vmscan.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402
  1. /*
  2. * linux/mm/vmscan.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. *
  6. * Swap reorganised 29.12.95, Stephen Tweedie.
  7. * kswapd added: 7.1.96 sct
  8. * Removed kswapd_ctl limits, and swap out as many pages as needed
  9. * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11. * Multiqueue VM started 5.8.00, Rik van Riel.
  12. */
  13. #include <linux/mm.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/init.h>
  20. #include <linux/highmem.h>
  21. #include <linux/file.h>
  22. #include <linux/writeback.h>
  23. #include <linux/blkdev.h>
  24. #include <linux/buffer_head.h> /* for try_to_release_page(),
  25. buffer_heads_over_limit */
  26. #include <linux/mm_inline.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/rmap.h>
  30. #include <linux/topology.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cpuset.h>
  33. #include <linux/notifier.h>
  34. #include <linux/rwsem.h>
  35. #include <asm/tlbflush.h>
  36. #include <asm/div64.h>
  37. #include <linux/swapops.h>
  38. /* possible outcome of pageout() */
  39. typedef enum {
  40. /* failed to write page out, page is locked */
  41. PAGE_KEEP,
  42. /* move page to the active list, page is locked */
  43. PAGE_ACTIVATE,
  44. /* page has been sent to the disk successfully, page is unlocked */
  45. PAGE_SUCCESS,
  46. /* page is clean and locked */
  47. PAGE_CLEAN,
  48. } pageout_t;
  49. struct scan_control {
  50. /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
  51. unsigned long nr_to_scan;
  52. /* Incremented by the number of inactive pages that were scanned */
  53. unsigned long nr_scanned;
  54. /* Incremented by the number of pages reclaimed */
  55. unsigned long nr_reclaimed;
  56. unsigned long nr_mapped; /* From page_state */
  57. /* How many pages shrink_cache() should reclaim */
  58. int nr_to_reclaim;
  59. /* Ask shrink_caches, or shrink_zone to scan at this priority */
  60. unsigned int priority;
  61. /* This context's GFP mask */
  62. unsigned int gfp_mask;
  63. int may_writepage;
  64. /* Can pages be swapped as part of reclaim? */
  65. int may_swap;
  66. /* This context's SWAP_CLUSTER_MAX. If freeing memory for
  67. * suspend, we effectively ignore SWAP_CLUSTER_MAX.
  68. * In this context, it doesn't matter that we scan the
  69. * whole list at once. */
  70. int swap_cluster_max;
  71. };
  72. /*
  73. * The list of shrinker callbacks used by to apply pressure to
  74. * ageable caches.
  75. */
  76. struct shrinker {
  77. shrinker_t shrinker;
  78. struct list_head list;
  79. int seeks; /* seeks to recreate an obj */
  80. long nr; /* objs pending delete */
  81. };
  82. #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  83. #ifdef ARCH_HAS_PREFETCH
  84. #define prefetch_prev_lru_page(_page, _base, _field) \
  85. do { \
  86. if ((_page)->lru.prev != _base) { \
  87. struct page *prev; \
  88. \
  89. prev = lru_to_page(&(_page->lru)); \
  90. prefetch(&prev->_field); \
  91. } \
  92. } while (0)
  93. #else
  94. #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
  95. #endif
  96. #ifdef ARCH_HAS_PREFETCHW
  97. #define prefetchw_prev_lru_page(_page, _base, _field) \
  98. do { \
  99. if ((_page)->lru.prev != _base) { \
  100. struct page *prev; \
  101. \
  102. prev = lru_to_page(&(_page->lru)); \
  103. prefetchw(&prev->_field); \
  104. } \
  105. } while (0)
  106. #else
  107. #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
  108. #endif
  109. /*
  110. * From 0 .. 100. Higher means more swappy.
  111. */
  112. int vm_swappiness = 60;
  113. static long total_memory;
  114. static LIST_HEAD(shrinker_list);
  115. static DECLARE_RWSEM(shrinker_rwsem);
  116. /*
  117. * Add a shrinker callback to be called from the vm
  118. */
  119. struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
  120. {
  121. struct shrinker *shrinker;
  122. shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
  123. if (shrinker) {
  124. shrinker->shrinker = theshrinker;
  125. shrinker->seeks = seeks;
  126. shrinker->nr = 0;
  127. down_write(&shrinker_rwsem);
  128. list_add_tail(&shrinker->list, &shrinker_list);
  129. up_write(&shrinker_rwsem);
  130. }
  131. return shrinker;
  132. }
  133. EXPORT_SYMBOL(set_shrinker);
  134. /*
  135. * Remove one
  136. */
  137. void remove_shrinker(struct shrinker *shrinker)
  138. {
  139. down_write(&shrinker_rwsem);
  140. list_del(&shrinker->list);
  141. up_write(&shrinker_rwsem);
  142. kfree(shrinker);
  143. }
  144. EXPORT_SYMBOL(remove_shrinker);
  145. #define SHRINK_BATCH 128
  146. /*
  147. * Call the shrink functions to age shrinkable caches
  148. *
  149. * Here we assume it costs one seek to replace a lru page and that it also
  150. * takes a seek to recreate a cache object. With this in mind we age equal
  151. * percentages of the lru and ageable caches. This should balance the seeks
  152. * generated by these structures.
  153. *
  154. * If the vm encounted mapped pages on the LRU it increase the pressure on
  155. * slab to avoid swapping.
  156. *
  157. * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
  158. *
  159. * `lru_pages' represents the number of on-LRU pages in all the zones which
  160. * are eligible for the caller's allocation attempt. It is used for balancing
  161. * slab reclaim versus page reclaim.
  162. *
  163. * Returns the number of slab objects which we shrunk.
