eeprom.c 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710
  1. /*
  2. * Copyright (c) 2008 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. static void ath9k_hw_analog_shift_rmw(struct ath_hw *ah,
  18. u32 reg, u32 mask,
  19. u32 shift, u32 val)
  20. {
  21. u32 regVal;
  22. regVal = REG_READ(ah, reg) & ~mask;
  23. regVal |= (val << shift) & mask;
  24. REG_WRITE(ah, reg, regVal);
  25. if (ah->config.analog_shiftreg)
  26. udelay(100);
  27. return;
  28. }
  29. static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
  30. {
  31. if (fbin == AR5416_BCHAN_UNUSED)
  32. return fbin;
  33. return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
  34. }
  35. static inline int16_t ath9k_hw_interpolate(u16 target,
  36. u16 srcLeft, u16 srcRight,
  37. int16_t targetLeft,
  38. int16_t targetRight)
  39. {
  40. int16_t rv;
  41. if (srcRight == srcLeft) {
  42. rv = targetLeft;
  43. } else {
  44. rv = (int16_t) (((target - srcLeft) * targetRight +
  45. (srcRight - target) * targetLeft) /
  46. (srcRight - srcLeft));
  47. }
  48. return rv;
  49. }
  50. static inline bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList,
  51. u16 listSize, u16 *indexL,
  52. u16 *indexR)
  53. {
  54. u16 i;
  55. if (target <= pList[0]) {
  56. *indexL = *indexR = 0;
  57. return true;
  58. }
  59. if (target >= pList[listSize - 1]) {
  60. *indexL = *indexR = (u16) (listSize - 1);
  61. return true;
  62. }
  63. for (i = 0; i < listSize - 1; i++) {
  64. if (pList[i] == target) {
  65. *indexL = *indexR = i;
  66. return true;
  67. }
  68. if (target < pList[i + 1]) {
  69. *indexL = i;
  70. *indexR = (u16) (i + 1);
  71. return false;
  72. }
  73. }
  74. return false;
  75. }
  76. static inline bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
  77. {
  78. struct ath_softc *sc = ah->ah_sc;
  79. return sc->bus_ops->eeprom_read(ah, off, data);
  80. }
  81. static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
  82. u8 *pVpdList, u16 numIntercepts,
  83. u8 *pRetVpdList)
  84. {
  85. u16 i, k;
  86. u8 currPwr = pwrMin;
  87. u16 idxL = 0, idxR = 0;
  88. for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
  89. ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
  90. numIntercepts, &(idxL),
  91. &(idxR));
  92. if (idxR < 1)
  93. idxR = 1;
  94. if (idxL == numIntercepts - 1)
  95. idxL = (u16) (numIntercepts - 2);
  96. if (pPwrList[idxL] == pPwrList[idxR])
  97. k = pVpdList[idxL];
  98. else
  99. k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
  100. (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
  101. (pPwrList[idxR] - pPwrList[idxL]));
  102. pRetVpdList[i] = (u8) k;
  103. currPwr += 2;
  104. }
  105. return true;
  106. }
  107. static void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
  108. struct ath9k_channel *chan,
  109. struct cal_target_power_leg *powInfo,
  110. u16 numChannels,
  111. struct cal_target_power_leg *pNewPower,
  112. u16 numRates, bool isExtTarget)
  113. {
  114. struct chan_centers centers;
  115. u16 clo, chi;
  116. int i;
  117. int matchIndex = -1, lowIndex = -1;
  118. u16 freq;
  119. ath9k_hw_get_channel_centers(ah, chan, &centers);
  120. freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
  121. if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
  122. IS_CHAN_2GHZ(chan))) {
  123. matchIndex = 0;
  124. } else {
  125. for (i = 0; (i < numChannels) &&
  126. (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
  127. if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
  128. IS_CHAN_2GHZ(chan))) {
  129. matchIndex = i;
  130. break;
  131. } else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
  132. IS_CHAN_2GHZ(chan))) &&
  133. (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
  134. IS_CHAN_2GHZ(chan)))) {
  135. lowIndex = i - 1;
  136. break;
  137. }
  138. }
  139. if ((matchIndex == -1) && (lowIndex == -1))
  140. matchIndex = i - 1;
  141. }
  142. if (matchIndex != -1) {
  143. *pNewPower = powInfo[matchIndex];
  144. } else {
  145. clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
  146. IS_CHAN_2GHZ(chan));
  147. chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
  148. IS_CHAN_2GHZ(chan));
  149. for (i = 0; i < numRates; i++) {
  150. pNewPower->tPow2x[i] =
  151. (u8)ath9k_hw_interpolate(freq, clo, chi,
  152. powInfo[lowIndex].tPow2x[i],
  153. powInfo[lowIndex + 1].tPow2x[i]);
  154. }
  155. }
  156. }
  157. static void ath9k_hw_get_target_powers(struct ath_hw *ah,
  158. struct ath9k_channel *chan,
  159. struct cal_target_power_ht *powInfo,
  160. u16 numChannels,
  161. struct cal_target_power_ht *pNewPower,
  162. u16 numRates, bool isHt40Target)
  163. {
  164. struct chan_centers centers;
  165. u16 clo, chi;
  166. int i;
  167. int matchIndex = -1, lowIndex = -1;
  168. u16 freq;
  169. ath9k_hw_get_channel_centers(ah, chan, &centers);
  170. freq = isHt40Target ? centers.synth_center : centers.ctl_center;
  171. if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
  172. matchIndex = 0;
  173. } else {
  174. for (i = 0; (i < numChannels) &&
  175. (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
  176. if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
  177. IS_CHAN_2GHZ(chan))) {
  178. matchIndex = i;
  179. break;
  180. } else
  181. if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
  182. IS_CHAN_2GHZ(chan))) &&
  183. (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
  184. IS_CHAN_2GHZ(chan)))) {
  185. lowIndex = i - 1;
  186. break;
  187. }
  188. }
  189. if ((matchIndex == -1) && (lowIndex == -1))
  190. matchIndex = i - 1;
  191. }
  192. if (matchIndex != -1) {
  193. *pNewPower = powInfo[matchIndex];
  194. } else {
  195. clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
  196. IS_CHAN_2GHZ(chan));
  197. chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
  198. IS_CHAN_2GHZ(chan));
  199. for (i = 0; i < numRates; i++) {
  200. pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
  201. clo, chi,
  202. powInfo[lowIndex].tPow2x[i],
  203. powInfo[lowIndex + 1].tPow2x[i]);
  204. }
  205. }
  206. }
  207. static u16 ath9k_hw_get_max_edge_power(u16 freq,
  208. struct cal_ctl_edges *pRdEdgesPower,
  209. bool is2GHz, int num_band_edges)
  210. {
  211. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  212. int i;
  213. for (i = 0; (i < num_band_edges) &&
  214. (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
  215. if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
  216. twiceMaxEdgePower = pRdEdgesPower[i].tPower;
  217. break;
  218. } else if ((i > 0) &&
  219. (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
  220. is2GHz))) {
  221. if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
  222. is2GHz) < freq &&
  223. pRdEdgesPower[i - 1].flag) {
  224. twiceMaxEdgePower =
  225. pRdEdgesPower[i - 1].tPower;
  226. }
  227. break;
  228. }
  229. }
  230. return twiceMaxEdgePower;
  231. }
  232. /****************************************/
  233. /* EEPROM Operations for 4K sized cards */
  234. /****************************************/
  235. static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
  236. {
  237. return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
  238. }
  239. static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
  240. {
  241. return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
  242. }
  243. static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  244. {
  245. #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  246. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  247. u16 *eep_data;
  248. int addr, eep_start_loc = 0;
  249. eep_start_loc = 64;
  250. if (!ath9k_hw_use_flash(ah)) {
  251. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  252. "Reading from EEPROM, not flash\n");
  253. }
  254. eep_data = (u16 *)eep;
  255. for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
  256. if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
  257. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  258. "Unable to read eeprom region \n");
  259. return false;
  260. }
  261. eep_data++;
  262. }
  263. return true;
  264. #undef SIZE_EEPROM_4K
  265. }
  266. static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
  267. {
  268. #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  269. struct ar5416_eeprom_4k *eep =
  270. (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
  271. u16 *eepdata, temp, magic, magic2;
  272. u32 sum = 0, el;
  273. bool need_swap = false;
  274. int i, addr;
  275. if (!ath9k_hw_use_flash(ah)) {
  276. if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
  277. &magic)) {
  278. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  279. "Reading Magic # failed\n");
  280. return false;
  281. }
  282. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  283. "Read Magic = 0x%04X\n", magic);
  284. if (magic != AR5416_EEPROM_MAGIC) {
  285. magic2 = swab16(magic);
  286. if (magic2 == AR5416_EEPROM_MAGIC) {
  287. need_swap = true;
  288. eepdata = (u16 *) (&ah->eeprom);
  289. for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
  290. temp = swab16(*eepdata);
  291. *eepdata = temp;
  292. eepdata++;
  293. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  294. "0x%04X ", *eepdata);
  295. if (((addr + 1) % 6) == 0)
  296. DPRINTF(ah->ah_sc,
  297. ATH_DBG_EEPROM, "\n");
  298. }
  299. } else {
  300. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  301. "Invalid EEPROM Magic. "
  302. "endianness mismatch.\n");
  303. return -EINVAL;
  304. }
  305. }
  306. }
  307. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
  308. need_swap ? "True" : "False");
  309. if (need_swap)
  310. el = swab16(ah->eeprom.map4k.baseEepHeader.length);
  311. else
  312. el = ah->eeprom.map4k.baseEepHeader.length;
  313. if (el > sizeof(struct ar5416_eeprom_def))
  314. el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
  315. else
  316. el = el / sizeof(u16);
  317. eepdata = (u16 *)(&ah->eeprom);
  318. for (i = 0; i < el; i++)
  319. sum ^= *eepdata++;
  320. if (need_swap) {
  321. u32 integer;
  322. u16 word;
  323. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  324. "EEPROM Endianness is not native.. Changing \n");
  325. word = swab16(eep->baseEepHeader.length);
  326. eep->baseEepHeader.length = word;
  327. word = swab16(eep->baseEepHeader.checksum);
  328. eep->baseEepHeader.checksum = word;
  329. word = swab16(eep->baseEepHeader.version);
  330. eep->baseEepHeader.version = word;
  331. word = swab16(eep->baseEepHeader.regDmn[0]);
  332. eep->baseEepHeader.regDmn[0] = word;
  333. word = swab16(eep->baseEepHeader.regDmn[1]);
  334. eep->baseEepHeader.regDmn[1] = word;
  335. word = swab16(eep->baseEepHeader.rfSilent);
