huge_memory.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <linux/pagemap.h>
  20. #include <asm/tlb.h>
  21. #include <asm/pgalloc.h>
  22. #include "internal.h"
  23. /*
  24. * By default transparent hugepage support is enabled for all mappings
  25. * and khugepaged scans all mappings. Defrag is only invoked by
  26. * khugepaged hugepage allocations and by page faults inside
  27. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  28. * allocations.
  29. */
  30. unsigned long transparent_hugepage_flags __read_mostly =
  31. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  32. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  33. #endif
  34. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  35. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  36. #endif
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  38. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  39. /* default scan 8*512 pte (or vmas) every 30 second */
  40. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  41. static unsigned int khugepaged_pages_collapsed;
  42. static unsigned int khugepaged_full_scans;
  43. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  44. /* during fragmentation poll the hugepage allocator once every minute */
  45. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  46. static struct task_struct *khugepaged_thread __read_mostly;
  47. static unsigned long huge_zero_pfn __read_mostly;
  48. static DEFINE_MUTEX(khugepaged_mutex);
  49. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  50. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  51. /*
  52. * default collapse hugepages if there is at least one pte mapped like
  53. * it would have happened if the vma was large enough during page
  54. * fault.
  55. */
  56. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  57. static int khugepaged(void *none);
  58. static int mm_slots_hash_init(void);
  59. static int khugepaged_slab_init(void);
  60. static void khugepaged_slab_free(void);
  61. #define MM_SLOTS_HASH_HEADS 1024
  62. static struct hlist_head *mm_slots_hash __read_mostly;
  63. static struct kmem_cache *mm_slot_cache __read_mostly;
  64. /**
  65. * struct mm_slot - hash lookup from mm to mm_slot
  66. * @hash: hash collision list
  67. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  68. * @mm: the mm that this information is valid for
  69. */
  70. struct mm_slot {
  71. struct hlist_node hash;
  72. struct list_head mm_node;
  73. struct mm_struct *mm;
  74. };
  75. /**
  76. * struct khugepaged_scan - cursor for scanning
  77. * @mm_head: the head of the mm list to scan
  78. * @mm_slot: the current mm_slot we are scanning
  79. * @address: the next address inside that to be scanned
  80. *
  81. * There is only the one khugepaged_scan instance of this cursor structure.
  82. */
  83. struct khugepaged_scan {
  84. struct list_head mm_head;
  85. struct mm_slot *mm_slot;
  86. unsigned long address;
  87. };
  88. static struct khugepaged_scan khugepaged_scan = {
  89. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  90. };
  91. static int set_recommended_min_free_kbytes(void)
  92. {
  93. struct zone *zone;
  94. int nr_zones = 0;
  95. unsigned long recommended_min;
  96. extern int min_free_kbytes;
  97. if (!khugepaged_enabled())
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. if (!khugepaged_thread)
  126. khugepaged_thread = kthread_run(khugepaged, NULL,
  127. "khugepaged");
  128. if (unlikely(IS_ERR(khugepaged_thread))) {
  129. printk(KERN_ERR
  130. "khugepaged: kthread_run(khugepaged) failed\n");
  131. err = PTR_ERR(khugepaged_thread);
  132. khugepaged_thread = NULL;
  133. }
  134. if (!list_empty(&khugepaged_scan.mm_head))
  135. wake_up_interruptible(&khugepaged_wait);
  136. set_recommended_min_free_kbytes();
  137. } else if (khugepaged_thread) {
  138. kthread_stop(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. return err;
  142. }
  143. static int __init init_huge_zero_page(void)
  144. {
  145. struct page *hpage;
  146. hpage = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  147. HPAGE_PMD_ORDER);
  148. if (!hpage)
  149. return -ENOMEM;
  150. huge_zero_pfn = page_to_pfn(hpage);
  151. return 0;
  152. }
  153. static inline bool is_huge_zero_pfn(unsigned long pfn)
  154. {
  155. return pfn == huge_zero_pfn;
  156. }
  157. static inline bool is_huge_zero_pmd(pmd_t pmd)
  158. {
  159. return is_huge_zero_pfn(pmd_pfn(pmd));
  160. }
  161. #ifdef CONFIG_SYSFS
  162. static ssize_t double_flag_show(struct kobject *kobj,
  163. struct kobj_attribute *attr, char *buf,
  164. enum transparent_hugepage_flag enabled,
  165. enum transparent_hugepage_flag req_madv)
  166. {
  167. if (test_bit(enabled, &transparent_hugepage_flags)) {
  168. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  169. return sprintf(buf, "[always] madvise never\n");
  170. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  171. return sprintf(buf, "always [madvise] never\n");
  172. else
  173. return sprintf(buf, "always madvise [never]\n");
  174. }
  175. static ssize_t double_flag_store(struct kobject *kobj,
  176. struct kobj_attribute *attr,
  177. const char *buf, size_t count,
  178. enum transparent_hugepage_flag enabled,
  179. enum transparent_hugepage_flag req_madv)
  180. {
  181. if (!memcmp("always", buf,
  182. min(sizeof("always")-1, count))) {
  183. set_bit(enabled, &transparent_hugepage_flags);
  184. clear_bit(req_madv, &transparent_hugepage_flags);
  185. } else if (!memcmp("madvise", buf,
  186. min(sizeof("madvise")-1, count))) {
  187. clear_bit(enabled, &transparent_hugepage_flags);
  188. set_bit(req_madv, &transparent_hugepage_flags);
  189. } else if (!memcmp("never", buf,
  190. min(sizeof("never")-1, count))) {
  191. clear_bit(enabled, &transparent_hugepage_flags);
  192. clear_bit(req_madv, &transparent_hugepage_flags);
  193. } else
  194. return -EINVAL;
  195. return count;
  196. }
  197. static ssize_t enabled_show(struct kobject *kobj,
  198. struct kobj_attribute *attr, char *buf)
  199. {
  200. return double_flag_show(kobj, attr, buf,
  201. TRANSPARENT_HUGEPAGE_FLAG,
  202. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  203. }
  204. static ssize_t enabled_store(struct kobject *kobj,
  205. struct kobj_attribute *attr,
  206. const char *buf, size_t count)
  207. {
  208. ssize_t ret;
  209. ret = double_flag_store(kobj, attr, buf, count,
  210. TRANSPARENT_HUGEPAGE_FLAG,
  211. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  212. if (ret > 0) {
  213. int err;
  214. mutex_lock(&khugepaged_mutex);
  215. err = start_khugepaged();
  216. mutex_unlock(&khugepaged_mutex);
  217. if (err)
  218. ret = err;
  219. }
  220. return ret;
  221. }
  222. static struct kobj_attribute enabled_attr =
  223. __ATTR(enabled, 0644, enabled_show, enabled_store);
  224. static ssize_t single_flag_show(struct kobject *kobj,
  225. struct kobj_attribute *attr, char *buf,
  226. enum transparent_hugepage_flag flag)
  227. {
  228. return sprintf(buf, "%d\n",
  229. !!test_bit(flag, &transparent_hugepage_flags));
  230. }
  231. static ssize_t single_flag_store(struct kobject *kobj,
  232. struct kobj_attribute *attr,
  233. const char *buf, size_t count,
  234. enum transparent_hugepage_flag flag)
  235. {
  236. unsigned long value;
  237. int ret;
  238. ret = kstrtoul(buf, 10, &value);
  239. if (ret < 0)
  240. return ret;
  241. if (value > 1)
  242. return -EINVAL;
  243. if (value)
  244. set_bit(flag, &transparent_hugepage_flags);
  245. else
  246. clear_bit(flag, &transparent_hugepage_flags);
  247. return count;
  248. }
  249. /*
  250. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  251. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  252. * memory just to allocate one more hugepage.