  164. */
  165. static int shrink_slab(unsigned long scanned, unsigned int gfp_mask,
  166. unsigned long lru_pages)
  167. {
  168. struct shrinker *shrinker;
  169. int ret = 0;
  170. if (scanned == 0)
  171. scanned = SWAP_CLUSTER_MAX;
  172. if (!down_read_trylock(&shrinker_rwsem))
  173. return 1; /* Assume we'll be able to shrink next time */
  174. list_for_each_entry(shrinker, &shrinker_list, list) {
  175. unsigned long long delta;
  176. unsigned long total_scan;
  177. delta = (4 * scanned) / shrinker->seeks;
  178. delta *= (*shrinker->shrinker)(0, gfp_mask);
  179. do_div(delta, lru_pages + 1);
  180. shrinker->nr += delta;
  181. if (shrinker->nr < 0)
  182. shrinker->nr = LONG_MAX; /* It wrapped! */
  183. total_scan = shrinker->nr;
  184. shrinker->nr = 0;
  185. while (total_scan >= SHRINK_BATCH) {
  186. long this_scan = SHRINK_BATCH;
  187. int shrink_ret;
  188. int nr_before;
  189. nr_before = (*shrinker->shrinker)(0, gfp_mask);
  190. shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
  191. if (shrink_ret == -1)
  192. break;
  193. if (shrink_ret < nr_before)
  194. ret += nr_before - shrink_ret;
  195. mod_page_state(slabs_scanned, this_scan);
  196. total_scan -= this_scan;
  197. cond_resched();
  198. }
  199. shrinker->nr += total_scan;
  200. }
  201. up_read(&shrinker_rwsem);
  202. return ret;
  203. }
  204. /* Called without lock on whether page is mapped, so answer is unstable */
  205. static inline int page_mapping_inuse(struct page *page)
  206. {
  207. struct address_space *mapping;
  208. /* Page is in somebody's page tables. */
  209. if (page_mapped(page))
  210. return 1;
  211. /* Be more reluctant to reclaim swapcache than pagecache */
  212. if (PageSwapCache(page))
  213. return 1;
  214. mapping = page_mapping(page);
  215. if (!mapping)
  216. return 0;
  217. /* File is mmap'd by somebody? */
  218. return mapping_mapped(mapping);
  219. }
  220. static inline int is_page_cache_freeable(struct page *page)
  221. {
  222. return page_count(page) - !!PagePrivate(page) == 2;
  223. }
  224. static int may_write_to_queue(struct backing_dev_info *bdi)
  225. {
  226. if (current_is_kswapd())
  227. return 1;
  228. if (current_is_pdflush()) /* This is unlikely, but why not... */
  229. return 1;
  230. if (!bdi_write_congested(bdi))
  231. return 1;
  232. if (bdi == current->backing_dev_info)
  233. return 1;
  234. return 0;
  235. }
  236. /*
  237. * We detected a synchronous write error writing a page out. Probably
  238. * -ENOSPC. We need to propagate that into the address_space for a subsequent
  239. * fsync(), msync() or close().
  240. *
  241. * The tricky part is that after writepage we cannot touch the mapping: nothing
  242. * prevents it from being freed up. But we have a ref on the page and once
  243. * that page is locked, the mapping is pinned.
  244. *
  245. * We're allowed to run sleeping lock_page() here because we know the caller has
  246. * __GFP_FS.
  247. */
  248. static void handle_write_error(struct address_space *mapping,
  249. struct page *page, int error)
  250. {
  251. lock_page(page);
  252. if (page_mapping(page) == mapping) {
  253. if (error == -ENOSPC)
  254. set_bit(AS_ENOSPC, &mapping->flags);
  255. else
  256. set_bit(AS_EIO, &mapping->flags);
  257. }
  258. unlock_page(page);
  259. }
  260. /*
  261. * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
  262. */
  263. static pageout_t pageout(struct page *page, struct address_space *mapping)
  264. {
  265. /*
  266. * If the page is dirty, only perform writeback if that write
  267. * will be non-blocking. To prevent this allocation from being
  268. * stalled by pagecache activity. But note that there may be
  269. * stalls if we need to run get_block(). We could test
  270. * PagePrivate for that.
  271. *
  272. * If this process is currently in generic_file_write() against
  273. * this page's queue, we can perform writeback even if that
  274. * will block.
  275. *
  276. * If the page is swapcache, write it back even if that would
  277. * block, for some throttling. This happens by accident, because
  278. * swap_backing_dev_info is bust: it doesn't reflect the
  279. * congestion state of the swapdevs. Easy to fix, if needed.
  280. * See swapfile.c:page_queue_congested().
  281. */
  282. if (!is_page_cache_freeable(page))
  283. return PAGE_KEEP;
  284. if (!mapping) {
  285. /*
  286. * Some data journaling orphaned pages can have
  287. * page->mapping == NULL while being dirty with clean buffers.
  288. */
  289. if (PagePrivate(page)) {
  290. if (try_to_free_buffers(page)) {
  291. ClearPageDirty(page);
  292. printk("%s: orphaned page\n", __FUNCTION__);
  293. return PAGE_CLEAN;
  294. }
  295. }
  296. return PAGE_KEEP;
  297. }
  298. if (mapping->a_ops->writepage == NULL)
  299. return PAGE_ACTIVATE;
  300. if (!may_write_to_queue(mapping->backing_dev_info))
  301. return PAGE_KEEP;
  302. if (clear_page_dirty_for_io(page)) {
  303. int res;
  304. struct writeback_control wbc = {
  305. .sync_mode = WB_SYNC_NONE,
  306. .nr_to_write = SWAP_CLUSTER_MAX,
  307. .nonblocking = 1,
  308. .for_reclaim = 1,
  309. };
  310. SetPageReclaim(page);
  311. res = mapping->a_ops->writepage(page, &wbc);
  312. if (res < 0)
  313. handle_write_error(mapping, page, res);
  314. if (res == WRITEPAGE_ACTIVATE) {
  315. ClearPageReclaim(page);
  316. return PAGE_ACTIVATE;
  317. }
  318. if (!PageWriteback(page)) {
  319. /* synchronous write or broken a_ops? */
  320. ClearPageReclaim(page);
  321. }
  322. return PAGE_SUCCESS;
  323. }
  324. return PAGE_CLEAN;
  325. }
  326. /*
  327. * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
  328. */
  329. static int shrink_list(struct list_head *page_list, struct scan_control *sc)
  330. {
  331. LIST_HEAD(ret_pages);
  332. struct pagevec freed_pvec;
  333. int pgactivate = 0;
  334. int reclaimed = 0;
  335. cond_resched();
  336. pagevec_init(&freed_pvec, 1);
  337. while (!list_empty(page_list)) {
  338. struct address_space *mapping;
  339. struct page *page;
  340. int may_enter_fs;
  341. int referenced;
  342. cond_resched();
  343. page = lru_to_page(page_list);
  344. list_del(&page->lru);
  345. if (TestSetPageLocked(page))
  346. goto keep;
  347. BUG_ON(PageActive(page));
  348. sc->nr_scanned++;
  349. /* Double the slab pressure for mapped and swapcache pages */
  350. if (page_mapped(page) || PageSwapCache(page))
  351. sc->nr_scanned++;
  352. if (PageWriteback(page))
  353. goto keep_locked;
  354. referenced = page_referenced(page, 1, sc->priority <= 0);
  355. /* In active use or really unfreeable? Activate it. */
  356. if (referenced && page_mapping_inuse(page))
  357. goto activate_locked;
  358. #ifdef CONFIG_SWAP
  359. /*
  360. * Anonymous process memory has backing store?
