uda1341.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830
  1. /*
  2. * Philips UDA1341 mixer device driver
  3. * Copyright (c) 2002 Tomas Kasparek <tomas.kasparek@seznam.cz>
  4. *
  5. * Portions are Copyright (C) 2000 Lernout & Hauspie Speech Products, N.V.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License.
  9. *
  10. * History:
  11. *
  12. * 2002-03-13 Tomas Kasparek initial release - based on uda1341.c from OSS
  13. * 2002-03-28 Tomas Kasparek basic mixer is working (volume, bass, treble)
  14. * 2002-03-30 Tomas Kasparek proc filesystem support, complete mixer and DSP
  15. * features support
  16. * 2002-04-12 Tomas Kasparek proc interface update, code cleanup
  17. * 2002-05-12 Tomas Kasparek another code cleanup
  18. */
  19. /* $Id: uda1341.c,v 1.15 2005/01/03 12:05:20 tiwai Exp $ */
  20. #include <sound/driver.h>
  21. #include <linux/module.h>
  22. #include <linux/init.h>
  23. #include <linux/types.h>
  24. #include <linux/slab.h>
  25. #include <linux/errno.h>
  26. #include <linux/ioctl.h>
  27. #include <asm/uaccess.h>
  28. #include <sound/core.h>
  29. #include <sound/control.h>
  30. #include <sound/initval.h>
  31. #include <sound/info.h>
  32. #include <linux/l3/l3.h>
  33. #include <sound/uda1341.h>
  34. /* {{{ HW regs definition */
  35. #define STAT0 0x00
  36. #define STAT1 0x80
  37. #define STAT_MASK 0x80
  38. #define DATA0_0 0x00
  39. #define DATA0_1 0x40
  40. #define DATA0_2 0x80
  41. #define DATA_MASK 0xc0
  42. #define IS_DATA0(x) ((x) >= data0_0 && (x) <= data0_2)
  43. #define IS_DATA1(x) ((x) == data1)
  44. #define IS_STATUS(x) ((x) == stat0 || (x) == stat1)
  45. #define IS_EXTEND(x) ((x) >= ext0 && (x) <= ext6)
  46. /* }}} */
  47. enum uda1341_regs_names {
  48. stat0,
  49. stat1,
  50. data0_0,
  51. data0_1,
  52. data0_2,
  53. data1,
  54. ext0,
  55. ext1,
  56. ext2,
  57. empty,
  58. ext4,
  59. ext5,
  60. ext6,
  61. uda1341_reg_last,
  62. };
  63. const char *uda1341_reg_names[] = {
  64. "stat 0 ",
  65. "stat 1 ",
  66. "data 00",
  67. "data 01",
  68. "data 02",
  69. "data 1 ",
  70. "ext 0",
  71. "ext 1",
  72. "ext 2",
  73. "empty",
  74. "ext 4",
  75. "ext 5",
  76. "ext 6",
  77. };
  78. const int uda1341_enum_items[] = {
  79. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  80. 2, //peak - before/after
  81. 4, //deemp - none/32/44.1/48
  82. 0,
  83. 4, //filter - flat/min/min/max
  84. 0, 0, 0,
  85. 4, //mixer - differ/line/mic/mixer
  86. 0, 0, 0, 0, 0,
  87. };
  88. const char ** uda1341_enum_names[] = {
  89. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  90. peak_names, //peak - before/after
  91. deemp_names, //deemp - none/32/44.1/48
  92. NULL,
  93. filter_names, //filter - flat/min/min/max
  94. NULL, NULL, NULL,
  95. mixer_names, //mixer - differ/line/mic/mixer
  96. NULL, NULL, NULL, NULL, NULL,
  97. };
  98. typedef int uda1341_cfg[CMD_LAST];
  99. typedef struct uda1341 uda1341_t;
  100. struct uda1341 {
  101. int (*write) (struct l3_client *uda1341, unsigned short reg, unsigned short val);
  102. int (*read) (struct l3_client *uda1341, unsigned short reg);
  103. unsigned char regs[uda1341_reg_last];
  104. int active;
  105. spinlock_t reg_lock;
  106. snd_card_t *card;
  107. uda1341_cfg cfg;
  108. #ifdef CONFIG_PM
  109. unsigned char suspend_regs[uda1341_reg_last];
  110. uda1341_cfg suspend_cfg;
  111. #endif
  112. };
  113. //hack for ALSA magic casting
  114. typedef struct l3_client l3_client_t;
  115. /* transfer 8bit integer into string with binary representation */
