fault.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593
  1. /* $Id: fault.c,v 1.122 2001/11/17 07:19:26 davem Exp $
  2. * fault.c: Page fault handlers for the Sparc.
  3. *
  4. * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  6. * Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7. */
  8. #include <asm/head.h>
  9. #include <linux/string.h>
  10. #include <linux/types.h>
  11. #include <linux/sched.h>
  12. #include <linux/ptrace.h>
  13. #include <linux/mman.h>
  14. #include <linux/threads.h>
  15. #include <linux/kernel.h>
  16. #include <linux/signal.h>
  17. #include <linux/mm.h>
  18. #include <linux/smp.h>
  19. #include <linux/smp_lock.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/module.h>
  22. #include <asm/system.h>
  23. #include <asm/page.h>
  24. #include <asm/pgtable.h>
  25. #include <asm/memreg.h>
  26. #include <asm/openprom.h>
  27. #include <asm/oplib.h>
  28. #include <asm/smp.h>
  29. #include <asm/traps.h>
  30. #include <asm/kdebug.h>
  31. #include <asm/uaccess.h>
  32. extern int prom_node_root;
  33. /* At boot time we determine these two values necessary for setting
  34. * up the segment maps and page table entries (pte's).
  35. */
  36. int num_segmaps, num_contexts;
  37. int invalid_segment;
  38. /* various Virtual Address Cache parameters we find at boot time... */
  39. int vac_size, vac_linesize, vac_do_hw_vac_flushes;
  40. int vac_entries_per_context, vac_entries_per_segment;
  41. int vac_entries_per_page;
  42. /* Nice, simple, prom library does all the sweating for us. ;) */
  43. int prom_probe_memory (void)
  44. {
  45. register struct linux_mlist_v0 *mlist;
  46. register unsigned long bytes, base_paddr, tally;
  47. register int i;
  48. i = 0;
  49. mlist= *prom_meminfo()->v0_available;
  50. bytes = tally = mlist->num_bytes;
  51. base_paddr = (unsigned long) mlist->start_adr;
  52. sp_banks[0].base_addr = base_paddr;
  53. sp_banks[0].num_bytes = bytes;
  54. while (mlist->theres_more != (void *) 0){
  55. i++;
  56. mlist = mlist->theres_more;
  57. bytes = mlist->num_bytes;
  58. tally += bytes;
  59. if (i > SPARC_PHYS_BANKS-1) {
  60. printk ("The machine has more banks than "
  61. "this kernel can support\n"
  62. "Increase the SPARC_PHYS_BANKS "
  63. "setting (currently %d)\n",
  64. SPARC_PHYS_BANKS);
  65. i = SPARC_PHYS_BANKS-1;
  66. break;
  67. }
  68. sp_banks[i].base_addr = (unsigned long) mlist->start_adr;
  69. sp_banks[i].num_bytes = mlist->num_bytes;
  70. }
  71. i++;
  72. sp_banks[i].base_addr = 0xdeadbeef;
  73. sp_banks[i].num_bytes = 0;
  74. /* Now mask all bank sizes on a page boundary, it is all we can
  75. * use anyways.
  76. */
  77. for(i=0; sp_banks[i].num_bytes != 0; i++)
  78. sp_banks[i].num_bytes &= PAGE_MASK;
  79. return tally;
  80. }
  81. /* Traverse the memory lists in the prom to see how much physical we
  82. * have.