  361. * Try to allocate it some swap space here.
  362. */
  363. if (PageAnon(page) && !PageSwapCache(page) && sc->may_swap) {
  364. if (!add_to_swap(page))
  365. goto activate_locked;
  366. }
  367. #endif /* CONFIG_SWAP */
  368. mapping = page_mapping(page);
  369. may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
  370. (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
  371. /*
  372. * The page is mapped into the page tables of one or more
  373. * processes. Try to unmap it here.
  374. */
  375. if (page_mapped(page) && mapping) {
  376. switch (try_to_unmap(page)) {
  377. case SWAP_FAIL:
  378. goto activate_locked;
  379. case SWAP_AGAIN:
  380. goto keep_locked;
  381. case SWAP_SUCCESS:
  382. ; /* try to free the page below */
  383. }
  384. }
  385. if (PageDirty(page)) {
  386. if (referenced)
  387. goto keep_locked;
  388. if (!may_enter_fs)
  389. goto keep_locked;
  390. if (laptop_mode && !sc->may_writepage)
  391. goto keep_locked;
  392. /* Page is dirty, try to write it out here */
  393. switch(pageout(page, mapping)) {
  394. case PAGE_KEEP:
  395. goto keep_locked;
  396. case PAGE_ACTIVATE:
  397. goto activate_locked;
  398. case PAGE_SUCCESS:
  399. if (PageWriteback(page) || PageDirty(page))
  400. goto keep;
  401. /*
  402. * A synchronous write - probably a ramdisk. Go
  403. * ahead and try to reclaim the page.
  404. */
  405. if (TestSetPageLocked(page))
  406. goto keep;
  407. if (PageDirty(page) || PageWriteback(page))
  408. goto keep_locked;
  409. mapping = page_mapping(page);
  410. case PAGE_CLEAN:
  411. ; /* try to free the page below */
  412. }
  413. }
  414. /*
  415. * If the page has buffers, try to free the buffer mappings
  416. * associated with this page. If we succeed we try to free
  417. * the page as well.
  418. *
  419. * We do this even if the page is PageDirty().
  420. * try_to_release_page() does not perform I/O, but it is
  421. * possible for a page to have PageDirty set, but it is actually
  422. * clean (all its buffers are clean). This happens if the
  423. * buffers were written out directly, with submit_bh(). ext3
  424. * will do this, as well as the blockdev mapping.
  425. * try_to_release_page() will discover that cleanness and will
  426. * drop the buffers and mark the page clean - it can be freed.
  427. *
  428. * Rarely, pages can have buffers and no ->mapping. These are
  429. * the pages which were not successfully invalidated in
  430. * truncate_complete_page(). We try to drop those buffers here
  431. * and if that worked, and the page is no longer mapped into
  432. * process address space (page_count == 1) it can be freed.
  433. * Otherwise, leave the page on the LRU so it is swappable.
  434. */
  435. if (PagePrivate(page)) {
  436. if (!try_to_release_page(page, sc->gfp_mask))
  437. goto activate_locked;
  438. if (!mapping && page_count(page) == 1)
  439. goto free_it;
  440. }
  441. if (!mapping)
  442. goto keep_locked; /* truncate got there first */
  443. write_lock_irq(&mapping->tree_lock);
  444. /*
  445. * The non-racy check for busy page. It is critical to check
  446. * PageDirty _after_ making sure that the page is freeable and
  447. * not in use by anybody. (pagecache + us == 2)
  448. */
  449. if (page_count(page) != 2 || PageDirty(page)) {
  450. write_unlock_irq(&mapping->tree_lock);
  451. goto keep_locked;
  452. }
  453. #ifdef CONFIG_SWAP
  454. if (PageSwapCache(page)) {
  455. swp_entry_t swap = { .val = page->private };
  456. __delete_from_swap_cache(page);
  457. write_unlock_irq(&mapping->tree_lock);
  458. swap_free(swap);
  459. __put_page(page); /* The pagecache ref */
  460. goto free_it;
  461. }
  462. #endif /* CONFIG_SWAP */
  463. __remove_from_page_cache(page);
  464. write_unlock_irq(&mapping->tree_lock);
  465. __put_page(page);
  466. free_it:
  467. unlock_page(page);
  468. reclaimed++;
  469. if (!pagevec_add(&freed_pvec, page))
  470. __pagevec_release_nonlru(&freed_pvec);
  471. continue;
  472. activate_locked:
  473. SetPageActive(page);
  474. pgactivate++;
  475. keep_locked:
  476. unlock_page(page);
  477. keep:
  478. list_add(&page->lru, &ret_pages);
  479. BUG_ON(PageLRU(page));
  480. }
  481. list_splice(&ret_pages, page_list);
  482. if (pagevec_count(&freed_pvec))
  483. __pagevec_release_nonlru(&freed_pvec);
  484. mod_page_state(pgactivate, pgactivate);
  485. sc->nr_reclaimed += reclaimed;
  486. return reclaimed;
  487. }
  488. /*
  489. * zone->lru_lock is heavily contended. Some of the functions that
  490. * shrink the lists perform better by taking out a batch of pages
  491. * and working on them outside the LRU lock.