  116. void int2str_bin8(uint8_t val, char *buf){
  117. const int size = sizeof(val) * 8;
  118. int i;
  119. for (i= 0; i < size; i++){
  120. *(buf++) = (val >> (size - 1)) ? '1' : '0';
  121. val <<= 1;
  122. }
  123. *buf = '\0'; //end the string with zero
  124. }
  125. /* {{{ HW manipulation routines */
  126. int snd_uda1341_codec_write(struct l3_client *clnt, unsigned short reg, unsigned short val)
  127. {
  128. struct uda1341 *uda = clnt->driver_data;
  129. unsigned char buf[2] = { 0xc0, 0xe0 }; // for EXT addressing
  130. int err = 0;
  131. uda->regs[reg] = val;
  132. if (uda->active) {
  133. if (IS_DATA0(reg)) {
  134. err = l3_write(clnt, UDA1341_DATA0, (const unsigned char *)&val, 1);
  135. } else if (IS_DATA1(reg)) {
  136. err = l3_write(clnt, UDA1341_DATA1, (const unsigned char *)&val, 1);
  137. } else if (IS_STATUS(reg)) {
  138. err = l3_write(clnt, UDA1341_STATUS, (const unsigned char *)&val, 1);
  139. } else if (IS_EXTEND(reg)) {
  140. buf[0] |= (reg - ext0) & 0x7; //EXT address
  141. buf[1] |= val; //EXT data
  142. err = l3_write(clnt, UDA1341_DATA0, (const unsigned char *)buf, 2);
  143. }
  144. } else
  145. printk(KERN_ERR "UDA1341 codec not active!\n");
  146. return err;
  147. }
  148. int snd_uda1341_codec_read(struct l3_client *clnt, unsigned short reg)
  149. {
  150. unsigned char val;
  151. int err;
  152. err = l3_read(clnt, reg, &val, 1);
  153. if (err == 1)
  154. // use just 6bits - the rest is address of the reg
  155. return val & 63;
  156. return err < 0 ? err : -EIO;
  157. }
  158. static inline int snd_uda1341_valid_reg(struct l3_client *clnt, unsigned short reg)
  159. {
  160. return reg < uda1341_reg_last;
  161. }
  162. int snd_uda1341_update_bits(struct l3_client *clnt, unsigned short reg, unsigned short mask,
  163. unsigned short shift, unsigned short value, int flush)
  164. {
  165. int change;
  166. unsigned short old, new;
  167. struct uda1341 *uda = clnt->driver_data;
  168. #if 0
  169. printk(KERN_DEBUG "update_bits: reg: %s mask: %d shift: %d val: %d\n",
  170. uda1341_reg_names[reg], mask, shift, value);
  171. #endif
  172. if (!snd_uda1341_valid_reg(clnt, reg))
  173. return -EINVAL;
  174. spin_lock(&uda->reg_lock);
  175. old = uda->regs[reg];
  176. new = (old & ~(mask << shift)) | (value << shift);
  177. change = old != new;
  178. if (change) {
  179. if (flush) uda->write(clnt, reg, new);
  180. uda->regs[reg] = new;
  181. }
  182. spin_unlock(&uda->reg_lock);
  183. return change;
  184. }
  185. int snd_uda1341_cfg_write(struct l3_client *clnt, unsigned short what,
  186. unsigned short value, int flush)
  187. {
  188. struct uda1341 *uda = clnt->driver_data;
  189. int ret = 0;
  190. #ifdef CONFIG_PM
  191. int reg;
  192. #endif
  193. #if 0
  194. printk(KERN_DEBUG "cfg_write what: %d value: %d\n", what, value);
  195. #endif
  196. uda->cfg[what] = value;
  197. switch(what) {
  198. case CMD_RESET:
  199. ret = snd_uda1341_update_bits(clnt, data0_2, 1, 2, 1, flush); // MUTE
  200. ret = snd_uda1341_update_bits(clnt, stat0, 1, 6, 1, flush); // RESET
  201. ret = snd_uda1341_update_bits(clnt, stat0, 1, 6, 0, flush); // RESTORE
  202. uda->cfg[CMD_RESET]=0;
  203. break;
  204. case CMD_FS:
  205. ret = snd_uda1341_update_bits(clnt, stat0, 3, 4, value, flush);
  206. break;
  207. case CMD_FORMAT:
  208. ret = snd_uda1341_update_bits(clnt, stat0, 7, 1, value, flush);
  209. break;
  210. case CMD_OGAIN:
  211. ret = snd_uda1341_update_bits(clnt, stat1, 1, 6, value, flush);
  212. break;
