ibmphp_ebda.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203
  1. /*
  2. * IBM Hot Plug Controller Driver
  3. *
  4. * Written By: Tong Yu, IBM Corporation
  5. *
  6. * Copyright (C) 2001,2003 Greg Kroah-Hartman (greg@kroah.com)
  7. * Copyright (C) 2001-2003 IBM Corp.
  8. *
  9. * All rights reserved.
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or (at
  14. * your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful, but
  17. * WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  19. * NON INFRINGEMENT. See the GNU General Public License for more
  20. * details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. *
  26. * Send feedback to <gregkh@us.ibm.com>
  27. *
  28. */
  29. #include <linux/module.h>
  30. #include <linux/errno.h>
  31. #include <linux/mm.h>
  32. #include <linux/slab.h>
  33. #include <linux/pci.h>
  34. #include <linux/list.h>
  35. #include <linux/init.h>
  36. #include "ibmphp.h"
  37. /*
  38. * POST builds data blocks(in this data block definition, a char-1
  39. * byte, short(or word)-2 byte, long(dword)-4 byte) in the Extended
  40. * BIOS Data Area which describe the configuration of the hot-plug
  41. * controllers and resources used by the PCI Hot-Plug devices.
  42. *
  43. * This file walks EBDA, maps data block from physical addr,
  44. * reconstruct linked lists about all system resource(MEM, PFM, IO)
  45. * already assigned by POST, as well as linked lists about hot plug
  46. * controllers (ctlr#, slot#, bus&slot features...)
  47. */
  48. /* Global lists */
  49. LIST_HEAD (ibmphp_ebda_pci_rsrc_head);
  50. LIST_HEAD (ibmphp_slot_head);
  51. /* Local variables */
  52. static struct ebda_hpc_list *hpc_list_ptr;
  53. static struct ebda_rsrc_list *rsrc_list_ptr;
  54. static struct rio_table_hdr *rio_table_ptr = NULL;
  55. static LIST_HEAD (ebda_hpc_head);
  56. static LIST_HEAD (bus_info_head);
  57. static LIST_HEAD (rio_vg_head);
  58. static LIST_HEAD (rio_lo_head);
  59. static LIST_HEAD (opt_vg_head);
  60. static LIST_HEAD (opt_lo_head);
  61. static void __iomem *io_mem;
  62. /* Local functions */
  63. static int ebda_rsrc_controller (void);
  64. static int ebda_rsrc_rsrc (void);
  65. static int ebda_rio_table (void);
  66. static struct ebda_hpc_list * __init alloc_ebda_hpc_list (void)
  67. {
  68. return kzalloc(sizeof(struct ebda_hpc_list), GFP_KERNEL);
  69. }
  70. static struct controller *alloc_ebda_hpc (u32 slot_count, u32 bus_count)
  71. {
  72. struct controller *controller;
  73. struct ebda_hpc_slot *slots;
  74. struct ebda_hpc_bus *buses;
  75. controller = kzalloc(sizeof(struct controller), GFP_KERNEL);
  76. if (!controller)
  77. goto error;
  78. slots = kcalloc(slot_count, sizeof(struct ebda_hpc_slot), GFP_KERNEL);
  79. if (!slots)
  80. goto error_contr;
  81. controller->slots = slots;
  82. buses = kcalloc(bus_count, sizeof(struct ebda_hpc_bus), GFP_KERNEL);
  83. if (!buses)
  84. goto error_slots;
  85. controller->buses = buses;
  86. return controller;
  87. error_slots:
  88. kfree(controller->slots);
  89. error_contr:
  90. kfree(controller);
  91. error:
  92. return NULL;
  93. }
  94. static void free_ebda_hpc (struct controller *controller)
  95. {
  96. kfree (controller->slots);
  97. kfree (controller->buses);
  98. kfree (controller);
  99. }
  100. static struct ebda_rsrc_list * __init alloc_ebda_rsrc_list (void)
  101. {
  102. return kzalloc(sizeof(struct ebda_rsrc_list), GFP_KERNEL);
  103. }
  104. static struct ebda_pci_rsrc *alloc_ebda_pci_rsrc (void)
  105. {
  106. return kzalloc(sizeof(struct ebda_pci_rsrc), GFP_KERNEL);
  107. }
  108. static void __init print_bus_info (void)
  109. {
  110. struct bus_info *ptr;
  111. list_for_each_entry(ptr, &bus_info_head, bus_info_list) {
  112. debug ("%s - slot_min = %x\n", __func__, ptr->slot_min);
  113. debug ("%s - slot_max = %x\n", __func__, ptr->slot_max);
  114. debug ("%s - slot_count = %x\n", __func__, ptr->slot_count);
  115. debug ("%s - bus# = %x\n", __func__, ptr->busno);
  116. debug ("%s - current_speed = %x\n", __func__, ptr->current_speed);
  117. debug ("%s - controller_id = %x\n", __func__, ptr->controller_id);
  118. debug ("%s - slots_at_33_conv = %x\n", __func__, ptr->slots_at_33_conv);
  119. debug ("%s - slots_at_66_conv = %x\n", __func__, ptr->slots_at_66_conv);
  120. debug ("%s - slots_at_66_pcix = %x\n", __func__, ptr->slots_at_66_pcix);
  121. debug ("%s - slots_at_100_pcix = %x\n", __func__, ptr->slots_at_100_pcix);
  122. debug ("%s - slots_at_133_pcix = %x\n", __func__, ptr->slots_at_133_pcix);
  123. }
  124. }
  125. static void print_lo_info (void)
  126. {
  127. struct rio_detail *ptr;
  128. debug ("print_lo_info ----\n");
  129. list_for_each_entry(ptr, &rio_lo_head, rio_detail_list) {
  130. debug ("%s - rio_node_id = %x\n", __func__, ptr->rio_node_id);
  131. debug ("%s - rio_type = %x\n", __func__, ptr->rio_type);