  492. *
  493. * For pagecache intensive workloads, this function is the hottest
  494. * spot in the kernel (apart from copy_*_user functions).
  495. *
  496. * Appropriate locks must be held before calling this function.
  497. *
  498. * @nr_to_scan: The number of pages to look through on the list.
  499. * @src: The LRU list to pull pages off.
  500. * @dst: The temp list to put pages on to.
  501. * @scanned: The number of pages that were scanned.
  502. *
  503. * returns how many pages were moved onto *@dst.
  504. */
  505. static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
  506. struct list_head *dst, int *scanned)
  507. {
  508. int nr_taken = 0;
  509. struct page *page;
  510. int scan = 0;
  511. while (scan++ < nr_to_scan && !list_empty(src)) {
  512. page = lru_to_page(src);
  513. prefetchw_prev_lru_page(page, src, flags);
  514. if (!TestClearPageLRU(page))
  515. BUG();
  516. list_del(&page->lru);
  517. if (get_page_testone(page)) {
  518. /*
  519. * It is being freed elsewhere
  520. */
  521. __put_page(page);
  522. SetPageLRU(page);
  523. list_add(&page->lru, src);
  524. continue;
  525. } else {
  526. list_add(&page->lru, dst);
  527. nr_taken++;
  528. }
  529. }
  530. *scanned = scan;
  531. return nr_taken;
  532. }
  533. /*
  534. * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
  535. */
  536. static void shrink_cache(struct zone *zone, struct scan_control *sc)
  537. {
  538. LIST_HEAD(page_list);
  539. struct pagevec pvec;
  540. int max_scan = sc->nr_to_scan;
  541. pagevec_init(&pvec, 1);
  542. lru_add_drain();
  543. spin_lock_irq(&zone->lru_lock);
  544. while (max_scan > 0) {
  545. struct page *page;
  546. int nr_taken;
  547. int nr_scan;
  548. int nr_freed;
  549. nr_taken = isolate_lru_pages(sc->swap_cluster_max,
  550. &zone->inactive_list,
  551. &page_list, &nr_scan);
  552. zone->nr_inactive -= nr_taken;
  553. zone->pages_scanned += nr_scan;
  554. spin_unlock_irq(&zone->lru_lock);
  555. if (nr_taken == 0)
  556. goto done;
  557. max_scan -= nr_scan;
  558. if (current_is_kswapd())
  559. mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
  560. else
  561. mod_page_state_zone(zone, pgscan_direct, nr_scan);
  562. nr_freed = shrink_list(&page_list, sc);
  563. if (current_is_kswapd())
  564. mod_page_state(kswapd_steal, nr_freed);
  565. mod_page_state_zone(zone, pgsteal, nr_freed);
  566. sc->nr_to_reclaim -= nr_freed;
  567. spin_lock_irq(&zone->lru_lock);
  568. /*
  569. * Put back any unfreeable pages.
  570. */
  571. while (!list_empty(&page_list)) {
  572. page = lru_to_page(&page_list);
  573. if (TestSetPageLRU(page))
  574. BUG();
  575. list_del(&page->lru);
  576. if (PageActive(page))
  577. add_page_to_active_list(zone, page);
  578. else
  579. add_page_to_inactive_list(zone, page);
  580. if (!pagevec_add(&pvec, page)) {
  581. spin_unlock_irq(&zone->lru_lock);
  582. __pagevec_release(&pvec);
  583. spin_lock_irq(&zone->lru_lock);
  584. }
  585. }
  586. }
  587. spin_unlock_irq(&zone->lru_lock);
  588. done:
  589. pagevec_release(&pvec);
  590. }
  591. /*
  592. * This moves pages from the active list to the inactive list.
  593. *
  594. * We move them the other way if the page is referenced by one or more
  595. * processes, from rmap.
  596. *
  597. * If the pages are mostly unmapped, the processing is fast and it is
  598. * appropriate to hold zone->lru_lock across the whole operation. But if
  599. * the pages are mapped, the processing is slow (page_referenced()) so we
  600. * should drop zone->lru_lock around each page. It's impossible to balance
  601. * this, so instead we remove the pages from the LRU while processing them.
  602. * It is safe to rely on PG_active against the non-LRU pages in here because
  603. * nobody will play with that bit on a non-LRU page.
  604. *
  605. * The downside is that we have to touch page->_count against each page.
  606. * But we had to alter page->flags anyway.
  607. */
  608. static void
  609. refill_inactive_zone(struct zone *zone, struct scan_control *sc)
  610. {
  611. int pgmoved;
  612. int pgdeactivate = 0;
  613. int pgscanned;
  614. int nr_pages = sc->nr_to_scan;
  615. LIST_HEAD(l_hold); /* The pages which were snipped off */
  616. LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
  617. LIST_HEAD(l_active); /* Pages to go onto the active_list */
  618. struct page *page;
  619. struct pagevec pvec;
  620. int reclaim_mapped = 0;
  621. long mapped_ratio;
  622. long distress;
  623. long swap_tendency;
  624. lru_add_drain();
  625. spin_lock_irq(&zone->lru_lock);
  626. pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
  627. &l_hold, &pgscanned);
  628. zone->pages_scanned += pgscanned;
  629. zone->nr_active -= pgmoved;
  630. spin_unlock_irq(&zone->lru_lock);
  631. /*
  632. * `distress' is a measure of how much trouble we're having reclaiming
  633. * pages. 0 -> no problems. 100 -> great trouble.
  634. */
  635. distress = 100 >> zone->prev_priority;
  636. /*
  637. * The point of this algorithm is to decide when to start reclaiming
  638. * mapped memory instead of just pagecache. Work out how much memory
  639. * is mapped.
