memory.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/init.h>
  46. #include <asm/pgalloc.h>
  47. #include <asm/uaccess.h>
  48. #include <asm/tlb.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/pgtable.h>
  51. #include <linux/swapops.h>
  52. #include <linux/elf.h>
  53. #ifndef CONFIG_NEED_MULTIPLE_NODES
  54. /* use the per-pgdat data instead for discontigmem - mbligh */
  55. unsigned long max_mapnr;
  56. struct page *mem_map;
  57. EXPORT_SYMBOL(max_mapnr);
  58. EXPORT_SYMBOL(mem_map);
  59. #endif
  60. unsigned long num_physpages;
  61. /*
  62. * A number of key systems in x86 including ioremap() rely on the assumption
  63. * that high_memory defines the upper bound on direct map memory, then end
  64. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  65. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  66. * and ZONE_HIGHMEM.
  67. */
  68. void * high_memory;
  69. unsigned long vmalloc_earlyreserve;
  70. EXPORT_SYMBOL(num_physpages);
  71. EXPORT_SYMBOL(high_memory);
  72. EXPORT_SYMBOL(vmalloc_earlyreserve);
  73. /*
  74. * If a p?d_bad entry is found while walking page tables, report
  75. * the error, before resetting entry to p?d_none. Usually (but
  76. * very seldom) called out from the p?d_none_or_clear_bad macros.
  77. */
  78. void pgd_clear_bad(pgd_t *pgd)
  79. {
  80. pgd_ERROR(*pgd);
  81. pgd_clear(pgd);
  82. }
  83. void pud_clear_bad(pud_t *pud)
  84. {
  85. pud_ERROR(*pud);
  86. pud_clear(pud);
  87. }
  88. void pmd_clear_bad(pmd_t *pmd)
  89. {
  90. pmd_ERROR(*pmd);
  91. pmd_clear(pmd);
  92. }
  93. /*
  94. * Note: this doesn't free the actual pages themselves. That
  95. * has been handled earlier when unmapping all the memory regions.
  96. */
  97. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  98. {
  99. struct page *page = pmd_page(*pmd);
  100. pmd_clear(pmd);
  101. pte_free_tlb(tlb, page);
  102. dec_page_state(nr_page_table_pages);
  103. tlb->mm->nr_ptes--;
  104. }
  105. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  106. unsigned long addr, unsigned long end,
  107. unsigned long floor, unsigned long ceiling)
  108. {
  109. pmd_t *pmd;
  110. unsigned long next;
  111. unsigned long start;
  112. start = addr;
  113. pmd = pmd_offset(pud, addr);
  114. do {
  115. next = pmd_addr_end(addr, end);
  116. if (pmd_none_or_clear_bad(pmd))
  117. continue;
  118. free_pte_range(tlb, pmd);
  119. } while (pmd++, addr = next, addr != end);
  120. start &= PUD_MASK;
  121. if (start < floor)
  122. return;
  123. if (ceiling) {
  124. ceiling &= PUD_MASK;
  125. if (!ceiling)
  126. return;
  127. }
  128. if (end - 1 > ceiling - 1)
  129. return;
  130. pmd = pmd_offset(pud, start);
  131. pud_clear(pud);
  132. pmd_free_tlb(tlb, pmd);
  133. }
  134. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  135. unsigned long addr, unsigned long end,
  136. unsigned long floor, unsigned long ceiling)
  137. {
  138. pud_t *pud;
  139. unsigned long next;
  140. unsigned long start;
  141. start = addr;
  142. pud = pud_offset(pgd, addr);
  143. do {
  144. next = pud_addr_end(addr, end);
  145. if (pud_none_or_clear_bad(pud))
  146. continue;
  147. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  148. } while (pud++, addr = next, addr != end);
  149. start &= PGDIR_MASK;
  150. if (start < floor)
  151. return;
  152. if (ceiling) {
  153. ceiling &= PGDIR_MASK;
  154. if (!ceiling)
  155. return;
  156. }
  157. if (end - 1 > ceiling - 1)
  158. return;
  159. pud = pud_offset(pgd, start);
  160. pgd_clear(pgd);
  161. pud_free_tlb(tlb, pud);
  162. }
  163. /*
  164. * This function frees user-level page tables of a process.
  165. *
  166. * Must be called with pagetable lock held.
  167. */
  168. void free_pgd_range(struct mmu_gather **tlb,
  169. unsigned long addr, unsigned long end,
  170. unsigned long floor, unsigned long ceiling)
  171. {
  172. pgd_t *pgd;
  173. unsigned long next;
  174. unsigned long start;
  175. /*
  176. * The next few lines have given us lots of grief...
  177. *
  178. * Why are we testing PMD* at this top level? Because often
  179. * there will be no work to do at all, and we'd prefer not to
  180. * go all the way down to the bottom just to discover that.
  181. *
  182. * Why all these "- 1"s? Because 0 represents both the bottom
  183. * of the address space and the top of it (using -1 for the
  184. * top wouldn't help much: the masks would do the wrong thing).
  185. * The rule is that addr 0 and floor 0 refer to the bottom of
  186. * the address space, but end 0 and ceiling 0 refer to the top
  187. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  188. * that end 0 case should be mythical).
  189. *
  190. * Wherever addr is brought up or ceiling brought down, we must
  191. * be careful to reject "the opposite 0" before it confuses the
  192. * subsequent tests. But what about where end is brought down
  193. * by PMD_SIZE below? no, end can't go down to 0 there.
  194. *
  195. * Whereas we round start (addr) and ceiling down, by different
  196. * masks at different levels, in order to test whether a table
  197. * now has no other vmas using it, so can be freed, we don't
  198. * bother to round floor or end up - the tests don't need that.
  199. */
  200. addr &= PMD_MASK;
  201. if (addr < floor) {
  202. addr += PMD_SIZE;
  203. if (!addr)
  204. return;
  205. }
  206. if (ceiling) {
  207. ceiling &= PMD_MASK;
  208. if (!ceiling)
  209. return;
  210. }
  211. if (end - 1 > ceiling - 1)
  212. end -= PMD_SIZE;
  213. if (addr > end - 1)
  214. return;
  215. start = addr;
  216. pgd = pgd_offset((*tlb)->mm, addr);
  217. do {
  218. next = pgd_addr_end(addr, end);
  219. if (pgd_none_or_clear_bad(pgd))
  220. continue;
  221. free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
  222. } while (pgd++, addr = next, addr != end);
  223. if (!tlb_is_full_mm(*tlb))
  224. flush_tlb_pgtables((*tlb)->mm, start, end);
  225. }
  226. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
  227. unsigned long floor, unsigned long ceiling)
  228. {
  229. while (vma) {
  230. struct vm_area_struct *next = vma->vm_next;
  231. unsigned long addr = vma->vm_start;
  232. if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
  233. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  234. floor, next? next->vm_start: ceiling);
  235. } else {
  236. /*
  237. * Optimization: gather nearby vmas into one call down
  238. */
  239. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  240. && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
  241. HPAGE_SIZE)) {
  242. vma = next;
  243. next = vma->vm_next;
  244. }
  245. free_pgd_range(tlb, addr, vma->vm_end,
  246. floor, next? next->vm_start: ceiling);
  247. }
  248. vma = next;
  249. }
  250. }
  251. pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
  252. unsigned long address)
  253. {
  254. if (!pmd_present(*pmd)) {
  255. struct page *new;
  256. spin_unlock(&mm->page_table_lock);
  257. new = pte_alloc_one(mm, address);
  258. spin_lock(&mm->page_table_lock);
  259. if (!new)
  260. return NULL;
  261. /*
  262. * Because we dropped the lock, we should re-check the
  263. * entry, as somebody else could have populated it..
  264. */
  265. if (pmd_present(*pmd)) {
  266. pte_free(new);
  267. goto out;
  268. }
  269. mm->nr_ptes++;
  270. inc_page_state(nr_page_table_pages);
  271. pmd_populate(mm, pmd, new);
  272. }
  273. out:
  274. return pte_offset_map(pmd, address);
  275. }
  276. pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  277. {
  278. if (!pmd_present(*pmd)) {
  279. pte_t *new;
  280. spin_unlock(&mm->page_table_lock);
  281. new = pte_alloc_one_kernel(mm, address);
  282. spin_lock(&mm->page_table_lock);
  283. if (!new)
  284. return NULL;
  285. /*
  286. * Because we dropped the lock, we should re-check the
  287. * entry, as somebody else could have populated it..
  288. */
  289. if (pmd_present(*pmd)) {
  290. pte_free_kernel(new);
  291. goto out;
  292. }
  293. pmd_populate_kernel(mm, pmd, new);
  294. }
  295. out:
  296. return pte_offset_kernel(pmd, address);
  297. }
  298. /*
  299. * copy one vm_area from one task to the other. Assumes the page tables
  300. * already present in the new task to be cleared in the whole range
  301. * covered by this vma.
