mm.h 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/bug.h>
  7. #include <linux/list.h>
  8. #include <linux/mmzone.h>
  9. #include <linux/rbtree.h>
  10. #include <linux/atomic.h>
  11. #include <linux/debug_locks.h>
  12. #include <linux/mm_types.h>
  13. #include <linux/range.h>
  14. #include <linux/pfn.h>
  15. #include <linux/bit_spinlock.h>
  16. #include <linux/shrinker.h>
  17. struct mempolicy;
  18. struct anon_vma;
  19. struct anon_vma_chain;
  20. struct file_ra_state;
  21. struct user_struct;
  22. struct writeback_control;
  23. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  24. extern unsigned long max_mapnr;
  25. #endif
  26. extern unsigned long num_physpages;
  27. extern unsigned long totalram_pages;
  28. extern void * high_memory;
  29. extern int page_cluster;
  30. #ifdef CONFIG_SYSCTL
  31. extern int sysctl_legacy_va_layout;
  32. #else
  33. #define sysctl_legacy_va_layout 0
  34. #endif
  35. #include <asm/page.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/processor.h>
  38. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  39. /* to align the pointer to the (next) page boundary */
  40. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  41. /*
  42. * Linux kernel virtual memory manager primitives.
  43. * The idea being to have a "virtual" mm in the same way
  44. * we have a virtual fs - giving a cleaner interface to the
  45. * mm details, and allowing different kinds of memory mappings
  46. * (from shared memory to executable loading to arbitrary
  47. * mmap() functions).
  48. */
  49. extern struct kmem_cache *vm_area_cachep;
  50. #ifndef CONFIG_MMU
  51. extern struct rb_root nommu_region_tree;
  52. extern struct rw_semaphore nommu_region_sem;
  53. extern unsigned int kobjsize(const void *objp);
  54. #endif
  55. /*
  56. * vm_flags in vm_area_struct, see mm_types.h.
  57. */
  58. #define VM_NONE 0x00000000
  59. #define VM_READ 0x00000001 /* currently active flags */
  60. #define VM_WRITE 0x00000002
  61. #define VM_EXEC 0x00000004
  62. #define VM_SHARED 0x00000008
  63. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  64. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  65. #define VM_MAYWRITE 0x00000020
  66. #define VM_MAYEXEC 0x00000040
  67. #define VM_MAYSHARE 0x00000080
  68. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  69. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  70. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  71. #define VM_LOCKED 0x00002000
  72. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  73. /* Used by sys_madvise() */
  74. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  75. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  76. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  77. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  78. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  79. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  80. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  81. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  82. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  83. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  84. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  85. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  86. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  87. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  88. #if defined(CONFIG_X86)
  89. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  90. #elif defined(CONFIG_PPC)
  91. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  92. #elif defined(CONFIG_PARISC)
  93. # define VM_GROWSUP VM_ARCH_1
  94. #elif defined(CONFIG_IA64)
  95. # define VM_GROWSUP VM_ARCH_1
  96. #elif !defined(CONFIG_MMU)
  97. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  98. #endif
  99. #ifndef VM_GROWSUP
  100. # define VM_GROWSUP VM_NONE
  101. #endif
  102. /* Bits set in the VMA until the stack is in its final location */
  103. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  104. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  105. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  106. #endif
  107. #ifdef CONFIG_STACK_GROWSUP
  108. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  109. #else
  110. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  111. #endif
  112. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  113. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  114. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  115. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  116. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  117. /*
  118. * Special vmas that are non-mergable, non-mlock()able.
  119. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  120. */
  121. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
  122. /*
  123. * mapping from the currently active vm_flags protection bits (the
  124. * low four bits) to a page protection mask..
  125. */
  126. extern pgprot_t protection_map[16];
  127. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  128. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  129. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  130. #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
  131. #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
  132. #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
  133. #define FAULT_FLAG_TRIED 0x40 /* second try */
  134. /*
  135. * vm_fault is filled by the the pagefault handler and passed to the vma's
  136. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  137. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  138. *
  139. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  140. * is used, one may implement ->remap_pages to get nonlinear mapping support.
  141. */
  142. struct vm_fault {
  143. unsigned int flags; /* FAULT_FLAG_xxx flags */
  144. pgoff_t pgoff; /* Logical page offset based on vma */
  145. void __user *virtual_address; /* Faulting virtual address */
  146. struct page *page; /* ->fault handlers should return a
  147. * page here, unless VM_FAULT_NOPAGE
  148. * is set (which is also implied by
  149. * VM_FAULT_ERROR).
  150. */
  151. };
  152. /*
  153. * These are the virtual MM functions - opening of an area, closing and
  154. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  155. * to the functions called when a no-page or a wp-page exception occurs.
  156. */
  157. struct vm_operations_struct {
  158. void (*open)(struct vm_area_struct * area);
  159. void (*close)(struct vm_area_struct * area);
  160. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  161. /* notification that a previously read-only page is about to become
  162. * writable, if an error is returned it will cause a SIGBUS */
  163. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  164. /* called by access_process_vm when get_user_pages() fails, typically
  165. * for use by special VMAs that can switch between memory and hardware
  166. */
  167. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  168. void *buf, int len, int write);
  169. #ifdef CONFIG_NUMA
  170. /*
  171. * set_policy() op must add a reference to any non-NULL @new mempolicy
  172. * to hold the policy upon return. Caller should pass NULL @new to
  173. * remove a policy and fall back to surrounding context--i.e. do not
  174. * install a MPOL_DEFAULT policy, nor the task or system default
  175. * mempolicy.
  176. */
  177. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  178. /*
  179. * get_policy() op must add reference [mpol_get()] to any policy at
  180. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  181. * in mm/mempolicy.c will do this automatically.
  182. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  183. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  184. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  185. * must return NULL--i.e., do not "fallback" to task or system default
  186. * policy.