  640. */
  641. mapped_ratio = (sc->nr_mapped * 100) / total_memory;
  642. /*
  643. * Now decide how much we really want to unmap some pages. The mapped
  644. * ratio is downgraded - just because there's a lot of mapped memory
  645. * doesn't necessarily mean that page reclaim isn't succeeding.
  646. *
  647. * The distress ratio is important - we don't want to start going oom.
  648. *
  649. * A 100% value of vm_swappiness overrides this algorithm altogether.
  650. */
  651. swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
  652. /*
  653. * Now use this metric to decide whether to start moving mapped memory
  654. * onto the inactive list.
  655. */
  656. if (swap_tendency >= 100)
  657. reclaim_mapped = 1;
  658. while (!list_empty(&l_hold)) {
  659. cond_resched();
  660. page = lru_to_page(&l_hold);
  661. list_del(&page->lru);
  662. if (page_mapped(page)) {
  663. if (!reclaim_mapped ||
  664. (total_swap_pages == 0 && PageAnon(page)) ||
  665. page_referenced(page, 0, sc->priority <= 0)) {
  666. list_add(&page->lru, &l_active);
  667. continue;
  668. }
  669. }
  670. list_add(&page->lru, &l_inactive);
  671. }
  672. pagevec_init(&pvec, 1);
  673. pgmoved = 0;
  674. spin_lock_irq(&zone->lru_lock);
  675. while (!list_empty(&l_inactive)) {
  676. page = lru_to_page(&l_inactive);
  677. prefetchw_prev_lru_page(page, &l_inactive, flags);
  678. if (TestSetPageLRU(page))
  679. BUG();
  680. if (!TestClearPageActive(page))
  681. BUG();
  682. list_move(&page->lru, &zone->inactive_list);
  683. pgmoved++;
  684. if (!pagevec_add(&pvec, page)) {
  685. zone->nr_inactive += pgmoved;
  686. spin_unlock_irq(&zone->lru_lock);
  687. pgdeactivate += pgmoved;
  688. pgmoved = 0;
  689. if (buffer_heads_over_limit)
  690. pagevec_strip(&pvec);
  691. __pagevec_release(&pvec);
  692. spin_lock_irq(&zone->lru_lock);
  693. }
  694. }
  695. zone->nr_inactive += pgmoved;
  696. pgdeactivate += pgmoved;
  697. if (buffer_heads_over_limit) {
  698. spin_unlock_irq(&zone->lru_lock);
  699. pagevec_strip(&pvec);
  700. spin_lock_irq(&zone->lru_lock);
  701. }
  702. pgmoved = 0;
  703. while (!list_empty(&l_active)) {
  704. page = lru_to_page(&l_active);
  705. prefetchw_prev_lru_page(page, &l_active, flags);
  706. if (TestSetPageLRU(page))
  707. BUG();
  708. BUG_ON(!PageActive(page));
  709. list_move(&page->lru, &zone->active_list);
  710. pgmoved++;
  711. if (!pagevec_add(&pvec, page)) {
  712. zone->nr_active += pgmoved;
  713. pgmoved = 0;
  714. spin_unlock_irq(&zone->lru_lock);
  715. __pagevec_release(&pvec);
  716. spin_lock_irq(&zone->lru_lock);
  717. }
  718. }
  719. zone->nr_active += pgmoved;
  720. spin_unlock_irq(&zone->lru_lock);
  721. pagevec_release(&pvec);
  722. mod_page_state_zone(zone, pgrefill, pgscanned);
  723. mod_page_state(pgdeactivate, pgdeactivate);
  724. }
  725. /*
  726. * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
  727. */
  728. static void
  729. shrink_zone(struct zone *zone, struct scan_control *sc)
  730. {
  731. unsigned long nr_active;
  732. unsigned long nr_inactive;
  733. atomic_inc(&zone->reclaim_in_progress);
  734. /*
  735. * Add one to `nr_to_scan' just to make sure that the kernel will
  736. * slowly sift through the active list.
  737. */
  738. zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
  739. nr_active = zone->nr_scan_active;
  740. if (nr_active >= sc->swap_cluster_max)
  741. zone->nr_scan_active = 0;
  742. else
  743. nr_active = 0;
  744. zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
  745. nr_inactive = zone->nr_scan_inactive;
  746. if (nr_inactive >= sc->swap_cluster_max)
  747. zone->nr_scan_inactive = 0;
  748. else
  749. nr_inactive = 0;
  750. sc->nr_to_reclaim = sc->swap_cluster_max;
  751. while (nr_active || nr_inactive) {
  752. if (nr_active) {
  753. sc->nr_to_scan = min(nr_active,
  754. (unsigned long)sc->swap_cluster_max);
  755. nr_active -= sc->nr_to_scan;
  756. refill_inactive_zone(zone, sc);
  757. }
  758. if (nr_inactive) {
  759. sc->nr_to_scan = min(nr_inactive,
  760. (unsigned long)sc->swap_cluster_max);
  761. nr_inactive -= sc->nr_to_scan;
  762. shrink_cache(zone, sc);
  763. if (sc->nr_to_reclaim <= 0)
  764. break;
  765. }
  766. }
  767. throttle_vm_writeout();
  768. atomic_dec(&zone->reclaim_in_progress);
  769. }
  770. /*
  771. * This is the direct reclaim path, for page-allocating processes. We only
  772. * try to reclaim pages from zones which will satisfy the caller's allocation
  773. * request.
  774. *
  775. * We reclaim from a zone even if that zone is over pages_high. Because:
  776. * a) The caller may be trying to free *extra* pages to satisfy a higher-order
  777. * allocation or
  778. * b) The zones may be over pages_high but they must go *over* pages_high to
  779. * satisfy the `incremental min' zone defense algorithm.
  780. *
  781. * Returns the number of reclaimed pages.
  782. *
  783. * If a zone is deemed to be full of pinned pages then just give it a light
  784. * scan then give up on it.