  83. */
  84. unsigned long
  85. probe_memory(void)
  86. {
  87. int total;
  88. total = prom_probe_memory();
  89. /* Oh man, much nicer, keep the dirt in promlib. */
  90. return total;
  91. }
  92. extern void sun4c_complete_all_stores(void);
  93. /* Whee, a level 15 NMI interrupt memory error. Let's have fun... */
  94. asmlinkage void sparc_lvl15_nmi(struct pt_regs *regs, unsigned long serr,
  95. unsigned long svaddr, unsigned long aerr,
  96. unsigned long avaddr)
  97. {
  98. sun4c_complete_all_stores();
  99. printk("FAULT: NMI received\n");
  100. printk("SREGS: Synchronous Error %08lx\n", serr);
  101. printk(" Synchronous Vaddr %08lx\n", svaddr);
  102. printk(" Asynchronous Error %08lx\n", aerr);
  103. printk(" Asynchronous Vaddr %08lx\n", avaddr);
  104. if (sun4c_memerr_reg)
  105. printk(" Memory Parity Error %08lx\n", *sun4c_memerr_reg);
  106. printk("REGISTER DUMP:\n");
  107. show_regs(regs);
  108. prom_halt();
  109. }
  110. static void unhandled_fault(unsigned long, struct task_struct *,
  111. struct pt_regs *) __attribute__ ((noreturn));
  112. static void unhandled_fault(unsigned long address, struct task_struct *tsk,
  113. struct pt_regs *regs)
  114. {
  115. if((unsigned long) address < PAGE_SIZE) {
  116. printk(KERN_ALERT
  117. "Unable to handle kernel NULL pointer dereference\n");
  118. } else {
  119. printk(KERN_ALERT "Unable to handle kernel paging request "
  120. "at virtual address %08lx\n", address);
  121. }
  122. printk(KERN_ALERT "tsk->{mm,active_mm}->context = %08lx\n",
  123. (tsk->mm ? tsk->mm->context : tsk->active_mm->context));
  124. printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %08lx\n",
  125. (tsk->mm ? (unsigned long) tsk->mm->pgd :
  126. (unsigned long) tsk->active_mm->pgd));
  127. die_if_kernel("Oops", regs);
  128. }
  129. asmlinkage int lookup_fault(unsigned long pc, unsigned long ret_pc,
  130. unsigned long address)
  131. {
  132. struct pt_regs regs;
  133. unsigned long g2;
  134. unsigned int insn;
  135. int i;
  136. i = search_extables_range(ret_pc, &g2);
  137. switch (i) {
  138. case 3:
  139. /* load & store will be handled by fixup */
  140. return 3;
  141. case 1:
  142. /* store will be handled by fixup, load will bump out */
  143. /* for _to_ macros */
  144. insn = *((unsigned int *) pc);
  145. if ((insn >> 21) & 1)
  146. return 1;
  147. break;
  148. case 2:
  149. /* load will be handled by fixup, store will bump out */
  150. /* for _from_ macros */
  151. insn = *((unsigned int *) pc);
  152. if (!((insn >> 21) & 1) || ((insn>>19)&0x3f) == 15)
  153. return 2;
  154. break;
  155. default:
  156. break;
  157. };
  158. memset(&regs, 0, sizeof (regs));
  159. regs.pc = pc;
  160. regs.npc = pc + 4;
  161. __asm__ __volatile__(
  162. "rd %%psr, %0\n\t"
  163. "nop\n\t"
  164. "nop\n\t"
  165. "nop\n" : "=r" (regs.psr));
  166. unhandled_fault(address, current, &regs);
  167. /* Not reached */
  168. return 0;
  169. }
  170. extern unsigned long safe_compute_effective_address(struct pt_regs *,
  171. unsigned int);
  172. static unsigned long compute_si_addr(struct pt_regs *regs, int text_fault)
  173. {
  174. unsigned int insn;
  175. if (text_fault)
  176. return regs->pc;
  177. if (regs->psr & PSR_PS) {
  178. insn = *(unsigned int *) regs->pc;
  179. } else {
  180. __get_user(insn, (unsigned int *) regs->pc);
  181. }
  182. return safe_compute_effective_address(regs, insn);
  183. }
  184. asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write,
  185. unsigned long address)
  186. {
  187. struct vm_area_struct *vma;
  188. struct task_struct *tsk = current;
  189. struct mm_struct *mm = tsk->mm;
  190. unsigned int fixup;
  191. unsigned long g2;
  192. siginfo_t info;
  193. int from_user = !(regs->psr & PSR_PS);
  194. if(text_fault)
  195. address = regs->pc;
  196. /*
  197. * We fault-in kernel-space virtual memory on-demand. The
  198. * 'reference' page table is init_mm.pgd.
  199. *
  200. * NOTE! We MUST NOT take any locks for this case. We may
  201. * be in an interrupt or a critical region, and should
  202. * only copy the information from the master page table,
  203. * nothing more.
