ieee80211_crypt_tkip.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683
  1. /*
  2. * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
  3. *
  4. * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation. See README and COPYING for
  9. * more details.
  10. */
  11. #include <linux/config.h>
  12. #include <linux/version.h>
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/slab.h>
  16. #include <linux/random.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/netdevice.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/if_arp.h>
  21. #include <asm/string.h>
  22. #include <net/ieee80211.h>
  23. #include <linux/crypto.h>
  24. #include <asm/scatterlist.h>
  25. #include <linux/crc32.h>
  26. MODULE_AUTHOR("Jouni Malinen");
  27. MODULE_DESCRIPTION("Host AP crypt: TKIP");
  28. MODULE_LICENSE("GPL");
  29. struct ieee80211_tkip_data {
  30. #define TKIP_KEY_LEN 32
  31. u8 key[TKIP_KEY_LEN];
  32. int key_set;
  33. u32 tx_iv32;
  34. u16 tx_iv16;
  35. u16 tx_ttak[5];
  36. int tx_phase1_done;
  37. u32 rx_iv32;
  38. u16 rx_iv16;
  39. u16 rx_ttak[5];
  40. int rx_phase1_done;
  41. u32 rx_iv32_new;
  42. u16 rx_iv16_new;
  43. u32 dot11RSNAStatsTKIPReplays;
  44. u32 dot11RSNAStatsTKIPICVErrors;
  45. u32 dot11RSNAStatsTKIPLocalMICFailures;
  46. int key_idx;
  47. struct crypto_tfm *tfm_arc4;
  48. struct crypto_tfm *tfm_michael;
  49. /* scratch buffers for virt_to_page() (crypto API) */
  50. u8 rx_hdr[16], tx_hdr[16];
  51. };
  52. static void *ieee80211_tkip_init(int key_idx)
  53. {
  54. struct ieee80211_tkip_data *priv;
  55. priv = kmalloc(sizeof(*priv), GFP_ATOMIC);
  56. if (priv == NULL)
  57. goto fail;
  58. memset(priv, 0, sizeof(*priv));
  59. priv->key_idx = key_idx;
  60. priv->tfm_arc4 = crypto_alloc_tfm("arc4", 0);
  61. if (priv->tfm_arc4 == NULL) {
  62. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  63. "crypto API arc4\n");
  64. goto fail;
  65. }
  66. priv->tfm_michael = crypto_alloc_tfm("michael_mic", 0);
  67. if (priv->tfm_michael == NULL) {
  68. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  69. "crypto API michael_mic\n");
  70. goto fail;
  71. }
  72. return priv;
  73. fail:
  74. if (priv) {
  75. if (priv->tfm_michael)
  76. crypto_free_tfm(priv->tfm_michael);
  77. if (priv->tfm_arc4)
  78. crypto_free_tfm(priv->tfm_arc4);
  79. kfree(priv);
  80. }
  81. return NULL;
  82. }
  83. static void ieee80211_tkip_deinit(void *priv)
  84. {
  85. struct ieee80211_tkip_data *_priv = priv;
  86. if (_priv && _priv->tfm_michael)
  87. crypto_free_tfm(_priv->tfm_michael);
  88. if (_priv && _priv->tfm_arc4)
  89. crypto_free_tfm(_priv->tfm_arc4);
  90. kfree(priv);
  91. }
  92. static inline u16 RotR1(u16 val)
  93. {
  94. return (val >> 1) | (val << 15);
  95. }
  96. static inline u8 Lo8(u16 val)
  97. {
  98. return val & 0xff;
  99. }
  100. static inline u8 Hi8(u16 val)
  101. {
  102. return val >> 8;
  103. }
  104. static inline u16 Lo16(u32 val)
  105. {
  106. return val & 0xffff;
  107. }
  108. static inline u16 Hi16(u32 val)
  109. {
  110. return val >> 16;
  111. }
  112. static inline u16 Mk16(u8 hi, u8 lo)
  113. {
  114. return lo | (((u16) hi) << 8);
  115. }
  116. static inline u16 Mk16_le(u16 * v)
  117. {
  118. return le16_to_cpu(*v);
  119. }
  120. static const u16 Sbox[256] = {
  121. 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
  122. 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
  123. 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
  124. 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