  785. */
  786. static void
  787. shrink_caches(struct zone **zones, struct scan_control *sc)
  788. {
  789. int i;
  790. for (i = 0; zones[i] != NULL; i++) {
  791. struct zone *zone = zones[i];
  792. if (zone->present_pages == 0)
  793. continue;
  794. if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
  795. continue;
  796. zone->temp_priority = sc->priority;
  797. if (zone->prev_priority > sc->priority)
  798. zone->prev_priority = sc->priority;
  799. if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
  800. continue; /* Let kswapd poll it */
  801. shrink_zone(zone, sc);
  802. }
  803. }
  804. /*
  805. * This is the main entry point to direct page reclaim.
  806. *
  807. * If a full scan of the inactive list fails to free enough memory then we
  808. * are "out of memory" and something needs to be killed.
  809. *
  810. * If the caller is !__GFP_FS then the probability of a failure is reasonably
  811. * high - the zone may be full of dirty or under-writeback pages, which this
  812. * caller can't do much about. We kick pdflush and take explicit naps in the
  813. * hope that some of these pages can be written. But if the allocating task
  814. * holds filesystem locks which prevent writeout this might not work, and the
  815. * allocation attempt will fail.
  816. */
  817. int try_to_free_pages(struct zone **zones, unsigned int gfp_mask)
  818. {
  819. int priority;
  820. int ret = 0;
  821. int total_scanned = 0, total_reclaimed = 0;
  822. struct reclaim_state *reclaim_state = current->reclaim_state;
  823. struct scan_control sc;
  824. unsigned long lru_pages = 0;
  825. int i;
  826. sc.gfp_mask = gfp_mask;
  827. sc.may_writepage = 0;
  828. sc.may_swap = 1;
  829. inc_page_state(allocstall);
  830. for (i = 0; zones[i] != NULL; i++) {
  831. struct zone *zone = zones[i];
  832. if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
  833. continue;
  834. zone->temp_priority = DEF_PRIORITY;
  835. lru_pages += zone->nr_active + zone->nr_inactive;
  836. }
  837. for (priority = DEF_PRIORITY; priority >= 0; priority--) {
  838. sc.nr_mapped = read_page_state(nr_mapped);
  839. sc.nr_scanned = 0;
  840. sc.nr_reclaimed = 0;
  841. sc.priority = priority;
  842. sc.swap_cluster_max = SWAP_CLUSTER_MAX;
  843. shrink_caches(zones, &sc);
  844. shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
  845. if (reclaim_state) {
  846. sc.nr_reclaimed += reclaim_state->reclaimed_slab;
  847. reclaim_state->reclaimed_slab = 0;
  848. }
  849. total_scanned += sc.nr_scanned;
  850. total_reclaimed += sc.nr_reclaimed;
  851. if (total_reclaimed >= sc.swap_cluster_max) {
  852. ret = 1;
  853. goto out;
  854. }
  855. /*
  856. * Try to write back as many pages as we just scanned. This
  857. * tends to cause slow streaming writers to write data to the
  858. * disk smoothly, at the dirtying rate, which is nice. But
  859. * that's undesirable in laptop mode, where we *want* lumpy
  860. * writeout. So in laptop mode, write out the whole world.
  861. */
  862. if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
  863. wakeup_pdflush(laptop_mode ? 0 : total_scanned);
  864. sc.may_writepage = 1;
  865. }
  866. /* Take a nap, wait for some writeback to complete */
  867. if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
  868. blk_congestion_wait(WRITE, HZ/10);
  869. }
  870. out:
  871. for (i = 0; zones[i] != 0; i++) {
  872. struct zone *zone = zones[i];
  873. if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
  874. continue;
  875. zone->prev_priority = zone->temp_priority;
  876. }
  877. return ret;
  878. }
  879. /*
  880. * For kswapd, balance_pgdat() will work across all this node's zones until
  881. * they are all at pages_high.
  882. *
  883. * If `nr_pages' is non-zero then it is the number of pages which are to be
  884. * reclaimed, regardless of the zone occupancies. This is a software suspend
  885. * special.
  886. *
  887. * Returns the number of pages which were actually freed.
  888. *
  889. * There is special handling here for zones which are full of pinned pages.
  890. * This can happen if the pages are all mlocked, or if they are all used by
  891. * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
  892. * What we do is to detect the case where all pages in the zone have been
  893. * scanned twice and there has been zero successful reclaim. Mark the zone as
  894. * dead and from now on, only perform a short scan. Basically we're polling
  895. * the zone for when the problem goes away.
  896. *
  897. * kswapd scans the zones in the highmem->normal->dma direction. It skips
  898. * zones which have free_pages > pages_high, but once a zone is found to have
  899. * free_pages <= pages_high, we scan that zone and the lower zones regardless
  900. * of the number of free pages in the lower zones. This interoperates with
  901. * the page allocator fallback scheme to ensure that aging of pages is balanced
  902. * across the zones.
  903. */
  904. static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
  905. {
  906. int to_free = nr_pages;
  907. int all_zones_ok;
  908. int priority;
  909. int i;
  910. int total_scanned, total_reclaimed;
  911. struct reclaim_state *reclaim_state = current->reclaim_state;
  912. struct scan_control sc;
  913. loop_again:
  914. total_scanned = 0;
  915. total_reclaimed = 0;
  916. sc.gfp_mask = GFP_KERNEL;
  917. sc.may_writepage = 0;
  918. sc.may_swap = 1;
  919. sc.nr_mapped = read_page_state(nr_mapped);
  920. inc_page_state(pageoutrun);
  921. for (i = 0; i < pgdat->nr_zones; i++) {
  922. struct zone *zone = pgdat->node_zones + i;
  923. zone->temp_priority = DEF_PRIORITY;
  924. }
  925. for (priority = DEF_PRIORITY; priority >= 0; priority--) {
  926. int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
  927. unsigned long lru_pages = 0;
  928. all_zones_ok = 1;
  929. if (nr_pages == 0) {
  930. /*
  931. * Scan in the highmem->dma direction for the highest
  932. * zone which needs scanning
  933. */
  934. for (i = pgdat->nr_zones - 1; i >= 0; i--) {
  935. struct zone *zone = pgdat->node_zones + i;
  936. if (zone->present_pages == 0)
  937. continue;
  938. if (zone->all_unreclaimable &&
  939. priority != DEF_PRIORITY)
  940. continue;
  941. if (!zone_watermark_ok(zone, order,
  942. zone->pages_high, 0, 0, 0)) {
  943. end_zone = i;
  944. goto scan;
  945. }
  946. }
  947. goto out;
  948. } else {
  949. end_zone = pgdat->nr_zones - 1;
  950. }
  951. scan:
  952. for (i = 0; i <= end_zone; i++) {
  953. struct zone *zone = pgdat->node_zones + i;
  954. lru_pages += zone->nr_active + zone->nr_inactive;
  955. }
  956. /*
  957. * Now scan the zone in the dma->highmem direction, stopping
  958. * at the last zone which needs scanning.
