fault & VM_FAULT_RETRY))
  134. up_read(&current->mm->mmap_sem);
  135. /* Coming from kernel, we need to deal with uaccess fixups */
  136. if (user_mode(regs))
  137. return MM_FAULT_RETURN;
  138. return MM_FAULT_ERR(SIGKILL);
  139. }
  140. /* No fault: be happy */
  141. if (!(fault & VM_FAULT_ERROR))
  142. return MM_FAULT_CONTINUE;
  143. /* Out of memory */
  144. if (fault & VM_FAULT_OOM) {
  145. up_read(&current->mm->mmap_sem);
  146. /*
  147. * We ran out of memory, or some other thing happened to us that
  148. * made us unable to handle the page fault gracefully.
  149. */
  150. if (!user_mode(regs))
  151. return MM_FAULT_ERR(SIGKILL);
  152. pagefault_out_of_memory();
  153. return MM_FAULT_RETURN;
  154. }
  155. /* Bus error. x86 handles HWPOISON here, we'll add this if/when
  156. * we support the feature in HW
  157. */
  158. if (fault & VM_FAULT_SIGBUS)
  159. return do_sigbus(regs, addr);
  160. /* We don't understand the fault code, this is fatal */
  161. BUG();
  162. return MM_FAULT_CONTINUE;
  163. }
  164. /*
  165. * For 600- and 800-family processors, the error_code parameter is DSISR
  166. * for a data fault, SRR1 for an instruction fault. For 400-family processors
  167. * the error_code parameter is ESR for a data fault, 0 for an instruction
  168. * fault.
  169. * For 64-bit processors, the error_code parameter is
  170. * - DSISR for a non-SLB data access fault,
  171. * - SRR1 & 0x08000000 for a non-SLB instruction access fault
  172. * - 0 any SLB fault.
  173. *
  174. * The return value is 0 if the fault was handled, or the signal
  175. * number if this is a kernel fault that can't be handled here.
  176. */
  177. int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
  178. unsigned long error_code)
  179. {
  180. struct vm_area_struct * vma;
  181. struct mm_struct *mm = current->mm;
  182. unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
  183. int code = SEGV_MAPERR;
  184. int is_write = 0;
  185. int trap = TRAP(regs);
  186. int is_exec = trap == 0x400;
  187. int fault;
  188. #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
  189. /*
  190. * Fortunately the bit assignments in SRR1 for an instruction
  191. * fault and DSISR for a data fault are mostly the same for the
  192. * bits we are interested in. But there are some bits which
  193. * indicate errors in DSISR but can validly be set in SRR1.
  194. */
  195. if (trap == 0x400)
  196. error_code &= 0x48200000;
  197. else
  198. is_write = error_code & DSISR_ISSTORE;
  199. #else
  200. is_write = error_code & ESR_DST;
  201. #endif /* CONFIG_4xx || CONFIG_BOOKE */
  202. if (is_write)
  203. flags |= FAULT_FLAG_WRITE;
  204. #ifdef CONFIG_PPC_ICSWX
  205. /*
  206. * we need to do this early because this "data storage
  207. * interrupt" does not update the DAR/DEAR so we don't want to
  208. * look at it
  209. */
  210. if (error_code & ICSWX_DSI_UCT) {
  211. int rc = acop_handle_fault(regs, address, error_code);
  212. if (rc)
  213. return rc;
  214. }
  215. #endif /* CONFIG_PPC_ICSWX */
  216. if (notify_page_fault(regs))
  217. return 0;
  218. if (unlikely(debugger_fault_handler(regs)))
  219. return 0;
  220. /* On a kernel SLB miss we can only check for a valid exception entry */
  221. if (!user_mode(regs) && (address >= TASK_SIZE))
  222. return SIGSEGV;
  223. #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
  224. defined(CONFIG_PPC_BOOK3S_64))
  225. if (error_code & DSISR_DABRMATCH) {
  226. /* breakpoint match */
  227. do_break(regs, address, error_code);
  228. return 0;
  229. }
  230. #endif
  231. /* We restore the interrupt state now */
  232. if (!arch_irq_disabled_regs(regs))
  233. local_irq_enable();
  234. if (in_atomic() || mm == NULL) {
  235. if (!user_mode(regs))
  236. return SIGSEGV;
  237. /* in_atomic() in user mode is really bad,
  238. as is current->mm == NULL. */
  239. printk(KERN_EMERG "Page fault in user mode with "
  240. "in_atomic() = %d mm = %p\n", in_atomic(), mm);
  241. printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
  242. regs->nip, regs->msr);
  243. die("Weird page fault", regs, SIGSEGV);
  244. }
  245. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  246. /* When running in the kernel we expect faults to occur only to
  247. * addresses in user space. All other faults represent errors in the
  248. * kernel and should generate an OOPS. Unfortunately, in the case of an
  249. * erroneous fault occurring in a code path which already holds mmap_sem
  250. * we will deadlock attempting to validate the fault against the
  251. * address space. Luckily the kernel only validly references user
  252. * space from well defined areas of code, which are listed in the
  253. * exceptions table.