  253. */
  254. static ssize_t defrag_show(struct kobject *kobj,
  255. struct kobj_attribute *attr, char *buf)
  256. {
  257. return double_flag_show(kobj, attr, buf,
  258. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  259. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  260. }
  261. static ssize_t defrag_store(struct kobject *kobj,
  262. struct kobj_attribute *attr,
  263. const char *buf, size_t count)
  264. {
  265. return double_flag_store(kobj, attr, buf, count,
  266. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  267. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  268. }
  269. static struct kobj_attribute defrag_attr =
  270. __ATTR(defrag, 0644, defrag_show, defrag_store);
  271. #ifdef CONFIG_DEBUG_VM
  272. static ssize_t debug_cow_show(struct kobject *kobj,
  273. struct kobj_attribute *attr, char *buf)
  274. {
  275. return single_flag_show(kobj, attr, buf,
  276. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  277. }
  278. static ssize_t debug_cow_store(struct kobject *kobj,
  279. struct kobj_attribute *attr,
  280. const char *buf, size_t count)
  281. {
  282. return single_flag_store(kobj, attr, buf, count,
  283. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  284. }
  285. static struct kobj_attribute debug_cow_attr =
  286. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  287. #endif /* CONFIG_DEBUG_VM */
  288. static struct attribute *hugepage_attr[] = {
  289. &enabled_attr.attr,
  290. &defrag_attr.attr,
  291. #ifdef CONFIG_DEBUG_VM
  292. &debug_cow_attr.attr,
  293. #endif
  294. NULL,
  295. };
  296. static struct attribute_group hugepage_attr_group = {
  297. .attrs = hugepage_attr,
  298. };
  299. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  300. struct kobj_attribute *attr,
  301. char *buf)
  302. {
  303. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  304. }
  305. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  306. struct kobj_attribute *attr,
  307. const char *buf, size_t count)
  308. {
  309. unsigned long msecs;
  310. int err;
  311. err = strict_strtoul(buf, 10, &msecs);
  312. if (err || msecs > UINT_MAX)
  313. return -EINVAL;
  314. khugepaged_scan_sleep_millisecs = msecs;
  315. wake_up_interruptible(&khugepaged_wait);
  316. return count;
  317. }
  318. static struct kobj_attribute scan_sleep_millisecs_attr =
  319. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  320. scan_sleep_millisecs_store);
  321. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  322. struct kobj_attribute *attr,
  323. char *buf)
  324. {
  325. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  326. }
  327. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  328. struct kobj_attribute *attr,
  329. const char *buf, size_t count)
  330. {
  331. unsigned long msecs;
  332. int err;
  333. err = strict_strtoul(buf, 10, &msecs);
  334. if (err || msecs > UINT_MAX)
  335. return -EINVAL;
  336. khugepaged_alloc_sleep_millisecs = msecs;
  337. wake_up_interruptible(&khugepaged_wait);
  338. return count;
  339. }
  340. static struct kobj_attribute alloc_sleep_millisecs_attr =
  341. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  342. alloc_sleep_millisecs_store);
  343. static ssize_t pages_to_scan_show(struct kobject *kobj,
  344. struct kobj_attribute *attr,
  345. char *buf)
  346. {
  347. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  348. }
  349. static ssize_t pages_to_scan_store(struct kobject *kobj,
  350. struct kobj_attribute *attr,
  351. const char *buf, size_t count)
  352. {
  353. int err;
  354. unsigned long pages;
  355. err = strict_strtoul(buf, 10, &pages);
  356. if (err || !pages || pages > UINT_MAX)
  357. return -EINVAL;
  358. khugepaged_pages_to_scan = pages;
  359. return count;
  360. }
  361. static struct kobj_attribute pages_to_scan_attr =
  362. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  363. pages_to_scan_store);
  364. static ssize_t pages_collapsed_show(struct kobject *kobj,
  365. struct kobj_attribute *attr,
  366. char *buf)
  367. {
  368. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  369. }
  370. static struct kobj_attribute pages_collapsed_attr =
  371. __ATTR_RO(pages_collapsed);
  372. static ssize_t full_scans_show(struct kobject *kobj,
  373. struct kobj_attribute *attr,
  374. char *buf)
  375. {
  376. return sprintf(buf, "%u\n", khugepaged_full_scans);
  377. }
  378. static struct kobj_attribute full_scans_attr =
  379. __ATTR_RO(full_scans);
  380. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  381. struct kobj_attribute *attr, char *buf)
  382. {
  383. return single_flag_show(kobj, attr, buf,
  384. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  385. }
  386. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  387. struct kobj_attribute *attr,
  388. const char *buf, size_t count)
  389. {
  390. return single_flag_store(kobj, attr, buf, count,
  391. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  392. }
  393. static struct kobj_attribute khugepaged_defrag_attr =
  394. __ATTR(defrag, 0644, khugepaged_defrag_show,
  395. khugepaged_defrag_store);
  396. /*
  397. * max_ptes_none controls if khugepaged should collapse hugepages over
  398. * any unmapped ptes in turn potentially increasing the memory
  399. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  400. * reduce the available free memory in the system as it
  401. * runs. Increasing max_ptes_none will instead potentially reduce the
  402. * free memory in the system during the khugepaged scan.
  403. */
  404. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  405. struct kobj_attribute *attr,
  406. char *buf)
  407. {
  408. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  409. }
  410. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  411. struct kobj_attribute *attr,
  412. const char *buf, size_t count)
  413. {
  414. int err;
  415. unsigned long max_ptes_none;
  416. err = strict_strtoul(buf, 10, &max_ptes_none);
  417. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  418. return -EINVAL;
  419. khugepaged_max_ptes_none = max_ptes_none;
  420. return count;
  421. }
  422. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  423. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  424. khugepaged_max_ptes_none_store);
  425. static struct attribute *khugepaged_attr[] = {
  426. &khugepaged_defrag_attr.attr,
  427. &khugepaged_max_ptes_none_attr.attr,
  428. &pages_to_scan_attr.attr,
  429. &pages_collapsed_attr.attr,
  430. &full_scans_attr.attr,
  431. &scan_sleep_millisecs_attr.attr,
  432. &alloc_sleep_millisecs_attr.attr,
  433. NULL,
  434. };
  435. static struct attribute_group khugepaged_attr_group = {
  436. .attrs = khugepaged_attr,
  437. .name = "khugepaged",
  438. };
  439. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  440. {
  441. int err;
  442. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  443. if (unlikely(!*hugepage_kobj)) {
  444. printk(KERN_ERR "hugepage: failed kobject create\n");
  445. return -ENOMEM;
  446. }
  447. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  448. if (err) {
  449. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  450. goto delete_obj;
  451. }
  452. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  453. if (err) {
  454. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  455. goto remove_hp_group;
  456. }
  457. return 0;
  458. remove_hp_group:
  459. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  460. delete_obj:
  461. kobject_put(*hugepage_kobj);
  462. return err;
  463. }
  464. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  465. {
  466. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  467. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  468. kobject_put(hugepage_kobj);
  469. }
  470. #else
  471. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  472. {
  473. return 0;
  474. }
  475. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  476. {
  477. }
  478. #endif /* CONFIG_SYSFS */
  479. static int __init hugepage_init(void)
  480. {
  481. int err;
  482. struct kobject *hugepage_kobj;
  483. if (!has_transparent_hugepage()) {
  484. transparent_hugepage_flags = 0;
  485. return -EINVAL;
  486. }
  487. err = hugepage_init_sysfs(&hugepage_kobj);
  488. if (err)
  489. return err;
  490. err = init_huge_zero_page();
  491. if (err)
  492. goto out;
  493. err = khugepaged_slab_init();
  494. if (err)
  495. goto out;
  496. err = mm_slots_hash_init();
  497. if (err) {
  498. khugepaged_slab_free();
  499. goto out;
  500. }
  501. /*
  502. * By default disable transparent hugepages on smaller systems,
  503. * where the extra memory used could hurt more than TLB overhead
  504. * is likely to save. The admin can still enable it through /sys.
  505. */
  506. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  507. transparent_hugepage_flags = 0;
  508. start_khugepaged();
  509. return 0;
  510. out:
  511. if (huge_zero_pfn)
  512. __free_page(pfn_to_page(huge_zero_pfn));
  513. hugepage_exit_sysfs(hugepage_kobj);
  514. return err;
  515. }
  516. module_init(hugepage_init)
  517. static int __init setup_transparent_hugepage(char *str)
  518. {
  519. int ret = 0;
  520. if (!str)
  521. goto out;
  522. if (!strcmp(str, "always")) {
  523. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  524. &transparent_hugepage_flags);
  525. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  526. &transparent_hugepage_flags);
  527. ret = 1;
  528. } else if (!strcmp(str, "madvise")) {
  529. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  530. &transparent_hugepage_flags);
  531. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  532. &transparent_hugepage_flags);
  533. ret = 1;
  534. } else if (!strcmp(str, "never")) {
  535. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  536. &transparent_hugepage_flags);
  537. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  538. &transparent_hugepage_flags);
  539. ret = 1;
  540. }
  541. out:
  542. if (!ret)
  543. printk(KERN_WARNING
  544. "transparent_hugepage= cannot parse, ignored\n");
  545. return ret;
  546. }
  547. __setup("transparent_hugepage=", setup_transparent_hugepage);
  548. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  549. {
  550. if (likely(vma->vm_flags & VM_WRITE))
  551. pmd = pmd_mkwrite(pmd);
  552. return pmd;
  553. }
  554. static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
  555. {
  556. pmd_t entry;
  557. entry = mk_pmd(page, vma->vm_page_prot);
  558. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  559. entry = pmd_mkhuge(entry);
  560. return entry;
  561. }
  562. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  563. struct vm_area_struct *vma,
  564. unsigned long haddr, pmd_t *pmd,
  565. struct page *page)
  566. {
  567. pgtable_t pgtable;
  568. VM_BUG_ON(!PageCompound(page));
  569. pgtable = pte_alloc_one(mm, haddr);
  570. if (unlikely(!pgtable))
  571. return VM_FAULT_OOM;
  572. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  573. __SetPageUptodate(page);
  574. spin_lock(&mm->page_table_lock);
  575. if (unlikely(!pmd_none(*pmd))) {
  576. spin_unlock(&mm->page_table_lock);
  577. mem_cgroup_uncharge_page(page);
  578. put_page(page);
  579. pte_free(mm, pgtable);
  580. } else {
  581. pmd_t entry;
  582. entry = mk_huge_pmd(page, vma);
  583. /*
  584. * The spinlocking to take the lru_lock inside
  585. * page_add_new_anon_rmap() acts as a full memory
  586. * barrier to be sure clear_huge_page writes become
  587. * visible after the set_pmd_at() write.
  588. */
  589. page_add_new_anon_rmap(page, vma, haddr);
  590. set_pmd_at(mm, haddr, pmd, entry);
  591. pgtable_trans_huge_deposit(mm, pgtable);
  592. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  593. mm->nr_ptes++;
  594. spin_unlock(&mm->page_table_lock);
  595. }
  596. return 0;
  597. }
  598. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  599. {
  600. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  601. }
  602. static inline struct page *alloc_hugepage_vma(int defrag,
  603. struct vm_area_struct *vma,
  604. unsigned long haddr, int nd,
  605. gfp_t extra_gfp)
  606. {
  607. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  608. HPAGE_PMD_ORDER, vma, haddr, nd);
  609. }
  610. #ifndef CONFIG_NUMA
  611. static inline struct page *alloc_hugepage(int defrag)
  612. {
  613. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  614. HPAGE_PMD_ORDER);
  615. }
  616. #endif
  617. static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  618. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd)
  619. {
  620. pmd_t entry;
  621. entry = pfn_pmd(huge_zero_pfn, vma->vm_page_prot);
  622. entry = pmd_wrprotect(entry);
  623. entry = pmd_mkhuge(entry);
  624. set_pmd_at(mm, haddr, pmd, entry);
  625. pgtable_trans_huge_deposit(mm, pgtable);
  626. mm->nr_ptes++;
  627. }
  628. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  629. unsigned long address, pmd_t *pmd,
  630. unsigned int flags)
  631. {
  632. struct page *page;
  633. unsigned long haddr = address & HPAGE_PMD_MASK;
  634. pte_t *pte;
  635. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  636. if (unlikely(anon_vma_prepare(vma)))
  637. return VM_FAULT_OOM;
  638. if (unlikely(khugepaged_enter(vma)))
  639. return VM_FAULT_OOM;
  640. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  641. vma, haddr, numa_node_id(), 0);
  642. if (unlikely(!page)) {
  643. count_vm_event(THP_FAULT_FALLBACK);
  644. goto out;
  645. }
  646. count_vm_event(THP_FAULT_ALLOC);
  647. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  648. put_page(page);
  649. goto out;
  650. }
  651. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  652. page))) {
  653. mem_cgroup_uncharge_page(page);
  654. put_page(page);
  655. goto out;
  656. }
  657. return 0;
  658. }
  659. out:
  660. /*
  661. * Use __pte_alloc instead of pte_alloc_map, because we can't
  662. * run pte_offset_map on the pmd, if an huge pmd could
  663. * materialize from under us from a different thread.