  302. *
  303. * dst->page_table_lock is held on entry and exit,
  304. * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
  305. */
  306. static inline void
  307. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  308. pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
  309. unsigned long addr)
  310. {
  311. pte_t pte = *src_pte;
  312. struct page *page;
  313. unsigned long pfn;
  314. /* pte contains position in swap or file, so copy. */
  315. if (unlikely(!pte_present(pte))) {
  316. if (!pte_file(pte)) {
  317. swap_duplicate(pte_to_swp_entry(pte));
  318. /* make sure dst_mm is on swapoff's mmlist. */
  319. if (unlikely(list_empty(&dst_mm->mmlist))) {
  320. spin_lock(&mmlist_lock);
  321. list_add(&dst_mm->mmlist, &src_mm->mmlist);
  322. spin_unlock(&mmlist_lock);
  323. }
  324. }
  325. set_pte_at(dst_mm, addr, dst_pte, pte);
  326. return;
  327. }
  328. pfn = pte_pfn(pte);
  329. /* the pte points outside of valid memory, the
  330. * mapping is assumed to be good, meaningful
  331. * and not mapped via rmap - duplicate the
  332. * mapping as is.
  333. */
  334. page = NULL;
  335. if (pfn_valid(pfn))
  336. page = pfn_to_page(pfn);
  337. if (!page || PageReserved(page)) {
  338. set_pte_at(dst_mm, addr, dst_pte, pte);
  339. return;
  340. }
  341. /*
  342. * If it's a COW mapping, write protect it both
  343. * in the parent and the child
  344. */
  345. if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
  346. ptep_set_wrprotect(src_mm, addr, src_pte);
  347. pte = *src_pte;
  348. }
  349. /*
  350. * If it's a shared mapping, mark it clean in
  351. * the child
  352. */
  353. if (vm_flags & VM_SHARED)
  354. pte = pte_mkclean(pte);
  355. pte = pte_mkold(pte);
  356. get_page(page);
  357. inc_mm_counter(dst_mm, rss);
  358. if (PageAnon(page))
  359. inc_mm_counter(dst_mm, anon_rss);
  360. set_pte_at(dst_mm, addr, dst_pte, pte);
  361. page_dup_rmap(page);
  362. }
  363. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  364. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  365. unsigned long addr, unsigned long end)
  366. {
  367. pte_t *src_pte, *dst_pte;
  368. unsigned long vm_flags = vma->vm_flags;
  369. int progress;
  370. again:
  371. dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
  372. if (!dst_pte)
  373. return -ENOMEM;
  374. src_pte = pte_offset_map_nested(src_pmd, addr);
  375. progress = 0;
  376. spin_lock(&src_mm->page_table_lock);
  377. do {
  378. /*
  379. * We are holding two locks at this point - either of them
  380. * could generate latencies in another task on another CPU.
  381. */
  382. if (progress >= 32 && (need_resched() ||
  383. need_lockbreak(&src_mm->page_table_lock) ||
  384. need_lockbreak(&dst_mm->page_table_lock)))
  385. break;
  386. if (pte_none(*src_pte)) {
  387. progress++;
  388. continue;
  389. }
  390. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
  391. progress += 8;
  392. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  393. spin_unlock(&src_mm->page_table_lock);
  394. pte_unmap_nested(src_pte - 1);
  395. pte_unmap(dst_pte - 1);
  396. cond_resched_lock(&dst_mm->page_table_lock);
  397. if (addr != end)
  398. goto again;
  399. return 0;
  400. }
  401. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  402. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  403. unsigned long addr, unsigned long end)
  404. {
  405. pmd_t *src_pmd, *dst_pmd;
  406. unsigned long next;
  407. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  408. if (!dst_pmd)
  409. return -ENOMEM;
  410. src_pmd = pmd_offset(src_pud, addr);
  411. do {
  412. next = pmd_addr_end(addr, end);
  413. if (pmd_none_or_clear_bad(src_pmd))
  414. continue;
  415. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  416. vma, addr, next))
  417. return -ENOMEM;
  418. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  419. return 0;
  420. }
  421. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  422. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  423. unsigned long addr, unsigned long end)
  424. {
  425. pud_t *src_pud, *dst_pud;
  426. unsigned long next;
  427. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  428. if (!dst_pud)
  429. return -ENOMEM;
  430. src_pud = pud_offset(src_pgd, addr);
  431. do {
  432. next = pud_addr_end(addr, end);
  433. if (pud_none_or_clear_bad(src_pud))
  434. continue;
  435. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  436. vma, addr, next))
  437. return -ENOMEM;
  438. } while (dst_pud++, src_pud++, addr = next, addr != end);
  439. return 0;
  440. }
  441. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  442. struct vm_area_struct *vma)
  443. {
  444. pgd_t *src_pgd, *dst_pgd;
  445. unsigned long next;
  446. unsigned long addr = vma->vm_start;
  447. unsigned long end = vma->vm_end;
  448. /*
  449. * Don't copy ptes where a page fault will fill them correctly.
  450. * Fork becomes much lighter when there are big shared or private
  451. * readonly mappings. The tradeoff is that copy_page_range is more
  452. * efficient than faulting.
  453. */
  454. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
  455. if (!vma->anon_vma)
  456. return 0;
  457. }
  458. if (is_vm_hugetlb_page(vma))
  459. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  460. dst_pgd = pgd_offset(dst_mm, addr);
  461. src_pgd = pgd_offset(src_mm, addr);
  462. do {
  463. next = pgd_addr_end(addr, end);
  464. if (pgd_none_or_clear_bad(src_pgd))
  465. continue;
  466. if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  467. vma, addr, next))
  468. return -ENOMEM;
  469. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  470. return 0;
  471. }
  472. static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  473. unsigned long addr, unsigned long end,
  474. struct zap_details *details)
  475. {
  476. pte_t *pte;
  477. pte = pte_offset_map(pmd, addr);
  478. do {
  479. pte_t ptent = *pte;
  480. if (pte_none(ptent))
  481. continue;
  482. if (pte_present(ptent)) {
  483. struct page *page = NULL;
  484. unsigned long pfn = pte_pfn(ptent);
  485. if (pfn_valid(pfn)) {
  486. page = pfn_to_page(pfn);
  487. if (PageReserved(page))
  488. page = NULL;
  489. }
  490. if (unlikely(details) && page) {
  491. /*
  492. * unmap_shared_mapping_pages() wants to
  493. * invalidate cache without truncating:
  494. * unmap shared but keep private pages.
  495. */
  496. if (details->check_mapping &&
  497. details->check_mapping != page->mapping)
  498. continue;
  499. /*
  500. * Each page->index must be checked when
  501. * invalidating or truncating nonlinear.
  502. */
  503. if (details->nonlinear_vma &&
  504. (page->index < details->first_index ||
  505. page->index > details->last_index))
  506. continue;
  507. }
  508. ptent = ptep_get_and_clear_full(tlb->mm, addr, pte,
  509. tlb->fullmm);
  510. tlb_remove_tlb_entry(tlb, pte, addr);
  511. if (unlikely(!page))
  512. continue;
  513. if (unlikely(details) && details->nonlinear_vma
  514. && linear_page_index(details->nonlinear_vma,
  515. addr) != page->index)
  516. set_pte_at(tlb->mm, addr, pte,
  517. pgoff_to_pte(page->index));
  518. if (pte_dirty(ptent))
  519. set_page_dirty(page);
  520. if (PageAnon(page))
  521. dec_mm_counter(tlb->mm, anon_rss);
  522. else if (pte_young(ptent))
  523. mark_page_accessed(page);
  524. tlb->freed++;
  525. page_remove_rmap(page);
  526. tlb_remove_page(tlb, page);
  527. continue;
  528. }
  529. /*
  530. * If details->check_mapping, we leave swap entries;
  531. * if details->nonlinear_vma, we leave file entries.
  532. */
  533. if (unlikely(details))
  534. continue;
  535. if (!pte_file(ptent))
  536. free_swap_and_cache(pte_to_swp_entry(ptent));
  537. pte_clear_full(tlb->mm, addr, pte, tlb->fullmm);
  538. } while (pte++, addr += PAGE_SIZE, addr != end);
  539. pte_unmap(pte - 1);
  540. }
  541. static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  542. unsigned long addr, unsigned long end,
  543. struct zap_details *details)
  544. {
  545. pmd_t *pmd;
  546. unsigned long next;
  547. pmd = pmd_offset(pud, addr);
  548. do {
  549. next = pmd_addr_end(addr, end);
  550. if (pmd_none_or_clear_bad(pmd))
  551. continue;
  552. zap_pte_range(tlb, pmd, addr, next, details);
  553. } while (pmd++, addr = next, addr != end);
  554. }
  555. static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  556. unsigned long addr, unsigned long end,
  557. struct zap_details *details)
  558. {
  559. pud_t *pud;
  560. unsigned long next;
  561. pud = pud_offset(pgd, addr);
  562. do {
  563. next = pud_addr_end(addr, end);
  564. if (pud_none_or_clear_bad(pud))
  565. continue;
  566. zap_pmd_range(tlb, pud, addr, next, details);
  567. } while (pud++, addr = next, addr != end);
  568. }
  569. static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
  570. unsigned long addr, unsigned long end,
  571. struct zap_details *details)
  572. {
  573. pgd_t *pgd;
  574. unsigned long next;
  575. if (details && !details->check_mapping && !details->nonlinear_vma)
  576. details = NULL;
  577. BUG_ON(addr >= end);
  578. tlb_start_vma(tlb, vma);
  579. pgd = pgd_offset(vma->vm_mm, addr);
  580. do {
  581. next = pgd_addr_end(addr, end);
  582. if (pgd_none_or_clear_bad(pgd))
  583. continue;
  584. zap_pud_range(tlb, pgd, addr, next, details);
  585. } while (pgd++, addr = next, addr != end);
  586. tlb_end_vma(tlb, vma);
  587. }
  588. #ifdef CONFIG_PREEMPT
  589. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  590. #else
  591. /* No preempt: go for improved straight-line efficiency */
  592. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  593. #endif
  594. /**
  595. * unmap_vmas - unmap a range of memory covered by a list of vma's
  596. * @tlbp: address of the caller's struct mmu_gather
  597. * @mm: the controlling mm_struct
  598. * @vma: the starting vma
  599. * @start_addr: virtual address at which to start unmapping
  600. * @end_addr: virtual address at which to end unmapping
  601. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  602. * @details: details of nonlinear truncation or shared cache invalidation
  603. *
  604. * Returns the end address of the unmapping (restart addr if interrupted).
