swap_state.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367
  1. /*
  2. * linux/mm/swap_state.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. *
  7. * Rewritten to use page cache, (C) 1998 Stephen Tweedie
  8. */
  9. #include <linux/module.h>
  10. #include <linux/mm.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/swap.h>
  13. #include <linux/init.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/buffer_head.h>
  16. #include <linux/backing-dev.h>
  17. #include <asm/pgtable.h>
  18. /*
  19. * swapper_space is a fiction, retained to simplify the path through
  20. * vmscan's shrink_list, to make sync_page look nicer, and to allow
  21. * future use of radix_tree tags in the swap cache.
  22. */
  23. static struct address_space_operations swap_aops = {
  24. .writepage = swap_writepage,
  25. .sync_page = block_sync_page,
  26. .set_page_dirty = __set_page_dirty_nobuffers,
  27. };
  28. static struct backing_dev_info swap_backing_dev_info = {
  29. .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
  30. .unplug_io_fn = swap_unplug_io_fn,
  31. };
  32. struct address_space swapper_space = {
  33. .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
  34. .tree_lock = RW_LOCK_UNLOCKED,
  35. .a_ops = &swap_aops,
  36. .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
  37. .backing_dev_info = &swap_backing_dev_info,
  38. };
  39. EXPORT_SYMBOL(swapper_space);
  40. #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
  41. static struct {
  42. unsigned long add_total;
  43. unsigned long del_total;
  44. unsigned long find_success;
  45. unsigned long find_total;
  46. unsigned long noent_race;
  47. unsigned long exist_race;
  48. } swap_cache_info;
  49. void show_swap_cache_info(void)
  50. {
  51. printk("Swap cache: add %lu, delete %lu, find %lu/%lu, race %lu+%lu\n",
  52. swap_cache_info.add_total, swap_cache_info.del_total,
  53. swap_cache_info.find_success, swap_cache_info.find_total,
  54. swap_cache_info.noent_race, swap_cache_info.exist_race);
  55. printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10));
  56. printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
  57. }
  58. /*
  59. * __add_to_swap_cache resembles add_to_page_cache on swapper_space,
  60. * but sets SwapCache flag and private instead of mapping and index.
  61. */
  62. static int __add_to_swap_cache(struct page *page, swp_entry_t entry,
  63. unsigned int __nocast gfp_mask)
  64. {
  65. int error;
  66. BUG_ON(PageSwapCache(page));
  67. BUG_ON(PagePrivate(page));
  68. error = radix_tree_preload(gfp_mask);
  69. if (!error) {
  70. write_lock_irq(&swapper_space.tree_lock);
  71. error = radix_tree_insert(&swapper_space.page_tree,
  72. entry.val, page);
  73. if (!error) {
  74. page_cache_get(page);
  75. SetPageLocked(page);
  76. SetPageSwapCache(page);
  77. page->private = entry.val;
  78. total_swapcache_pages++;
  79. pagecache_acct(1);
  80. }
  81. write_unlock_irq(&swapper_space.tree_lock);
  82. radix_tree_preload_end();
  83. }
  84. return error;
  85. }
  86. static int add_to_swap_cache(struct page *page, swp_entry_t entry)
  87. {
  88. int error;
  89. if (!swap_duplicate(entry)) {
  90. INC_CACHE_INFO(noent_race);
  91. return -ENOENT;
  92. }
  93. error = __add_to_swap_cache(page, entry, GFP_KERNEL);
  94. /*
  95. * Anon pages are already on the LRU, we don't run lru_cache_add here.
  96. */
  97. if (error) {
  98. swap_free(entry);
  99. if (error == -EEXIST)
  100. INC_CACHE_INFO(exist_race);
  101. return error;
  102. }
  103. INC_CACHE_INFO(add_total);
  104. return 0;
  105. }
  106. /*
  107. * This must be called only on pages that have
  108. * been verified to be in the swap cache.