  336. eep->baseEepHeader.rfSilent = word;
  337. word = swab16(eep->baseEepHeader.blueToothOptions);
  338. eep->baseEepHeader.blueToothOptions = word;
  339. word = swab16(eep->baseEepHeader.deviceCap);
  340. eep->baseEepHeader.deviceCap = word;
  341. integer = swab32(eep->modalHeader.antCtrlCommon);
  342. eep->modalHeader.antCtrlCommon = integer;
  343. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  344. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  345. eep->modalHeader.antCtrlChain[i] = integer;
  346. }
  347. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  348. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  349. eep->modalHeader.spurChans[i].spurChan = word;
  350. }
  351. }
  352. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
  353. ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  354. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  355. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  356. sum, ah->eep_ops->get_eeprom_ver(ah));
  357. return -EINVAL;
  358. }
  359. return 0;
  360. #undef EEPROM_4K_SIZE
  361. }
  362. static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
  363. enum eeprom_param param)
  364. {
  365. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  366. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  367. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  368. switch (param) {
  369. case EEP_NFTHRESH_2:
  370. return pModal[1].noiseFloorThreshCh[0];
  371. case AR_EEPROM_MAC(0):
  372. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  373. case AR_EEPROM_MAC(1):
  374. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  375. case AR_EEPROM_MAC(2):
  376. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  377. case EEP_REG_0:
  378. return pBase->regDmn[0];
  379. case EEP_REG_1:
  380. return pBase->regDmn[1];
  381. case EEP_OP_CAP:
  382. return pBase->deviceCap;
  383. case EEP_OP_MODE:
  384. return pBase->opCapFlags;
  385. case EEP_RF_SILENT:
  386. return pBase->rfSilent;
  387. case EEP_OB_2:
  388. return pModal->ob_01;
  389. case EEP_DB_2:
  390. return pModal->db1_01;
  391. case EEP_MINOR_REV:
  392. return pBase->version & AR5416_EEP_VER_MINOR_MASK;
  393. case EEP_TX_MASK:
  394. return pBase->txMask;
  395. case EEP_RX_MASK:
  396. return pBase->rxMask;
  397. default:
  398. return 0;
  399. }
  400. }
  401. static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
  402. struct ath9k_channel *chan,
  403. struct cal_data_per_freq_4k *pRawDataSet,
  404. u8 *bChans, u16 availPiers,
  405. u16 tPdGainOverlap, int16_t *pMinCalPower,
  406. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  407. u16 numXpdGains)
  408. {
  409. #define TMP_VAL_VPD_TABLE \
  410. ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
  411. int i, j, k;
  412. int16_t ss;
  413. u16 idxL = 0, idxR = 0, numPiers;
  414. static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
  415. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  416. static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
  417. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  418. static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
  419. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  420. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  421. u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  422. u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  423. int16_t vpdStep;
  424. int16_t tmpVal;
  425. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  426. bool match;
  427. int16_t minDelta = 0;
  428. struct chan_centers centers;
  429. #define PD_GAIN_BOUNDARY_DEFAULT 58;
  430. ath9k_hw_get_channel_centers(ah, chan, &centers);
  431. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  432. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  433. break;
  434. }
  435. match = ath9k_hw_get_lower_upper_index(
  436. (u8)FREQ2FBIN(centers.synth_center,
  437. IS_CHAN_2GHZ(chan)), bChans, numPiers,
  438. &idxL, &idxR);
  439. if (match) {
  440. for (i = 0; i < numXpdGains; i++) {
  441. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  442. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  443. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  444. pRawDataSet[idxL].pwrPdg[i],
  445. pRawDataSet[idxL].vpdPdg[i],
  446. AR5416_EEP4K_PD_GAIN_ICEPTS,
  447. vpdTableI[i]);
  448. }
  449. } else {
  450. for (i = 0; i < numXpdGains; i++) {
  451. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  452. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  453. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  454. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  455. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  456. maxPwrT4[i] =
  457. min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
  458. pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
  459. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  460. pPwrL, pVpdL,
  461. AR5416_EEP4K_PD_GAIN_ICEPTS,
  462. vpdTableL[i]);
  463. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  464. pPwrR, pVpdR,
  465. AR5416_EEP4K_PD_GAIN_ICEPTS,
  466. vpdTableR[i]);
  467. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  468. vpdTableI[i][j] =
  469. (u8)(ath9k_hw_interpolate((u16)
  470. FREQ2FBIN(centers.
  471. synth_center,
  472. IS_CHAN_2GHZ
  473. (chan)),
  474. bChans[idxL], bChans[idxR],
  475. vpdTableL[i][j], vpdTableR[i][j]));
  476. }
  477. }
  478. }
  479. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  480. k = 0;
  481. for (i = 0; i < numXpdGains; i++) {
  482. if (i == (numXpdGains - 1))
  483. pPdGainBoundaries[i] =
  484. (u16)(maxPwrT4[i] / 2);
  485. else
  486. pPdGainBoundaries[i] =
  487. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  488. pPdGainBoundaries[i] =
  489. min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  490. if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
  491. minDelta = pPdGainBoundaries[0] - 23;
  492. pPdGainBoundaries[0] = 23;
  493. } else {
  494. minDelta = 0;
  495. }
  496. if (i == 0) {
  497. if (AR_SREV_9280_10_OR_LATER(ah))
  498. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  499. else
  500. ss = 0;
  501. } else {
  502. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  503. (minPwrT4[i] / 2)) -
  504. tPdGainOverlap + 1 + minDelta);
  505. }
  506. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  507. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  508. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  509. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  510. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  511. ss++;
  512. }
  513. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  514. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  515. (minPwrT4[i] / 2));
  516. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  517. tgtIndex : sizeCurrVpdTable;
  518. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
  519. pPDADCValues[k++] = vpdTableI[i][ss++];
  520. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  521. vpdTableI[i][sizeCurrVpdTable - 2]);
  522. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  523. if (tgtIndex > maxIndex) {
  524. while ((ss <= tgtIndex) &&
  525. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  526. tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
  527. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  528. 255 : tmpVal);
  529. ss++;
  530. }
  531. }
  532. }
  533. while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
  534. pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
  535. i++;
  536. }
  537. while (k < AR5416_NUM_PDADC_VALUES) {
  538. pPDADCValues[k] = pPDADCValues[k - 1];
  539. k++;
  540. }
  541. return;
  542. #undef TMP_VAL_VPD_TABLE
  543. }
  544. static bool ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
  545. struct ath9k_channel *chan,
  546. int16_t *pTxPowerIndexOffset)
  547. {
  548. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  549. struct cal_data_per_freq_4k *pRawDataset;
  550. u8 *pCalBChans = NULL;
  551. u16 pdGainOverlap_t2;
  552. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  553. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  554. u16 numPiers, i, j;
  555. int16_t tMinCalPower;
  556. u16 numXpdGain, xpdMask;
  557. u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
  558. u32 reg32, regOffset, regChainOffset;
  559. xpdMask = pEepData->modalHeader.xpdGain;
  560. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  561. AR5416_EEP_MINOR_VER_2) {
  562. pdGainOverlap_t2 =
  563. pEepData->modalHeader.pdGainOverlap;
  564. } else {
  565. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  566. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  567. }
  568. pCalBChans = pEepData->calFreqPier2G;
  569. numPiers = AR5416_NUM_2G_CAL_PIERS;
  570. numXpdGain = 0;
  571. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  572. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  573. if (numXpdGain >= AR5416_NUM_PD_GAINS)
  574. break;
  575. xpdGainValues[numXpdGain] =
  576. (u16)(AR5416_PD_GAINS_IN_MASK - i);
  577. numXpdGain++;
  578. }
  579. }
  580. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  581. (numXpdGain - 1) & 0x3);
  582. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  583. xpdGainValues[0]);
  584. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  585. xpdGainValues[1]);
  586. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  587. xpdGainValues[2]);
  588. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  589. if (AR_SREV_5416_V20_OR_LATER(ah) &&
  590. (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
  591. (i != 0)) {
  592. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  593. } else
  594. regChainOffset = i * 0x1000;
  595. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  596. pRawDataset = pEepData->calPierData2G[i];
  597. ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
  598. pRawDataset, pCalBChans,
  599. numPiers, pdGainOverlap_t2,
  600. &tMinCalPower, gainBoundaries,
  601. pdadcValues, numXpdGain);
  602. if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
  603. REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
  604. SM(pdGainOverlap_t2,
  605. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  606. | SM(gainBoundaries[0],
  607. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  608. | SM(gainBoundaries[1],
  609. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  610. | SM(gainBoundaries[2],
  611. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  612. | SM(gainBoundaries[3],
  613. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  614. }
  615. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  616. for (j = 0; j < 32; j++) {
