svcsock.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582
  1. /*
  2. * linux/net/sunrpc/svcsock.c
  3. *
  4. * These are the RPC server socket internals.
  5. *
  6. * The server scheduling algorithm does not always distribute the load
  7. * evenly when servicing a single client. May need to modify the
  8. * svc_sock_enqueue procedure...
  9. *
  10. * TCP support is largely untested and may be a little slow. The problem
  11. * is that we currently do two separate recvfrom's, one for the 4-byte
  12. * record length, and the second for the actual record. This could possibly
  13. * be improved by always reading a minimum size of around 100 bytes and
  14. * tucking any superfluous bytes away in a temporary store. Still, that
  15. * leaves write requests out in the rain. An alternative may be to peek at
  16. * the first skb in the queue, and if it matches the next TCP sequence
  17. * number, to extract the record marker. Yuck.
  18. *
  19. * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
  20. */
  21. #include <linux/sched.h>
  22. #include <linux/errno.h>
  23. #include <linux/fcntl.h>
  24. #include <linux/net.h>
  25. #include <linux/in.h>
  26. #include <linux/inet.h>
  27. #include <linux/udp.h>
  28. #include <linux/tcp.h>
  29. #include <linux/unistd.h>
  30. #include <linux/slab.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/skbuff.h>
  33. #include <net/sock.h>
  34. #include <net/checksum.h>
  35. #include <net/ip.h>
  36. #include <net/tcp_states.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/ioctls.h>
  39. #include <linux/sunrpc/types.h>
  40. #include <linux/sunrpc/xdr.h>
  41. #include <linux/sunrpc/svcsock.h>
  42. #include <linux/sunrpc/stats.h>
  43. /* SMP locking strategy:
  44. *
  45. * svc_serv->sv_lock protects most stuff for that service.
  46. *
  47. * Some flags can be set to certain values at any time
  48. * providing that certain rules are followed:
  49. *
  50. * SK_BUSY can be set to 0 at any time.
  51. * svc_sock_enqueue must be called afterwards
  52. * SK_CONN, SK_DATA, can be set or cleared at any time.
  53. * after a set, svc_sock_enqueue must be called.
  54. * after a clear, the socket must be read/accepted
  55. * if this succeeds, it must be set again.
  56. * SK_CLOSE can set at any time. It is never cleared.
  57. *
  58. */
  59. #define RPCDBG_FACILITY RPCDBG_SVCSOCK
  60. static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
  61. int *errp, int pmap_reg);
  62. static void svc_udp_data_ready(struct sock *, int);
  63. static int svc_udp_recvfrom(struct svc_rqst *);
  64. static int svc_udp_sendto(struct svc_rqst *);
  65. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
  66. static int svc_deferred_recv(struct svc_rqst *rqstp);
  67. static struct cache_deferred_req *svc_defer(struct cache_req *req);
  68. /*
  69. * Queue up an idle server thread. Must have serv->sv_lock held.
  70. * Note: this is really a stack rather than a queue, so that we only
  71. * use as many different threads as we need, and the rest don't polute
  72. * the cache.
  73. */
  74. static inline void
  75. svc_serv_enqueue(struct svc_serv *serv, struct svc_rqst *rqstp)
  76. {
  77. list_add(&rqstp->rq_list, &serv->sv_threads);
  78. }
  79. /*
  80. * Dequeue an nfsd thread. Must have serv->sv_lock held.
  81. */
  82. static inline void
  83. svc_serv_dequeue(struct svc_serv *serv, struct svc_rqst *rqstp)
  84. {
  85. list_del(&rqstp->rq_list);
  86. }
  87. /*
  88. * Release an skbuff after use
  89. */
  90. static inline void
  91. svc_release_skb(struct svc_rqst *rqstp)
  92. {
  93. struct sk_buff *skb = rqstp->rq_skbuff;
  94. struct svc_deferred_req *dr = rqstp->rq_deferred;
  95. if (skb) {
  96. rqstp->rq_skbuff = NULL;
  97. dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
  98. skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
  99. }
  100. if (dr) {
  101. rqstp->rq_deferred = NULL;
  102. kfree(dr);
  103. }
  104. }
  105. /*
  106. * Any space to write?
  107. */
  108. static inline unsigned long
  109. svc_sock_wspace(struct svc_sock *svsk)
  110. {
  111. int wspace;
  112. if (svsk->sk_sock->type == SOCK_STREAM)
  113. wspace = sk_stream_wspace(svsk->sk_sk);
  114. else
  115. wspace = sock_wspace(svsk->sk_sk);
  116. return wspace;
  117. }
  118. /*
  119. * Queue up a socket with data pending. If there are idle nfsd
  120. * processes, wake 'em up.
  121. *
  122. */
  123. static void
  124. svc_sock_enqueue(struct svc_sock *svsk)
  125. {
  126. struct svc_serv *serv = svsk->sk_server;
  127. struct svc_rqst *rqstp;
  128. if (!(svsk->sk_flags &
  129. ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
  130. return;
  131. if (test_bit(SK_DEAD, &svsk->sk_flags))
  132. return;
  133. spin_lock_bh(&serv->sv_lock);
  134. if (!list_empty(&serv->sv_threads) &&
  135. !list_empty(&serv->sv_sockets))
  136. printk(KERN_ERR
  137. "svc_sock_enqueue: threads and sockets both waiting??\n");
  138. if (test_bit(SK_DEAD, &svsk->sk_flags)) {
  139. /* Don't enqueue dead sockets */
  140. dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
  141. goto out_unlock;
  142. }
  143. if (test_bit(SK_BUSY, &svsk->sk_flags)) {
  144. /* Don't enqueue socket while daemon is receiving */
  145. dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
  146. goto out_unlock;
  147. }
  148. set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  149. if (((svsk->sk_reserved + serv->sv_bufsz)*2
  150. > svc_sock_wspace(svsk))
  151. && !test_bit(SK_CLOSE, &svsk->sk_flags)
  152. && !test_bit(SK_CONN, &svsk->sk_flags)) {
  153. /* Don't enqueue while not enough space for reply */
  154. dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
  155. svsk->sk_sk, svsk->sk_reserved+serv->sv_bufsz,
  156. svc_sock_wspace(svsk));
  157. goto out_unlock;
  158. }
  159. clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  160. /* Mark socket as busy. It will remain in this state until the
  161. * server has processed all pending data and put the socket back
  162. * on the idle list.
  163. */
  164. set_bit(SK_BUSY, &svsk->sk_flags);
  165. if (!list_empty(&serv->sv_threads)) {
  166. rqstp = list_entry(serv->sv_threads.next,
  167. struct svc_rqst,
  168. rq_list);
  169. dprintk("svc: socket %p served by daemon %p\n",
  170. svsk->sk_sk, rqstp);
  171. svc_serv_dequeue(serv, rqstp);
  172. if (rqstp->rq_sock)
  173. printk(KERN_ERR
  174. "svc_sock_enqueue: server %p, rq_sock=%p!\n",
  175. rqstp, rqstp->rq_sock);
  176. rqstp->rq_sock = svsk;
  177. svsk->sk_inuse++;
  178. rqstp->rq_reserved = serv->sv_bufsz;
  179. svsk->sk_reserved += rqstp->rq_reserved;
  180. wake_up(&rqstp->rq_wait);
  181. } else {
  182. dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
  183. list_add_tail(&svsk->sk_ready, &serv->sv_sockets);
  184. }
  185. out_unlock:
  186. spin_unlock_bh(&serv->sv_lock);
  187. }
  188. /*
  189. * Dequeue the first socket. Must be called with the serv->sv_lock held.
