ieee80211_sta.c 119 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/rtnetlink.h>
  27. #include <net/iw_handler.h>
  28. #include <asm/types.h>
  29. #include <net/mac80211.h>
  30. #include "ieee80211_i.h"
  31. #include "ieee80211_rate.h"
  32. #include "ieee80211_led.h"
  33. #include "mesh.h"
  34. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  35. #define IEEE80211_AUTH_MAX_TRIES 3
  36. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  37. #define IEEE80211_ASSOC_MAX_TRIES 3
  38. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  39. #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ)
  40. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  41. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  42. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  43. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  44. #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
  45. #define IEEE80211_PROBE_DELAY (HZ / 33)
  46. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  47. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  48. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  49. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  50. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  51. #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ)
  52. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  53. #define IEEE80211_FC(type, stype) cpu_to_le16(type | stype)
  54. #define ERP_INFO_USE_PROTECTION BIT(1)
  55. /* mgmt header + 1 byte action code */
  56. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  57. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  58. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  59. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  60. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  61. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  62. /* next values represent the buffer size for A-MPDU frame.
  63. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  64. #define IEEE80211_MIN_AMPDU_BUF 0x8
  65. #define IEEE80211_MAX_AMPDU_BUF 0x40
  66. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  67. u8 *ssid, size_t ssid_len);
  68. static struct ieee80211_sta_bss *
  69. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  70. u8 *ssid, u8 ssid_len);
  71. static void ieee80211_rx_bss_put(struct net_device *dev,
  72. struct ieee80211_sta_bss *bss);
  73. static int ieee80211_sta_find_ibss(struct net_device *dev,
  74. struct ieee80211_if_sta *ifsta);
  75. static int ieee80211_sta_wep_configured(struct net_device *dev);
  76. static int ieee80211_sta_start_scan(struct net_device *dev,
  77. u8 *ssid, size_t ssid_len);
  78. static int ieee80211_sta_config_auth(struct net_device *dev,
  79. struct ieee80211_if_sta *ifsta);
  80. void ieee802_11_parse_elems(u8 *start, size_t len,
  81. struct ieee802_11_elems *elems)
  82. {
  83. size_t left = len;
  84. u8 *pos = start;
  85. memset(elems, 0, sizeof(*elems));
  86. while (left >= 2) {
  87. u8 id, elen;
  88. id = *pos++;
  89. elen = *pos++;
  90. left -= 2;
  91. if (elen > left)
  92. return;
  93. switch (id) {
  94. case WLAN_EID_SSID:
  95. elems->ssid = pos;
  96. elems->ssid_len = elen;
  97. break;
  98. case WLAN_EID_SUPP_RATES:
  99. elems->supp_rates = pos;
  100. elems->supp_rates_len = elen;
  101. break;
  102. case WLAN_EID_FH_PARAMS:
  103. elems->fh_params = pos;
  104. elems->fh_params_len = elen;
  105. break;
  106. case WLAN_EID_DS_PARAMS:
  107. elems->ds_params = pos;
  108. elems->ds_params_len = elen;
  109. break;
  110. case WLAN_EID_CF_PARAMS:
  111. elems->cf_params = pos;
  112. elems->cf_params_len = elen;
  113. break;
  114. case WLAN_EID_TIM:
  115. elems->tim = pos;
  116. elems->tim_len = elen;
  117. break;
  118. case WLAN_EID_IBSS_PARAMS:
  119. elems->ibss_params = pos;
  120. elems->ibss_params_len = elen;
  121. break;
  122. case WLAN_EID_CHALLENGE:
  123. elems->challenge = pos;
  124. elems->challenge_len = elen;
  125. break;
  126. case WLAN_EID_WPA:
  127. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  128. pos[2] == 0xf2) {
  129. /* Microsoft OUI (00:50:F2) */
  130. if (pos[3] == 1) {
  131. /* OUI Type 1 - WPA IE */
  132. elems->wpa = pos;
  133. elems->wpa_len = elen;
  134. } else if (elen >= 5 && pos[3] == 2) {
  135. if (pos[4] == 0) {
  136. elems->wmm_info = pos;
  137. elems->wmm_info_len = elen;
  138. } else if (pos[4] == 1) {
  139. elems->wmm_param = pos;
  140. elems->wmm_param_len = elen;
  141. }
  142. }
  143. }
  144. break;
  145. case WLAN_EID_RSN:
  146. elems->rsn = pos;
  147. elems->rsn_len = elen;
  148. break;
  149. case WLAN_EID_ERP_INFO:
  150. elems->erp_info = pos;
  151. elems->erp_info_len = elen;
  152. break;
  153. case WLAN_EID_EXT_SUPP_RATES:
  154. elems->ext_supp_rates = pos;
  155. elems->ext_supp_rates_len = elen;
  156. break;
  157. case WLAN_EID_HT_CAPABILITY:
  158. elems->ht_cap_elem = pos;
  159. elems->ht_cap_elem_len = elen;
  160. break;
  161. case WLAN_EID_HT_EXTRA_INFO:
  162. elems->ht_info_elem = pos;
  163. elems->ht_info_elem_len = elen;
  164. break;
  165. case WLAN_EID_MESH_ID:
  166. elems->mesh_id = pos;
  167. elems->mesh_id_len = elen;
  168. break;
  169. case WLAN_EID_MESH_CONFIG:
  170. elems->mesh_config = pos;
  171. elems->mesh_config_len = elen;
  172. break;
  173. case WLAN_EID_PEER_LINK:
  174. elems->peer_link = pos;
  175. elems->peer_link_len = elen;
  176. break;
  177. case WLAN_EID_PREQ:
  178. elems->preq = pos;
  179. elems->preq_len = elen;
  180. break;
  181. case WLAN_EID_PREP:
  182. elems->prep = pos;
  183. elems->prep_len = elen;
  184. break;
  185. case WLAN_EID_PERR:
  186. elems->perr = pos;
  187. elems->perr_len = elen;
  188. break;
  189. default:
  190. break;
  191. }
  192. left -= elen;
  193. pos += elen;
  194. }
  195. }
  196. static int ecw2cw(int ecw)
  197. {
  198. return (1 << ecw) - 1;
  199. }
  200. static void ieee80211_sta_def_wmm_params(struct net_device *dev,
  201. struct ieee80211_sta_bss *bss,
  202. int ibss)
  203. {
  204. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  205. struct ieee80211_local *local = sdata->local;
  206. int i, have_higher_than_11mbit = 0;
  207. /* cf. IEEE 802.11 9.2.12 */
  208. for (i = 0; i < bss->supp_rates_len; i++)
  209. if ((bss->supp_rates[i] & 0x7f) * 5 > 110)
  210. have_higher_than_11mbit = 1;
  211. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  212. have_higher_than_11mbit)
  213. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  214. else
  215. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  216. if (local->ops->conf_tx) {
  217. struct ieee80211_tx_queue_params qparam;
  218. int i;
  219. memset(&qparam, 0, sizeof(qparam));
  220. qparam.aifs = 2;
  221. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  222. !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
  223. qparam.cw_min = 31;
  224. else
  225. qparam.cw_min = 15;
  226. qparam.cw_max = 1023;
  227. qparam.txop = 0;
  228. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  229. local->ops->conf_tx(local_to_hw(local),
  230. i + IEEE80211_TX_QUEUE_DATA0,
  231. &qparam);
  232. if (ibss) {
  233. /* IBSS uses different parameters for Beacon sending */
  234. qparam.cw_min++;
  235. qparam.cw_min *= 2;
  236. qparam.cw_min--;
  237. local->ops->conf_tx(local_to_hw(local),
  238. IEEE80211_TX_QUEUE_BEACON, &qparam);
  239. }
  240. }
  241. }
  242. static void ieee80211_sta_wmm_params(struct net_device *dev,
  243. struct ieee80211_if_sta *ifsta,
  244. u8 *wmm_param, size_t wmm_param_len)
  245. {
  246. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  247. struct ieee80211_tx_queue_params params;
  248. size_t left;
  249. int count;
  250. u8 *pos;
  251. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  252. return;
  253. count = wmm_param[6] & 0x0f;
  254. if (count == ifsta->wmm_last_param_set)
  255. return;
  256. ifsta->wmm_last_param_set = count;
  257. pos = wmm_param + 8;
  258. left = wmm_param_len - 8;
  259. memset(&params, 0, sizeof(params));
  260. if (!local->ops->conf_tx)
  261. return;
  262. local->wmm_acm = 0;
  263. for (; left >= 4; left -= 4, pos += 4) {
  264. int aci = (pos[0] >> 5) & 0x03;
  265. int acm = (pos[0] >> 4) & 0x01;
  266. int queue;
  267. switch (aci) {
  268. case 1:
  269. queue = IEEE80211_TX_QUEUE_DATA3;
  270. if (acm) {
  271. local->wmm_acm |= BIT(0) | BIT(3);
  272. }
  273. break;
  274. case 2:
  275. queue = IEEE80211_TX_QUEUE_DATA1;
  276. if (acm) {
  277. local->wmm_acm |= BIT(4) | BIT(5);
  278. }
  279. break;
  280. case 3:
  281. queue = IEEE80211_TX_QUEUE_DATA0;
  282. if (acm) {
  283. local->wmm_acm |= BIT(6) | BIT(7);
  284. }
  285. break;
  286. case 0:
  287. default:
  288. queue = IEEE80211_TX_QUEUE_DATA2;
  289. if (acm) {
  290. local->wmm_acm |= BIT(1) | BIT(2);
  291. }
  292. break;
  293. }
  294. params.aifs = pos[0] & 0x0f;
  295. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  296. params.cw_min = ecw2cw(pos[1] & 0x0f);
  297. params.txop = pos[2] | (pos[3] << 8);
  298. #ifdef CONFIG_MAC80211_DEBUG
  299. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  300. "cWmin=%d cWmax=%d txop=%d\n",
  301. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  302. params.cw_max, params.txop);
  303. #endif
  304. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  305. * AC for now) */
  306. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  307. printk(KERN_DEBUG "%s: failed to set TX queue "
  308. "parameters for queue %d\n", dev->name, queue);
  309. }
  310. }
  311. }
  312. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  313. u8 erp_value)
  314. {
  315. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  316. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  317. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  318. bool preamble_mode = (erp_value & WLAN_ERP_BARKER_PREAMBLE) != 0;
  319. DECLARE_MAC_BUF(mac);
  320. u32 changed = 0;
  321. if (use_protection != bss_conf->use_cts_prot) {
  322. if (net_ratelimit()) {
  323. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  324. "%s)\n",
  325. sdata->dev->name,
  326. use_protection ? "enabled" : "disabled",
  327. print_mac(mac, ifsta->bssid));
  328. }
  329. bss_conf->use_cts_prot = use_protection;
  330. changed |= BSS_CHANGED_ERP_CTS_PROT;
  331. }
  332. if (preamble_mode != bss_conf->use_short_preamble) {
  333. if (net_ratelimit()) {
  334. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  335. " (BSSID=%s)\n",
  336. sdata->dev->name,
  337. (preamble_mode == WLAN_ERP_PREAMBLE_SHORT) ?
  338. "short" : "long",
  339. print_mac(mac, ifsta->bssid));
  340. }
  341. bss_conf->use_short_preamble = preamble_mode;
  342. changed |= BSS_CHANGED_ERP_PREAMBLE;
  343. }
  344. return changed;
  345. }
  346. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  347. struct ieee80211_ht_info *ht_info)
  348. {
  349. if (ht_info == NULL)
  350. return -EINVAL;
  351. memset(ht_info, 0, sizeof(*ht_info));
  352. if (ht_cap_ie) {
  353. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  354. ht_info->ht_supported = 1;
  355. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  356. ht_info->ampdu_factor =
  357. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  358. ht_info->ampdu_density =
  359. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  360. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  361. } else
  362. ht_info->ht_supported = 0;
  363. return 0;
  364. }
  365. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  366. struct ieee80211_ht_addt_info *ht_add_info_ie,
  367. struct ieee80211_ht_bss_info *bss_info)
  368. {
  369. if (bss_info == NULL)
  370. return -EINVAL;
  371. memset(bss_info, 0, sizeof(*bss_info));
  372. if (ht_add_info_ie) {
  373. u16 op_mode;
  374. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  375. bss_info->primary_channel = ht_add_info_ie->control_chan;
  376. bss_info->bss_cap = ht_add_info_ie->ht_param;
  377. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  378. }
  379. return 0;
  380. }
  381. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  382. struct ieee80211_if_sta *ifsta)
  383. {
  384. char *buf;
  385. size_t len;
  386. int i;
  387. union iwreq_data wrqu;
  388. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  389. return;
  390. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  391. ifsta->assocresp_ies_len), GFP_KERNEL);
  392. if (!buf)
  393. return;
  394. len = sprintf(buf, "ASSOCINFO(");
  395. if (ifsta->assocreq_ies) {
  396. len += sprintf(buf + len, "ReqIEs=");
  397. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  398. len += sprintf(buf + len, "%02x",
  399. ifsta->assocreq_ies[i]);
  400. }
  401. }
  402. if (ifsta->assocresp_ies) {
  403. if (ifsta->assocreq_ies)
  404. len += sprintf(buf + len, " ");
  405. len += sprintf(buf + len, "RespIEs=");
  406. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  407. len += sprintf(buf + len, "%02x",
  408. ifsta->assocresp_ies[i]);
  409. }
  410. }
  411. len += sprintf(buf + len, ")");
  412. if (len > IW_CUSTOM_MAX) {
  413. len = sprintf(buf, "ASSOCRESPIE=");
  414. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  415. len += sprintf(buf + len, "%02x",
  416. ifsta->assocresp_ies[i]);
  417. }
  418. }
  419. memset(&wrqu, 0, sizeof(wrqu));
  420. wrqu.data.length = len;
  421. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  422. kfree(buf);
  423. }
  424. static void ieee80211_set_associated(struct net_device *dev,
  425. struct ieee80211_if_sta *ifsta,
  426. bool assoc)
  427. {
  428. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  429. struct ieee80211_local *local = sdata->local;
  430. union iwreq_data wrqu;
  431. u32 changed = BSS_CHANGED_ASSOC;
  432. if (assoc) {
  433. struct ieee80211_sta_bss *bss;
  434. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  435. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  436. return;
  437. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  438. local->hw.conf.channel->center_freq,
  439. ifsta->ssid, ifsta->ssid_len);
  440. if (bss) {
  441. if (bss->has_erp_value)
  442. changed |= ieee80211_handle_erp_ie(
  443. sdata, bss->erp_value);
  444. ieee80211_rx_bss_put(dev, bss);
  445. }
  446. netif_carrier_on(dev);
  447. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  448. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  449. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  450. ieee80211_sta_send_associnfo(dev, ifsta);
  451. } else {
  452. ieee80211_sta_tear_down_BA_sessions(dev, ifsta->bssid);
  453. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  454. netif_carrier_off(dev);
  455. ieee80211_reset_erp_info(dev);
  456. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  457. }
  458. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  459. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  460. ifsta->last_probe = jiffies;
  461. ieee80211_led_assoc(local, assoc);
  462. sdata->bss_conf.assoc = assoc;
  463. ieee80211_bss_info_change_notify(sdata, changed);
  464. }
  465. static void ieee80211_set_disassoc(struct net_device *dev,
  466. struct ieee80211_if_sta *ifsta, int deauth)
  467. {
  468. if (deauth)
  469. ifsta->auth_tries = 0;
  470. ifsta->assoc_tries = 0;
  471. ieee80211_set_associated(dev, ifsta, 0);
  472. }
  473. void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  474. int encrypt)
  475. {
  476. struct ieee80211_sub_if_data *sdata;
  477. struct ieee80211_tx_packet_data *pkt_data;
  478. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  479. skb->dev = sdata->local->mdev;
  480. skb_set_mac_header(skb, 0);
  481. skb_set_network_header(skb, 0);
  482. skb_set_transport_header(skb, 0);
  483. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  484. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  485. pkt_data->ifindex = sdata->dev->ifindex;
  486. if (!encrypt)
  487. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  488. dev_queue_xmit(skb);
  489. }
  490. static void ieee80211_send_auth(struct net_device *dev,
  491. struct ieee80211_if_sta *ifsta,
  492. int transaction, u8 *extra, size_t extra_len,
  493. int encrypt)
  494. {
  495. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  496. struct sk_buff *skb;
  497. struct ieee80211_mgmt *mgmt;
  498. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  499. sizeof(*mgmt) + 6 + extra_len);
  500. if (!skb) {
  501. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  502. "frame\n", dev->name);
  503. return;
  504. }
  505. skb_reserve(skb, local->hw.extra_tx_headroom);
  506. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  507. memset(mgmt, 0, 24 + 6);
  508. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  509. IEEE80211_STYPE_AUTH);
  510. if (encrypt)
  511. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  512. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  513. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  514. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  515. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  516. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  517. ifsta->auth_transaction = transaction + 1;
  518. mgmt->u.auth.status_code = cpu_to_le16(0);
  519. if (extra)
  520. memcpy(skb_put(skb, extra_len), extra, extra_len);
  521. ieee80211_sta_tx(dev, skb, encrypt);
  522. }
  523. static void ieee80211_authenticate(struct net_device *dev,
  524. struct ieee80211_if_sta *ifsta)
  525. {
  526. DECLARE_MAC_BUF(mac);
  527. ifsta->auth_tries++;
  528. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  529. printk(KERN_DEBUG "%s: authentication with AP %s"
  530. " timed out\n",
  531. dev->name, print_mac(mac, ifsta->bssid));
  532. ifsta->state = IEEE80211_DISABLED;
  533. return;
  534. }