  187. */
  188. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  189. unsigned long addr);
  190. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  191. const nodemask_t *to, unsigned long flags);
  192. #endif
  193. /* called by sys_remap_file_pages() to populate non-linear mapping */
  194. int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
  195. unsigned long size, pgoff_t pgoff);
  196. };
  197. struct mmu_gather;
  198. struct inode;
  199. #define page_private(page) ((page)->private)
  200. #define set_page_private(page, v) ((page)->private = (v))
  201. /* It's valid only if the page is free path or free_list */
  202. static inline void set_freepage_migratetype(struct page *page, int migratetype)
  203. {
  204. page->index = migratetype;
  205. }
  206. /* It's valid only if the page is free path or free_list */
  207. static inline int get_freepage_migratetype(struct page *page)
  208. {
  209. return page->index;
  210. }
  211. /*
  212. * FIXME: take this include out, include page-flags.h in
  213. * files which need it (119 of them)
  214. */
  215. #include <linux/page-flags.h>
  216. #include <linux/huge_mm.h>
  217. /*
  218. * Methods to modify the page usage count.
  219. *
  220. * What counts for a page usage:
  221. * - cache mapping (page->mapping)
  222. * - private data (page->private)
  223. * - page mapped in a task's page tables, each mapping
  224. * is counted separately
  225. *
  226. * Also, many kernel routines increase the page count before a critical
  227. * routine so they can be sure the page doesn't go away from under them.
  228. */
  229. /*
  230. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  231. */
  232. static inline int put_page_testzero(struct page *page)
  233. {
  234. VM_BUG_ON(atomic_read(&page->_count) == 0);
  235. return atomic_dec_and_test(&page->_count);
  236. }
  237. /*
  238. * Try to grab a ref unless the page has a refcount of zero, return false if
  239. * that is the case.
  240. */
  241. static inline int get_page_unless_zero(struct page *page)
  242. {
  243. return atomic_inc_not_zero(&page->_count);
  244. }
  245. extern int page_is_ram(unsigned long pfn);
  246. /* Support for virtually mapped pages */
  247. struct page *vmalloc_to_page(const void *addr);
  248. unsigned long vmalloc_to_pfn(const void *addr);
  249. /*
  250. * Determine if an address is within the vmalloc range
  251. *
  252. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  253. * is no special casing required.
  254. */
  255. static inline int is_vmalloc_addr(const void *x)
  256. {
  257. #ifdef CONFIG_MMU
  258. unsigned long addr = (unsigned long)x;
  259. return addr >= VMALLOC_START && addr < VMALLOC_END;
  260. #else
  261. return 0;
  262. #endif
  263. }
  264. #ifdef CONFIG_MMU
  265. extern int is_vmalloc_or_module_addr(const void *x);
  266. #else
  267. static inline int is_vmalloc_or_module_addr(const void *x)
  268. {
  269. return 0;
  270. }
  271. #endif
  272. static inline void compound_lock(struct page *page)
  273. {
  274. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  275. VM_BUG_ON(PageSlab(page));
  276. bit_spin_lock(PG_compound_lock, &page->flags);
  277. #endif
  278. }
  279. static inline void compound_unlock(struct page *page)
  280. {
  281. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  282. VM_BUG_ON(PageSlab(page));
  283. bit_spin_unlock(PG_compound_lock, &page->flags);
  284. #endif
  285. }
  286. static inline unsigned long compound_lock_irqsave(struct page *page)
  287. {
  288. unsigned long uninitialized_var(flags);
  289. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  290. local_irq_save(flags);
  291. compound_lock(page);
  292. #endif
  293. return flags;
  294. }
  295. static inline void compound_unlock_irqrestore(struct page *page,
  296. unsigned long flags)
  297. {
  298. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  299. compound_unlock(page);
  300. local_irq_restore(flags);
  301. #endif
  302. }
  303. static inline struct page *compound_head(struct page *page)
  304. {
  305. if (unlikely(PageTail(page)))
  306. return page->first_page;
  307. return page;
  308. }
  309. /*
  310. * The atomic page->_mapcount, starts from -1: so that transitions
  311. * both from it and to it can be tracked, using atomic_inc_and_test
  312. * and atomic_add_negative(-1).
  313. */
  314. static inline void reset_page_mapcount(struct page *page)
  315. {
  316. atomic_set(&(page)->_mapcount, -1);
  317. }
  318. static inline int page_mapcount(struct page *page)
  319. {
  320. return atomic_read(&(page)->_mapcount) + 1;
  321. }
  322. static inline int page_count(struct page *page)
  323. {
  324. return atomic_read(&compound_head(page)->_count);
  325. }
  326. static inline void get_huge_page_tail(struct page *page)
  327. {
  328. /*
  329. * __split_huge_page_refcount() cannot run
  330. * from under us.
  331. */
  332. VM_BUG_ON(page_mapcount(page) < 0);
  333. VM_BUG_ON(atomic_read(&page->_count) != 0);
  334. atomic_inc(&page->_mapcount);
  335. }
  336. extern bool __get_page_tail(struct page *page);
  337. static inline void get_page(struct page *page)
  338. {
  339. if (unlikely(PageTail(page)))
  340. if (likely(__get_page_tail(page)))
  341. return;
  342. /*
  343. * Getting a normal page or the head of a compound page
  344. * requires to already have an elevated page->_count.
  345. */
  346. VM_BUG_ON(atomic_read(&page->_count) <= 0);
  347. atomic_inc(&page->_count);
  348. }
  349. static inline struct page *virt_to_head_page(const void *x)
  350. {
  351. struct page *page = virt_to_page(x);
  352. return compound_head(page);
  353. }
  354. /*
  355. * Setup the page count before being freed into the page allocator for
  356. * the first time (boot or memory hotplug)
  357. */
  358. static inline void init_page_count(struct page *page)
  359. {
  360. atomic_set(&page->_count, 1);
  361. }
  362. /*
  363. * PageBuddy() indicate that the page is free and in the buddy system
  364. * (see mm/page_alloc.c).
  365. *
  366. * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
  367. * -2 so that an underflow of the page_mapcount() won't be mistaken
  368. * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
  369. * efficiently by most CPU architectures.
