rmap.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_sem (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem
  24. *
  25. * When a page fault occurs in writing from user to file, down_read
  26. * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within
  27. * down_read of mmap_sem; i_sem and down_write of mmap_sem are never
  28. * taken together; in truncation, i_sem is taken outermost.
  29. *
  30. * mm->mmap_sem
  31. * page->flags PG_locked (lock_page)
  32. * mapping->i_mmap_lock
  33. * anon_vma->lock
  34. * mm->page_table_lock
  35. * zone->lru_lock (in mark_page_accessed)
  36. * swap_lock (in swap_duplicate, swap_info_get)
  37. * mmlist_lock (in mmput, drain_mmlist and others)
  38. * mapping->private_lock (in __set_page_dirty_buffers)
  39. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  40. * sb_lock (within inode_lock in fs/fs-writeback.c)
  41. * mapping->tree_lock (widely used, in set_page_dirty,
  42. * in arch-dependent flush_dcache_mmap_lock,
  43. * within inode_lock in __sync_single_inode)
  44. */
  45. #include <linux/mm.h>
  46. #include <linux/pagemap.h>
  47. #include <linux/swap.h>
  48. #include <linux/swapops.h>
  49. #include <linux/slab.h>
  50. #include <linux/init.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <asm/tlbflush.h>
  54. //#define RMAP_DEBUG /* can be enabled only for debugging */
  55. kmem_cache_t *anon_vma_cachep;
  56. static inline void validate_anon_vma(struct vm_area_struct *find_vma)
  57. {
  58. #ifdef RMAP_DEBUG
  59. struct anon_vma *anon_vma = find_vma->anon_vma;
  60. struct vm_area_struct *vma;
  61. unsigned int mapcount = 0;
  62. int found = 0;
  63. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  64. mapcount++;
  65. BUG_ON(mapcount > 100000);
  66. if (vma == find_vma)
  67. found = 1;
  68. }
  69. BUG_ON(!found);
  70. #endif
  71. }
  72. /* This must be called under the mmap_sem. */
  73. int anon_vma_prepare(struct vm_area_struct *vma)
  74. {
  75. struct anon_vma *anon_vma = vma->anon_vma;
  76. might_sleep();
  77. if (unlikely(!anon_vma)) {
  78. struct mm_struct *mm = vma->vm_mm;
  79. struct anon_vma *allocated, *locked;
  80. anon_vma = find_mergeable_anon_vma(vma);
  81. if (anon_vma) {
  82. allocated = NULL;
  83. locked = anon_vma;
  84. spin_lock(&locked->lock);
  85. } else {
  86. anon_vma = anon_vma_alloc();
  87. if (unlikely(!anon_vma))
  88. return -ENOMEM;
  89. allocated = anon_vma;
  90. locked = NULL;
  91. }
  92. /* page_table_lock to protect against threads */
  93. spin_lock(&mm->page_table_lock);
  94. if (likely(!vma->anon_vma)) {
  95. vma->anon_vma = anon_vma;
  96. list_add(&vma->anon_vma_node, &anon_vma->head);
  97. allocated = NULL;
  98. }
  99. spin_unlock(&mm->page_table_lock);
  100. if (locked)
  101. spin_unlock(&locked->lock);
  102. if (unlikely(allocated))
  103. anon_vma_free(allocated);
  104. }
  105. return 0;
  106. }
  107. void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
  108. {
  109. BUG_ON(vma->anon_vma != next->anon_vma);
  110. list_del(&next->anon_vma_node);
  111. }
  112. void __anon_vma_link(struct vm_area_struct *vma)
  113. {
  114. struct anon_vma *anon_vma = vma->anon_vma;
  115. if (anon_vma) {
  116. list_add(&vma->anon_vma_node, &anon_vma->head);
  117. validate_anon_vma(vma);
  118. }
  119. }
  120. void anon_vma_link(struct vm_area_struct *vma)
  121. {
  122. struct anon_vma *anon_vma = vma->anon_vma;
  123. if (anon_vma) {
  124. spin_lock(&anon_vma->lock);
  125. list_add(&vma->anon_vma_node, &anon_vma->head);
  126. validate_anon_vma(vma);
  127. spin_unlock(&anon_vma->lock);
  128. }
  129. }
  130. void anon_vma_unlink(struct vm_area_struct *vma)
  131. {
  132. struct anon_vma *anon_vma = vma->anon_vma;
  133. int empty;
  134. if (!anon_vma)