  605. *
  606. * Unmap all pages in the vma list. Called under page_table_lock.
  607. *
  608. * We aim to not hold page_table_lock for too long (for scheduling latency
  609. * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  610. * return the ending mmu_gather to the caller.
  611. *
  612. * Only addresses between `start' and `end' will be unmapped.
  613. *
  614. * The VMA list must be sorted in ascending virtual address order.
  615. *
  616. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  617. * range after unmap_vmas() returns. So the only responsibility here is to
  618. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  619. * drops the lock and schedules.
  620. */
  621. unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
  622. struct vm_area_struct *vma, unsigned long start_addr,
  623. unsigned long end_addr, unsigned long *nr_accounted,
  624. struct zap_details *details)
  625. {
  626. unsigned long zap_bytes = ZAP_BLOCK_SIZE;
  627. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  628. int tlb_start_valid = 0;
  629. unsigned long start = start_addr;
  630. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  631. int fullmm = tlb_is_full_mm(*tlbp);
  632. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  633. unsigned long end;
  634. start = max(vma->vm_start, start_addr);
  635. if (start >= vma->vm_end)
  636. continue;
  637. end = min(vma->vm_end, end_addr);
  638. if (end <= vma->vm_start)
  639. continue;
  640. if (vma->vm_flags & VM_ACCOUNT)
  641. *nr_accounted += (end - start) >> PAGE_SHIFT;
  642. while (start != end) {
  643. unsigned long block;
  644. if (!tlb_start_valid) {
  645. tlb_start = start;
  646. tlb_start_valid = 1;
  647. }
  648. if (is_vm_hugetlb_page(vma)) {
  649. block = end - start;
  650. unmap_hugepage_range(vma, start, end);
  651. } else {
  652. block = min(zap_bytes, end - start);
  653. unmap_page_range(*tlbp, vma, start,
  654. start + block, details);
  655. }
  656. start += block;
  657. zap_bytes -= block;
  658. if ((long)zap_bytes > 0)
  659. continue;
  660. tlb_finish_mmu(*tlbp, tlb_start, start);
  661. if (need_resched() ||
  662. need_lockbreak(&mm->page_table_lock) ||
  663. (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
  664. if (i_mmap_lock) {
  665. /* must reset count of rss freed */
  666. *tlbp = tlb_gather_mmu(mm, fullmm);
  667. goto out;
  668. }
  669. spin_unlock(&mm->page_table_lock);
  670. cond_resched();
  671. spin_lock(&mm->page_table_lock);
  672. }
  673. *tlbp = tlb_gather_mmu(mm, fullmm);
  674. tlb_start_valid = 0;
  675. zap_bytes = ZAP_BLOCK_SIZE;
  676. }
  677. }
  678. out:
  679. return start; /* which is now the end (or restart) address */
  680. }
  681. /**
  682. * zap_page_range - remove user pages in a given range
  683. * @vma: vm_area_struct holding the applicable pages
  684. * @address: starting address of pages to zap
  685. * @size: number of bytes to zap
  686. * @details: details of nonlinear truncation or shared cache invalidation
  687. */
  688. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  689. unsigned long size, struct zap_details *details)
  690. {
  691. struct mm_struct *mm = vma->vm_mm;
  692. struct mmu_gather *tlb;
  693. unsigned long end = address + size;
  694. unsigned long nr_accounted = 0;
  695. if (is_vm_hugetlb_page(vma)) {
  696. zap_hugepage_range(vma, address, size);
  697. return end;
  698. }
  699. lru_add_drain();
  700. spin_lock(&mm->page_table_lock);
  701. tlb = tlb_gather_mmu(mm, 0);
  702. end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
  703. tlb_finish_mmu(tlb, address, end);
  704. spin_unlock(&mm->page_table_lock);
  705. return end;
  706. }
  707. /*
  708. * Do a quick page-table lookup for a single page.
  709. * mm->page_table_lock must be held.
  710. */
  711. static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
  712. int read, int write, int accessed)
  713. {
  714. pgd_t *pgd;
  715. pud_t *pud;
  716. pmd_t *pmd;
  717. pte_t *ptep, pte;
  718. unsigned long pfn;
  719. struct page *page;
  720. page = follow_huge_addr(mm, address, write);
  721. if (! IS_ERR(page))
  722. return page;
  723. pgd = pgd_offset(mm, address);
  724. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  725. goto out;
  726. pud = pud_offset(pgd, address);
  727. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  728. goto out;
  729. pmd = pmd_offset(pud, address);
  730. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  731. goto out;
  732. if (pmd_huge(*pmd))
  733. return follow_huge_pmd(mm, address, pmd, write);
  734. ptep = pte_offset_map(pmd, address);
  735. if (!ptep)
  736. goto out;
  737. pte = *ptep;
  738. pte_unmap(ptep);
  739. if (pte_present(pte)) {
  740. if (write && !pte_write(pte))
  741. goto out;
  742. if (read && !pte_read(pte))
  743. goto out;
  744. pfn = pte_pfn(pte);
  745. if (pfn_valid(pfn)) {
  746. page = pfn_to_page(pfn);
  747. if (accessed) {
  748. if (write && !pte_dirty(pte) &&!PageDirty(page))
  749. set_page_dirty(page);
  750. mark_page_accessed(page);
  751. }
  752. return page;
  753. }
  754. }
  755. out:
  756. return NULL;
  757. }
  758. inline struct page *
  759. follow_page(struct mm_struct *mm, unsigned long address, int write)
  760. {
  761. return __follow_page(mm, address, 0, write, 1);
  762. }
  763. /*
  764. * check_user_page_readable() can be called frm niterrupt context by oprofile,
  765. * so we need to avoid taking any non-irq-safe locks
  766. */
  767. int check_user_page_readable(struct mm_struct *mm, unsigned long address)
  768. {
  769. return __follow_page(mm, address, 1, 0, 0) != NULL;
  770. }
  771. EXPORT_SYMBOL(check_user_page_readable);
  772. static inline int
  773. untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
  774. unsigned long address)
  775. {
  776. pgd_t *pgd;
  777. pud_t *pud;
  778. pmd_t *pmd;
  779. /* Check if the vma is for an anonymous mapping. */
  780. if (vma->vm_ops && vma->vm_ops->nopage)
  781. return 0;
  782. /* Check if page directory entry exists. */
  783. pgd = pgd_offset(mm, address);
  784. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  785. return 1;
  786. pud = pud_offset(pgd, address);
  787. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  788. return 1;
  789. /* Check if page middle directory entry exists. */
  790. pmd = pmd_offset(pud, address);
  791. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  792. return 1;
  793. /* There is a pte slot for 'address' in 'mm'. */
  794. return 0;
  795. }
  796. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  797. unsigned long start, int len, int write, int force,
  798. struct page **pages, struct vm_area_struct **vmas)
  799. {
  800. int i;
  801. unsigned int flags;
  802. /*
  803. * Require read or write permissions.
  804. * If 'force' is set, we only require the "MAY" flags.
  805. */
  806. flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  807. flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  808. i = 0;
  809. do {
  810. struct vm_area_struct * vma;
  811. vma = find_extend_vma(mm, start);
  812. if (!vma && in_gate_area(tsk, start)) {
  813. unsigned long pg = start & PAGE_MASK;
  814. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  815. pgd_t *pgd;
  816. pud_t *pud;
  817. pmd_t *pmd;
  818. pte_t *pte;
  819. if (write) /* user gate pages are read-only */
  820. return i ? : -EFAULT;
  821. if (pg > TASK_SIZE)
  822. pgd = pgd_offset_k(pg);
  823. else
  824. pgd = pgd_offset_gate(mm, pg);
  825. BUG_ON(pgd_none(*pgd));
  826. pud = pud_offset(pgd, pg);
  827. BUG_ON(pud_none(*pud));
  828. pmd = pmd_offset(pud, pg);
  829. if (pmd_none(*pmd))
  830. return i ? : -EFAULT;
  831. pte = pte_offset_map(pmd, pg);
  832. if (pte_none(*pte)) {
  833. pte_unmap(pte);
  834. return i ? : -EFAULT;
  835. }
  836. if (pages) {
  837. pages[i] = pte_page(*pte);
  838. get_page(pages[i]);
  839. }
  840. pte_unmap(pte);
  841. if (vmas)
  842. vmas[i] = gate_vma;
  843. i++;
  844. start += PAGE_SIZE;
  845. len--;
  846. continue;
  847. }
  848. if (!vma || (vma->vm_flags & VM_IO)
  849. || !(flags & vma->vm_flags))
  850. return i ? : -EFAULT;
  851. if (is_vm_hugetlb_page(vma)) {
  852. i = follow_hugetlb_page(mm, vma, pages, vmas,
  853. &start, &len, i);
  854. continue;
  855. }
  856. spin_lock(&mm->page_table_lock);
  857. do {
  858. int write_access = write;
  859. struct page *page;
  860. cond_resched_lock(&mm->page_table_lock);
  861. while (!(page = follow_page(mm, start, write_access))) {
  862. int ret;
  863. /*
  864. * Shortcut for anonymous pages. We don't want
  865. * to force the creation of pages tables for
  866. * insanely big anonymously mapped areas that
  867. * nobody touched so far. This is important
  868. * for doing a core dump for these mappings.