  370. */
  371. #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
  372. static inline int PageBuddy(struct page *page)
  373. {
  374. return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
  375. }
  376. static inline void __SetPageBuddy(struct page *page)
  377. {
  378. VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
  379. atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
  380. }
  381. static inline void __ClearPageBuddy(struct page *page)
  382. {
  383. VM_BUG_ON(!PageBuddy(page));
  384. atomic_set(&page->_mapcount, -1);
  385. }
  386. void put_page(struct page *page);
  387. void put_pages_list(struct list_head *pages);
  388. void split_page(struct page *page, unsigned int order);
  389. int split_free_page(struct page *page);
  390. int capture_free_page(struct page *page, int alloc_order, int migratetype);
  391. /*
  392. * Compound pages have a destructor function. Provide a
  393. * prototype for that function and accessor functions.
  394. * These are _only_ valid on the head of a PG_compound page.
  395. */
  396. typedef void compound_page_dtor(struct page *);
  397. static inline void set_compound_page_dtor(struct page *page,
  398. compound_page_dtor *dtor)
  399. {
  400. page[1].lru.next = (void *)dtor;
  401. }
  402. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  403. {
  404. return (compound_page_dtor *)page[1].lru.next;
  405. }
  406. static inline int compound_order(struct page *page)
  407. {
  408. if (!PageHead(page))
  409. return 0;
  410. return (unsigned long)page[1].lru.prev;
  411. }
  412. static inline int compound_trans_order(struct page *page)
  413. {
  414. int order;
  415. unsigned long flags;
  416. if (!PageHead(page))
  417. return 0;
  418. flags = compound_lock_irqsave(page);
  419. order = compound_order(page);
  420. compound_unlock_irqrestore(page, flags);
  421. return order;
  422. }
  423. static inline void set_compound_order(struct page *page, unsigned long order)
  424. {
  425. page[1].lru.prev = (void *)order;
  426. }
  427. #ifdef CONFIG_MMU
  428. /*
  429. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  430. * servicing faults for write access. In the normal case, do always want
  431. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  432. * that do not have writing enabled, when used by access_process_vm.
  433. */
  434. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  435. {
  436. if (likely(vma->vm_flags & VM_WRITE))
  437. pte = pte_mkwrite(pte);
  438. return pte;
  439. }
  440. #endif
  441. #ifndef my_zero_pfn
  442. static inline unsigned long my_zero_pfn(unsigned long addr)
  443. {
  444. extern unsigned long zero_pfn;
  445. return zero_pfn;
  446. }
  447. #endif
  448. /*
  449. * Multiple processes may "see" the same page. E.g. for untouched
  450. * mappings of /dev/null, all processes see the same page full of
  451. * zeroes, and text pages of executables and shared libraries have
  452. * only one copy in memory, at most, normally.
  453. *
  454. * For the non-reserved pages, page_count(page) denotes a reference count.
  455. * page_count() == 0 means the page is free. page->lru is then used for
  456. * freelist management in the buddy allocator.
  457. * page_count() > 0 means the page has been allocated.
  458. *
  459. * Pages are allocated by the slab allocator in order to provide memory
  460. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  461. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  462. * unless a particular usage is carefully commented. (the responsibility of
  463. * freeing the kmalloc memory is the caller's, of course).
  464. *
  465. * A page may be used by anyone else who does a __get_free_page().
  466. * In this case, page_count still tracks the references, and should only
  467. * be used through the normal accessor functions. The top bits of page->flags
  468. * and page->virtual store page management information, but all other fields
  469. * are unused and could be used privately, carefully. The management of this
  470. * page is the responsibility of the one who allocated it, and those who have
  471. * subsequently been given references to it.
  472. *
  473. * The other pages (we may call them "pagecache pages") are completely
  474. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  475. * The following discussion applies only to them.
  476. *
  477. * A pagecache page contains an opaque `private' member, which belongs to the
  478. * page's address_space. Usually, this is the address of a circular list of
  479. * the page's disk buffers. PG_private must be set to tell the VM to call
  480. * into the filesystem to release these pages.
  481. *
  482. * A page may belong to an inode's memory mapping. In this case, page->mapping
  483. * is the pointer to the inode, and page->index is the file offset of the page,
  484. * in units of PAGE_CACHE_SIZE.
  485. *
  486. * If pagecache pages are not associated with an inode, they are said to be
  487. * anonymous pages. These may become associated with the swapcache, and in that
  488. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  489. *
  490. * In either case (swapcache or inode backed), the pagecache itself holds one
  491. * reference to the page. Setting PG_private should also increment the
  492. * refcount. The each user mapping also has a reference to the page.
  493. *
  494. * The pagecache pages are stored in a per-mapping radix tree, which is
  495. * rooted at mapping->page_tree, and indexed by offset.
  496. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  497. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  498. *
  499. * All pagecache pages may be subject to I/O:
  500. * - inode pages may need to be read from disk,
  501. * - inode pages which have been modified and are MAP_SHARED may need
  502. * to be written back to the inode on disk,
  503. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  504. * modified may need to be swapped out to swap space and (later) to be read
  505. * back into memory.
  506. */
  507. /*
  508. * The zone field is never updated after free_area_init_core()
  509. * sets it, so none of the operations on it need to be atomic.
  510. */
  511. /*
  512. * page->flags layout:
  513. *
  514. * There are three possibilities for how page->flags get
  515. * laid out. The first is for the normal case, without
  516. * sparsemem. The second is for sparsemem when there is
  517. * plenty of space for node and section. The last is when
  518. * we have run out of space and have to fall back to an
  519. * alternate (slower) way of determining the node.
  520. *
  521. * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
  522. * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
  523. * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
  524. */
  525. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  526. #define SECTIONS_WIDTH SECTIONS_SHIFT
  527. #else
  528. #define SECTIONS_WIDTH 0
  529. #endif
  530. #define ZONES_WIDTH ZONES_SHIFT
  531. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
  532. #define NODES_WIDTH NODES_SHIFT
  533. #else
  534. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  535. #error "Vmemmap: No space for nodes field in page flags"
  536. #endif
  537. #define NODES_WIDTH 0
  538. #endif
  539. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  540. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  541. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  542. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  543. /*
  544. * We are going to use the flags for the page to node mapping if its in
  545. * there. This includes the case where there is no node, so it is implicit.
  546. */
  547. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  548. #define NODE_NOT_IN_PAGE_FLAGS
  549. #endif
  550. /*
  551. * Define the bit shifts to access each section. For non-existent
  552. * sections we define the shift as 0; that plus a 0 mask ensures
  553. * the compiler will optimise away reference to them.