  190. */
  191. static inline struct svc_sock *
  192. svc_sock_dequeue(struct svc_serv *serv)
  193. {
  194. struct svc_sock *svsk;
  195. if (list_empty(&serv->sv_sockets))
  196. return NULL;
  197. svsk = list_entry(serv->sv_sockets.next,
  198. struct svc_sock, sk_ready);
  199. list_del_init(&svsk->sk_ready);
  200. dprintk("svc: socket %p dequeued, inuse=%d\n",
  201. svsk->sk_sk, svsk->sk_inuse);
  202. return svsk;
  203. }
  204. /*
  205. * Having read something from a socket, check whether it
  206. * needs to be re-enqueued.
  207. * Note: SK_DATA only gets cleared when a read-attempt finds
  208. * no (or insufficient) data.
  209. */
  210. static inline void
  211. svc_sock_received(struct svc_sock *svsk)
  212. {
  213. clear_bit(SK_BUSY, &svsk->sk_flags);
  214. svc_sock_enqueue(svsk);
  215. }
  216. /**
  217. * svc_reserve - change the space reserved for the reply to a request.
  218. * @rqstp: The request in question
  219. * @space: new max space to reserve
  220. *
  221. * Each request reserves some space on the output queue of the socket
  222. * to make sure the reply fits. This function reduces that reserved
  223. * space to be the amount of space used already, plus @space.
  224. *
  225. */
  226. void svc_reserve(struct svc_rqst *rqstp, int space)
  227. {
  228. space += rqstp->rq_res.head[0].iov_len;
  229. if (space < rqstp->rq_reserved) {
  230. struct svc_sock *svsk = rqstp->rq_sock;
  231. spin_lock_bh(&svsk->sk_server->sv_lock);
  232. svsk->sk_reserved -= (rqstp->rq_reserved - space);
  233. rqstp->rq_reserved = space;
  234. spin_unlock_bh(&svsk->sk_server->sv_lock);
  235. svc_sock_enqueue(svsk);
  236. }
  237. }
  238. /*
  239. * Release a socket after use.
  240. */
  241. static inline void
  242. svc_sock_put(struct svc_sock *svsk)
  243. {
  244. struct svc_serv *serv = svsk->sk_server;
  245. spin_lock_bh(&serv->sv_lock);
  246. if (!--(svsk->sk_inuse) && test_bit(SK_DEAD, &svsk->sk_flags)) {
  247. spin_unlock_bh(&serv->sv_lock);
  248. dprintk("svc: releasing dead socket\n");
  249. sock_release(svsk->sk_sock);
  250. kfree(svsk);
  251. }
  252. else
  253. spin_unlock_bh(&serv->sv_lock);
  254. }
  255. static void
  256. svc_sock_release(struct svc_rqst *rqstp)
  257. {
  258. struct svc_sock *svsk = rqstp->rq_sock;
  259. svc_release_skb(rqstp);
  260. svc_free_allpages(rqstp);
  261. rqstp->rq_res.page_len = 0;
  262. rqstp->rq_res.page_base = 0;
  263. /* Reset response buffer and release
  264. * the reservation.
  265. * But first, check that enough space was reserved
  266. * for the reply, otherwise we have a bug!
  267. */
  268. if ((rqstp->rq_res.len) > rqstp->rq_reserved)
  269. printk(KERN_ERR "RPC request reserved %d but used %d\n",
  270. rqstp->rq_reserved,
  271. rqstp->rq_res.len);
  272. rqstp->rq_res.head[0].iov_len = 0;
  273. svc_reserve(rqstp, 0);
  274. rqstp->rq_sock = NULL;
  275. svc_sock_put(svsk);
  276. }
  277. /*
  278. * External function to wake up a server waiting for data
  279. */
  280. void
  281. svc_wake_up(struct svc_serv *serv)
  282. {
  283. struct svc_rqst *rqstp;
  284. spin_lock_bh(&serv->sv_lock);
  285. if (!list_empty(&serv->sv_threads)) {
  286. rqstp = list_entry(serv->sv_threads.next,
  287. struct svc_rqst,
  288. rq_list);
  289. dprintk("svc: daemon %p woken up.\n", rqstp);
  290. /*
  291. svc_serv_dequeue(serv, rqstp);
  292. rqstp->rq_sock = NULL;
  293. */
  294. wake_up(&rqstp->rq_wait);
  295. }
  296. spin_unlock_bh(&serv->sv_lock);
  297. }
  298. /*
  299. * Generic sendto routine
  300. */
  301. static int
  302. svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
  303. {
  304. struct svc_sock *svsk = rqstp->rq_sock;
  305. struct socket *sock = svsk->sk_sock;
  306. int slen;
  307. char buffer[CMSG_SPACE(sizeof(struct in_pktinfo))];
  308. struct cmsghdr *cmh = (struct cmsghdr *)buffer;
  309. struct in_pktinfo *pki = (struct in_pktinfo *)CMSG_DATA(cmh);
  310. int len = 0;
  311. int result;
  312. int size;
  313. struct page **ppage = xdr->pages;
  314. size_t base = xdr->page_base;
  315. unsigned int pglen = xdr->page_len;
  316. unsigned int flags = MSG_MORE;
  317. slen = xdr->len;
  318. if (rqstp->rq_prot == IPPROTO_UDP) {
  319. /* set the source and destination */
  320. struct msghdr msg;
  321. msg.msg_name = &rqstp->rq_addr;
  322. msg.msg_namelen = sizeof(rqstp->rq_addr);
  323. msg.msg_iov = NULL;
  324. msg.msg_iovlen = 0;
  325. msg.msg_flags = MSG_MORE;
  326. msg.msg_control = cmh;
  327. msg.msg_controllen = sizeof(buffer);
  328. cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
  329. cmh->cmsg_level = SOL_IP;
  330. cmh->cmsg_type = IP_PKTINFO;
  331. pki->ipi_ifindex = 0;
  332. pki->ipi_spec_dst.s_addr = rqstp->rq_daddr;
  333. if (sock_sendmsg(sock, &msg, 0) < 0)
  334. goto out;
  335. }
  336. /* send head */
  337. if (slen == xdr->head[0].iov_len)
  338. flags = 0;
  339. len = sock->ops->sendpage(sock, rqstp->rq_respages[0], 0, xdr->head[0].iov_len, flags);
  340. if (len != xdr->head[0].iov_len)
  341. goto out;
  342. slen -= xdr->head[0].iov_len;
  343. if (slen == 0)
  344. goto out;
  345. /* send page data */
  346. size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
  347. while (pglen > 0) {
  348. if (slen == size)
  349. flags = 0;
  350. result = sock->ops->sendpage(sock, *ppage, base, size, flags);
  351. if (result > 0)
  352. len += result;
  353. if (result != size)
  354. goto out;
  355. slen -= size;
  356. pglen -= size;
  357. size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
  358. base = 0;
  359. ppage++;
  360. }
  361. /* send tail */
  362. if (xdr->tail[0].iov_len) {
  363. result = sock->ops->sendpage(sock, rqstp->rq_respages[rqstp->rq_restailpage],
  364. ((unsigned long)xdr->tail[0].iov_base)& (PAGE_SIZE-1),
  365. xdr->tail[0].iov_len, 0);
  366. if (result > 0)
  367. len += result;
  368. }
  369. out:
  370. dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %x)\n",
  371. rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len, xdr->len, len,
  372. rqstp->rq_addr.sin_addr.s_addr);
  373. return len;
  374. }
  375. /*
  376. * Check input queue length
  377. */
  378. static int
  379. svc_recv_available(struct svc_sock *svsk)
  380. {
  381. mm_segment_t oldfs;
  382. struct socket *sock = svsk->sk_sock;
  383. int avail, err;
  384. oldfs = get_fs(); set_fs(KERNEL_DS);
  385. err = sock->ops->ioctl(sock, TIOCINQ, (unsigned long) &avail);
  386. set_fs(oldfs);
  387. return (err >= 0)? avail : err;
  388. }
  389. /*
  390. * Generic recvfrom routine.