  959. *
  960. * We do this because the page allocator works in the opposite
  961. * direction. This prevents the page allocator from allocating
  962. * pages behind kswapd's direction of progress, which would
  963. * cause too much scanning of the lower zones.
  964. */
  965. for (i = 0; i <= end_zone; i++) {
  966. struct zone *zone = pgdat->node_zones + i;
  967. int nr_slab;
  968. if (zone->present_pages == 0)
  969. continue;
  970. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  971. continue;
  972. if (nr_pages == 0) { /* Not software suspend */
  973. if (!zone_watermark_ok(zone, order,
  974. zone->pages_high, end_zone, 0, 0))
  975. all_zones_ok = 0;
  976. }
  977. zone->temp_priority = priority;
  978. if (zone->prev_priority > priority)
  979. zone->prev_priority = priority;
  980. sc.nr_scanned = 0;
  981. sc.nr_reclaimed = 0;
  982. sc.priority = priority;
  983. sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
  984. atomic_inc(&zone->reclaim_in_progress);
  985. shrink_zone(zone, &sc);
  986. atomic_dec(&zone->reclaim_in_progress);
  987. reclaim_state->reclaimed_slab = 0;
  988. nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
  989. lru_pages);
  990. sc.nr_reclaimed += reclaim_state->reclaimed_slab;
  991. total_reclaimed += sc.nr_reclaimed;
  992. total_scanned += sc.nr_scanned;
  993. if (zone->all_unreclaimable)
  994. continue;
  995. if (nr_slab == 0 && zone->pages_scanned >=
  996. (zone->nr_active + zone->nr_inactive) * 4)
  997. zone->all_unreclaimable = 1;
  998. /*
  999. * If we've done a decent amount of scanning and
  1000. * the reclaim ratio is low, start doing writepage
  1001. * even in laptop mode
  1002. */
  1003. if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
  1004. total_scanned > total_reclaimed+total_reclaimed/2)
  1005. sc.may_writepage = 1;
  1006. }
  1007. if (nr_pages && to_free > total_reclaimed)
  1008. continue; /* swsusp: need to do more work */
  1009. if (all_zones_ok)
  1010. break; /* kswapd: all done */
  1011. /*
  1012. * OK, kswapd is getting into trouble. Take a nap, then take
  1013. * another pass across the zones.
  1014. */
  1015. if (total_scanned && priority < DEF_PRIORITY - 2)
  1016. blk_congestion_wait(WRITE, HZ/10);
  1017. /*
  1018. * We do this so kswapd doesn't build up large priorities for
  1019. * example when it is freeing in parallel with allocators. It
  1020. * matches the direct reclaim path behaviour in terms of impact
  1021. * on zone->*_priority.
  1022. */
  1023. if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
  1024. break;
  1025. }
  1026. out:
  1027. for (i = 0; i < pgdat->nr_zones; i++) {
  1028. struct zone *zone = pgdat->node_zones + i;
  1029. zone->prev_priority = zone->temp_priority;
  1030. }
  1031. if (!all_zones_ok) {
  1032. cond_resched();
  1033. goto loop_again;
  1034. }
  1035. return total_reclaimed;
  1036. }
  1037. /*
  1038. * The background pageout daemon, started as a kernel thread
  1039. * from the init process.
  1040. *
  1041. * This basically trickles out pages so that we have _some_
  1042. * free memory available even if there is no other activity
  1043. * that frees anything up. This is needed for things like routing
  1044. * etc, where we otherwise might have all activity going on in
  1045. * asynchronous contexts that cannot page things out.
  1046. *
  1047. * If there are applications that are active memory-allocators
  1048. * (most normal use), this basically shouldn't matter.
  1049. */
  1050. static int kswapd(void *p)
  1051. {
  1052. unsigned long order;
  1053. pg_data_t *pgdat = (pg_data_t*)p;
  1054. struct task_struct *tsk = current;
  1055. DEFINE_WAIT(wait);
  1056. struct reclaim_state reclaim_state = {
  1057. .reclaimed_slab = 0,
  1058. };
  1059. cpumask_t cpumask;
  1060. daemonize("kswapd%d", pgdat->node_id);
  1061. cpumask = node_to_cpumask(pgdat->node_id);
  1062. if (!cpus_empty(cpumask))
  1063. set_cpus_allowed(tsk, cpumask);
  1064. current->reclaim_state = &reclaim_state;
  1065. /*
  1066. * Tell the memory management that we're a "memory allocator",
  1067. * and that if we need more memory we should get access to it
  1068. * regardless (see "__alloc_pages()"). "kswapd" should
  1069. * never get caught in the normal page freeing logic.
  1070. *
  1071. * (Kswapd normally doesn't need memory anyway, but sometimes
  1072. * you need a small amount of memory in order to be able to
  1073. * page out something else, and this flag essentially protects
  1074. * us from recursively trying to free more memory as we're
  1075. * trying to free the first piece of memory in the first place).