  125. 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
  126. 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
  127. 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
  128. 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
  129. 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
  130. 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
  131. 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
  132. 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
  133. 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
  134. 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
  135. 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
  136. 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
  137. 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
  138. 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
  139. 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
  140. 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
  141. 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
  142. 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
  143. 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
  144. 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
  145. 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
  146. 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
  147. 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
  148. 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
  149. 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
  150. 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
  151. 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
  152. 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
  153. };
  154. static inline u16 _S_(u16 v)
  155. {
  156. u16 t = Sbox[Hi8(v)];
  157. return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
  158. }
  159. #define PHASE1_LOOP_COUNT 8
  160. static void tkip_mixing_phase1(u16 * TTAK, const u8 * TK, const u8 * TA,
  161. u32 IV32)
  162. {
  163. int i, j;
  164. /* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
  165. TTAK[0] = Lo16(IV32);
  166. TTAK[1] = Hi16(IV32);
  167. TTAK[2] = Mk16(TA[1], TA[0]);
  168. TTAK[3] = Mk16(TA[3], TA[2]);
  169. TTAK[4] = Mk16(TA[5], TA[4]);
  170. for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
  171. j = 2 * (i & 1);
  172. TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
  173. TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
  174. TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
  175. TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
  176. TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
  177. }
  178. }
  179. static void tkip_mixing_phase2(u8 * WEPSeed, const u8 * TK, const u16 * TTAK,
  180. u16 IV16)
  181. {
  182. /* Make temporary area overlap WEP seed so that the final copy can be
  183. * avoided on little endian hosts. */
  184. u16 *PPK = (u16 *) & WEPSeed[4];
  185. /* Step 1 - make copy of TTAK and bring in TSC */
  186. PPK[0] = TTAK[0];
  187. PPK[1] = TTAK[1];
  188. PPK[2] = TTAK[2];
  189. PPK[3] = TTAK[3];
  190. PPK[4] = TTAK[4];
  191. PPK[5] = TTAK[4] + IV16;
  192. /* Step 2 - 96-bit bijective mixing using S-box */
  193. PPK[0] += _S_(PPK[5] ^ Mk16_le((u16 *) & TK[0]));
  194. PPK[1] += _S_(PPK[0] ^ Mk16_le((u16 *) & TK[2]));
  195. PPK[2] += _S_(PPK[1] ^ Mk16_le((u16 *) & TK[4]));
  196. PPK[3] += _S_(PPK[2] ^ Mk16_le((u16 *) & TK[6]));
  197. PPK[4] += _S_(PPK[3] ^ Mk16_le((u16 *) & TK[8]));
  198. PPK[5] += _S_(PPK[4] ^ Mk16_le((u16 *) & TK[10]));