  132. debug ("%s - owner_id = %x\n", __func__, ptr->owner_id);
  133. debug ("%s - first_slot_num = %x\n", __func__, ptr->first_slot_num);
  134. debug ("%s - wpindex = %x\n", __func__, ptr->wpindex);
  135. debug ("%s - chassis_num = %x\n", __func__, ptr->chassis_num);
  136. }
  137. }
  138. static void print_vg_info (void)
  139. {
  140. struct rio_detail *ptr;
  141. debug ("%s ---\n", __func__);
  142. list_for_each_entry(ptr, &rio_vg_head, rio_detail_list) {
  143. debug ("%s - rio_node_id = %x\n", __func__, ptr->rio_node_id);
  144. debug ("%s - rio_type = %x\n", __func__, ptr->rio_type);
  145. debug ("%s - owner_id = %x\n", __func__, ptr->owner_id);
  146. debug ("%s - first_slot_num = %x\n", __func__, ptr->first_slot_num);
  147. debug ("%s - wpindex = %x\n", __func__, ptr->wpindex);
  148. debug ("%s - chassis_num = %x\n", __func__, ptr->chassis_num);
  149. }
  150. }
  151. static void __init print_ebda_pci_rsrc (void)
  152. {
  153. struct ebda_pci_rsrc *ptr;
  154. list_for_each_entry(ptr, &ibmphp_ebda_pci_rsrc_head, ebda_pci_rsrc_list) {
  155. debug ("%s - rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n",
  156. __func__, ptr->rsrc_type ,ptr->bus_num, ptr->dev_fun,ptr->start_addr, ptr->end_addr);
  157. }
  158. }
  159. static void __init print_ibm_slot (void)
  160. {
  161. struct slot *ptr;
  162. list_for_each_entry(ptr, &ibmphp_slot_head, ibm_slot_list) {
  163. debug ("%s - slot_number: %x\n", __func__, ptr->number);
  164. }
  165. }
  166. static void __init print_opt_vg (void)
  167. {
  168. struct opt_rio *ptr;
  169. debug ("%s ---\n", __func__);
  170. list_for_each_entry(ptr, &opt_vg_head, opt_rio_list) {
  171. debug ("%s - rio_type %x\n", __func__, ptr->rio_type);
  172. debug ("%s - chassis_num: %x\n", __func__, ptr->chassis_num);
  173. debug ("%s - first_slot_num: %x\n", __func__, ptr->first_slot_num);
  174. debug ("%s - middle_num: %x\n", __func__, ptr->middle_num);
  175. }
  176. }
  177. static void __init print_ebda_hpc (void)
  178. {
  179. struct controller *hpc_ptr;
  180. u16 index;
  181. list_for_each_entry(hpc_ptr, &ebda_hpc_head, ebda_hpc_list) {
  182. for (index = 0; index < hpc_ptr->slot_count; index++) {
  183. debug ("%s - physical slot#: %x\n", __func__, hpc_ptr->slots[index].slot_num);
  184. debug ("%s - pci bus# of the slot: %x\n", __func__, hpc_ptr->slots[index].slot_bus_num);
  185. debug ("%s - index into ctlr addr: %x\n", __func__, hpc_ptr->slots[index].ctl_index);
  186. debug ("%s - cap of the slot: %x\n", __func__, hpc_ptr->slots[index].slot_cap);
  187. }
  188. for (index = 0; index < hpc_ptr->bus_count; index++) {
  189. debug ("%s - bus# of each bus controlled by this ctlr: %x\n", __func__, hpc_ptr->buses[index].bus_num);
  190. }
  191. debug ("%s - type of hpc: %x\n", __func__, hpc_ptr->ctlr_type);
  192. switch (hpc_ptr->ctlr_type) {
  193. case 1:
  194. debug ("%s - bus: %x\n", __func__, hpc_ptr->u.pci_ctlr.bus);
  195. debug ("%s - dev_fun: %x\n", __func__, hpc_ptr->u.pci_ctlr.dev_fun);
  196. debug ("%s - irq: %x\n", __func__, hpc_ptr->irq);
  197. break;
  198. case 0:
  199. debug ("%s - io_start: %x\n", __func__, hpc_ptr->u.isa_ctlr.io_start);
  200. debug ("%s - io_end: %x\n", __func__, hpc_ptr->u.isa_ctlr.io_end);
  201. debug ("%s - irq: %x\n", __func__, hpc_ptr->irq);
  202. break;
  203. case 2:
  204. case 4:
  205. debug ("%s - wpegbbar: %lx\n", __func__, hpc_ptr->u.wpeg_ctlr.wpegbbar);
  206. debug ("%s - i2c_addr: %x\n", __func__, hpc_ptr->u.wpeg_ctlr.i2c_addr);
  207. debug ("%s - irq: %x\n", __func__, hpc_ptr->irq);
  208. break;
  209. }
  210. }
  211. }
  212. int __init ibmphp_access_ebda (void)
  213. {
  214. u8 format, num_ctlrs, rio_complete, hs_complete, ebda_sz;
  215. u16 ebda_seg, num_entries, next_offset, offset, blk_id, sub_addr, re, rc_id, re_id, base;
  216. int rc = 0;
  217. rio_complete = 0;
  218. hs_complete = 0;
  219. io_mem = ioremap ((0x40 << 4) + 0x0e, 2);
  220. if (!io_mem )
  221. return -ENOMEM;
  222. ebda_seg = readw (io_mem);
  223. iounmap (io_mem);
  224. debug ("returned ebda segment: %x\n", ebda_seg);
  225. io_mem = ioremap(ebda_seg<<4, 1);
  226. ebda_sz = readb(io_mem);
  227. iounmap(io_mem);
  228. debug("ebda size: %d(KiB)\n", ebda_sz);
  229. if (ebda_sz == 0)
  230. return -ENOMEM;
  231. io_mem = ioremap(ebda_seg<<4, (ebda_sz * 1024));
  232. if (!io_mem )
  233. return -ENOMEM;
  234. next_offset = 0x180;
  235. for (;;) {
  236. offset = next_offset;
  237. next_offset = readw (io_mem + offset); /* offset of next blk */
  238. offset += 2;
  239. if (next_offset == 0) /* 0 indicate it's last blk */
  240. break;
  241. blk_id = readw (io_mem + offset); /* this blk id */
  242. offset += 2;
  243. /* check if it is hot swap block or rio block */
  244. if (blk_id != 0x4853 && blk_id != 0x4752)
  245. continue;
  246. /* found hs table */
  247. if (blk_id == 0x4853) {
  248. debug ("now enter hot swap block---\n");