  109. */
  110. void __delete_from_swap_cache(struct page *page)
  111. {
  112. BUG_ON(!PageLocked(page));
  113. BUG_ON(!PageSwapCache(page));
  114. BUG_ON(PageWriteback(page));
  115. BUG_ON(PagePrivate(page));
  116. radix_tree_delete(&swapper_space.page_tree, page->private);
  117. page->private = 0;
  118. ClearPageSwapCache(page);
  119. total_swapcache_pages--;
  120. pagecache_acct(-1);
  121. INC_CACHE_INFO(del_total);
  122. }
  123. /**
  124. * add_to_swap - allocate swap space for a page
  125. * @page: page we want to move to swap
  126. *
  127. * Allocate swap space for the page and add the page to the
  128. * swap cache. Caller needs to hold the page lock.
  129. */
  130. int add_to_swap(struct page * page)
  131. {
  132. swp_entry_t entry;
  133. int err;
  134. if (!PageLocked(page))
  135. BUG();
  136. for (;;) {
  137. entry = get_swap_page();
  138. if (!entry.val)
  139. return 0;
  140. /*
  141. * Radix-tree node allocations from PF_MEMALLOC contexts could
  142. * completely exhaust the page allocator. __GFP_NOMEMALLOC
  143. * stops emergency reserves from being allocated.
  144. *
  145. * TODO: this could cause a theoretical memory reclaim
  146. * deadlock in the swap out path.
  147. */
  148. /*
  149. * Add it to the swap cache and mark it dirty
  150. */
  151. err = __add_to_swap_cache(page, entry,
  152. GFP_ATOMIC|__GFP_NOMEMALLOC|__GFP_NOWARN);
  153. switch (err) {
  154. case 0: /* Success */
  155. SetPageUptodate(page);
  156. SetPageDirty(page);
  157. INC_CACHE_INFO(add_total);
  158. return 1;
  159. case -EEXIST:
  160. /* Raced with "speculative" read_swap_cache_async */
  161. INC_CACHE_INFO(exist_race);
  162. swap_free(entry);
  163. continue;
  164. default:
  165. /* -ENOMEM radix-tree allocation failure */
  166. swap_free(entry);
  167. return 0;
  168. }
  169. }
  170. }
  171. /*
  172. * This must be called only on pages that have
  173. * been verified to be in the swap cache and locked.
  174. * It will never put the page into the free list,
  175. * the caller has a reference on the page.
  176. */
  177. void delete_from_swap_cache(struct page *page)
  178. {
  179. swp_entry_t entry;
  180. entry.val = page->private;
  181. write_lock_irq(&swapper_space.tree_lock);
  182. __delete_from_swap_cache(page);
  183. write_unlock_irq(&swapper_space.tree_lock);
  184. swap_free(entry);
  185. page_cache_release(page);
  186. }
  187. /*
  188. * Strange swizzling function only for use by shmem_writepage
  189. */
  190. int move_to_swap_cache(struct page *page, swp_entry_t entry)
  191. {
  192. int err = __add_to_swap_cache(page, entry, GFP_ATOMIC);
  193. if (!err) {
  194. remove_from_page_cache(page);
  195. page_cache_release(page); /* pagecache ref */
  196. if (!swap_duplicate(entry))
  197. BUG();
  198. SetPageDirty(page);
  199. INC_CACHE_INFO(add_total);
  200. } else if (err == -EEXIST)
  201. INC_CACHE_INFO(exist_race);
  202. return err;
  203. }
  204. /*
  205. * Strange swizzling function for shmem_getpage (and shmem_unuse)
  206. */
  207. int move_from_swap_cache(struct page *page, unsigned long index,
  208. struct address_space *mapping)
  209. {
  210. int err = add_to_page_cache(page, mapping, index, GFP_ATOMIC);
  211. if (!err) {
  212. delete_from_swap_cache(page);
  213. /* shift page from clean_pages to dirty_pages list */
  214. ClearPageDirty(page);
  215. set_page_dirty(page);
  216. }
  217. return err;
  218. }
  219. /*
  220. * If we are the only user, then try to free up the swap cache.