  554. */
  555. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  556. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  557. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  558. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  559. #ifdef NODE_NOT_IN_PAGE_FLAGS
  560. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  561. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  562. SECTIONS_PGOFF : ZONES_PGOFF)
  563. #else
  564. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  565. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  566. NODES_PGOFF : ZONES_PGOFF)
  567. #endif
  568. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  569. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  570. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  571. #endif
  572. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  573. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  574. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  575. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  576. static inline enum zone_type page_zonenum(const struct page *page)
  577. {
  578. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  579. }
  580. /*
  581. * The identification function is only used by the buddy allocator for
  582. * determining if two pages could be buddies. We are not really
  583. * identifying a zone since we could be using a the section number
  584. * id if we have not node id available in page flags.
  585. * We guarantee only that it will return the same value for two
  586. * combinable pages in a zone.
  587. */
  588. static inline int page_zone_id(struct page *page)
  589. {
  590. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  591. }
  592. static inline int zone_to_nid(struct zone *zone)
  593. {
  594. #ifdef CONFIG_NUMA
  595. return zone->node;
  596. #else
  597. return 0;
  598. #endif
  599. }
  600. #ifdef NODE_NOT_IN_PAGE_FLAGS
  601. extern int page_to_nid(const struct page *page);
  602. #else
  603. static inline int page_to_nid(const struct page *page)
  604. {
  605. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  606. }
  607. #endif
  608. static inline struct zone *page_zone(const struct page *page)
  609. {
  610. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  611. }
  612. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  613. static inline void set_page_section(struct page *page, unsigned long section)
  614. {
  615. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  616. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  617. }
  618. static inline unsigned long page_to_section(const struct page *page)
  619. {
  620. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  621. }
  622. #endif
  623. static inline void set_page_zone(struct page *page, enum zone_type zone)
  624. {
  625. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  626. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  627. }
  628. static inline void set_page_node(struct page *page, unsigned long node)
  629. {
  630. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  631. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  632. }
  633. static inline void set_page_links(struct page *page, enum zone_type zone,
  634. unsigned long node, unsigned long pfn)
  635. {
  636. set_page_zone(page, zone);
  637. set_page_node(page, node);
  638. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  639. set_page_section(page, pfn_to_section_nr(pfn));
  640. #endif
  641. }
  642. /*
  643. * Some inline functions in vmstat.h depend on page_zone()
  644. */
  645. #include <linux/vmstat.h>
  646. static __always_inline void *lowmem_page_address(const struct page *page)
  647. {
  648. return __va(PFN_PHYS(page_to_pfn(page)));
  649. }
  650. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  651. #define HASHED_PAGE_VIRTUAL
  652. #endif
  653. #if defined(WANT_PAGE_VIRTUAL)
  654. #define page_address(page) ((page)->virtual)
  655. #define set_page_address(page, address) \
  656. do { \
  657. (page)->virtual = (address); \
  658. } while(0)
  659. #define page_address_init() do { } while(0)
  660. #endif
  661. #if defined(HASHED_PAGE_VIRTUAL)
  662. void *page_address(const struct page *page);
  663. void set_page_address(struct page *page, void *virtual);
  664. void page_address_init(void);
  665. #endif
  666. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  667. #define page_address(page) lowmem_page_address(page)
  668. #define set_page_address(page, address) do { } while(0)
  669. #define page_address_init() do { } while(0)
  670. #endif
  671. /*
  672. * On an anonymous page mapped into a user virtual memory area,
  673. * page->mapping points to its anon_vma, not to a struct address_space;
  674. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  675. *
  676. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  677. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  678. * and then page->mapping points, not to an anon_vma, but to a private
  679. * structure which KSM associates with that merged page. See ksm.h.
  680. *
  681. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  682. *
  683. * Please note that, confusingly, "page_mapping" refers to the inode
  684. * address_space which maps the page from disk; whereas "page_mapped"
  685. * refers to user virtual address space into which the page is mapped.
  686. */
  687. #define PAGE_MAPPING_ANON 1
  688. #define PAGE_MAPPING_KSM 2
  689. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  690. extern struct address_space swapper_space;
  691. static inline struct address_space *page_mapping(struct page *page)
  692. {
  693. struct address_space *mapping = page->mapping;
  694. VM_BUG_ON(PageSlab(page));
  695. if (unlikely(PageSwapCache(page)))
  696. mapping = &swapper_space;
  697. else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
  698. mapping = NULL;
  699. return mapping;
  700. }
  701. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  702. static inline void *page_rmapping(struct page *page)
  703. {
  704. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  705. }
  706. extern struct address_space *__page_file_mapping(struct page *);
  707. static inline
  708. struct address_space *page_file_mapping(struct page *page)
  709. {
  710. if (unlikely(PageSwapCache(page)))
  711. return __page_file_mapping(page);
  712. return page->mapping;
  713. }
  714. static inline int PageAnon(struct page *page)
  715. {
  716. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  717. }
  718. /*
  719. * Return the pagecache index of the passed page. Regular pagecache pages
  720. * use ->index whereas swapcache pages use ->private
  721. */
  722. static inline pgoff_t page_index(struct page *page)
  723. {
  724. if (unlikely(PageSwapCache(page)))
  725. return page_private(page);
  726. return page->index;
  727. }
  728. extern pgoff_t __page_file_index(struct page *page);
  729. /*
  730. * Return the file index of the page. Regular pagecache pages use ->index
  731. * whereas swapcache pages use swp_offset(->private)
  732. */
  733. static inline pgoff_t page_file_index(struct page *page)
  734. {
  735. if (unlikely(PageSwapCache(page)))
  736. return __page_file_index(page);
  737. return page->index;
  738. }
  739. /*
  740. * Return true if this page is mapped into pagetables.
  741. */
  742. static inline int page_mapped(struct page *page)
  743. {
  744. return atomic_read(&(page)->_mapcount) >= 0;
  745. }
  746. /*
  747. * Different kinds of faults, as returned by handle_mm_fault().
  748. * Used to decide whether a process gets delivered SIGBUS or
  749. * just gets major/minor fault counters bumped up.