  254. *
  255. * As the vast majority of faults will be valid we will only perform
  256. * the source reference check when there is a possibility of a deadlock.
  257. * Attempt to lock the address space, if we cannot we then validate the
  258. * source. If this is invalid we can skip the address space check,
  259. * thus avoiding the deadlock.
  260. */
  261. if (!down_read_trylock(&mm->mmap_sem)) {
  262. if (!user_mode(regs) && !search_exception_tables(regs->nip))
  263. goto bad_area_nosemaphore;
  264. retry:
  265. down_read(&mm->mmap_sem);
  266. } else {
  267. /*
  268. * The above down_read_trylock() might have succeeded in
  269. * which case we'll have missed the might_sleep() from
  270. * down_read():
  271. */
  272. might_sleep();
  273. }
  274. vma = find_vma(mm, address);
  275. if (!vma)
  276. goto bad_area;
  277. if (vma->vm_start <= address)
  278. goto good_area;
  279. if (!(vma->vm_flags & VM_GROWSDOWN))
  280. goto bad_area;
  281. /*
  282. * N.B. The POWER/Open ABI allows programs to access up to
  283. * 288 bytes below the stack pointer.
  284. * The kernel signal delivery code writes up to about 1.5kB
  285. * below the stack pointer (r1) before decrementing it.
  286. * The exec code can write slightly over 640kB to the stack
  287. * before setting the user r1. Thus we allow the stack to
  288. * expand to 1MB without further checks.
  289. */
  290. if (address + 0x100000 < vma->vm_end) {
  291. /* get user regs even if this fault is in kernel mode */
  292. struct pt_regs *uregs = current->thread.regs;
  293. if (uregs == NULL)
  294. goto bad_area;
  295. /*
  296. * A user-mode access to an address a long way below
  297. * the stack pointer is only valid if the instruction
  298. * is one which would update the stack pointer to the
  299. * address accessed if the instruction completed,
  300. * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
  301. * (or the byte, halfword, float or double forms).
  302. *
  303. * If we don't check this then any write to the area
  304. * between the last mapped region and the stack will
  305. * expand the stack rather than segfaulting.
  306. */
  307. if (address + 2048 < uregs->gpr[1]
  308. && (!user_mode(regs) || !store_updates_sp(regs)))
  309. goto bad_area;
  310. }
  311. if (expand_stack(vma, address))
  312. goto bad_area;
  313. good_area:
  314. code = SEGV_ACCERR;
  315. #if defined(CONFIG_6xx)
  316. if (error_code & 0x95700000)
  317. /* an error such as lwarx to I/O controller space,
  318. address matching DABR, eciwx, etc. */
  319. goto bad_area;
  320. #endif /* CONFIG_6xx */
  321. #if defined(CONFIG_8xx)
  322. /* 8xx sometimes need to load a invalid/non-present TLBs.
  323. * These must be invalidated separately as linux mm don't.
  324. */
  325. if (error_code & 0x40000000) /* no translation? */
  326. _tlbil_va(address, 0, 0, 0);
  327. /* The MPC8xx seems to always set 0x80000000, which is
  328. * "undefined". Of those that can be set, this is the only
  329. * one which seems bad.
  330. */
  331. if (error_code & 0x10000000)
  332. /* Guarded storage error. */
  333. goto bad_area;
  334. #endif /* CONFIG_8xx */
  335. if (is_exec) {
  336. #ifdef CONFIG_PPC_STD_MMU
  337. /* Protection fault on exec go straight to failure on
  338. * Hash based MMUs as they either don't support per-page
  339. * execute permission, or if they do, it's handled already
  340. * at the hash level. This test would probably have to
  341. * be removed if we change the way this works to make hash
  342. * processors use the same I/D cache coherency mechanism
  343. * as embedded.