  213. case CMD_IGAIN:
  214. ret = snd_uda1341_update_bits(clnt, stat1, 1, 5, value, flush);
  215. break;
  216. case CMD_DAC:
  217. ret = snd_uda1341_update_bits(clnt, stat1, 1, 0, value, flush);
  218. break;
  219. case CMD_ADC:
  220. ret = snd_uda1341_update_bits(clnt, stat1, 1, 1, value, flush);
  221. break;
  222. case CMD_VOLUME:
  223. ret = snd_uda1341_update_bits(clnt, data0_0, 63, 0, value, flush);
  224. break;
  225. case CMD_BASS:
  226. ret = snd_uda1341_update_bits(clnt, data0_1, 15, 2, value, flush);
  227. break;
  228. case CMD_TREBBLE:
  229. ret = snd_uda1341_update_bits(clnt, data0_1, 3, 0, value, flush);
  230. break;
  231. case CMD_PEAK:
  232. ret = snd_uda1341_update_bits(clnt, data0_2, 1, 5, value, flush);
  233. break;
  234. case CMD_DEEMP:
  235. ret = snd_uda1341_update_bits(clnt, data0_2, 3, 3, value, flush);
  236. break;
  237. case CMD_MUTE:
  238. ret = snd_uda1341_update_bits(clnt, data0_2, 1, 2, value, flush);
  239. break;
  240. case CMD_FILTER:
  241. ret = snd_uda1341_update_bits(clnt, data0_2, 3, 0, value, flush);
  242. break;
  243. case CMD_CH1:
  244. ret = snd_uda1341_update_bits(clnt, ext0, 31, 0, value, flush);
  245. break;
  246. case CMD_CH2:
  247. ret = snd_uda1341_update_bits(clnt, ext1, 31, 0, value, flush);
  248. break;
  249. case CMD_MIC:
  250. ret = snd_uda1341_update_bits(clnt, ext2, 7, 2, value, flush);
  251. break;
  252. case CMD_MIXER:
  253. ret = snd_uda1341_update_bits(clnt, ext2, 3, 0, value, flush);
  254. break;
  255. case CMD_AGC:
  256. ret = snd_uda1341_update_bits(clnt, ext4, 1, 4, value, flush);
  257. break;
  258. case CMD_IG:
  259. ret = snd_uda1341_update_bits(clnt, ext4, 3, 0, value & 0x3, flush);
  260. ret = snd_uda1341_update_bits(clnt, ext5, 31, 0, value >> 2, flush);
  261. break;
  262. case CMD_AGC_TIME:
  263. ret = snd_uda1341_update_bits(clnt, ext6, 7, 2, value, flush);
  264. break;
  265. case CMD_AGC_LEVEL:
  266. ret = snd_uda1341_update_bits(clnt, ext6, 3, 0, value, flush);
  267. break;
  268. #ifdef CONFIG_PM
  269. case CMD_SUSPEND:
  270. for (reg = stat0; reg < uda1341_reg_last; reg++)
  271. uda->suspend_regs[reg] = uda->regs[reg];
  272. for (reg = 0; reg < CMD_LAST; reg++)
  273. uda->suspend_cfg[reg] = uda->cfg[reg];
  274. break;
  275. case CMD_RESUME:
  276. for (reg = stat0; reg < uda1341_reg_last; reg++)
  277. snd_uda1341_codec_write(clnt, reg, uda->suspend_regs[reg]);
  278. for (reg = 0; reg < CMD_LAST; reg++)
  279. uda->cfg[reg] = uda->suspend_cfg[reg];
  280. break;
  281. #endif
  282. default:
  283. ret = -EINVAL;
  284. break;
  285. }
  286. if (!uda->active)
  287. printk(KERN_ERR "UDA1341 codec not active!\n");
  288. return ret;
  289. }
  290. /* }}} */
  291. /* {{{ Proc interface */
  292. static void snd_uda1341_proc_read(snd_info_entry_t *entry,
  293. snd_info_buffer_t * buffer)
  294. {
  295. struct l3_client *clnt = entry->private_data;
  296. struct uda1341 *uda = clnt->driver_data;
  297. int peak;
  298. peak = snd_uda1341_codec_read(clnt, UDA1341_DATA1);
  299. if (peak < 0)
  300. peak = 0;
  301. snd_iprintf(buffer, "%s\n\n", uda->card->longname);
  302. // for information about computed values see UDA1341TS datasheet pages 15 - 21
  303. snd_iprintf(buffer, "DAC power : %s\n", uda->cfg[CMD_DAC] ? "on" : "off");
  304. snd_iprintf(buffer, "ADC power : %s\n", uda->cfg[CMD_ADC] ? "on" : "off");
  305. snd_iprintf(buffer, "Clock frequency : %s\n", fs_names[uda->cfg[CMD_FS]]);
  306. snd_iprintf(buffer, "Data format : %s\n\n", format_names[uda->cfg[CMD_FORMAT]]);