  869. */
  870. if (!write && untouched_anonymous_page(mm,vma,start)) {
  871. page = ZERO_PAGE(start);
  872. break;
  873. }
  874. spin_unlock(&mm->page_table_lock);
  875. ret = __handle_mm_fault(mm, vma, start, write_access);
  876. /*
  877. * The VM_FAULT_WRITE bit tells us that do_wp_page has
  878. * broken COW when necessary, even if maybe_mkwrite
  879. * decided not to set pte_write. We can thus safely do
  880. * subsequent page lookups as if they were reads.
  881. */
  882. if (ret & VM_FAULT_WRITE)
  883. write_access = 0;
  884. switch (ret & ~VM_FAULT_WRITE) {
  885. case VM_FAULT_MINOR:
  886. tsk->min_flt++;
  887. break;
  888. case VM_FAULT_MAJOR:
  889. tsk->maj_flt++;
  890. break;
  891. case VM_FAULT_SIGBUS:
  892. return i ? i : -EFAULT;
  893. case VM_FAULT_OOM:
  894. return i ? i : -ENOMEM;
  895. default:
  896. BUG();
  897. }
  898. spin_lock(&mm->page_table_lock);
  899. }
  900. if (pages) {
  901. pages[i] = page;
  902. flush_dcache_page(page);
  903. if (!PageReserved(page))
  904. page_cache_get(page);
  905. }
  906. if (vmas)
  907. vmas[i] = vma;
  908. i++;
  909. start += PAGE_SIZE;
  910. len--;
  911. } while (len && start < vma->vm_end);
  912. spin_unlock(&mm->page_table_lock);
  913. } while (len);
  914. return i;
  915. }
  916. EXPORT_SYMBOL(get_user_pages);
  917. static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  918. unsigned long addr, unsigned long end, pgprot_t prot)
  919. {
  920. pte_t *pte;
  921. pte = pte_alloc_map(mm, pmd, addr);
  922. if (!pte)
  923. return -ENOMEM;
  924. do {
  925. pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
  926. BUG_ON(!pte_none(*pte));
  927. set_pte_at(mm, addr, pte, zero_pte);
  928. } while (pte++, addr += PAGE_SIZE, addr != end);
  929. pte_unmap(pte - 1);
  930. return 0;
  931. }
  932. static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
  933. unsigned long addr, unsigned long end, pgprot_t prot)
  934. {
  935. pmd_t *pmd;
  936. unsigned long next;
  937. pmd = pmd_alloc(mm, pud, addr);
  938. if (!pmd)
  939. return -ENOMEM;
  940. do {
  941. next = pmd_addr_end(addr, end);
  942. if (zeromap_pte_range(mm, pmd, addr, next, prot))
  943. return -ENOMEM;
  944. } while (pmd++, addr = next, addr != end);
  945. return 0;
  946. }
  947. static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  948. unsigned long addr, unsigned long end, pgprot_t prot)
  949. {
  950. pud_t *pud;
  951. unsigned long next;
  952. pud = pud_alloc(mm, pgd, addr);
  953. if (!pud)
  954. return -ENOMEM;
  955. do {
  956. next = pud_addr_end(addr, end);
  957. if (zeromap_pmd_range(mm, pud, addr, next, prot))
  958. return -ENOMEM;
  959. } while (pud++, addr = next, addr != end);
  960. return 0;
  961. }
  962. int zeromap_page_range(struct vm_area_struct *vma,
  963. unsigned long addr, unsigned long size, pgprot_t prot)
  964. {
  965. pgd_t *pgd;
  966. unsigned long next;
  967. unsigned long end = addr + size;
  968. struct mm_struct *mm = vma->vm_mm;
  969. int err;
  970. BUG_ON(addr >= end);
  971. pgd = pgd_offset(mm, addr);
  972. flush_cache_range(vma, addr, end);
  973. spin_lock(&mm->page_table_lock);
  974. do {
  975. next = pgd_addr_end(addr, end);
  976. err = zeromap_pud_range(mm, pgd, addr, next, prot);
  977. if (err)
  978. break;
  979. } while (pgd++, addr = next, addr != end);
  980. spin_unlock(&mm->page_table_lock);
  981. return err;
  982. }
  983. /*
  984. * maps a range of physical memory into the requested pages. the old
  985. * mappings are removed. any references to nonexistent pages results
  986. * in null mappings (currently treated as "copy-on-access")
  987. */
  988. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  989. unsigned long addr, unsigned long end,
  990. unsigned long pfn, pgprot_t prot)
  991. {
  992. pte_t *pte;
  993. pte = pte_alloc_map(mm, pmd, addr);
  994. if (!pte)
  995. return -ENOMEM;
  996. do {
  997. BUG_ON(!pte_none(*pte));
  998. if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
  999. set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
  1000. pfn++;
  1001. } while (pte++, addr += PAGE_SIZE, addr != end);
  1002. pte_unmap(pte - 1);
  1003. return 0;
  1004. }
  1005. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1006. unsigned long addr, unsigned long end,
  1007. unsigned long pfn, pgprot_t prot)
  1008. {
  1009. pmd_t *pmd;
  1010. unsigned long next;
  1011. pfn -= addr >> PAGE_SHIFT;
  1012. pmd = pmd_alloc(mm, pud, addr);
  1013. if (!pmd)
  1014. return -ENOMEM;
  1015. do {
  1016. next = pmd_addr_end(addr, end);
  1017. if (remap_pte_range(mm, pmd, addr, next,
  1018. pfn + (addr >> PAGE_SHIFT), prot))
  1019. return -ENOMEM;
  1020. } while (pmd++, addr = next, addr != end);
  1021. return 0;
  1022. }
  1023. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1024. unsigned long addr, unsigned long end,
  1025. unsigned long pfn, pgprot_t prot)
  1026. {
  1027. pud_t *pud;
  1028. unsigned long next;
  1029. pfn -= addr >> PAGE_SHIFT;
  1030. pud = pud_alloc(mm, pgd, addr);
  1031. if (!pud)
  1032. return -ENOMEM;
  1033. do {
  1034. next = pud_addr_end(addr, end);
  1035. if (remap_pmd_range(mm, pud, addr, next,
  1036. pfn + (addr >> PAGE_SHIFT), prot))
  1037. return -ENOMEM;
  1038. } while (pud++, addr = next, addr != end);
  1039. return 0;
  1040. }
  1041. /* Note: this is only safe if the mm semaphore is held when called. */
  1042. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1043. unsigned long pfn, unsigned long size, pgprot_t prot)
  1044. {
  1045. pgd_t *pgd;
  1046. unsigned long next;
  1047. unsigned long end = addr + PAGE_ALIGN(size);
  1048. struct mm_struct *mm = vma->vm_mm;
  1049. int err;
  1050. /*
  1051. * Physically remapped pages are special. Tell the
  1052. * rest of the world about it:
  1053. * VM_IO tells people not to look at these pages
  1054. * (accesses can have side effects).
  1055. * VM_RESERVED tells swapout not to try to touch
  1056. * this region.
  1057. */
  1058. vma->vm_flags |= VM_IO | VM_RESERVED;
  1059. BUG_ON(addr >= end);
  1060. pfn -= addr >> PAGE_SHIFT;
  1061. pgd = pgd_offset(mm, addr);
  1062. flush_cache_range(vma, addr, end);
  1063. spin_lock(&mm->page_table_lock);
  1064. do {
  1065. next = pgd_addr_end(addr, end);
  1066. err = remap_pud_range(mm, pgd, addr, next,
  1067. pfn + (addr >> PAGE_SHIFT), prot);
  1068. if (err)
  1069. break;
  1070. } while (pgd++, addr = next, addr != end);
  1071. spin_unlock(&mm->page_table_lock);
  1072. return err;
  1073. }
  1074. EXPORT_SYMBOL(remap_pfn_range);
  1075. /*
  1076. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1077. * servicing faults for write access. In the normal case, do always want
  1078. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1079. * that do not have writing enabled, when used by access_process_vm.