  750. */
  751. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  752. #define VM_FAULT_OOM 0x0001
  753. #define VM_FAULT_SIGBUS 0x0002
  754. #define VM_FAULT_MAJOR 0x0004
  755. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  756. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  757. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  758. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  759. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  760. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  761. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  762. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
  763. VM_FAULT_HWPOISON_LARGE)
  764. /* Encode hstate index for a hwpoisoned large page */
  765. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  766. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  767. /*
  768. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  769. */
  770. extern void pagefault_out_of_memory(void);
  771. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  772. /*
  773. * Flags passed to show_mem() and show_free_areas() to suppress output in
  774. * various contexts.
  775. */
  776. #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
  777. extern void show_free_areas(unsigned int flags);
  778. extern bool skip_free_areas_node(unsigned int flags, int nid);
  779. int shmem_zero_setup(struct vm_area_struct *);
  780. extern int can_do_mlock(void);
  781. extern int user_shm_lock(size_t, struct user_struct *);
  782. extern void user_shm_unlock(size_t, struct user_struct *);
  783. /*
  784. * Parameter block passed down to zap_pte_range in exceptional cases.
  785. */
  786. struct zap_details {
  787. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  788. struct address_space *check_mapping; /* Check page->mapping if set */
  789. pgoff_t first_index; /* Lowest page->index to unmap */
  790. pgoff_t last_index; /* Highest page->index to unmap */
  791. };
  792. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  793. pte_t pte);
  794. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  795. unsigned long size);
  796. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  797. unsigned long size, struct zap_details *);
  798. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  799. unsigned long start, unsigned long end);
  800. /**
  801. * mm_walk - callbacks for walk_page_range
  802. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  803. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  804. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  805. * this handler is required to be able to handle
  806. * pmd_trans_huge() pmds. They may simply choose to
  807. * split_huge_page() instead of handling it explicitly.
  808. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  809. * @pte_hole: if set, called for each hole at all levels
  810. * @hugetlb_entry: if set, called for each hugetlb entry
  811. * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
  812. * is used.
  813. *
  814. * (see walk_page_range for more details)
  815. */
  816. struct mm_walk {
  817. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
  818. int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
  819. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
  820. int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
  821. int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
  822. int (*hugetlb_entry)(pte_t *, unsigned long,
  823. unsigned long, unsigned long, struct mm_walk *);
  824. struct mm_struct *mm;
  825. void *private;
  826. };
  827. int walk_page_range(unsigned long addr, unsigned long end,
  828. struct mm_walk *walk);
  829. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  830. unsigned long end, unsigned long floor, unsigned long ceiling);
  831. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  832. struct vm_area_struct *vma);
  833. void unmap_mapping_range(struct address_space *mapping,
  834. loff_t const holebegin, loff_t const holelen, int even_cows);
  835. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  836. unsigned long *pfn);
  837. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  838. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  839. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  840. void *buf, int len, int write);
  841. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  842. loff_t const holebegin, loff_t const holelen)
  843. {
  844. unmap_mapping_range(mapping, holebegin, holelen, 0);
  845. }
  846. extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
  847. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  848. extern int vmtruncate(struct inode *inode, loff_t offset);
  849. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  850. int truncate_inode_page(struct address_space *mapping, struct page *page);
  851. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  852. int invalidate_inode_page(struct page *page);
  853. #ifdef CONFIG_MMU
  854. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  855. unsigned long address, unsigned int flags);
  856. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  857. unsigned long address, unsigned int fault_flags);
  858. #else
  859. static inline int handle_mm_fault(struct mm_struct *mm,
  860. struct vm_area_struct *vma, unsigned long address,
  861. unsigned int flags)
  862. {
  863. /* should never happen if there's no MMU */
  864. BUG();
  865. return VM_FAULT_SIGBUS;
  866. }
  867. static inline int fixup_user_fault(struct task_struct *tsk,
  868. struct mm_struct *mm, unsigned long address,
  869. unsigned int fault_flags)
  870. {
  871. /* should never happen if there's no MMU */
  872. BUG();
  873. return -EFAULT;
  874. }
  875. #endif
  876. extern int make_pages_present(unsigned long addr, unsigned long end);
  877. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  878. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  879. void *buf, int len, int write);
  880. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  881. unsigned long start, int len, unsigned int foll_flags,
  882. struct page **pages, struct vm_area_struct **vmas,
  883. int *nonblocking);
  884. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  885. unsigned long start, int nr_pages, int write, int force,
  886. struct page **pages, struct vm_area_struct **vmas);
  887. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  888. struct page **pages);
  889. struct kvec;
  890. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  891. struct page **pages);
  892. int get_kernel_page(unsigned long start, int write, struct page **pages);
  893. struct page *get_dump_page(unsigned long addr);
  894. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  895. extern void do_invalidatepage(struct page *page, unsigned long offset);
  896. int __set_page_dirty_nobuffers(struct page *page);
  897. int __set_page_dirty_no_writeback(struct page *page);
  898. int redirty_page_for_writepage(struct writeback_control *wbc,
  899. struct page *page);
  900. void account_page_dirtied(struct page *page, struct address_space *mapping);
  901. void account_page_writeback(struct page *page);
  902. int set_page_dirty(struct page *page);
  903. int set_page_dirty_lock(struct page *page);
  904. int clear_page_dirty_for_io(struct page *page);
  905. /* Is the vma a continuation of the stack vma above it? */
  906. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  907. {
  908. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  909. }
  910. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  911. unsigned long addr)
  912. {
  913. return (vma->vm_flags & VM_GROWSDOWN) &&
  914. (vma->vm_start == addr) &&
  915. !vma_growsdown(vma->vm_prev, addr);
  916. }
  917. /* Is the vma a continuation of the stack vma below it? */
  918. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  919. {
  920. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  921. }
  922. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  923. unsigned long addr)
  924. {
  925. return (vma->vm_flags & VM_GROWSUP) &&
  926. (vma->vm_end == addr) &&
  927. !vma_growsup(vma->vm_next, addr);
  928. }
  929. extern pid_t
  930. vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
  931. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  932. unsigned long old_addr, struct vm_area_struct *new_vma,
  933. unsigned long new_addr, unsigned long len,
  934. bool need_rmap_locks);
  935. extern unsigned long do_mremap(unsigned long addr,
  936. unsigned long old_len, unsigned long new_len,
  937. unsigned long flags, unsigned long new_addr);
  938. extern int mprotect_fixup(struct vm_area_struct *vma,
  939. struct vm_area_struct **pprev, unsigned long start,
  940. unsigned long end, unsigned long newflags);
  941. /*
  942. * doesn't attempt to fault and will return short.