  391. */
  392. static int
  393. svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
  394. {
  395. struct msghdr msg;
  396. struct socket *sock;
  397. int len, alen;
  398. rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
  399. sock = rqstp->rq_sock->sk_sock;
  400. msg.msg_name = &rqstp->rq_addr;
  401. msg.msg_namelen = sizeof(rqstp->rq_addr);
  402. msg.msg_control = NULL;
  403. msg.msg_controllen = 0;
  404. msg.msg_flags = MSG_DONTWAIT;
  405. len = kernel_recvmsg(sock, &msg, iov, nr, buflen, MSG_DONTWAIT);
  406. /* sock_recvmsg doesn't fill in the name/namelen, so we must..
  407. * possibly we should cache this in the svc_sock structure
  408. * at accept time. FIXME
  409. */
  410. alen = sizeof(rqstp->rq_addr);
  411. sock->ops->getname(sock, (struct sockaddr *)&rqstp->rq_addr, &alen, 1);
  412. dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
  413. rqstp->rq_sock, iov[0].iov_base, iov[0].iov_len, len);
  414. return len;
  415. }
  416. /*
  417. * Set socket snd and rcv buffer lengths
  418. */
  419. static inline void
  420. svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
  421. {
  422. #if 0
  423. mm_segment_t oldfs;
  424. oldfs = get_fs(); set_fs(KERNEL_DS);
  425. sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
  426. (char*)&snd, sizeof(snd));
  427. sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
  428. (char*)&rcv, sizeof(rcv));
  429. #else
  430. /* sock_setsockopt limits use to sysctl_?mem_max,
  431. * which isn't acceptable. Until that is made conditional
  432. * on not having CAP_SYS_RESOURCE or similar, we go direct...
  433. * DaveM said I could!
  434. */
  435. lock_sock(sock->sk);
  436. sock->sk->sk_sndbuf = snd * 2;
  437. sock->sk->sk_rcvbuf = rcv * 2;
  438. sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
  439. release_sock(sock->sk);
  440. #endif
  441. }
  442. /*
  443. * INET callback when data has been received on the socket.
  444. */
  445. static void
  446. svc_udp_data_ready(struct sock *sk, int count)
  447. {
  448. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  449. if (svsk) {
  450. dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
  451. svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
  452. set_bit(SK_DATA, &svsk->sk_flags);
  453. svc_sock_enqueue(svsk);
  454. }
  455. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  456. wake_up_interruptible(sk->sk_sleep);
  457. }
  458. /*
  459. * INET callback when space is newly available on the socket.
  460. */
  461. static void
  462. svc_write_space(struct sock *sk)
  463. {
  464. struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
  465. if (svsk) {
  466. dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
  467. svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
  468. svc_sock_enqueue(svsk);
  469. }
  470. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
  471. dprintk("RPC svc_write_space: someone sleeping on %p\n",
  472. svsk);
  473. wake_up_interruptible(sk->sk_sleep);
  474. }
  475. }
  476. /*
  477. * Receive a datagram from a UDP socket.
  478. */
  479. extern int
  480. csum_partial_copy_to_xdr(struct xdr_buf *xdr, struct sk_buff *skb);
  481. static int
  482. svc_udp_recvfrom(struct svc_rqst *rqstp)
  483. {
  484. struct svc_sock *svsk = rqstp->rq_sock;
  485. struct svc_serv *serv = svsk->sk_server;
  486. struct sk_buff *skb;
  487. int err, len;
  488. if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
  489. /* udp sockets need large rcvbuf as all pending
  490. * requests are still in that buffer. sndbuf must
  491. * also be large enough that there is enough space
  492. * for one reply per thread.
  493. */
  494. svc_sock_setbufsize(svsk->sk_sock,
  495. (serv->sv_nrthreads+3) * serv->sv_bufsz,
  496. (serv->sv_nrthreads+3) * serv->sv_bufsz);
  497. if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
  498. svc_sock_received(svsk);
  499. return svc_deferred_recv(rqstp);
  500. }
  501. clear_bit(SK_DATA, &svsk->sk_flags);
  502. while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
  503. if (err == -EAGAIN) {
  504. svc_sock_received(svsk);
  505. return err;
  506. }
  507. /* possibly an icmp error */
  508. dprintk("svc: recvfrom returned error %d\n", -err);
  509. }
  510. if (skb->tstamp.off_sec == 0) {
  511. struct timeval tv;
  512. tv.tv_sec = xtime.tv_sec;
  513. tv.tv_usec = xtime.tv_nsec * 1000;
  514. skb_set_timestamp(skb, &tv);
  515. /* Don't enable netstamp, sunrpc doesn't
  516. need that much accuracy */
  517. }
  518. skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp);
  519. set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
  520. /*
  521. * Maybe more packets - kick another thread ASAP.