  199. PPK[0] += RotR1(PPK[5] ^ Mk16_le((u16 *) & TK[12]));
  200. PPK[1] += RotR1(PPK[0] ^ Mk16_le((u16 *) & TK[14]));
  201. PPK[2] += RotR1(PPK[1]);
  202. PPK[3] += RotR1(PPK[2]);
  203. PPK[4] += RotR1(PPK[3]);
  204. PPK[5] += RotR1(PPK[4]);
  205. /* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
  206. * WEPSeed[0..2] is transmitted as WEP IV */
  207. WEPSeed[0] = Hi8(IV16);
  208. WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
  209. WEPSeed[2] = Lo8(IV16);
  210. WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((u16 *) & TK[0])) >> 1);
  211. #ifdef __BIG_ENDIAN
  212. {
  213. int i;
  214. for (i = 0; i < 6; i++)
  215. PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
  216. }
  217. #endif
  218. }
  219. static int ieee80211_tkip_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
  220. {
  221. struct ieee80211_tkip_data *tkey = priv;
  222. int len;
  223. u8 rc4key[16], *pos, *icv;
  224. struct ieee80211_hdr *hdr;
  225. u32 crc;
  226. struct scatterlist sg;
  227. if (skb_headroom(skb) < 8 || skb_tailroom(skb) < 4 ||
  228. skb->len < hdr_len)
  229. return -1;
  230. hdr = (struct ieee80211_hdr *)skb->data;
  231. if (!tkey->tx_phase1_done) {
  232. tkip_mixing_phase1(tkey->tx_ttak, tkey->key, hdr->addr2,
  233. tkey->tx_iv32);
  234. tkey->tx_phase1_done = 1;
  235. }
  236. tkip_mixing_phase2(rc4key, tkey->key, tkey->tx_ttak, tkey->tx_iv16);
  237. len = skb->len - hdr_len;
  238. pos = skb_push(skb, 8);
  239. memmove(pos, pos + 8, hdr_len);
  240. pos += hdr_len;
  241. icv = skb_put(skb, 4);
  242. *pos++ = rc4key[0];
  243. *pos++ = rc4key[1];
  244. *pos++ = rc4key[2];
  245. *pos++ = (tkey->key_idx << 6) | (1 << 5) /* Ext IV included */ ;
  246. *pos++ = tkey->tx_iv32 & 0xff;
  247. *pos++ = (tkey->tx_iv32 >> 8) & 0xff;
  248. *pos++ = (tkey->tx_iv32 >> 16) & 0xff;
  249. *pos++ = (tkey->tx_iv32 >> 24) & 0xff;
  250. crc = ~crc32_le(~0, pos, len);
  251. icv[0] = crc;
  252. icv[1] = crc >> 8;
  253. icv[2] = crc >> 16;
  254. icv[3] = crc >> 24;
  255. crypto_cipher_setkey(tkey->tfm_arc4, rc4key, 16);
  256. sg.page = virt_to_page(pos);
  257. sg.offset = offset_in_page(pos);
  258. sg.length = len + 4;
  259. crypto_cipher_encrypt(tkey->tfm_arc4, &sg, &sg, len + 4);
  260. tkey->tx_iv16++;
  261. if (tkey->tx_iv16 == 0) {
  262. tkey->tx_phase1_done = 0;
  263. tkey->tx_iv32++;
  264. }
  265. return 0;
  266. }
  267. static int ieee80211_tkip_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
  268. {
  269. struct ieee80211_tkip_data *tkey = priv;
  270. u8 rc4key[16];
  271. u8 keyidx, *pos;
  272. u32 iv32;
  273. u16 iv16;
  274. struct ieee80211_hdr *hdr;
  275. u8 icv[4];
  276. u32 crc;
  277. struct scatterlist sg;
  278. int plen;
  279. if (skb->len < hdr_len + 8 + 4)
  280. return -1;
  281. hdr = (struct ieee80211_hdr *)skb->data;
  282. pos = skb->data + hdr_len;
  283. keyidx = pos[3];
  284. if (!(keyidx & (1 << 5))) {
  285. if (net_ratelimit()) {
  286. printk(KERN_DEBUG "TKIP: received packet without ExtIV"
  287. " flag from " MAC_FMT "\n", MAC_ARG(hdr->addr2));
  288. }
  289. return -2;
  290. }
  291. keyidx >>= 6;
  292. if (tkey->key_idx != keyidx) {
  293. printk(KERN_DEBUG "TKIP: RX tkey->key_idx=%d frame "
  294. "keyidx=%d priv=%p\n", tkey->key_idx, keyidx, priv);
  295. return -6;
  296. }
  297. if (!tkey->key_set) {
  298. if (net_ratelimit()) {
  299. printk(KERN_DEBUG "TKIP: received packet from " MAC_FMT
  300. " with keyid=%d that does not have a configured"
  301. " key\n", MAC_ARG(hdr->addr2), keyidx);
  302. }
  303. return -3;
  304. }