  249. debug ("hot blk id: %x\n", blk_id);
  250. format = readb (io_mem + offset);
  251. offset += 1;
  252. if (format != 4)
  253. goto error_nodev;
  254. debug ("hot blk format: %x\n", format);
  255. /* hot swap sub blk */
  256. base = offset;
  257. sub_addr = base;
  258. re = readw (io_mem + sub_addr); /* next sub blk */
  259. sub_addr += 2;
  260. rc_id = readw (io_mem + sub_addr); /* sub blk id */
  261. sub_addr += 2;
  262. if (rc_id != 0x5243)
  263. goto error_nodev;
  264. /* rc sub blk signature */
  265. num_ctlrs = readb (io_mem + sub_addr);
  266. sub_addr += 1;
  267. hpc_list_ptr = alloc_ebda_hpc_list ();
  268. if (!hpc_list_ptr) {
  269. rc = -ENOMEM;
  270. goto out;
  271. }
  272. hpc_list_ptr->format = format;
  273. hpc_list_ptr->num_ctlrs = num_ctlrs;
  274. hpc_list_ptr->phys_addr = sub_addr; /* offset of RSRC_CONTROLLER blk */
  275. debug ("info about hpc descriptor---\n");
  276. debug ("hot blk format: %x\n", format);
  277. debug ("num of controller: %x\n", num_ctlrs);
  278. debug ("offset of hpc data structure enteries: %x\n ", sub_addr);
  279. sub_addr = base + re; /* re sub blk */
  280. /* FIXME: rc is never used/checked */
  281. rc = readw (io_mem + sub_addr); /* next sub blk */
  282. sub_addr += 2;
  283. re_id = readw (io_mem + sub_addr); /* sub blk id */
  284. sub_addr += 2;
  285. if (re_id != 0x5245)
  286. goto error_nodev;
  287. /* signature of re */
  288. num_entries = readw (io_mem + sub_addr);
  289. sub_addr += 2; /* offset of RSRC_ENTRIES blk */
  290. rsrc_list_ptr = alloc_ebda_rsrc_list ();
  291. if (!rsrc_list_ptr ) {
  292. rc = -ENOMEM;
  293. goto out;
  294. }
  295. rsrc_list_ptr->format = format;
  296. rsrc_list_ptr->num_entries = num_entries;
  297. rsrc_list_ptr->phys_addr = sub_addr;
  298. debug ("info about rsrc descriptor---\n");
  299. debug ("format: %x\n", format);
  300. debug ("num of rsrc: %x\n", num_entries);
  301. debug ("offset of rsrc data structure enteries: %x\n ", sub_addr);
  302. hs_complete = 1;
  303. } else {
  304. /* found rio table, blk_id == 0x4752 */
  305. debug ("now enter io table ---\n");
  306. debug ("rio blk id: %x\n", blk_id);
  307. rio_table_ptr = kzalloc(sizeof(struct rio_table_hdr), GFP_KERNEL);
  308. if (!rio_table_ptr)
  309. return -ENOMEM;
  310. rio_table_ptr->ver_num = readb (io_mem + offset);
  311. rio_table_ptr->scal_count = readb (io_mem + offset + 1);
  312. rio_table_ptr->riodev_count = readb (io_mem + offset + 2);
  313. rio_table_ptr->offset = offset +3 ;
  314. debug("info about rio table hdr ---\n");
  315. debug("ver_num: %x\nscal_count: %x\nriodev_count: %x\noffset of rio table: %x\n ",
  316. rio_table_ptr->ver_num, rio_table_ptr->scal_count,
  317. rio_table_ptr->riodev_count, rio_table_ptr->offset);
  318. rio_complete = 1;
  319. }
  320. }
  321. if (!hs_complete && !rio_complete)
  322. goto error_nodev;
  323. if (rio_table_ptr) {
  324. if (rio_complete && rio_table_ptr->ver_num == 3) {
  325. rc = ebda_rio_table ();
  326. if (rc)
  327. goto out;
  328. }
  329. }
  330. rc = ebda_rsrc_controller ();
  331. if (rc)
  332. goto out;
  333. rc = ebda_rsrc_rsrc ();
  334. goto out;
  335. error_nodev:
  336. rc = -ENODEV;
  337. out:
  338. iounmap (io_mem);
  339. return rc;
  340. }
  341. /*
  342. * map info of scalability details and rio details from physical address
  343. */
  344. static int __init ebda_rio_table (void)
  345. {
  346. u16 offset;
  347. u8 i;
  348. struct rio_detail *rio_detail_ptr;
  349. offset = rio_table_ptr->offset;
  350. offset += 12 * rio_table_ptr->scal_count;
  351. // we do concern about rio details
  352. for (i = 0; i < rio_table_ptr->riodev_count; i++) {
  353. rio_detail_ptr = kzalloc(sizeof(struct rio_detail), GFP_KERNEL);
  354. if (!rio_detail_ptr)
  355. return -ENOMEM;
  356. rio_detail_ptr->rio_node_id = readb (io_mem + offset);
  357. rio_detail_ptr->bbar = readl (io_mem + offset + 1);
  358. rio_detail_ptr->rio_type = readb (io_mem + offset + 5);
  359. rio_detail_ptr->owner_id = readb (io_mem + offset + 6);
  360. rio_detail_ptr->port0_node_connect = readb (io_mem + offset + 7);
  361. rio_detail_ptr->port0_port_connect = readb (io_mem + offset + 8);
  362. rio_detail_ptr->port1_node_connect = readb (io_mem + offset + 9);
  363. rio_detail_ptr->port1_port_connect = readb (io_mem + offset + 10);
  364. rio_detail_ptr->first_slot_num = readb (io_mem + offset + 11);
  365. rio_detail_ptr->status = readb (io_mem + offset + 12);
  366. rio_detail_ptr->wpindex = readb (io_mem + offset + 13);
  367. rio_detail_ptr->chassis_num = readb (io_mem + offset + 14);
  368. // debug ("rio_node_id: %x\nbbar: %x\nrio_type: %x\nowner_id: %x\nport0_node: %x\nport0_port: %x\nport1_node: %x\nport1_port: %x\nfirst_slot_num: %x\nstatus: %x\n", rio_detail_ptr->rio_node_id, rio_detail_ptr->bbar, rio_detail_ptr->rio_type, rio_detail_ptr->owner_id, rio_detail_ptr->port0_node_connect, rio_detail_ptr->port0_port_connect, rio_detail_ptr->port1_node_connect, rio_detail_ptr->port1_port_connect, rio_detail_ptr->first_slot_num, rio_detail_ptr->status);