  522. */
  523. svc_sock_received(svsk);
  524. len = skb->len - sizeof(struct udphdr);
  525. rqstp->rq_arg.len = len;
  526. rqstp->rq_prot = IPPROTO_UDP;
  527. /* Get sender address */
  528. rqstp->rq_addr.sin_family = AF_INET;
  529. rqstp->rq_addr.sin_port = skb->h.uh->source;
  530. rqstp->rq_addr.sin_addr.s_addr = skb->nh.iph->saddr;
  531. rqstp->rq_daddr = skb->nh.iph->daddr;
  532. if (skb_is_nonlinear(skb)) {
  533. /* we have to copy */
  534. local_bh_disable();
  535. if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
  536. local_bh_enable();
  537. /* checksum error */
  538. skb_free_datagram(svsk->sk_sk, skb);
  539. return 0;
  540. }
  541. local_bh_enable();
  542. skb_free_datagram(svsk->sk_sk, skb);
  543. } else {
  544. /* we can use it in-place */
  545. rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
  546. rqstp->rq_arg.head[0].iov_len = len;
  547. if (skb->ip_summed != CHECKSUM_UNNECESSARY) {
  548. if ((unsigned short)csum_fold(skb_checksum(skb, 0, skb->len, skb->csum))) {
  549. skb_free_datagram(svsk->sk_sk, skb);
  550. return 0;
  551. }
  552. skb->ip_summed = CHECKSUM_UNNECESSARY;
  553. }
  554. rqstp->rq_skbuff = skb;
  555. }
  556. rqstp->rq_arg.page_base = 0;
  557. if (len <= rqstp->rq_arg.head[0].iov_len) {
  558. rqstp->rq_arg.head[0].iov_len = len;
  559. rqstp->rq_arg.page_len = 0;
  560. } else {
  561. rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
  562. rqstp->rq_argused += (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
  563. }
  564. if (serv->sv_stats)
  565. serv->sv_stats->netudpcnt++;
  566. return len;
  567. }
  568. static int
  569. svc_udp_sendto(struct svc_rqst *rqstp)
  570. {
  571. int error;
  572. error = svc_sendto(rqstp, &rqstp->rq_res);
  573. if (error == -ECONNREFUSED)
  574. /* ICMP error on earlier request. */
  575. error = svc_sendto(rqstp, &rqstp->rq_res);
  576. return error;
  577. }
  578. static void
  579. svc_udp_init(struct svc_sock *svsk)
  580. {
  581. svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
  582. svsk->sk_sk->sk_write_space = svc_write_space;
  583. svsk->sk_recvfrom = svc_udp_recvfrom;
  584. svsk->sk_sendto = svc_udp_sendto;
  585. /* initialise setting must have enough space to
  586. * receive and respond to one request.
  587. * svc_udp_recvfrom will re-adjust if necessary
  588. */
  589. svc_sock_setbufsize(svsk->sk_sock,
  590. 3 * svsk->sk_server->sv_bufsz,
  591. 3 * svsk->sk_server->sv_bufsz);
  592. set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
  593. set_bit(SK_CHNGBUF, &svsk->sk_flags);
  594. }
  595. /*
  596. * A data_ready event on a listening socket means there's a connection
  597. * pending. Do not use state_change as a substitute for it.
  598. */
  599. static void
  600. svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
  601. {
  602. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  603. dprintk("svc: socket %p TCP (listen) state change %d\n",
  604. sk, sk->sk_state);
  605. /*
  606. * This callback may called twice when a new connection
  607. * is established as a child socket inherits everything
  608. * from a parent LISTEN socket.
  609. * 1) data_ready method of the parent socket will be called
  610. * when one of child sockets become ESTABLISHED.
  611. * 2) data_ready method of the child socket may be called
  612. * when it receives data before the socket is accepted.
  613. * In case of 2, we should ignore it silently.
  614. */
  615. if (sk->sk_state == TCP_LISTEN) {
  616. if (svsk) {
  617. set_bit(SK_CONN, &svsk->sk_flags);
  618. svc_sock_enqueue(svsk);
  619. } else
  620. printk("svc: socket %p: no user data\n", sk);
  621. }
  622. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  623. wake_up_interruptible_all(sk->sk_sleep);
  624. }
  625. /*
  626. * A state change on a connected socket means it's dying or dead.
  627. */
  628. static void
  629. svc_tcp_state_change(struct sock *sk)
  630. {
  631. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  632. dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
  633. sk, sk->sk_state, sk->sk_user_data);
  634. if (!svsk)
  635. printk("svc: socket %p: no user data\n", sk);
  636. else {
  637. set_bit(SK_CLOSE, &svsk->sk_flags);
  638. svc_sock_enqueue(svsk);
  639. }
  640. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  641. wake_up_interruptible_all(sk->sk_sleep);
  642. }
  643. static void
  644. svc_tcp_data_ready(struct sock *sk, int count)
  645. {
  646. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  647. dprintk("svc: socket %p TCP data ready (svsk %p)\n",
  648. sk, sk->sk_user_data);
  649. if (svsk) {
  650. set_bit(SK_DATA, &svsk->sk_flags);
  651. svc_sock_enqueue(svsk);
  652. }
  653. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  654. wake_up_interruptible(sk->sk_sleep);
  655. }
  656. /*
  657. * Accept a TCP connection
  658. */
  659. static void
  660. svc_tcp_accept(struct svc_sock *svsk)
  661. {
  662. struct sockaddr_in sin;
  663. struct svc_serv *serv = svsk->sk_server;
  664. struct socket *sock = svsk->sk_sock;
  665. struct socket *newsock;
  666. struct proto_ops *ops;
  667. struct svc_sock *newsvsk;
  668. int err, slen;
  669. dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
  670. if (!sock)
  671. return;
  672. err = sock_create_lite(PF_INET, SOCK_STREAM, IPPROTO_TCP, &newsock);
  673. if (err) {
  674. if (err == -ENOMEM)
  675. printk(KERN_WARNING "%s: no more sockets!\n",
  676. serv->sv_name);
  677. return;
  678. }
  679. dprintk("svc: tcp_accept %p allocated\n", newsock);
  680. newsock->ops = ops = sock->ops;
  681. clear_bit(SK_CONN, &svsk->sk_flags);
  682. if ((err = ops->accept(sock, newsock, O_NONBLOCK)) < 0) {
  683. if (err != -EAGAIN && net_ratelimit())
  684. printk(KERN_WARNING "%s: accept failed (err %d)!\n",
  685. serv->sv_name, -err);
  686. goto failed; /* aborted connection or whatever */
  687. }
  688. set_bit(SK_CONN, &svsk->sk_flags);
  689. svc_sock_enqueue(svsk);
  690. slen = sizeof(sin);
  691. err = ops->getname(newsock, (struct sockaddr *) &sin, &slen, 1);
  692. if (err < 0) {
  693. if (net_ratelimit())
  694. printk(KERN_WARNING "%s: peername failed (err %d)!\n",
  695. serv->sv_name, -err);
  696. goto failed; /* aborted connection or whatever */
  697. }
  698. /* Ideally, we would want to reject connections from unauthorized
  699. * hosts here, but when we get encription, the IP of the host won't
  700. * tell us anything. For now just warn about unpriv connections.
  701. */
  702. if (ntohs(sin.sin_port) >= 1024) {
  703. dprintk(KERN_WARNING
  704. "%s: connect from unprivileged port: %u.%u.%u.%u:%d\n",
  705. serv->sv_name,
  706. NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
  707. }
  708. dprintk("%s: connect from %u.%u.%u.%u:%04x\n", serv->sv_name,
  709. NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
  710. /* make sure that a write doesn't block forever when
  711. * low on memory
  712. */
  713. newsock->sk->sk_sndtimeo = HZ*30;
  714. if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 0)))
  715. goto failed;
  716. /* make sure that we don't have too many active connections.