  535. ifsta->state = IEEE80211_AUTHENTICATE;
  536. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  537. dev->name, print_mac(mac, ifsta->bssid));
  538. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  539. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  540. }
  541. static void ieee80211_send_assoc(struct net_device *dev,
  542. struct ieee80211_if_sta *ifsta)
  543. {
  544. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  545. struct sk_buff *skb;
  546. struct ieee80211_mgmt *mgmt;
  547. u8 *pos, *ies;
  548. int i, len;
  549. u16 capab;
  550. struct ieee80211_sta_bss *bss;
  551. int wmm = 0;
  552. struct ieee80211_supported_band *sband;
  553. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  554. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  555. ifsta->ssid_len);
  556. if (!skb) {
  557. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  558. "frame\n", dev->name);
  559. return;
  560. }
  561. skb_reserve(skb, local->hw.extra_tx_headroom);
  562. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  563. capab = ifsta->capab;
  564. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
  565. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
  566. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
  567. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
  568. capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
  569. }
  570. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  571. local->hw.conf.channel->center_freq,
  572. ifsta->ssid, ifsta->ssid_len);
  573. if (bss) {
  574. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  575. capab |= WLAN_CAPABILITY_PRIVACY;
  576. if (bss->wmm_ie) {
  577. wmm = 1;
  578. }
  579. ieee80211_rx_bss_put(dev, bss);
  580. }
  581. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  582. memset(mgmt, 0, 24);
  583. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  584. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  585. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  586. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  587. skb_put(skb, 10);
  588. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  589. IEEE80211_STYPE_REASSOC_REQ);
  590. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  591. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  592. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  593. ETH_ALEN);
  594. } else {
  595. skb_put(skb, 4);
  596. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  597. IEEE80211_STYPE_ASSOC_REQ);
  598. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  599. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  600. }
  601. /* SSID */
  602. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  603. *pos++ = WLAN_EID_SSID;
  604. *pos++ = ifsta->ssid_len;
  605. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  606. len = sband->n_bitrates;
  607. if (len > 8)
  608. len = 8;
  609. pos = skb_put(skb, len + 2);
  610. *pos++ = WLAN_EID_SUPP_RATES;
  611. *pos++ = len;
  612. for (i = 0; i < len; i++) {
  613. int rate = sband->bitrates[i].bitrate;
  614. *pos++ = (u8) (rate / 5);
  615. }
  616. if (sband->n_bitrates > len) {
  617. pos = skb_put(skb, sband->n_bitrates - len + 2);
  618. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  619. *pos++ = sband->n_bitrates - len;
  620. for (i = len; i < sband->n_bitrates; i++) {
  621. int rate = sband->bitrates[i].bitrate;
  622. *pos++ = (u8) (rate / 5);
  623. }
  624. }
  625. if (ifsta->extra_ie) {
  626. pos = skb_put(skb, ifsta->extra_ie_len);
  627. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  628. }
  629. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  630. pos = skb_put(skb, 9);
  631. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  632. *pos++ = 7; /* len */
  633. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  634. *pos++ = 0x50;
  635. *pos++ = 0xf2;
  636. *pos++ = 2; /* WME */
  637. *pos++ = 0; /* WME info */
  638. *pos++ = 1; /* WME ver */
  639. *pos++ = 0;
  640. }
  641. /* wmm support is a must to HT */
  642. if (wmm && sband->ht_info.ht_supported) {
  643. __le16 tmp = cpu_to_le16(sband->ht_info.cap);
  644. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  645. *pos++ = WLAN_EID_HT_CAPABILITY;
  646. *pos++ = sizeof(struct ieee80211_ht_cap);
  647. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  648. memcpy(pos, &tmp, sizeof(u16));
  649. pos += sizeof(u16);
  650. /* TODO: needs a define here for << 2 */
  651. *pos++ = sband->ht_info.ampdu_factor |
  652. (sband->ht_info.ampdu_density << 2);
  653. memcpy(pos, sband->ht_info.supp_mcs_set, 16);
  654. }
  655. kfree(ifsta->assocreq_ies);
  656. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  657. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  658. if (ifsta->assocreq_ies)
  659. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  660. ieee80211_sta_tx(dev, skb, 0);
  661. }
  662. static void ieee80211_send_deauth(struct net_device *dev,
  663. struct ieee80211_if_sta *ifsta, u16 reason)
  664. {
  665. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  666. struct sk_buff *skb;
  667. struct ieee80211_mgmt *mgmt;
  668. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  669. if (!skb) {
  670. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  671. "frame\n", dev->name);
  672. return;
  673. }
  674. skb_reserve(skb, local->hw.extra_tx_headroom);
  675. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  676. memset(mgmt, 0, 24);
  677. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  678. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  679. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  680. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  681. IEEE80211_STYPE_DEAUTH);
  682. skb_put(skb, 2);
  683. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  684. ieee80211_sta_tx(dev, skb, 0);
  685. }
  686. static void ieee80211_send_disassoc(struct net_device *dev,
  687. struct ieee80211_if_sta *ifsta, u16 reason)
  688. {
  689. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  690. struct sk_buff *skb;
  691. struct ieee80211_mgmt *mgmt;
  692. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  693. if (!skb) {
  694. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  695. "frame\n", dev->name);
  696. return;
  697. }
  698. skb_reserve(skb, local->hw.extra_tx_headroom);
  699. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  700. memset(mgmt, 0, 24);
  701. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  702. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  703. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  704. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  705. IEEE80211_STYPE_DISASSOC);
  706. skb_put(skb, 2);
  707. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  708. ieee80211_sta_tx(dev, skb, 0);
  709. }
  710. static int ieee80211_privacy_mismatch(struct net_device *dev,
  711. struct ieee80211_if_sta *ifsta)
  712. {
  713. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  714. struct ieee80211_sta_bss *bss;
  715. int bss_privacy;
  716. int wep_privacy;
  717. int privacy_invoked;
  718. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  719. return 0;
  720. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  721. local->hw.conf.channel->center_freq,
  722. ifsta->ssid, ifsta->ssid_len);
  723. if (!bss)
  724. return 0;
  725. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  726. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  727. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  728. ieee80211_rx_bss_put(dev, bss);
  729. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  730. return 0;
  731. return 1;
  732. }
  733. static void ieee80211_associate(struct net_device *dev,
  734. struct ieee80211_if_sta *ifsta)
  735. {
  736. DECLARE_MAC_BUF(mac);
  737. ifsta->assoc_tries++;
  738. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  739. printk(KERN_DEBUG "%s: association with AP %s"
  740. " timed out\n",
  741. dev->name, print_mac(mac, ifsta->bssid));
  742. ifsta->state = IEEE80211_DISABLED;
  743. return;
  744. }
  745. ifsta->state = IEEE80211_ASSOCIATE;
  746. printk(KERN_DEBUG "%s: associate with AP %s\n",
  747. dev->name, print_mac(mac, ifsta->bssid));
  748. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  749. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  750. "mixed-cell disabled - abort association\n", dev->name);
  751. ifsta->state = IEEE80211_DISABLED;
  752. return;
  753. }
  754. ieee80211_send_assoc(dev, ifsta);
  755. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  756. }
  757. static void ieee80211_associated(struct net_device *dev,
  758. struct ieee80211_if_sta *ifsta)
  759. {
  760. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  761. struct sta_info *sta;
  762. int disassoc;
  763. DECLARE_MAC_BUF(mac);
  764. /* TODO: start monitoring current AP signal quality and number of
  765. * missed beacons. Scan other channels every now and then and search
  766. * for better APs. */
  767. /* TODO: remove expired BSSes */
  768. ifsta->state = IEEE80211_ASSOCIATED;
  769. rcu_read_lock();
  770. sta = sta_info_get(local, ifsta->bssid);
  771. if (!sta) {
  772. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  773. dev->name, print_mac(mac, ifsta->bssid));
  774. disassoc = 1;
  775. } else {
  776. disassoc = 0;
  777. if (time_after(jiffies,
  778. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  779. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  780. printk(KERN_DEBUG "%s: No ProbeResp from "
  781. "current AP %s - assume out of "
  782. "range\n",
  783. dev->name, print_mac(mac, ifsta->bssid));
  784. disassoc = 1;
  785. sta_info_unlink(&sta);
  786. } else
  787. ieee80211_send_probe_req(dev, ifsta->bssid,
  788. local->scan_ssid,
  789. local->scan_ssid_len);
  790. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  791. } else {
  792. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  793. if (time_after(jiffies, ifsta->last_probe +
  794. IEEE80211_PROBE_INTERVAL)) {
  795. ifsta->last_probe = jiffies;
  796. ieee80211_send_probe_req(dev, ifsta->bssid,
  797. ifsta->ssid,
  798. ifsta->ssid_len);
  799. }
  800. }
  801. }
  802. rcu_read_unlock();
  803. if (disassoc && sta) {
  804. synchronize_rcu();
  805. rtnl_lock();
  806. sta_info_destroy(sta);
  807. rtnl_unlock();
  808. }
  809. if (disassoc) {
  810. ifsta->state = IEEE80211_DISABLED;
  811. ieee80211_set_associated(dev, ifsta, 0);
  812. } else {
  813. mod_timer(&ifsta->timer, jiffies +
  814. IEEE80211_MONITORING_INTERVAL);
  815. }
  816. }
  817. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  818. u8 *ssid, size_t ssid_len)
  819. {
  820. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  821. struct ieee80211_supported_band *sband;
  822. struct sk_buff *skb;
  823. struct ieee80211_mgmt *mgmt;
  824. u8 *pos, *supp_rates, *esupp_rates = NULL;
  825. int i;
  826. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  827. if (!skb) {
  828. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  829. "request\n", dev->name);
  830. return;
  831. }
  832. skb_reserve(skb, local->hw.extra_tx_headroom);
  833. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  834. memset(mgmt, 0, 24);
  835. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  836. IEEE80211_STYPE_PROBE_REQ);
  837. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  838. if (dst) {
  839. memcpy(mgmt->da, dst, ETH_ALEN);
  840. memcpy(mgmt->bssid, dst, ETH_ALEN);
  841. } else {
  842. memset(mgmt->da, 0xff, ETH_ALEN);
  843. memset(mgmt->bssid, 0xff, ETH_ALEN);
  844. }
  845. pos = skb_put(skb, 2 + ssid_len);
  846. *pos++ = WLAN_EID_SSID;
  847. *pos++ = ssid_len;
  848. memcpy(pos, ssid, ssid_len);
  849. supp_rates = skb_put(skb, 2);
  850. supp_rates[0] = WLAN_EID_SUPP_RATES;
  851. supp_rates[1] = 0;
  852. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  853. for (i = 0; i < sband->n_bitrates; i++) {
  854. struct ieee80211_rate *rate = &sband->bitrates[i];
  855. if (esupp_rates) {
  856. pos = skb_put(skb, 1);
  857. esupp_rates[1]++;
  858. } else if (supp_rates[1] == 8) {
  859. esupp_rates = skb_put(skb, 3);
  860. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  861. esupp_rates[1] = 1;
  862. pos = &esupp_rates[2];
  863. } else {
  864. pos = skb_put(skb, 1);
  865. supp_rates[1]++;
  866. }
  867. *pos = rate->bitrate / 5;
  868. }
  869. ieee80211_sta_tx(dev, skb, 0);
  870. }
  871. static int ieee80211_sta_wep_configured(struct net_device *dev)
  872. {
  873. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  874. if (!sdata || !sdata->default_key ||
  875. sdata->default_key->conf.alg != ALG_WEP)
  876. return 0;
  877. return 1;
  878. }
  879. static void ieee80211_auth_completed(struct net_device *dev,
  880. struct ieee80211_if_sta *ifsta)
  881. {
  882. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  883. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  884. ieee80211_associate(dev, ifsta);
  885. }
  886. static void ieee80211_auth_challenge(struct net_device *dev,
  887. struct ieee80211_if_sta *ifsta,
  888. struct ieee80211_mgmt *mgmt,
  889. size_t len)
  890. {
  891. u8 *pos;
  892. struct ieee802_11_elems elems;
  893. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  894. pos = mgmt->u.auth.variable;
  895. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  896. if (!elems.challenge) {
  897. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  898. "frame\n", dev->name);
  899. return;
  900. }
  901. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  902. elems.challenge_len + 2, 1);
  903. }
  904. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  905. u8 dialog_token, u16 status, u16 policy,
  906. u16 buf_size, u16 timeout)
  907. {
  908. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  909. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  910. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  911. struct sk_buff *skb;
  912. struct ieee80211_mgmt *mgmt;
  913. u16 capab;
  914. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  915. sizeof(mgmt->u.action.u.addba_resp));
  916. if (!skb) {
  917. printk(KERN_DEBUG "%s: failed to allocate buffer "
  918. "for addba resp frame\n", dev->name);
  919. return;
  920. }
  921. skb_reserve(skb, local->hw.extra_tx_headroom);
  922. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  923. memset(mgmt, 0, 24);
  924. memcpy(mgmt->da, da, ETH_ALEN);
  925. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  926. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  927. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  928. else
  929. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  930. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  931. IEEE80211_STYPE_ACTION);
  932. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  933. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  934. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  935. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  936. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  937. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  938. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  939. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  940. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  941. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  942. ieee80211_sta_tx(dev, skb, 0);
  943. return;
  944. }
  945. void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
  946. u16 tid, u8 dialog_token, u16 start_seq_num,
  947. u16 agg_size, u16 timeout)
  948. {
  949. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  950. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  951. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  952. struct sk_buff *skb;
  953. struct ieee80211_mgmt *mgmt;
  954. u16 capab;
  955. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  956. sizeof(mgmt->u.action.u.addba_req));
  957. if (!skb) {
  958. printk(KERN_ERR "%s: failed to allocate buffer "
  959. "for addba request frame\n", dev->name);
  960. return;
  961. }
  962. skb_reserve(skb, local->hw.extra_tx_headroom);
  963. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  964. memset(mgmt, 0, 24);
  965. memcpy(mgmt->da, da, ETH_ALEN);
  966. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  967. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  968. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  969. else
  970. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  971. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  972. IEEE80211_STYPE_ACTION);
  973. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));
  974. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  975. mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;
  976. mgmt->u.action.u.addba_req.dialog_token = dialog_token;
  977. capab = (u16)(1 << 1); /* bit 1 aggregation policy */
  978. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  979. capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */
  980. mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);
  981. mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
  982. mgmt->u.action.u.addba_req.start_seq_num =
  983. cpu_to_le16(start_seq_num << 4);
  984. ieee80211_sta_tx(dev, skb, 0);
  985. }
  986. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  987. struct ieee80211_mgmt *mgmt,
  988. size_t len)
  989. {
  990. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  991. struct ieee80211_hw *hw = &local->hw;
  992. struct ieee80211_conf *conf = &hw->conf;
  993. struct sta_info *sta;
  994. struct tid_ampdu_rx *tid_agg_rx;
  995. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  996. u8 dialog_token;
  997. int ret = -EOPNOTSUPP;
  998. DECLARE_MAC_BUF(mac);