  617. reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
  618. ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
  619. ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
  620. ((pdadcValues[4 * j + 3] & 0xFF) << 24);
  621. REG_WRITE(ah, regOffset, reg32);
  622. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  623. "PDADC (%d,%4x): %4.4x %8.8x\n",
  624. i, regChainOffset, regOffset,
  625. reg32);
  626. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  627. "PDADC: Chain %d | "
  628. "PDADC %3d Value %3d | "
  629. "PDADC %3d Value %3d | "
  630. "PDADC %3d Value %3d | "
  631. "PDADC %3d Value %3d |\n",
  632. i, 4 * j, pdadcValues[4 * j],
  633. 4 * j + 1, pdadcValues[4 * j + 1],
  634. 4 * j + 2, pdadcValues[4 * j + 2],
  635. 4 * j + 3,
  636. pdadcValues[4 * j + 3]);
  637. regOffset += 4;
  638. }
  639. }
  640. }
  641. *pTxPowerIndexOffset = 0;
  642. return true;
  643. }
  644. static bool ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
  645. struct ath9k_channel *chan,
  646. int16_t *ratesArray,
  647. u16 cfgCtl,
  648. u16 AntennaReduction,
  649. u16 twiceMaxRegulatoryPower,
  650. u16 powerLimit)
  651. {
  652. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  653. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  654. static const u16 tpScaleReductionTable[5] =
  655. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  656. int i;
  657. int16_t twiceLargestAntenna;
  658. struct cal_ctl_data_4k *rep;
  659. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  660. 0, { 0, 0, 0, 0}
  661. };
  662. struct cal_target_power_leg targetPowerOfdmExt = {
  663. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  664. 0, { 0, 0, 0, 0 }
  665. };
  666. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  667. 0, {0, 0, 0, 0}
  668. };
  669. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  670. u16 ctlModesFor11g[] =
  671. { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
  672. CTL_2GHT40
  673. };
  674. u16 numCtlModes, *pCtlMode, ctlMode, freq;
  675. struct chan_centers centers;
  676. int tx_chainmask;
  677. u16 twiceMinEdgePower;
  678. tx_chainmask = ah->txchainmask;
  679. ath9k_hw_get_channel_centers(ah, chan, &centers);
  680. twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
  681. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  682. twiceLargestAntenna, 0);
  683. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  684. if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX) {
  685. maxRegAllowedPower -=
  686. (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
  687. }
  688. scaledPower = min(powerLimit, maxRegAllowedPower);
  689. scaledPower = max((u16)0, scaledPower);
  690. numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  691. pCtlMode = ctlModesFor11g;
  692. ath9k_hw_get_legacy_target_powers(ah, chan,
  693. pEepData->calTargetPowerCck,
  694. AR5416_NUM_2G_CCK_TARGET_POWERS,
  695. &targetPowerCck, 4, false);
  696. ath9k_hw_get_legacy_target_powers(ah, chan,
  697. pEepData->calTargetPower2G,
  698. AR5416_NUM_2G_20_TARGET_POWERS,
  699. &targetPowerOfdm, 4, false);
  700. ath9k_hw_get_target_powers(ah, chan,
  701. pEepData->calTargetPower2GHT20,
  702. AR5416_NUM_2G_20_TARGET_POWERS,
  703. &targetPowerHt20, 8, false);
  704. if (IS_CHAN_HT40(chan)) {
  705. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  706. ath9k_hw_get_target_powers(ah, chan,
  707. pEepData->calTargetPower2GHT40,
  708. AR5416_NUM_2G_40_TARGET_POWERS,
  709. &targetPowerHt40, 8, true);
  710. ath9k_hw_get_legacy_target_powers(ah, chan,
  711. pEepData->calTargetPowerCck,
  712. AR5416_NUM_2G_CCK_TARGET_POWERS,
  713. &targetPowerCckExt, 4, true);
  714. ath9k_hw_get_legacy_target_powers(ah, chan,
  715. pEepData->calTargetPower2G,
  716. AR5416_NUM_2G_20_TARGET_POWERS,
  717. &targetPowerOfdmExt, 4, true);
  718. }
  719. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  720. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  721. (pCtlMode[ctlMode] == CTL_2GHT40);
  722. if (isHt40CtlMode)
  723. freq = centers.synth_center;
  724. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  725. freq = centers.ext_center;
  726. else
  727. freq = centers.ctl_center;
  728. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  729. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  730. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  731. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  732. "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
  733. "EXT_ADDITIVE %d\n",
  734. ctlMode, numCtlModes, isHt40CtlMode,
  735. (pCtlMode[ctlMode] & EXT_ADDITIVE));
  736. for (i = 0; (i < AR5416_NUM_CTLS) &&
  737. pEepData->ctlIndex[i]; i++) {
  738. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  739. " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
  740. "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
  741. "chan %d\n",
  742. i, cfgCtl, pCtlMode[ctlMode],
  743. pEepData->ctlIndex[i], chan->channel);
  744. if ((((cfgCtl & ~CTL_MODE_M) |
  745. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  746. pEepData->ctlIndex[i]) ||
  747. (((cfgCtl & ~CTL_MODE_M) |
  748. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  749. ((pEepData->ctlIndex[i] & CTL_MODE_M) |
  750. SD_NO_CTL))) {
  751. rep = &(pEepData->ctlData[i]);
  752. twiceMinEdgePower =
  753. ath9k_hw_get_max_edge_power(freq,
  754. rep->ctlEdges[ar5416_get_ntxchains
  755. (tx_chainmask) - 1],
  756. IS_CHAN_2GHZ(chan),
  757. AR5416_EEP4K_NUM_BAND_EDGES);
  758. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  759. " MATCH-EE_IDX %d: ch %d is2 %d "
  760. "2xMinEdge %d chainmask %d chains %d\n",
  761. i, freq, IS_CHAN_2GHZ(chan),
  762. twiceMinEdgePower, tx_chainmask,
  763. ar5416_get_ntxchains
  764. (tx_chainmask));
  765. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  766. twiceMaxEdgePower =
  767. min(twiceMaxEdgePower,
  768. twiceMinEdgePower);
  769. } else {
  770. twiceMaxEdgePower = twiceMinEdgePower;
  771. break;
  772. }
  773. }
  774. }
  775. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  776. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  777. " SEL-Min ctlMode %d pCtlMode %d "
  778. "2xMaxEdge %d sP %d minCtlPwr %d\n",
  779. ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
  780. scaledPower, minCtlPower);
  781. switch (pCtlMode[ctlMode]) {
  782. case CTL_11B:
  783. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
  784. i++) {
  785. targetPowerCck.tPow2x[i] =
  786. min((u16)targetPowerCck.tPow2x[i],
  787. minCtlPower);
  788. }
  789. break;
  790. case CTL_11G:
  791. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
  792. i++) {
  793. targetPowerOfdm.tPow2x[i] =
  794. min((u16)targetPowerOfdm.tPow2x[i],
  795. minCtlPower);
  796. }
  797. break;
  798. case CTL_2GHT20:
  799. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
  800. i++) {
  801. targetPowerHt20.tPow2x[i] =
  802. min((u16)targetPowerHt20.tPow2x[i],
  803. minCtlPower);
  804. }
  805. break;
  806. case CTL_11B_EXT:
  807. targetPowerCckExt.tPow2x[0] = min((u16)
  808. targetPowerCckExt.tPow2x[0],
  809. minCtlPower);
  810. break;
  811. case CTL_11G_EXT:
  812. targetPowerOfdmExt.tPow2x[0] = min((u16)
  813. targetPowerOfdmExt.tPow2x[0],
  814. minCtlPower);
  815. break;
  816. case CTL_2GHT40:
  817. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
  818. i++) {
  819. targetPowerHt40.tPow2x[i] =
  820. min((u16)targetPowerHt40.tPow2x[i],
  821. minCtlPower);
  822. }
  823. break;
  824. default:
  825. break;
  826. }
  827. }
  828. ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
  829. ratesArray[rate18mb] = ratesArray[rate24mb] =
  830. targetPowerOfdm.tPow2x[0];
  831. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  832. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  833. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  834. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  835. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  836. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  837. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  838. ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  839. ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  840. ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  841. if (IS_CHAN_HT40(chan)) {
  842. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  843. ratesArray[rateHt40_0 + i] =
  844. targetPowerHt40.tPow2x[i];
  845. }
  846. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  847. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  848. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  849. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  850. }
  851. return true;
  852. }
  853. static int ath9k_hw_4k_set_txpower(struct ath_hw *ah,
  854. struct ath9k_channel *chan,
  855. u16 cfgCtl,
  856. u8 twiceAntennaReduction,
  857. u8 twiceMaxRegulatoryPower,
  858. u8 powerLimit)
  859. {
  860. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  861. struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
  862. int16_t ratesArray[Ar5416RateSize];
  863. int16_t txPowerIndexOffset = 0;
  864. u8 ht40PowerIncForPdadc = 2;
  865. int i;
  866. memset(ratesArray, 0, sizeof(ratesArray));
  867. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  868. AR5416_EEP_MINOR_VER_2) {
  869. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  870. }
  871. if (!ath9k_hw_set_4k_power_per_rate_table(ah, chan,
  872. &ratesArray[0], cfgCtl,
  873. twiceAntennaReduction,
  874. twiceMaxRegulatoryPower,
  875. powerLimit)) {
  876. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  877. "ath9k_hw_set_txpower: unable to set "
  878. "tx power per rate table\n");
  879. return -EIO;
  880. }
  881. if (!ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset)) {
  882. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  883. "ath9k_hw_set_txpower: unable to set power table\n");
  884. return -EIO;
  885. }
  886. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  887. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  888. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  889. ratesArray[i] = AR5416_MAX_RATE_POWER;
  890. }
  891. if (AR_SREV_9280_10_OR_LATER(ah)) {
  892. for (i = 0; i < Ar5416RateSize; i++)
  893. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
  894. }
  895. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  896. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  897. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  898. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  899. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  900. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  901. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  902. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  903. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  904. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  905. if (IS_CHAN_2GHZ(chan)) {