  943. */
  944. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  945. struct page **pages);
  946. /*
  947. * per-process(per-mm_struct) statistics.
  948. */
  949. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  950. {
  951. long val = atomic_long_read(&mm->rss_stat.count[member]);
  952. #ifdef SPLIT_RSS_COUNTING
  953. /*
  954. * counter is updated in asynchronous manner and may go to minus.
  955. * But it's never be expected number for users.
  956. */
  957. if (val < 0)
  958. val = 0;
  959. #endif
  960. return (unsigned long)val;
  961. }
  962. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  963. {
  964. atomic_long_add(value, &mm->rss_stat.count[member]);
  965. }
  966. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  967. {
  968. atomic_long_inc(&mm->rss_stat.count[member]);
  969. }
  970. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  971. {
  972. atomic_long_dec(&mm->rss_stat.count[member]);
  973. }
  974. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  975. {
  976. return get_mm_counter(mm, MM_FILEPAGES) +
  977. get_mm_counter(mm, MM_ANONPAGES);
  978. }
  979. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  980. {
  981. return max(mm->hiwater_rss, get_mm_rss(mm));
  982. }
  983. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  984. {
  985. return max(mm->hiwater_vm, mm->total_vm);
  986. }
  987. static inline void update_hiwater_rss(struct mm_struct *mm)
  988. {
  989. unsigned long _rss = get_mm_rss(mm);
  990. if ((mm)->hiwater_rss < _rss)
  991. (mm)->hiwater_rss = _rss;
  992. }
  993. static inline void update_hiwater_vm(struct mm_struct *mm)
  994. {
  995. if (mm->hiwater_vm < mm->total_vm)
  996. mm->hiwater_vm = mm->total_vm;
  997. }
  998. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  999. struct mm_struct *mm)
  1000. {
  1001. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1002. if (*maxrss < hiwater_rss)
  1003. *maxrss = hiwater_rss;
  1004. }
  1005. #if defined(SPLIT_RSS_COUNTING)
  1006. void sync_mm_rss(struct mm_struct *mm);
  1007. #else
  1008. static inline void sync_mm_rss(struct mm_struct *mm)
  1009. {
  1010. }
  1011. #endif
  1012. int vma_wants_writenotify(struct vm_area_struct *vma);
  1013. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1014. spinlock_t **ptl);
  1015. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1016. spinlock_t **ptl)
  1017. {
  1018. pte_t *ptep;
  1019. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1020. return ptep;
  1021. }
  1022. #ifdef __PAGETABLE_PUD_FOLDED
  1023. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1024. unsigned long address)
  1025. {
  1026. return 0;
  1027. }
  1028. #else
  1029. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1030. #endif
  1031. #ifdef __PAGETABLE_PMD_FOLDED
  1032. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1033. unsigned long address)
  1034. {
  1035. return 0;
  1036. }
  1037. #else
  1038. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1039. #endif
  1040. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1041. pmd_t *pmd, unsigned long address);
  1042. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1043. /*
  1044. * The following ifdef needed to get the 4level-fixup.h header to work.
  1045. * Remove it when 4level-fixup.h has been removed.
  1046. */
  1047. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1048. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1049. {
  1050. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1051. NULL: pud_offset(pgd, address);
  1052. }
  1053. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1054. {
  1055. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1056. NULL: pmd_offset(pud, address);
  1057. }
  1058. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1059. #if USE_SPLIT_PTLOCKS
  1060. /*
  1061. * We tuck a spinlock to guard each pagetable page into its struct page,
  1062. * at page->private, with BUILD_BUG_ON to make sure that this will not
  1063. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  1064. * When freeing, reset page->mapping so free_pages_check won't complain.
  1065. */
  1066. #define __pte_lockptr(page) &((page)->ptl)
  1067. #define pte_lock_init(_page) do { \
  1068. spin_lock_init(__pte_lockptr(_page)); \
  1069. } while (0)
  1070. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  1071. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  1072. #else /* !USE_SPLIT_PTLOCKS */
  1073. /*
  1074. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1075. */
  1076. #define pte_lock_init(page) do {} while (0)
  1077. #define pte_lock_deinit(page) do {} while (0)
  1078. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  1079. #endif /* USE_SPLIT_PTLOCKS */
  1080. static inline void pgtable_page_ctor(struct page *page)
  1081. {
  1082. pte_lock_init(page);
  1083. inc_zone_page_state(page, NR_PAGETABLE);
  1084. }
  1085. static inline void pgtable_page_dtor(struct page *page)
  1086. {
  1087. pte_lock_deinit(page);
  1088. dec_zone_page_state(page, NR_PAGETABLE);
  1089. }
  1090. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1091. ({ \
  1092. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1093. pte_t *__pte = pte_offset_map(pmd, address); \
  1094. *(ptlp) = __ptl; \
  1095. spin_lock(__ptl); \
  1096. __pte; \
  1097. })
  1098. #define pte_unmap_unlock(pte, ptl) do { \
  1099. spin_unlock(ptl); \
  1100. pte_unmap(pte); \
  1101. } while (0)
  1102. #define pte_alloc_map(mm, vma, pmd, address) \
  1103. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1104. pmd, address))? \
  1105. NULL: pte_offset_map(pmd, address))
  1106. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1107. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1108. pmd, address))? \
  1109. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1110. #define pte_alloc_kernel(pmd, address) \
  1111. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1112. NULL: pte_offset_kernel(pmd, address))
  1113. extern void free_area_init(unsigned long * zones_size);
  1114. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1115. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1116. extern void free_initmem(void);
  1117. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1118. /*
  1119. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1120. * zones, allocate the backing mem_map and account for memory holes in a more
  1121. * architecture independent manner. This is a substitute for creating the
  1122. * zone_sizes[] and zholes_size[] arrays and passing them to
  1123. * free_area_init_node()
  1124. *
  1125. * An architecture is expected to register range of page frames backed by
  1126. * physical memory with memblock_add[_node]() before calling
  1127. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1128. * usage, an architecture is expected to do something like
  1129. *
  1130. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1131. * max_highmem_pfn};
  1132. * for_each_valid_physical_page_range()
  1133. * memblock_add_node(base, size, nid)
  1134. * free_area_init_nodes(max_zone_pfns);
  1135. *
  1136. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1137. * registered physical page range. Similarly
  1138. * sparse_memory_present_with_active_regions() calls memory_present() for
  1139. * each range when SPARSEMEM is enabled.