  999. rcu_read_lock();
  1000. sta = sta_info_get(local, mgmt->sa);
  1001. if (!sta) {
  1002. rcu_read_unlock();
  1003. return;
  1004. }
  1005. /* extract session parameters from addba request frame */
  1006. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  1007. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  1008. start_seq_num =
  1009. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  1010. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  1011. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  1012. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1013. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  1014. status = WLAN_STATUS_REQUEST_DECLINED;
  1015. /* sanity check for incoming parameters:
  1016. * check if configuration can support the BA policy
  1017. * and if buffer size does not exceeds max value */
  1018. if (((ba_policy != 1)
  1019. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  1020. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  1021. status = WLAN_STATUS_INVALID_QOS_PARAM;
  1022. #ifdef CONFIG_MAC80211_HT_DEBUG
  1023. if (net_ratelimit())
  1024. printk(KERN_DEBUG "AddBA Req with bad params from "
  1025. "%s on tid %u. policy %d, buffer size %d\n",
  1026. print_mac(mac, mgmt->sa), tid, ba_policy,
  1027. buf_size);
  1028. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1029. goto end_no_lock;
  1030. }
  1031. /* determine default buffer size */
  1032. if (buf_size == 0) {
  1033. struct ieee80211_supported_band *sband;
  1034. sband = local->hw.wiphy->bands[conf->channel->band];
  1035. buf_size = IEEE80211_MIN_AMPDU_BUF;
  1036. buf_size = buf_size << sband->ht_info.ampdu_factor;
  1037. }
  1038. /* examine state machine */
  1039. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1040. if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_IDLE) {
  1041. #ifdef CONFIG_MAC80211_HT_DEBUG
  1042. if (net_ratelimit())
  1043. printk(KERN_DEBUG "unexpected AddBA Req from "
  1044. "%s on tid %u\n",
  1045. print_mac(mac, mgmt->sa), tid);
  1046. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1047. goto end;
  1048. }
  1049. /* prepare A-MPDU MLME for Rx aggregation */
  1050. sta->ampdu_mlme.tid_rx[tid] =
  1051. kmalloc(sizeof(struct tid_ampdu_rx), GFP_ATOMIC);
  1052. if (!sta->ampdu_mlme.tid_rx[tid]) {
  1053. if (net_ratelimit())
  1054. printk(KERN_ERR "allocate rx mlme to tid %d failed\n",
  1055. tid);
  1056. goto end;
  1057. }
  1058. /* rx timer */
  1059. sta->ampdu_mlme.tid_rx[tid]->session_timer.function =
  1060. sta_rx_agg_session_timer_expired;
  1061. sta->ampdu_mlme.tid_rx[tid]->session_timer.data =
  1062. (unsigned long)&sta->timer_to_tid[tid];
  1063. init_timer(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1064. tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
  1065. /* prepare reordering buffer */
  1066. tid_agg_rx->reorder_buf =
  1067. kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC);
  1068. if (!tid_agg_rx->reorder_buf) {
  1069. if (net_ratelimit())
  1070. printk(KERN_ERR "can not allocate reordering buffer "
  1071. "to tid %d\n", tid);
  1072. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1073. goto end;
  1074. }
  1075. memset(tid_agg_rx->reorder_buf, 0,
  1076. buf_size * sizeof(struct sk_buf *));
  1077. if (local->ops->ampdu_action)
  1078. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  1079. sta->addr, tid, &start_seq_num);
  1080. #ifdef CONFIG_MAC80211_HT_DEBUG
  1081. printk(KERN_DEBUG "Rx A-MPDU on tid %d result %d", tid, ret);
  1082. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1083. if (ret) {
  1084. kfree(tid_agg_rx->reorder_buf);
  1085. kfree(tid_agg_rx);
  1086. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1087. goto end;
  1088. }
  1089. /* change state and send addba resp */
  1090. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_OPERATIONAL;
  1091. tid_agg_rx->dialog_token = dialog_token;
  1092. tid_agg_rx->ssn = start_seq_num;
  1093. tid_agg_rx->head_seq_num = start_seq_num;
  1094. tid_agg_rx->buf_size = buf_size;
  1095. tid_agg_rx->timeout = timeout;
  1096. tid_agg_rx->stored_mpdu_num = 0;
  1097. status = WLAN_STATUS_SUCCESS;
  1098. end:
  1099. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1100. end_no_lock:
  1101. ieee80211_send_addba_resp(sta->sdata->dev, sta->addr, tid,
  1102. dialog_token, status, 1, buf_size, timeout);
  1103. rcu_read_unlock();
  1104. }
  1105. static void ieee80211_sta_process_addba_resp(struct net_device *dev,
  1106. struct ieee80211_mgmt *mgmt,
  1107. size_t len)
  1108. {
  1109. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1110. struct ieee80211_hw *hw = &local->hw;
  1111. struct sta_info *sta;
  1112. u16 capab;
  1113. u16 tid;
  1114. u8 *state;
  1115. rcu_read_lock();
  1116. sta = sta_info_get(local, mgmt->sa);
  1117. if (!sta) {
  1118. rcu_read_unlock();
  1119. return;
  1120. }
  1121. capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
  1122. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1123. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1124. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1125. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1126. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1127. printk(KERN_DEBUG "state not HT_ADDBA_REQUESTED_MSK:"
  1128. "%d\n", *state);
  1129. goto addba_resp_exit;
  1130. }
  1131. if (mgmt->u.action.u.addba_resp.dialog_token !=
  1132. sta->ampdu_mlme.tid_tx[tid]->dialog_token) {
  1133. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1134. #ifdef CONFIG_MAC80211_HT_DEBUG
  1135. printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid);
  1136. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1137. goto addba_resp_exit;
  1138. }
  1139. del_timer_sync(&sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer);
  1140. #ifdef CONFIG_MAC80211_HT_DEBUG
  1141. printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid);
  1142. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1143. if (le16_to_cpu(mgmt->u.action.u.addba_resp.status)
  1144. == WLAN_STATUS_SUCCESS) {
  1145. if (*state & HT_ADDBA_RECEIVED_MSK)
  1146. printk(KERN_DEBUG "double addBA response\n");
  1147. *state |= HT_ADDBA_RECEIVED_MSK;
  1148. sta->ampdu_mlme.addba_req_num[tid] = 0;
  1149. if (*state == HT_AGG_STATE_OPERATIONAL) {
  1150. printk(KERN_DEBUG "Aggregation on for tid %d \n", tid);
  1151. ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]);
  1152. }
  1153. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1154. printk(KERN_DEBUG "recipient accepted agg: tid %d \n", tid);
  1155. } else {
  1156. printk(KERN_DEBUG "recipient rejected agg: tid %d \n", tid);
  1157. sta->ampdu_mlme.addba_req_num[tid]++;
  1158. /* this will allow the state check in stop_BA_session */
  1159. *state = HT_AGG_STATE_OPERATIONAL;
  1160. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1161. ieee80211_stop_tx_ba_session(hw, sta->addr, tid,
  1162. WLAN_BACK_INITIATOR);
  1163. }
  1164. addba_resp_exit:
  1165. rcu_read_unlock();
  1166. }
  1167. void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1168. u16 initiator, u16 reason_code)
  1169. {
  1170. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1171. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1172. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1173. struct sk_buff *skb;
  1174. struct ieee80211_mgmt *mgmt;
  1175. u16 params;
  1176. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1177. sizeof(mgmt->u.action.u.delba));
  1178. if (!skb) {
  1179. printk(KERN_ERR "%s: failed to allocate buffer "
  1180. "for delba frame\n", dev->name);
  1181. return;
  1182. }
  1183. skb_reserve(skb, local->hw.extra_tx_headroom);
  1184. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1185. memset(mgmt, 0, 24);
  1186. memcpy(mgmt->da, da, ETH_ALEN);
  1187. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1188. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1189. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1190. else
  1191. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1192. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1193. IEEE80211_STYPE_ACTION);
  1194. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1195. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1196. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1197. params = (u16)(initiator << 11); /* bit 11 initiator */
  1198. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1199. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1200. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1201. ieee80211_sta_tx(dev, skb, 0);
  1202. }
  1203. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1204. u16 initiator, u16 reason)
  1205. {
  1206. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1207. struct ieee80211_hw *hw = &local->hw;
  1208. struct sta_info *sta;
  1209. int ret, i;
  1210. rcu_read_lock();
  1211. sta = sta_info_get(local, ra);
  1212. if (!sta) {
  1213. rcu_read_unlock();
  1214. return;
  1215. }
  1216. /* check if TID is in operational state */
  1217. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1218. if (sta->ampdu_mlme.tid_state_rx[tid]
  1219. != HT_AGG_STATE_OPERATIONAL) {
  1220. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1221. rcu_read_unlock();
  1222. return;
  1223. }
  1224. sta->ampdu_mlme.tid_state_rx[tid] =
  1225. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1226. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1227. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1228. /* stop HW Rx aggregation. ampdu_action existence
  1229. * already verified in session init so we add the BUG_ON */
  1230. BUG_ON(!local->ops->ampdu_action);
  1231. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1232. ra, tid, NULL);
  1233. if (ret)
  1234. printk(KERN_DEBUG "HW problem - can not stop rx "
  1235. "aggergation for tid %d\n", tid);
  1236. /* shutdown timer has not expired */
  1237. if (initiator != WLAN_BACK_TIMER)
  1238. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1239. /* check if this is a self generated aggregation halt */
  1240. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1241. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1242. /* free the reordering buffer */
  1243. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid]->buf_size; i++) {
  1244. if (sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]) {
  1245. /* release the reordered frames */
  1246. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]);
  1247. sta->ampdu_mlme.tid_rx[tid]->stored_mpdu_num--;
  1248. sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i] = NULL;
  1249. }
  1250. }
  1251. /* free resources */
  1252. kfree(sta->ampdu_mlme.tid_rx[tid]->reorder_buf);
  1253. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1254. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1255. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_IDLE;
  1256. rcu_read_unlock();
  1257. }
  1258. static void ieee80211_sta_process_delba(struct net_device *dev,
  1259. struct ieee80211_mgmt *mgmt, size_t len)
  1260. {
  1261. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1262. struct sta_info *sta;
  1263. u16 tid, params;
  1264. u16 initiator;
  1265. DECLARE_MAC_BUF(mac);
  1266. rcu_read_lock();
  1267. sta = sta_info_get(local, mgmt->sa);
  1268. if (!sta) {
  1269. rcu_read_unlock();
  1270. return;
  1271. }
  1272. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1273. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1274. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1275. #ifdef CONFIG_MAC80211_HT_DEBUG
  1276. if (net_ratelimit())
  1277. printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n",
  1278. print_mac(mac, mgmt->sa),
  1279. initiator ? "initiator" : "recipient", tid,
  1280. mgmt->u.action.u.delba.reason_code);
  1281. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1282. if (initiator == WLAN_BACK_INITIATOR)
  1283. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1284. WLAN_BACK_INITIATOR, 0);
  1285. else { /* WLAN_BACK_RECIPIENT */
  1286. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1287. sta->ampdu_mlme.tid_state_tx[tid] =
  1288. HT_AGG_STATE_OPERATIONAL;
  1289. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1290. ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid,
  1291. WLAN_BACK_RECIPIENT);
  1292. }
  1293. rcu_read_unlock();
  1294. }
  1295. /*
  1296. * After sending add Block Ack request we activated a timer until
  1297. * add Block Ack response will arrive from the recipient.
  1298. * If this timer expires sta_addba_resp_timer_expired will be executed.
  1299. */
  1300. void sta_addba_resp_timer_expired(unsigned long data)
  1301. {
  1302. /* not an elegant detour, but there is no choice as the timer passes
  1303. * only one argument, and both sta_info and TID are needed, so init
  1304. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1305. * array gives the sta through container_of */
  1306. u16 tid = *(int *)data;
  1307. struct sta_info *temp_sta = container_of((void *)data,
  1308. struct sta_info, timer_to_tid[tid]);
  1309. struct ieee80211_local *local = temp_sta->local;
  1310. struct ieee80211_hw *hw = &local->hw;
  1311. struct sta_info *sta;
  1312. u8 *state;
  1313. rcu_read_lock();
  1314. sta = sta_info_get(local, temp_sta->addr);
  1315. if (!sta) {
  1316. rcu_read_unlock();
  1317. return;
  1318. }
  1319. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1320. /* check if the TID waits for addBA response */
  1321. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1322. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1323. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1324. *state = HT_AGG_STATE_IDLE;
  1325. printk(KERN_DEBUG "timer expired on tid %d but we are not "
  1326. "expecting addBA response there", tid);
  1327. goto timer_expired_exit;
  1328. }
  1329. printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid);
  1330. /* go through the state check in stop_BA_session */
  1331. *state = HT_AGG_STATE_OPERATIONAL;
  1332. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1333. ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid,
  1334. WLAN_BACK_INITIATOR);
  1335. timer_expired_exit:
  1336. rcu_read_unlock();
  1337. }
  1338. /*
  1339. * After accepting the AddBA Request we activated a timer,
  1340. * resetting it after each frame that arrives from the originator.
  1341. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1342. */
  1343. void sta_rx_agg_session_timer_expired(unsigned long data)
  1344. {
  1345. /* not an elegant detour, but there is no choice as the timer passes
  1346. * only one argument, and verious sta_info are needed here, so init
  1347. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1348. * array gives the sta through container_of */
  1349. u8 *ptid = (u8 *)data;
  1350. u8 *timer_to_id = ptid - *ptid;
  1351. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1352. timer_to_tid[0]);
  1353. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1354. ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
  1355. (u16)*ptid, WLAN_BACK_TIMER,
  1356. WLAN_REASON_QSTA_TIMEOUT);
  1357. }
  1358. void ieee80211_sta_tear_down_BA_sessions(struct net_device *dev, u8 *addr)
  1359. {
  1360. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1361. int i;
  1362. for (i = 0; i < STA_TID_NUM; i++) {
  1363. ieee80211_stop_tx_ba_session(&local->hw, addr, i,
  1364. WLAN_BACK_INITIATOR);
  1365. ieee80211_sta_stop_rx_ba_session(dev, addr, i,
  1366. WLAN_BACK_RECIPIENT,
  1367. WLAN_REASON_QSTA_LEAVE_QBSS);
  1368. }
  1369. }
  1370. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1371. struct ieee80211_if_sta *ifsta,
  1372. struct ieee80211_mgmt *mgmt,
  1373. size_t len)
  1374. {
  1375. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1376. u16 auth_alg, auth_transaction, status_code;
  1377. DECLARE_MAC_BUF(mac);
  1378. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1379. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1380. printk(KERN_DEBUG "%s: authentication frame received from "
  1381. "%s, but not in authenticate state - ignored\n",
  1382. dev->name, print_mac(mac, mgmt->sa));
  1383. return;
  1384. }
  1385. if (len < 24 + 6) {
  1386. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1387. "received from %s - ignored\n",
  1388. dev->name, len, print_mac(mac, mgmt->sa));
  1389. return;
  1390. }
  1391. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1392. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1393. printk(KERN_DEBUG "%s: authentication frame received from "
  1394. "unknown AP (SA=%s BSSID=%s) - "
  1395. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1396. print_mac(mac, mgmt->bssid));
  1397. return;
  1398. }
  1399. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1400. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1401. printk(KERN_DEBUG "%s: authentication frame received from "
  1402. "unknown BSSID (SA=%s BSSID=%s) - "
  1403. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1404. print_mac(mac, mgmt->bssid));
  1405. return;
  1406. }
  1407. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1408. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1409. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1410. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1411. "transaction=%d status=%d)\n",
  1412. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1413. auth_transaction, status_code);
  1414. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1415. /* IEEE 802.11 standard does not require authentication in IBSS
  1416. * networks and most implementations do not seem to use it.
  1417. * However, try to reply to authentication attempts if someone
  1418. * has actually implemented this.