  717. * If we have, something must be dropped.
  718. *
  719. * There's no point in trying to do random drop here for
  720. * DoS prevention. The NFS clients does 1 reconnect in 15
  721. * seconds. An attacker can easily beat that.
  722. *
  723. * The only somewhat efficient mechanism would be if drop
  724. * old connections from the same IP first. But right now
  725. * we don't even record the client IP in svc_sock.
  726. */
  727. if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
  728. struct svc_sock *svsk = NULL;
  729. spin_lock_bh(&serv->sv_lock);
  730. if (!list_empty(&serv->sv_tempsocks)) {
  731. if (net_ratelimit()) {
  732. /* Try to help the admin */
  733. printk(KERN_NOTICE "%s: too many open TCP "
  734. "sockets, consider increasing the "
  735. "number of nfsd threads\n",
  736. serv->sv_name);
  737. printk(KERN_NOTICE "%s: last TCP connect from "
  738. "%u.%u.%u.%u:%d\n",
  739. serv->sv_name,
  740. NIPQUAD(sin.sin_addr.s_addr),
  741. ntohs(sin.sin_port));
  742. }
  743. /*
  744. * Always select the oldest socket. It's not fair,
  745. * but so is life
  746. */
  747. svsk = list_entry(serv->sv_tempsocks.prev,
  748. struct svc_sock,
  749. sk_list);
  750. set_bit(SK_CLOSE, &svsk->sk_flags);
  751. svsk->sk_inuse ++;
  752. }
  753. spin_unlock_bh(&serv->sv_lock);
  754. if (svsk) {
  755. svc_sock_enqueue(svsk);
  756. svc_sock_put(svsk);
  757. }
  758. }
  759. if (serv->sv_stats)
  760. serv->sv_stats->nettcpconn++;
  761. return;
  762. failed:
  763. sock_release(newsock);
  764. return;
  765. }
  766. /*
  767. * Receive data from a TCP socket.
  768. */
  769. static int
  770. svc_tcp_recvfrom(struct svc_rqst *rqstp)
  771. {
  772. struct svc_sock *svsk = rqstp->rq_sock;
  773. struct svc_serv *serv = svsk->sk_server;
  774. int len;
  775. struct kvec vec[RPCSVC_MAXPAGES];
  776. int pnum, vlen;
  777. dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
  778. svsk, test_bit(SK_DATA, &svsk->sk_flags),
  779. test_bit(SK_CONN, &svsk->sk_flags),
  780. test_bit(SK_CLOSE, &svsk->sk_flags));
  781. if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
  782. svc_sock_received(svsk);
  783. return svc_deferred_recv(rqstp);
  784. }
  785. if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
  786. svc_delete_socket(svsk);
  787. return 0;
  788. }
  789. if (test_bit(SK_CONN, &svsk->sk_flags)) {
  790. svc_tcp_accept(svsk);
  791. svc_sock_received(svsk);
  792. return 0;
  793. }
  794. if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
  795. /* sndbuf needs to have room for one request
  796. * per thread, otherwise we can stall even when the
  797. * network isn't a bottleneck.
  798. * rcvbuf just needs to be able to hold a few requests.
  799. * Normally they will be removed from the queue
  800. * as soon a a complete request arrives.
  801. */
  802. svc_sock_setbufsize(svsk->sk_sock,
  803. (serv->sv_nrthreads+3) * serv->sv_bufsz,
  804. 3 * serv->sv_bufsz);
  805. clear_bit(SK_DATA, &svsk->sk_flags);
  806. /* Receive data. If we haven't got the record length yet, get
  807. * the next four bytes. Otherwise try to gobble up as much as
  808. * possible up to the complete record length.
  809. */
  810. if (svsk->sk_tcplen < 4) {
  811. unsigned long want = 4 - svsk->sk_tcplen;
  812. struct kvec iov;
  813. iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
  814. iov.iov_len = want;
  815. if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
  816. goto error;
  817. svsk->sk_tcplen += len;
  818. if (len < want) {
  819. dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
  820. len, want);
  821. svc_sock_received(svsk);
  822. return -EAGAIN; /* record header not complete */
  823. }
  824. svsk->sk_reclen = ntohl(svsk->sk_reclen);
  825. if (!(svsk->sk_reclen & 0x80000000)) {
  826. /* FIXME: technically, a record can be fragmented,
  827. * and non-terminal fragments will not have the top
  828. * bit set in the fragment length header.
  829. * But apparently no known nfs clients send fragmented
  830. * records. */
  831. printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (non-terminal)\n",
  832. (unsigned long) svsk->sk_reclen);
  833. goto err_delete;
  834. }
  835. svsk->sk_reclen &= 0x7fffffff;
  836. dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
  837. if (svsk->sk_reclen > serv->sv_bufsz) {
  838. printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (large)\n",
  839. (unsigned long) svsk->sk_reclen);
  840. goto err_delete;
  841. }
  842. }
  843. /* Check whether enough data is available */
  844. len = svc_recv_available(svsk);
  845. if (len < 0)
  846. goto error;
  847. if (len < svsk->sk_reclen) {
  848. dprintk("svc: incomplete TCP record (%d of %d)\n",
  849. len, svsk->sk_reclen);
  850. svc_sock_received(svsk);
  851. return -EAGAIN; /* record not complete */
  852. }
  853. len = svsk->sk_reclen;
  854. set_bit(SK_DATA, &svsk->sk_flags);
  855. vec[0] = rqstp->rq_arg.head[0];
  856. vlen = PAGE_SIZE;
  857. pnum = 1;
  858. while (vlen < len) {
  859. vec[pnum].iov_base = page_address(rqstp->rq_argpages[rqstp->rq_argused++]);
  860. vec[pnum].iov_len = PAGE_SIZE;
  861. pnum++;
  862. vlen += PAGE_SIZE;
  863. }
  864. /* Now receive data */
  865. len = svc_recvfrom(rqstp, vec, pnum, len);
  866. if (len < 0)
  867. goto error;
  868. dprintk("svc: TCP complete record (%d bytes)\n", len);
  869. rqstp->rq_arg.len = len;
  870. rqstp->rq_arg.page_base = 0;
  871. if (len <= rqstp->rq_arg.head[0].iov_len) {
  872. rqstp->rq_arg.head[0].iov_len = len;
  873. rqstp->rq_arg.page_len = 0;
  874. } else {
  875. rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
  876. }
  877. rqstp->rq_skbuff = NULL;
  878. rqstp->rq_prot = IPPROTO_TCP;
  879. /* Reset TCP read info */
  880. svsk->sk_reclen = 0;
  881. svsk->sk_tcplen = 0;
  882. svc_sock_received(svsk);
  883. if (serv->sv_stats)
  884. serv->sv_stats->nettcpcnt++;
  885. return len;
  886. err_delete:
  887. svc_delete_socket(svsk);
  888. return -EAGAIN;
  889. error:
  890. if (len == -EAGAIN) {
  891. dprintk("RPC: TCP recvfrom got EAGAIN\n");
  892. svc_sock_received(svsk);
  893. } else {
  894. printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
  895. svsk->sk_server->sv_name, -len);
  896. svc_sock_received(svsk);
  897. }
  898. return len;
  899. }
  900. /*
  901. * Send out data on TCP socket.