  906. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  907. ATH9K_POW_SM(ratesArray[rate2s], 24)
  908. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  909. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  910. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  911. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  912. ATH9K_POW_SM(ratesArray[rate11s], 24)
  913. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  914. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  915. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  916. }
  917. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  918. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  919. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  920. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  921. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  922. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  923. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  924. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  925. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  926. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  927. if (IS_CHAN_HT40(chan)) {
  928. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  929. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  930. ht40PowerIncForPdadc, 24)
  931. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  932. ht40PowerIncForPdadc, 16)
  933. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  934. ht40PowerIncForPdadc, 8)
  935. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  936. ht40PowerIncForPdadc, 0));
  937. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  938. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  939. ht40PowerIncForPdadc, 24)
  940. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  941. ht40PowerIncForPdadc, 16)
  942. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  943. ht40PowerIncForPdadc, 8)
  944. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  945. ht40PowerIncForPdadc, 0));
  946. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  947. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  948. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  949. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  950. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  951. }
  952. i = rate6mb;
  953. if (IS_CHAN_HT40(chan))
  954. i = rateHt40_0;
  955. else if (IS_CHAN_HT20(chan))
  956. i = rateHt20_0;
  957. if (AR_SREV_9280_10_OR_LATER(ah))
  958. ah->regulatory.max_power_level =
  959. ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
  960. else
  961. ah->regulatory.max_power_level = ratesArray[i];
  962. return 0;
  963. }
  964. static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
  965. struct ath9k_channel *chan)
  966. {
  967. struct modal_eep_4k_header *pModal;
  968. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  969. u8 biaslevel;
  970. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  971. return;
  972. if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
  973. return;
  974. pModal = &eep->modalHeader;
  975. if (pModal->xpaBiasLvl != 0xff) {
  976. biaslevel = pModal->xpaBiasLvl;
  977. INI_RA(&ah->iniAddac, 7, 1) =
  978. (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
  979. }
  980. }
  981. static bool ath9k_hw_4k_set_board_values(struct ath_hw *ah,
  982. struct ath9k_channel *chan)
  983. {
  984. struct modal_eep_4k_header *pModal;
  985. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  986. int regChainOffset;
  987. u8 txRxAttenLocal;
  988. u8 ob[5], db1[5], db2[5];
  989. u8 ant_div_control1, ant_div_control2;
  990. u32 regVal;
  991. pModal = &eep->modalHeader;
  992. txRxAttenLocal = 23;
  993. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  994. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  995. regChainOffset = 0;
  996. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  997. pModal->antCtrlChain[0]);
  998. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  999. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
  1000. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  1001. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  1002. SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  1003. SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  1004. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  1005. AR5416_EEP_MINOR_VER_3) {
  1006. txRxAttenLocal = pModal->txRxAttenCh[0];
  1007. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  1008. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
  1009. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  1010. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  1011. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  1012. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  1013. pModal->xatten2Margin[0]);
  1014. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  1015. AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
  1016. }
  1017. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  1018. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  1019. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  1020. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  1021. if (AR_SREV_9285_11(ah))
  1022. REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
  1023. /* Initialize Ant Diversity settings from EEPROM */
  1024. if (pModal->version == 3) {
  1025. ant_div_control1 = ((pModal->ob_234 >> 12) & 0xf);
  1026. ant_div_control2 = ((pModal->db1_234 >> 12) & 0xf);
  1027. regVal = REG_READ(ah, 0x99ac);
  1028. regVal &= (~(0x7f000000));
  1029. regVal |= ((ant_div_control1 & 0x1) << 24);
  1030. regVal |= (((ant_div_control1 >> 1) & 0x1) << 29);
  1031. regVal |= (((ant_div_control1 >> 2) & 0x1) << 30);
  1032. regVal |= ((ant_div_control2 & 0x3) << 25);
  1033. regVal |= (((ant_div_control2 >> 2) & 0x3) << 27);
  1034. REG_WRITE(ah, 0x99ac, regVal);
  1035. regVal = REG_READ(ah, 0x99ac);
  1036. regVal = REG_READ(ah, 0xa208);
  1037. regVal &= (~(0x1 << 13));
  1038. regVal |= (((ant_div_control1 >> 3) & 0x1) << 13);
  1039. REG_WRITE(ah, 0xa208, regVal);
  1040. regVal = REG_READ(ah, 0xa208);
  1041. }
  1042. if (pModal->version >= 2) {
  1043. ob[0] = (pModal->ob_01 & 0xf);
  1044. ob[1] = (pModal->ob_01 >> 4) & 0xf;
  1045. ob[2] = (pModal->ob_234 & 0xf);
  1046. ob[3] = ((pModal->ob_234 >> 4) & 0xf);
  1047. ob[4] = ((pModal->ob_234 >> 8) & 0xf);
  1048. db1[0] = (pModal->db1_01 & 0xf);
  1049. db1[1] = ((pModal->db1_01 >> 4) & 0xf);
  1050. db1[2] = (pModal->db1_234 & 0xf);
  1051. db1[3] = ((pModal->db1_234 >> 4) & 0xf);
  1052. db1[4] = ((pModal->db1_234 >> 8) & 0xf);
  1053. db2[0] = (pModal->db2_01 & 0xf);
  1054. db2[1] = ((pModal->db2_01 >> 4) & 0xf);
  1055. db2[2] = (pModal->db2_234 & 0xf);
  1056. db2[3] = ((pModal->db2_234 >> 4) & 0xf);
  1057. db2[4] = ((pModal->db2_234 >> 8) & 0xf);
  1058. } else if (pModal->version == 1) {
  1059. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1060. "EEPROM Model version is set to 1 \n");
  1061. ob[0] = (pModal->ob_01 & 0xf);
  1062. ob[1] = ob[2] = ob[3] = ob[4] = (pModal->ob_01 >> 4) & 0xf;
  1063. db1[0] = (pModal->db1_01 & 0xf);
  1064. db1[1] = db1[2] = db1[3] =
  1065. db1[4] = ((pModal->db1_01 >> 4) & 0xf);
  1066. db2[0] = (pModal->db2_01 & 0xf);
  1067. db2[1] = db2[2] = db2[3] =
  1068. db2[4] = ((pModal->db2_01 >> 4) & 0xf);
  1069. } else {
  1070. int i;
  1071. for (i = 0; i < 5; i++) {
  1072. ob[i] = pModal->ob_01;
  1073. db1[i] = pModal->db1_01;
  1074. db2[i] = pModal->db1_01;
  1075. }
  1076. }
  1077. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1078. AR9285_AN_RF2G3_OB_0, AR9285_AN_RF2G3_OB_0_S, ob[0]);
  1079. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1080. AR9285_AN_RF2G3_OB_1, AR9285_AN_RF2G3_OB_1_S, ob[1]);
  1081. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1082. AR9285_AN_RF2G3_OB_2, AR9285_AN_RF2G3_OB_2_S, ob[2]);
  1083. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1084. AR9285_AN_RF2G3_OB_3, AR9285_AN_RF2G3_OB_3_S, ob[3]);
  1085. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1086. AR9285_AN_RF2G3_OB_4, AR9285_AN_RF2G3_OB_4_S, ob[4]);
  1087. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1088. AR9285_AN_RF2G3_DB1_0, AR9285_AN_RF2G3_DB1_0_S, db1[0]);
  1089. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1090. AR9285_AN_RF2G3_DB1_1, AR9285_AN_RF2G3_DB1_1_S, db1[1]);
  1091. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  1092. AR9285_AN_RF2G3_DB1_2, AR9285_AN_RF2G3_DB1_2_S, db1[2]);
  1093. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  1094. AR9285_AN_RF2G4_DB1_3, AR9285_AN_RF2G4_DB1_3_S, db1[3]);
  1095. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  1096. AR9285_AN_RF2G4_DB1_4, AR9285_AN_RF2G4_DB1_4_S, db1[4]);
  1097. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  1098. AR9285_AN_RF2G4_DB2_0, AR9285_AN_RF2G4_DB2_0_S, db2[0]);
  1099. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  1100. AR9285_AN_RF2G4_DB2_1, AR9285_AN_RF2G4_DB2_1_S, db2[1]);
  1101. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  1102. AR9285_AN_RF2G4_DB2_2, AR9285_AN_RF2G4_DB2_2_S, db2[2]);
  1103. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  1104. AR9285_AN_RF2G4_DB2_3, AR9285_AN_RF2G4_DB2_3_S, db2[3]);
  1105. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  1106. AR9285_AN_RF2G4_DB2_4, AR9285_AN_RF2G4_DB2_4_S, db2[4]);
  1107. if (AR_SREV_9285_11(ah))
  1108. REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
  1109. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  1110. pModal->switchSettling);
  1111. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  1112. pModal->adcDesiredSize);
  1113. REG_WRITE(ah, AR_PHY_RF_CTL4,
  1114. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
  1115. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
  1116. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
  1117. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  1118. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  1119. pModal->txEndToRxOn);
  1120. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  1121. pModal->thresh62);
  1122. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
  1123. pModal->thresh62);
  1124. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  1125. AR5416_EEP_MINOR_VER_2) {
  1126. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
  1127. pModal->txFrameToDataStart);
  1128. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  1129. pModal->txFrameToPaOn);
  1130. }