  369. //create linked list of chassis
  370. if (rio_detail_ptr->rio_type == 4 || rio_detail_ptr->rio_type == 5)
  371. list_add (&rio_detail_ptr->rio_detail_list, &rio_vg_head);
  372. //create linked list of expansion box
  373. else if (rio_detail_ptr->rio_type == 6 || rio_detail_ptr->rio_type == 7)
  374. list_add (&rio_detail_ptr->rio_detail_list, &rio_lo_head);
  375. else
  376. // not in my concern
  377. kfree (rio_detail_ptr);
  378. offset += 15;
  379. }
  380. print_lo_info ();
  381. print_vg_info ();
  382. return 0;
  383. }
  384. /*
  385. * reorganizing linked list of chassis
  386. */
  387. static struct opt_rio *search_opt_vg (u8 chassis_num)
  388. {
  389. struct opt_rio *ptr;
  390. list_for_each_entry(ptr, &opt_vg_head, opt_rio_list) {
  391. if (ptr->chassis_num == chassis_num)
  392. return ptr;
  393. }
  394. return NULL;
  395. }
  396. static int __init combine_wpg_for_chassis (void)
  397. {
  398. struct opt_rio *opt_rio_ptr = NULL;
  399. struct rio_detail *rio_detail_ptr = NULL;
  400. list_for_each_entry(rio_detail_ptr, &rio_vg_head, rio_detail_list) {
  401. opt_rio_ptr = search_opt_vg (rio_detail_ptr->chassis_num);
  402. if (!opt_rio_ptr) {
  403. opt_rio_ptr = kzalloc(sizeof(struct opt_rio), GFP_KERNEL);
  404. if (!opt_rio_ptr)
  405. return -ENOMEM;
  406. opt_rio_ptr->rio_type = rio_detail_ptr->rio_type;
  407. opt_rio_ptr->chassis_num = rio_detail_ptr->chassis_num;
  408. opt_rio_ptr->first_slot_num = rio_detail_ptr->first_slot_num;
  409. opt_rio_ptr->middle_num = rio_detail_ptr->first_slot_num;
  410. list_add (&opt_rio_ptr->opt_rio_list, &opt_vg_head);
  411. } else {
  412. opt_rio_ptr->first_slot_num = min (opt_rio_ptr->first_slot_num, rio_detail_ptr->first_slot_num);
  413. opt_rio_ptr->middle_num = max (opt_rio_ptr->middle_num, rio_detail_ptr->first_slot_num);
  414. }
  415. }
  416. print_opt_vg ();
  417. return 0;
  418. }
  419. /*
  420. * reorganizing linked list of expansion box
  421. */
  422. static struct opt_rio_lo *search_opt_lo (u8 chassis_num)
  423. {
  424. struct opt_rio_lo *ptr;
  425. list_for_each_entry(ptr, &opt_lo_head, opt_rio_lo_list) {
  426. if (ptr->chassis_num == chassis_num)
  427. return ptr;
  428. }
  429. return NULL;
  430. }
  431. static int combine_wpg_for_expansion (void)
  432. {
  433. struct opt_rio_lo *opt_rio_lo_ptr = NULL;
  434. struct rio_detail *rio_detail_ptr = NULL;
  435. list_for_each_entry(rio_detail_ptr, &rio_lo_head, rio_detail_list) {
  436. opt_rio_lo_ptr = search_opt_lo (rio_detail_ptr->chassis_num);
  437. if (!opt_rio_lo_ptr) {
  438. opt_rio_lo_ptr = kzalloc(sizeof(struct opt_rio_lo), GFP_KERNEL);
  439. if (!opt_rio_lo_ptr)
  440. return -ENOMEM;
  441. opt_rio_lo_ptr->rio_type = rio_detail_ptr->rio_type;
  442. opt_rio_lo_ptr->chassis_num = rio_detail_ptr->chassis_num;
  443. opt_rio_lo_ptr->first_slot_num = rio_detail_ptr->first_slot_num;
  444. opt_rio_lo_ptr->middle_num = rio_detail_ptr->first_slot_num;
  445. opt_rio_lo_ptr->pack_count = 1;
  446. list_add (&opt_rio_lo_ptr->opt_rio_lo_list, &opt_lo_head);
  447. } else {
  448. opt_rio_lo_ptr->first_slot_num = min (opt_rio_lo_ptr->first_slot_num, rio_detail_ptr->first_slot_num);
  449. opt_rio_lo_ptr->middle_num = max (opt_rio_lo_ptr->middle_num, rio_detail_ptr->first_slot_num);
  450. opt_rio_lo_ptr->pack_count = 2;
  451. }
  452. }
  453. return 0;
  454. }
  455. /* Since we don't know the max slot number per each chassis, hence go
  456. * through the list of all chassis to find out the range
  457. * Arguments: slot_num, 1st slot number of the chassis we think we are on,
  458. * var (0 = chassis, 1 = expansion box)
  459. */
  460. static int first_slot_num (u8 slot_num, u8 first_slot, u8 var)
  461. {
  462. struct opt_rio *opt_vg_ptr = NULL;
  463. struct opt_rio_lo *opt_lo_ptr = NULL;
  464. int rc = 0;
  465. if (!var) {
  466. list_for_each_entry(opt_vg_ptr, &opt_vg_head, opt_rio_list) {
  467. if ((first_slot < opt_vg_ptr->first_slot_num) && (slot_num >= opt_vg_ptr->first_slot_num)) {
  468. rc = -ENODEV;
  469. break;
  470. }
  471. }
  472. } else {
  473. list_for_each_entry(opt_lo_ptr, &opt_lo_head, opt_rio_lo_list) {
  474. if ((first_slot < opt_lo_ptr->first_slot_num) && (slot_num >= opt_lo_ptr->first_slot_num)) {
  475. rc = -ENODEV;
  476. break;
  477. }
  478. }
  479. }
  480. return rc;
  481. }
  482. static struct opt_rio_lo * find_rxe_num (u8 slot_num)
  483. {
  484. struct opt_rio_lo *opt_lo_ptr;
  485. list_for_each_entry(opt_lo_ptr, &opt_lo_head, opt_rio_lo_list) {
  486. //check to see if this slot_num belongs to expansion box
  487. if ((slot_num >= opt_lo_ptr->first_slot_num) && (!first_slot_num (slot_num, opt_lo_ptr->first_slot_num, 1)))
  488. return opt_lo_ptr;
  489. }
  490. return NULL;