  307. snd_iprintf(buffer, "Filter mode : %s\n", filter_names[uda->cfg[CMD_FILTER]]);
  308. snd_iprintf(buffer, "Mixer mode : %s\n", mixer_names[uda->cfg[CMD_MIXER]]);
  309. snd_iprintf(buffer, "De-emphasis : %s\n", deemp_names[uda->cfg[CMD_DEEMP]]);
  310. snd_iprintf(buffer, "Peak detection pos. : %s\n", uda->cfg[CMD_PEAK] ? "after" : "before");
  311. snd_iprintf(buffer, "Peak value : %s\n\n", peak_value[peak]);
  312. snd_iprintf(buffer, "Automatic Gain Ctrl : %s\n", uda->cfg[CMD_AGC] ? "on" : "off");
  313. snd_iprintf(buffer, "AGC attack time : %d ms\n", AGC_atime[uda->cfg[CMD_AGC_TIME]]);
  314. snd_iprintf(buffer, "AGC decay time : %d ms\n", AGC_dtime[uda->cfg[CMD_AGC_TIME]]);
  315. snd_iprintf(buffer, "AGC output level : %s dB\n\n", AGC_level[uda->cfg[CMD_AGC_LEVEL]]);
  316. snd_iprintf(buffer, "Mute : %s\n", uda->cfg[CMD_MUTE] ? "on" : "off");
  317. if (uda->cfg[CMD_VOLUME] == 0)
  318. snd_iprintf(buffer, "Volume : 0 dB\n");
  319. else if (uda->cfg[CMD_VOLUME] < 62)
  320. snd_iprintf(buffer, "Volume : %d dB\n", -1*uda->cfg[CMD_VOLUME] +1);
  321. else
  322. snd_iprintf(buffer, "Volume : -INF dB\n");
  323. snd_iprintf(buffer, "Bass : %s\n", bass_values[uda->cfg[CMD_FILTER]][uda->cfg[CMD_BASS]]);
  324. snd_iprintf(buffer, "Trebble : %d dB\n", uda->cfg[CMD_FILTER] ? 2*uda->cfg[CMD_TREBBLE] : 0);
  325. snd_iprintf(buffer, "Input Gain (6dB) : %s\n", uda->cfg[CMD_IGAIN] ? "on" : "off");
  326. snd_iprintf(buffer, "Output Gain (6dB) : %s\n", uda->cfg[CMD_OGAIN] ? "on" : "off");
  327. snd_iprintf(buffer, "Mic sensitivity : %s\n", mic_sens_value[uda->cfg[CMD_MIC]]);
  328. if(uda->cfg[CMD_CH1] < 31)
  329. snd_iprintf(buffer, "Mixer gain channel 1: -%d.%c dB\n",
  330. ((uda->cfg[CMD_CH1] >> 1) * 3) + (uda->cfg[CMD_CH1] & 1),
  331. uda->cfg[CMD_CH1] & 1 ? '5' : '0');
  332. else
  333. snd_iprintf(buffer, "Mixer gain channel 1: -INF dB\n");
  334. if(uda->cfg[CMD_CH2] < 31)
  335. snd_iprintf(buffer, "Mixer gain channel 2: -%d.%c dB\n",
  336. ((uda->cfg[CMD_CH2] >> 1) * 3) + (uda->cfg[CMD_CH2] & 1),
  337. uda->cfg[CMD_CH2] & 1 ? '5' : '0');
  338. else
  339. snd_iprintf(buffer, "Mixer gain channel 2: -INF dB\n");
  340. if(uda->cfg[CMD_IG] > 5)
  341. snd_iprintf(buffer, "Input Amp. Gain ch 2: %d.%c dB\n",
  342. (uda->cfg[CMD_IG] >> 1) -3, uda->cfg[CMD_IG] & 1 ? '5' : '0');
  343. else
  344. snd_iprintf(buffer, "Input Amp. Gain ch 2: %s dB\n", ig_small_value[uda->cfg[CMD_IG]]);
  345. }
  346. static void snd_uda1341_proc_regs_read(snd_info_entry_t *entry,
  347. snd_info_buffer_t * buffer)
  348. {
  349. struct l3_client *clnt = entry->private_data;
  350. struct uda1341 *uda = clnt->driver_data;
  351. int reg;
  352. char buf[12];
  353. spin_lock(&uda->reg_lock);
  354. for (reg = 0; reg < uda1341_reg_last; reg ++) {
  355. if (reg == empty)
  356. continue;
  357. int2str_bin8(uda->regs[reg], buf);
  358. snd_iprintf(buffer, "%s = %s\n", uda1341_reg_names[reg], buf);
  359. }
  360. int2str_bin8(snd_uda1341_codec_read(clnt, UDA1341_DATA1), buf);
  361. snd_iprintf(buffer, "DATA1 = %s\n", buf);
  362. spin_unlock(&uda->reg_lock);
  363. }
  364. static void __devinit snd_uda1341_proc_init(snd_card_t *card, struct l3_client *clnt)
  365. {
  366. snd_info_entry_t *entry;
  367. if (! snd_card_proc_new(card, "uda1341", &entry))
  368. snd_info_set_text_ops(entry, clnt, 1024, snd_uda1341_proc_read);
  369. if (! snd_card_proc_new(card, "uda1341-regs", &entry))
  370. snd_info_set_text_ops(entry, clnt, 1024, snd_uda1341_proc_regs_read);
  371. }
  372. /* }}} */