  1080. */
  1081. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1082. {
  1083. if (likely(vma->vm_flags & VM_WRITE))
  1084. pte = pte_mkwrite(pte);
  1085. return pte;
  1086. }
  1087. /*
  1088. * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
  1089. */
  1090. static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
  1091. pte_t *page_table)
  1092. {
  1093. pte_t entry;
  1094. entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
  1095. vma);
  1096. ptep_establish(vma, address, page_table, entry);
  1097. update_mmu_cache(vma, address, entry);
  1098. lazy_mmu_prot_update(entry);
  1099. }
  1100. /*
  1101. * This routine handles present pages, when users try to write
  1102. * to a shared page. It is done by copying the page to a new address
  1103. * and decrementing the shared-page counter for the old page.
  1104. *
  1105. * Goto-purists beware: the only reason for goto's here is that it results
  1106. * in better assembly code.. The "default" path will see no jumps at all.
  1107. *
  1108. * Note that this routine assumes that the protection checks have been
  1109. * done by the caller (the low-level page fault routine in most cases).
  1110. * Thus we can safely just mark it writable once we've done any necessary
  1111. * COW.
  1112. *
  1113. * We also mark the page dirty at this point even though the page will
  1114. * change only once the write actually happens. This avoids a few races,
  1115. * and potentially makes it more efficient.
  1116. *
  1117. * We hold the mm semaphore and the page_table_lock on entry and exit
  1118. * with the page_table_lock released.
  1119. */
  1120. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
  1121. unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
  1122. {
  1123. struct page *old_page, *new_page;
  1124. unsigned long pfn = pte_pfn(pte);
  1125. pte_t entry;
  1126. int ret;
  1127. if (unlikely(!pfn_valid(pfn))) {
  1128. /*
  1129. * This should really halt the system so it can be debugged or
  1130. * at least the kernel stops what it's doing before it corrupts
  1131. * data, but for the moment just pretend this is OOM.
  1132. */
  1133. pte_unmap(page_table);
  1134. printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
  1135. address);
  1136. spin_unlock(&mm->page_table_lock);
  1137. return VM_FAULT_OOM;
  1138. }
  1139. old_page = pfn_to_page(pfn);
  1140. if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
  1141. int reuse = can_share_swap_page(old_page);
  1142. unlock_page(old_page);
  1143. if (reuse) {
  1144. flush_cache_page(vma, address, pfn);
  1145. entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
  1146. vma);
  1147. ptep_set_access_flags(vma, address, page_table, entry, 1);
  1148. update_mmu_cache(vma, address, entry);
  1149. lazy_mmu_prot_update(entry);
  1150. pte_unmap(page_table);
  1151. spin_unlock(&mm->page_table_lock);
  1152. return VM_FAULT_MINOR|VM_FAULT_WRITE;
  1153. }
  1154. }
  1155. pte_unmap(page_table);
  1156. /*
  1157. * Ok, we need to copy. Oh, well..
  1158. */
  1159. if (!PageReserved(old_page))
  1160. page_cache_get(old_page);
  1161. spin_unlock(&mm->page_table_lock);
  1162. if (unlikely(anon_vma_prepare(vma)))
  1163. goto no_new_page;
  1164. if (old_page == ZERO_PAGE(address)) {
  1165. new_page = alloc_zeroed_user_highpage(vma, address);
  1166. if (!new_page)
  1167. goto no_new_page;
  1168. } else {
  1169. new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
  1170. if (!new_page)
  1171. goto no_new_page;
  1172. copy_user_highpage(new_page, old_page, address);
  1173. }
  1174. /*
  1175. * Re-check the pte - we dropped the lock
  1176. */
  1177. ret = VM_FAULT_MINOR;
  1178. spin_lock(&mm->page_table_lock);
  1179. page_table = pte_offset_map(pmd, address);
  1180. if (likely(pte_same(*page_table, pte))) {
  1181. if (PageAnon(old_page))
  1182. dec_mm_counter(mm, anon_rss);
  1183. if (PageReserved(old_page))
  1184. inc_mm_counter(mm, rss);
  1185. else
  1186. page_remove_rmap(old_page);
  1187. flush_cache_page(vma, address, pfn);
  1188. break_cow(vma, new_page, address, page_table);
  1189. lru_cache_add_active(new_page);
  1190. page_add_anon_rmap(new_page, vma, address);
  1191. /* Free the old page.. */
  1192. new_page = old_page;
  1193. ret |= VM_FAULT_WRITE;
  1194. }
  1195. pte_unmap(page_table);
  1196. page_cache_release(new_page);
  1197. page_cache_release(old_page);
  1198. spin_unlock(&mm->page_table_lock);
  1199. return ret;
  1200. no_new_page:
  1201. page_cache_release(old_page);
  1202. return VM_FAULT_OOM;
  1203. }
  1204. /*
  1205. * Helper functions for unmap_mapping_range().
  1206. *
  1207. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1208. *
  1209. * We have to restart searching the prio_tree whenever we drop the lock,
  1210. * since the iterator is only valid while the lock is held, and anyway
  1211. * a later vma might be split and reinserted earlier while lock dropped.
  1212. *
  1213. * The list of nonlinear vmas could be handled more efficiently, using
  1214. * a placeholder, but handle it in the same way until a need is shown.
  1215. * It is important to search the prio_tree before nonlinear list: a vma
  1216. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1217. * while the lock is dropped; but never shifted from list to prio_tree.
  1218. *
  1219. * In order to make forward progress despite restarting the search,
  1220. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1221. * quickly skip it next time around. Since the prio_tree search only
  1222. * shows us those vmas affected by unmapping the range in question, we
  1223. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1224. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1225. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1226. * i_mmap_lock.
  1227. *
  1228. * In order to make forward progress despite repeatedly restarting some
  1229. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1230. * and restart from that address when we reach that vma again. It might
  1231. * have been split or merged, shrunk or extended, but never shifted: so
  1232. * restart_addr remains valid so long as it remains in the vma's range.
  1233. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1234. * values so we can save vma's restart_addr in its truncate_count field.
  1235. */
  1236. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1237. static void reset_vma_truncate_counts(struct address_space *mapping)
  1238. {
  1239. struct vm_area_struct *vma;
  1240. struct prio_tree_iter iter;
  1241. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1242. vma->vm_truncate_count = 0;
  1243. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1244. vma->vm_truncate_count = 0;
  1245. }
  1246. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1247. unsigned long start_addr, unsigned long end_addr,
  1248. struct zap_details *details)
  1249. {
  1250. unsigned long restart_addr;
  1251. int need_break;
  1252. again:
  1253. restart_addr = vma->vm_truncate_count;
  1254. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1255. start_addr = restart_addr;
  1256. if (start_addr >= end_addr) {
  1257. /* Top of vma has been split off since last time */
  1258. vma->vm_truncate_count = details->truncate_count;
  1259. return 0;
  1260. }
  1261. }
  1262. restart_addr = zap_page_range(vma, start_addr,
  1263. end_addr - start_addr, details);
  1264. /*
  1265. * We cannot rely on the break test in unmap_vmas:
  1266. * on the one hand, we don't want to restart our loop
  1267. * just because that broke out for the page_table_lock;
  1268. * on the other hand, it does no test when vma is small.
  1269. */
  1270. need_break = need_resched() ||
  1271. need_lockbreak(details->i_mmap_lock);
  1272. if (restart_addr >= end_addr) {
  1273. /* We have now completed this vma: mark it so */
  1274. vma->vm_truncate_count = details->truncate_count;
  1275. if (!need_break)
  1276. return 0;
  1277. } else {
  1278. /* Note restart_addr in vma's truncate_count field */
  1279. vma->vm_truncate_count = restart_addr;
  1280. if (!need_break)
  1281. goto again;
  1282. }
  1283. spin_unlock(details->i_mmap_lock);
  1284. cond_resched();
  1285. spin_lock(details->i_mmap_lock);
  1286. return -EINTR;
  1287. }
  1288. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1289. struct zap_details *details)
  1290. {
  1291. struct vm_area_struct *vma;
  1292. struct prio_tree_iter iter;
  1293. pgoff_t vba, vea, zba, zea;
  1294. restart:
  1295. vma_prio_tree_foreach(vma, &iter, root,
  1296. details->first_index, details->last_index) {
  1297. /* Skip quickly over those we have already dealt with */
  1298. if (vma->vm_truncate_count == details->truncate_count)
  1299. continue;
  1300. vba = vma->vm_pgoff;
  1301. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1302. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1303. zba = details->first_index;
  1304. if (zba < vba)
  1305. zba = vba;
  1306. zea = details->last_index;
  1307. if (zea > vea)
  1308. zea = vea;
  1309. if (unmap_mapping_range_vma(vma,
  1310. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  1311. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  1312. details) < 0)
  1313. goto restart;
  1314. }
  1315. }
  1316. static inline void unmap_mapping_range_list(struct list_head *head,
  1317. struct zap_details *details)
  1318. {
  1319. struct vm_area_struct *vma;
  1320. /*
  1321. * In nonlinear VMAs there is no correspondence between virtual address
  1322. * offset and file offset. So we must perform an exhaustive search
  1323. * across *all* the pages in each nonlinear VMA, not just the pages
  1324. * whose virtual address lies outside the file truncation point.