  491. }
  492. static struct opt_rio * find_chassis_num (u8 slot_num)
  493. {
  494. struct opt_rio *opt_vg_ptr;
  495. list_for_each_entry(opt_vg_ptr, &opt_vg_head, opt_rio_list) {
  496. //check to see if this slot_num belongs to chassis
  497. if ((slot_num >= opt_vg_ptr->first_slot_num) && (!first_slot_num (slot_num, opt_vg_ptr->first_slot_num, 0)))
  498. return opt_vg_ptr;
  499. }
  500. return NULL;
  501. }
  502. /* This routine will find out how many slots are in the chassis, so that
  503. * the slot numbers for rxe100 would start from 1, and not from 7, or 6 etc
  504. */
  505. static u8 calculate_first_slot (u8 slot_num)
  506. {
  507. u8 first_slot = 1;
  508. struct slot * slot_cur;
  509. list_for_each_entry(slot_cur, &ibmphp_slot_head, ibm_slot_list) {
  510. if (slot_cur->ctrl) {
  511. if ((slot_cur->ctrl->ctlr_type != 4) && (slot_cur->ctrl->ending_slot_num > first_slot) && (slot_num > slot_cur->ctrl->ending_slot_num))
  512. first_slot = slot_cur->ctrl->ending_slot_num;
  513. }
  514. }
  515. return first_slot + 1;
  516. }
  517. #define SLOT_NAME_SIZE 30
  518. static char *create_file_name (struct slot * slot_cur)
  519. {
  520. struct opt_rio *opt_vg_ptr = NULL;
  521. struct opt_rio_lo *opt_lo_ptr = NULL;
  522. static char str[SLOT_NAME_SIZE];
  523. int which = 0; /* rxe = 1, chassis = 0 */
  524. u8 number = 1; /* either chassis or rxe # */
  525. u8 first_slot = 1;
  526. u8 slot_num;
  527. u8 flag = 0;
  528. if (!slot_cur) {
  529. err ("Structure passed is empty\n");
  530. return NULL;
  531. }
  532. slot_num = slot_cur->number;
  533. memset (str, 0, sizeof(str));
  534. if (rio_table_ptr) {
  535. if (rio_table_ptr->ver_num == 3) {
  536. opt_vg_ptr = find_chassis_num (slot_num);
  537. opt_lo_ptr = find_rxe_num (slot_num);
  538. }
  539. }
  540. if (opt_vg_ptr) {
  541. if (opt_lo_ptr) {
  542. if ((slot_num - opt_vg_ptr->first_slot_num) > (slot_num - opt_lo_ptr->first_slot_num)) {
  543. number = opt_lo_ptr->chassis_num;
  544. first_slot = opt_lo_ptr->first_slot_num;
  545. which = 1; /* it is RXE */
  546. } else {
  547. first_slot = opt_vg_ptr->first_slot_num;
  548. number = opt_vg_ptr->chassis_num;
  549. which = 0;
  550. }
  551. } else {
  552. first_slot = opt_vg_ptr->first_slot_num;
  553. number = opt_vg_ptr->chassis_num;
  554. which = 0;
  555. }
  556. ++flag;
  557. } else if (opt_lo_ptr) {
  558. number = opt_lo_ptr->chassis_num;
  559. first_slot = opt_lo_ptr->first_slot_num;
  560. which = 1;
  561. ++flag;
  562. } else if (rio_table_ptr) {
  563. if (rio_table_ptr->ver_num == 3) {
  564. /* if both NULL and we DO have correct RIO table in BIOS */
  565. return NULL;
  566. }
  567. }
  568. if (!flag) {
  569. if (slot_cur->ctrl->ctlr_type == 4) {
  570. first_slot = calculate_first_slot (slot_num);
  571. which = 1;
  572. } else {
  573. which = 0;
  574. }
  575. }
  576. sprintf(str, "%s%dslot%d",
  577. which == 0 ? "chassis" : "rxe",
  578. number, slot_num - first_slot + 1);
  579. return str;
  580. }
  581. static int fillslotinfo(struct hotplug_slot *hotplug_slot)
  582. {
  583. struct slot *slot;
  584. int rc = 0;
  585. if (!hotplug_slot || !hotplug_slot->private)
  586. return -EINVAL;
  587. slot = hotplug_slot->private;
  588. rc = ibmphp_hpc_readslot(slot, READ_ALLSTAT, NULL);
  589. if (rc)
  590. return rc;
  591. // power - enabled:1 not:0
  592. hotplug_slot->info->power_status = SLOT_POWER(slot->status);
  593. // attention - off:0, on:1, blinking:2
  594. hotplug_slot->info->attention_status = SLOT_ATTN(slot->status, slot->ext_status);
  595. // latch - open:1 closed:0
  596. hotplug_slot->info->latch_status = SLOT_LATCH(slot->status);
  597. // pci board - present:1 not:0
  598. if (SLOT_PRESENT (slot->status))
  599. hotplug_slot->info->adapter_status = 1;
  600. else
  601. hotplug_slot->info->adapter_status = 0;
  602. /*
  603. if (slot->bus_on->supported_bus_mode
  604. && (slot->bus_on->supported_speed == BUS_SPEED_66))
  605. hotplug_slot->info->max_bus_speed_status = BUS_SPEED_66PCIX;
  606. else
  607. hotplug_slot->info->max_bus_speed_status = slot->bus_on->supported_speed;
  608. */
  609. return rc;
  610. }
  611. static void release_slot(struct hotplug_slot *hotplug_slot)
  612. {
  613. struct slot *slot;
  614. if (!hotplug_slot || !hotplug_slot->private)
  615. return;
  616. slot = hotplug_slot->private;
  617. kfree(slot->hotplug_slot->info);
  618. kfree(slot->hotplug_slot);
  619. slot->ctrl = NULL;
  620. slot->bus_on = NULL;
  621. /* we don't want to actually remove the resources, since free_resources will do just that */
  622. ibmphp_unconfigure_card(&slot, -1);
  623. kfree (slot);
  624. }
  625. static struct pci_driver ibmphp_driver;
  626. /*
  627. * map info (ctlr-id, slot count, slot#.. bus count, bus#, ctlr type...) of
  628. * each hpc from physical address to a list of hot plug controllers based on
  629. * hpc descriptors.