  204. */
  205. if (!ARCH_SUN4C_SUN4 && address >= TASK_SIZE)
  206. goto vmalloc_fault;
  207. info.si_code = SEGV_MAPERR;
  208. /*
  209. * If we're in an interrupt or have no user
  210. * context, we must not take the fault..
  211. */
  212. if (in_atomic() || !mm)
  213. goto no_context;
  214. down_read(&mm->mmap_sem);
  215. /*
  216. * The kernel referencing a bad kernel pointer can lock up
  217. * a sun4c machine completely, so we must attempt recovery.
  218. */
  219. if(!from_user && address >= PAGE_OFFSET)
  220. goto bad_area;
  221. vma = find_vma(mm, address);
  222. if(!vma)
  223. goto bad_area;
  224. if(vma->vm_start <= address)
  225. goto good_area;
  226. if(!(vma->vm_flags & VM_GROWSDOWN))
  227. goto bad_area;
  228. if(expand_stack(vma, address))
  229. goto bad_area;
  230. /*
  231. * Ok, we have a good vm_area for this memory access, so
  232. * we can handle it..
  233. */
  234. good_area:
  235. info.si_code = SEGV_ACCERR;
  236. if(write) {
  237. if(!(vma->vm_flags & VM_WRITE))
  238. goto bad_area;
  239. } else {
  240. /* Allow reads even for write-only mappings */
  241. if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
  242. goto bad_area;
  243. }
  244. /*
  245. * If for any reason at all we couldn't handle the fault,
  246. * make sure we exit gracefully rather than endlessly redo
  247. * the fault.
  248. */
  249. switch (handle_mm_fault(mm, vma, address, write)) {
  250. case VM_FAULT_SIGBUS:
  251. goto do_sigbus;
  252. case VM_FAULT_OOM:
  253. goto out_of_memory;
  254. case VM_FAULT_MAJOR:
  255. current->maj_flt++;
  256. break;
  257. case VM_FAULT_MINOR:
  258. default:
  259. current->min_flt++;
  260. break;
  261. }
  262. up_read(&mm->mmap_sem);
  263. return;
  264. /*
  265. * Something tried to access memory that isn't in our memory map..
  266. * Fix it, but check if it's kernel or user first..
  267. */
  268. bad_area:
  269. up_read(&mm->mmap_sem);
  270. bad_area_nosemaphore:
  271. /* User mode accesses just cause a SIGSEGV */
  272. if(from_user) {
  273. #if 0
  274. printk("Fault whee %s [%d]: segfaults at %08lx pc=%08lx\n",
  275. tsk->comm, tsk->pid, address, regs->pc);
  276. #endif
  277. info.si_signo = SIGSEGV;
  278. info.si_errno = 0;
  279. /* info.si_code set above to make clear whether
  280. this was a SEGV_MAPERR or SEGV_ACCERR fault. */
  281. info.si_addr = (void __user *)compute_si_addr(regs, text_fault);
  282. info.si_trapno = 0;
  283. force_sig_info (SIGSEGV, &info, tsk);
  284. return;
  285. }
  286. /* Is this in ex_table? */
  287. no_context:
  288. g2 = regs->u_regs[UREG_G2];
  289. if (!from_user && (fixup = search_extables_range(regs->pc, &g2))) {
  290. if (fixup > 10) { /* Values below are reserved for other things */
  291. extern const unsigned __memset_start[];
  292. extern const unsigned __memset_end[];
  293. extern const unsigned __csum_partial_copy_start[];
  294. extern const unsigned __csum_partial_copy_end[];
  295. #ifdef DEBUG_EXCEPTIONS
  296. printk("Exception: PC<%08lx> faddr<%08lx>\n", regs->pc, address);
  297. printk("EX_TABLE: insn<%08lx> fixup<%08x> g2<%08lx>\n",
  298. regs->pc, fixup, g2);
  299. #endif
  300. if ((regs->pc >= (unsigned long)__memset_start &&
  301. regs->pc < (unsigned long)__memset_end) ||
  302. (regs->pc >= (unsigned long)__csum_partial_copy_start &&
  303. regs->pc < (unsigned long)__csum_partial_copy_end)) {
  304. regs->u_regs[UREG_I4] = address;
  305. regs->u_regs[UREG_I5] = regs->pc;
  306. }
  307. regs->u_regs[UREG_G2] = g2;
  308. regs->pc = fixup;
  309. regs->npc = regs->pc + 4;
  310. return;
  311. }
  312. }
  313. unhandled_fault (address, tsk, regs);
  314. do_exit(SIGKILL);
  315. /*
  316. * We ran out of memory, or some other thing happened to us that made
  317. * us unable to handle the page fault gracefully.