  1131. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  1132. AR5416_EEP_MINOR_VER_3) {
  1133. if (IS_CHAN_HT40(chan))
  1134. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  1135. AR_PHY_SETTLING_SWITCH,
  1136. pModal->swSettleHt40);
  1137. }
  1138. return true;
  1139. }
  1140. static u16 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
  1141. struct ath9k_channel *chan)
  1142. {
  1143. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  1144. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  1145. return pModal->antCtrlCommon & 0xFFFF;
  1146. }
  1147. static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
  1148. enum ieee80211_band freq_band)
  1149. {
  1150. return 1;
  1151. }
  1152. static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  1153. {
  1154. #define EEP_MAP4K_SPURCHAN \
  1155. (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
  1156. u16 spur_val = AR_NO_SPUR;
  1157. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1158. "Getting spur idx %d is2Ghz. %d val %x\n",
  1159. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  1160. switch (ah->config.spurmode) {
  1161. case SPUR_DISABLE:
  1162. break;
  1163. case SPUR_ENABLE_IOCTL:
  1164. spur_val = ah->config.spurchans[i][is2GHz];
  1165. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1166. "Getting spur val from new loc. %d\n", spur_val);
  1167. break;
  1168. case SPUR_ENABLE_EEPROM:
  1169. spur_val = EEP_MAP4K_SPURCHAN;
  1170. break;
  1171. }
  1172. return spur_val;
  1173. #undef EEP_MAP4K_SPURCHAN
  1174. }
  1175. static struct eeprom_ops eep_4k_ops = {
  1176. .check_eeprom = ath9k_hw_4k_check_eeprom,
  1177. .get_eeprom = ath9k_hw_4k_get_eeprom,
  1178. .fill_eeprom = ath9k_hw_4k_fill_eeprom,
  1179. .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
  1180. .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
  1181. .get_num_ant_config = ath9k_hw_4k_get_num_ant_config,
  1182. .get_eeprom_antenna_cfg = ath9k_hw_4k_get_eeprom_antenna_cfg,
  1183. .set_board_values = ath9k_hw_4k_set_board_values,
  1184. .set_addac = ath9k_hw_4k_set_addac,
  1185. .set_txpower = ath9k_hw_4k_set_txpower,
  1186. .get_spur_channel = ath9k_hw_4k_get_spur_channel
  1187. };
  1188. /************************************************/
  1189. /* EEPROM Operations for non-4K (Default) cards */
  1190. /************************************************/
  1191. static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
  1192. {
  1193. return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
  1194. }
  1195. static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
  1196. {
  1197. return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
  1198. }
  1199. static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
  1200. {
  1201. #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
  1202. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  1203. u16 *eep_data;
  1204. int addr, ar5416_eep_start_loc = 0x100;
  1205. eep_data = (u16 *)eep;
  1206. for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
  1207. if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
  1208. eep_data)) {
  1209. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1210. "Unable to read eeprom region\n");
  1211. return false;
  1212. }
  1213. eep_data++;
  1214. }
  1215. return true;
  1216. #undef SIZE_EEPROM_DEF
  1217. }
  1218. static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
  1219. {
  1220. struct ar5416_eeprom_def *eep =
  1221. (struct ar5416_eeprom_def *) &ah->eeprom.def;
  1222. u16 *eepdata, temp, magic, magic2;
  1223. u32 sum = 0, el;
  1224. bool need_swap = false;
  1225. int i, addr, size;
  1226. if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
  1227. &magic)) {
  1228. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1229. "Reading Magic # failed\n");
  1230. return false;
  1231. }
  1232. if (!ath9k_hw_use_flash(ah)) {
  1233. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1234. "Read Magic = 0x%04X\n", magic);
  1235. if (magic != AR5416_EEPROM_MAGIC) {
  1236. magic2 = swab16(magic);
  1237. if (magic2 == AR5416_EEPROM_MAGIC) {
  1238. size = sizeof(struct ar5416_eeprom_def);
  1239. need_swap = true;
  1240. eepdata = (u16 *) (&ah->eeprom);
  1241. for (addr = 0; addr < size / sizeof(u16); addr++) {
  1242. temp = swab16(*eepdata);
  1243. *eepdata = temp;
  1244. eepdata++;
  1245. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1246. "0x%04X ", *eepdata);
  1247. if (((addr + 1) % 6) == 0)
  1248. DPRINTF(ah->ah_sc,
  1249. ATH_DBG_EEPROM, "\n");
  1250. }
  1251. } else {
  1252. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1253. "Invalid EEPROM Magic. "
  1254. "endianness mismatch.\n");
  1255. return -EINVAL;
  1256. }
  1257. }
  1258. }
  1259. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
  1260. need_swap ? "True" : "False");
  1261. if (need_swap)
  1262. el = swab16(ah->eeprom.def.baseEepHeader.length);
  1263. else
  1264. el = ah->eeprom.def.baseEepHeader.length;
  1265. if (el > sizeof(struct ar5416_eeprom_def))
  1266. el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
  1267. else
  1268. el = el / sizeof(u16);
  1269. eepdata = (u16 *)(&ah->eeprom);
  1270. for (i = 0; i < el; i++)
  1271. sum ^= *eepdata++;
  1272. if (need_swap) {
  1273. u32 integer, j;
  1274. u16 word;
  1275. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1276. "EEPROM Endianness is not native.. Changing \n");
  1277. word = swab16(eep->baseEepHeader.length);
  1278. eep->baseEepHeader.length = word;
  1279. word = swab16(eep->baseEepHeader.checksum);
  1280. eep->baseEepHeader.checksum = word;
  1281. word = swab16(eep->baseEepHeader.version);
  1282. eep->baseEepHeader.version = word;
  1283. word = swab16(eep->baseEepHeader.regDmn[0]);
  1284. eep->baseEepHeader.regDmn[0] = word;
  1285. word = swab16(eep->baseEepHeader.regDmn[1]);
  1286. eep->baseEepHeader.regDmn[1] = word;
  1287. word = swab16(eep->baseEepHeader.rfSilent);
  1288. eep->baseEepHeader.rfSilent = word;
  1289. word = swab16(eep->baseEepHeader.blueToothOptions);
  1290. eep->baseEepHeader.blueToothOptions = word;
  1291. word = swab16(eep->baseEepHeader.deviceCap);
  1292. eep->baseEepHeader.deviceCap = word;
  1293. for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
  1294. struct modal_eep_header *pModal =
  1295. &eep->modalHeader[j];
  1296. integer = swab32(pModal->antCtrlCommon);
  1297. pModal->antCtrlCommon = integer;
  1298. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  1299. integer = swab32(pModal->antCtrlChain[i]);
  1300. pModal->antCtrlChain[i] = integer;
  1301. }
  1302. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  1303. word = swab16(pModal->spurChans[i].spurChan);
  1304. pModal->spurChans[i].spurChan = word;
  1305. }
  1306. }
  1307. }
  1308. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
  1309. ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  1310. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1311. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  1312. sum, ah->eep_ops->get_eeprom_ver(ah));
  1313. return -EINVAL;
  1314. }
  1315. return 0;
  1316. }
  1317. static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
  1318. enum eeprom_param param)
  1319. {
  1320. #define AR5416_VER_MASK (pBase->version & AR5416_EEP_VER_MINOR_MASK)
  1321. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  1322. struct modal_eep_header *pModal = eep->modalHeader;
  1323. struct base_eep_header *pBase = &eep->baseEepHeader;
  1324. switch (param) {
  1325. case EEP_NFTHRESH_5:
  1326. return pModal[0].noiseFloorThreshCh[0];
  1327. case EEP_NFTHRESH_2:
  1328. return pModal[1].noiseFloorThreshCh[0];
  1329. case AR_EEPROM_MAC(0):
  1330. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  1331. case AR_EEPROM_MAC(1):
  1332. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  1333. case AR_EEPROM_MAC(2):
  1334. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  1335. case EEP_REG_0:
  1336. return pBase->regDmn[0];
  1337. case EEP_REG_1:
  1338. return pBase->regDmn[1];
  1339. case EEP_OP_CAP:
  1340. return pBase->deviceCap;
  1341. case EEP_OP_MODE:
  1342. return pBase->opCapFlags;
  1343. case EEP_RF_SILENT:
  1344. return pBase->rfSilent;
  1345. case EEP_OB_5:
  1346. return pModal[0].ob;
  1347. case EEP_DB_5:
  1348. return pModal[0].db;
  1349. case EEP_OB_2:
  1350. return pModal[1].ob;
  1351. case EEP_DB_2:
  1352. return pModal[1].db;
  1353. case EEP_MINOR_REV:
  1354. return AR5416_VER_MASK;
  1355. case EEP_TX_MASK:
  1356. return pBase->txMask;
  1357. case EEP_RX_MASK:
  1358. return pBase->rxMask;
  1359. case EEP_RXGAIN_TYPE:
  1360. return pBase->rxGainType;
  1361. case EEP_TXGAIN_TYPE:
  1362. return pBase->txGainType;
  1363. case EEP_DAC_HPWR_5G:
  1364. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
  1365. return pBase->dacHiPwrMode_5G;
  1366. else
  1367. return 0;
  1368. default:
  1369. return 0;
  1370. }
  1371. #undef AR5416_VER_MASK
  1372. }
  1373. /* XXX: Clean me up, make me more legible */
  1374. static bool ath9k_hw_def_set_board_values(struct ath_hw *ah,
  1375. struct ath9k_channel *chan)
  1376. {
  1377. #define AR5416_VER_MASK (eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK)
  1378. struct modal_eep_header *pModal;
  1379. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  1380. int i, regChainOffset;
  1381. u8 txRxAttenLocal;
  1382. pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  1383. txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
  1384. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  1385. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  1386. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  1387. if (AR_SREV_9280(ah)) {
  1388. if (i >= 2)
  1389. break;
  1390. }
  1391. if (AR_SREV_5416_V20_OR_LATER(ah) &&
  1392. (ah->rxchainmask == 5 || ah->txchainmask == 5)
  1393. && (i != 0))
  1394. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  1395. else
  1396. regChainOffset = i * 0x1000;
  1397. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  1398. pModal->antCtrlChain[i]);
  1399. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  1400. (REG_READ(ah,
  1401. AR_PHY_TIMING_CTRL4(0) +
  1402. regChainOffset) &
  1403. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  1404. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  1405. SM(pModal->iqCalICh[i],
  1406. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  1407. SM(pModal->iqCalQCh[i],
  1408. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  1409. if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
  1410. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
  1411. txRxAttenLocal = pModal->txRxAttenCh[i];