  373. /* {{{ Mixer controls setting */
  374. /* {{{ UDA1341 single functions */
  375. #define UDA1341_SINGLE(xname, where, reg, shift, mask, invert) \
  376. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_uda1341_info_single, \
  377. .get = snd_uda1341_get_single, .put = snd_uda1341_put_single, \
  378. .private_value = where | (reg << 5) | (shift << 9) | (mask << 12) | (invert << 18) \
  379. }
  380. static int snd_uda1341_info_single(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
  381. {
  382. int mask = (kcontrol->private_value >> 12) & 63;
  383. uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
  384. uinfo->count = 1;
  385. uinfo->value.integer.min = 0;
  386. uinfo->value.integer.max = mask;
  387. return 0;
  388. }
  389. static int snd_uda1341_get_single(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
  390. {
  391. struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
  392. uda1341_t *uda = clnt->driver_data;
  393. int where = kcontrol->private_value & 31;
  394. int mask = (kcontrol->private_value >> 12) & 63;
  395. int invert = (kcontrol->private_value >> 18) & 1;
  396. ucontrol->value.integer.value[0] = uda->cfg[where];
  397. if (invert)
  398. ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
  399. return 0;
  400. }
  401. static int snd_uda1341_put_single(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
  402. {
  403. struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
  404. uda1341_t *uda = clnt->driver_data;
  405. int where = kcontrol->private_value & 31;
  406. int reg = (kcontrol->private_value >> 5) & 15;
  407. int shift = (kcontrol->private_value >> 9) & 7;
  408. int mask = (kcontrol->private_value >> 12) & 63;
  409. int invert = (kcontrol->private_value >> 18) & 1;
  410. unsigned short val;
  411. val = (ucontrol->value.integer.value[0] & mask);
  412. if (invert)
  413. val = mask - val;
  414. uda->cfg[where] = val;
  415. return snd_uda1341_update_bits(clnt, reg, mask, shift, val, FLUSH);
  416. }
  417. /* }}} */
  418. /* {{{ UDA1341 enum functions */
  419. #define UDA1341_ENUM(xname, where, reg, shift, mask, invert) \
  420. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_uda1341_info_enum, \
  421. .get = snd_uda1341_get_enum, .put = snd_uda1341_put_enum, \
  422. .private_value = where | (reg << 5) | (shift << 9) | (mask << 12) | (invert << 18) \
  423. }
  424. static int snd_uda1341_info_enum(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
  425. {
  426. int where = kcontrol->private_value & 31;
  427. const char **texts;
  428. // this register we don't handle this way
  429. if (!uda1341_enum_items[where])
  430. return -EINVAL;
  431. uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  432. uinfo->count = 1;
  433. uinfo->value.enumerated.items = uda1341_enum_items[where];
  434. if (uinfo->value.enumerated.item >= uda1341_enum_items[where])
  435. uinfo->value.enumerated.item = uda1341_enum_items[where] - 1;
  436. texts = uda1341_enum_names[where];
  437. strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
  438. return 0;
  439. }
  440. static int snd_uda1341_get_enum(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
  441. {
  442. struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
  443. uda1341_t *uda = clnt->driver_data;
  444. int where = kcontrol->private_value & 31;
  445. ucontrol->value.enumerated.item[0] = uda->cfg[where];
  446. return 0;
  447. }
  448. static int snd_uda1341_put_enum(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
  449. {