  318. */
  319. out_of_memory:
  320. up_read(&mm->mmap_sem);
  321. printk("VM: killing process %s\n", tsk->comm);
  322. if (from_user)
  323. do_exit(SIGKILL);
  324. goto no_context;
  325. do_sigbus:
  326. up_read(&mm->mmap_sem);
  327. info.si_signo = SIGBUS;
  328. info.si_errno = 0;
  329. info.si_code = BUS_ADRERR;
  330. info.si_addr = (void __user *) compute_si_addr(regs, text_fault);
  331. info.si_trapno = 0;
  332. force_sig_info (SIGBUS, &info, tsk);
  333. if (!from_user)
  334. goto no_context;
  335. vmalloc_fault:
  336. {
  337. /*
  338. * Synchronize this task's top level page-table
  339. * with the 'reference' page table.
  340. */
  341. int offset = pgd_index(address);
  342. pgd_t *pgd, *pgd_k;
  343. pmd_t *pmd, *pmd_k;
  344. pgd = tsk->active_mm->pgd + offset;
  345. pgd_k = init_mm.pgd + offset;
  346. if (!pgd_present(*pgd)) {
  347. if (!pgd_present(*pgd_k))
  348. goto bad_area_nosemaphore;
  349. pgd_val(*pgd) = pgd_val(*pgd_k);
  350. return;
  351. }
  352. pmd = pmd_offset(pgd, address);
  353. pmd_k = pmd_offset(pgd_k, address);
  354. if (pmd_present(*pmd) || !pmd_present(*pmd_k))
  355. goto bad_area_nosemaphore;
  356. *pmd = *pmd_k;
  357. return;
  358. }
  359. }
  360. asmlinkage void do_sun4c_fault(struct pt_regs *regs, int text_fault, int write,
  361. unsigned long address)
  362. {
  363. extern void sun4c_update_mmu_cache(struct vm_area_struct *,
  364. unsigned long,pte_t);
  365. extern pte_t *sun4c_pte_offset_kernel(pmd_t *,unsigned long);
  366. struct task_struct *tsk = current;
  367. struct mm_struct *mm = tsk->mm;
  368. pgd_t *pgdp;
  369. pte_t *ptep;
  370. if (text_fault) {
  371. address = regs->pc;
  372. } else if (!write &&
  373. !(regs->psr & PSR_PS)) {
  374. unsigned int insn, __user *ip;
  375. ip = (unsigned int __user *)regs->pc;
  376. if (!get_user(insn, ip)) {
  377. if ((insn & 0xc1680000) == 0xc0680000)
  378. write = 1;
  379. }
  380. }
  381. if (!mm) {
  382. /* We are oopsing. */
  383. do_sparc_fault(regs, text_fault, write, address);
  384. BUG(); /* P3 Oops already, you bitch */
  385. }
  386. pgdp = pgd_offset(mm, address);
  387. ptep = sun4c_pte_offset_kernel((pmd_t *) pgdp, address);
  388. if (pgd_val(*pgdp)) {
  389. if (write) {
  390. if ((pte_val(*ptep) & (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT))
  391. == (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_PRESENT)) {
  392. unsigned long flags;
  393. *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED |
  394. _SUN4C_PAGE_MODIFIED |
  395. _SUN4C_PAGE_VALID |
  396. _SUN4C_PAGE_DIRTY);
  397. local_irq_save(flags);
  398. if (sun4c_get_segmap(address) != invalid_segment) {
  399. sun4c_put_pte(address, pte_val(*ptep));
  400. local_irq_restore(flags);
  401. return;
  402. }
  403. local_irq_restore(flags);
  404. }
  405. } else {
  406. if ((pte_val(*ptep) & (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT))
  407. == (_SUN4C_PAGE_READ|_SUN4C_PAGE_PRESENT)) {
  408. unsigned long flags;
  409. *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_ACCESSED |
  410. _SUN4C_PAGE_VALID);
  411. local_irq_save(flags);
  412. if (sun4c_get_segmap(address) != invalid_segment) {
  413. sun4c_put_pte(address, pte_val(*ptep));
  414. local_irq_restore(flags);
  415. return;
  416. }
  417. local_irq_restore(flags);
  418. }
  419. }
  420. }
  421. /* This conditional is 'interesting'. */
  422. if (pgd_val(*pgdp) && !(write && !(pte_val(*ptep) & _SUN4C_PAGE_WRITE))
  423. && (pte_val(*ptep) & _SUN4C_PAGE_VALID))
  424. /* Note: It is safe to not grab the MMAP semaphore here because
  425. * we know that update_mmu_cache() will not sleep for
  426. * any reason (at least not in the current implementation)
  427. * and therefore there is no danger of another thread getting
  428. * on the CPU and doing a shrink_mmap() on this vma.