  1412. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1413. REG_RMW_FIELD(ah,
  1414. AR_PHY_GAIN_2GHZ +
  1415. regChainOffset,
  1416. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  1417. pModal->
  1418. bswMargin[i]);
  1419. REG_RMW_FIELD(ah,
  1420. AR_PHY_GAIN_2GHZ +
  1421. regChainOffset,
  1422. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  1423. pModal->
  1424. bswAtten[i]);
  1425. REG_RMW_FIELD(ah,
  1426. AR_PHY_GAIN_2GHZ +
  1427. regChainOffset,
  1428. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  1429. pModal->
  1430. xatten2Margin[i]);
  1431. REG_RMW_FIELD(ah,
  1432. AR_PHY_GAIN_2GHZ +
  1433. regChainOffset,
  1434. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  1435. pModal->
  1436. xatten2Db[i]);
  1437. } else {
  1438. REG_WRITE(ah,
  1439. AR_PHY_GAIN_2GHZ +
  1440. regChainOffset,
  1441. (REG_READ(ah,
  1442. AR_PHY_GAIN_2GHZ +
  1443. regChainOffset) &
  1444. ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
  1445. | SM(pModal->
  1446. bswMargin[i],
  1447. AR_PHY_GAIN_2GHZ_BSW_MARGIN));
  1448. REG_WRITE(ah,
  1449. AR_PHY_GAIN_2GHZ +
  1450. regChainOffset,
  1451. (REG_READ(ah,
  1452. AR_PHY_GAIN_2GHZ +
  1453. regChainOffset) &
  1454. ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
  1455. | SM(pModal->bswAtten[i],
  1456. AR_PHY_GAIN_2GHZ_BSW_ATTEN));
  1457. }
  1458. }
  1459. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1460. REG_RMW_FIELD(ah,
  1461. AR_PHY_RXGAIN +
  1462. regChainOffset,
  1463. AR9280_PHY_RXGAIN_TXRX_ATTEN,
  1464. txRxAttenLocal);
  1465. REG_RMW_FIELD(ah,
  1466. AR_PHY_RXGAIN +
  1467. regChainOffset,
  1468. AR9280_PHY_RXGAIN_TXRX_MARGIN,
  1469. pModal->rxTxMarginCh[i]);
  1470. } else {
  1471. REG_WRITE(ah,
  1472. AR_PHY_RXGAIN + regChainOffset,
  1473. (REG_READ(ah,
  1474. AR_PHY_RXGAIN +
  1475. regChainOffset) &
  1476. ~AR_PHY_RXGAIN_TXRX_ATTEN) |
  1477. SM(txRxAttenLocal,
  1478. AR_PHY_RXGAIN_TXRX_ATTEN));
  1479. REG_WRITE(ah,
  1480. AR_PHY_GAIN_2GHZ +
  1481. regChainOffset,
  1482. (REG_READ(ah,
  1483. AR_PHY_GAIN_2GHZ +
  1484. regChainOffset) &
  1485. ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
  1486. SM(pModal->rxTxMarginCh[i],
  1487. AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
  1488. }
  1489. }
  1490. }
  1491. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1492. if (IS_CHAN_2GHZ(chan)) {
  1493. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
  1494. AR_AN_RF2G1_CH0_OB,
  1495. AR_AN_RF2G1_CH0_OB_S,
  1496. pModal->ob);
  1497. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
  1498. AR_AN_RF2G1_CH0_DB,
  1499. AR_AN_RF2G1_CH0_DB_S,
  1500. pModal->db);
  1501. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
  1502. AR_AN_RF2G1_CH1_OB,
  1503. AR_AN_RF2G1_CH1_OB_S,
  1504. pModal->ob_ch1);
  1505. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
  1506. AR_AN_RF2G1_CH1_DB,
  1507. AR_AN_RF2G1_CH1_DB_S,
  1508. pModal->db_ch1);
  1509. } else {
  1510. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
  1511. AR_AN_RF5G1_CH0_OB5,
  1512. AR_AN_RF5G1_CH0_OB5_S,
  1513. pModal->ob);
  1514. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
  1515. AR_AN_RF5G1_CH0_DB5,
  1516. AR_AN_RF5G1_CH0_DB5_S,
  1517. pModal->db);
  1518. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
  1519. AR_AN_RF5G1_CH1_OB5,
  1520. AR_AN_RF5G1_CH1_OB5_S,
  1521. pModal->ob_ch1);
  1522. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
  1523. AR_AN_RF5G1_CH1_DB5,
  1524. AR_AN_RF5G1_CH1_DB5_S,
  1525. pModal->db_ch1);
  1526. }
  1527. ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
  1528. AR_AN_TOP2_XPABIAS_LVL,
  1529. AR_AN_TOP2_XPABIAS_LVL_S,
  1530. pModal->xpaBiasLvl);
  1531. ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
  1532. AR_AN_TOP2_LOCALBIAS,
  1533. AR_AN_TOP2_LOCALBIAS_S,
  1534. pModal->local_bias);
  1535. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ForceXPAon: %d\n",
  1536. pModal->force_xpaon);
  1537. REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
  1538. pModal->force_xpaon);
  1539. }
  1540. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  1541. pModal->switchSettling);
  1542. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  1543. pModal->adcDesiredSize);
  1544. if (!AR_SREV_9280_10_OR_LATER(ah))
  1545. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  1546. AR_PHY_DESIRED_SZ_PGA,
  1547. pModal->pgaDesiredSize);
  1548. REG_WRITE(ah, AR_PHY_RF_CTL4,
  1549. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  1550. | SM(pModal->txEndToXpaOff,
  1551. AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  1552. | SM(pModal->txFrameToXpaOn,
  1553. AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  1554. | SM(pModal->txFrameToXpaOn,
  1555. AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  1556. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  1557. pModal->txEndToRxOn);
  1558. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1559. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  1560. pModal->thresh62);
  1561. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  1562. AR_PHY_EXT_CCA0_THRESH62,
  1563. pModal->thresh62);
  1564. } else {
  1565. REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
  1566. pModal->thresh62);
  1567. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  1568. AR_PHY_EXT_CCA_THRESH62,
  1569. pModal->thresh62);
  1570. }
  1571. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
  1572. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  1573. AR_PHY_TX_END_DATA_START,
  1574. pModal->txFrameToDataStart);
  1575. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  1576. pModal->txFrameToPaOn);
  1577. }
  1578. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
  1579. if (IS_CHAN_HT40(chan))
  1580. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  1581. AR_PHY_SETTLING_SWITCH,
  1582. pModal->swSettleHt40);
  1583. }
  1584. if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
  1585. if (IS_CHAN_HT20(chan))
  1586. REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
  1587. eep->baseEepHeader.dacLpMode);
  1588. else if (eep->baseEepHeader.dacHiPwrMode_5G)
  1589. REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
  1590. else
  1591. REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
  1592. eep->baseEepHeader.dacLpMode);
  1593. REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
  1594. pModal->miscBits >> 2);
  1595. }
  1596. return true;
  1597. #undef AR5416_VER_MASK
  1598. }
  1599. static void ath9k_hw_def_set_addac(struct ath_hw *ah,
  1600. struct ath9k_channel *chan)
  1601. {
  1602. #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
  1603. struct modal_eep_header *pModal;
  1604. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  1605. u8 biaslevel;
  1606. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  1607. return;
  1608. if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
  1609. return;
  1610. pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  1611. if (pModal->xpaBiasLvl != 0xff) {
  1612. biaslevel = pModal->xpaBiasLvl;
  1613. } else {
  1614. u16 resetFreqBin, freqBin, freqCount = 0;
  1615. struct chan_centers centers;
  1616. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1617. resetFreqBin = FREQ2FBIN(centers.synth_center,
  1618. IS_CHAN_2GHZ(chan));
  1619. freqBin = XPA_LVL_FREQ(0) & 0xff;
  1620. biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
  1621. freqCount++;
  1622. while (freqCount < 3) {
  1623. if (XPA_LVL_FREQ(freqCount) == 0x0)
  1624. break;
  1625. freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
  1626. if (resetFreqBin >= freqBin)
  1627. biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
  1628. else
  1629. break;
  1630. freqCount++;
  1631. }
  1632. }
  1633. if (IS_CHAN_2GHZ(chan)) {
  1634. INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
  1635. 7, 1) & (~0x18)) | biaslevel << 3;
  1636. } else {
  1637. INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
  1638. 6, 1) & (~0xc0)) | biaslevel << 6;
  1639. }
  1640. #undef XPA_LVL_FREQ
  1641. }
  1642. static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hw *ah,
  1643. struct ath9k_channel *chan,
  1644. struct cal_data_per_freq *pRawDataSet,
  1645. u8 *bChans, u16 availPiers,
  1646. u16 tPdGainOverlap, int16_t *pMinCalPower,
  1647. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  1648. u16 numXpdGains)
  1649. {
  1650. int i, j, k;
  1651. int16_t ss;
  1652. u16 idxL = 0, idxR = 0, numPiers;
  1653. static u8 vpdTableL[AR5416_NUM_PD_GAINS]
  1654. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  1655. static u8 vpdTableR[AR5416_NUM_PD_GAINS]
  1656. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  1657. static u8 vpdTableI[AR5416_NUM_PD_GAINS]
  1658. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  1659. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  1660. u8 minPwrT4[AR5416_NUM_PD_GAINS];
  1661. u8 maxPwrT4[AR5416_NUM_PD_GAINS];
  1662. int16_t vpdStep;
  1663. int16_t tmpVal;
  1664. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  1665. bool match;
  1666. int16_t minDelta = 0;
  1667. struct chan_centers centers;
  1668. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1669. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  1670. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  1671. break;
  1672. }
  1673. match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
  1674. IS_CHAN_2GHZ(chan)),
  1675. bChans, numPiers, &idxL, &idxR);
  1676. if (match) {
  1677. for (i = 0; i < numXpdGains; i++) {
  1678. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  1679. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  1680. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  1681. pRawDataSet[idxL].pwrPdg[i],
  1682. pRawDataSet[idxL].vpdPdg[i],
  1683. AR5416_PD_GAIN_ICEPTS,
  1684. vpdTableI[i]);
  1685. }
  1686. } else {
  1687. for (i = 0; i < numXpdGains; i++) {
  1688. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  1689. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  1690. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  1691. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  1692. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  1693. maxPwrT4[i] =
  1694. min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
  1695. pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
  1696. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  1697. pPwrL, pVpdL,
  1698. AR5416_PD_GAIN_ICEPTS,
  1699. vpdTableL[i]);
  1700. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  1701. pPwrR, pVpdR,
  1702. AR5416_PD_GAIN_ICEPTS,
  1703. vpdTableR[i]);
  1704. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  1705. vpdTableI[i][j] =
  1706. (u8)(ath9k_hw_interpolate((u16)