  450. struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
  451. uda1341_t *uda = clnt->driver_data;
  452. int where = kcontrol->private_value & 31;
  453. int reg = (kcontrol->private_value >> 5) & 15;
  454. int shift = (kcontrol->private_value >> 9) & 7;
  455. int mask = (kcontrol->private_value >> 12) & 63;
  456. uda->cfg[where] = (ucontrol->value.enumerated.item[0] & mask);
  457. return snd_uda1341_update_bits(clnt, reg, mask, shift, uda->cfg[where], FLUSH);
  458. }
  459. /* }}} */
  460. /* {{{ UDA1341 2regs functions */
  461. #define UDA1341_2REGS(xname, where, reg_1, reg_2, shift_1, shift_2, mask_1, mask_2, invert) \
  462. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), .info = snd_uda1341_info_2regs, \
  463. .get = snd_uda1341_get_2regs, .put = snd_uda1341_put_2regs, \
  464. .private_value = where | (reg_1 << 5) | (reg_2 << 9) | (shift_1 << 13) | (shift_2 << 16) | \
  465. (mask_1 << 19) | (mask_2 << 25) | (invert << 31) \
  466. }
  467. static int snd_uda1341_info_2regs(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t * uinfo)
  468. {
  469. int mask_1 = (kcontrol->private_value >> 19) & 63;
  470. int mask_2 = (kcontrol->private_value >> 25) & 63;
  471. int mask;
  472. mask = (mask_2 + 1) * (mask_1 + 1) - 1;
  473. uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
  474. uinfo->count = 1;
  475. uinfo->value.integer.min = 0;
  476. uinfo->value.integer.max = mask;
  477. return 0;
  478. }
  479. static int snd_uda1341_get_2regs(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
  480. {
  481. struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
  482. uda1341_t *uda = clnt->driver_data;
  483. int where = kcontrol->private_value & 31;
  484. int mask_1 = (kcontrol->private_value >> 19) & 63;
  485. int mask_2 = (kcontrol->private_value >> 25) & 63;
  486. int invert = (kcontrol->private_value >> 31) & 1;
  487. int mask;
  488. mask = (mask_2 + 1) * (mask_1 + 1) - 1;
  489. ucontrol->value.integer.value[0] = uda->cfg[where];
  490. if (invert)
  491. ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
  492. return 0;
  493. }
  494. static int snd_uda1341_put_2regs(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
  495. {
  496. struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
  497. uda1341_t *uda = clnt->driver_data;
  498. int where = kcontrol->private_value & 31;
  499. int reg_1 = (kcontrol->private_value >> 5) & 15;
  500. int reg_2 = (kcontrol->private_value >> 9) & 15;
  501. int shift_1 = (kcontrol->private_value >> 13) & 7;
  502. int shift_2 = (kcontrol->private_value >> 16) & 7;
  503. int mask_1 = (kcontrol->private_value >> 19) & 63;
  504. int mask_2 = (kcontrol->private_value >> 25) & 63;
  505. int invert = (kcontrol->private_value >> 31) & 1;
  506. int mask;
  507. unsigned short val1, val2, val;
  508. val = ucontrol->value.integer.value[0];
  509. mask = (mask_2 + 1) * (mask_1 + 1) - 1;
  510. val1 = val & mask_1;
  511. val2 = (val / (mask_1 + 1)) & mask_2;
  512. if (invert) {
  513. val1 = mask_1 - val1;
  514. val2 = mask_2 - val2;
  515. }
  516. uda->cfg[where] = invert ? mask - val : val;
  517. //FIXME - return value
  518. snd_uda1341_update_bits(clnt, reg_1, mask_1, shift_1, val1, FLUSH);
  519. return snd_uda1341_update_bits(clnt, reg_2, mask_2, shift_2, val2, FLUSH);
  520. }
  521. /* }}} */
  522. static snd_kcontrol_new_t snd_uda1341_controls[] = {
  523. UDA1341_SINGLE("Master Playback Switch", CMD_MUTE, data0_2, 2, 1, 1),
  524. UDA1341_SINGLE("Master Playback Volume", CMD_VOLUME, data0_0, 0, 63, 1),