  630. */
  631. static int __init ebda_rsrc_controller (void)
  632. {
  633. u16 addr, addr_slot, addr_bus;
  634. u8 ctlr_id, temp, bus_index;
  635. u16 ctlr, slot, bus;
  636. u16 slot_num, bus_num, index;
  637. struct hotplug_slot *hp_slot_ptr;
  638. struct controller *hpc_ptr;
  639. struct ebda_hpc_bus *bus_ptr;
  640. struct ebda_hpc_slot *slot_ptr;
  641. struct bus_info *bus_info_ptr1, *bus_info_ptr2;
  642. int rc;
  643. struct slot *tmp_slot;
  644. char name[SLOT_NAME_SIZE];
  645. addr = hpc_list_ptr->phys_addr;
  646. for (ctlr = 0; ctlr < hpc_list_ptr->num_ctlrs; ctlr++) {
  647. bus_index = 1;
  648. ctlr_id = readb (io_mem + addr);
  649. addr += 1;
  650. slot_num = readb (io_mem + addr);
  651. addr += 1;
  652. addr_slot = addr; /* offset of slot structure */
  653. addr += (slot_num * 4);
  654. bus_num = readb (io_mem + addr);
  655. addr += 1;
  656. addr_bus = addr; /* offset of bus */
  657. addr += (bus_num * 9); /* offset of ctlr_type */
  658. temp = readb (io_mem + addr);
  659. addr += 1;
  660. /* init hpc structure */
  661. hpc_ptr = alloc_ebda_hpc (slot_num, bus_num);
  662. if (!hpc_ptr ) {
  663. rc = -ENOMEM;
  664. goto error_no_hpc;
  665. }
  666. hpc_ptr->ctlr_id = ctlr_id;
  667. hpc_ptr->ctlr_relative_id = ctlr;
  668. hpc_ptr->slot_count = slot_num;
  669. hpc_ptr->bus_count = bus_num;
  670. debug ("now enter ctlr data struture ---\n");
  671. debug ("ctlr id: %x\n", ctlr_id);
  672. debug ("ctlr_relative_id: %x\n", hpc_ptr->ctlr_relative_id);
  673. debug ("count of slots controlled by this ctlr: %x\n", slot_num);
  674. debug ("count of buses controlled by this ctlr: %x\n", bus_num);
  675. /* init slot structure, fetch slot, bus, cap... */
  676. slot_ptr = hpc_ptr->slots;
  677. for (slot = 0; slot < slot_num; slot++) {
  678. slot_ptr->slot_num = readb (io_mem + addr_slot);
  679. slot_ptr->slot_bus_num = readb (io_mem + addr_slot + slot_num);
  680. slot_ptr->ctl_index = readb (io_mem + addr_slot + 2*slot_num);
  681. slot_ptr->slot_cap = readb (io_mem + addr_slot + 3*slot_num);
  682. // create bus_info lined list --- if only one slot per bus: slot_min = slot_max
  683. bus_info_ptr2 = ibmphp_find_same_bus_num (slot_ptr->slot_bus_num);
  684. if (!bus_info_ptr2) {
  685. bus_info_ptr1 = kzalloc(sizeof(struct bus_info), GFP_KERNEL);
  686. if (!bus_info_ptr1) {
  687. rc = -ENOMEM;
  688. goto error_no_hp_slot;
  689. }
  690. bus_info_ptr1->slot_min = slot_ptr->slot_num;
  691. bus_info_ptr1->slot_max = slot_ptr->slot_num;
  692. bus_info_ptr1->slot_count += 1;
  693. bus_info_ptr1->busno = slot_ptr->slot_bus_num;
  694. bus_info_ptr1->index = bus_index++;
  695. bus_info_ptr1->current_speed = 0xff;
  696. bus_info_ptr1->current_bus_mode = 0xff;
  697. bus_info_ptr1->controller_id = hpc_ptr->ctlr_id;
  698. list_add_tail (&bus_info_ptr1->bus_info_list, &bus_info_head);
  699. } else {
  700. bus_info_ptr2->slot_min = min (bus_info_ptr2->slot_min, slot_ptr->slot_num);
  701. bus_info_ptr2->slot_max = max (bus_info_ptr2->slot_max, slot_ptr->slot_num);
  702. bus_info_ptr2->slot_count += 1;
  703. }
  704. // end of creating the bus_info linked list
  705. slot_ptr++;
  706. addr_slot += 1;
  707. }
  708. /* init bus structure */
  709. bus_ptr = hpc_ptr->buses;
  710. for (bus = 0; bus < bus_num; bus++) {
  711. bus_ptr->bus_num = readb (io_mem + addr_bus + bus);
  712. bus_ptr->slots_at_33_conv = readb (io_mem + addr_bus + bus_num + 8 * bus);
  713. bus_ptr->slots_at_66_conv = readb (io_mem + addr_bus + bus_num + 8 * bus + 1);
  714. bus_ptr->slots_at_66_pcix = readb (io_mem + addr_bus + bus_num + 8 * bus + 2);
  715. bus_ptr->slots_at_100_pcix = readb (io_mem + addr_bus + bus_num + 8 * bus + 3);
  716. bus_ptr->slots_at_133_pcix = readb (io_mem + addr_bus + bus_num + 8 * bus + 4);
  717. bus_info_ptr2 = ibmphp_find_same_bus_num (bus_ptr->bus_num);
  718. if (bus_info_ptr2) {
  719. bus_info_ptr2->slots_at_33_conv = bus_ptr->slots_at_33_conv;
  720. bus_info_ptr2->slots_at_66_conv = bus_ptr->slots_at_66_conv;
  721. bus_info_ptr2->slots_at_66_pcix = bus_ptr->slots_at_66_pcix;
  722. bus_info_ptr2->slots_at_100_pcix = bus_ptr->slots_at_100_pcix;
  723. bus_info_ptr2->slots_at_133_pcix = bus_ptr->slots_at_133_pcix;
  724. }
  725. bus_ptr++;
  726. }
  727. hpc_ptr->ctlr_type = temp;
  728. switch (hpc_ptr->ctlr_type) {
  729. case 1:
  730. hpc_ptr->u.pci_ctlr.bus = readb (io_mem + addr);
  731. hpc_ptr->u.pci_ctlr.dev_fun = readb (io_mem + addr + 1);