  1419. * TODO: Could implement shared key authentication. */
  1420. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1421. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1422. "frame (alg=%d transaction=%d)\n",
  1423. dev->name, auth_alg, auth_transaction);
  1424. return;
  1425. }
  1426. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1427. }
  1428. if (auth_alg != ifsta->auth_alg ||
  1429. auth_transaction != ifsta->auth_transaction) {
  1430. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1431. "(alg=%d transaction=%d)\n",
  1432. dev->name, auth_alg, auth_transaction);
  1433. return;
  1434. }
  1435. if (status_code != WLAN_STATUS_SUCCESS) {
  1436. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1437. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1438. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1439. u8 algs[3];
  1440. const int num_algs = ARRAY_SIZE(algs);
  1441. int i, pos;
  1442. algs[0] = algs[1] = algs[2] = 0xff;
  1443. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1444. algs[0] = WLAN_AUTH_OPEN;
  1445. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1446. algs[1] = WLAN_AUTH_SHARED_KEY;
  1447. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1448. algs[2] = WLAN_AUTH_LEAP;
  1449. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1450. pos = 0;
  1451. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1452. pos = 1;
  1453. else
  1454. pos = 2;
  1455. for (i = 0; i < num_algs; i++) {
  1456. pos++;
  1457. if (pos >= num_algs)
  1458. pos = 0;
  1459. if (algs[pos] == ifsta->auth_alg ||
  1460. algs[pos] == 0xff)
  1461. continue;
  1462. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1463. !ieee80211_sta_wep_configured(dev))
  1464. continue;
  1465. ifsta->auth_alg = algs[pos];
  1466. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1467. "next try\n",
  1468. dev->name, ifsta->auth_alg);
  1469. break;
  1470. }
  1471. }
  1472. return;
  1473. }
  1474. switch (ifsta->auth_alg) {
  1475. case WLAN_AUTH_OPEN:
  1476. case WLAN_AUTH_LEAP:
  1477. ieee80211_auth_completed(dev, ifsta);
  1478. break;
  1479. case WLAN_AUTH_SHARED_KEY:
  1480. if (ifsta->auth_transaction == 4)
  1481. ieee80211_auth_completed(dev, ifsta);
  1482. else
  1483. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1484. break;
  1485. }
  1486. }
  1487. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1488. struct ieee80211_if_sta *ifsta,
  1489. struct ieee80211_mgmt *mgmt,
  1490. size_t len)
  1491. {
  1492. u16 reason_code;
  1493. DECLARE_MAC_BUF(mac);
  1494. if (len < 24 + 2) {
  1495. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1496. "received from %s - ignored\n",
  1497. dev->name, len, print_mac(mac, mgmt->sa));
  1498. return;
  1499. }
  1500. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1501. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1502. "unknown AP (SA=%s BSSID=%s) - "
  1503. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1504. print_mac(mac, mgmt->bssid));
  1505. return;
  1506. }
  1507. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1508. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1509. " (reason=%d)\n",
  1510. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1511. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1512. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1513. }
  1514. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1515. ifsta->state == IEEE80211_ASSOCIATE ||
  1516. ifsta->state == IEEE80211_ASSOCIATED) {
  1517. ifsta->state = IEEE80211_AUTHENTICATE;
  1518. mod_timer(&ifsta->timer, jiffies +
  1519. IEEE80211_RETRY_AUTH_INTERVAL);
  1520. }
  1521. ieee80211_set_disassoc(dev, ifsta, 1);
  1522. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1523. }
  1524. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1525. struct ieee80211_if_sta *ifsta,
  1526. struct ieee80211_mgmt *mgmt,
  1527. size_t len)
  1528. {
  1529. u16 reason_code;
  1530. DECLARE_MAC_BUF(mac);
  1531. if (len < 24 + 2) {
  1532. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1533. "received from %s - ignored\n",
  1534. dev->name, len, print_mac(mac, mgmt->sa));
  1535. return;
  1536. }
  1537. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1538. printk(KERN_DEBUG "%s: disassociation frame received from "
  1539. "unknown AP (SA=%s BSSID=%s) - "
  1540. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1541. print_mac(mac, mgmt->bssid));
  1542. return;
  1543. }
  1544. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1545. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1546. " (reason=%d)\n",
  1547. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1548. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1549. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1550. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1551. ifsta->state = IEEE80211_ASSOCIATE;
  1552. mod_timer(&ifsta->timer, jiffies +
  1553. IEEE80211_RETRY_AUTH_INTERVAL);
  1554. }
  1555. ieee80211_set_disassoc(dev, ifsta, 0);
  1556. }
  1557. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1558. struct ieee80211_if_sta *ifsta,
  1559. struct ieee80211_mgmt *mgmt,
  1560. size_t len,
  1561. int reassoc)
  1562. {
  1563. struct ieee80211_local *local = sdata->local;
  1564. struct net_device *dev = sdata->dev;
  1565. struct ieee80211_supported_band *sband;
  1566. struct sta_info *sta;
  1567. u64 rates, basic_rates;
  1568. u16 capab_info, status_code, aid;
  1569. struct ieee802_11_elems elems;
  1570. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1571. u8 *pos;
  1572. int i, j;
  1573. DECLARE_MAC_BUF(mac);
  1574. bool have_higher_than_11mbit = false;
  1575. /* AssocResp and ReassocResp have identical structure, so process both
  1576. * of them in this function. */
  1577. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1578. printk(KERN_DEBUG "%s: association frame received from "
  1579. "%s, but not in associate state - ignored\n",
  1580. dev->name, print_mac(mac, mgmt->sa));
  1581. return;
  1582. }
  1583. if (len < 24 + 6) {
  1584. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1585. "received from %s - ignored\n",
  1586. dev->name, len, print_mac(mac, mgmt->sa));
  1587. return;
  1588. }
  1589. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1590. printk(KERN_DEBUG "%s: association frame received from "
  1591. "unknown AP (SA=%s BSSID=%s) - "
  1592. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1593. print_mac(mac, mgmt->bssid));
  1594. return;
  1595. }
  1596. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1597. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1598. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1599. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1600. "status=%d aid=%d)\n",
  1601. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1602. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1603. if (status_code != WLAN_STATUS_SUCCESS) {
  1604. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1605. dev->name, status_code);
  1606. /* if this was a reassociation, ensure we try a "full"
  1607. * association next time. This works around some broken APs
  1608. * which do not correctly reject reassociation requests. */
  1609. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1610. return;
  1611. }
  1612. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1613. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1614. "set\n", dev->name, aid);
  1615. aid &= ~(BIT(15) | BIT(14));
  1616. pos = mgmt->u.assoc_resp.variable;
  1617. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1618. if (!elems.supp_rates) {
  1619. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1620. dev->name);
  1621. return;
  1622. }
  1623. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1624. ifsta->aid = aid;
  1625. ifsta->ap_capab = capab_info;
  1626. kfree(ifsta->assocresp_ies);
  1627. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1628. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1629. if (ifsta->assocresp_ies)
  1630. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1631. rcu_read_lock();
  1632. /* Add STA entry for the AP */
  1633. sta = sta_info_get(local, ifsta->bssid);
  1634. if (!sta) {
  1635. struct ieee80211_sta_bss *bss;
  1636. int err;
  1637. sta = sta_info_alloc(sdata, ifsta->bssid, GFP_ATOMIC);
  1638. if (!sta) {
  1639. printk(KERN_DEBUG "%s: failed to alloc STA entry for"
  1640. " the AP\n", dev->name);
  1641. rcu_read_unlock();
  1642. return;
  1643. }
  1644. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1645. local->hw.conf.channel->center_freq,
  1646. ifsta->ssid, ifsta->ssid_len);
  1647. if (bss) {
  1648. sta->last_rssi = bss->rssi;
  1649. sta->last_signal = bss->signal;
  1650. sta->last_noise = bss->noise;
  1651. ieee80211_rx_bss_put(dev, bss);
  1652. }
  1653. err = sta_info_insert(sta);
  1654. if (err) {
  1655. printk(KERN_DEBUG "%s: failed to insert STA entry for"
  1656. " the AP (error %d)\n", dev->name, err);
  1657. rcu_read_unlock();
  1658. return;
  1659. }
  1660. }
  1661. /*
  1662. * FIXME: Do we really need to update the sta_info's information here?
  1663. * We already know about the AP (we found it in our list) so it
  1664. * should already be filled with the right info, no?
  1665. * As is stands, all this is racy because typically we assume
  1666. * the information that is filled in here (except flags) doesn't
  1667. * change while a STA structure is alive. As such, it should move
  1668. * to between the sta_info_alloc() and sta_info_insert() above.
  1669. */
  1670. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP |
  1671. WLAN_STA_AUTHORIZED;
  1672. rates = 0;
  1673. basic_rates = 0;
  1674. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1675. for (i = 0; i < elems.supp_rates_len; i++) {
  1676. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1677. if (rate > 110)
  1678. have_higher_than_11mbit = true;
  1679. for (j = 0; j < sband->n_bitrates; j++) {
  1680. if (sband->bitrates[j].bitrate == rate)
  1681. rates |= BIT(j);
  1682. if (elems.supp_rates[i] & 0x80)
  1683. basic_rates |= BIT(j);
  1684. }
  1685. }
  1686. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1687. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1688. if (rate > 110)
  1689. have_higher_than_11mbit = true;
  1690. for (j = 0; j < sband->n_bitrates; j++) {
  1691. if (sband->bitrates[j].bitrate == rate)
  1692. rates |= BIT(j);
  1693. if (elems.ext_supp_rates[i] & 0x80)
  1694. basic_rates |= BIT(j);
  1695. }
  1696. }
  1697. sta->supp_rates[local->hw.conf.channel->band] = rates;
  1698. sdata->basic_rates = basic_rates;
  1699. /* cf. IEEE 802.11 9.2.12 */
  1700. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  1701. have_higher_than_11mbit)
  1702. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  1703. else
  1704. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  1705. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param &&
  1706. local->ops->conf_ht) {
  1707. struct ieee80211_ht_bss_info bss_info;
  1708. ieee80211_ht_cap_ie_to_ht_info(
  1709. (struct ieee80211_ht_cap *)
  1710. elems.ht_cap_elem, &sta->ht_info);
  1711. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1712. (struct ieee80211_ht_addt_info *)
  1713. elems.ht_info_elem, &bss_info);
  1714. ieee80211_hw_config_ht(local, 1, &sta->ht_info, &bss_info);
  1715. }
  1716. rate_control_rate_init(sta, local);
  1717. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1718. sta->flags |= WLAN_STA_WME;
  1719. rcu_read_unlock();
  1720. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1721. elems.wmm_param_len);
  1722. } else
  1723. rcu_read_unlock();
  1724. /* set AID, ieee80211_set_associated() will tell the driver */
  1725. bss_conf->aid = aid;
  1726. ieee80211_set_associated(dev, ifsta, 1);
  1727. ieee80211_associated(dev, ifsta);
  1728. }
  1729. /* Caller must hold local->sta_bss_lock */
  1730. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1731. struct ieee80211_sta_bss *bss)
  1732. {
  1733. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1734. u8 hash_idx;
  1735. if (bss_mesh_cfg(bss))
  1736. hash_idx = mesh_id_hash(bss_mesh_id(bss),
  1737. bss_mesh_id_len(bss));
  1738. else
  1739. hash_idx = STA_HASH(bss->bssid);
  1740. bss->hnext = local->sta_bss_hash[hash_idx];
  1741. local->sta_bss_hash[hash_idx] = bss;
  1742. }
  1743. /* Caller must hold local->sta_bss_lock */
  1744. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1745. struct ieee80211_sta_bss *bss)
  1746. {
  1747. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1748. struct ieee80211_sta_bss *b, *prev = NULL;
  1749. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1750. while (b) {
  1751. if (b == bss) {
  1752. if (!prev)
  1753. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1754. bss->hnext;
  1755. else
  1756. prev->hnext = bss->hnext;
  1757. break;
  1758. }
  1759. prev = b;
  1760. b = b->hnext;
  1761. }
  1762. }
  1763. static struct ieee80211_sta_bss *
  1764. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int freq,
  1765. u8 *ssid, u8 ssid_len)
  1766. {
  1767. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1768. struct ieee80211_sta_bss *bss;
  1769. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1770. if (!bss)
  1771. return NULL;
  1772. atomic_inc(&bss->users);
  1773. atomic_inc(&bss->users);
  1774. memcpy(bss->bssid, bssid, ETH_ALEN);
  1775. bss->freq = freq;
  1776. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1777. memcpy(bss->ssid, ssid, ssid_len);
  1778. bss->ssid_len = ssid_len;
  1779. }
  1780. spin_lock_bh(&local->sta_bss_lock);
  1781. /* TODO: order by RSSI? */
  1782. list_add_tail(&bss->list, &local->sta_bss_list);
  1783. __ieee80211_rx_bss_hash_add(dev, bss);
  1784. spin_unlock_bh(&local->sta_bss_lock);
  1785. return bss;
  1786. }
  1787. static struct ieee80211_sta_bss *
  1788. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  1789. u8 *ssid, u8 ssid_len)
  1790. {
  1791. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1792. struct ieee80211_sta_bss *bss;
  1793. spin_lock_bh(&local->sta_bss_lock);
  1794. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1795. while (bss) {
  1796. if (!bss_mesh_cfg(bss) &&
  1797. !memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1798. bss->freq == freq &&
  1799. bss->ssid_len == ssid_len &&
  1800. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1801. atomic_inc(&bss->users);
  1802. break;
  1803. }
  1804. bss = bss->hnext;
  1805. }
  1806. spin_unlock_bh(&local->sta_bss_lock);
  1807. return bss;
  1808. }
  1809. #ifdef CONFIG_MAC80211_MESH
  1810. static struct ieee80211_sta_bss *
  1811. ieee80211_rx_mesh_bss_get(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1812. u8 *mesh_cfg, int freq)
  1813. {
  1814. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1815. struct ieee80211_sta_bss *bss;
  1816. spin_lock_bh(&local->sta_bss_lock);
  1817. bss = local->sta_bss_hash[mesh_id_hash(mesh_id, mesh_id_len)];
  1818. while (bss) {
  1819. if (bss_mesh_cfg(bss) &&
  1820. !memcmp(bss_mesh_cfg(bss), mesh_cfg, MESH_CFG_CMP_LEN) &&
  1821. bss->freq == freq &&
  1822. mesh_id_len == bss->mesh_id_len &&
  1823. (mesh_id_len == 0 || !memcmp(bss->mesh_id, mesh_id,
  1824. mesh_id_len))) {
  1825. atomic_inc(&bss->users);
  1826. break;
  1827. }
  1828. bss = bss->hnext;
  1829. }
  1830. spin_unlock_bh(&local->sta_bss_lock);
  1831. return bss;
  1832. }
  1833. static struct ieee80211_sta_bss *
  1834. ieee80211_rx_mesh_bss_add(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1835. u8 *mesh_cfg, int freq)
  1836. {
  1837. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1838. struct ieee80211_sta_bss *bss;
  1839. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1840. if (!bss)
  1841. return NULL;
  1842. bss->mesh_cfg = kmalloc(MESH_CFG_CMP_LEN, GFP_ATOMIC);
  1843. if (!bss->mesh_cfg) {
  1844. kfree(bss);
  1845. return NULL;
  1846. }
  1847. if (mesh_id_len && mesh_id_len <= IEEE80211_MAX_MESH_ID_LEN) {
  1848. bss->mesh_id = kmalloc(mesh_id_len, GFP_ATOMIC);
  1849. if (!bss->mesh_id) {
  1850. kfree(bss->mesh_cfg);
  1851. kfree(bss);
  1852. return NULL;
  1853. }
  1854. memcpy(bss->mesh_id, mesh_id, mesh_id_len);
  1855. }
  1856. atomic_inc(&bss->users);
  1857. atomic_inc(&bss->users);
  1858. memcpy(bss->mesh_cfg, mesh_cfg, MESH_CFG_CMP_LEN);
  1859. bss->mesh_id_len = mesh_id_len;
  1860. bss->freq = freq;
  1861. spin_lock_bh(&local->sta_bss_lock);
  1862. /* TODO: order by RSSI? */
  1863. list_add_tail(&bss->list, &local->sta_bss_list);