  1325. */
  1326. restart:
  1327. list_for_each_entry(vma, head, shared.vm_set.list) {
  1328. /* Skip quickly over those we have already dealt with */
  1329. if (vma->vm_truncate_count == details->truncate_count)
  1330. continue;
  1331. details->nonlinear_vma = vma;
  1332. if (unmap_mapping_range_vma(vma, vma->vm_start,
  1333. vma->vm_end, details) < 0)
  1334. goto restart;
  1335. }
  1336. }
  1337. /**
  1338. * unmap_mapping_range - unmap the portion of all mmaps
  1339. * in the specified address_space corresponding to the specified
  1340. * page range in the underlying file.
  1341. * @mapping: the address space containing mmaps to be unmapped.
  1342. * @holebegin: byte in first page to unmap, relative to the start of
  1343. * the underlying file. This will be rounded down to a PAGE_SIZE
  1344. * boundary. Note that this is different from vmtruncate(), which
  1345. * must keep the partial page. In contrast, we must get rid of
  1346. * partial pages.
  1347. * @holelen: size of prospective hole in bytes. This will be rounded
  1348. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  1349. * end of the file.
  1350. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  1351. * but 0 when invalidating pagecache, don't throw away private data.
  1352. */
  1353. void unmap_mapping_range(struct address_space *mapping,
  1354. loff_t const holebegin, loff_t const holelen, int even_cows)
  1355. {
  1356. struct zap_details details;
  1357. pgoff_t hba = holebegin >> PAGE_SHIFT;
  1358. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1359. /* Check for overflow. */
  1360. if (sizeof(holelen) > sizeof(hlen)) {
  1361. long long holeend =
  1362. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1363. if (holeend & ~(long long)ULONG_MAX)
  1364. hlen = ULONG_MAX - hba + 1;
  1365. }
  1366. details.check_mapping = even_cows? NULL: mapping;
  1367. details.nonlinear_vma = NULL;
  1368. details.first_index = hba;
  1369. details.last_index = hba + hlen - 1;
  1370. if (details.last_index < details.first_index)
  1371. details.last_index = ULONG_MAX;
  1372. details.i_mmap_lock = &mapping->i_mmap_lock;
  1373. spin_lock(&mapping->i_mmap_lock);
  1374. /* serialize i_size write against truncate_count write */
  1375. smp_wmb();
  1376. /* Protect against page faults, and endless unmapping loops */
  1377. mapping->truncate_count++;
  1378. /*
  1379. * For archs where spin_lock has inclusive semantics like ia64
  1380. * this smp_mb() will prevent to read pagetable contents
  1381. * before the truncate_count increment is visible to
  1382. * other cpus.
  1383. */
  1384. smp_mb();
  1385. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  1386. if (mapping->truncate_count == 0)
  1387. reset_vma_truncate_counts(mapping);
  1388. mapping->truncate_count++;
  1389. }
  1390. details.truncate_count = mapping->truncate_count;
  1391. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  1392. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  1393. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  1394. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  1395. spin_unlock(&mapping->i_mmap_lock);
  1396. }
  1397. EXPORT_SYMBOL(unmap_mapping_range);
  1398. /*
  1399. * Handle all mappings that got truncated by a "truncate()"
  1400. * system call.
  1401. *
  1402. * NOTE! We have to be ready to update the memory sharing
  1403. * between the file and the memory map for a potential last
  1404. * incomplete page. Ugly, but necessary.
  1405. */
  1406. int vmtruncate(struct inode * inode, loff_t offset)
  1407. {
  1408. struct address_space *mapping = inode->i_mapping;
  1409. unsigned long limit;
  1410. if (inode->i_size < offset)
  1411. goto do_expand;
  1412. /*
  1413. * truncation of in-use swapfiles is disallowed - it would cause
  1414. * subsequent swapout to scribble on the now-freed blocks.
  1415. */
  1416. if (IS_SWAPFILE(inode))
  1417. goto out_busy;
  1418. i_size_write(inode, offset);
  1419. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1420. truncate_inode_pages(mapping, offset);
  1421. goto out_truncate;
  1422. do_expand:
  1423. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  1424. if (limit != RLIM_INFINITY && offset > limit)
  1425. goto out_sig;
  1426. if (offset > inode->i_sb->s_maxbytes)
  1427. goto out_big;
  1428. i_size_write(inode, offset);
  1429. out_truncate:
  1430. if (inode->i_op && inode->i_op->truncate)
  1431. inode->i_op->truncate(inode);
  1432. return 0;
  1433. out_sig:
  1434. send_sig(SIGXFSZ, current, 0);
  1435. out_big:
  1436. return -EFBIG;
  1437. out_busy:
  1438. return -ETXTBSY;
  1439. }
  1440. EXPORT_SYMBOL(vmtruncate);
  1441. /*
  1442. * Primitive swap readahead code. We simply read an aligned block of
  1443. * (1 << page_cluster) entries in the swap area. This method is chosen
  1444. * because it doesn't cost us any seek time. We also make sure to queue
  1445. * the 'original' request together with the readahead ones...
  1446. *
  1447. * This has been extended to use the NUMA policies from the mm triggering
  1448. * the readahead.
  1449. *
  1450. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  1451. */
  1452. void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
  1453. {
  1454. #ifdef CONFIG_NUMA
  1455. struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
  1456. #endif
  1457. int i, num;
  1458. struct page *new_page;
  1459. unsigned long offset;
  1460. /*
  1461. * Get the number of handles we should do readahead io to.
  1462. */
  1463. num = valid_swaphandles(entry, &offset);
  1464. for (i = 0; i < num; offset++, i++) {
  1465. /* Ok, do the async read-ahead now */
  1466. new_page = read_swap_cache_async(swp_entry(swp_type(entry),
  1467. offset), vma, addr);
  1468. if (!new_page)
  1469. break;
  1470. page_cache_release(new_page);
  1471. #ifdef CONFIG_NUMA
  1472. /*
  1473. * Find the next applicable VMA for the NUMA policy.
  1474. */
  1475. addr += PAGE_SIZE;
  1476. if (addr == 0)
  1477. vma = NULL;
  1478. if (vma) {
  1479. if (addr >= vma->vm_end) {
  1480. vma = next_vma;
  1481. next_vma = vma ? vma->vm_next : NULL;
  1482. }
  1483. if (vma && addr < vma->vm_start)
  1484. vma = NULL;
  1485. } else {
  1486. if (next_vma && addr >= next_vma->vm_start) {
  1487. vma = next_vma;
  1488. next_vma = vma->vm_next;
  1489. }
  1490. }
  1491. #endif
  1492. }
  1493. lru_add_drain(); /* Push any new pages onto the LRU now */
  1494. }
  1495. /*
  1496. * We hold the mm semaphore and the page_table_lock on entry and
  1497. * should release the pagetable lock on exit..
  1498. */
  1499. static int do_swap_page(struct mm_struct * mm,
  1500. struct vm_area_struct * vma, unsigned long address,
  1501. pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
  1502. {
  1503. struct page *page;
  1504. swp_entry_t entry = pte_to_swp_entry(orig_pte);
  1505. pte_t pte;
  1506. int ret = VM_FAULT_MINOR;
  1507. pte_unmap(page_table);
  1508. spin_unlock(&mm->page_table_lock);
  1509. page = lookup_swap_cache(entry);
  1510. if (!page) {
  1511. swapin_readahead(entry, address, vma);
  1512. page = read_swap_cache_async(entry, vma, address);
  1513. if (!page) {
  1514. /*
  1515. * Back out if somebody else faulted in this pte while
  1516. * we released the page table lock.
  1517. */
  1518. spin_lock(&mm->page_table_lock);
  1519. page_table = pte_offset_map(pmd, address);
  1520. if (likely(pte_same(*page_table, orig_pte)))
  1521. ret = VM_FAULT_OOM;
  1522. else
  1523. ret = VM_FAULT_MINOR;
  1524. pte_unmap(page_table);
  1525. spin_unlock(&mm->page_table_lock);
  1526. goto out;
  1527. }
  1528. /* Had to read the page from swap area: Major fault */
  1529. ret = VM_FAULT_MAJOR;
  1530. inc_page_state(pgmajfault);
  1531. grab_swap_token();
  1532. }
  1533. mark_page_accessed(page);
  1534. lock_page(page);
  1535. /*
  1536. * Back out if somebody else faulted in this pte while we
  1537. * released the page table lock.