  902. */
  903. static int
  904. svc_tcp_sendto(struct svc_rqst *rqstp)
  905. {
  906. struct xdr_buf *xbufp = &rqstp->rq_res;
  907. int sent;
  908. u32 reclen;
  909. /* Set up the first element of the reply kvec.
  910. * Any other kvecs that may be in use have been taken
  911. * care of by the server implementation itself.
  912. */
  913. reclen = htonl(0x80000000|((xbufp->len ) - 4));
  914. memcpy(xbufp->head[0].iov_base, &reclen, 4);
  915. if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
  916. return -ENOTCONN;
  917. sent = svc_sendto(rqstp, &rqstp->rq_res);
  918. if (sent != xbufp->len) {
  919. printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
  920. rqstp->rq_sock->sk_server->sv_name,
  921. (sent<0)?"got error":"sent only",
  922. sent, xbufp->len);
  923. svc_delete_socket(rqstp->rq_sock);
  924. sent = -EAGAIN;
  925. }
  926. return sent;
  927. }
  928. static void
  929. svc_tcp_init(struct svc_sock *svsk)
  930. {
  931. struct sock *sk = svsk->sk_sk;
  932. struct tcp_sock *tp = tcp_sk(sk);
  933. svsk->sk_recvfrom = svc_tcp_recvfrom;
  934. svsk->sk_sendto = svc_tcp_sendto;
  935. if (sk->sk_state == TCP_LISTEN) {
  936. dprintk("setting up TCP socket for listening\n");
  937. sk->sk_data_ready = svc_tcp_listen_data_ready;
  938. set_bit(SK_CONN, &svsk->sk_flags);
  939. } else {
  940. dprintk("setting up TCP socket for reading\n");
  941. sk->sk_state_change = svc_tcp_state_change;
  942. sk->sk_data_ready = svc_tcp_data_ready;
  943. sk->sk_write_space = svc_write_space;
  944. svsk->sk_reclen = 0;
  945. svsk->sk_tcplen = 0;
  946. tp->nonagle = 1; /* disable Nagle's algorithm */
  947. /* initialise setting must have enough space to
  948. * receive and respond to one request.
  949. * svc_tcp_recvfrom will re-adjust if necessary
  950. */
  951. svc_sock_setbufsize(svsk->sk_sock,
  952. 3 * svsk->sk_server->sv_bufsz,
  953. 3 * svsk->sk_server->sv_bufsz);
  954. set_bit(SK_CHNGBUF, &svsk->sk_flags);
  955. set_bit(SK_DATA, &svsk->sk_flags);
  956. if (sk->sk_state != TCP_ESTABLISHED)
  957. set_bit(SK_CLOSE, &svsk->sk_flags);
  958. }
  959. }
  960. void
  961. svc_sock_update_bufs(struct svc_serv *serv)
  962. {
  963. /*
  964. * The number of server threads has changed. Update
  965. * rcvbuf and sndbuf accordingly on all sockets
  966. */
  967. struct list_head *le;
  968. spin_lock_bh(&serv->sv_lock);
  969. list_for_each(le, &serv->sv_permsocks) {
  970. struct svc_sock *svsk =
  971. list_entry(le, struct svc_sock, sk_list);
  972. set_bit(SK_CHNGBUF, &svsk->sk_flags);
  973. }
  974. list_for_each(le, &serv->sv_tempsocks) {
  975. struct svc_sock *svsk =
  976. list_entry(le, struct svc_sock, sk_list);
  977. set_bit(SK_CHNGBUF, &svsk->sk_flags);
  978. }
  979. spin_unlock_bh(&serv->sv_lock);
  980. }
  981. /*
  982. * Receive the next request on any socket.
  983. */
  984. int
  985. svc_recv(struct svc_serv *serv, struct svc_rqst *rqstp, long timeout)
  986. {
  987. struct svc_sock *svsk =NULL;
  988. int len;
  989. int pages;
  990. struct xdr_buf *arg;
  991. DECLARE_WAITQUEUE(wait, current);
  992. dprintk("svc: server %p waiting for data (to = %ld)\n",
  993. rqstp, timeout);
  994. if (rqstp->rq_sock)
  995. printk(KERN_ERR
  996. "svc_recv: service %p, socket not NULL!\n",
  997. rqstp);
  998. if (waitqueue_active(&rqstp->rq_wait))
  999. printk(KERN_ERR
  1000. "svc_recv: service %p, wait queue active!\n",
  1001. rqstp);
  1002. /* Initialize the buffers */
  1003. /* first reclaim pages that were moved to response list */
  1004. svc_pushback_allpages(rqstp);
  1005. /* now allocate needed pages. If we get a failure, sleep briefly */
  1006. pages = 2 + (serv->sv_bufsz + PAGE_SIZE -1) / PAGE_SIZE;
  1007. while (rqstp->rq_arghi < pages) {
  1008. struct page *p = alloc_page(GFP_KERNEL);
  1009. if (!p) {
  1010. schedule_timeout_uninterruptible(msecs_to_jiffies(500));
  1011. continue;
  1012. }
  1013. rqstp->rq_argpages[rqstp->rq_arghi++] = p;
  1014. }
  1015. /* Make arg->head point to first page and arg->pages point to rest */
  1016. arg = &rqstp->rq_arg;
  1017. arg->head[0].iov_base = page_address(rqstp->rq_argpages[0]);
  1018. arg->head[0].iov_len = PAGE_SIZE;
  1019. rqstp->rq_argused = 1;
  1020. arg->pages = rqstp->rq_argpages + 1;
  1021. arg->page_base = 0;
  1022. /* save at least one page for response */
  1023. arg->page_len = (pages-2)*PAGE_SIZE;
  1024. arg->len = (pages-1)*PAGE_SIZE;
  1025. arg->tail[0].iov_len = 0;
  1026. try_to_freeze();
  1027. if (signalled())
  1028. return -EINTR;
  1029. spin_lock_bh(&serv->sv_lock);
  1030. if (!list_empty(&serv->sv_tempsocks)) {
  1031. svsk = list_entry(serv->sv_tempsocks.next,
  1032. struct svc_sock, sk_list);
  1033. /* apparently the "standard" is that clients close
  1034. * idle connections after 5 minutes, servers after
  1035. * 6 minutes
  1036. * http://www.connectathon.org/talks96/nfstcp.pdf
  1037. */
  1038. if (get_seconds() - svsk->sk_lastrecv < 6*60
  1039. || test_bit(SK_BUSY, &svsk->sk_flags))
  1040. svsk = NULL;
  1041. }
  1042. if (svsk) {
  1043. set_bit(SK_BUSY, &svsk->sk_flags);
  1044. set_bit(SK_CLOSE, &svsk->sk_flags);
  1045. rqstp->rq_sock = svsk;
  1046. svsk->sk_inuse++;
  1047. } else if ((svsk = svc_sock_dequeue(serv)) != NULL) {
  1048. rqstp->rq_sock = svsk;
  1049. svsk->sk_inuse++;
  1050. rqstp->rq_reserved = serv->sv_bufsz;
  1051. svsk->sk_reserved += rqstp->rq_reserved;
  1052. } else {
  1053. /* No data pending. Go to sleep */
  1054. svc_serv_enqueue(serv, rqstp);
  1055. /*
  1056. * We have to be able to interrupt this wait
  1057. * to bring down the daemons ...