  1864. __ieee80211_rx_bss_hash_add(dev, bss);
  1865. spin_unlock_bh(&local->sta_bss_lock);
  1866. return bss;
  1867. }
  1868. #endif
  1869. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1870. {
  1871. kfree(bss->wpa_ie);
  1872. kfree(bss->rsn_ie);
  1873. kfree(bss->wmm_ie);
  1874. kfree(bss->ht_ie);
  1875. kfree(bss_mesh_id(bss));
  1876. kfree(bss_mesh_cfg(bss));
  1877. kfree(bss);
  1878. }
  1879. static void ieee80211_rx_bss_put(struct net_device *dev,
  1880. struct ieee80211_sta_bss *bss)
  1881. {
  1882. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1883. if (!atomic_dec_and_test(&bss->users))
  1884. return;
  1885. spin_lock_bh(&local->sta_bss_lock);
  1886. __ieee80211_rx_bss_hash_del(dev, bss);
  1887. list_del(&bss->list);
  1888. spin_unlock_bh(&local->sta_bss_lock);
  1889. ieee80211_rx_bss_free(bss);
  1890. }
  1891. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1892. {
  1893. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1894. spin_lock_init(&local->sta_bss_lock);
  1895. INIT_LIST_HEAD(&local->sta_bss_list);
  1896. }
  1897. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1898. {
  1899. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1900. struct ieee80211_sta_bss *bss, *tmp;
  1901. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1902. ieee80211_rx_bss_put(dev, bss);
  1903. }
  1904. static int ieee80211_sta_join_ibss(struct net_device *dev,
  1905. struct ieee80211_if_sta *ifsta,
  1906. struct ieee80211_sta_bss *bss)
  1907. {
  1908. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1909. int res, rates, i, j;
  1910. struct sk_buff *skb;
  1911. struct ieee80211_mgmt *mgmt;
  1912. struct ieee80211_tx_control control;
  1913. struct rate_selection ratesel;
  1914. u8 *pos;
  1915. struct ieee80211_sub_if_data *sdata;
  1916. struct ieee80211_supported_band *sband;
  1917. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1918. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1919. /* Remove possible STA entries from other IBSS networks. */
  1920. sta_info_flush(local, sdata);
  1921. if (local->ops->reset_tsf) {
  1922. /* Reset own TSF to allow time synchronization work. */
  1923. local->ops->reset_tsf(local_to_hw(local));
  1924. }
  1925. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  1926. res = ieee80211_if_config(dev);
  1927. if (res)
  1928. return res;
  1929. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  1930. sdata->drop_unencrypted = bss->capability &
  1931. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  1932. res = ieee80211_set_freq(local, bss->freq);
  1933. if (local->oper_channel->flags & IEEE80211_CHAN_NO_IBSS) {
  1934. printk(KERN_DEBUG "%s: IBSS not allowed on frequency "
  1935. "%d MHz\n", dev->name, local->oper_channel->center_freq);
  1936. return -1;
  1937. }
  1938. /* Set beacon template */
  1939. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  1940. do {
  1941. if (!skb)
  1942. break;
  1943. skb_reserve(skb, local->hw.extra_tx_headroom);
  1944. mgmt = (struct ieee80211_mgmt *)
  1945. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  1946. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  1947. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1948. IEEE80211_STYPE_BEACON);
  1949. memset(mgmt->da, 0xff, ETH_ALEN);
  1950. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1951. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1952. mgmt->u.beacon.beacon_int =
  1953. cpu_to_le16(local->hw.conf.beacon_int);
  1954. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  1955. pos = skb_put(skb, 2 + ifsta->ssid_len);
  1956. *pos++ = WLAN_EID_SSID;
  1957. *pos++ = ifsta->ssid_len;
  1958. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  1959. rates = bss->supp_rates_len;
  1960. if (rates > 8)
  1961. rates = 8;
  1962. pos = skb_put(skb, 2 + rates);
  1963. *pos++ = WLAN_EID_SUPP_RATES;
  1964. *pos++ = rates;
  1965. memcpy(pos, bss->supp_rates, rates);
  1966. if (bss->band == IEEE80211_BAND_2GHZ) {
  1967. pos = skb_put(skb, 2 + 1);
  1968. *pos++ = WLAN_EID_DS_PARAMS;
  1969. *pos++ = 1;
  1970. *pos++ = ieee80211_frequency_to_channel(bss->freq);
  1971. }
  1972. pos = skb_put(skb, 2 + 2);
  1973. *pos++ = WLAN_EID_IBSS_PARAMS;
  1974. *pos++ = 2;
  1975. /* FIX: set ATIM window based on scan results */
  1976. *pos++ = 0;
  1977. *pos++ = 0;
  1978. if (bss->supp_rates_len > 8) {
  1979. rates = bss->supp_rates_len - 8;
  1980. pos = skb_put(skb, 2 + rates);
  1981. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  1982. *pos++ = rates;
  1983. memcpy(pos, &bss->supp_rates[8], rates);
  1984. }
  1985. memset(&control, 0, sizeof(control));
  1986. rate_control_get_rate(dev, sband, skb, &ratesel);
  1987. if (!ratesel.rate) {
  1988. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  1989. "for IBSS beacon\n", dev->name);
  1990. break;
  1991. }
  1992. control.vif = &sdata->vif;
  1993. control.tx_rate = ratesel.rate;
  1994. if (sdata->bss_conf.use_short_preamble &&
  1995. ratesel.rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
  1996. control.flags |= IEEE80211_TXCTL_SHORT_PREAMBLE;
  1997. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  1998. control.flags |= IEEE80211_TXCTL_NO_ACK;
  1999. control.retry_limit = 1;
  2000. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  2001. if (ifsta->probe_resp) {
  2002. mgmt = (struct ieee80211_mgmt *)
  2003. ifsta->probe_resp->data;
  2004. mgmt->frame_control =
  2005. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2006. IEEE80211_STYPE_PROBE_RESP);
  2007. } else {
  2008. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  2009. "template for IBSS\n", dev->name);
  2010. }
  2011. if (local->ops->beacon_update &&
  2012. local->ops->beacon_update(local_to_hw(local),
  2013. skb, &control) == 0) {
  2014. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  2015. "template\n", dev->name);
  2016. skb = NULL;
  2017. }
  2018. rates = 0;
  2019. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2020. for (i = 0; i < bss->supp_rates_len; i++) {
  2021. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  2022. for (j = 0; j < sband->n_bitrates; j++)
  2023. if (sband->bitrates[j].bitrate == bitrate)
  2024. rates |= BIT(j);
  2025. }
  2026. ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates;
  2027. ieee80211_sta_def_wmm_params(dev, bss, 1);
  2028. } while (0);
  2029. if (skb) {
  2030. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  2031. "template\n", dev->name);
  2032. dev_kfree_skb(skb);
  2033. }
  2034. ifsta->state = IEEE80211_IBSS_JOINED;
  2035. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2036. ieee80211_rx_bss_put(dev, bss);
  2037. return res;
  2038. }
  2039. u64 ieee80211_sta_get_rates(struct ieee80211_local *local,
  2040. struct ieee802_11_elems *elems,
  2041. enum ieee80211_band band)
  2042. {
  2043. struct ieee80211_supported_band *sband;
  2044. struct ieee80211_rate *bitrates;
  2045. size_t num_rates;
  2046. u64 supp_rates;
  2047. int i, j;
  2048. sband = local->hw.wiphy->bands[band];
  2049. if (!sband) {
  2050. WARN_ON(1);
  2051. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2052. }
  2053. bitrates = sband->bitrates;
  2054. num_rates = sband->n_bitrates;
  2055. supp_rates = 0;
  2056. for (i = 0; i < elems->supp_rates_len +
  2057. elems->ext_supp_rates_len; i++) {
  2058. u8 rate = 0;
  2059. int own_rate;
  2060. if (i < elems->supp_rates_len)
  2061. rate = elems->supp_rates[i];
  2062. else if (elems->ext_supp_rates)
  2063. rate = elems->ext_supp_rates
  2064. [i - elems->supp_rates_len];
  2065. own_rate = 5 * (rate & 0x7f);
  2066. for (j = 0; j < num_rates; j++)
  2067. if (bitrates[j].bitrate == own_rate)
  2068. supp_rates |= BIT(j);
  2069. }
  2070. return supp_rates;
  2071. }
  2072. static void ieee80211_rx_bss_info(struct net_device *dev,
  2073. struct ieee80211_mgmt *mgmt,
  2074. size_t len,
  2075. struct ieee80211_rx_status *rx_status,
  2076. int beacon)
  2077. {
  2078. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2079. struct ieee802_11_elems elems;
  2080. size_t baselen;
  2081. int freq, clen;
  2082. struct ieee80211_sta_bss *bss;
  2083. struct sta_info *sta;
  2084. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2085. u64 beacon_timestamp, rx_timestamp;
  2086. struct ieee80211_channel *channel;
  2087. DECLARE_MAC_BUF(mac);
  2088. DECLARE_MAC_BUF(mac2);
  2089. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  2090. return; /* ignore ProbeResp to foreign address */
  2091. #if 0
  2092. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  2093. dev->name, beacon ? "Beacon" : "Probe Response",
  2094. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  2095. #endif
  2096. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2097. if (baselen > len)
  2098. return;
  2099. beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  2100. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2101. if (ieee80211_vif_is_mesh(&sdata->vif) && elems.mesh_id &&
  2102. elems.mesh_config && mesh_matches_local(&elems, dev)) {
  2103. u64 rates = ieee80211_sta_get_rates(local, &elems,
  2104. rx_status->band);
  2105. mesh_neighbour_update(mgmt->sa, rates, dev,
  2106. mesh_peer_accepts_plinks(&elems, dev));
  2107. }
  2108. rcu_read_lock();
  2109. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  2110. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  2111. (sta = sta_info_get(local, mgmt->sa))) {
  2112. u64 prev_rates;
  2113. u64 supp_rates = ieee80211_sta_get_rates(local, &elems,
  2114. rx_status->band);
  2115. prev_rates = sta->supp_rates[rx_status->band];
  2116. sta->supp_rates[rx_status->band] &= supp_rates;
  2117. if (sta->supp_rates[rx_status->band] == 0) {
  2118. /* No matching rates - this should not really happen.
  2119. * Make sure that at least one rate is marked
  2120. * supported to avoid issues with TX rate ctrl. */
  2121. sta->supp_rates[rx_status->band] =
  2122. sdata->u.sta.supp_rates_bits[rx_status->band];
  2123. }
  2124. if (sta->supp_rates[rx_status->band] != prev_rates) {
  2125. printk(KERN_DEBUG "%s: updated supp_rates set for "
  2126. "%s based on beacon info (0x%llx & 0x%llx -> "
  2127. "0x%llx)\n",
  2128. dev->name, print_mac(mac, sta->addr),
  2129. (unsigned long long) prev_rates,
  2130. (unsigned long long) supp_rates,
  2131. (unsigned long long) sta->supp_rates[rx_status->band]);
  2132. }
  2133. }
  2134. rcu_read_unlock();
  2135. if (elems.ds_params && elems.ds_params_len == 1)
  2136. freq = ieee80211_channel_to_frequency(elems.ds_params[0]);
  2137. else
  2138. freq = rx_status->freq;
  2139. channel = ieee80211_get_channel(local->hw.wiphy, freq);
  2140. if (!channel || channel->flags & IEEE80211_CHAN_DISABLED)
  2141. return;
  2142. #ifdef CONFIG_MAC80211_MESH
  2143. if (elems.mesh_config)
  2144. bss = ieee80211_rx_mesh_bss_get(dev, elems.mesh_id,
  2145. elems.mesh_id_len, elems.mesh_config, freq);
  2146. else
  2147. #endif
  2148. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, freq,
  2149. elems.ssid, elems.ssid_len);
  2150. if (!bss) {
  2151. #ifdef CONFIG_MAC80211_MESH
  2152. if (elems.mesh_config)
  2153. bss = ieee80211_rx_mesh_bss_add(dev, elems.mesh_id,
  2154. elems.mesh_id_len, elems.mesh_config, freq);
  2155. else
  2156. #endif
  2157. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, freq,
  2158. elems.ssid, elems.ssid_len);
  2159. if (!bss)
  2160. return;
  2161. } else {
  2162. #if 0
  2163. /* TODO: order by RSSI? */
  2164. spin_lock_bh(&local->sta_bss_lock);
  2165. list_move_tail(&bss->list, &local->sta_bss_list);
  2166. spin_unlock_bh(&local->sta_bss_lock);
  2167. #endif
  2168. }
  2169. bss->band = rx_status->band;
  2170. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2171. bss->probe_resp && beacon) {
  2172. /* STA mode:
  2173. * Do not allow beacon to override data from Probe Response. */
  2174. ieee80211_rx_bss_put(dev, bss);
  2175. return;
  2176. }
  2177. /* save the ERP value so that it is available at association time */
  2178. if (elems.erp_info && elems.erp_info_len >= 1) {
  2179. bss->erp_value = elems.erp_info[0];
  2180. bss->has_erp_value = 1;
  2181. }
  2182. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  2183. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  2184. bss->supp_rates_len = 0;
  2185. if (elems.supp_rates) {
  2186. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2187. if (clen > elems.supp_rates_len)
  2188. clen = elems.supp_rates_len;
  2189. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  2190. clen);
  2191. bss->supp_rates_len += clen;
  2192. }
  2193. if (elems.ext_supp_rates) {
  2194. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2195. if (clen > elems.ext_supp_rates_len)
  2196. clen = elems.ext_supp_rates_len;
  2197. memcpy(&bss->supp_rates[bss->supp_rates_len],
  2198. elems.ext_supp_rates, clen);
  2199. bss->supp_rates_len += clen;
  2200. }
  2201. if (elems.wpa &&
  2202. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  2203. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  2204. kfree(bss->wpa_ie);
  2205. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  2206. if (bss->wpa_ie) {
  2207. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  2208. bss->wpa_ie_len = elems.wpa_len + 2;
  2209. } else
  2210. bss->wpa_ie_len = 0;
  2211. } else if (!elems.wpa && bss->wpa_ie) {
  2212. kfree(bss->wpa_ie);
  2213. bss->wpa_ie = NULL;
  2214. bss->wpa_ie_len = 0;
  2215. }
  2216. if (elems.rsn &&
  2217. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  2218. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  2219. kfree(bss->rsn_ie);
  2220. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  2221. if (bss->rsn_ie) {
  2222. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  2223. bss->rsn_ie_len = elems.rsn_len + 2;
  2224. } else
  2225. bss->rsn_ie_len = 0;
  2226. } else if (!elems.rsn && bss->rsn_ie) {
  2227. kfree(bss->rsn_ie);
  2228. bss->rsn_ie = NULL;
  2229. bss->rsn_ie_len = 0;
  2230. }
  2231. if (elems.wmm_param &&
  2232. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  2233. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  2234. kfree(bss->wmm_ie);
  2235. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  2236. if (bss->wmm_ie) {
  2237. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  2238. elems.wmm_param_len + 2);
  2239. bss->wmm_ie_len = elems.wmm_param_len + 2;
  2240. } else
  2241. bss->wmm_ie_len = 0;
  2242. } else if (!elems.wmm_param && bss->wmm_ie) {
  2243. kfree(bss->wmm_ie);
  2244. bss->wmm_ie = NULL;
  2245. bss->wmm_ie_len = 0;
  2246. }
  2247. if (elems.ht_cap_elem &&
  2248. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  2249. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  2250. kfree(bss->ht_ie);
  2251. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  2252. if (bss->ht_ie) {
  2253. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  2254. elems.ht_cap_elem_len + 2);
  2255. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  2256. } else
  2257. bss->ht_ie_len = 0;
  2258. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  2259. kfree(bss->ht_ie);
  2260. bss->ht_ie = NULL;
  2261. bss->ht_ie_len = 0;
  2262. }
  2263. bss->timestamp = beacon_timestamp;
  2264. bss->last_update = jiffies;
  2265. bss->rssi = rx_status->ssi;
  2266. bss->signal = rx_status->signal;
  2267. bss->noise = rx_status->noise;
  2268. if (!beacon)
  2269. bss->probe_resp++;
  2270. /* check if we need to merge IBSS */
  2271. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  2272. !local->sta_sw_scanning && !local->sta_hw_scanning &&
  2273. bss->capability & WLAN_CAPABILITY_IBSS &&
  2274. bss->freq == local->oper_channel->center_freq &&
  2275. elems.ssid_len == sdata->u.sta.ssid_len &&
  2276. memcmp(elems.ssid, sdata->u.sta.ssid, sdata->u.sta.ssid_len) == 0) {
  2277. if (rx_status->flag & RX_FLAG_TSFT) {
  2278. /* in order for correct IBSS merging we need mactime
  2279. *
  2280. * since mactime is defined as the time the first data
  2281. * symbol of the frame hits the PHY, and the timestamp
  2282. * of the beacon is defined as "the time that the data
  2283. * symbol containing the first bit of the timestamp is
  2284. * transmitted to the PHY plus the transmitting STA’s
  2285. * delays through its local PHY from the MAC-PHY
  2286. * interface to its interface with the WM"
  2287. * (802.11 11.1.2) - equals the time this bit arrives at
  2288. * the receiver - we have to take into account the
  2289. * offset between the two.