  1140. *
  1141. * See mm/page_alloc.c for more information on each function exposed by
  1142. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1143. */
  1144. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1145. unsigned long node_map_pfn_alignment(void);
  1146. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1147. unsigned long end_pfn);
  1148. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1149. unsigned long end_pfn);
  1150. extern void get_pfn_range_for_nid(unsigned int nid,
  1151. unsigned long *start_pfn, unsigned long *end_pfn);
  1152. extern unsigned long find_min_pfn_with_active_regions(void);
  1153. extern void free_bootmem_with_active_regions(int nid,
  1154. unsigned long max_low_pfn);
  1155. extern void sparse_memory_present_with_active_regions(int nid);
  1156. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1157. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1158. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1159. static inline int __early_pfn_to_nid(unsigned long pfn)
  1160. {
  1161. return 0;
  1162. }
  1163. #else
  1164. /* please see mm/page_alloc.c */
  1165. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1166. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1167. /* there is a per-arch backend function. */
  1168. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1169. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1170. #endif
  1171. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1172. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1173. unsigned long, enum memmap_context);
  1174. extern void setup_per_zone_wmarks(void);
  1175. extern int __meminit init_per_zone_wmark_min(void);
  1176. extern void mem_init(void);
  1177. extern void __init mmap_init(void);
  1178. extern void show_mem(unsigned int flags);
  1179. extern void si_meminfo(struct sysinfo * val);
  1180. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1181. extern int after_bootmem;
  1182. extern __printf(3, 4)
  1183. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
  1184. extern void setup_per_cpu_pageset(void);
  1185. extern void zone_pcp_update(struct zone *zone);
  1186. extern void zone_pcp_reset(struct zone *zone);
  1187. /* nommu.c */
  1188. extern atomic_long_t mmap_pages_allocated;
  1189. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1190. /* interval_tree.c */
  1191. void vma_interval_tree_insert(struct vm_area_struct *node,
  1192. struct rb_root *root);
  1193. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1194. struct vm_area_struct *prev,
  1195. struct rb_root *root);
  1196. void vma_interval_tree_remove(struct vm_area_struct *node,
  1197. struct rb_root *root);
  1198. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1199. unsigned long start, unsigned long last);
  1200. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1201. unsigned long start, unsigned long last);
  1202. #define vma_interval_tree_foreach(vma, root, start, last) \
  1203. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1204. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1205. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1206. struct list_head *list)
  1207. {
  1208. list_add_tail(&vma->shared.nonlinear, list);
  1209. }
  1210. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1211. struct rb_root *root);
  1212. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1213. struct rb_root *root);
  1214. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1215. struct rb_root *root, unsigned long start, unsigned long last);
  1216. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1217. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1218. #ifdef CONFIG_DEBUG_VM_RB
  1219. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1220. #endif
  1221. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1222. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1223. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1224. /* mmap.c */
  1225. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1226. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1227. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1228. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1229. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1230. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1231. struct mempolicy *);
  1232. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1233. extern int split_vma(struct mm_struct *,
  1234. struct vm_area_struct *, unsigned long addr, int new_below);
  1235. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1236. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1237. struct rb_node **, struct rb_node *);
  1238. extern void unlink_file_vma(struct vm_area_struct *);
  1239. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1240. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1241. bool *need_rmap_locks);
  1242. extern void exit_mmap(struct mm_struct *);
  1243. extern int mm_take_all_locks(struct mm_struct *mm);
  1244. extern void mm_drop_all_locks(struct mm_struct *mm);
  1245. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1246. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1247. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1248. extern int install_special_mapping(struct mm_struct *mm,
  1249. unsigned long addr, unsigned long len,
  1250. unsigned long flags, struct page **pages);
  1251. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1252. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1253. unsigned long len, unsigned long flags,
  1254. vm_flags_t vm_flags, unsigned long pgoff);
  1255. extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
  1256. unsigned long, unsigned long,
  1257. unsigned long, unsigned long);
  1258. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1259. /* These take the mm semaphore themselves */
  1260. extern unsigned long vm_brk(unsigned long, unsigned long);
  1261. extern int vm_munmap(unsigned long, size_t);
  1262. extern unsigned long vm_mmap(struct file *, unsigned long,
  1263. unsigned long, unsigned long,
  1264. unsigned long, unsigned long);
  1265. struct vm_unmapped_area_info {
  1266. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1267. unsigned long flags;
  1268. unsigned long length;
  1269. unsigned long low_limit;
  1270. unsigned long high_limit;
  1271. unsigned long align_mask;
  1272. unsigned long align_offset;
  1273. };
  1274. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1275. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1276. /*
  1277. * Search for an unmapped address range.
  1278. *
  1279. * We are looking for a range that:
  1280. * - does not intersect with any VMA;
  1281. * - is contained within the [low_limit, high_limit) interval;
  1282. * - is at least the desired size.