  1707. FREQ2FBIN(centers.
  1708. synth_center,
  1709. IS_CHAN_2GHZ
  1710. (chan)),
  1711. bChans[idxL], bChans[idxR],
  1712. vpdTableL[i][j], vpdTableR[i][j]));
  1713. }
  1714. }
  1715. }
  1716. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  1717. k = 0;
  1718. for (i = 0; i < numXpdGains; i++) {
  1719. if (i == (numXpdGains - 1))
  1720. pPdGainBoundaries[i] =
  1721. (u16)(maxPwrT4[i] / 2);
  1722. else
  1723. pPdGainBoundaries[i] =
  1724. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  1725. pPdGainBoundaries[i] =
  1726. min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  1727. if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
  1728. minDelta = pPdGainBoundaries[0] - 23;
  1729. pPdGainBoundaries[0] = 23;
  1730. } else {
  1731. minDelta = 0;
  1732. }
  1733. if (i == 0) {
  1734. if (AR_SREV_9280_10_OR_LATER(ah))
  1735. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  1736. else
  1737. ss = 0;
  1738. } else {
  1739. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  1740. (minPwrT4[i] / 2)) -
  1741. tPdGainOverlap + 1 + minDelta);
  1742. }
  1743. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  1744. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  1745. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  1746. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  1747. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  1748. ss++;
  1749. }
  1750. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  1751. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  1752. (minPwrT4[i] / 2));
  1753. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  1754. tgtIndex : sizeCurrVpdTable;
  1755. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  1756. pPDADCValues[k++] = vpdTableI[i][ss++];
  1757. }
  1758. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  1759. vpdTableI[i][sizeCurrVpdTable - 2]);
  1760. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  1761. if (tgtIndex > maxIndex) {
  1762. while ((ss <= tgtIndex) &&
  1763. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  1764. tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
  1765. (ss - maxIndex + 1) * vpdStep));
  1766. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  1767. 255 : tmpVal);
  1768. ss++;
  1769. }
  1770. }
  1771. }
  1772. while (i < AR5416_PD_GAINS_IN_MASK) {
  1773. pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
  1774. i++;
  1775. }
  1776. while (k < AR5416_NUM_PDADC_VALUES) {
  1777. pPDADCValues[k] = pPDADCValues[k - 1];
  1778. k++;
  1779. }
  1780. return;
  1781. }
  1782. static bool ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
  1783. struct ath9k_channel *chan,
  1784. int16_t *pTxPowerIndexOffset)
  1785. {
  1786. struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
  1787. struct cal_data_per_freq *pRawDataset;
  1788. u8 *pCalBChans = NULL;
  1789. u16 pdGainOverlap_t2;
  1790. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  1791. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  1792. u16 numPiers, i, j;
  1793. int16_t tMinCalPower;
  1794. u16 numXpdGain, xpdMask;
  1795. u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
  1796. u32 reg32, regOffset, regChainOffset;
  1797. int16_t modalIdx;
  1798. modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
  1799. xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
  1800. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  1801. AR5416_EEP_MINOR_VER_2) {
  1802. pdGainOverlap_t2 =
  1803. pEepData->modalHeader[modalIdx].pdGainOverlap;
  1804. } else {
  1805. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  1806. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  1807. }
  1808. if (IS_CHAN_2GHZ(chan)) {
  1809. pCalBChans = pEepData->calFreqPier2G;
  1810. numPiers = AR5416_NUM_2G_CAL_PIERS;
  1811. } else {
  1812. pCalBChans = pEepData->calFreqPier5G;
  1813. numPiers = AR5416_NUM_5G_CAL_PIERS;
  1814. }
  1815. numXpdGain = 0;
  1816. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  1817. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  1818. if (numXpdGain >= AR5416_NUM_PD_GAINS)
  1819. break;
  1820. xpdGainValues[numXpdGain] =
  1821. (u16)(AR5416_PD_GAINS_IN_MASK - i);
  1822. numXpdGain++;
  1823. }
  1824. }
  1825. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  1826. (numXpdGain - 1) & 0x3);
  1827. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  1828. xpdGainValues[0]);
  1829. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  1830. xpdGainValues[1]);
  1831. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  1832. xpdGainValues[2]);
  1833. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  1834. if (AR_SREV_5416_V20_OR_LATER(ah) &&
  1835. (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
  1836. (i != 0)) {
  1837. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  1838. } else
  1839. regChainOffset = i * 0x1000;
  1840. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  1841. if (IS_CHAN_2GHZ(chan))
  1842. pRawDataset = pEepData->calPierData2G[i];
  1843. else
  1844. pRawDataset = pEepData->calPierData5G[i];
  1845. ath9k_hw_get_def_gain_boundaries_pdadcs(ah, chan,
  1846. pRawDataset, pCalBChans,
  1847. numPiers, pdGainOverlap_t2,
  1848. &tMinCalPower, gainBoundaries,
  1849. pdadcValues, numXpdGain);
  1850. if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
  1851. REG_WRITE(ah,
  1852. AR_PHY_TPCRG5 + regChainOffset,
  1853. SM(pdGainOverlap_t2,
  1854. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  1855. | SM(gainBoundaries[0],
  1856. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  1857. | SM(gainBoundaries[1],
  1858. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  1859. | SM(gainBoundaries[2],
  1860. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  1861. | SM(gainBoundaries[3],
  1862. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  1863. }
  1864. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  1865. for (j = 0; j < 32; j++) {
  1866. reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
  1867. ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
  1868. ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
  1869. ((pdadcValues[4 * j + 3] & 0xFF) << 24);
  1870. REG_WRITE(ah, regOffset, reg32);
  1871. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  1872. "PDADC (%d,%4x): %4.4x %8.8x\n",
  1873. i, regChainOffset, regOffset,
  1874. reg32);
  1875. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  1876. "PDADC: Chain %d | PDADC %3d "
  1877. "Value %3d | PDADC %3d Value %3d | "
  1878. "PDADC %3d Value %3d | PDADC %3d "
  1879. "Value %3d |\n",
  1880. i, 4 * j, pdadcValues[4 * j],
  1881. 4 * j + 1, pdadcValues[4 * j + 1],
  1882. 4 * j + 2, pdadcValues[4 * j + 2],
  1883. 4 * j + 3,
  1884. pdadcValues[4 * j + 3]);
  1885. regOffset += 4;
  1886. }
  1887. }
  1888. }
  1889. *pTxPowerIndexOffset = 0;
  1890. return true;
  1891. }
  1892. static bool ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
  1893. struct ath9k_channel *chan,
  1894. int16_t *ratesArray,
  1895. u16 cfgCtl,
  1896. u16 AntennaReduction,
  1897. u16 twiceMaxRegulatoryPower,
  1898. u16 powerLimit)
  1899. {
  1900. #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
  1901. #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */
  1902. struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
  1903. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  1904. static const u16 tpScaleReductionTable[5] =
  1905. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  1906. int i;
  1907. int16_t twiceLargestAntenna;
  1908. struct cal_ctl_data *rep;
  1909. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  1910. 0, { 0, 0, 0, 0}
  1911. };
  1912. struct cal_target_power_leg targetPowerOfdmExt = {
  1913. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  1914. 0, { 0, 0, 0, 0 }
  1915. };
  1916. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  1917. 0, {0, 0, 0, 0}
  1918. };
  1919. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  1920. u16 ctlModesFor11a[] =
  1921. { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
  1922. u16 ctlModesFor11g[] =
  1923. { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
  1924. CTL_2GHT40
  1925. };
  1926. u16 numCtlModes, *pCtlMode, ctlMode, freq;
  1927. struct chan_centers centers;
  1928. int tx_chainmask;
  1929. u16 twiceMinEdgePower;
  1930. tx_chainmask = ah->txchainmask;
  1931. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1932. twiceLargestAntenna = max(
  1933. pEepData->modalHeader
  1934. [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
  1935. pEepData->modalHeader
  1936. [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
  1937. twiceLargestAntenna = max((u8)twiceLargestAntenna,
  1938. pEepData->modalHeader
  1939. [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
  1940. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  1941. twiceLargestAntenna, 0);
  1942. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  1943. if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX) {
  1944. maxRegAllowedPower -=
  1945. (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
  1946. }
  1947. scaledPower = min(powerLimit, maxRegAllowedPower);
  1948. switch (ar5416_get_ntxchains(tx_chainmask)) {
  1949. case 1:
  1950. break;
  1951. case 2:
  1952. scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
  1953. break;
  1954. case 3:
  1955. scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
  1956. break;
  1957. }
  1958. scaledPower = max((u16)0, scaledPower);
  1959. if (IS_CHAN_2GHZ(chan)) {
  1960. numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
  1961. SUB_NUM_CTL_MODES_AT_2G_40;
  1962. pCtlMode = ctlModesFor11g;
  1963. ath9k_hw_get_legacy_target_powers(ah, chan,
  1964. pEepData->calTargetPowerCck,
  1965. AR5416_NUM_2G_CCK_TARGET_POWERS,
  1966. &targetPowerCck, 4, false);
  1967. ath9k_hw_get_legacy_target_powers(ah, chan,
  1968. pEepData->calTargetPower2G,
  1969. AR5416_NUM_2G_20_TARGET_POWERS,
  1970. &targetPowerOfdm, 4, false);
  1971. ath9k_hw_get_target_powers(ah, chan,
  1972. pEepData->calTargetPower2GHT20,
  1973. AR5416_NUM_2G_20_TARGET_POWERS,
  1974. &targetPowerHt20, 8, false);
  1975. if (IS_CHAN_HT40(chan)) {
  1976. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  1977. ath9k_hw_get_target_powers(ah, chan,
  1978. pEepData->calTargetPower2GHT40,
  1979. AR5416_NUM_2G_40_TARGET_POWERS,
  1980. &targetPowerHt40, 8, true);
  1981. ath9k_hw_get_legacy_target_powers(ah, chan,
  1982. pEepData->calTargetPowerCck,
  1983. AR5416_NUM_2G_CCK_TARGET_POWERS,
  1984. &targetPowerCckExt, 4, true);
  1985. ath9k_hw_get_legacy_target_powers(ah, chan,
  1986. pEepData->calTargetPower2G,
  1987. AR5416_NUM_2G_20_TARGET_POWERS,
  1988. &targetPowerOfdmExt, 4, true);
  1989. }
  1990. } else {
  1991. numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
  1992. SUB_NUM_CTL_MODES_AT_5G_40;
  1993. pCtlMode = ctlModesFor11a;
  1994. ath9k_hw_get_legacy_target_powers(ah, chan,
  1995. pEepData->calTargetPower5G,
  1996. AR5416_NUM_5G_20_TARGET_POWERS,
  1997. &targetPowerOfdm, 4, false);
  1998. ath9k_hw_get_target_powers(ah, chan,
  1999. pEepData->calTargetPower5GHT20,
  2000. AR5416_NUM_5G_20_TARGET_POWERS,
  2001. &targetPowerHt20, 8, false);
  2002. if (IS_CHAN_HT40(chan)) {
  2003. numCtlModes = ARRAY_SIZE(ctlModesFor11a);
  2004. ath9k_hw_get_target_powers(ah, chan,
  2005. pEepData->calTargetPower5GHT40,
  2006. AR5416_NUM_5G_40_TARGET_POWERS,
  2007. &targetPowerHt40, 8, true);
  2008. ath9k_hw_get_legacy_target_powers(ah, chan,
  2009. pEepData->calTargetPower5G,
  2010. AR5416_NUM_5G_20_TARGET_POWERS,
  2011. &targetPowerOfdmExt, 4, true);
  2012. }
  2013. }
  2014. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  2015. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  2016. (pCtlMode[ctlMode] == CTL_2GHT40);
  2017. if (isHt40CtlMode)
  2018. freq = centers.synth_center;
  2019. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  2020. freq = centers.ext_center;
  2021. else
  2022. freq = centers.ctl_center;
  2023. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  2024. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  2025. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  2026. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2027. "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
  2028. "EXT_ADDITIVE %d\n",
  2029. ctlMode, numCtlModes, isHt40CtlMode,
  2030. (pCtlMode[ctlMode] & EXT_ADDITIVE));