  1076. */
  1077. tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
  1078. order = 0;
  1079. for ( ; ; ) {
  1080. unsigned long new_order;
  1081. try_to_freeze();
  1082. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  1083. new_order = pgdat->kswapd_max_order;
  1084. pgdat->kswapd_max_order = 0;
  1085. if (order < new_order) {
  1086. /*
  1087. * Don't sleep if someone wants a larger 'order'
  1088. * allocation
  1089. */
  1090. order = new_order;
  1091. } else {
  1092. schedule();
  1093. order = pgdat->kswapd_max_order;
  1094. }
  1095. finish_wait(&pgdat->kswapd_wait, &wait);
  1096. balance_pgdat(pgdat, 0, order);
  1097. }
  1098. return 0;
  1099. }
  1100. /*
  1101. * A zone is low on free memory, so wake its kswapd task to service it.
  1102. */
  1103. void wakeup_kswapd(struct zone *zone, int order)
  1104. {
  1105. pg_data_t *pgdat;
  1106. if (zone->present_pages == 0)
  1107. return;
  1108. pgdat = zone->zone_pgdat;
  1109. if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0, 0))
  1110. return;
  1111. if (pgdat->kswapd_max_order < order)
  1112. pgdat->kswapd_max_order = order;
  1113. if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
  1114. return;
  1115. if (!waitqueue_active(&pgdat->kswapd_wait))
  1116. return;
  1117. wake_up_interruptible(&pgdat->kswapd_wait);
  1118. }
  1119. #ifdef CONFIG_PM
  1120. /*
  1121. * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
  1122. * pages.
  1123. */
  1124. int shrink_all_memory(int nr_pages)
  1125. {
  1126. pg_data_t *pgdat;
  1127. int nr_to_free = nr_pages;
  1128. int ret = 0;
  1129. struct reclaim_state reclaim_state = {
  1130. .reclaimed_slab = 0,
  1131. };
  1132. current->reclaim_state = &reclaim_state;
  1133. for_each_pgdat(pgdat) {
  1134. int freed;
  1135. freed = balance_pgdat(pgdat, nr_to_free, 0);
  1136. ret += freed;
  1137. nr_to_free -= freed;
  1138. if (nr_to_free <= 0)
  1139. break;
  1140. }
  1141. current->reclaim_state = NULL;
  1142. return ret;
  1143. }
  1144. #endif
  1145. #ifdef CONFIG_HOTPLUG_CPU
  1146. /* It's optimal to keep kswapds on the same CPUs as their memory, but
  1147. not required for correctness. So if the last cpu in a node goes
  1148. away, we get changed to run anywhere: as the first one comes back,
  1149. restore their cpu bindings. */
  1150. static int __devinit cpu_callback(struct notifier_block *nfb,
  1151. unsigned long action,
  1152. void *hcpu)
  1153. {
  1154. pg_data_t *pgdat;
  1155. cpumask_t mask;
  1156. if (action == CPU_ONLINE) {
  1157. for_each_pgdat(pgdat) {
  1158. mask = node_to_cpumask(pgdat->node_id);
  1159. if (any_online_cpu(mask) != NR_CPUS)
  1160. /* One of our CPUs online: restore mask */
  1161. set_cpus_allowed(pgdat->kswapd, mask);
  1162. }
  1163. }
  1164. return NOTIFY_OK;
  1165. }
  1166. #endif /* CONFIG_HOTPLUG_CPU */
  1167. static int __init kswapd_init(void)
  1168. {
  1169. pg_data_t *pgdat;
  1170. swap_setup();
  1171. for_each_pgdat(pgdat)
  1172. pgdat->kswapd
  1173. = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
  1174. total_memory = nr_free_pagecache_pages();
  1175. hotcpu_notifier(cpu_callback, 0);
  1176. return 0;
  1177. }
  1178. module_init(kswapd_init)
  1179. /*
  1180. * Try to free up some pages from this zone through reclaim.
  1181. */
  1182. int zone_reclaim(struct zone *zone, unsigned int gfp_mask, unsigned int order)
  1183. {
  1184. struct scan_control sc;
  1185. int nr_pages = 1 << order;
  1186. int total_reclaimed = 0;
  1187. /* The reclaim may sleep, so don't do it if sleep isn't allowed */
  1188. if (!(gfp_mask & __GFP_WAIT))
  1189. return 0;
  1190. if (zone->all_unreclaimable)
  1191. return 0;
  1192. sc.gfp_mask = gfp_mask;
  1193. sc.may_writepage = 0;
  1194. sc.may_swap = 0;
  1195. sc.nr_mapped = read_page_state(nr_mapped);
  1196. sc.nr_scanned = 0;
  1197. sc.nr_reclaimed = 0;
  1198. /* scan at the highest priority */
  1199. sc.priority = 0;
  1200. if (nr_pages > SWAP_CLUSTER_MAX)
  1201. sc.swap_cluster_max = nr_pages;
  1202. else
  1203. sc.swap_cluster_max = SWAP_CLUSTER_MAX;
  1204. /* Don't reclaim the zone if there are other reclaimers active */
  1205. if (atomic_read(&zone->reclaim_in_progress) > 0)
  1206. goto out;
  1207. shrink_zone(zone, &sc);
  1208. total_reclaimed = sc.nr_reclaimed;
  1209. out:
  1210. return total_reclaimed;
  1211. }
  1212. asmlinkage long sys_set_zone_reclaim(unsigned int node, unsigned int zone,
  1213. unsigned int state)
  1214. {
  1215. struct zone *z;
  1216. int i;
  1217. if (!capable(CAP_SYS_ADMIN))
  1218. return -EACCES;
  1219. if (node >= MAX_NUMNODES || !node_online(node))
  1220. return -EINVAL;
  1221. /* This will break if we ever add more zones */
  1222. if (!(zone & (1<<ZONE_DMA|1<<ZONE_NORMAL|1<<ZONE_HIGHMEM)))
  1223. return -EINVAL;
  1224. for (i = 0; i < MAX_NR_ZONES; i++) {
  1225. if (!(zone & 1<<i))
  1226. continue;
  1227. z = &NODE_DATA(node)->node_zones[i];
  1228. if (state)
  1229. z->reclaim_pages = 1;
  1230. else
  1231. z->reclaim_pages = 0;
  1232. }
  1233. return 0;
  1234. }