  135. return;
  136. spin_lock(&anon_vma->lock);
  137. validate_anon_vma(vma);
  138. list_del(&vma->anon_vma_node);
  139. /* We must garbage collect the anon_vma if it's empty */
  140. empty = list_empty(&anon_vma->head);
  141. spin_unlock(&anon_vma->lock);
  142. if (empty)
  143. anon_vma_free(anon_vma);
  144. }
  145. static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
  146. {
  147. if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
  148. SLAB_CTOR_CONSTRUCTOR) {
  149. struct anon_vma *anon_vma = data;
  150. spin_lock_init(&anon_vma->lock);
  151. INIT_LIST_HEAD(&anon_vma->head);
  152. }
  153. }
  154. void __init anon_vma_init(void)
  155. {
  156. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  157. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
  158. }
  159. /*
  160. * Getting a lock on a stable anon_vma from a page off the LRU is
  161. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  162. */
  163. static struct anon_vma *page_lock_anon_vma(struct page *page)
  164. {
  165. struct anon_vma *anon_vma = NULL;
  166. unsigned long anon_mapping;
  167. rcu_read_lock();
  168. anon_mapping = (unsigned long) page->mapping;
  169. if (!(anon_mapping & PAGE_MAPPING_ANON))
  170. goto out;
  171. if (!page_mapped(page))
  172. goto out;
  173. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  174. spin_lock(&anon_vma->lock);
  175. out:
  176. rcu_read_unlock();
  177. return anon_vma;
  178. }
  179. /*
  180. * At what user virtual address is page expected in vma?
  181. */
  182. static inline unsigned long
  183. vma_address(struct page *page, struct vm_area_struct *vma)
  184. {
  185. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  186. unsigned long address;
  187. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  188. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  189. /* page should be within any vma from prio_tree_next */
  190. BUG_ON(!PageAnon(page));
  191. return -EFAULT;
  192. }
  193. return address;
  194. }
  195. /*
  196. * At what user virtual address is page expected in vma? checking that the
  197. * page matches the vma: currently only used by unuse_process, on anon pages.
  198. */
  199. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  200. {
  201. if (PageAnon(page)) {
  202. if ((void *)vma->anon_vma !=
  203. (void *)page->mapping - PAGE_MAPPING_ANON)
  204. return -EFAULT;
  205. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  206. if (vma->vm_file->f_mapping != page->mapping)
  207. return -EFAULT;
  208. } else
  209. return -EFAULT;
  210. return vma_address(page, vma);
  211. }
  212. /*
  213. * Check that @page is mapped at @address into @mm.
  214. *
  215. * On success returns with mapped pte and locked mm->page_table_lock.
  216. */
  217. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  218. unsigned long address)
  219. {
  220. pgd_t *pgd;
  221. pud_t *pud;
  222. pmd_t *pmd;
  223. pte_t *pte;
  224. /*
  225. * We need the page_table_lock to protect us from page faults,
  226. * munmap, fork, etc...
  227. */
  228. spin_lock(&mm->page_table_lock);
  229. pgd = pgd_offset(mm, address);
  230. if (likely(pgd_present(*pgd))) {
  231. pud = pud_offset(pgd, address);
  232. if (likely(pud_present(*pud))) {
  233. pmd = pmd_offset(pud, address);
  234. if (likely(pmd_present(*pmd))) {
  235. pte = pte_offset_map(pmd, address);
  236. if (likely(pte_present(*pte) &&
  237. page_to_pfn(page) == pte_pfn(*pte)))
  238. return pte;
  239. pte_unmap(pte);
  240. }
  241. }
  242. }
  243. spin_unlock(&mm->page_table_lock);
  244. return ERR_PTR(-ENOENT);
  245. }
  246. /*
  247. * Subfunctions of page_referenced: page_referenced_one called
  248. * repeatedly from either page_referenced_anon or page_referenced_file.