  664. */
  665. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  666. return VM_FAULT_OOM;
  667. /* if an huge pmd materialized from under us just retry later */
  668. if (unlikely(pmd_trans_huge(*pmd)))
  669. return 0;
  670. /*
  671. * A regular pmd is established and it can't morph into a huge pmd
  672. * from under us anymore at this point because we hold the mmap_sem
  673. * read mode and khugepaged takes it in write mode. So now it's
  674. * safe to run pte_offset_map().
  675. */
  676. pte = pte_offset_map(pmd, address);
  677. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  678. }
  679. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  680. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  681. struct vm_area_struct *vma)
  682. {
  683. struct page *src_page;
  684. pmd_t pmd;
  685. pgtable_t pgtable;
  686. int ret;
  687. ret = -ENOMEM;
  688. pgtable = pte_alloc_one(dst_mm, addr);
  689. if (unlikely(!pgtable))
  690. goto out;
  691. spin_lock(&dst_mm->page_table_lock);
  692. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  693. ret = -EAGAIN;
  694. pmd = *src_pmd;
  695. if (unlikely(!pmd_trans_huge(pmd))) {
  696. pte_free(dst_mm, pgtable);
  697. goto out_unlock;
  698. }
  699. /*
  700. * mm->page_table_lock is enough to be sure that huge zero pmd is not
  701. * under splitting since we don't split the page itself, only pmd to
  702. * a page table.
  703. */
  704. if (is_huge_zero_pmd(pmd)) {
  705. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd);
  706. ret = 0;
  707. goto out_unlock;
  708. }
  709. if (unlikely(pmd_trans_splitting(pmd))) {
  710. /* split huge page running from under us */
  711. spin_unlock(&src_mm->page_table_lock);
  712. spin_unlock(&dst_mm->page_table_lock);
  713. pte_free(dst_mm, pgtable);
  714. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  715. goto out;
  716. }
  717. src_page = pmd_page(pmd);
  718. VM_BUG_ON(!PageHead(src_page));
  719. get_page(src_page);
  720. page_dup_rmap(src_page);
  721. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  722. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  723. pmd = pmd_mkold(pmd_wrprotect(pmd));
  724. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  725. pgtable_trans_huge_deposit(dst_mm, pgtable);
  726. dst_mm->nr_ptes++;
  727. ret = 0;
  728. out_unlock:
  729. spin_unlock(&src_mm->page_table_lock);
  730. spin_unlock(&dst_mm->page_table_lock);
  731. out:
  732. return ret;
  733. }
  734. void huge_pmd_set_accessed(struct mm_struct *mm,
  735. struct vm_area_struct *vma,
  736. unsigned long address,
  737. pmd_t *pmd, pmd_t orig_pmd,
  738. int dirty)
  739. {
  740. pmd_t entry;
  741. unsigned long haddr;
  742. spin_lock(&mm->page_table_lock);
  743. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  744. goto unlock;
  745. entry = pmd_mkyoung(orig_pmd);
  746. haddr = address & HPAGE_PMD_MASK;
  747. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  748. update_mmu_cache_pmd(vma, address, pmd);
  749. unlock:
  750. spin_unlock(&mm->page_table_lock);
  751. }
  752. static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
  753. struct vm_area_struct *vma, unsigned long address,
  754. pmd_t *pmd, unsigned long haddr)
  755. {
  756. pgtable_t pgtable;
  757. pmd_t _pmd;
  758. struct page *page;
  759. int i, ret = 0;
  760. unsigned long mmun_start; /* For mmu_notifiers */
  761. unsigned long mmun_end; /* For mmu_notifiers */
  762. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  763. if (!page) {
  764. ret |= VM_FAULT_OOM;
  765. goto out;
  766. }
  767. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  768. put_page(page);
  769. ret |= VM_FAULT_OOM;
  770. goto out;
  771. }
  772. clear_user_highpage(page, address);
  773. __SetPageUptodate(page);
  774. mmun_start = haddr;
  775. mmun_end = haddr + HPAGE_PMD_SIZE;
  776. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  777. spin_lock(&mm->page_table_lock);
  778. pmdp_clear_flush(vma, haddr, pmd);
  779. /* leave pmd empty until pte is filled */
  780. pgtable = pgtable_trans_huge_withdraw(mm);
  781. pmd_populate(mm, &_pmd, pgtable);
  782. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  783. pte_t *pte, entry;
  784. if (haddr == (address & PAGE_MASK)) {
  785. entry = mk_pte(page, vma->vm_page_prot);
  786. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  787. page_add_new_anon_rmap(page, vma, haddr);
  788. } else {
  789. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  790. entry = pte_mkspecial(entry);
  791. }
  792. pte = pte_offset_map(&_pmd, haddr);
  793. VM_BUG_ON(!pte_none(*pte));
  794. set_pte_at(mm, haddr, pte, entry);
  795. pte_unmap(pte);
  796. }
  797. smp_wmb(); /* make pte visible before pmd */
  798. pmd_populate(mm, pmd, pgtable);
  799. spin_unlock(&mm->page_table_lock);
  800. inc_mm_counter(mm, MM_ANONPAGES);
  801. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  802. ret |= VM_FAULT_WRITE;
  803. out:
  804. return ret;
  805. }
  806. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  807. struct vm_area_struct *vma,
  808. unsigned long address,
  809. pmd_t *pmd, pmd_t orig_pmd,
  810. struct page *page,
  811. unsigned long haddr)
  812. {
  813. pgtable_t pgtable;
  814. pmd_t _pmd;
  815. int ret = 0, i;
  816. struct page **pages;
  817. unsigned long mmun_start; /* For mmu_notifiers */
  818. unsigned long mmun_end; /* For mmu_notifiers */
  819. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  820. GFP_KERNEL);
  821. if (unlikely(!pages)) {
  822. ret |= VM_FAULT_OOM;
  823. goto out;
  824. }
  825. for (i = 0; i < HPAGE_PMD_NR; i++) {
  826. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  827. __GFP_OTHER_NODE,
  828. vma, address, page_to_nid(page));
  829. if (unlikely(!pages[i] ||
  830. mem_cgroup_newpage_charge(pages[i], mm,
  831. GFP_KERNEL))) {
  832. if (pages[i])
  833. put_page(pages[i]);
  834. mem_cgroup_uncharge_start();
  835. while (--i >= 0) {
  836. mem_cgroup_uncharge_page(pages[i]);
  837. put_page(pages[i]);
  838. }
  839. mem_cgroup_uncharge_end();
  840. kfree(pages);
  841. ret |= VM_FAULT_OOM;
  842. goto out;
  843. }
  844. }
  845. for (i = 0; i < HPAGE_PMD_NR; i++) {
  846. copy_user_highpage(pages[i], page + i,
  847. haddr + PAGE_SIZE * i, vma);
  848. __SetPageUptodate(pages[i]);
  849. cond_resched();
  850. }
  851. mmun_start = haddr;
  852. mmun_end = haddr + HPAGE_PMD_SIZE;
  853. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  854. spin_lock(&mm->page_table_lock);
  855. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  856. goto out_free_pages;
  857. VM_BUG_ON(!PageHead(page));
  858. pmdp_clear_flush(vma, haddr, pmd);
  859. /* leave pmd empty until pte is filled */
  860. pgtable = pgtable_trans_huge_withdraw(mm);
  861. pmd_populate(mm, &_pmd, pgtable);
  862. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  863. pte_t *pte, entry;
  864. entry = mk_pte(pages[i], vma->vm_page_prot);
  865. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  866. page_add_new_anon_rmap(pages[i], vma, haddr);
  867. pte = pte_offset_map(&_pmd, haddr);
  868. VM_BUG_ON(!pte_none(*pte));
  869. set_pte_at(mm, haddr, pte, entry);
  870. pte_unmap(pte);
  871. }
  872. kfree(pages);
  873. smp_wmb(); /* make pte visible before pmd */
  874. pmd_populate(mm, pmd, pgtable);
  875. page_remove_rmap(page);
  876. spin_unlock(&mm->page_table_lock);
  877. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  878. ret |= VM_FAULT_WRITE;
  879. put_page(page);
  880. out:
  881. return ret;
  882. out_free_pages:
  883. spin_unlock(&mm->page_table_lock);
  884. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  885. mem_cgroup_uncharge_start();
  886. for (i = 0; i < HPAGE_PMD_NR; i++) {
  887. mem_cgroup_uncharge_page(pages[i]);
  888. put_page(pages[i]);
  889. }
  890. mem_cgroup_uncharge_end();
  891. kfree(pages);
  892. goto out;
  893. }
  894. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  895. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  896. {
  897. int ret = 0;
  898. struct page *page = NULL, *new_page;
  899. unsigned long haddr;
  900. unsigned long mmun_start; /* For mmu_notifiers */
  901. unsigned long mmun_end; /* For mmu_notifiers */
  902. VM_BUG_ON(!vma->anon_vma);
  903. haddr = address & HPAGE_PMD_MASK;
  904. if (is_huge_zero_pmd(orig_pmd))
  905. goto alloc;
  906. spin_lock(&mm->page_table_lock);
  907. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  908. goto out_unlock;
  909. page = pmd_page(orig_pmd);
  910. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  911. if (page_mapcount(page) == 1) {
  912. pmd_t entry;