  2031. for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  2032. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2033. " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
  2034. "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
  2035. "chan %d\n",
  2036. i, cfgCtl, pCtlMode[ctlMode],
  2037. pEepData->ctlIndex[i], chan->channel);
  2038. if ((((cfgCtl & ~CTL_MODE_M) |
  2039. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  2040. pEepData->ctlIndex[i]) ||
  2041. (((cfgCtl & ~CTL_MODE_M) |
  2042. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  2043. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
  2044. rep = &(pEepData->ctlData[i]);
  2045. twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
  2046. rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
  2047. IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
  2048. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2049. " MATCH-EE_IDX %d: ch %d is2 %d "
  2050. "2xMinEdge %d chainmask %d chains %d\n",
  2051. i, freq, IS_CHAN_2GHZ(chan),
  2052. twiceMinEdgePower, tx_chainmask,
  2053. ar5416_get_ntxchains
  2054. (tx_chainmask));
  2055. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  2056. twiceMaxEdgePower = min(twiceMaxEdgePower,
  2057. twiceMinEdgePower);
  2058. } else {
  2059. twiceMaxEdgePower = twiceMinEdgePower;
  2060. break;
  2061. }
  2062. }
  2063. }
  2064. minCtlPower = min(twiceMaxEdgePower, scaledPower);
  2065. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2066. " SEL-Min ctlMode %d pCtlMode %d "
  2067. "2xMaxEdge %d sP %d minCtlPwr %d\n",
  2068. ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
  2069. scaledPower, minCtlPower);
  2070. switch (pCtlMode[ctlMode]) {
  2071. case CTL_11B:
  2072. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  2073. targetPowerCck.tPow2x[i] =
  2074. min((u16)targetPowerCck.tPow2x[i],
  2075. minCtlPower);
  2076. }
  2077. break;
  2078. case CTL_11A:
  2079. case CTL_11G:
  2080. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  2081. targetPowerOfdm.tPow2x[i] =
  2082. min((u16)targetPowerOfdm.tPow2x[i],
  2083. minCtlPower);
  2084. }
  2085. break;
  2086. case CTL_5GHT20:
  2087. case CTL_2GHT20:
  2088. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  2089. targetPowerHt20.tPow2x[i] =
  2090. min((u16)targetPowerHt20.tPow2x[i],
  2091. minCtlPower);
  2092. }
  2093. break;
  2094. case CTL_11B_EXT:
  2095. targetPowerCckExt.tPow2x[0] = min((u16)
  2096. targetPowerCckExt.tPow2x[0],
  2097. minCtlPower);
  2098. break;
  2099. case CTL_11A_EXT:
  2100. case CTL_11G_EXT:
  2101. targetPowerOfdmExt.tPow2x[0] = min((u16)
  2102. targetPowerOfdmExt.tPow2x[0],
  2103. minCtlPower);
  2104. break;
  2105. case CTL_5GHT40:
  2106. case CTL_2GHT40:
  2107. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  2108. targetPowerHt40.tPow2x[i] =
  2109. min((u16)targetPowerHt40.tPow2x[i],
  2110. minCtlPower);
  2111. }
  2112. break;
  2113. default:
  2114. break;
  2115. }
  2116. }
  2117. ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
  2118. ratesArray[rate18mb] = ratesArray[rate24mb] =
  2119. targetPowerOfdm.tPow2x[0];
  2120. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  2121. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  2122. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  2123. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  2124. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  2125. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  2126. if (IS_CHAN_2GHZ(chan)) {
  2127. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  2128. ratesArray[rate2s] = ratesArray[rate2l] =
  2129. targetPowerCck.tPow2x[1];
  2130. ratesArray[rate5_5s] = ratesArray[rate5_5l] =
  2131. targetPowerCck.tPow2x[2];
  2132. ;
  2133. ratesArray[rate11s] = ratesArray[rate11l] =
  2134. targetPowerCck.tPow2x[3];
  2135. ;
  2136. }
  2137. if (IS_CHAN_HT40(chan)) {
  2138. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  2139. ratesArray[rateHt40_0 + i] =
  2140. targetPowerHt40.tPow2x[i];
  2141. }
  2142. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  2143. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  2144. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  2145. if (IS_CHAN_2GHZ(chan)) {
  2146. ratesArray[rateExtCck] =
  2147. targetPowerCckExt.tPow2x[0];
  2148. }
  2149. }
  2150. return true;
  2151. }
  2152. static int ath9k_hw_def_set_txpower(struct ath_hw *ah,
  2153. struct ath9k_channel *chan,
  2154. u16 cfgCtl,
  2155. u8 twiceAntennaReduction,
  2156. u8 twiceMaxRegulatoryPower,
  2157. u8 powerLimit)
  2158. {
  2159. struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
  2160. struct modal_eep_header *pModal =
  2161. &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
  2162. int16_t ratesArray[Ar5416RateSize];
  2163. int16_t txPowerIndexOffset = 0;
  2164. u8 ht40PowerIncForPdadc = 2;
  2165. int i;
  2166. memset(ratesArray, 0, sizeof(ratesArray));
  2167. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  2168. AR5416_EEP_MINOR_VER_2) {
  2169. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  2170. }
  2171. if (!ath9k_hw_set_def_power_per_rate_table(ah, chan,
  2172. &ratesArray[0], cfgCtl,
  2173. twiceAntennaReduction,
  2174. twiceMaxRegulatoryPower,
  2175. powerLimit)) {
  2176. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  2177. "ath9k_hw_set_txpower: unable to set "
  2178. "tx power per rate table\n");
  2179. return -EIO;
  2180. }
  2181. if (!ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset)) {
  2182. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  2183. "ath9k_hw_set_txpower: unable to set power table\n");
  2184. return -EIO;
  2185. }
  2186. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  2187. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  2188. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  2189. ratesArray[i] = AR5416_MAX_RATE_POWER;
  2190. }
  2191. if (AR_SREV_9280_10_OR_LATER(ah)) {
  2192. for (i = 0; i < Ar5416RateSize; i++)
  2193. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
  2194. }
  2195. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  2196. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  2197. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  2198. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  2199. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  2200. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  2201. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  2202. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  2203. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  2204. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  2205. if (IS_CHAN_2GHZ(chan)) {
  2206. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  2207. ATH9K_POW_SM(ratesArray[rate2s], 24)
  2208. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  2209. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  2210. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  2211. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  2212. ATH9K_POW_SM(ratesArray[rate11s], 24)
  2213. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  2214. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  2215. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  2216. }
  2217. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  2218. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  2219. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  2220. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  2221. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  2222. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  2223. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  2224. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  2225. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  2226. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  2227. if (IS_CHAN_HT40(chan)) {
  2228. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  2229. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  2230. ht40PowerIncForPdadc, 24)
  2231. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  2232. ht40PowerIncForPdadc, 16)
  2233. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  2234. ht40PowerIncForPdadc, 8)
  2235. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  2236. ht40PowerIncForPdadc, 0));
  2237. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  2238. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  2239. ht40PowerIncForPdadc, 24)
  2240. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  2241. ht40PowerIncForPdadc, 16)
  2242. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  2243. ht40PowerIncForPdadc, 8)
  2244. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  2245. ht40PowerIncForPdadc, 0));
  2246. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  2247. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  2248. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  2249. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  2250. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  2251. }
  2252. REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
  2253. ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
  2254. | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
  2255. i = rate6mb;
  2256. if (IS_CHAN_HT40(chan))
  2257. i = rateHt40_0;
  2258. else if (IS_CHAN_HT20(chan))
  2259. i = rateHt20_0;
  2260. if (AR_SREV_9280_10_OR_LATER(ah))
  2261. ah->regulatory.max_power_level =
  2262. ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
  2263. else
  2264. ah->regulatory.max_power_level = ratesArray[i];
  2265. return 0;
  2266. }
  2267. static u8 ath9k_hw_def_get_num_ant_config(struct ath_hw *ah,
  2268. enum ieee80211_band freq_band)
  2269. {
  2270. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  2271. struct modal_eep_header *pModal =
  2272. &(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
  2273. struct base_eep_header *pBase = &eep->baseEepHeader;
  2274. u8 num_ant_config;
  2275. num_ant_config = 1;
  2276. if (pBase->version >= 0x0E0D)
  2277. if (pModal->useAnt1)
  2278. num_ant_config += 1;
  2279. return num_ant_config;
  2280. }
  2281. static u16 ath9k_hw_def_get_eeprom_antenna_cfg(struct ath_hw *ah,
  2282. struct ath9k_channel *chan)
  2283. {
  2284. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  2285. struct modal_eep_header *pModal =
  2286. &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  2287. return pModal->antCtrlCommon & 0xFFFF;
  2288. }
  2289. static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  2290. {
  2291. #define EEP_DEF_SPURCHAN \
  2292. (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
  2293. u16 spur_val = AR_NO_SPUR;
  2294. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  2295. "Getting spur idx %d is2Ghz. %d val %x\n",
  2296. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  2297. switch (ah->config.spurmode) {
  2298. case SPUR_DISABLE:
  2299. break;
  2300. case SPUR_ENABLE_IOCTL:
  2301. spur_val = ah->config.spurchans[i][is2GHz];
  2302. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  2303. "Getting spur val from new loc. %d\n", spur_val);
  2304. break;
  2305. case SPUR_ENABLE_EEPROM:
  2306. spur_val = EEP_DEF_SPURCHAN;
  2307. break;
  2308. }
  2309. return spur_val;
  2310. #undef EEP_DEF_SPURCHAN
  2311. }
  2312. static struct eeprom_ops eep_def_ops = {
  2313. .check_eeprom = ath9k_hw_def_check_eeprom,
  2314. .get_eeprom = ath9k_hw_def_get_eeprom,
  2315. .fill_eeprom = ath9k_hw_def_fill_eeprom,
  2316. .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
  2317. .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
  2318. .get_num_ant_config = ath9k_hw_def_get_num_ant_config,
  2319. .get_eeprom_antenna_cfg = ath9k_hw_def_get_eeprom_antenna_cfg,
  2320. .set_board_values = ath9k_hw_def_set_board_values,
  2321. .set_addac = ath9k_hw_def_set_addac,
  2322. .set_txpower = ath9k_hw_def_set_txpower,
  2323. .get_spur_channel = ath9k_hw_def_get_spur_channel
  2324. };
  2325. int ath9k_hw_eeprom_attach(struct ath_hw *ah)
  2326. {
  2327. int status;
  2328. if (AR_SREV_9285(ah)) {
  2329. ah->eep_map = EEP_MAP_4KBITS;
  2330. ah->eep_ops = &eep_4k_ops;
  2331. } else {
  2332. ah->eep_map = EEP_MAP_DEFAULT;
  2333. ah->eep_ops = &eep_def_ops;
  2334. }
  2335. if (!ah->eep_ops->fill_eeprom(ah))
  2336. return -EIO;
  2337. status = ah->eep_ops->check_eeprom(ah);
  2338. return status;
  2339. }