  1058. */
  1059. set_current_state(TASK_INTERRUPTIBLE);
  1060. add_wait_queue(&rqstp->rq_wait, &wait);
  1061. spin_unlock_bh(&serv->sv_lock);
  1062. schedule_timeout(timeout);
  1063. try_to_freeze();
  1064. spin_lock_bh(&serv->sv_lock);
  1065. remove_wait_queue(&rqstp->rq_wait, &wait);
  1066. if (!(svsk = rqstp->rq_sock)) {
  1067. svc_serv_dequeue(serv, rqstp);
  1068. spin_unlock_bh(&serv->sv_lock);
  1069. dprintk("svc: server %p, no data yet\n", rqstp);
  1070. return signalled()? -EINTR : -EAGAIN;
  1071. }
  1072. }
  1073. spin_unlock_bh(&serv->sv_lock);
  1074. dprintk("svc: server %p, socket %p, inuse=%d\n",
  1075. rqstp, svsk, svsk->sk_inuse);
  1076. len = svsk->sk_recvfrom(rqstp);
  1077. dprintk("svc: got len=%d\n", len);
  1078. /* No data, incomplete (TCP) read, or accept() */
  1079. if (len == 0 || len == -EAGAIN) {
  1080. rqstp->rq_res.len = 0;
  1081. svc_sock_release(rqstp);
  1082. return -EAGAIN;
  1083. }
  1084. svsk->sk_lastrecv = get_seconds();
  1085. if (test_bit(SK_TEMP, &svsk->sk_flags)) {
  1086. /* push active sockets to end of list */
  1087. spin_lock_bh(&serv->sv_lock);
  1088. if (!list_empty(&svsk->sk_list))
  1089. list_move_tail(&svsk->sk_list, &serv->sv_tempsocks);
  1090. spin_unlock_bh(&serv->sv_lock);
  1091. }
  1092. rqstp->rq_secure = ntohs(rqstp->rq_addr.sin_port) < 1024;
  1093. rqstp->rq_chandle.defer = svc_defer;
  1094. if (serv->sv_stats)
  1095. serv->sv_stats->netcnt++;
  1096. return len;
  1097. }
  1098. /*
  1099. * Drop request
  1100. */
  1101. void
  1102. svc_drop(struct svc_rqst *rqstp)
  1103. {
  1104. dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
  1105. svc_sock_release(rqstp);
  1106. }
  1107. /*
  1108. * Return reply to client.
  1109. */
  1110. int
  1111. svc_send(struct svc_rqst *rqstp)
  1112. {
  1113. struct svc_sock *svsk;
  1114. int len;
  1115. struct xdr_buf *xb;
  1116. if ((svsk = rqstp->rq_sock) == NULL) {
  1117. printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
  1118. __FILE__, __LINE__);
  1119. return -EFAULT;
  1120. }
  1121. /* release the receive skb before sending the reply */
  1122. svc_release_skb(rqstp);
  1123. /* calculate over-all length */
  1124. xb = & rqstp->rq_res;
  1125. xb->len = xb->head[0].iov_len +
  1126. xb->page_len +
  1127. xb->tail[0].iov_len;
  1128. /* Grab svsk->sk_sem to serialize outgoing data. */
  1129. down(&svsk->sk_sem);
  1130. if (test_bit(SK_DEAD, &svsk->sk_flags))
  1131. len = -ENOTCONN;
  1132. else
  1133. len = svsk->sk_sendto(rqstp);
  1134. up(&svsk->sk_sem);
  1135. svc_sock_release(rqstp);
  1136. if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
  1137. return 0;
  1138. return len;
  1139. }
  1140. /*
  1141. * Initialize socket for RPC use and create svc_sock struct
  1142. * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
  1143. */
  1144. static struct svc_sock *
  1145. svc_setup_socket(struct svc_serv *serv, struct socket *sock,
  1146. int *errp, int pmap_register)
  1147. {
  1148. struct svc_sock *svsk;
  1149. struct sock *inet;
  1150. dprintk("svc: svc_setup_socket %p\n", sock);
  1151. if (!(svsk = kmalloc(sizeof(*svsk), GFP_KERNEL))) {
  1152. *errp = -ENOMEM;
  1153. return NULL;
  1154. }
  1155. memset(svsk, 0, sizeof(*svsk));
  1156. inet = sock->sk;
  1157. /* Register socket with portmapper */
  1158. if (*errp >= 0 && pmap_register)
  1159. *errp = svc_register(serv, inet->sk_protocol,
  1160. ntohs(inet_sk(inet)->sport));
  1161. if (*errp < 0) {
  1162. kfree(svsk);
  1163. return NULL;
  1164. }
  1165. set_bit(SK_BUSY, &svsk->sk_flags);
  1166. inet->sk_user_data = svsk;
  1167. svsk->sk_sock = sock;
  1168. svsk->sk_sk = inet;
  1169. svsk->sk_ostate = inet->sk_state_change;
  1170. svsk->sk_odata = inet->sk_data_ready;
  1171. svsk->sk_owspace = inet->sk_write_space;
  1172. svsk->sk_server = serv;
  1173. svsk->sk_lastrecv = get_seconds();
  1174. INIT_LIST_HEAD(&svsk->sk_deferred);
  1175. INIT_LIST_HEAD(&svsk->sk_ready);
  1176. sema_init(&svsk->sk_sem, 1);
  1177. /* Initialize the socket */
  1178. if (sock->type == SOCK_DGRAM)
  1179. svc_udp_init(svsk);
  1180. else
  1181. svc_tcp_init(svsk);
  1182. spin_lock_bh(&serv->sv_lock);
  1183. if (!pmap_register) {
  1184. set_bit(SK_TEMP, &svsk->sk_flags);
  1185. list_add(&svsk->sk_list, &serv->sv_tempsocks);
  1186. serv->sv_tmpcnt++;
  1187. } else {
  1188. clear_bit(SK_TEMP, &svsk->sk_flags);
  1189. list_add(&svsk->sk_list, &serv->sv_permsocks);
  1190. }
  1191. spin_unlock_bh(&serv->sv_lock);
  1192. dprintk("svc: svc_setup_socket created %p (inet %p)\n",
  1193. svsk, svsk->sk_sk);
  1194. clear_bit(SK_BUSY, &svsk->sk_flags);
  1195. svc_sock_enqueue(svsk);
  1196. return svsk;
  1197. }
  1198. /*
  1199. * Create socket for RPC service.