  2290. * e.g: at 1 MBit that means mactime is 192 usec earlier
  2291. * (=24 bytes * 8 usecs/byte) than the beacon timestamp.
  2292. */
  2293. int rate = local->hw.wiphy->bands[rx_status->band]->
  2294. bitrates[rx_status->rate_idx].bitrate;
  2295. rx_timestamp = rx_status->mactime + (24 * 8 * 10 / rate);
  2296. } else if (local && local->ops && local->ops->get_tsf)
  2297. /* second best option: get current TSF */
  2298. rx_timestamp = local->ops->get_tsf(local_to_hw(local));
  2299. else
  2300. /* can't merge without knowing the TSF */
  2301. rx_timestamp = -1LLU;
  2302. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2303. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  2304. "%s TSF=0x%llx BCN=0x%llx diff=%lld @%lu\n",
  2305. print_mac(mac, mgmt->sa),
  2306. print_mac(mac2, mgmt->bssid),
  2307. (unsigned long long)rx_timestamp,
  2308. (unsigned long long)beacon_timestamp,
  2309. (unsigned long long)(rx_timestamp - beacon_timestamp),
  2310. jiffies);
  2311. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2312. if (beacon_timestamp > rx_timestamp) {
  2313. #ifndef CONFIG_MAC80211_IBSS_DEBUG
  2314. if (net_ratelimit())
  2315. #endif
  2316. printk(KERN_DEBUG "%s: beacon TSF higher than "
  2317. "local TSF - IBSS merge with BSSID %s\n",
  2318. dev->name, print_mac(mac, mgmt->bssid));
  2319. ieee80211_sta_join_ibss(dev, &sdata->u.sta, bss);
  2320. ieee80211_ibss_add_sta(dev, NULL,
  2321. mgmt->bssid, mgmt->sa);
  2322. }
  2323. }
  2324. ieee80211_rx_bss_put(dev, bss);
  2325. }
  2326. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  2327. struct ieee80211_mgmt *mgmt,
  2328. size_t len,
  2329. struct ieee80211_rx_status *rx_status)
  2330. {
  2331. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  2332. }
  2333. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  2334. struct ieee80211_mgmt *mgmt,
  2335. size_t len,
  2336. struct ieee80211_rx_status *rx_status)
  2337. {
  2338. struct ieee80211_sub_if_data *sdata;
  2339. struct ieee80211_if_sta *ifsta;
  2340. size_t baselen;
  2341. struct ieee802_11_elems elems;
  2342. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2343. struct ieee80211_conf *conf = &local->hw.conf;
  2344. u32 changed = 0;
  2345. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  2346. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2347. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2348. return;
  2349. ifsta = &sdata->u.sta;
  2350. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  2351. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  2352. return;
  2353. /* Process beacon from the current BSS */
  2354. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2355. if (baselen > len)
  2356. return;
  2357. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2358. if (elems.erp_info && elems.erp_info_len >= 1)
  2359. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  2360. if (elems.ht_cap_elem && elems.ht_info_elem &&
  2361. elems.wmm_param && local->ops->conf_ht &&
  2362. conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  2363. struct ieee80211_ht_bss_info bss_info;
  2364. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  2365. (struct ieee80211_ht_addt_info *)
  2366. elems.ht_info_elem, &bss_info);
  2367. /* check if AP changed bss inforamation */
  2368. if ((conf->ht_bss_conf.primary_channel !=
  2369. bss_info.primary_channel) ||
  2370. (conf->ht_bss_conf.bss_cap != bss_info.bss_cap) ||
  2371. (conf->ht_bss_conf.bss_op_mode != bss_info.bss_op_mode))
  2372. ieee80211_hw_config_ht(local, 1, &conf->ht_conf,
  2373. &bss_info);
  2374. }
  2375. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  2376. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  2377. elems.wmm_param_len);
  2378. }
  2379. ieee80211_bss_info_change_notify(sdata, changed);
  2380. }
  2381. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  2382. struct ieee80211_if_sta *ifsta,
  2383. struct ieee80211_mgmt *mgmt,
  2384. size_t len,
  2385. struct ieee80211_rx_status *rx_status)
  2386. {
  2387. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2388. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2389. int tx_last_beacon;
  2390. struct sk_buff *skb;
  2391. struct ieee80211_mgmt *resp;
  2392. u8 *pos, *end;
  2393. DECLARE_MAC_BUF(mac);
  2394. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2395. DECLARE_MAC_BUF(mac2);
  2396. DECLARE_MAC_BUF(mac3);
  2397. #endif
  2398. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  2399. ifsta->state != IEEE80211_IBSS_JOINED ||
  2400. len < 24 + 2 || !ifsta->probe_resp)
  2401. return;
  2402. if (local->ops->tx_last_beacon)
  2403. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  2404. else
  2405. tx_last_beacon = 1;
  2406. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2407. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  2408. "%s (tx_last_beacon=%d)\n",
  2409. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  2410. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  2411. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2412. if (!tx_last_beacon)
  2413. return;
  2414. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  2415. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  2416. return;
  2417. end = ((u8 *) mgmt) + len;
  2418. pos = mgmt->u.probe_req.variable;
  2419. if (pos[0] != WLAN_EID_SSID ||
  2420. pos + 2 + pos[1] > end) {
  2421. if (net_ratelimit()) {
  2422. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  2423. "from %s\n",
  2424. dev->name, print_mac(mac, mgmt->sa));
  2425. }
  2426. return;
  2427. }
  2428. if (pos[1] != 0 &&
  2429. (pos[1] != ifsta->ssid_len ||
  2430. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  2431. /* Ignore ProbeReq for foreign SSID */
  2432. return;
  2433. }
  2434. /* Reply with ProbeResp */
  2435. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  2436. if (!skb)
  2437. return;
  2438. resp = (struct ieee80211_mgmt *) skb->data;
  2439. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  2440. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2441. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  2442. dev->name, print_mac(mac, resp->da));
  2443. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2444. ieee80211_sta_tx(dev, skb, 0);
  2445. }
  2446. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  2447. struct ieee80211_if_sta *ifsta,
  2448. struct ieee80211_mgmt *mgmt,
  2449. size_t len,
  2450. struct ieee80211_rx_status *rx_status)
  2451. {
  2452. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2453. if (len < IEEE80211_MIN_ACTION_SIZE)
  2454. return;
  2455. switch (mgmt->u.action.category) {
  2456. case WLAN_CATEGORY_BACK:
  2457. switch (mgmt->u.action.u.addba_req.action_code) {
  2458. case WLAN_ACTION_ADDBA_REQ:
  2459. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2460. sizeof(mgmt->u.action.u.addba_req)))
  2461. break;
  2462. ieee80211_sta_process_addba_request(dev, mgmt, len);
  2463. break;
  2464. case WLAN_ACTION_ADDBA_RESP:
  2465. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2466. sizeof(mgmt->u.action.u.addba_resp)))
  2467. break;
  2468. ieee80211_sta_process_addba_resp(dev, mgmt, len);
  2469. break;
  2470. case WLAN_ACTION_DELBA:
  2471. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2472. sizeof(mgmt->u.action.u.delba)))
  2473. break;
  2474. ieee80211_sta_process_delba(dev, mgmt, len);
  2475. break;
  2476. default:
  2477. if (net_ratelimit())
  2478. printk(KERN_DEBUG "%s: Rx unknown A-MPDU action\n",
  2479. dev->name);
  2480. break;
  2481. }
  2482. break;
  2483. case PLINK_CATEGORY:
  2484. if (ieee80211_vif_is_mesh(&sdata->vif))
  2485. mesh_rx_plink_frame(dev, mgmt, len, rx_status);
  2486. break;
  2487. case MESH_PATH_SEL_CATEGORY:
  2488. if (ieee80211_vif_is_mesh(&sdata->vif))
  2489. mesh_rx_path_sel_frame(dev, mgmt, len);
  2490. break;
  2491. default:
  2492. if (net_ratelimit())
  2493. printk(KERN_DEBUG "%s: Rx unknown action frame - "
  2494. "category=%d\n", dev->name, mgmt->u.action.category);
  2495. break;
  2496. }
  2497. }
  2498. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  2499. struct ieee80211_rx_status *rx_status)
  2500. {
  2501. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2502. struct ieee80211_sub_if_data *sdata;
  2503. struct ieee80211_if_sta *ifsta;
  2504. struct ieee80211_mgmt *mgmt;
  2505. u16 fc;
  2506. if (skb->len < 24)
  2507. goto fail;
  2508. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2509. ifsta = &sdata->u.sta;
  2510. mgmt = (struct ieee80211_mgmt *) skb->data;
  2511. fc = le16_to_cpu(mgmt->frame_control);
  2512. switch (fc & IEEE80211_FCTL_STYPE) {
  2513. case IEEE80211_STYPE_PROBE_REQ:
  2514. case IEEE80211_STYPE_PROBE_RESP:
  2515. case IEEE80211_STYPE_BEACON:
  2516. case IEEE80211_STYPE_ACTION:
  2517. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  2518. case IEEE80211_STYPE_AUTH:
  2519. case IEEE80211_STYPE_ASSOC_RESP:
  2520. case IEEE80211_STYPE_REASSOC_RESP:
  2521. case IEEE80211_STYPE_DEAUTH:
  2522. case IEEE80211_STYPE_DISASSOC:
  2523. skb_queue_tail(&ifsta->skb_queue, skb);
  2524. queue_work(local->hw.workqueue, &ifsta->work);
  2525. return;
  2526. default:
  2527. printk(KERN_DEBUG "%s: received unknown management frame - "
  2528. "stype=%d\n", dev->name,
  2529. (fc & IEEE80211_FCTL_STYPE) >> 4);
  2530. break;
  2531. }
  2532. fail:
  2533. kfree_skb(skb);
  2534. }
  2535. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  2536. struct sk_buff *skb)
  2537. {
  2538. struct ieee80211_rx_status *rx_status;
  2539. struct ieee80211_sub_if_data *sdata;
  2540. struct ieee80211_if_sta *ifsta;
  2541. struct ieee80211_mgmt *mgmt;
  2542. u16 fc;
  2543. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2544. ifsta = &sdata->u.sta;
  2545. rx_status = (struct ieee80211_rx_status *) skb->cb;
  2546. mgmt = (struct ieee80211_mgmt *) skb->data;
  2547. fc = le16_to_cpu(mgmt->frame_control);
  2548. switch (fc & IEEE80211_FCTL_STYPE) {
  2549. case IEEE80211_STYPE_PROBE_REQ:
  2550. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2551. rx_status);
  2552. break;
  2553. case IEEE80211_STYPE_PROBE_RESP:
  2554. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2555. break;
  2556. case IEEE80211_STYPE_BEACON:
  2557. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2558. break;
  2559. case IEEE80211_STYPE_AUTH:
  2560. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2561. break;
  2562. case IEEE80211_STYPE_ASSOC_RESP:
  2563. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2564. break;
  2565. case IEEE80211_STYPE_REASSOC_RESP:
  2566. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2567. break;
  2568. case IEEE80211_STYPE_DEAUTH:
  2569. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2570. break;
  2571. case IEEE80211_STYPE_DISASSOC:
  2572. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2573. break;
  2574. case IEEE80211_STYPE_ACTION:
  2575. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len, rx_status);
  2576. break;
  2577. }
  2578. kfree_skb(skb);
  2579. }
  2580. ieee80211_rx_result
  2581. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2582. struct ieee80211_rx_status *rx_status)
  2583. {
  2584. struct ieee80211_mgmt *mgmt;
  2585. u16 fc;
  2586. if (skb->len < 2)
  2587. return RX_DROP_UNUSABLE;
  2588. mgmt = (struct ieee80211_mgmt *) skb->data;
  2589. fc = le16_to_cpu(mgmt->frame_control);
  2590. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2591. return RX_CONTINUE;
  2592. if (skb->len < 24)
  2593. return RX_DROP_MONITOR;
  2594. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2595. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2596. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2597. skb->len, rx_status);
  2598. dev_kfree_skb(skb);
  2599. return RX_QUEUED;
  2600. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2601. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2602. rx_status);
  2603. dev_kfree_skb(skb);
  2604. return RX_QUEUED;
  2605. }
  2606. }
  2607. return RX_CONTINUE;
  2608. }
  2609. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2610. {
  2611. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2612. int active = 0;
  2613. struct sta_info *sta;
  2614. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2615. rcu_read_lock();
  2616. list_for_each_entry_rcu(sta, &local->sta_list, list) {
  2617. if (sta->sdata == sdata &&
  2618. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2619. jiffies)) {
  2620. active++;
  2621. break;
  2622. }
  2623. }
  2624. rcu_read_unlock();
  2625. return active;
  2626. }
  2627. static void ieee80211_sta_expire(struct net_device *dev, unsigned long exp_time)
  2628. {
  2629. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2630. struct sta_info *sta, *tmp;
  2631. LIST_HEAD(tmp_list);
  2632. DECLARE_MAC_BUF(mac);
  2633. unsigned long flags;
  2634. spin_lock_irqsave(&local->sta_lock, flags);
  2635. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2636. if (time_after(jiffies, sta->last_rx + exp_time)) {
  2637. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2638. dev->name, print_mac(mac, sta->addr));
  2639. sta_info_unlink(&sta);
  2640. if (sta)
  2641. list_add(&sta->list, &tmp_list);
  2642. }
  2643. spin_unlock_irqrestore(&local->sta_lock, flags);
  2644. synchronize_rcu();
  2645. rtnl_lock();
  2646. list_for_each_entry_safe(sta, tmp, &tmp_list, list)
  2647. sta_info_destroy(sta);
  2648. rtnl_unlock();
  2649. }
  2650. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2651. struct ieee80211_if_sta *ifsta)
  2652. {
  2653. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2654. ieee80211_sta_expire(dev, IEEE80211_IBSS_INACTIVITY_LIMIT);
  2655. if (ieee80211_sta_active_ibss(dev))
  2656. return;
  2657. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2658. "IBSS networks with same SSID (merge)\n", dev->name);
  2659. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2660. }
  2661. #ifdef CONFIG_MAC80211_MESH
  2662. static void ieee80211_mesh_housekeeping(struct net_device *dev,
  2663. struct ieee80211_if_sta *ifsta)
  2664. {
  2665. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2666. bool free_plinks;
  2667. ieee80211_sta_expire(dev, IEEE80211_MESH_PEER_INACTIVITY_LIMIT);
  2668. mesh_path_expire(dev);
  2669. free_plinks = mesh_plink_availables(sdata);
  2670. if (free_plinks != sdata->u.sta.accepting_plinks)
  2671. ieee80211_if_config_beacon(dev);
  2672. mod_timer(&ifsta->timer, jiffies +
  2673. IEEE80211_MESH_HOUSEKEEPING_INTERVAL);
  2674. }
  2675. void ieee80211_start_mesh(struct net_device *dev)
  2676. {
  2677. struct ieee80211_if_sta *ifsta;
  2678. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2679. ifsta = &sdata->u.sta;
  2680. ifsta->state = IEEE80211_MESH_UP;
  2681. ieee80211_sta_timer((unsigned long)sdata);
  2682. }
  2683. #endif
  2684. void ieee80211_sta_timer(unsigned long data)
  2685. {
  2686. struct ieee80211_sub_if_data *sdata =
  2687. (struct ieee80211_sub_if_data *) data;
  2688. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2689. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2690. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2691. queue_work(local->hw.workqueue, &ifsta->work);
  2692. }
  2693. void ieee80211_sta_work(struct work_struct *work)
  2694. {
  2695. struct ieee80211_sub_if_data *sdata =
  2696. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2697. struct net_device *dev = sdata->dev;
  2698. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2699. struct ieee80211_if_sta *ifsta;
  2700. struct sk_buff *skb;
  2701. if (!netif_running(dev))
  2702. return;
  2703. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2704. return;
  2705. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2706. sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2707. sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT) {
  2708. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2709. "(type=%d)\n", dev->name, sdata->vif.type);
  2710. return;
  2711. }
  2712. ifsta = &sdata->u.sta;
  2713. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2714. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2715. #ifdef CONFIG_MAC80211_MESH
  2716. if (ifsta->preq_queue_len &&
  2717. time_after(jiffies,
  2718. ifsta->last_preq + msecs_to_jiffies(ifsta->mshcfg.dot11MeshHWMPpreqMinInterval)))
  2719. mesh_path_start_discovery(dev);
  2720. #endif
  2721. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2722. ifsta->state != IEEE80211_ASSOCIATE &&
  2723. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2724. if (ifsta->scan_ssid_len)
  2725. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2726. else
  2727. ieee80211_sta_start_scan(dev, NULL, 0);
  2728. return;
  2729. }
  2730. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2731. if (ieee80211_sta_config_auth(dev, ifsta))
  2732. return;
  2733. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2734. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2735. return;
  2736. switch (ifsta->state) {
  2737. case IEEE80211_DISABLED:
  2738. break;
  2739. case IEEE80211_AUTHENTICATE:
  2740. ieee80211_authenticate(dev, ifsta);
  2741. break;
  2742. case IEEE80211_ASSOCIATE:
  2743. ieee80211_associate(dev, ifsta);
  2744. break;
  2745. case IEEE80211_ASSOCIATED:
  2746. ieee80211_associated(dev, ifsta);
  2747. break;
  2748. case IEEE80211_IBSS_SEARCH:
  2749. ieee80211_sta_find_ibss(dev, ifsta);
  2750. break;
  2751. case IEEE80211_IBSS_JOINED:
  2752. ieee80211_sta_merge_ibss(dev, ifsta);