  1283. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1284. */
  1285. static inline unsigned long
  1286. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1287. {
  1288. if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
  1289. return unmapped_area(info);
  1290. else
  1291. return unmapped_area_topdown(info);
  1292. }
  1293. /* truncate.c */
  1294. extern void truncate_inode_pages(struct address_space *, loff_t);
  1295. extern void truncate_inode_pages_range(struct address_space *,
  1296. loff_t lstart, loff_t lend);
  1297. /* generic vm_area_ops exported for stackable file systems */
  1298. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1299. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1300. /* mm/page-writeback.c */
  1301. int write_one_page(struct page *page, int wait);
  1302. void task_dirty_inc(struct task_struct *tsk);
  1303. /* readahead.c */
  1304. #define VM_MAX_READAHEAD 128 /* kbytes */
  1305. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1306. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1307. pgoff_t offset, unsigned long nr_to_read);
  1308. void page_cache_sync_readahead(struct address_space *mapping,
  1309. struct file_ra_state *ra,
  1310. struct file *filp,
  1311. pgoff_t offset,
  1312. unsigned long size);
  1313. void page_cache_async_readahead(struct address_space *mapping,
  1314. struct file_ra_state *ra,
  1315. struct file *filp,
  1316. struct page *pg,
  1317. pgoff_t offset,
  1318. unsigned long size);
  1319. unsigned long max_sane_readahead(unsigned long nr);
  1320. unsigned long ra_submit(struct file_ra_state *ra,
  1321. struct address_space *mapping,
  1322. struct file *filp);
  1323. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1324. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1325. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1326. extern int expand_downwards(struct vm_area_struct *vma,
  1327. unsigned long address);
  1328. #if VM_GROWSUP
  1329. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1330. #else
  1331. #define expand_upwards(vma, address) do { } while (0)
  1332. #endif
  1333. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1334. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1335. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1336. struct vm_area_struct **pprev);
  1337. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1338. NULL if none. Assume start_addr < end_addr. */
  1339. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1340. {
  1341. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1342. if (vma && end_addr <= vma->vm_start)
  1343. vma = NULL;
  1344. return vma;
  1345. }
  1346. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1347. {
  1348. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1349. }
  1350. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1351. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1352. unsigned long vm_start, unsigned long vm_end)
  1353. {
  1354. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1355. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1356. vma = NULL;
  1357. return vma;
  1358. }
  1359. #ifdef CONFIG_MMU
  1360. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1361. #else
  1362. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1363. {
  1364. return __pgprot(0);
  1365. }
  1366. #endif
  1367. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1368. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1369. unsigned long pfn, unsigned long size, pgprot_t);
  1370. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1371. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1372. unsigned long pfn);
  1373. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1374. unsigned long pfn);
  1375. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1376. unsigned int foll_flags);
  1377. #define FOLL_WRITE 0x01 /* check pte is writable */
  1378. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1379. #define FOLL_GET 0x04 /* do get_page on page */
  1380. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1381. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1382. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1383. * and return without waiting upon it */
  1384. #define FOLL_MLOCK 0x40 /* mark page as mlocked */
  1385. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1386. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1387. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1388. void *data);
  1389. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1390. unsigned long size, pte_fn_t fn, void *data);
  1391. #ifdef CONFIG_PROC_FS
  1392. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1393. #else
  1394. static inline void vm_stat_account(struct mm_struct *mm,
  1395. unsigned long flags, struct file *file, long pages)
  1396. {
  1397. mm->total_vm += pages;
  1398. }
  1399. #endif /* CONFIG_PROC_FS */
  1400. #ifdef CONFIG_DEBUG_PAGEALLOC
  1401. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1402. #ifdef CONFIG_HIBERNATION
  1403. extern bool kernel_page_present(struct page *page);
  1404. #endif /* CONFIG_HIBERNATION */
  1405. #else
  1406. static inline void
  1407. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1408. #ifdef CONFIG_HIBERNATION
  1409. static inline bool kernel_page_present(struct page *page) { return true; }
  1410. #endif /* CONFIG_HIBERNATION */
  1411. #endif
  1412. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1413. #ifdef __HAVE_ARCH_GATE_AREA
  1414. int in_gate_area_no_mm(unsigned long addr);
  1415. int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1416. #else
  1417. int in_gate_area_no_mm(unsigned long addr);
  1418. #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
  1419. #endif /* __HAVE_ARCH_GATE_AREA */
  1420. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1421. void __user *, size_t *, loff_t *);
  1422. unsigned long shrink_slab(struct shrink_control *shrink,
  1423. unsigned long nr_pages_scanned,
  1424. unsigned long lru_pages);
  1425. #ifndef CONFIG_MMU
  1426. #define randomize_va_space 0
  1427. #else
  1428. extern int randomize_va_space;
  1429. #endif
  1430. const char * arch_vma_name(struct vm_area_struct *vma);
  1431. void print_vma_addr(char *prefix, unsigned long rip);
  1432. void sparse_mem_maps_populate_node(struct page **map_map,
  1433. unsigned long pnum_begin,
  1434. unsigned long pnum_end,
  1435. unsigned long map_count,
  1436. int nodeid);
  1437. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1438. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1439. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1440. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1441. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1442. void *vmemmap_alloc_block(unsigned long size, int node);
  1443. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1444. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1445. int vmemmap_populate_basepages(struct page *start_page,
  1446. unsigned long pages, int node);
  1447. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1448. void vmemmap_populate_print_last(void);
  1449. enum mf_flags {
  1450. MF_COUNT_INCREASED = 1 << 0,
  1451. MF_ACTION_REQUIRED = 1 << 1,
  1452. MF_MUST_KILL = 1 << 2,
  1453. };
  1454. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  1455. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  1456. extern int unpoison_memory(unsigned long pfn);
  1457. extern int sysctl_memory_failure_early_kill;
  1458. extern int sysctl_memory_failure_recovery;
  1459. extern void shake_page(struct page *p, int access);
  1460. extern atomic_long_t mce_bad_pages;
  1461. extern int soft_offline_page(struct page *page, int flags);
  1462. extern void dump_page(struct page *page);
  1463. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1464. extern void clear_huge_page(struct page *page,
  1465. unsigned long addr,
  1466. unsigned int pages_per_huge_page);
  1467. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1468. unsigned long addr, struct vm_area_struct *vma,
  1469. unsigned int pages_per_huge_page);
  1470. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1471. #ifdef CONFIG_DEBUG_PAGEALLOC
  1472. extern unsigned int _debug_guardpage_minorder;
  1473. static inline unsigned int debug_guardpage_minorder(void)
  1474. {
  1475. return _debug_guardpage_minorder;
  1476. }
  1477. static inline bool page_is_guard(struct page *page)
  1478. {
  1479. return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  1480. }
  1481. #else
  1482. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  1483. static inline bool page_is_guard(struct page *page) { return false; }
  1484. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1485. #endif /* __KERNEL__ */
  1486. #endif /* _LINUX_MM_H */