  913. entry = pmd_mkyoung(orig_pmd);
  914. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  915. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  916. update_mmu_cache_pmd(vma, address, pmd);
  917. ret |= VM_FAULT_WRITE;
  918. goto out_unlock;
  919. }
  920. get_page(page);
  921. spin_unlock(&mm->page_table_lock);
  922. alloc:
  923. if (transparent_hugepage_enabled(vma) &&
  924. !transparent_hugepage_debug_cow())
  925. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  926. vma, haddr, numa_node_id(), 0);
  927. else
  928. new_page = NULL;
  929. if (unlikely(!new_page)) {
  930. count_vm_event(THP_FAULT_FALLBACK);
  931. if (is_huge_zero_pmd(orig_pmd)) {
  932. ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
  933. address, pmd, haddr);
  934. } else {
  935. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  936. pmd, orig_pmd, page, haddr);
  937. if (ret & VM_FAULT_OOM)
  938. split_huge_page(page);
  939. put_page(page);
  940. }
  941. goto out;
  942. }
  943. count_vm_event(THP_FAULT_ALLOC);
  944. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  945. put_page(new_page);
  946. if (page) {
  947. split_huge_page(page);
  948. put_page(page);
  949. }
  950. ret |= VM_FAULT_OOM;
  951. goto out;
  952. }
  953. if (is_huge_zero_pmd(orig_pmd))
  954. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  955. else
  956. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  957. __SetPageUptodate(new_page);
  958. mmun_start = haddr;
  959. mmun_end = haddr + HPAGE_PMD_SIZE;
  960. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  961. spin_lock(&mm->page_table_lock);
  962. if (page)
  963. put_page(page);
  964. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  965. spin_unlock(&mm->page_table_lock);
  966. mem_cgroup_uncharge_page(new_page);
  967. put_page(new_page);
  968. goto out_mn;
  969. } else {
  970. pmd_t entry;
  971. entry = mk_huge_pmd(new_page, vma);
  972. pmdp_clear_flush(vma, haddr, pmd);
  973. page_add_new_anon_rmap(new_page, vma, haddr);
  974. set_pmd_at(mm, haddr, pmd, entry);
  975. update_mmu_cache_pmd(vma, address, pmd);
  976. if (is_huge_zero_pmd(orig_pmd))
  977. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  978. else {
  979. VM_BUG_ON(!PageHead(page));
  980. page_remove_rmap(page);
  981. put_page(page);
  982. }
  983. ret |= VM_FAULT_WRITE;
  984. }
  985. spin_unlock(&mm->page_table_lock);
  986. out_mn:
  987. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  988. out:
  989. return ret;
  990. out_unlock:
  991. spin_unlock(&mm->page_table_lock);
  992. return ret;
  993. }
  994. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  995. unsigned long addr,
  996. pmd_t *pmd,
  997. unsigned int flags)
  998. {
  999. struct mm_struct *mm = vma->vm_mm;
  1000. struct page *page = NULL;
  1001. assert_spin_locked(&mm->page_table_lock);
  1002. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1003. goto out;
  1004. page = pmd_page(*pmd);
  1005. VM_BUG_ON(!PageHead(page));
  1006. if (flags & FOLL_TOUCH) {
  1007. pmd_t _pmd;
  1008. /*
  1009. * We should set the dirty bit only for FOLL_WRITE but
  1010. * for now the dirty bit in the pmd is meaningless.
  1011. * And if the dirty bit will become meaningful and
  1012. * we'll only set it with FOLL_WRITE, an atomic
  1013. * set_bit will be required on the pmd to set the
  1014. * young bit, instead of the current set_pmd_at.
  1015. */
  1016. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1017. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  1018. }
  1019. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1020. if (page->mapping && trylock_page(page)) {
  1021. lru_add_drain();
  1022. if (page->mapping)
  1023. mlock_vma_page(page);
  1024. unlock_page(page);
  1025. }
  1026. }
  1027. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1028. VM_BUG_ON(!PageCompound(page));
  1029. if (flags & FOLL_GET)
  1030. get_page_foll(page);
  1031. out:
  1032. return page;
  1033. }
  1034. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1035. pmd_t *pmd, unsigned long addr)
  1036. {
  1037. int ret = 0;
  1038. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1039. struct page *page;
  1040. pgtable_t pgtable;
  1041. pmd_t orig_pmd;
  1042. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  1043. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1044. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1045. if (is_huge_zero_pmd(orig_pmd)) {
  1046. tlb->mm->nr_ptes--;
  1047. spin_unlock(&tlb->mm->page_table_lock);
  1048. } else {
  1049. page = pmd_page(orig_pmd);
  1050. page_remove_rmap(page);
  1051. VM_BUG_ON(page_mapcount(page) < 0);
  1052. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1053. VM_BUG_ON(!PageHead(page));
  1054. tlb->mm->nr_ptes--;
  1055. spin_unlock(&tlb->mm->page_table_lock);
  1056. tlb_remove_page(tlb, page);
  1057. }
  1058. pte_free(tlb->mm, pgtable);
  1059. ret = 1;
  1060. }
  1061. return ret;
  1062. }
  1063. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1064. unsigned long addr, unsigned long end,
  1065. unsigned char *vec)
  1066. {
  1067. int ret = 0;
  1068. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1069. /*
  1070. * All logical pages in the range are present
  1071. * if backed by a huge page.
  1072. */
  1073. spin_unlock(&vma->vm_mm->page_table_lock);
  1074. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1075. ret = 1;
  1076. }
  1077. return ret;
  1078. }
  1079. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1080. unsigned long old_addr,
  1081. unsigned long new_addr, unsigned long old_end,
  1082. pmd_t *old_pmd, pmd_t *new_pmd)
  1083. {
  1084. int ret = 0;
  1085. pmd_t pmd;
  1086. struct mm_struct *mm = vma->vm_mm;
  1087. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1088. (new_addr & ~HPAGE_PMD_MASK) ||
  1089. old_end - old_addr < HPAGE_PMD_SIZE ||
  1090. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1091. goto out;
  1092. /*
  1093. * The destination pmd shouldn't be established, free_pgtables()
  1094. * should have release it.
  1095. */
  1096. if (WARN_ON(!pmd_none(*new_pmd))) {
  1097. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1098. goto out;
  1099. }
  1100. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1101. if (ret == 1) {
  1102. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1103. VM_BUG_ON(!pmd_none(*new_pmd));
  1104. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1105. spin_unlock(&mm->page_table_lock);
  1106. }
  1107. out:
  1108. return ret;
  1109. }
  1110. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1111. unsigned long addr, pgprot_t newprot)
  1112. {
  1113. struct mm_struct *mm = vma->vm_mm;
  1114. int ret = 0;
  1115. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1116. pmd_t entry;
  1117. entry = pmdp_get_and_clear(mm, addr, pmd);
  1118. entry = pmd_modify(entry, newprot);
  1119. set_pmd_at(mm, addr, pmd, entry);
  1120. spin_unlock(&vma->vm_mm->page_table_lock);
  1121. ret = 1;
  1122. }
  1123. return ret;
  1124. }
  1125. /*
  1126. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1127. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1128. *
  1129. * Note that if it returns 1, this routine returns without unlocking page
  1130. * table locks. So callers must unlock them.
  1131. */
  1132. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1133. {
  1134. spin_lock(&vma->vm_mm->page_table_lock);
  1135. if (likely(pmd_trans_huge(*pmd))) {
  1136. if (unlikely(pmd_trans_splitting(*pmd))) {
  1137. spin_unlock(&vma->vm_mm->page_table_lock);
  1138. wait_split_huge_page(vma->anon_vma, pmd);
  1139. return -1;
  1140. } else {
  1141. /* Thp mapped by 'pmd' is stable, so we can
  1142. * handle it as it is. */
  1143. return 1;
  1144. }
  1145. }
  1146. spin_unlock(&vma->vm_mm->page_table_lock);
  1147. return 0;
  1148. }
  1149. pmd_t *page_check_address_pmd(struct page *page,
  1150. struct mm_struct *mm,
  1151. unsigned long address,
  1152. enum page_check_address_pmd_flag flag)
  1153. {
  1154. pmd_t *pmd, *ret = NULL;
  1155. if (address & ~HPAGE_PMD_MASK)
  1156. goto out;
  1157. pmd = mm_find_pmd(mm, address);
  1158. if (!pmd)
  1159. goto out;
  1160. if (pmd_none(*pmd))
  1161. goto out;
  1162. if (pmd_page(*pmd) != page)
  1163. goto out;
  1164. /*
  1165. * split_vma() may create temporary aliased mappings. There is
  1166. * no risk as long as all huge pmd are found and have their
  1167. * splitting bit set before __split_huge_page_refcount
  1168. * runs. Finding the same huge pmd more than once during the
  1169. * same rmap walk is not a problem.