  2753. break;
  2754. #ifdef CONFIG_MAC80211_MESH
  2755. case IEEE80211_MESH_UP:
  2756. ieee80211_mesh_housekeeping(dev, ifsta);
  2757. break;
  2758. #endif
  2759. default:
  2760. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2761. ifsta->state);
  2762. break;
  2763. }
  2764. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2765. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2766. "mixed-cell disabled - disassociate\n", dev->name);
  2767. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2768. ieee80211_set_disassoc(dev, ifsta, 0);
  2769. }
  2770. }
  2771. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2772. struct ieee80211_if_sta *ifsta)
  2773. {
  2774. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2775. if (local->ops->reset_tsf) {
  2776. /* Reset own TSF to allow time synchronization work. */
  2777. local->ops->reset_tsf(local_to_hw(local));
  2778. }
  2779. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2780. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2781. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2782. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2783. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2784. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2785. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2786. else
  2787. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2788. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2789. ifsta->auth_alg);
  2790. ifsta->auth_transaction = -1;
  2791. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2792. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2793. netif_carrier_off(dev);
  2794. }
  2795. void ieee80211_sta_req_auth(struct net_device *dev,
  2796. struct ieee80211_if_sta *ifsta)
  2797. {
  2798. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2799. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2800. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2801. return;
  2802. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2803. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2804. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2805. IEEE80211_STA_AUTO_SSID_SEL))) {
  2806. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2807. queue_work(local->hw.workqueue, &ifsta->work);
  2808. }
  2809. }
  2810. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2811. const char *ssid, int ssid_len)
  2812. {
  2813. int tmp, hidden_ssid;
  2814. if (ssid_len == ifsta->ssid_len &&
  2815. !memcmp(ifsta->ssid, ssid, ssid_len))
  2816. return 1;
  2817. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2818. return 0;
  2819. hidden_ssid = 1;
  2820. tmp = ssid_len;
  2821. while (tmp--) {
  2822. if (ssid[tmp] != '\0') {
  2823. hidden_ssid = 0;
  2824. break;
  2825. }
  2826. }
  2827. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2828. return 1;
  2829. if (ssid_len == 1 && ssid[0] == ' ')
  2830. return 1;
  2831. return 0;
  2832. }
  2833. static int ieee80211_sta_config_auth(struct net_device *dev,
  2834. struct ieee80211_if_sta *ifsta)
  2835. {
  2836. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2837. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2838. struct ieee80211_sta_bss *bss, *selected = NULL;
  2839. int top_rssi = 0, freq;
  2840. if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2841. IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) {
  2842. ifsta->state = IEEE80211_AUTHENTICATE;
  2843. ieee80211_sta_reset_auth(dev, ifsta);
  2844. return 0;
  2845. }
  2846. spin_lock_bh(&local->sta_bss_lock);
  2847. freq = local->oper_channel->center_freq;
  2848. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2849. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2850. continue;
  2851. if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2852. !!sdata->default_key)
  2853. continue;
  2854. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2855. bss->freq != freq)
  2856. continue;
  2857. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2858. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2859. continue;
  2860. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2861. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2862. continue;
  2863. if (!selected || top_rssi < bss->rssi) {
  2864. selected = bss;
  2865. top_rssi = bss->rssi;
  2866. }
  2867. }
  2868. if (selected)
  2869. atomic_inc(&selected->users);
  2870. spin_unlock_bh(&local->sta_bss_lock);
  2871. if (selected) {
  2872. ieee80211_set_freq(local, selected->freq);
  2873. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2874. ieee80211_sta_set_ssid(dev, selected->ssid,
  2875. selected->ssid_len);
  2876. ieee80211_sta_set_bssid(dev, selected->bssid);
  2877. ieee80211_sta_def_wmm_params(dev, selected, 0);
  2878. ieee80211_rx_bss_put(dev, selected);
  2879. ifsta->state = IEEE80211_AUTHENTICATE;
  2880. ieee80211_sta_reset_auth(dev, ifsta);
  2881. return 0;
  2882. } else {
  2883. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2884. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2885. ieee80211_sta_start_scan(dev, NULL, 0);
  2886. else
  2887. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2888. ifsta->ssid_len);
  2889. ifsta->state = IEEE80211_AUTHENTICATE;
  2890. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2891. } else
  2892. ifsta->state = IEEE80211_DISABLED;
  2893. }
  2894. return -1;
  2895. }
  2896. static int ieee80211_sta_create_ibss(struct net_device *dev,
  2897. struct ieee80211_if_sta *ifsta)
  2898. {
  2899. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2900. struct ieee80211_sta_bss *bss;
  2901. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2902. struct ieee80211_supported_band *sband;
  2903. u8 bssid[ETH_ALEN], *pos;
  2904. int i;
  2905. DECLARE_MAC_BUF(mac);
  2906. #if 0
  2907. /* Easier testing, use fixed BSSID. */
  2908. memset(bssid, 0xfe, ETH_ALEN);
  2909. #else
  2910. /* Generate random, not broadcast, locally administered BSSID. Mix in
  2911. * own MAC address to make sure that devices that do not have proper
  2912. * random number generator get different BSSID. */
  2913. get_random_bytes(bssid, ETH_ALEN);
  2914. for (i = 0; i < ETH_ALEN; i++)
  2915. bssid[i] ^= dev->dev_addr[i];
  2916. bssid[0] &= ~0x01;
  2917. bssid[0] |= 0x02;
  2918. #endif
  2919. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  2920. dev->name, print_mac(mac, bssid));
  2921. bss = ieee80211_rx_bss_add(dev, bssid,
  2922. local->hw.conf.channel->center_freq,
  2923. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  2924. if (!bss)
  2925. return -ENOMEM;
  2926. bss->band = local->hw.conf.channel->band;
  2927. sband = local->hw.wiphy->bands[bss->band];
  2928. if (local->hw.conf.beacon_int == 0)
  2929. local->hw.conf.beacon_int = 10000;
  2930. bss->beacon_int = local->hw.conf.beacon_int;
  2931. bss->last_update = jiffies;
  2932. bss->capability = WLAN_CAPABILITY_IBSS;
  2933. if (sdata->default_key) {
  2934. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  2935. } else
  2936. sdata->drop_unencrypted = 0;
  2937. bss->supp_rates_len = sband->n_bitrates;
  2938. pos = bss->supp_rates;
  2939. for (i = 0; i < sband->n_bitrates; i++) {
  2940. int rate = sband->bitrates[i].bitrate;
  2941. *pos++ = (u8) (rate / 5);
  2942. }
  2943. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2944. }
  2945. static int ieee80211_sta_find_ibss(struct net_device *dev,
  2946. struct ieee80211_if_sta *ifsta)
  2947. {
  2948. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2949. struct ieee80211_sta_bss *bss;
  2950. int found = 0;
  2951. u8 bssid[ETH_ALEN];
  2952. int active_ibss;
  2953. DECLARE_MAC_BUF(mac);
  2954. DECLARE_MAC_BUF(mac2);
  2955. if (ifsta->ssid_len == 0)
  2956. return -EINVAL;
  2957. active_ibss = ieee80211_sta_active_ibss(dev);
  2958. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2959. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  2960. dev->name, active_ibss);
  2961. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2962. spin_lock_bh(&local->sta_bss_lock);
  2963. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2964. if (ifsta->ssid_len != bss->ssid_len ||
  2965. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  2966. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  2967. continue;
  2968. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2969. printk(KERN_DEBUG " bssid=%s found\n",
  2970. print_mac(mac, bss->bssid));
  2971. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2972. memcpy(bssid, bss->bssid, ETH_ALEN);
  2973. found = 1;
  2974. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  2975. break;
  2976. }
  2977. spin_unlock_bh(&local->sta_bss_lock);
  2978. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2979. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  2980. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  2981. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2982. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  2983. (bss = ieee80211_rx_bss_get(dev, bssid,
  2984. local->hw.conf.channel->center_freq,
  2985. ifsta->ssid, ifsta->ssid_len))) {
  2986. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  2987. " based on configured SSID\n",
  2988. dev->name, print_mac(mac, bssid));
  2989. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2990. }
  2991. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2992. printk(KERN_DEBUG " did not try to join ibss\n");
  2993. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2994. /* Selected IBSS not found in current scan results - try to scan */
  2995. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  2996. !ieee80211_sta_active_ibss(dev)) {
  2997. mod_timer(&ifsta->timer, jiffies +
  2998. IEEE80211_IBSS_MERGE_INTERVAL);
  2999. } else if (time_after(jiffies, local->last_scan_completed +
  3000. IEEE80211_SCAN_INTERVAL)) {
  3001. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  3002. "join\n", dev->name);
  3003. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  3004. ifsta->ssid_len);
  3005. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  3006. int interval = IEEE80211_SCAN_INTERVAL;
  3007. if (time_after(jiffies, ifsta->ibss_join_req +
  3008. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  3009. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  3010. (!(local->oper_channel->flags &
  3011. IEEE80211_CHAN_NO_IBSS)))
  3012. return ieee80211_sta_create_ibss(dev, ifsta);
  3013. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  3014. printk(KERN_DEBUG "%s: IBSS not allowed on"
  3015. " %d MHz\n", dev->name,
  3016. local->hw.conf.channel->center_freq);
  3017. }
  3018. /* No IBSS found - decrease scan interval and continue
  3019. * scanning. */
  3020. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  3021. }
  3022. ifsta->state = IEEE80211_IBSS_SEARCH;
  3023. mod_timer(&ifsta->timer, jiffies + interval);
  3024. return 0;
  3025. }
  3026. return 0;
  3027. }
  3028. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  3029. {
  3030. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3031. struct ieee80211_if_sta *ifsta;
  3032. if (len > IEEE80211_MAX_SSID_LEN)
  3033. return -EINVAL;
  3034. ifsta = &sdata->u.sta;
  3035. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  3036. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  3037. memcpy(ifsta->ssid, ssid, len);
  3038. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  3039. ifsta->ssid_len = len;
  3040. if (len)
  3041. ifsta->flags |= IEEE80211_STA_SSID_SET;
  3042. else
  3043. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  3044. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3045. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  3046. ifsta->ibss_join_req = jiffies;
  3047. ifsta->state = IEEE80211_IBSS_SEARCH;
  3048. return ieee80211_sta_find_ibss(dev, ifsta);
  3049. }
  3050. return 0;
  3051. }
  3052. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  3053. {
  3054. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3055. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3056. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  3057. *len = ifsta->ssid_len;
  3058. return 0;
  3059. }
  3060. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  3061. {
  3062. struct ieee80211_sub_if_data *sdata;
  3063. struct ieee80211_if_sta *ifsta;
  3064. int res;
  3065. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3066. ifsta = &sdata->u.sta;
  3067. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  3068. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  3069. res = ieee80211_if_config(dev);
  3070. if (res) {
  3071. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  3072. "the low-level driver\n", dev->name);
  3073. return res;
  3074. }
  3075. }
  3076. if (is_valid_ether_addr(bssid))
  3077. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  3078. else
  3079. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  3080. return 0;
  3081. }
  3082. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  3083. struct ieee80211_sub_if_data *sdata,
  3084. int powersave)
  3085. {
  3086. struct sk_buff *skb;
  3087. struct ieee80211_hdr *nullfunc;
  3088. u16 fc;
  3089. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  3090. if (!skb) {
  3091. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  3092. "frame\n", sdata->dev->name);
  3093. return;
  3094. }
  3095. skb_reserve(skb, local->hw.extra_tx_headroom);
  3096. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  3097. memset(nullfunc, 0, 24);
  3098. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  3099. IEEE80211_FCTL_TODS;
  3100. if (powersave)
  3101. fc |= IEEE80211_FCTL_PM;
  3102. nullfunc->frame_control = cpu_to_le16(fc);
  3103. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  3104. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  3105. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  3106. ieee80211_sta_tx(sdata->dev, skb, 0);
  3107. }
  3108. static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata)
  3109. {
  3110. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  3111. ieee80211_vif_is_mesh(&sdata->vif))
  3112. ieee80211_sta_timer((unsigned long)sdata);
  3113. }
  3114. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  3115. {
  3116. struct ieee80211_local *local = hw_to_local(hw);
  3117. struct net_device *dev = local->scan_dev;
  3118. struct ieee80211_sub_if_data *sdata;
  3119. union iwreq_data wrqu;
  3120. local->last_scan_completed = jiffies;
  3121. memset(&wrqu, 0, sizeof(wrqu));
  3122. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  3123. if (local->sta_hw_scanning) {
  3124. local->sta_hw_scanning = 0;
  3125. if (ieee80211_hw_config(local))
  3126. printk(KERN_DEBUG "%s: failed to restore operational "
  3127. "channel after scan\n", dev->name);
  3128. /* Restart STA timer for HW scan case */
  3129. rcu_read_lock();
  3130. list_for_each_entry_rcu(sdata, &local->interfaces, list)
  3131. ieee80211_restart_sta_timer(sdata);
  3132. rcu_read_unlock();
  3133. goto done;
  3134. }
  3135. local->sta_sw_scanning = 0;
  3136. if (ieee80211_hw_config(local))
  3137. printk(KERN_DEBUG "%s: failed to restore operational "
  3138. "channel after scan\n", dev->name);
  3139. netif_tx_lock_bh(local->mdev);
  3140. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  3141. local->ops->configure_filter(local_to_hw(local),
  3142. FIF_BCN_PRBRESP_PROMISC,
  3143. &local->filter_flags,
  3144. local->mdev->mc_count,
  3145. local->mdev->mc_list);
  3146. netif_tx_unlock_bh(local->mdev);
  3147. rcu_read_lock();
  3148. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3149. /* No need to wake the master device. */
  3150. if (sdata->dev == local->mdev)
  3151. continue;
  3152. /* Tell AP we're back */
  3153. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3154. sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  3155. ieee80211_send_nullfunc(local, sdata, 0);
  3156. ieee80211_restart_sta_timer(sdata);
  3157. netif_wake_queue(sdata->dev);
  3158. }
  3159. rcu_read_unlock();
  3160. done:
  3161. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3162. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  3163. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3164. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  3165. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  3166. !ieee80211_sta_active_ibss(dev)))
  3167. ieee80211_sta_find_ibss(dev, ifsta);
  3168. }
  3169. }
  3170. EXPORT_SYMBOL(ieee80211_scan_completed);
  3171. void ieee80211_sta_scan_work(struct work_struct *work)
  3172. {
  3173. struct ieee80211_local *local =
  3174. container_of(work, struct ieee80211_local, scan_work.work);
  3175. struct net_device *dev = local->scan_dev;
  3176. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3177. struct ieee80211_supported_band *sband;
  3178. struct ieee80211_channel *chan;
  3179. int skip;
  3180. unsigned long next_delay = 0;
  3181. if (!local->sta_sw_scanning)
  3182. return;
  3183. switch (local->scan_state) {
  3184. case SCAN_SET_CHANNEL:
  3185. /*
  3186. * Get current scan band. scan_band may be IEEE80211_NUM_BANDS
  3187. * after we successfully scanned the last channel of the last
  3188. * band (and the last band is supported by the hw)
  3189. */
  3190. if (local->scan_band < IEEE80211_NUM_BANDS)
  3191. sband = local->hw.wiphy->bands[local->scan_band];
  3192. else
  3193. sband = NULL;
  3194. /*
  3195. * If we are at an unsupported band and have more bands
  3196. * left to scan, advance to the next supported one.