  525. UDA1341_SINGLE("Bass Playback Volume", CMD_BASS, data0_1, 2, 15, 0),
  526. UDA1341_SINGLE("Treble Playback Volume", CMD_TREBBLE, data0_1, 0, 3, 0),
  527. UDA1341_SINGLE("Input Gain Switch", CMD_IGAIN, stat1, 5, 1, 0),
  528. UDA1341_SINGLE("Output Gain Switch", CMD_OGAIN, stat1, 6, 1, 0),
  529. UDA1341_SINGLE("Mixer Gain Channel 1 Volume", CMD_CH1, ext0, 0, 31, 1),
  530. UDA1341_SINGLE("Mixer Gain Channel 2 Volume", CMD_CH2, ext1, 0, 31, 1),
  531. UDA1341_SINGLE("Mic Sensitivity Volume", CMD_MIC, ext2, 2, 7, 0),
  532. UDA1341_SINGLE("AGC Output Level", CMD_AGC_LEVEL, ext6, 0, 3, 0),
  533. UDA1341_SINGLE("AGC Time Constant", CMD_AGC_TIME, ext6, 2, 7, 0),
  534. UDA1341_SINGLE("AGC Time Constant Switch", CMD_AGC, ext4, 4, 1, 0),
  535. UDA1341_SINGLE("DAC Power", CMD_DAC, stat1, 0, 1, 0),
  536. UDA1341_SINGLE("ADC Power", CMD_ADC, stat1, 1, 1, 0),
  537. UDA1341_ENUM("Peak detection", CMD_PEAK, data0_2, 5, 1, 0),
  538. UDA1341_ENUM("De-emphasis", CMD_DEEMP, data0_2, 3, 3, 0),
  539. UDA1341_ENUM("Mixer mode", CMD_MIXER, ext2, 0, 3, 0),
  540. UDA1341_ENUM("Filter mode", CMD_FILTER, data0_2, 0, 3, 0),
  541. UDA1341_2REGS("Gain Input Amplifier Gain (channel 2)", CMD_IG, ext4, ext5, 0, 0, 3, 31, 0),
  542. };
  543. static void uda1341_free(struct l3_client *uda1341)
  544. {
  545. l3_detach_client(uda1341); // calls kfree for driver_data (uda1341_t)
  546. kfree(uda1341);
  547. }
  548. static int uda1341_dev_free(snd_device_t *device)
  549. {
  550. struct l3_client *clnt = device->device_data;
  551. uda1341_free(clnt);
  552. return 0;
  553. }
  554. int __init snd_chip_uda1341_mixer_new(snd_card_t *card, struct l3_client **clnt)
  555. {
  556. static snd_device_ops_t ops = {
  557. .dev_free = uda1341_dev_free,
  558. };
  559. struct l3_client *uda1341;
  560. int idx, err;
  561. snd_assert(card != NULL, return -EINVAL);
  562. uda1341 = kcalloc(1, sizeof(*uda1341), GFP_KERNEL);
  563. if (uda1341 == NULL)
  564. return -ENOMEM;
  565. if ((err = l3_attach_client(uda1341, "l3-bit-sa1100-gpio", "snd-uda1341"))) {
  566. kfree(uda1341);
  567. return err;
  568. }
  569. if ((err = snd_device_new(card, SNDRV_DEV_CODEC, uda1341, &ops)) < 0) {
  570. l3_detach_client(uda1341);
  571. kfree(uda1341);
  572. return err;
  573. }
  574. for (idx = 0; idx < ARRAY_SIZE(snd_uda1341_controls); idx++) {
  575. if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_uda1341_controls[idx], uda1341))) < 0)
  576. return err;
  577. }
  578. *clnt = uda1341;
  579. strcpy(card->mixername, "UDA1341TS Mixer");
  580. ((uda1341_t *)uda1341->driver_data)->card = card;
  581. snd_uda1341_proc_init(card, uda1341);
  582. return 0;
  583. }
  584. /* }}} */
  585. /* {{{ L3 operations */
  586. static int uda1341_attach(struct l3_client *clnt)
  587. {
  588. struct uda1341 *uda;
  589. uda = kcalloc(1, sizeof(*uda), 0, GFP_KERNEL);
  590. if (!uda)
  591. return -ENOMEM;
  592. /* init fixed parts of my copy of registers */
  593. uda->regs[stat0] = STAT0;
  594. uda->regs[stat1] = STAT1;
  595. uda->regs[data0_0] = DATA0_0;
  596. uda->regs[data0_1] = DATA0_1;
  597. uda->regs[data0_2] = DATA0_2;
  598. uda->write = snd_uda1341_codec_write;
  599. uda->read = snd_uda1341_codec_read;
  600. spin_lock_init(&uda->reg_lock);
  601. clnt->driver_data = uda;
  602. return 0;
  603. }
  604. static void uda1341_detach(struct l3_client *clnt)
  605. {
  606. kfree(clnt->driver_data);
  607. }
  608. static int
  609. uda1341_command(struct l3_client *clnt, int cmd, void *arg)
  610. {