  1170. */
  1171. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1172. pmd_trans_splitting(*pmd))
  1173. goto out;
  1174. if (pmd_trans_huge(*pmd)) {
  1175. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1176. !pmd_trans_splitting(*pmd));
  1177. ret = pmd;
  1178. }
  1179. out:
  1180. return ret;
  1181. }
  1182. static int __split_huge_page_splitting(struct page *page,
  1183. struct vm_area_struct *vma,
  1184. unsigned long address)
  1185. {
  1186. struct mm_struct *mm = vma->vm_mm;
  1187. pmd_t *pmd;
  1188. int ret = 0;
  1189. /* For mmu_notifiers */
  1190. const unsigned long mmun_start = address;
  1191. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1192. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1193. spin_lock(&mm->page_table_lock);
  1194. pmd = page_check_address_pmd(page, mm, address,
  1195. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1196. if (pmd) {
  1197. /*
  1198. * We can't temporarily set the pmd to null in order
  1199. * to split it, the pmd must remain marked huge at all
  1200. * times or the VM won't take the pmd_trans_huge paths
  1201. * and it won't wait on the anon_vma->root->mutex to
  1202. * serialize against split_huge_page*.
  1203. */
  1204. pmdp_splitting_flush(vma, address, pmd);
  1205. ret = 1;
  1206. }
  1207. spin_unlock(&mm->page_table_lock);
  1208. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1209. return ret;
  1210. }
  1211. static void __split_huge_page_refcount(struct page *page)
  1212. {
  1213. int i;
  1214. struct zone *zone = page_zone(page);
  1215. struct lruvec *lruvec;
  1216. int tail_count = 0;
  1217. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1218. spin_lock_irq(&zone->lru_lock);
  1219. lruvec = mem_cgroup_page_lruvec(page, zone);
  1220. compound_lock(page);
  1221. /* complete memcg works before add pages to LRU */
  1222. mem_cgroup_split_huge_fixup(page);
  1223. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1224. struct page *page_tail = page + i;
  1225. /* tail_page->_mapcount cannot change */
  1226. BUG_ON(page_mapcount(page_tail) < 0);
  1227. tail_count += page_mapcount(page_tail);
  1228. /* check for overflow */
  1229. BUG_ON(tail_count < 0);
  1230. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1231. /*
  1232. * tail_page->_count is zero and not changing from
  1233. * under us. But get_page_unless_zero() may be running
  1234. * from under us on the tail_page. If we used
  1235. * atomic_set() below instead of atomic_add(), we
  1236. * would then run atomic_set() concurrently with
  1237. * get_page_unless_zero(), and atomic_set() is
  1238. * implemented in C not using locked ops. spin_unlock
  1239. * on x86 sometime uses locked ops because of PPro
  1240. * errata 66, 92, so unless somebody can guarantee
  1241. * atomic_set() here would be safe on all archs (and
  1242. * not only on x86), it's safer to use atomic_add().
  1243. */
  1244. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1245. &page_tail->_count);
  1246. /* after clearing PageTail the gup refcount can be released */
  1247. smp_mb();
  1248. /*
  1249. * retain hwpoison flag of the poisoned tail page:
  1250. * fix for the unsuitable process killed on Guest Machine(KVM)
  1251. * by the memory-failure.
  1252. */
  1253. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1254. page_tail->flags |= (page->flags &
  1255. ((1L << PG_referenced) |
  1256. (1L << PG_swapbacked) |
  1257. (1L << PG_mlocked) |
  1258. (1L << PG_uptodate)));
  1259. page_tail->flags |= (1L << PG_dirty);
  1260. /* clear PageTail before overwriting first_page */
  1261. smp_wmb();
  1262. /*
  1263. * __split_huge_page_splitting() already set the
  1264. * splitting bit in all pmd that could map this
  1265. * hugepage, that will ensure no CPU can alter the
  1266. * mapcount on the head page. The mapcount is only
  1267. * accounted in the head page and it has to be
  1268. * transferred to all tail pages in the below code. So
  1269. * for this code to be safe, the split the mapcount
  1270. * can't change. But that doesn't mean userland can't
  1271. * keep changing and reading the page contents while
  1272. * we transfer the mapcount, so the pmd splitting
  1273. * status is achieved setting a reserved bit in the
  1274. * pmd, not by clearing the present bit.
  1275. */
  1276. page_tail->_mapcount = page->_mapcount;
  1277. BUG_ON(page_tail->mapping);
  1278. page_tail->mapping = page->mapping;
  1279. page_tail->index = page->index + i;
  1280. BUG_ON(!PageAnon(page_tail));
  1281. BUG_ON(!PageUptodate(page_tail));
  1282. BUG_ON(!PageDirty(page_tail));
  1283. BUG_ON(!PageSwapBacked(page_tail));
  1284. lru_add_page_tail(page, page_tail, lruvec);
  1285. }
  1286. atomic_sub(tail_count, &page->_count);
  1287. BUG_ON(atomic_read(&page->_count) <= 0);
  1288. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1289. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1290. ClearPageCompound(page);
  1291. compound_unlock(page);
  1292. spin_unlock_irq(&zone->lru_lock);
  1293. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1294. struct page *page_tail = page + i;
  1295. BUG_ON(page_count(page_tail) <= 0);
  1296. /*
  1297. * Tail pages may be freed if there wasn't any mapping
  1298. * like if add_to_swap() is running on a lru page that
  1299. * had its mapping zapped. And freeing these pages
  1300. * requires taking the lru_lock so we do the put_page
  1301. * of the tail pages after the split is complete.
  1302. */
  1303. put_page(page_tail);
  1304. }
  1305. /*
  1306. * Only the head page (now become a regular page) is required
  1307. * to be pinned by the caller.
  1308. */
  1309. BUG_ON(page_count(page) <= 0);
  1310. }
  1311. static int __split_huge_page_map(struct page *page,
  1312. struct vm_area_struct *vma,
  1313. unsigned long address)
  1314. {
  1315. struct mm_struct *mm = vma->vm_mm;
  1316. pmd_t *pmd, _pmd;
  1317. int ret = 0, i;
  1318. pgtable_t pgtable;
  1319. unsigned long haddr;
  1320. spin_lock(&mm->page_table_lock);
  1321. pmd = page_check_address_pmd(page, mm, address,
  1322. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1323. if (pmd) {
  1324. pgtable = pgtable_trans_huge_withdraw(mm);
  1325. pmd_populate(mm, &_pmd, pgtable);
  1326. haddr = address;
  1327. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1328. pte_t *pte, entry;
  1329. BUG_ON(PageCompound(page+i));
  1330. entry = mk_pte(page + i, vma->vm_page_prot);
  1331. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1332. if (!pmd_write(*pmd))
  1333. entry = pte_wrprotect(entry);
  1334. else
  1335. BUG_ON(page_mapcount(page) != 1);
  1336. if (!pmd_young(*pmd))
  1337. entry = pte_mkold(entry);
  1338. pte = pte_offset_map(&_pmd, haddr);
  1339. BUG_ON(!pte_none(*pte));
  1340. set_pte_at(mm, haddr, pte, entry);
  1341. pte_unmap(pte);
  1342. }
  1343. smp_wmb(); /* make pte visible before pmd */
  1344. /*
  1345. * Up to this point the pmd is present and huge and
  1346. * userland has the whole access to the hugepage
  1347. * during the split (which happens in place). If we
  1348. * overwrite the pmd with the not-huge version
  1349. * pointing to the pte here (which of course we could
  1350. * if all CPUs were bug free), userland could trigger
  1351. * a small page size TLB miss on the small sized TLB
  1352. * while the hugepage TLB entry is still established
  1353. * in the huge TLB. Some CPU doesn't like that. See
  1354. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1355. * Erratum 383 on page 93. Intel should be safe but is
  1356. * also warns that it's only safe if the permission
  1357. * and cache attributes of the two entries loaded in
  1358. * the two TLB is identical (which should be the case
  1359. * here). But it is generally safer to never allow
  1360. * small and huge TLB entries for the same virtual
  1361. * address to be loaded simultaneously. So instead of
  1362. * doing "pmd_populate(); flush_tlb_range();" we first
  1363. * mark the current pmd notpresent (atomically because
  1364. * here the pmd_trans_huge and pmd_trans_splitting
  1365. * must remain set at all times on the pmd until the
  1366. * split is complete for this pmd), then we flush the
  1367. * SMP TLB and finally we write the non-huge version
  1368. * of the pmd entry with pmd_populate.
  1369. */
  1370. pmdp_invalidate(vma, address, pmd);
  1371. pmd_populate(mm, pmd, pgtable);
  1372. ret = 1;
  1373. }
  1374. spin_unlock(&mm->page_table_lock);
  1375. return ret;
  1376. }
  1377. /* must be called with anon_vma->root->mutex hold */
  1378. static void __split_huge_page(struct page *page,
  1379. struct anon_vma *anon_vma)
  1380. {
  1381. int mapcount, mapcount2;
  1382. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1383. struct anon_vma_chain *avc;
  1384. BUG_ON(!PageHead(page));
  1385. BUG_ON(PageTail(page));
  1386. mapcount = 0;
  1387. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1388. struct vm_area_struct *vma = avc->vma;
  1389. unsigned long addr = vma_address(page, vma);
  1390. BUG_ON(is_vma_temporary_stack(vma));
  1391. mapcount += __split_huge_page_splitting(page, vma, addr);
  1392. }
  1393. /*
  1394. * It is critical that new vmas are added to the tail of the
  1395. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1396. * and establishes a child pmd before
  1397. * __split_huge_page_splitting() freezes the parent pmd (so if
  1398. * we fail to prevent copy_huge_pmd() from running until the
  1399. * whole __split_huge_page() is complete), we will still see
  1400. * the newly established pmd of the child later during the
  1401. * walk, to be able to set it as pmd_trans_splitting too.