  732. hpc_ptr->irq = readb (io_mem + addr + 2);
  733. addr += 3;
  734. debug ("ctrl bus = %x, ctlr devfun = %x, irq = %x\n",
  735. hpc_ptr->u.pci_ctlr.bus,
  736. hpc_ptr->u.pci_ctlr.dev_fun, hpc_ptr->irq);
  737. break;
  738. case 0:
  739. hpc_ptr->u.isa_ctlr.io_start = readw (io_mem + addr);
  740. hpc_ptr->u.isa_ctlr.io_end = readw (io_mem + addr + 2);
  741. if (!request_region (hpc_ptr->u.isa_ctlr.io_start,
  742. (hpc_ptr->u.isa_ctlr.io_end - hpc_ptr->u.isa_ctlr.io_start + 1),
  743. "ibmphp")) {
  744. rc = -ENODEV;
  745. goto error_no_hp_slot;
  746. }
  747. hpc_ptr->irq = readb (io_mem + addr + 4);
  748. addr += 5;
  749. break;
  750. case 2:
  751. case 4:
  752. hpc_ptr->u.wpeg_ctlr.wpegbbar = readl (io_mem + addr);
  753. hpc_ptr->u.wpeg_ctlr.i2c_addr = readb (io_mem + addr + 4);
  754. hpc_ptr->irq = readb (io_mem + addr + 5);
  755. addr += 6;
  756. break;
  757. default:
  758. rc = -ENODEV;
  759. goto error_no_hp_slot;
  760. }
  761. //reorganize chassis' linked list
  762. combine_wpg_for_chassis ();
  763. combine_wpg_for_expansion ();
  764. hpc_ptr->revision = 0xff;
  765. hpc_ptr->options = 0xff;
  766. hpc_ptr->starting_slot_num = hpc_ptr->slots[0].slot_num;
  767. hpc_ptr->ending_slot_num = hpc_ptr->slots[slot_num-1].slot_num;
  768. // register slots with hpc core as well as create linked list of ibm slot
  769. for (index = 0; index < hpc_ptr->slot_count; index++) {
  770. hp_slot_ptr = kzalloc(sizeof(*hp_slot_ptr), GFP_KERNEL);
  771. if (!hp_slot_ptr) {
  772. rc = -ENOMEM;
  773. goto error_no_hp_slot;
  774. }
  775. hp_slot_ptr->info = kzalloc(sizeof(struct hotplug_slot_info), GFP_KERNEL);
  776. if (!hp_slot_ptr->info) {
  777. rc = -ENOMEM;
  778. goto error_no_hp_info;
  779. }
  780. tmp_slot = kzalloc(sizeof(*tmp_slot), GFP_KERNEL);
  781. if (!tmp_slot) {
  782. rc = -ENOMEM;
  783. goto error_no_slot;
  784. }
  785. tmp_slot->flag = 1;
  786. tmp_slot->capabilities = hpc_ptr->slots[index].slot_cap;
  787. if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_133_MAX) == EBDA_SLOT_133_MAX)
  788. tmp_slot->supported_speed = 3;
  789. else if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_100_MAX) == EBDA_SLOT_100_MAX)
  790. tmp_slot->supported_speed = 2;
  791. else if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_66_MAX) == EBDA_SLOT_66_MAX)
  792. tmp_slot->supported_speed = 1;
  793. if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_PCIX_CAP) == EBDA_SLOT_PCIX_CAP)
  794. tmp_slot->supported_bus_mode = 1;
  795. else
  796. tmp_slot->supported_bus_mode = 0;
  797. tmp_slot->bus = hpc_ptr->slots[index].slot_bus_num;
  798. bus_info_ptr1 = ibmphp_find_same_bus_num (hpc_ptr->slots[index].slot_bus_num);
  799. if (!bus_info_ptr1) {
  800. kfree(tmp_slot);
  801. rc = -ENODEV;
  802. goto error;
  803. }
  804. tmp_slot->bus_on = bus_info_ptr1;
  805. bus_info_ptr1 = NULL;
  806. tmp_slot->ctrl = hpc_ptr;
  807. tmp_slot->ctlr_index = hpc_ptr->slots[index].ctl_index;
  808. tmp_slot->number = hpc_ptr->slots[index].slot_num;
  809. tmp_slot->hotplug_slot = hp_slot_ptr;
  810. hp_slot_ptr->private = tmp_slot;
  811. hp_slot_ptr->release = release_slot;
  812. rc = fillslotinfo(hp_slot_ptr);
  813. if (rc)
  814. goto error;
  815. rc = ibmphp_init_devno ((struct slot **) &hp_slot_ptr->private);
  816. if (rc)
  817. goto error;
  818. hp_slot_ptr->ops = &ibmphp_hotplug_slot_ops;
  819. // end of registering ibm slot with hotplug core
  820. list_add (& ((struct slot *)(hp_slot_ptr->private))->ibm_slot_list, &ibmphp_slot_head);
  821. }
  822. print_bus_info ();
  823. list_add (&hpc_ptr->ebda_hpc_list, &ebda_hpc_head );
  824. } /* each hpc */
  825. list_for_each_entry(tmp_slot, &ibmphp_slot_head, ibm_slot_list) {
  826. snprintf(name, SLOT_NAME_SIZE, "%s", create_file_name(tmp_slot));
  827. pci_hp_register(tmp_slot->hotplug_slot,
  828. pci_find_bus(0, tmp_slot->bus), tmp_slot->device, name);
  829. }
  830. print_ebda_hpc ();
  831. print_ibm_slot ();
  832. return 0;
  833. error:
  834. kfree (hp_slot_ptr->private);
  835. error_no_slot:
  836. kfree (hp_slot_ptr->info);
  837. error_no_hp_info:
  838. kfree (hp_slot_ptr);
  839. error_no_hp_slot:
  840. free_ebda_hpc (hpc_ptr);
  841. error_no_hpc:
  842. iounmap (io_mem);
  843. return rc;
  844. }
  845. /*
  846. * map info (bus, devfun, start addr, end addr..) of i/o, memory,
  847. * pfm from the physical addr to a list of resource.