  249. */
  250. static int page_referenced_one(struct page *page,
  251. struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token)
  252. {
  253. struct mm_struct *mm = vma->vm_mm;
  254. unsigned long address;
  255. pte_t *pte;
  256. int referenced = 0;
  257. address = vma_address(page, vma);
  258. if (address == -EFAULT)
  259. goto out;
  260. pte = page_check_address(page, mm, address);
  261. if (!IS_ERR(pte)) {
  262. if (ptep_clear_flush_young(vma, address, pte))
  263. referenced++;
  264. if (mm != current->mm && !ignore_token && has_swap_token(mm))
  265. referenced++;
  266. (*mapcount)--;
  267. pte_unmap(pte);
  268. spin_unlock(&mm->page_table_lock);
  269. }
  270. out:
  271. return referenced;
  272. }
  273. static int page_referenced_anon(struct page *page, int ignore_token)
  274. {
  275. unsigned int mapcount;
  276. struct anon_vma *anon_vma;
  277. struct vm_area_struct *vma;
  278. int referenced = 0;
  279. anon_vma = page_lock_anon_vma(page);
  280. if (!anon_vma)
  281. return referenced;
  282. mapcount = page_mapcount(page);
  283. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  284. referenced += page_referenced_one(page, vma, &mapcount,
  285. ignore_token);
  286. if (!mapcount)
  287. break;
  288. }
  289. spin_unlock(&anon_vma->lock);
  290. return referenced;
  291. }
  292. /**
  293. * page_referenced_file - referenced check for object-based rmap
  294. * @page: the page we're checking references on.
  295. *
  296. * For an object-based mapped page, find all the places it is mapped and
  297. * check/clear the referenced flag. This is done by following the page->mapping
  298. * pointer, then walking the chain of vmas it holds. It returns the number
  299. * of references it found.
  300. *
  301. * This function is only called from page_referenced for object-based pages.
  302. */
  303. static int page_referenced_file(struct page *page, int ignore_token)
  304. {
  305. unsigned int mapcount;
  306. struct address_space *mapping = page->mapping;
  307. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  308. struct vm_area_struct *vma;
  309. struct prio_tree_iter iter;
  310. int referenced = 0;
  311. /*
  312. * The caller's checks on page->mapping and !PageAnon have made
  313. * sure that this is a file page: the check for page->mapping
  314. * excludes the case just before it gets set on an anon page.
  315. */
  316. BUG_ON(PageAnon(page));
  317. /*
  318. * The page lock not only makes sure that page->mapping cannot
  319. * suddenly be NULLified by truncation, it makes sure that the
  320. * structure at mapping cannot be freed and reused yet,
  321. * so we can safely take mapping->i_mmap_lock.
  322. */
  323. BUG_ON(!PageLocked(page));
  324. spin_lock(&mapping->i_mmap_lock);
  325. /*
  326. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  327. * is more likely to be accurate if we note it after spinning.
  328. */
  329. mapcount = page_mapcount(page);
  330. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  331. if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
  332. == (VM_LOCKED|VM_MAYSHARE)) {
  333. referenced++;
  334. break;
  335. }
  336. referenced += page_referenced_one(page, vma, &mapcount,
  337. ignore_token);
  338. if (!mapcount)
  339. break;
  340. }
  341. spin_unlock(&mapping->i_mmap_lock);
  342. return referenced;
  343. }
  344. /**
  345. * page_referenced - test if the page was referenced
  346. * @page: the page to test
  347. * @is_locked: caller holds lock on the page
  348. *
  349. * Quick test_and_clear_referenced for all mappings to a page,
  350. * returns the number of ptes which referenced the page.
  351. */
  352. int page_referenced(struct page *page, int is_locked, int ignore_token)
  353. {
  354. int referenced = 0;
  355. if (!swap_token_default_timeout)
  356. ignore_token = 1;
  357. if (page_test_and_clear_young(page))
  358. referenced++;
  359. if (TestClearPageReferenced(page))
  360. referenced++;
  361. if (page_mapped(page) && page->mapping) {
  362. if (PageAnon(page))
  363. referenced += page_referenced_anon(page, ignore_token);
  364. else if (is_locked)
  365. referenced += page_referenced_file(page, ignore_token);
  366. else if (TestSetPageLocked(page))
  367. referenced++;
  368. else {
  369. if (page->mapping)
  370. referenced += page_referenced_file(page,
  371. ignore_token);
  372. unlock_page(page);
  373. }
  374. }
  375. return referenced;
  376. }
  377. /**
  378. * page_add_anon_rmap - add pte mapping to an anonymous page
  379. * @page: the page to add the mapping to
  380. * @vma: the vm area in which the mapping is added
  381. * @address: the user virtual address mapped
  382. *
  383. * The caller needs to hold the mm->page_table_lock.