  1402. */
  1403. if (mapcount != page_mapcount(page))
  1404. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1405. mapcount, page_mapcount(page));
  1406. BUG_ON(mapcount != page_mapcount(page));
  1407. __split_huge_page_refcount(page);
  1408. mapcount2 = 0;
  1409. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1410. struct vm_area_struct *vma = avc->vma;
  1411. unsigned long addr = vma_address(page, vma);
  1412. BUG_ON(is_vma_temporary_stack(vma));
  1413. mapcount2 += __split_huge_page_map(page, vma, addr);
  1414. }
  1415. if (mapcount != mapcount2)
  1416. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1417. mapcount, mapcount2, page_mapcount(page));
  1418. BUG_ON(mapcount != mapcount2);
  1419. }
  1420. int split_huge_page(struct page *page)
  1421. {
  1422. struct anon_vma *anon_vma;
  1423. int ret = 1;
  1424. BUG_ON(!PageAnon(page));
  1425. anon_vma = page_lock_anon_vma(page);
  1426. if (!anon_vma)
  1427. goto out;
  1428. ret = 0;
  1429. if (!PageCompound(page))
  1430. goto out_unlock;
  1431. BUG_ON(!PageSwapBacked(page));
  1432. __split_huge_page(page, anon_vma);
  1433. count_vm_event(THP_SPLIT);
  1434. BUG_ON(PageCompound(page));
  1435. out_unlock:
  1436. page_unlock_anon_vma(anon_vma);
  1437. out:
  1438. return ret;
  1439. }
  1440. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1441. int hugepage_madvise(struct vm_area_struct *vma,
  1442. unsigned long *vm_flags, int advice)
  1443. {
  1444. struct mm_struct *mm = vma->vm_mm;
  1445. switch (advice) {
  1446. case MADV_HUGEPAGE:
  1447. /*
  1448. * Be somewhat over-protective like KSM for now!
  1449. */
  1450. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1451. return -EINVAL;
  1452. if (mm->def_flags & VM_NOHUGEPAGE)
  1453. return -EINVAL;
  1454. *vm_flags &= ~VM_NOHUGEPAGE;
  1455. *vm_flags |= VM_HUGEPAGE;
  1456. /*
  1457. * If the vma become good for khugepaged to scan,
  1458. * register it here without waiting a page fault that
  1459. * may not happen any time soon.
  1460. */
  1461. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1462. return -ENOMEM;
  1463. break;
  1464. case MADV_NOHUGEPAGE:
  1465. /*
  1466. * Be somewhat over-protective like KSM for now!
  1467. */
  1468. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1469. return -EINVAL;
  1470. *vm_flags &= ~VM_HUGEPAGE;
  1471. *vm_flags |= VM_NOHUGEPAGE;
  1472. /*
  1473. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1474. * this vma even if we leave the mm registered in khugepaged if
  1475. * it got registered before VM_NOHUGEPAGE was set.
  1476. */
  1477. break;
  1478. }
  1479. return 0;
  1480. }
  1481. static int __init khugepaged_slab_init(void)
  1482. {
  1483. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1484. sizeof(struct mm_slot),
  1485. __alignof__(struct mm_slot), 0, NULL);
  1486. if (!mm_slot_cache)
  1487. return -ENOMEM;
  1488. return 0;
  1489. }
  1490. static void __init khugepaged_slab_free(void)
  1491. {
  1492. kmem_cache_destroy(mm_slot_cache);
  1493. mm_slot_cache = NULL;
  1494. }
  1495. static inline struct mm_slot *alloc_mm_slot(void)
  1496. {
  1497. if (!mm_slot_cache) /* initialization failed */
  1498. return NULL;
  1499. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1500. }
  1501. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1502. {
  1503. kmem_cache_free(mm_slot_cache, mm_slot);
  1504. }
  1505. static int __init mm_slots_hash_init(void)
  1506. {
  1507. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1508. GFP_KERNEL);
  1509. if (!mm_slots_hash)
  1510. return -ENOMEM;
  1511. return 0;
  1512. }
  1513. #if 0
  1514. static void __init mm_slots_hash_free(void)
  1515. {
  1516. kfree(mm_slots_hash);
  1517. mm_slots_hash = NULL;
  1518. }
  1519. #endif
  1520. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1521. {
  1522. struct mm_slot *mm_slot;
  1523. struct hlist_head *bucket;
  1524. struct hlist_node *node;
  1525. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1526. % MM_SLOTS_HASH_HEADS];
  1527. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1528. if (mm == mm_slot->mm)
  1529. return mm_slot;
  1530. }
  1531. return NULL;
  1532. }
  1533. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1534. struct mm_slot *mm_slot)
  1535. {
  1536. struct hlist_head *bucket;
  1537. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1538. % MM_SLOTS_HASH_HEADS];
  1539. mm_slot->mm = mm;
  1540. hlist_add_head(&mm_slot->hash, bucket);
  1541. }
  1542. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1543. {
  1544. return atomic_read(&mm->mm_users) == 0;
  1545. }
  1546. int __khugepaged_enter(struct mm_struct *mm)
  1547. {
  1548. struct mm_slot *mm_slot;
  1549. int wakeup;
  1550. mm_slot = alloc_mm_slot();
  1551. if (!mm_slot)
  1552. return -ENOMEM;
  1553. /* __khugepaged_exit() must not run from under us */
  1554. VM_BUG_ON(khugepaged_test_exit(mm));
  1555. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1556. free_mm_slot(mm_slot);
  1557. return 0;
  1558. }
  1559. spin_lock(&khugepaged_mm_lock);
  1560. insert_to_mm_slots_hash(mm, mm_slot);
  1561. /*
  1562. * Insert just behind the scanning cursor, to let the area settle
  1563. * down a little.
  1564. */
  1565. wakeup = list_empty(&khugepaged_scan.mm_head);
  1566. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1567. spin_unlock(&khugepaged_mm_lock);
  1568. atomic_inc(&mm->mm_count);
  1569. if (wakeup)
  1570. wake_up_interruptible(&khugepaged_wait);
  1571. return 0;
  1572. }
  1573. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1574. {
  1575. unsigned long hstart, hend;
  1576. if (!vma->anon_vma)
  1577. /*
  1578. * Not yet faulted in so we will register later in the
  1579. * page fault if needed.
  1580. */
  1581. return 0;
  1582. if (vma->vm_ops)
  1583. /* khugepaged not yet working on file or special mappings */
  1584. return 0;
  1585. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1586. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1587. hend = vma->vm_end & HPAGE_PMD_MASK;
  1588. if (hstart < hend)
  1589. return khugepaged_enter(vma);
  1590. return 0;
  1591. }
  1592. void __khugepaged_exit(struct mm_struct *mm)
  1593. {
  1594. struct mm_slot *mm_slot;
  1595. int free = 0;
  1596. spin_lock(&khugepaged_mm_lock);
  1597. mm_slot = get_mm_slot(mm);
  1598. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1599. hlist_del(&mm_slot->hash);
  1600. list_del(&mm_slot->mm_node);
  1601. free = 1;
  1602. }
  1603. spin_unlock(&khugepaged_mm_lock);
  1604. if (free) {
  1605. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1606. free_mm_slot(mm_slot);
  1607. mmdrop(mm);
  1608. } else if (mm_slot) {
  1609. /*
  1610. * This is required to serialize against
  1611. * khugepaged_test_exit() (which is guaranteed to run
  1612. * under mmap sem read mode). Stop here (after we
  1613. * return all pagetables will be destroyed) until
  1614. * khugepaged has finished working on the pagetables
  1615. * under the mmap_sem.
  1616. */
  1617. down_write(&mm->mmap_sem);
  1618. up_write(&mm->mmap_sem);
  1619. }
  1620. }
  1621. static void release_pte_page(struct page *page)
  1622. {
  1623. /* 0 stands for page_is_file_cache(page) == false */
  1624. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1625. unlock_page(page);
  1626. putback_lru_page(page);
  1627. }
  1628. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1629. {
  1630. while (--_pte >= pte) {
  1631. pte_t pteval = *_pte;
  1632. if (!pte_none(pteval))
  1633. release_pte_page(pte_page(pteval));
  1634. }
  1635. }
  1636. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1637. unsigned long address,
  1638. pte_t *pte)
  1639. {
  1640. struct page *page;
  1641. pte_t *_pte;
  1642. int referenced = 0, none = 0;
  1643. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1644. _pte++, address += PAGE_SIZE) {
  1645. pte_t pteval = *_pte;
  1646. if (pte_none(pteval)) {
  1647. if (++none <= khugepaged_max_ptes_none)
  1648. continue;
  1649. else
  1650. goto out;
  1651. }
  1652. if (!pte_present(pteval) || !pte_write(pteval))
  1653. goto out;
  1654. page = vm_normal_page(vma, address, pteval);
  1655. if (unlikely(!page))
  1656. goto out;
  1657. VM_BUG_ON(PageCompound(page));
  1658. BUG_ON(!PageAnon(page));
  1659. VM_BUG_ON(!PageSwapBacked(page));
  1660. /* cannot use mapcount: can't collapse if there's a gup pin */
  1661. if (page_count(page) != 1)
  1662. goto out;
  1663. /*
  1664. * We can do it before isolate_lru_page because the
  1665. * page can't be freed from under us. NOTE: PG_lock
  1666. * is needed to serialize against split_huge_page
  1667. * when invoked from the VM.
  1668. */
  1669. if (!trylock_page(page))
  1670. goto out;
  1671. /*
  1672. * Isolate the page to avoid collapsing an hugepage
  1673. * currently in use by the VM.