  1538. */
  1539. spin_lock(&mm->page_table_lock);
  1540. page_table = pte_offset_map(pmd, address);
  1541. if (unlikely(!pte_same(*page_table, orig_pte))) {
  1542. ret = VM_FAULT_MINOR;
  1543. goto out_nomap;
  1544. }
  1545. if (unlikely(!PageUptodate(page))) {
  1546. ret = VM_FAULT_SIGBUS;
  1547. goto out_nomap;
  1548. }
  1549. /* The page isn't present yet, go ahead with the fault. */
  1550. inc_mm_counter(mm, rss);
  1551. pte = mk_pte(page, vma->vm_page_prot);
  1552. if (write_access && can_share_swap_page(page)) {
  1553. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  1554. write_access = 0;
  1555. }
  1556. flush_icache_page(vma, page);
  1557. set_pte_at(mm, address, page_table, pte);
  1558. page_add_anon_rmap(page, vma, address);
  1559. swap_free(entry);
  1560. if (vm_swap_full())
  1561. remove_exclusive_swap_page(page);
  1562. unlock_page(page);
  1563. if (write_access) {
  1564. if (do_wp_page(mm, vma, address,
  1565. page_table, pmd, pte) == VM_FAULT_OOM)
  1566. ret = VM_FAULT_OOM;
  1567. goto out;
  1568. }
  1569. /* No need to invalidate - it was non-present before */
  1570. update_mmu_cache(vma, address, pte);
  1571. lazy_mmu_prot_update(pte);
  1572. pte_unmap(page_table);
  1573. spin_unlock(&mm->page_table_lock);
  1574. out:
  1575. return ret;
  1576. out_nomap:
  1577. pte_unmap(page_table);
  1578. spin_unlock(&mm->page_table_lock);
  1579. unlock_page(page);
  1580. page_cache_release(page);
  1581. goto out;
  1582. }
  1583. /*
  1584. * We are called with the MM semaphore and page_table_lock
  1585. * spinlock held to protect against concurrent faults in
  1586. * multithreaded programs.
  1587. */
  1588. static int
  1589. do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1590. pte_t *page_table, pmd_t *pmd, int write_access,
  1591. unsigned long addr)
  1592. {
  1593. pte_t entry;
  1594. struct page * page = ZERO_PAGE(addr);
  1595. /* Read-only mapping of ZERO_PAGE. */
  1596. entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
  1597. /* ..except if it's a write access */
  1598. if (write_access) {
  1599. /* Allocate our own private page. */
  1600. pte_unmap(page_table);
  1601. spin_unlock(&mm->page_table_lock);
  1602. if (unlikely(anon_vma_prepare(vma)))
  1603. goto no_mem;
  1604. page = alloc_zeroed_user_highpage(vma, addr);
  1605. if (!page)
  1606. goto no_mem;
  1607. spin_lock(&mm->page_table_lock);
  1608. page_table = pte_offset_map(pmd, addr);
  1609. if (!pte_none(*page_table)) {
  1610. pte_unmap(page_table);
  1611. page_cache_release(page);
  1612. spin_unlock(&mm->page_table_lock);
  1613. goto out;
  1614. }
  1615. inc_mm_counter(mm, rss);
  1616. entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
  1617. vma->vm_page_prot)),
  1618. vma);
  1619. lru_cache_add_active(page);
  1620. SetPageReferenced(page);
  1621. page_add_anon_rmap(page, vma, addr);
  1622. }
  1623. set_pte_at(mm, addr, page_table, entry);
  1624. pte_unmap(page_table);
  1625. /* No need to invalidate - it was non-present before */
  1626. update_mmu_cache(vma, addr, entry);
  1627. lazy_mmu_prot_update(entry);
  1628. spin_unlock(&mm->page_table_lock);
  1629. out:
  1630. return VM_FAULT_MINOR;
  1631. no_mem:
  1632. return VM_FAULT_OOM;
  1633. }
  1634. /*
  1635. * do_no_page() tries to create a new page mapping. It aggressively
  1636. * tries to share with existing pages, but makes a separate copy if
  1637. * the "write_access" parameter is true in order to avoid the next
  1638. * page fault.
  1639. *
  1640. * As this is called only for pages that do not currently exist, we
  1641. * do not need to flush old virtual caches or the TLB.
  1642. *
  1643. * This is called with the MM semaphore held and the page table
  1644. * spinlock held. Exit with the spinlock released.
  1645. */
  1646. static int
  1647. do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1648. unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
  1649. {
  1650. struct page * new_page;
  1651. struct address_space *mapping = NULL;
  1652. pte_t entry;
  1653. unsigned int sequence = 0;
  1654. int ret = VM_FAULT_MINOR;
  1655. int anon = 0;
  1656. if (!vma->vm_ops || !vma->vm_ops->nopage)
  1657. return do_anonymous_page(mm, vma, page_table,
  1658. pmd, write_access, address);
  1659. pte_unmap(page_table);
  1660. spin_unlock(&mm->page_table_lock);
  1661. if (vma->vm_file) {
  1662. mapping = vma->vm_file->f_mapping;
  1663. sequence = mapping->truncate_count;
  1664. smp_rmb(); /* serializes i_size against truncate_count */
  1665. }
  1666. retry:
  1667. cond_resched();
  1668. new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
  1669. /*
  1670. * No smp_rmb is needed here as long as there's a full
  1671. * spin_lock/unlock sequence inside the ->nopage callback
  1672. * (for the pagecache lookup) that acts as an implicit
  1673. * smp_mb() and prevents the i_size read to happen
  1674. * after the next truncate_count read.
  1675. */
  1676. /* no page was available -- either SIGBUS or OOM */
  1677. if (new_page == NOPAGE_SIGBUS)
  1678. return VM_FAULT_SIGBUS;
  1679. if (new_page == NOPAGE_OOM)
  1680. return VM_FAULT_OOM;
  1681. /*
  1682. * Should we do an early C-O-W break?
  1683. */
  1684. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  1685. struct page *page;
  1686. if (unlikely(anon_vma_prepare(vma)))
  1687. goto oom;
  1688. page = alloc_page_vma(GFP_HIGHUSER, vma, address);
  1689. if (!page)
  1690. goto oom;
  1691. copy_user_highpage(page, new_page, address);
  1692. page_cache_release(new_page);
  1693. new_page = page;
  1694. anon = 1;
  1695. }
  1696. spin_lock(&mm->page_table_lock);
  1697. /*
  1698. * For a file-backed vma, someone could have truncated or otherwise
  1699. * invalidated this page. If unmap_mapping_range got called,
  1700. * retry getting the page.
  1701. */
  1702. if (mapping && unlikely(sequence != mapping->truncate_count)) {
  1703. sequence = mapping->truncate_count;
  1704. spin_unlock(&mm->page_table_lock);
  1705. page_cache_release(new_page);
  1706. goto retry;
  1707. }
  1708. page_table = pte_offset_map(pmd, address);
  1709. /*
  1710. * This silly early PAGE_DIRTY setting removes a race
  1711. * due to the bad i386 page protection. But it's valid
  1712. * for other architectures too.
  1713. *
  1714. * Note that if write_access is true, we either now have
  1715. * an exclusive copy of the page, or this is a shared mapping,
  1716. * so we can make it writable and dirty to avoid having to
  1717. * handle that later.
  1718. */
  1719. /* Only go through if we didn't race with anybody else... */
  1720. if (pte_none(*page_table)) {
  1721. if (!PageReserved(new_page))
  1722. inc_mm_counter(mm, rss);
  1723. flush_icache_page(vma, new_page);
  1724. entry = mk_pte(new_page, vma->vm_page_prot);
  1725. if (write_access)
  1726. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1727. set_pte_at(mm, address, page_table, entry);
  1728. if (anon) {
  1729. lru_cache_add_active(new_page);
  1730. page_add_anon_rmap(new_page, vma, address);
  1731. } else
  1732. page_add_file_rmap(new_page);
  1733. pte_unmap(page_table);
  1734. } else {
  1735. /* One of our sibling threads was faster, back out. */
  1736. pte_unmap(page_table);
  1737. page_cache_release(new_page);
  1738. spin_unlock(&mm->page_table_lock);
  1739. goto out;
  1740. }
  1741. /* no need to invalidate: a not-present page shouldn't be cached */
  1742. update_mmu_cache(vma, address, entry);
  1743. lazy_mmu_prot_update(entry);
  1744. spin_unlock(&mm->page_table_lock);
  1745. out:
  1746. return ret;
  1747. oom:
  1748. page_cache_release(new_page);
  1749. ret = VM_FAULT_OOM;
  1750. goto out;
  1751. }
  1752. /*
  1753. * Fault of a previously existing named mapping. Repopulate the pte
  1754. * from the encoded file_pte if possible. This enables swappable
  1755. * nonlinear vmas.
  1756. */
  1757. static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
  1758. unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
  1759. {
  1760. unsigned long pgoff;
  1761. int err;
  1762. BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
  1763. /*
  1764. * Fall back to the linear mapping if the fs does not support
  1765. * ->populate:
  1766. */
  1767. if (!vma->vm_ops->populate ||
  1768. (write_access && !(vma->vm_flags & VM_SHARED))) {
  1769. pte_clear(mm, address, pte);
  1770. return do_no_page(mm, vma, address, write_access, pte, pmd);
  1771. }
  1772. pgoff = pte_to_pgoff(*pte);
  1773. pte_unmap(pte);
  1774. spin_unlock(&mm->page_table_lock);
  1775. err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
  1776. if (err == -ENOMEM)
  1777. return VM_FAULT_OOM;
  1778. if (err)
  1779. return VM_FAULT_SIGBUS;
  1780. return VM_FAULT_MAJOR;
  1781. }
  1782. /*
  1783. * These routines also need to handle stuff like marking pages dirty
  1784. * and/or accessed for architectures that don't do it in hardware (most
  1785. * RISC architectures). The early dirtying is also good on the i386.
  1786. *
  1787. * There is also a hook called "update_mmu_cache()" that architectures
  1788. * with external mmu caches can use to update those (ie the Sparc or
  1789. * PowerPC hashed page tables that act as extended TLBs).