  221. *
  222. * Its ok to check for PageSwapCache without the page lock
  223. * here because we are going to recheck again inside
  224. * exclusive_swap_page() _with_ the lock.
  225. * - Marcelo
  226. */
  227. static inline void free_swap_cache(struct page *page)
  228. {
  229. if (PageSwapCache(page) && !TestSetPageLocked(page)) {
  230. remove_exclusive_swap_page(page);
  231. unlock_page(page);
  232. }
  233. }
  234. /*
  235. * Perform a free_page(), also freeing any swap cache associated with
  236. * this page if it is the last user of the page. Can not do a lock_page,
  237. * as we are holding the page_table_lock spinlock.
  238. */
  239. void free_page_and_swap_cache(struct page *page)
  240. {
  241. free_swap_cache(page);
  242. page_cache_release(page);
  243. }
  244. /*
  245. * Passed an array of pages, drop them all from swapcache and then release
  246. * them. They are removed from the LRU and freed if this is their last use.
  247. */
  248. void free_pages_and_swap_cache(struct page **pages, int nr)
  249. {
  250. int chunk = 16;
  251. struct page **pagep = pages;
  252. lru_add_drain();
  253. while (nr) {
  254. int todo = min(chunk, nr);
  255. int i;
  256. for (i = 0; i < todo; i++)
  257. free_swap_cache(pagep[i]);
  258. release_pages(pagep, todo, 0);
  259. pagep += todo;
  260. nr -= todo;
  261. }
  262. }
  263. /*
  264. * Lookup a swap entry in the swap cache. A found page will be returned
  265. * unlocked and with its refcount incremented - we rely on the kernel
  266. * lock getting page table operations atomic even if we drop the page
  267. * lock before returning.
  268. */
  269. struct page * lookup_swap_cache(swp_entry_t entry)
  270. {
  271. struct page *page;
  272. page = find_get_page(&swapper_space, entry.val);
  273. if (page)
  274. INC_CACHE_INFO(find_success);
  275. INC_CACHE_INFO(find_total);
  276. return page;
  277. }
  278. /*
  279. * Locate a page of swap in physical memory, reserving swap cache space
  280. * and reading the disk if it is not already cached.
  281. * A failure return means that either the page allocation failed or that
  282. * the swap entry is no longer in use.
  283. */
  284. struct page *read_swap_cache_async(swp_entry_t entry,
  285. struct vm_area_struct *vma, unsigned long addr)
  286. {
  287. struct page *found_page, *new_page = NULL;
  288. int err;
  289. do {
  290. /*
  291. * First check the swap cache. Since this is normally
  292. * called after lookup_swap_cache() failed, re-calling
  293. * that would confuse statistics.
  294. */
  295. found_page = find_get_page(&swapper_space, entry.val);
  296. if (found_page)
  297. break;
  298. /*
  299. * Get a new page to read into from swap.
  300. */
  301. if (!new_page) {
  302. new_page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
  303. if (!new_page)
  304. break; /* Out of memory */
  305. }
  306. /*
  307. * Associate the page with swap entry in the swap cache.
  308. * May fail (-ENOENT) if swap entry has been freed since
  309. * our caller observed it. May fail (-EEXIST) if there
  310. * is already a page associated with this entry in the
  311. * swap cache: added by a racing read_swap_cache_async,
  312. * or by try_to_swap_out (or shmem_writepage) re-using
  313. * the just freed swap entry for an existing page.
  314. * May fail (-ENOMEM) if radix-tree node allocation failed.
  315. */
  316. err = add_to_swap_cache(new_page, entry);
  317. if (!err) {
  318. /*
  319. * Initiate read into locked page and return.
  320. */
  321. lru_cache_add_active(new_page);
  322. swap_readpage(NULL, new_page);
  323. return new_page;
  324. }
  325. } while (err != -ENOENT && err != -ENOMEM);
  326. if (new_page)
  327. page_cache_release(new_page);
  328. return found_page;
  329. }