  848. */
  849. static int __init ebda_rsrc_rsrc (void)
  850. {
  851. u16 addr;
  852. short rsrc;
  853. u8 type, rsrc_type;
  854. struct ebda_pci_rsrc *rsrc_ptr;
  855. addr = rsrc_list_ptr->phys_addr;
  856. debug ("now entering rsrc land\n");
  857. debug ("offset of rsrc: %x\n", rsrc_list_ptr->phys_addr);
  858. for (rsrc = 0; rsrc < rsrc_list_ptr->num_entries; rsrc++) {
  859. type = readb (io_mem + addr);
  860. addr += 1;
  861. rsrc_type = type & EBDA_RSRC_TYPE_MASK;
  862. if (rsrc_type == EBDA_IO_RSRC_TYPE) {
  863. rsrc_ptr = alloc_ebda_pci_rsrc ();
  864. if (!rsrc_ptr) {
  865. iounmap (io_mem);
  866. return -ENOMEM;
  867. }
  868. rsrc_ptr->rsrc_type = type;
  869. rsrc_ptr->bus_num = readb (io_mem + addr);
  870. rsrc_ptr->dev_fun = readb (io_mem + addr + 1);
  871. rsrc_ptr->start_addr = readw (io_mem + addr + 2);
  872. rsrc_ptr->end_addr = readw (io_mem + addr + 4);
  873. addr += 6;
  874. debug ("rsrc from io type ----\n");
  875. debug ("rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n",
  876. rsrc_ptr->rsrc_type, rsrc_ptr->bus_num, rsrc_ptr->dev_fun, rsrc_ptr->start_addr, rsrc_ptr->end_addr);
  877. list_add (&rsrc_ptr->ebda_pci_rsrc_list, &ibmphp_ebda_pci_rsrc_head);
  878. }
  879. if (rsrc_type == EBDA_MEM_RSRC_TYPE || rsrc_type == EBDA_PFM_RSRC_TYPE) {
  880. rsrc_ptr = alloc_ebda_pci_rsrc ();
  881. if (!rsrc_ptr ) {
  882. iounmap (io_mem);
  883. return -ENOMEM;
  884. }
  885. rsrc_ptr->rsrc_type = type;
  886. rsrc_ptr->bus_num = readb (io_mem + addr);
  887. rsrc_ptr->dev_fun = readb (io_mem + addr + 1);
  888. rsrc_ptr->start_addr = readl (io_mem + addr + 2);
  889. rsrc_ptr->end_addr = readl (io_mem + addr + 6);
  890. addr += 10;
  891. debug ("rsrc from mem or pfm ---\n");
  892. debug ("rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n",
  893. rsrc_ptr->rsrc_type, rsrc_ptr->bus_num, rsrc_ptr->dev_fun, rsrc_ptr->start_addr, rsrc_ptr->end_addr);
  894. list_add (&rsrc_ptr->ebda_pci_rsrc_list, &ibmphp_ebda_pci_rsrc_head);
  895. }
  896. }
  897. kfree (rsrc_list_ptr);
  898. rsrc_list_ptr = NULL;
  899. print_ebda_pci_rsrc ();
  900. return 0;
  901. }
  902. u16 ibmphp_get_total_controllers (void)
  903. {
  904. return hpc_list_ptr->num_ctlrs;
  905. }
  906. struct slot *ibmphp_get_slot_from_physical_num (u8 physical_num)
  907. {
  908. struct slot *slot;
  909. list_for_each_entry(slot, &ibmphp_slot_head, ibm_slot_list) {
  910. if (slot->number == physical_num)
  911. return slot;
  912. }
  913. return NULL;
  914. }
  915. /* To find:
  916. * - the smallest slot number
  917. * - the largest slot number
  918. * - the total number of the slots based on each bus
  919. * (if only one slot per bus slot_min = slot_max )
  920. */
  921. struct bus_info *ibmphp_find_same_bus_num (u32 num)
  922. {
  923. struct bus_info *ptr;
  924. list_for_each_entry(ptr, &bus_info_head, bus_info_list) {
  925. if (ptr->busno == num)
  926. return ptr;
  927. }
  928. return NULL;
  929. }
  930. /* Finding relative bus number, in order to map corresponding
  931. * bus register
  932. */
  933. int ibmphp_get_bus_index (u8 num)
  934. {
  935. struct bus_info *ptr;
  936. list_for_each_entry(ptr, &bus_info_head, bus_info_list) {
  937. if (ptr->busno == num)
  938. return ptr->index;
  939. }
  940. return -ENODEV;
  941. }
  942. void ibmphp_free_bus_info_queue (void)
  943. {
  944. struct bus_info *bus_info;
  945. struct list_head *list;
  946. struct list_head *next;
  947. list_for_each_safe (list, next, &bus_info_head ) {
  948. bus_info = list_entry (list, struct bus_info, bus_info_list);
  949. kfree (bus_info);
  950. }
  951. }
  952. void ibmphp_free_ebda_hpc_queue (void)
  953. {
  954. struct controller *controller = NULL;
  955. struct list_head *list;
  956. struct list_head *next;
  957. int pci_flag = 0;
  958. list_for_each_safe (list, next, &ebda_hpc_head) {
  959. controller = list_entry (list, struct controller, ebda_hpc_list);
  960. if (controller->ctlr_type == 0)
  961. release_region (controller->u.isa_ctlr.io_start, (controller->u.isa_ctlr.io_end - controller->u.isa_ctlr.io_start + 1));
  962. else if ((controller->ctlr_type == 1) && (!pci_flag)) {
  963. ++pci_flag;
  964. pci_unregister_driver (&ibmphp_driver);
  965. }
  966. free_ebda_hpc (controller);
  967. }
  968. }
  969. void ibmphp_free_ebda_pci_rsrc_queue (void)
  970. {
  971. struct ebda_pci_rsrc *resource;
  972. struct list_head *list;
  973. struct list_head *next;
  974. list_for_each_safe (list, next, &ibmphp_ebda_pci_rsrc_head) {
  975. resource = list_entry (list, struct ebda_pci_rsrc, ebda_pci_rsrc_list);
  976. kfree (resource);
  977. resource = NULL;
  978. }
  979. }
  980. static struct pci_device_id id_table[] = {
  981. {
  982. .vendor = PCI_VENDOR_ID_IBM,
  983. .device = HPC_DEVICE_ID,
  984. .subvendor = PCI_VENDOR_ID_IBM,
  985. .subdevice = HPC_SUBSYSTEM_ID,
  986. .class = ((PCI_CLASS_SYSTEM_PCI_HOTPLUG << 8) | 0x00),
  987. }, {}
  988. };
  989. MODULE_DEVICE_TABLE(pci, id_table);
  990. static int ibmphp_probe (struct pci_dev *, const struct pci_device_id *);
  991. static struct pci_driver ibmphp_driver = {
  992. .name = "ibmphp",
  993. .id_table = id_table,
  994. .probe = ibmphp_probe,
  995. };
  996. int ibmphp_register_pci (void)
  997. {
  998. struct controller *ctrl;
  999. int rc = 0;
  1000. list_for_each_entry(ctrl, &ebda_hpc_head, ebda_hpc_list) {
  1001. if (ctrl->ctlr_type == 1) {
  1002. rc = pci_register_driver(&ibmphp_driver);
  1003. break;
  1004. }
  1005. }
  1006. return rc;
  1007. }
  1008. static int ibmphp_probe (struct pci_dev * dev, const struct pci_device_id *ids)
  1009. {
  1010. struct controller *ctrl;
  1011. debug ("inside ibmphp_probe\n");
  1012. list_for_each_entry(ctrl, &ebda_hpc_head, ebda_hpc_list) {
  1013. if (ctrl->ctlr_type == 1) {
  1014. if ((dev->devfn == ctrl->u.pci_ctlr.dev_fun) && (dev->bus->number == ctrl->u.pci_ctlr.bus)) {
  1015. ctrl->ctrl_dev = dev;
  1016. debug ("found device!!!\n");
  1017. debug ("dev->device = %x, dev->subsystem_device = %x\n", dev->device, dev->subsystem_device);
  1018. return 0;
  1019. }
  1020. }
  1021. }
  1022. return -ENODEV;
  1023. }