  611. if (cmd != CMD_READ_REG)
  612. return snd_uda1341_cfg_write(clnt, cmd, (int) arg, FLUSH);
  613. return snd_uda1341_codec_read(clnt, (int) arg);
  614. }
  615. static int uda1341_open(struct l3_client *clnt)
  616. {
  617. struct uda1341 *uda = clnt->driver_data;
  618. uda->active = 1;
  619. /* init default configuration */
  620. snd_uda1341_cfg_write(clnt, CMD_RESET, 0, REGS_ONLY);
  621. snd_uda1341_cfg_write(clnt, CMD_FS, F256, FLUSH); // unknown state after reset
  622. snd_uda1341_cfg_write(clnt, CMD_FORMAT, LSB16, FLUSH); // unknown state after reset
  623. snd_uda1341_cfg_write(clnt, CMD_OGAIN, ON, FLUSH); // default off after reset
  624. snd_uda1341_cfg_write(clnt, CMD_IGAIN, ON, FLUSH); // default off after reset
  625. snd_uda1341_cfg_write(clnt, CMD_DAC, ON, FLUSH); // ??? default value after reset
  626. snd_uda1341_cfg_write(clnt, CMD_ADC, ON, FLUSH); // ??? default value after reset
  627. snd_uda1341_cfg_write(clnt, CMD_VOLUME, 20, FLUSH); // default 0dB after reset
  628. snd_uda1341_cfg_write(clnt, CMD_BASS, 0, REGS_ONLY); // default value after reset
  629. snd_uda1341_cfg_write(clnt, CMD_TREBBLE, 0, REGS_ONLY); // default value after reset
  630. snd_uda1341_cfg_write(clnt, CMD_PEAK, AFTER, REGS_ONLY);// default value after reset
  631. snd_uda1341_cfg_write(clnt, CMD_DEEMP, NONE, REGS_ONLY);// default value after reset
  632. //at this moment should be QMUTED by h3600_audio_init
  633. snd_uda1341_cfg_write(clnt, CMD_MUTE, OFF, REGS_ONLY); // default value after reset
  634. snd_uda1341_cfg_write(clnt, CMD_FILTER, MAX, FLUSH); // defaul flat after reset
  635. snd_uda1341_cfg_write(clnt, CMD_CH1, 31, FLUSH); // default value after reset
  636. snd_uda1341_cfg_write(clnt, CMD_CH2, 4, FLUSH); // default value after reset
  637. snd_uda1341_cfg_write(clnt, CMD_MIC, 4, FLUSH); // default 0dB after reset
  638. snd_uda1341_cfg_write(clnt, CMD_MIXER, MIXER, FLUSH); // default doub.dif.mode
  639. snd_uda1341_cfg_write(clnt, CMD_AGC, OFF, FLUSH); // default value after reset
  640. snd_uda1341_cfg_write(clnt, CMD_IG, 0, FLUSH); // unknown state after reset
  641. snd_uda1341_cfg_write(clnt, CMD_AGC_TIME, 0, FLUSH); // default value after reset
  642. snd_uda1341_cfg_write(clnt, CMD_AGC_LEVEL, 0, FLUSH); // default value after reset
  643. return 0;
  644. }
  645. static void uda1341_close(struct l3_client *clnt)
  646. {
  647. struct uda1341 *uda = clnt->driver_data;
  648. uda->active = 0;
  649. }
  650. /* }}} */
  651. /* {{{ Module and L3 initialization */
  652. static struct l3_ops uda1341_ops = {
  653. .open = uda1341_open,
  654. .command = uda1341_command,
  655. .close = uda1341_close,
  656. };
  657. static struct l3_driver uda1341_driver = {
  658. .name = UDA1341_ALSA_NAME,
  659. .attach_client = uda1341_attach,
  660. .detach_client = uda1341_detach,
  661. .ops = &uda1341_ops,
  662. .owner = THIS_MODULE,
  663. };
  664. static int __init uda1341_init(void)
  665. {
  666. return l3_add_driver(&uda1341_driver);
  667. }
  668. static void __exit uda1341_exit(void)
  669. {
  670. l3_del_driver(&uda1341_driver);
  671. }
  672. module_init(uda1341_init);
  673. module_exit(uda1341_exit);
  674. MODULE_AUTHOR("Tomas Kasparek <tomas.kasparek@seznam.cz>");
  675. MODULE_LICENSE("GPL");
  676. MODULE_DESCRIPTION("Philips UDA1341 CODEC driver for ALSA");
  677. MODULE_SUPPORTED_DEVICE("{{UDA1341,UDA1341TS}}");
  678. EXPORT_SYMBOL(snd_chip_uda1341_mixer_new);
  679. /* }}} */
  680. /*
  681. * Local variables:
  682. * indent-tabs-mode: t
  683. * End:
  684. */