  384. */
  385. void page_add_anon_rmap(struct page *page,
  386. struct vm_area_struct *vma, unsigned long address)
  387. {
  388. BUG_ON(PageReserved(page));
  389. inc_mm_counter(vma->vm_mm, anon_rss);
  390. if (atomic_inc_and_test(&page->_mapcount)) {
  391. struct anon_vma *anon_vma = vma->anon_vma;
  392. BUG_ON(!anon_vma);
  393. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  394. page->mapping = (struct address_space *) anon_vma;
  395. page->index = linear_page_index(vma, address);
  396. inc_page_state(nr_mapped);
  397. }
  398. /* else checking page index and mapping is racy */
  399. }
  400. /**
  401. * page_add_file_rmap - add pte mapping to a file page
  402. * @page: the page to add the mapping to
  403. *
  404. * The caller needs to hold the mm->page_table_lock.
  405. */
  406. void page_add_file_rmap(struct page *page)
  407. {
  408. BUG_ON(PageAnon(page));
  409. if (!pfn_valid(page_to_pfn(page)) || PageReserved(page))
  410. return;
  411. if (atomic_inc_and_test(&page->_mapcount))
  412. inc_page_state(nr_mapped);
  413. }
  414. /**
  415. * page_remove_rmap - take down pte mapping from a page
  416. * @page: page to remove mapping from
  417. *
  418. * Caller needs to hold the mm->page_table_lock.
  419. */
  420. void page_remove_rmap(struct page *page)
  421. {
  422. BUG_ON(PageReserved(page));
  423. if (atomic_add_negative(-1, &page->_mapcount)) {
  424. BUG_ON(page_mapcount(page) < 0);
  425. /*
  426. * It would be tidy to reset the PageAnon mapping here,
  427. * but that might overwrite a racing page_add_anon_rmap
  428. * which increments mapcount after us but sets mapping
  429. * before us: so leave the reset to free_hot_cold_page,
  430. * and remember that it's only reliable while mapped.
  431. * Leaving it set also helps swapoff to reinstate ptes
  432. * faster for those pages still in swapcache.
  433. */
  434. if (page_test_and_clear_dirty(page))
  435. set_page_dirty(page);
  436. dec_page_state(nr_mapped);
  437. }
  438. }
  439. /*
  440. * Subfunctions of try_to_unmap: try_to_unmap_one called
  441. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  442. */
  443. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma)
  444. {
  445. struct mm_struct *mm = vma->vm_mm;
  446. unsigned long address;
  447. pte_t *pte;
  448. pte_t pteval;
  449. int ret = SWAP_AGAIN;
  450. address = vma_address(page, vma);
  451. if (address == -EFAULT)
  452. goto out;
  453. pte = page_check_address(page, mm, address);
  454. if (IS_ERR(pte))
  455. goto out;
  456. /*
  457. * If the page is mlock()d, we cannot swap it out.
  458. * If it's recently referenced (perhaps page_referenced
  459. * skipped over this mm) then we should reactivate it.
  460. *
  461. * Pages belonging to VM_RESERVED regions should not happen here.
  462. */
  463. if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) ||
  464. ptep_clear_flush_young(vma, address, pte)) {
  465. ret = SWAP_FAIL;
  466. goto out_unmap;
  467. }
  468. /* Nuke the page table entry. */
  469. flush_cache_page(vma, address, page_to_pfn(page));
  470. pteval = ptep_clear_flush(vma, address, pte);
  471. /* Move the dirty bit to the physical page now the pte is gone. */
  472. if (pte_dirty(pteval))
  473. set_page_dirty(page);
  474. if (PageAnon(page)) {
  475. swp_entry_t entry = { .val = page->private };
  476. /*
  477. * Store the swap location in the pte.
  478. * See handle_pte_fault() ...