  429. */
  430. sun4c_update_mmu_cache (find_vma(current->mm, address), address,
  431. *ptep);
  432. else
  433. do_sparc_fault(regs, text_fault, write, address);
  434. }
  435. /* This always deals with user addresses. */
  436. inline void force_user_fault(unsigned long address, int write)
  437. {
  438. struct vm_area_struct *vma;
  439. struct task_struct *tsk = current;
  440. struct mm_struct *mm = tsk->mm;
  441. siginfo_t info;
  442. info.si_code = SEGV_MAPERR;
  443. #if 0
  444. printk("wf<pid=%d,wr=%d,addr=%08lx>\n",
  445. tsk->pid, write, address);
  446. #endif
  447. down_read(&mm->mmap_sem);
  448. vma = find_vma(mm, address);
  449. if(!vma)
  450. goto bad_area;
  451. if(vma->vm_start <= address)
  452. goto good_area;
  453. if(!(vma->vm_flags & VM_GROWSDOWN))
  454. goto bad_area;
  455. if(expand_stack(vma, address))
  456. goto bad_area;
  457. good_area:
  458. info.si_code = SEGV_ACCERR;
  459. if(write) {
  460. if(!(vma->vm_flags & VM_WRITE))
  461. goto bad_area;
  462. } else {
  463. if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
  464. goto bad_area;
  465. }
  466. switch (handle_mm_fault(mm, vma, address, write)) {
  467. case VM_FAULT_SIGBUS:
  468. case VM_FAULT_OOM:
  469. goto do_sigbus;
  470. }
  471. up_read(&mm->mmap_sem);
  472. return;
  473. bad_area:
  474. up_read(&mm->mmap_sem);
  475. #if 0
  476. printk("Window whee %s [%d]: segfaults at %08lx\n",
  477. tsk->comm, tsk->pid, address);
  478. #endif
  479. info.si_signo = SIGSEGV;
  480. info.si_errno = 0;
  481. /* info.si_code set above to make clear whether
  482. this was a SEGV_MAPERR or SEGV_ACCERR fault. */
  483. info.si_addr = (void __user *) address;
  484. info.si_trapno = 0;
  485. force_sig_info (SIGSEGV, &info, tsk);
  486. return;
  487. do_sigbus:
  488. up_read(&mm->mmap_sem);
  489. info.si_signo = SIGBUS;
  490. info.si_errno = 0;
  491. info.si_code = BUS_ADRERR;
  492. info.si_addr = (void __user *) address;
  493. info.si_trapno = 0;
  494. force_sig_info (SIGBUS, &info, tsk);
  495. }
  496. void window_overflow_fault(void)
  497. {
  498. unsigned long sp;
  499. sp = current_thread_info()->rwbuf_stkptrs[0];
  500. if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
  501. force_user_fault(sp + 0x38, 1);
  502. force_user_fault(sp, 1);
  503. }
  504. void window_underflow_fault(unsigned long sp)
  505. {
  506. if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
  507. force_user_fault(sp + 0x38, 0);
  508. force_user_fault(sp, 0);
  509. }
  510. void window_ret_fault(struct pt_regs *regs)
  511. {
  512. unsigned long sp;
  513. sp = regs->u_regs[UREG_FP];
  514. if(((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
  515. force_user_fault(sp + 0x38, 0);
  516. force_user_fault(sp, 0);
  517. }