  1790. *
  1791. * Note the "page_table_lock". It is to protect against kswapd removing
  1792. * pages from under us. Note that kswapd only ever _removes_ pages, never
  1793. * adds them. As such, once we have noticed that the page is not present,
  1794. * we can drop the lock early.
  1795. *
  1796. * The adding of pages is protected by the MM semaphore (which we hold),
  1797. * so we don't need to worry about a page being suddenly been added into
  1798. * our VM.
  1799. *
  1800. * We enter with the pagetable spinlock held, we are supposed to
  1801. * release it when done.
  1802. */
  1803. static inline int handle_pte_fault(struct mm_struct *mm,
  1804. struct vm_area_struct * vma, unsigned long address,
  1805. int write_access, pte_t *pte, pmd_t *pmd)
  1806. {
  1807. pte_t entry;
  1808. entry = *pte;
  1809. if (!pte_present(entry)) {
  1810. /*
  1811. * If it truly wasn't present, we know that kswapd
  1812. * and the PTE updates will not touch it later. So
  1813. * drop the lock.
  1814. */
  1815. if (pte_none(entry))
  1816. return do_no_page(mm, vma, address, write_access, pte, pmd);
  1817. if (pte_file(entry))
  1818. return do_file_page(mm, vma, address, write_access, pte, pmd);
  1819. return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
  1820. }
  1821. if (write_access) {
  1822. if (!pte_write(entry))
  1823. return do_wp_page(mm, vma, address, pte, pmd, entry);
  1824. entry = pte_mkdirty(entry);
  1825. }
  1826. entry = pte_mkyoung(entry);
  1827. ptep_set_access_flags(vma, address, pte, entry, write_access);
  1828. update_mmu_cache(vma, address, entry);
  1829. lazy_mmu_prot_update(entry);
  1830. pte_unmap(pte);
  1831. spin_unlock(&mm->page_table_lock);
  1832. return VM_FAULT_MINOR;
  1833. }
  1834. /*
  1835. * By the time we get here, we already hold the mm semaphore
  1836. */
  1837. int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
  1838. unsigned long address, int write_access)
  1839. {
  1840. pgd_t *pgd;
  1841. pud_t *pud;
  1842. pmd_t *pmd;
  1843. pte_t *pte;
  1844. __set_current_state(TASK_RUNNING);
  1845. inc_page_state(pgfault);
  1846. if (is_vm_hugetlb_page(vma))
  1847. return VM_FAULT_SIGBUS; /* mapping truncation does this. */
  1848. /*
  1849. * We need the page table lock to synchronize with kswapd
  1850. * and the SMP-safe atomic PTE updates.
  1851. */
  1852. pgd = pgd_offset(mm, address);
  1853. spin_lock(&mm->page_table_lock);
  1854. pud = pud_alloc(mm, pgd, address);
  1855. if (!pud)
  1856. goto oom;
  1857. pmd = pmd_alloc(mm, pud, address);
  1858. if (!pmd)
  1859. goto oom;
  1860. pte = pte_alloc_map(mm, pmd, address);
  1861. if (!pte)
  1862. goto oom;
  1863. return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
  1864. oom:
  1865. spin_unlock(&mm->page_table_lock);
  1866. return VM_FAULT_OOM;
  1867. }
  1868. #ifndef __PAGETABLE_PUD_FOLDED
  1869. /*
  1870. * Allocate page upper directory.
  1871. *
  1872. * We've already handled the fast-path in-line, and we own the
  1873. * page table lock.
  1874. */
  1875. pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1876. {
  1877. pud_t *new;
  1878. spin_unlock(&mm->page_table_lock);
  1879. new = pud_alloc_one(mm, address);
  1880. spin_lock(&mm->page_table_lock);
  1881. if (!new)
  1882. return NULL;
  1883. /*
  1884. * Because we dropped the lock, we should re-check the
  1885. * entry, as somebody else could have populated it..
  1886. */
  1887. if (pgd_present(*pgd)) {
  1888. pud_free(new);
  1889. goto out;
  1890. }
  1891. pgd_populate(mm, pgd, new);
  1892. out:
  1893. return pud_offset(pgd, address);
  1894. }
  1895. #endif /* __PAGETABLE_PUD_FOLDED */
  1896. #ifndef __PAGETABLE_PMD_FOLDED
  1897. /*
  1898. * Allocate page middle directory.
  1899. *
  1900. * We've already handled the fast-path in-line, and we own the
  1901. * page table lock.
  1902. */
  1903. pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1904. {
  1905. pmd_t *new;
  1906. spin_unlock(&mm->page_table_lock);
  1907. new = pmd_alloc_one(mm, address);
  1908. spin_lock(&mm->page_table_lock);
  1909. if (!new)
  1910. return NULL;
  1911. /*
  1912. * Because we dropped the lock, we should re-check the
  1913. * entry, as somebody else could have populated it..
  1914. */
  1915. #ifndef __ARCH_HAS_4LEVEL_HACK
  1916. if (pud_present(*pud)) {
  1917. pmd_free(new);
  1918. goto out;
  1919. }
  1920. pud_populate(mm, pud, new);
  1921. #else
  1922. if (pgd_present(*pud)) {
  1923. pmd_free(new);
  1924. goto out;
  1925. }
  1926. pgd_populate(mm, pud, new);
  1927. #endif /* __ARCH_HAS_4LEVEL_HACK */
  1928. out:
  1929. return pmd_offset(pud, address);
  1930. }
  1931. #endif /* __PAGETABLE_PMD_FOLDED */
  1932. int make_pages_present(unsigned long addr, unsigned long end)
  1933. {
  1934. int ret, len, write;
  1935. struct vm_area_struct * vma;
  1936. vma = find_vma(current->mm, addr);
  1937. if (!vma)
  1938. return -1;
  1939. write = (vma->vm_flags & VM_WRITE) != 0;
  1940. if (addr >= end)
  1941. BUG();
  1942. if (end > vma->vm_end)
  1943. BUG();
  1944. len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
  1945. ret = get_user_pages(current, current->mm, addr,
  1946. len, write, 0, NULL, NULL);
  1947. if (ret < 0)
  1948. return ret;
  1949. return ret == len ? 0 : -1;
  1950. }
  1951. /*
  1952. * Map a vmalloc()-space virtual address to the physical page.
  1953. */
  1954. struct page * vmalloc_to_page(void * vmalloc_addr)
  1955. {
  1956. unsigned long addr = (unsigned long) vmalloc_addr;
  1957. struct page *page = NULL;
  1958. pgd_t *pgd = pgd_offset_k(addr);
  1959. pud_t *pud;
  1960. pmd_t *pmd;
  1961. pte_t *ptep, pte;
  1962. if (!pgd_none(*pgd)) {
  1963. pud = pud_offset(pgd, addr);
  1964. if (!pud_none(*pud)) {
  1965. pmd = pmd_offset(pud, addr);
  1966. if (!pmd_none(*pmd)) {
  1967. ptep = pte_offset_map(pmd, addr);
  1968. pte = *ptep;
  1969. if (pte_present(pte))
  1970. page = pte_page(pte);
  1971. pte_unmap(ptep);
  1972. }
  1973. }
  1974. }
  1975. return page;
  1976. }
  1977. EXPORT_SYMBOL(vmalloc_to_page);
  1978. /*
  1979. * Map a vmalloc()-space virtual address to the physical page frame number.
  1980. */
  1981. unsigned long vmalloc_to_pfn(void * vmalloc_addr)
  1982. {
  1983. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  1984. }
  1985. EXPORT_SYMBOL(vmalloc_to_pfn);
  1986. /*
  1987. * update_mem_hiwater
  1988. * - update per process rss and vm high water data
  1989. */
  1990. void update_mem_hiwater(struct task_struct *tsk)
  1991. {
  1992. if (tsk->mm) {
  1993. unsigned long rss = get_mm_counter(tsk->mm, rss);
  1994. if (tsk->mm->hiwater_rss < rss)
  1995. tsk->mm->hiwater_rss = rss;
  1996. if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
  1997. tsk->mm->hiwater_vm = tsk->mm->total_vm;
  1998. }
  1999. }
  2000. #if !defined(__HAVE_ARCH_GATE_AREA)
  2001. #if defined(AT_SYSINFO_EHDR)
  2002. static struct vm_area_struct gate_vma;
  2003. static int __init gate_vma_init(void)
  2004. {
  2005. gate_vma.vm_mm = NULL;
  2006. gate_vma.vm_start = FIXADDR_USER_START;
  2007. gate_vma.vm_end = FIXADDR_USER_END;
  2008. gate_vma.vm_page_prot = PAGE_READONLY;
  2009. gate_vma.vm_flags = 0;
  2010. return 0;
  2011. }
  2012. __initcall(gate_vma_init);
  2013. #endif
  2014. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2015. {
  2016. #ifdef AT_SYSINFO_EHDR
  2017. return &gate_vma;
  2018. #else
  2019. return NULL;
  2020. #endif
  2021. }
  2022. int in_gate_area_no_task(unsigned long addr)
  2023. {
  2024. #ifdef AT_SYSINFO_EHDR
  2025. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2026. return 1;
  2027. #endif
  2028. return 0;
  2029. }
  2030. #endif /* __HAVE_ARCH_GATE_AREA */