  479. */
  480. BUG_ON(!PageSwapCache(page));
  481. swap_duplicate(entry);
  482. if (list_empty(&mm->mmlist)) {
  483. spin_lock(&mmlist_lock);
  484. list_add(&mm->mmlist, &init_mm.mmlist);
  485. spin_unlock(&mmlist_lock);
  486. }
  487. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  488. BUG_ON(pte_file(*pte));
  489. dec_mm_counter(mm, anon_rss);
  490. }
  491. dec_mm_counter(mm, rss);
  492. page_remove_rmap(page);
  493. page_cache_release(page);
  494. out_unmap:
  495. pte_unmap(pte);
  496. spin_unlock(&mm->page_table_lock);
  497. out:
  498. return ret;
  499. }
  500. /*
  501. * objrmap doesn't work for nonlinear VMAs because the assumption that
  502. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  503. * Consequently, given a particular page and its ->index, we cannot locate the
  504. * ptes which are mapping that page without an exhaustive linear search.
  505. *
  506. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  507. * maps the file to which the target page belongs. The ->vm_private_data field
  508. * holds the current cursor into that scan. Successive searches will circulate
  509. * around the vma's virtual address space.
  510. *
  511. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  512. * more scanning pressure is placed against them as well. Eventually pages
  513. * will become fully unmapped and are eligible for eviction.
  514. *
  515. * For very sparsely populated VMAs this is a little inefficient - chances are
  516. * there there won't be many ptes located within the scan cluster. In this case
  517. * maybe we could scan further - to the end of the pte page, perhaps.
  518. */
  519. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  520. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  521. static void try_to_unmap_cluster(unsigned long cursor,
  522. unsigned int *mapcount, struct vm_area_struct *vma)
  523. {
  524. struct mm_struct *mm = vma->vm_mm;
  525. pgd_t *pgd;
  526. pud_t *pud;
  527. pmd_t *pmd;
  528. pte_t *pte, *original_pte;
  529. pte_t pteval;
  530. struct page *page;
  531. unsigned long address;
  532. unsigned long end;
  533. unsigned long pfn;
  534. /*
  535. * We need the page_table_lock to protect us from page faults,
  536. * munmap, fork, etc...
  537. */
  538. spin_lock(&mm->page_table_lock);
  539. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  540. end = address + CLUSTER_SIZE;
  541. if (address < vma->vm_start)
  542. address = vma->vm_start;
  543. if (end > vma->vm_end)
  544. end = vma->vm_end;
  545. pgd = pgd_offset(mm, address);
  546. if (!pgd_present(*pgd))
  547. goto out_unlock;
  548. pud = pud_offset(pgd, address);
  549. if (!pud_present(*pud))
  550. goto out_unlock;
  551. pmd = pmd_offset(pud, address);
  552. if (!pmd_present(*pmd))
  553. goto out_unlock;
  554. for (original_pte = pte = pte_offset_map(pmd, address);
  555. address < end; pte++, address += PAGE_SIZE) {
  556. if (!pte_present(*pte))
  557. continue;
  558. pfn = pte_pfn(*pte);
  559. if (!pfn_valid(pfn))
  560. continue;
  561. page = pfn_to_page(pfn);
  562. BUG_ON(PageAnon(page));
  563. if (PageReserved(page))
  564. continue;
  565. if (ptep_clear_flush_young(vma, address, pte))
  566. continue;
  567. /* Nuke the page table entry. */
  568. flush_cache_page(vma, address, pfn);
  569. pteval = ptep_clear_flush(vma, address, pte);
  570. /* If nonlinear, store the file page offset in the pte. */
  571. if (page->index != linear_page_index(vma, address))
  572. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  573. /* Move the dirty bit to the physical page now the pte is gone. */
  574. if (pte_dirty(pteval))
  575. set_page_dirty(page);
  576. page_remove_rmap(page);
  577. page_cache_release(page);
  578. dec_mm_counter(mm, rss);
  579. (*mapcount)--;
  580. }
  581. pte_unmap(original_pte);
  582. out_unlock:
  583. spin_unlock(&mm->page_table_lock);
  584. }
  585. static int try_to_unmap_anon(struct page *page)
  586. {
  587. struct anon_vma *anon_vma;
  588. struct vm_area_struct *vma;
  589. int ret = SWAP_AGAIN;
  590. anon_vma = page_lock_anon_vma(page);
  591. if (!anon_vma)
  592. return ret;
  593. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  594. ret = try_to_unmap_one(page, vma);
  595. if (ret == SWAP_FAIL || !page_mapped(page))
  596. break;
  597. }
  598. spin_unlock(&anon_vma->lock);
  599. return ret;
  600. }
  601. /**
  602. * try_to_unmap_file - unmap file page using the object-based rmap method
  603. * @page: the page to unmap
  604. *
  605. * Find all the mappings of a page using the mapping pointer and the vma chains
  606. * contained in the address_space struct it points to.