  1200. */
  1201. static int
  1202. svc_create_socket(struct svc_serv *serv, int protocol, struct sockaddr_in *sin)
  1203. {
  1204. struct svc_sock *svsk;
  1205. struct socket *sock;
  1206. int error;
  1207. int type;
  1208. dprintk("svc: svc_create_socket(%s, %d, %u.%u.%u.%u:%d)\n",
  1209. serv->sv_program->pg_name, protocol,
  1210. NIPQUAD(sin->sin_addr.s_addr),
  1211. ntohs(sin->sin_port));
  1212. if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
  1213. printk(KERN_WARNING "svc: only UDP and TCP "
  1214. "sockets supported\n");
  1215. return -EINVAL;
  1216. }
  1217. type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
  1218. if ((error = sock_create_kern(PF_INET, type, protocol, &sock)) < 0)
  1219. return error;
  1220. if (sin != NULL) {
  1221. if (type == SOCK_STREAM)
  1222. sock->sk->sk_reuse = 1; /* allow address reuse */
  1223. error = sock->ops->bind(sock, (struct sockaddr *) sin,
  1224. sizeof(*sin));
  1225. if (error < 0)
  1226. goto bummer;
  1227. }
  1228. if (protocol == IPPROTO_TCP) {
  1229. if ((error = sock->ops->listen(sock, 64)) < 0)
  1230. goto bummer;
  1231. }
  1232. if ((svsk = svc_setup_socket(serv, sock, &error, 1)) != NULL)
  1233. return 0;
  1234. bummer:
  1235. dprintk("svc: svc_create_socket error = %d\n", -error);
  1236. sock_release(sock);
  1237. return error;
  1238. }
  1239. /*
  1240. * Remove a dead socket
  1241. */
  1242. void
  1243. svc_delete_socket(struct svc_sock *svsk)
  1244. {
  1245. struct svc_serv *serv;
  1246. struct sock *sk;
  1247. dprintk("svc: svc_delete_socket(%p)\n", svsk);
  1248. serv = svsk->sk_server;
  1249. sk = svsk->sk_sk;
  1250. sk->sk_state_change = svsk->sk_ostate;
  1251. sk->sk_data_ready = svsk->sk_odata;
  1252. sk->sk_write_space = svsk->sk_owspace;
  1253. spin_lock_bh(&serv->sv_lock);
  1254. list_del_init(&svsk->sk_list);
  1255. list_del_init(&svsk->sk_ready);
  1256. if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags))
  1257. if (test_bit(SK_TEMP, &svsk->sk_flags))
  1258. serv->sv_tmpcnt--;
  1259. if (!svsk->sk_inuse) {
  1260. spin_unlock_bh(&serv->sv_lock);
  1261. sock_release(svsk->sk_sock);
  1262. kfree(svsk);
  1263. } else {
  1264. spin_unlock_bh(&serv->sv_lock);
  1265. dprintk(KERN_NOTICE "svc: server socket destroy delayed\n");
  1266. /* svsk->sk_server = NULL; */
  1267. }
  1268. }
  1269. /*
  1270. * Make a socket for nfsd and lockd
  1271. */
  1272. int
  1273. svc_makesock(struct svc_serv *serv, int protocol, unsigned short port)
  1274. {
  1275. struct sockaddr_in sin;
  1276. dprintk("svc: creating socket proto = %d\n", protocol);
  1277. sin.sin_family = AF_INET;
  1278. sin.sin_addr.s_addr = INADDR_ANY;
  1279. sin.sin_port = htons(port);
  1280. return svc_create_socket(serv, protocol, &sin);
  1281. }
  1282. /*
  1283. * Handle defer and revisit of requests
  1284. */
  1285. static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
  1286. {
  1287. struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
  1288. struct svc_serv *serv = dreq->owner;
  1289. struct svc_sock *svsk;
  1290. if (too_many) {
  1291. svc_sock_put(dr->svsk);
  1292. kfree(dr);
  1293. return;
  1294. }
  1295. dprintk("revisit queued\n");
  1296. svsk = dr->svsk;
  1297. dr->svsk = NULL;
  1298. spin_lock_bh(&serv->sv_lock);
  1299. list_add(&dr->handle.recent, &svsk->sk_deferred);
  1300. spin_unlock_bh(&serv->sv_lock);
  1301. set_bit(SK_DEFERRED, &svsk->sk_flags);
  1302. svc_sock_enqueue(svsk);
  1303. svc_sock_put(svsk);
  1304. }
  1305. static struct cache_deferred_req *
  1306. svc_defer(struct cache_req *req)
  1307. {
  1308. struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
  1309. int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
  1310. struct svc_deferred_req *dr;
  1311. if (rqstp->rq_arg.page_len)
  1312. return NULL; /* if more than a page, give up FIXME */
  1313. if (rqstp->rq_deferred) {
  1314. dr = rqstp->rq_deferred;
  1315. rqstp->rq_deferred = NULL;
  1316. } else {
  1317. int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
  1318. /* FIXME maybe discard if size too large */
  1319. dr = kmalloc(size, GFP_KERNEL);
  1320. if (dr == NULL)
  1321. return NULL;
  1322. dr->handle.owner = rqstp->rq_server;
  1323. dr->prot = rqstp->rq_prot;
  1324. dr->addr = rqstp->rq_addr;
  1325. dr->argslen = rqstp->rq_arg.len >> 2;
  1326. memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
  1327. }
  1328. spin_lock_bh(&rqstp->rq_server->sv_lock);
  1329. rqstp->rq_sock->sk_inuse++;
  1330. dr->svsk = rqstp->rq_sock;
  1331. spin_unlock_bh(&rqstp->rq_server->sv_lock);
  1332. dr->handle.revisit = svc_revisit;
  1333. return &dr->handle;
  1334. }
  1335. /*
  1336. * recv data from a deferred request into an active one
  1337. */
  1338. static int svc_deferred_recv(struct svc_rqst *rqstp)
  1339. {
  1340. struct svc_deferred_req *dr = rqstp->rq_deferred;
  1341. rqstp->rq_arg.head[0].iov_base = dr->args;
  1342. rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
  1343. rqstp->rq_arg.page_len = 0;
  1344. rqstp->rq_arg.len = dr->argslen<<2;
  1345. rqstp->rq_prot = dr->prot;
  1346. rqstp->rq_addr = dr->addr;
  1347. return dr->argslen<<2;
  1348. }
  1349. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
  1350. {
  1351. struct svc_deferred_req *dr = NULL;
  1352. struct svc_serv *serv = svsk->sk_server;
  1353. if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
  1354. return NULL;
  1355. spin_lock_bh(&serv->sv_lock);
  1356. clear_bit(SK_DEFERRED, &svsk->sk_flags);
  1357. if (!list_empty(&svsk->sk_deferred)) {
  1358. dr = list_entry(svsk->sk_deferred.next,
  1359. struct svc_deferred_req,
  1360. handle.recent);
  1361. list_del_init(&dr->handle.recent);
  1362. set_bit(SK_DEFERRED, &svsk->sk_flags);
  1363. }
  1364. spin_unlock_bh(&serv->sv_lock);
  1365. return dr;
  1366. }