  305. iv16 = (pos[0] << 8) | pos[2];
  306. iv32 = pos[4] | (pos[5] << 8) | (pos[6] << 16) | (pos[7] << 24);
  307. pos += 8;
  308. if (iv32 < tkey->rx_iv32 ||
  309. (iv32 == tkey->rx_iv32 && iv16 <= tkey->rx_iv16)) {
  310. if (net_ratelimit()) {
  311. printk(KERN_DEBUG "TKIP: replay detected: STA=" MAC_FMT
  312. " previous TSC %08x%04x received TSC "
  313. "%08x%04x\n", MAC_ARG(hdr->addr2),
  314. tkey->rx_iv32, tkey->rx_iv16, iv32, iv16);
  315. }
  316. tkey->dot11RSNAStatsTKIPReplays++;
  317. return -4;
  318. }
  319. if (iv32 != tkey->rx_iv32 || !tkey->rx_phase1_done) {
  320. tkip_mixing_phase1(tkey->rx_ttak, tkey->key, hdr->addr2, iv32);
  321. tkey->rx_phase1_done = 1;
  322. }
  323. tkip_mixing_phase2(rc4key, tkey->key, tkey->rx_ttak, iv16);
  324. plen = skb->len - hdr_len - 12;
  325. crypto_cipher_setkey(tkey->tfm_arc4, rc4key, 16);
  326. sg.page = virt_to_page(pos);
  327. sg.offset = offset_in_page(pos);
  328. sg.length = plen + 4;
  329. crypto_cipher_decrypt(tkey->tfm_arc4, &sg, &sg, plen + 4);
  330. crc = ~crc32_le(~0, pos, plen);
  331. icv[0] = crc;
  332. icv[1] = crc >> 8;
  333. icv[2] = crc >> 16;
  334. icv[3] = crc >> 24;
  335. if (memcmp(icv, pos + plen, 4) != 0) {
  336. if (iv32 != tkey->rx_iv32) {
  337. /* Previously cached Phase1 result was already lost, so
  338. * it needs to be recalculated for the next packet. */
  339. tkey->rx_phase1_done = 0;
  340. }
  341. if (net_ratelimit()) {
  342. printk(KERN_DEBUG "TKIP: ICV error detected: STA="
  343. MAC_FMT "\n", MAC_ARG(hdr->addr2));
  344. }
  345. tkey->dot11RSNAStatsTKIPICVErrors++;
  346. return -5;
  347. }
  348. /* Update real counters only after Michael MIC verification has
  349. * completed */
  350. tkey->rx_iv32_new = iv32;
  351. tkey->rx_iv16_new = iv16;
  352. /* Remove IV and ICV */
  353. memmove(skb->data + 8, skb->data, hdr_len);
  354. skb_pull(skb, 8);
  355. skb_trim(skb, skb->len - 4);
  356. return keyidx;
  357. }
  358. static int michael_mic(struct ieee80211_tkip_data *tkey, u8 * key, u8 * hdr,
  359. u8 * data, size_t data_len, u8 * mic)
  360. {
  361. struct scatterlist sg[2];
  362. if (tkey->tfm_michael == NULL) {
  363. printk(KERN_WARNING "michael_mic: tfm_michael == NULL\n");
  364. return -1;
  365. }
  366. sg[0].page = virt_to_page(hdr);
  367. sg[0].offset = offset_in_page(hdr);
  368. sg[0].length = 16;
  369. sg[1].page = virt_to_page(data);
  370. sg[1].offset = offset_in_page(data);
  371. sg[1].length = data_len;
  372. crypto_digest_init(tkey->tfm_michael);
  373. crypto_digest_setkey(tkey->tfm_michael, key, 8);
  374. crypto_digest_update(tkey->tfm_michael, sg, 2);
  375. crypto_digest_final(tkey->tfm_michael, mic);
  376. return 0;
  377. }
  378. static void michael_mic_hdr(struct sk_buff *skb, u8 * hdr)
  379. {
  380. struct ieee80211_hdr *hdr11;
  381. hdr11 = (struct ieee80211_hdr *)skb->data;
  382. switch (le16_to_cpu(hdr11->frame_ctl) &
  383. (IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS)) {
  384. case IEEE80211_FCTL_TODS:
  385. memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
  386. memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
  387. break;
  388. case IEEE80211_FCTL_FROMDS:
  389. memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
  390. memcpy(hdr + ETH_ALEN, hdr11->addr3, ETH_ALEN); /* SA */
  391. break;
  392. case IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS:
  393. memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
  394. memcpy(hdr + ETH_ALEN, hdr11->addr4, ETH_ALEN); /* SA */
  395. break;
  396. case 0:
  397. memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
  398. memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
  399. break;
  400. }
  401. hdr[12] = 0; /* priority */
  402. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  403. }
  404. static int ieee80211_michael_mic_add(struct sk_buff *skb, int hdr_len,
  405. void *priv)
  406. {
  407. struct ieee80211_tkip_data *tkey = priv;
  408. u8 *pos;
  409. if (skb_tailroom(skb) < 8 || skb->len < hdr_len) {
  410. printk(KERN_DEBUG "Invalid packet for Michael MIC add "
  411. "(tailroom=%d hdr_len=%d skb->len=%d)\n",
  412. skb_tailroom(skb), hdr_len, skb->len);
  413. return -1;
  414. }
  415. michael_mic_hdr(skb, tkey->tx_hdr);
  416. pos = skb_put(skb, 8);
  417. if (michael_mic(tkey, &tkey->key[16], tkey->tx_hdr,
  418. skb->data + hdr_len, skb->len - 8 - hdr_len, pos))
  419. return -1;
  420. return 0;
  421. }
  422. #if WIRELESS_EXT >= 18
  423. static void ieee80211_michael_mic_failure(struct net_device *dev,
  424. struct ieee80211_hdr *hdr, int keyidx)
  425. {
  426. union iwreq_data wrqu;
  427. struct iw_michaelmicfailure ev;
  428. /* TODO: needed parameters: count, keyid, key type, TSC */
  429. memset(&ev, 0, sizeof(ev));
  430. ev.flags = keyidx & IW_MICFAILURE_KEY_ID;
  431. if (hdr->addr1[0] & 0x01)
  432. ev.flags |= IW_MICFAILURE_GROUP;
  433. else
  434. ev.flags |= IW_MICFAILURE_PAIRWISE;
  435. ev.src_addr.sa_family = ARPHRD_ETHER;
  436. memcpy(ev.src_addr.sa_data, hdr->addr2, ETH_ALEN);
  437. memset(&wrqu, 0, sizeof(wrqu));
  438. wrqu.data.length = sizeof(ev);
  439. wireless_send_event(dev, IWEVMICHAELMICFAILURE, &wrqu, (char *)&ev);
  440. }
  441. #elif WIRELESS_EXT >= 15
  442. static void ieee80211_michael_mic_failure(struct net_device *dev,
  443. struct ieee80211_hdr *hdr, int keyidx)
  444. {
  445. union iwreq_data wrqu;
  446. char buf[128];
  447. /* TODO: needed parameters: count, keyid, key type, TSC */
  448. sprintf(buf, "MLME-MICHAELMICFAILURE.indication(keyid=%d %scast addr="
  449. MAC_FMT ")", keyidx, hdr->addr1[0] & 0x01 ? "broad" : "uni",
  450. MAC_ARG(hdr->addr2));
  451. memset(&wrqu, 0, sizeof(wrqu));
  452. wrqu.data.length = strlen(buf);
  453. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  454. }
  455. #else /* WIRELESS_EXT >= 15 */
  456. static inline void ieee80211_michael_mic_failure(struct net_device *dev,
  457. struct ieee80211_hdr *hdr,
  458. int keyidx)
  459. {
  460. }
  461. #endif /* WIRELESS_EXT >= 15 */
  462. static int ieee80211_michael_mic_verify(struct sk_buff *skb, int keyidx,
  463. int hdr_len, void *priv)
  464. {
  465. struct ieee80211_tkip_data *tkey = priv;
  466. u8 mic[8];
  467. if (!tkey->key_set)
  468. return -1;
  469. michael_mic_hdr(skb, tkey->rx_hdr);
  470. if (michael_mic(tkey, &tkey->key[24], tkey->rx_hdr,
  471. skb->data + hdr_len, skb->len - 8 - hdr_len, mic))
  472. return -1;
  473. if (memcmp(mic, skb->data + skb->len - 8, 8) != 0) {
  474. struct ieee80211_hdr *hdr;
  475. hdr = (struct ieee80211_hdr *)skb->data;
  476. printk(KERN_DEBUG "%s: Michael MIC verification failed for "
  477. "MSDU from " MAC_FMT " keyidx=%d\n",
  478. skb->dev ? skb->dev->name : "N/A", MAC_ARG(hdr->addr2),
  479. keyidx);
  480. if (skb->dev)
  481. ieee80211_michael_mic_failure(skb->dev, hdr, keyidx);
  482. tkey->dot11RSNAStatsTKIPLocalMICFailures++;
  483. return -1;
  484. }
  485. /* Update TSC counters for RX now that the packet verification has
  486. * completed. */
  487. tkey->rx_iv32 = tkey->rx_iv32_new;
  488. tkey->rx_iv16 = tkey->rx_iv16_new;