  607. *
  608. * This function is only called from try_to_unmap for object-based pages.
  609. */
  610. static int try_to_unmap_file(struct page *page)
  611. {
  612. struct address_space *mapping = page->mapping;
  613. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  614. struct vm_area_struct *vma;
  615. struct prio_tree_iter iter;
  616. int ret = SWAP_AGAIN;
  617. unsigned long cursor;
  618. unsigned long max_nl_cursor = 0;
  619. unsigned long max_nl_size = 0;
  620. unsigned int mapcount;
  621. spin_lock(&mapping->i_mmap_lock);
  622. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  623. ret = try_to_unmap_one(page, vma);
  624. if (ret == SWAP_FAIL || !page_mapped(page))
  625. goto out;
  626. }
  627. if (list_empty(&mapping->i_mmap_nonlinear))
  628. goto out;
  629. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  630. shared.vm_set.list) {
  631. if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
  632. continue;
  633. cursor = (unsigned long) vma->vm_private_data;
  634. if (cursor > max_nl_cursor)
  635. max_nl_cursor = cursor;
  636. cursor = vma->vm_end - vma->vm_start;
  637. if (cursor > max_nl_size)
  638. max_nl_size = cursor;
  639. }
  640. if (max_nl_size == 0) { /* any nonlinears locked or reserved */
  641. ret = SWAP_FAIL;
  642. goto out;
  643. }
  644. /*
  645. * We don't try to search for this page in the nonlinear vmas,
  646. * and page_referenced wouldn't have found it anyway. Instead
  647. * just walk the nonlinear vmas trying to age and unmap some.
  648. * The mapcount of the page we came in with is irrelevant,
  649. * but even so use it as a guide to how hard we should try?
  650. */
  651. mapcount = page_mapcount(page);
  652. if (!mapcount)
  653. goto out;
  654. cond_resched_lock(&mapping->i_mmap_lock);
  655. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  656. if (max_nl_cursor == 0)
  657. max_nl_cursor = CLUSTER_SIZE;
  658. do {
  659. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  660. shared.vm_set.list) {
  661. if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
  662. continue;
  663. cursor = (unsigned long) vma->vm_private_data;
  664. while ( cursor < max_nl_cursor &&
  665. cursor < vma->vm_end - vma->vm_start) {
  666. try_to_unmap_cluster(cursor, &mapcount, vma);
  667. cursor += CLUSTER_SIZE;
  668. vma->vm_private_data = (void *) cursor;
  669. if ((int)mapcount <= 0)
  670. goto out;
  671. }
  672. vma->vm_private_data = (void *) max_nl_cursor;
  673. }
  674. cond_resched_lock(&mapping->i_mmap_lock);
  675. max_nl_cursor += CLUSTER_SIZE;
  676. } while (max_nl_cursor <= max_nl_size);
  677. /*
  678. * Don't loop forever (perhaps all the remaining pages are
  679. * in locked vmas). Reset cursor on all unreserved nonlinear
  680. * vmas, now forgetting on which ones it had fallen behind.
  681. */
  682. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  683. shared.vm_set.list) {
  684. if (!(vma->vm_flags & VM_RESERVED))
  685. vma->vm_private_data = NULL;
  686. }
  687. out:
  688. spin_unlock(&mapping->i_mmap_lock);
  689. return ret;
  690. }
  691. /**
  692. * try_to_unmap - try to remove all page table mappings to a page
  693. * @page: the page to get unmapped
  694. *
  695. * Tries to remove all the page table entries which are mapping this
  696. * page, used in the pageout path. Caller must hold the page lock.
  697. * Return values are:
  698. *
  699. * SWAP_SUCCESS - we succeeded in removing all mappings
  700. * SWAP_AGAIN - we missed a mapping, try again later
  701. * SWAP_FAIL - the page is unswappable
  702. */
  703. int try_to_unmap(struct page *page)
  704. {
  705. int ret;
  706. BUG_ON(PageReserved(page));
  707. BUG_ON(!PageLocked(page));
  708. if (PageAnon(page))
  709. ret = try_to_unmap_anon(page);
  710. else
  711. ret = try_to_unmap_file(page);
  712. if (!page_mapped(page))
  713. ret = SWAP_SUCCESS;
  714. return ret;
  715. }