  1674. */
  1675. if (isolate_lru_page(page)) {
  1676. unlock_page(page);
  1677. goto out;
  1678. }
  1679. /* 0 stands for page_is_file_cache(page) == false */
  1680. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1681. VM_BUG_ON(!PageLocked(page));
  1682. VM_BUG_ON(PageLRU(page));
  1683. /* If there is no mapped pte young don't collapse the page */
  1684. if (pte_young(pteval) || PageReferenced(page) ||
  1685. mmu_notifier_test_young(vma->vm_mm, address))
  1686. referenced = 1;
  1687. }
  1688. if (likely(referenced))
  1689. return 1;
  1690. out:
  1691. release_pte_pages(pte, _pte);
  1692. return 0;
  1693. }
  1694. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1695. struct vm_area_struct *vma,
  1696. unsigned long address,
  1697. spinlock_t *ptl)
  1698. {
  1699. pte_t *_pte;
  1700. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1701. pte_t pteval = *_pte;
  1702. struct page *src_page;
  1703. if (pte_none(pteval)) {
  1704. clear_user_highpage(page, address);
  1705. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1706. } else {
  1707. src_page = pte_page(pteval);
  1708. copy_user_highpage(page, src_page, address, vma);
  1709. VM_BUG_ON(page_mapcount(src_page) != 1);
  1710. release_pte_page(src_page);
  1711. /*
  1712. * ptl mostly unnecessary, but preempt has to
  1713. * be disabled to update the per-cpu stats
  1714. * inside page_remove_rmap().
  1715. */
  1716. spin_lock(ptl);
  1717. /*
  1718. * paravirt calls inside pte_clear here are
  1719. * superfluous.
  1720. */
  1721. pte_clear(vma->vm_mm, address, _pte);
  1722. page_remove_rmap(src_page);
  1723. spin_unlock(ptl);
  1724. free_page_and_swap_cache(src_page);
  1725. }
  1726. address += PAGE_SIZE;
  1727. page++;
  1728. }
  1729. }
  1730. static void khugepaged_alloc_sleep(void)
  1731. {
  1732. wait_event_freezable_timeout(khugepaged_wait, false,
  1733. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1734. }
  1735. #ifdef CONFIG_NUMA
  1736. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1737. {
  1738. if (IS_ERR(*hpage)) {
  1739. if (!*wait)
  1740. return false;
  1741. *wait = false;
  1742. *hpage = NULL;
  1743. khugepaged_alloc_sleep();
  1744. } else if (*hpage) {
  1745. put_page(*hpage);
  1746. *hpage = NULL;
  1747. }
  1748. return true;
  1749. }
  1750. static struct page
  1751. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1752. struct vm_area_struct *vma, unsigned long address,
  1753. int node)
  1754. {
  1755. VM_BUG_ON(*hpage);
  1756. /*
  1757. * Allocate the page while the vma is still valid and under
  1758. * the mmap_sem read mode so there is no memory allocation
  1759. * later when we take the mmap_sem in write mode. This is more
  1760. * friendly behavior (OTOH it may actually hide bugs) to
  1761. * filesystems in userland with daemons allocating memory in
  1762. * the userland I/O paths. Allocating memory with the
  1763. * mmap_sem in read mode is good idea also to allow greater
  1764. * scalability.
  1765. */
  1766. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1767. node, __GFP_OTHER_NODE);
  1768. /*
  1769. * After allocating the hugepage, release the mmap_sem read lock in
  1770. * preparation for taking it in write mode.
  1771. */
  1772. up_read(&mm->mmap_sem);
  1773. if (unlikely(!*hpage)) {
  1774. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1775. *hpage = ERR_PTR(-ENOMEM);
  1776. return NULL;
  1777. }
  1778. count_vm_event(THP_COLLAPSE_ALLOC);
  1779. return *hpage;
  1780. }
  1781. #else
  1782. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1783. {
  1784. struct page *hpage;
  1785. do {
  1786. hpage = alloc_hugepage(khugepaged_defrag());
  1787. if (!hpage) {
  1788. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1789. if (!*wait)
  1790. return NULL;
  1791. *wait = false;
  1792. khugepaged_alloc_sleep();
  1793. } else
  1794. count_vm_event(THP_COLLAPSE_ALLOC);
  1795. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1796. return hpage;
  1797. }
  1798. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1799. {
  1800. if (!*hpage)
  1801. *hpage = khugepaged_alloc_hugepage(wait);
  1802. if (unlikely(!*hpage))
  1803. return false;
  1804. return true;
  1805. }
  1806. static struct page
  1807. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1808. struct vm_area_struct *vma, unsigned long address,
  1809. int node)
  1810. {
  1811. up_read(&mm->mmap_sem);
  1812. VM_BUG_ON(!*hpage);
  1813. return *hpage;
  1814. }
  1815. #endif
  1816. static bool hugepage_vma_check(struct vm_area_struct *vma)
  1817. {
  1818. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1819. (vma->vm_flags & VM_NOHUGEPAGE))
  1820. return false;
  1821. if (!vma->anon_vma || vma->vm_ops)
  1822. return false;
  1823. if (is_vma_temporary_stack(vma))
  1824. return false;
  1825. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1826. return true;
  1827. }
  1828. static void collapse_huge_page(struct mm_struct *mm,
  1829. unsigned long address,
  1830. struct page **hpage,
  1831. struct vm_area_struct *vma,
  1832. int node)
  1833. {
  1834. pmd_t *pmd, _pmd;
  1835. pte_t *pte;
  1836. pgtable_t pgtable;
  1837. struct page *new_page;
  1838. spinlock_t *ptl;
  1839. int isolated;
  1840. unsigned long hstart, hend;
  1841. unsigned long mmun_start; /* For mmu_notifiers */
  1842. unsigned long mmun_end; /* For mmu_notifiers */
  1843. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1844. /* release the mmap_sem read lock. */
  1845. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1846. if (!new_page)
  1847. return;
  1848. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1849. return;
  1850. /*
  1851. * Prevent all access to pagetables with the exception of
  1852. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1853. * handled by the anon_vma lock + PG_lock.
  1854. */
  1855. down_write(&mm->mmap_sem);
  1856. if (unlikely(khugepaged_test_exit(mm)))
  1857. goto out;
  1858. vma = find_vma(mm, address);
  1859. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1860. hend = vma->vm_end & HPAGE_PMD_MASK;
  1861. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1862. goto out;
  1863. if (!hugepage_vma_check(vma))
  1864. goto out;
  1865. pmd = mm_find_pmd(mm, address);
  1866. if (!pmd)
  1867. goto out;
  1868. if (pmd_trans_huge(*pmd))
  1869. goto out;
  1870. anon_vma_lock(vma->anon_vma);
  1871. pte = pte_offset_map(pmd, address);
  1872. ptl = pte_lockptr(mm, pmd);
  1873. mmun_start = address;
  1874. mmun_end = address + HPAGE_PMD_SIZE;
  1875. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1876. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1877. /*
  1878. * After this gup_fast can't run anymore. This also removes
  1879. * any huge TLB entry from the CPU so we won't allow
  1880. * huge and small TLB entries for the same virtual address
  1881. * to avoid the risk of CPU bugs in that area.
  1882. */
  1883. _pmd = pmdp_clear_flush(vma, address, pmd);
  1884. spin_unlock(&mm->page_table_lock);
  1885. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1886. spin_lock(ptl);
  1887. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1888. spin_unlock(ptl);
  1889. if (unlikely(!isolated)) {
  1890. pte_unmap(pte);
  1891. spin_lock(&mm->page_table_lock);
  1892. BUG_ON(!pmd_none(*pmd));
  1893. set_pmd_at(mm, address, pmd, _pmd);
  1894. spin_unlock(&mm->page_table_lock);
  1895. anon_vma_unlock(vma->anon_vma);
  1896. goto out;
  1897. }
  1898. /*
  1899. * All pages are isolated and locked so anon_vma rmap
  1900. * can't run anymore.
  1901. */
  1902. anon_vma_unlock(vma->anon_vma);
  1903. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1904. pte_unmap(pte);
  1905. __SetPageUptodate(new_page);
  1906. pgtable = pmd_pgtable(_pmd);
  1907. _pmd = mk_huge_pmd(new_page, vma);
  1908. /*
  1909. * spin_lock() below is not the equivalent of smp_wmb(), so
  1910. * this is needed to avoid the copy_huge_page writes to become
  1911. * visible after the set_pmd_at() write.
  1912. */
  1913. smp_wmb();
  1914. spin_lock(&mm->page_table_lock);
  1915. BUG_ON(!pmd_none(*pmd));
  1916. page_add_new_anon_rmap(new_page, vma, address);
  1917. set_pmd_at(mm, address, pmd, _pmd);
  1918. update_mmu_cache_pmd(vma, address, pmd);
  1919. pgtable_trans_huge_deposit(mm, pgtable);
  1920. spin_unlock(&mm->page_table_lock);
  1921. *hpage = NULL;
  1922. khugepaged_pages_collapsed++;
  1923. out_up_write:
  1924. up_write(&mm->mmap_sem);
  1925. return;
  1926. out:
  1927. mem_cgroup_uncharge_page(new_page);
  1928. goto out_up_write;
  1929. }
  1930. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1931. struct vm_area_struct *vma,
  1932. unsigned long address,
  1933. struct page **hpage)
  1934. {
  1935. pmd_t *pmd;
  1936. pte_t *pte, *_pte;
  1937. int ret = 0, referenced = 0, none = 0;
  1938. struct page *page;
  1939. unsigned long _address;
  1940. spinlock_t *ptl;
  1941. int node = -1;
  1942. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1943. pmd = mm_find_pmd(mm, address);
  1944. if (!pmd)
  1945. goto out;
  1946. if (pmd_trans_huge(*pmd))
  1947. goto out;
  1948. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1949. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1950. _pte++, _address += PAGE_SIZE) {
  1951. pte_t pteval = *_pte;
  1952. if (pte_none(pteval)) {
  1953. if (++none <= khugepaged_max_ptes_none)
  1954. continue;
  1955. else
  1956. goto out_unmap;
  1957. }
  1958. if (!pte_present(pteval) || !pte_write(pteval))
  1959. goto out_unmap;
  1960. page = vm_normal_page(vma, _address, pteval);
  1961. if (unlikely(!page))
  1962. goto out_unmap;
  1963. /*
  1964. * Chose the node of the first page. This could
  1965. * be more sophisticated and look at more pages,
  1966. * but isn't for now.