  489. skb_trim(skb, skb->len - 8);
  490. return 0;
  491. }
  492. static int ieee80211_tkip_set_key(void *key, int len, u8 * seq, void *priv)
  493. {
  494. struct ieee80211_tkip_data *tkey = priv;
  495. int keyidx;
  496. struct crypto_tfm *tfm = tkey->tfm_michael;
  497. struct crypto_tfm *tfm2 = tkey->tfm_arc4;
  498. keyidx = tkey->key_idx;
  499. memset(tkey, 0, sizeof(*tkey));
  500. tkey->key_idx = keyidx;
  501. tkey->tfm_michael = tfm;
  502. tkey->tfm_arc4 = tfm2;
  503. if (len == TKIP_KEY_LEN) {
  504. memcpy(tkey->key, key, TKIP_KEY_LEN);
  505. tkey->key_set = 1;
  506. tkey->tx_iv16 = 1; /* TSC is initialized to 1 */
  507. if (seq) {
  508. tkey->rx_iv32 = (seq[5] << 24) | (seq[4] << 16) |
  509. (seq[3] << 8) | seq[2];
  510. tkey->rx_iv16 = (seq[1] << 8) | seq[0];
  511. }
  512. } else if (len == 0)
  513. tkey->key_set = 0;
  514. else
  515. return -1;
  516. return 0;
  517. }
  518. static int ieee80211_tkip_get_key(void *key, int len, u8 * seq, void *priv)
  519. {
  520. struct ieee80211_tkip_data *tkey = priv;
  521. if (len < TKIP_KEY_LEN)
  522. return -1;
  523. if (!tkey->key_set)
  524. return 0;
  525. memcpy(key, tkey->key, TKIP_KEY_LEN);
  526. if (seq) {
  527. /* Return the sequence number of the last transmitted frame. */
  528. u16 iv16 = tkey->tx_iv16;
  529. u32 iv32 = tkey->tx_iv32;
  530. if (iv16 == 0)
  531. iv32--;
  532. iv16--;
  533. seq[0] = tkey->tx_iv16;
  534. seq[1] = tkey->tx_iv16 >> 8;
  535. seq[2] = tkey->tx_iv32;
  536. seq[3] = tkey->tx_iv32 >> 8;
  537. seq[4] = tkey->tx_iv32 >> 16;
  538. seq[5] = tkey->tx_iv32 >> 24;
  539. }
  540. return TKIP_KEY_LEN;
  541. }
  542. static char *ieee80211_tkip_print_stats(char *p, void *priv)
  543. {
  544. struct ieee80211_tkip_data *tkip = priv;
  545. p += sprintf(p, "key[%d] alg=TKIP key_set=%d "
  546. "tx_pn=%02x%02x%02x%02x%02x%02x "
  547. "rx_pn=%02x%02x%02x%02x%02x%02x "
  548. "replays=%d icv_errors=%d local_mic_failures=%d\n",
  549. tkip->key_idx, tkip->key_set,
  550. (tkip->tx_iv32 >> 24) & 0xff,
  551. (tkip->tx_iv32 >> 16) & 0xff,
  552. (tkip->tx_iv32 >> 8) & 0xff,
  553. tkip->tx_iv32 & 0xff,
  554. (tkip->tx_iv16 >> 8) & 0xff,
  555. tkip->tx_iv16 & 0xff,
  556. (tkip->rx_iv32 >> 24) & 0xff,
  557. (tkip->rx_iv32 >> 16) & 0xff,
  558. (tkip->rx_iv32 >> 8) & 0xff,
  559. tkip->rx_iv32 & 0xff,
  560. (tkip->rx_iv16 >> 8) & 0xff,
  561. tkip->rx_iv16 & 0xff,
  562. tkip->dot11RSNAStatsTKIPReplays,
  563. tkip->dot11RSNAStatsTKIPICVErrors,
  564. tkip->dot11RSNAStatsTKIPLocalMICFailures);
  565. return p;
  566. }
  567. static struct ieee80211_crypto_ops ieee80211_crypt_tkip = {
  568. .name = "TKIP",
  569. .init = ieee80211_tkip_init,
  570. .deinit = ieee80211_tkip_deinit,
  571. .encrypt_mpdu = ieee80211_tkip_encrypt,
  572. .decrypt_mpdu = ieee80211_tkip_decrypt,
  573. .encrypt_msdu = ieee80211_michael_mic_add,
  574. .decrypt_msdu = ieee80211_michael_mic_verify,
  575. .set_key = ieee80211_tkip_set_key,
  576. .get_key = ieee80211_tkip_get_key,
  577. .print_stats = ieee80211_tkip_print_stats,
  578. .extra_prefix_len = 4 + 4, /* IV + ExtIV */
  579. .extra_postfix_len = 8 + 4, /* MIC + ICV */
  580. .owner = THIS_MODULE,
  581. };
  582. static int __init ieee80211_crypto_tkip_init(void)
  583. {
  584. return ieee80211_register_crypto_ops(&ieee80211_crypt_tkip);
  585. }
  586. static void __exit ieee80211_crypto_tkip_exit(void)
  587. {
  588. ieee80211_unregister_crypto_ops(&ieee80211_crypt_tkip);
  589. }
  590. module_init(ieee80211_crypto_tkip_init);
  591. module_exit(ieee80211_crypto_tkip_exit);