  3197. */
  3198. while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) {
  3199. local->scan_band++;
  3200. sband = local->hw.wiphy->bands[local->scan_band];
  3201. local->scan_channel_idx = 0;
  3202. }
  3203. /* if no more bands/channels left, complete scan */
  3204. if (!sband || local->scan_channel_idx >= sband->n_channels) {
  3205. ieee80211_scan_completed(local_to_hw(local));
  3206. return;
  3207. }
  3208. skip = 0;
  3209. chan = &sband->channels[local->scan_channel_idx];
  3210. if (chan->flags & IEEE80211_CHAN_DISABLED ||
  3211. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3212. chan->flags & IEEE80211_CHAN_NO_IBSS))
  3213. skip = 1;
  3214. if (!skip) {
  3215. local->scan_channel = chan;
  3216. if (ieee80211_hw_config(local)) {
  3217. printk(KERN_DEBUG "%s: failed to set freq to "
  3218. "%d MHz for scan\n", dev->name,
  3219. chan->center_freq);
  3220. skip = 1;
  3221. }
  3222. }
  3223. /* advance state machine to next channel/band */
  3224. local->scan_channel_idx++;
  3225. if (local->scan_channel_idx >= sband->n_channels) {
  3226. /*
  3227. * scan_band may end up == IEEE80211_NUM_BANDS, but
  3228. * we'll catch that case above and complete the scan
  3229. * if that is the case.
  3230. */
  3231. local->scan_band++;
  3232. local->scan_channel_idx = 0;
  3233. }
  3234. if (skip)
  3235. break;
  3236. next_delay = IEEE80211_PROBE_DELAY +
  3237. usecs_to_jiffies(local->hw.channel_change_time);
  3238. local->scan_state = SCAN_SEND_PROBE;
  3239. break;
  3240. case SCAN_SEND_PROBE:
  3241. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  3242. local->scan_state = SCAN_SET_CHANNEL;
  3243. if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN)
  3244. break;
  3245. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  3246. local->scan_ssid_len);
  3247. next_delay = IEEE80211_CHANNEL_TIME;
  3248. break;
  3249. }
  3250. if (local->sta_sw_scanning)
  3251. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3252. next_delay);
  3253. }
  3254. static int ieee80211_sta_start_scan(struct net_device *dev,
  3255. u8 *ssid, size_t ssid_len)
  3256. {
  3257. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3258. struct ieee80211_sub_if_data *sdata;
  3259. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  3260. return -EINVAL;
  3261. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  3262. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  3263. * BSSID: MACAddress
  3264. * SSID
  3265. * ScanType: ACTIVE, PASSIVE
  3266. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  3267. * a Probe frame during active scanning
  3268. * ChannelList
  3269. * MinChannelTime (>= ProbeDelay), in TU
  3270. * MaxChannelTime: (>= MinChannelTime), in TU
  3271. */
  3272. /* MLME-SCAN.confirm
  3273. * BSSDescriptionSet
  3274. * ResultCode: SUCCESS, INVALID_PARAMETERS
  3275. */
  3276. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3277. if (local->scan_dev == dev)
  3278. return 0;
  3279. return -EBUSY;
  3280. }
  3281. if (local->ops->hw_scan) {
  3282. int rc = local->ops->hw_scan(local_to_hw(local),
  3283. ssid, ssid_len);
  3284. if (!rc) {
  3285. local->sta_hw_scanning = 1;
  3286. local->scan_dev = dev;
  3287. }
  3288. return rc;
  3289. }
  3290. local->sta_sw_scanning = 1;
  3291. rcu_read_lock();
  3292. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3293. /* Don't stop the master interface, otherwise we can't transmit
  3294. * probes! */
  3295. if (sdata->dev == local->mdev)
  3296. continue;
  3297. netif_stop_queue(sdata->dev);
  3298. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3299. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  3300. ieee80211_send_nullfunc(local, sdata, 1);
  3301. }
  3302. rcu_read_unlock();
  3303. if (ssid) {
  3304. local->scan_ssid_len = ssid_len;
  3305. memcpy(local->scan_ssid, ssid, ssid_len);
  3306. } else
  3307. local->scan_ssid_len = 0;
  3308. local->scan_state = SCAN_SET_CHANNEL;
  3309. local->scan_channel_idx = 0;
  3310. local->scan_band = IEEE80211_BAND_2GHZ;
  3311. local->scan_dev = dev;
  3312. netif_tx_lock_bh(local->mdev);
  3313. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  3314. local->ops->configure_filter(local_to_hw(local),
  3315. FIF_BCN_PRBRESP_PROMISC,
  3316. &local->filter_flags,
  3317. local->mdev->mc_count,
  3318. local->mdev->mc_list);
  3319. netif_tx_unlock_bh(local->mdev);
  3320. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  3321. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3322. IEEE80211_CHANNEL_TIME);
  3323. return 0;
  3324. }
  3325. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  3326. {
  3327. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3328. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3329. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3330. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3331. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  3332. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3333. if (local->scan_dev == dev)
  3334. return 0;
  3335. return -EBUSY;
  3336. }
  3337. ifsta->scan_ssid_len = ssid_len;
  3338. if (ssid_len)
  3339. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  3340. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  3341. queue_work(local->hw.workqueue, &ifsta->work);
  3342. return 0;
  3343. }
  3344. static char *
  3345. ieee80211_sta_scan_result(struct net_device *dev,
  3346. struct ieee80211_sta_bss *bss,
  3347. char *current_ev, char *end_buf)
  3348. {
  3349. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3350. struct iw_event iwe;
  3351. if (time_after(jiffies,
  3352. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  3353. return current_ev;
  3354. memset(&iwe, 0, sizeof(iwe));
  3355. iwe.cmd = SIOCGIWAP;
  3356. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  3357. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  3358. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3359. IW_EV_ADDR_LEN);
  3360. memset(&iwe, 0, sizeof(iwe));
  3361. iwe.cmd = SIOCGIWESSID;
  3362. if (bss_mesh_cfg(bss)) {
  3363. iwe.u.data.length = bss_mesh_id_len(bss);
  3364. iwe.u.data.flags = 1;
  3365. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3366. bss_mesh_id(bss));
  3367. } else {
  3368. iwe.u.data.length = bss->ssid_len;
  3369. iwe.u.data.flags = 1;
  3370. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3371. bss->ssid);
  3372. }
  3373. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)
  3374. || bss_mesh_cfg(bss)) {
  3375. memset(&iwe, 0, sizeof(iwe));
  3376. iwe.cmd = SIOCGIWMODE;
  3377. if (bss_mesh_cfg(bss))
  3378. iwe.u.mode = IW_MODE_MESH;
  3379. else if (bss->capability & WLAN_CAPABILITY_ESS)
  3380. iwe.u.mode = IW_MODE_MASTER;
  3381. else
  3382. iwe.u.mode = IW_MODE_ADHOC;
  3383. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3384. IW_EV_UINT_LEN);
  3385. }
  3386. memset(&iwe, 0, sizeof(iwe));
  3387. iwe.cmd = SIOCGIWFREQ;
  3388. iwe.u.freq.m = bss->freq;
  3389. iwe.u.freq.e = 6;
  3390. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3391. IW_EV_FREQ_LEN);
  3392. memset(&iwe, 0, sizeof(iwe));
  3393. iwe.cmd = SIOCGIWFREQ;
  3394. iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq);
  3395. iwe.u.freq.e = 0;
  3396. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3397. IW_EV_FREQ_LEN);
  3398. memset(&iwe, 0, sizeof(iwe));
  3399. iwe.cmd = IWEVQUAL;
  3400. iwe.u.qual.qual = bss->signal;
  3401. iwe.u.qual.level = bss->rssi;
  3402. iwe.u.qual.noise = bss->noise;
  3403. iwe.u.qual.updated = local->wstats_flags;
  3404. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3405. IW_EV_QUAL_LEN);
  3406. memset(&iwe, 0, sizeof(iwe));
  3407. iwe.cmd = SIOCGIWENCODE;
  3408. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  3409. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  3410. else
  3411. iwe.u.data.flags = IW_ENCODE_DISABLED;
  3412. iwe.u.data.length = 0;
  3413. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  3414. if (bss && bss->wpa_ie) {
  3415. memset(&iwe, 0, sizeof(iwe));
  3416. iwe.cmd = IWEVGENIE;
  3417. iwe.u.data.length = bss->wpa_ie_len;
  3418. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3419. bss->wpa_ie);
  3420. }
  3421. if (bss && bss->rsn_ie) {
  3422. memset(&iwe, 0, sizeof(iwe));
  3423. iwe.cmd = IWEVGENIE;
  3424. iwe.u.data.length = bss->rsn_ie_len;
  3425. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3426. bss->rsn_ie);
  3427. }
  3428. if (bss && bss->supp_rates_len > 0) {
  3429. /* display all supported rates in readable format */
  3430. char *p = current_ev + IW_EV_LCP_LEN;
  3431. int i;
  3432. memset(&iwe, 0, sizeof(iwe));
  3433. iwe.cmd = SIOCGIWRATE;
  3434. /* Those two flags are ignored... */
  3435. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  3436. for (i = 0; i < bss->supp_rates_len; i++) {
  3437. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  3438. 0x7f) * 500000);
  3439. p = iwe_stream_add_value(current_ev, p,
  3440. end_buf, &iwe, IW_EV_PARAM_LEN);
  3441. }
  3442. current_ev = p;
  3443. }
  3444. if (bss) {
  3445. char *buf;
  3446. buf = kmalloc(30, GFP_ATOMIC);
  3447. if (buf) {
  3448. memset(&iwe, 0, sizeof(iwe));
  3449. iwe.cmd = IWEVCUSTOM;
  3450. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  3451. iwe.u.data.length = strlen(buf);
  3452. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3453. &iwe, buf);
  3454. kfree(buf);
  3455. }
  3456. }
  3457. if (bss_mesh_cfg(bss)) {
  3458. char *buf;
  3459. u8 *cfg = bss_mesh_cfg(bss);
  3460. buf = kmalloc(50, GFP_ATOMIC);
  3461. if (buf) {
  3462. memset(&iwe, 0, sizeof(iwe));
  3463. iwe.cmd = IWEVCUSTOM;
  3464. sprintf(buf, "Mesh network (version %d)", cfg[0]);
  3465. iwe.u.data.length = strlen(buf);
  3466. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3467. &iwe, buf);
  3468. sprintf(buf, "Path Selection Protocol ID: "
  3469. "0x%02X%02X%02X%02X", cfg[1], cfg[2], cfg[3],
  3470. cfg[4]);
  3471. iwe.u.data.length = strlen(buf);
  3472. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3473. &iwe, buf);
  3474. sprintf(buf, "Path Selection Metric ID: "
  3475. "0x%02X%02X%02X%02X", cfg[5], cfg[6], cfg[7],
  3476. cfg[8]);
  3477. iwe.u.data.length = strlen(buf);
  3478. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3479. &iwe, buf);
  3480. sprintf(buf, "Congestion Control Mode ID: "
  3481. "0x%02X%02X%02X%02X", cfg[9], cfg[10],
  3482. cfg[11], cfg[12]);
  3483. iwe.u.data.length = strlen(buf);
  3484. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3485. &iwe, buf);
  3486. sprintf(buf, "Channel Precedence: "
  3487. "0x%02X%02X%02X%02X", cfg[13], cfg[14],
  3488. cfg[15], cfg[16]);
  3489. iwe.u.data.length = strlen(buf);
  3490. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3491. &iwe, buf);
  3492. kfree(buf);
  3493. }
  3494. }
  3495. return current_ev;
  3496. }
  3497. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  3498. {
  3499. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3500. char *current_ev = buf;
  3501. char *end_buf = buf + len;
  3502. struct ieee80211_sta_bss *bss;
  3503. spin_lock_bh(&local->sta_bss_lock);
  3504. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3505. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3506. spin_unlock_bh(&local->sta_bss_lock);
  3507. return -E2BIG;
  3508. }
  3509. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  3510. end_buf);
  3511. }
  3512. spin_unlock_bh(&local->sta_bss_lock);
  3513. return current_ev - buf;
  3514. }
  3515. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3516. {
  3517. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3518. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3519. kfree(ifsta->extra_ie);
  3520. if (len == 0) {
  3521. ifsta->extra_ie = NULL;
  3522. ifsta->extra_ie_len = 0;
  3523. return 0;
  3524. }
  3525. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3526. if (!ifsta->extra_ie) {
  3527. ifsta->extra_ie_len = 0;
  3528. return -ENOMEM;
  3529. }
  3530. memcpy(ifsta->extra_ie, ie, len);
  3531. ifsta->extra_ie_len = len;
  3532. return 0;
  3533. }
  3534. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  3535. struct sk_buff *skb, u8 *bssid,
  3536. u8 *addr)
  3537. {
  3538. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3539. struct sta_info *sta;
  3540. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3541. DECLARE_MAC_BUF(mac);
  3542. /* TODO: Could consider removing the least recently used entry and
  3543. * allow new one to be added. */
  3544. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3545. if (net_ratelimit()) {
  3546. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3547. "entry %s\n", dev->name, print_mac(mac, addr));
  3548. }
  3549. return NULL;
  3550. }
  3551. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3552. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3553. sta = sta_info_alloc(sdata, addr, GFP_ATOMIC);
  3554. if (!sta)
  3555. return NULL;
  3556. sta->flags |= WLAN_STA_AUTHORIZED;
  3557. sta->supp_rates[local->hw.conf.channel->band] =
  3558. sdata->u.sta.supp_rates_bits[local->hw.conf.channel->band];
  3559. rate_control_rate_init(sta, local);
  3560. if (sta_info_insert(sta))
  3561. return NULL;
  3562. return sta;
  3563. }
  3564. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3565. {
  3566. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3567. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3568. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3569. dev->name, reason);
  3570. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3571. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3572. return -EINVAL;
  3573. ieee80211_send_deauth(dev, ifsta, reason);
  3574. ieee80211_set_disassoc(dev, ifsta, 1);
  3575. return 0;
  3576. }
  3577. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3578. {
  3579. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3580. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3581. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3582. dev->name, reason);
  3583. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3584. return -EINVAL;
  3585. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3586. return -1;
  3587. ieee80211_send_disassoc(dev, ifsta, reason);
  3588. ieee80211_set_disassoc(dev, ifsta, 0);
  3589. return 0;
  3590. }