  344. */
  345. if (error_code & DSISR_PROTFAULT)
  346. goto bad_area;
  347. #endif /* CONFIG_PPC_STD_MMU */
  348. /*
  349. * Allow execution from readable areas if the MMU does not
  350. * provide separate controls over reading and executing.
  351. *
  352. * Note: That code used to not be enabled for 4xx/BookE.
  353. * It is now as I/D cache coherency for these is done at
  354. * set_pte_at() time and I see no reason why the test
  355. * below wouldn't be valid on those processors. This -may-
  356. * break programs compiled with a really old ABI though.
  357. */
  358. if (!(vma->vm_flags & VM_EXEC) &&
  359. (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
  360. !(vma->vm_flags & (VM_READ | VM_WRITE))))
  361. goto bad_area;
  362. /* a write */
  363. } else if (is_write) {
  364. if (!(vma->vm_flags & VM_WRITE))
  365. goto bad_area;
  366. /* a read */
  367. } else {
  368. /* protection fault */
  369. if (error_code & 0x08000000)
  370. goto bad_area;
  371. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  372. goto bad_area;
  373. }
  374. /*
  375. * If for any reason at all we couldn't handle the fault,
  376. * make sure we exit gracefully rather than endlessly redo
  377. * the fault.
  378. */
  379. fault = handle_mm_fault(mm, vma, address, flags);
  380. if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
  381. int rc = mm_fault_error(regs, address, fault);
  382. if (rc >= MM_FAULT_RETURN)
  383. return rc;
  384. }
  385. /*
  386. * Major/minor page fault accounting is only done on the
  387. * initial attempt. If we go through a retry, it is extremely
  388. * likely that the page will be found in page cache at that point.
  389. */
  390. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  391. if (fault & VM_FAULT_MAJOR) {
  392. current->maj_flt++;
  393. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
  394. regs, address);
  395. #ifdef CONFIG_PPC_SMLPAR
  396. if (firmware_has_feature(FW_FEATURE_CMO)) {
  397. preempt_disable();
  398. get_lppaca()->page_ins += (1 << PAGE_FACTOR);
  399. preempt_enable();
  400. }
  401. #endif /* CONFIG_PPC_SMLPAR */
  402. } else {
  403. current->min_flt++;
  404. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
  405. regs, address);
  406. }
  407. if (fault & VM_FAULT_RETRY) {
  408. /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
  409. * of starvation. */
  410. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  411. flags |= FAULT_FLAG_TRIED;
  412. goto retry;
  413. }
  414. }
  415. up_read(&mm->mmap_sem);
  416. return 0;
  417. bad_area:
  418. up_read(&mm->mmap_sem);
  419. bad_area_nosemaphore:
  420. /* User mode accesses cause a SIGSEGV */
  421. if (user_mode(regs)) {
  422. _exception(SIGSEGV, regs, code, address);
  423. return 0;
  424. }
  425. if (is_exec && (error_code & DSISR_PROTFAULT))
  426. printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
  427. " page (%lx) - exploit attempt? (uid: %d)\n",
  428. address, from_kuid(&init_user_ns, current_uid()));
  429. return SIGSEGV;
  430. }
  431. /*
  432. * bad_page_fault is called when we have a bad access from the kernel.
  433. * It is called from the DSI and ISI handlers in head.S and from some
  434. * of the procedures in traps.c.
  435. */
  436. void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
  437. {
  438. const struct exception_table_entry *entry;
  439. unsigned long *stackend;
  440. /* Are we prepared to handle this fault? */
  441. if ((entry = search_exception_tables(regs->nip)) != NULL) {
  442. regs->nip = entry->fixup;
  443. return;
  444. }
  445. /* kernel has accessed a bad area */
  446. switch (regs->trap) {
  447. case 0x300:
  448. case 0x380:
  449. printk(KERN_ALERT "Unable to handle kernel paging request for "
  450. "data at address 0x%08lx\n", regs->dar);
  451. break;
  452. case 0x400:
  453. case 0x480:
  454. printk(KERN_ALERT "Unable to handle kernel paging request for "
  455. "instruction fetch\n");
  456. break;
  457. default:
  458. printk(KERN_ALERT "Unable to handle kernel paging request for "
  459. "unknown fault\n");
  460. break;
  461. }
  462. printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
  463. regs->nip);
  464. stackend = end_of_stack(current);
  465. if (current != &init_task && *stackend != STACK_END_MAGIC)
  466. printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
  467. die("Kernel access of bad area", regs, sig);
  468. }