  1967. */
  1968. if (node == -1)
  1969. node = page_to_nid(page);
  1970. VM_BUG_ON(PageCompound(page));
  1971. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1972. goto out_unmap;
  1973. /* cannot use mapcount: can't collapse if there's a gup pin */
  1974. if (page_count(page) != 1)
  1975. goto out_unmap;
  1976. if (pte_young(pteval) || PageReferenced(page) ||
  1977. mmu_notifier_test_young(vma->vm_mm, address))
  1978. referenced = 1;
  1979. }
  1980. if (referenced)
  1981. ret = 1;
  1982. out_unmap:
  1983. pte_unmap_unlock(pte, ptl);
  1984. if (ret)
  1985. /* collapse_huge_page will return with the mmap_sem released */
  1986. collapse_huge_page(mm, address, hpage, vma, node);
  1987. out:
  1988. return ret;
  1989. }
  1990. static void collect_mm_slot(struct mm_slot *mm_slot)
  1991. {
  1992. struct mm_struct *mm = mm_slot->mm;
  1993. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1994. if (khugepaged_test_exit(mm)) {
  1995. /* free mm_slot */
  1996. hlist_del(&mm_slot->hash);
  1997. list_del(&mm_slot->mm_node);
  1998. /*
  1999. * Not strictly needed because the mm exited already.
  2000. *
  2001. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2002. */
  2003. /* khugepaged_mm_lock actually not necessary for the below */
  2004. free_mm_slot(mm_slot);
  2005. mmdrop(mm);
  2006. }
  2007. }
  2008. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2009. struct page **hpage)
  2010. __releases(&khugepaged_mm_lock)
  2011. __acquires(&khugepaged_mm_lock)
  2012. {
  2013. struct mm_slot *mm_slot;
  2014. struct mm_struct *mm;
  2015. struct vm_area_struct *vma;
  2016. int progress = 0;
  2017. VM_BUG_ON(!pages);
  2018. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2019. if (khugepaged_scan.mm_slot)
  2020. mm_slot = khugepaged_scan.mm_slot;
  2021. else {
  2022. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2023. struct mm_slot, mm_node);
  2024. khugepaged_scan.address = 0;
  2025. khugepaged_scan.mm_slot = mm_slot;
  2026. }
  2027. spin_unlock(&khugepaged_mm_lock);
  2028. mm = mm_slot->mm;
  2029. down_read(&mm->mmap_sem);
  2030. if (unlikely(khugepaged_test_exit(mm)))
  2031. vma = NULL;
  2032. else
  2033. vma = find_vma(mm, khugepaged_scan.address);
  2034. progress++;
  2035. for (; vma; vma = vma->vm_next) {
  2036. unsigned long hstart, hend;
  2037. cond_resched();
  2038. if (unlikely(khugepaged_test_exit(mm))) {
  2039. progress++;
  2040. break;
  2041. }
  2042. if (!hugepage_vma_check(vma)) {
  2043. skip:
  2044. progress++;
  2045. continue;
  2046. }
  2047. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2048. hend = vma->vm_end & HPAGE_PMD_MASK;
  2049. if (hstart >= hend)
  2050. goto skip;
  2051. if (khugepaged_scan.address > hend)
  2052. goto skip;
  2053. if (khugepaged_scan.address < hstart)
  2054. khugepaged_scan.address = hstart;
  2055. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2056. while (khugepaged_scan.address < hend) {
  2057. int ret;
  2058. cond_resched();
  2059. if (unlikely(khugepaged_test_exit(mm)))
  2060. goto breakouterloop;
  2061. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2062. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2063. hend);
  2064. ret = khugepaged_scan_pmd(mm, vma,
  2065. khugepaged_scan.address,
  2066. hpage);
  2067. /* move to next address */
  2068. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2069. progress += HPAGE_PMD_NR;
  2070. if (ret)
  2071. /* we released mmap_sem so break loop */
  2072. goto breakouterloop_mmap_sem;
  2073. if (progress >= pages)
  2074. goto breakouterloop;
  2075. }
  2076. }
  2077. breakouterloop:
  2078. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2079. breakouterloop_mmap_sem:
  2080. spin_lock(&khugepaged_mm_lock);
  2081. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2082. /*
  2083. * Release the current mm_slot if this mm is about to die, or
  2084. * if we scanned all vmas of this mm.
  2085. */
  2086. if (khugepaged_test_exit(mm) || !vma) {
  2087. /*
  2088. * Make sure that if mm_users is reaching zero while
  2089. * khugepaged runs here, khugepaged_exit will find
  2090. * mm_slot not pointing to the exiting mm.
  2091. */
  2092. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2093. khugepaged_scan.mm_slot = list_entry(
  2094. mm_slot->mm_node.next,
  2095. struct mm_slot, mm_node);
  2096. khugepaged_scan.address = 0;
  2097. } else {
  2098. khugepaged_scan.mm_slot = NULL;
  2099. khugepaged_full_scans++;
  2100. }
  2101. collect_mm_slot(mm_slot);
  2102. }
  2103. return progress;
  2104. }
  2105. static int khugepaged_has_work(void)
  2106. {
  2107. return !list_empty(&khugepaged_scan.mm_head) &&
  2108. khugepaged_enabled();
  2109. }
  2110. static int khugepaged_wait_event(void)
  2111. {
  2112. return !list_empty(&khugepaged_scan.mm_head) ||
  2113. kthread_should_stop();
  2114. }
  2115. static void khugepaged_do_scan(void)
  2116. {
  2117. struct page *hpage = NULL;
  2118. unsigned int progress = 0, pass_through_head = 0;
  2119. unsigned int pages = khugepaged_pages_to_scan;
  2120. bool wait = true;
  2121. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2122. while (progress < pages) {
  2123. if (!khugepaged_prealloc_page(&hpage, &wait))
  2124. break;
  2125. cond_resched();
  2126. if (unlikely(kthread_should_stop() || freezing(current)))
  2127. break;
  2128. spin_lock(&khugepaged_mm_lock);
  2129. if (!khugepaged_scan.mm_slot)
  2130. pass_through_head++;
  2131. if (khugepaged_has_work() &&
  2132. pass_through_head < 2)
  2133. progress += khugepaged_scan_mm_slot(pages - progress,
  2134. &hpage);
  2135. else
  2136. progress = pages;
  2137. spin_unlock(&khugepaged_mm_lock);
  2138. }
  2139. if (!IS_ERR_OR_NULL(hpage))
  2140. put_page(hpage);
  2141. }
  2142. static void khugepaged_wait_work(void)
  2143. {
  2144. try_to_freeze();
  2145. if (khugepaged_has_work()) {
  2146. if (!khugepaged_scan_sleep_millisecs)
  2147. return;
  2148. wait_event_freezable_timeout(khugepaged_wait,
  2149. kthread_should_stop(),
  2150. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2151. return;
  2152. }
  2153. if (khugepaged_enabled())
  2154. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2155. }
  2156. static int khugepaged(void *none)
  2157. {
  2158. struct mm_slot *mm_slot;
  2159. set_freezable();
  2160. set_user_nice(current, 19);
  2161. while (!kthread_should_stop()) {
  2162. khugepaged_do_scan();
  2163. khugepaged_wait_work();
  2164. }
  2165. spin_lock(&khugepaged_mm_lock);
  2166. mm_slot = khugepaged_scan.mm_slot;
  2167. khugepaged_scan.mm_slot = NULL;
  2168. if (mm_slot)
  2169. collect_mm_slot(mm_slot);
  2170. spin_unlock(&khugepaged_mm_lock);
  2171. return 0;
  2172. }
  2173. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2174. {
  2175. struct page *page;
  2176. spin_lock(&mm->page_table_lock);
  2177. if (unlikely(!pmd_trans_huge(*pmd))) {
  2178. spin_unlock(&mm->page_table_lock);
  2179. return;
  2180. }
  2181. page = pmd_page(*pmd);
  2182. VM_BUG_ON(!page_count(page));
  2183. get_page(page);
  2184. spin_unlock(&mm->page_table_lock);
  2185. split_huge_page(page);
  2186. put_page(page);
  2187. BUG_ON(pmd_trans_huge(*pmd));
  2188. }
  2189. static void split_huge_page_address(struct mm_struct *mm,
  2190. unsigned long address)
  2191. {
  2192. pmd_t *pmd;
  2193. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2194. pmd = mm_find_pmd(mm, address);
  2195. if (!pmd)
  2196. return;
  2197. /*
  2198. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2199. * materialize from under us.
  2200. */
  2201. split_huge_page_pmd(mm, pmd);
  2202. }
  2203. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2204. unsigned long start,
  2205. unsigned long end,
  2206. long adjust_next)
  2207. {
  2208. /*
  2209. * If the new start address isn't hpage aligned and it could
  2210. * previously contain an hugepage: check if we need to split
  2211. * an huge pmd.
  2212. */
  2213. if (start & ~HPAGE_PMD_MASK &&
  2214. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2215. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2216. split_huge_page_address(vma->vm_mm, start);
  2217. /*
  2218. * If the new end address isn't hpage aligned and it could
  2219. * previously contain an hugepage: check if we need to split
  2220. * an huge pmd.
  2221. */
  2222. if (end & ~HPAGE_PMD_MASK &&
  2223. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2224. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2225. split_huge_page_address(vma->vm_mm, end);
  2226. /*
  2227. * If we're also updating the vma->vm_next->vm_start, if the new
  2228. * vm_next->vm_start isn't page aligned and it could previously
  2229. * contain an hugepage: check if we need to split an huge pmd.
  2230. */
  2231. if (adjust_next > 0) {
  2232. struct vm_area_struct *next = vma->vm_next;
  2233. unsigned long nstart = next->vm_start;
  2234. nstart += adjust_next << PAGE_SHIFT;
  2235. if (nstart & ~HPAGE_PMD_MASK &&
  2236. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2237. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2238. split_huge_page_address(next->vm_mm, nstart);
  2239. }
  2240. }