hugetlb.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/init.h>
  8. #include <linux/module.h>
  9. #include <linux/mm.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <asm/page.h>
  15. #include <asm/pgtable.h>
  16. #include <linux/hugetlb.h>
  17. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  18. static unsigned long nr_huge_pages, free_huge_pages;
  19. unsigned long max_huge_pages;
  20. static struct list_head hugepage_freelists[MAX_NUMNODES];
  21. static unsigned int nr_huge_pages_node[MAX_NUMNODES];
  22. static unsigned int free_huge_pages_node[MAX_NUMNODES];
  23. static DEFINE_SPINLOCK(hugetlb_lock);
  24. static void enqueue_huge_page(struct page *page)
  25. {
  26. int nid = page_to_nid(page);
  27. list_add(&page->lru, &hugepage_freelists[nid]);
  28. free_huge_pages++;
  29. free_huge_pages_node[nid]++;
  30. }
  31. static struct page *dequeue_huge_page(void)
  32. {
  33. int nid = numa_node_id();
  34. struct page *page = NULL;
  35. if (list_empty(&hugepage_freelists[nid])) {
  36. for (nid = 0; nid < MAX_NUMNODES; ++nid)
  37. if (!list_empty(&hugepage_freelists[nid]))
  38. break;
  39. }
  40. if (nid >= 0 && nid < MAX_NUMNODES &&
  41. !list_empty(&hugepage_freelists[nid])) {
  42. page = list_entry(hugepage_freelists[nid].next,
  43. struct page, lru);
  44. list_del(&page->lru);
  45. free_huge_pages--;
  46. free_huge_pages_node[nid]--;
  47. }
  48. return page;
  49. }
  50. static struct page *alloc_fresh_huge_page(void)
  51. {
  52. static int nid = 0;
  53. struct page *page;
  54. page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
  55. HUGETLB_PAGE_ORDER);
  56. nid = (nid + 1) % num_online_nodes();
  57. if (page) {
  58. nr_huge_pages++;
  59. nr_huge_pages_node[page_to_nid(page)]++;
  60. }
  61. return page;
  62. }
  63. void free_huge_page(struct page *page)
  64. {
  65. BUG_ON(page_count(page));
  66. INIT_LIST_HEAD(&page->lru);
  67. page[1].mapping = NULL;
  68. spin_lock(&hugetlb_lock);
  69. enqueue_huge_page(page);
  70. spin_unlock(&hugetlb_lock);
  71. }
  72. struct page *alloc_huge_page(void)
  73. {
  74. struct page *page;
  75. int i;
  76. spin_lock(&hugetlb_lock);
  77. page = dequeue_huge_page();
  78. if (!page) {
  79. spin_unlock(&hugetlb_lock);
  80. return NULL;
  81. }
  82. spin_unlock(&hugetlb_lock);
  83. set_page_count(page, 1);
  84. page[1].mapping = (void *)free_huge_page;
  85. for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
  86. clear_highpage(&page[i]);
  87. return page;
  88. }
  89. static int __init hugetlb_init(void)
  90. {
  91. unsigned long i;
  92. struct page *page;
  93. for (i = 0; i < MAX_NUMNODES; ++i)
  94. INIT_LIST_HEAD(&hugepage_freelists[i]);
  95. for (i = 0; i < max_huge_pages; ++i) {
  96. page = alloc_fresh_huge_page();
  97. if (!page)
  98. break;
  99. spin_lock(&hugetlb_lock);
  100. enqueue_huge_page(page);
  101. spin_unlock(&hugetlb_lock);
  102. }
  103. max_huge_pages = free_huge_pages = nr_huge_pages = i;
  104. printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
  105. return 0;
  106. }
  107. module_init(hugetlb_init);
  108. static int __init hugetlb_setup(char *s)
  109. {
  110. if (sscanf(s, "%lu", &max_huge_pages) <= 0)
  111. max_huge_pages = 0;
  112. return 1;
  113. }
  114. __setup("hugepages=", hugetlb_setup);
  115. #ifdef CONFIG_SYSCTL
  116. static void update_and_free_page(struct page *page)
  117. {
  118. int i;
  119. nr_huge_pages--;
  120. nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
  121. for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
  122. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  123. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  124. 1 << PG_private | 1<< PG_writeback);
  125. set_page_count(&page[i], 0);
  126. }
  127. set_page_count(page, 1);
  128. __free_pages(page, HUGETLB_PAGE_ORDER);
  129. }
  130. #ifdef CONFIG_HIGHMEM
  131. static void try_to_free_low(unsigned long count)
  132. {
  133. int i, nid;
  134. for (i = 0; i < MAX_NUMNODES; ++i) {
  135. struct page *page, *next;
  136. list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
  137. if (PageHighMem(page))
  138. continue;
  139. list_del(&page->lru);
  140. update_and_free_page(page);
  141. nid = page_zone(page)->zone_pgdat->node_id;
  142. free_huge_pages--;
  143. free_huge_pages_node[nid]--;
  144. if (count >= nr_huge_pages)
  145. return;
  146. }
  147. }
  148. }
  149. #else
  150. static inline void try_to_free_low(unsigned long count)
  151. {
  152. }
  153. #endif
  154. static unsigned long set_max_huge_pages(unsigned long count)
  155. {
  156. while (count > nr_huge_pages) {
  157. struct page *page = alloc_fresh_huge_page();
  158. if (!page)
  159. return nr_huge_pages;
  160. spin_lock(&hugetlb_lock);
  161. enqueue_huge_page(page);
  162. spin_unlock(&hugetlb_lock);
  163. }
  164. if (count >= nr_huge_pages)
  165. return nr_huge_pages;
  166. spin_lock(&hugetlb_lock);
  167. try_to_free_low(count);
  168. while (count < nr_huge_pages) {
  169. struct page *page = dequeue_huge_page();
  170. if (!page)
  171. break;
  172. update_and_free_page(page);
  173. }
  174. spin_unlock(&hugetlb_lock);
  175. return nr_huge_pages;
  176. }
  177. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  178. struct file *file, void __user *buffer,
  179. size_t *length, loff_t *ppos)
  180. {
  181. proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
  182. max_huge_pages = set_max_huge_pages(max_huge_pages);
  183. return 0;
  184. }
  185. #endif /* CONFIG_SYSCTL */
  186. int hugetlb_report_meminfo(char *buf)
  187. {
  188. return sprintf(buf,
  189. "HugePages_Total: %5lu\n"
  190. "HugePages_Free: %5lu\n"
  191. "Hugepagesize: %5lu kB\n",
  192. nr_huge_pages,
  193. free_huge_pages,
  194. HPAGE_SIZE/1024);
  195. }
  196. int hugetlb_report_node_meminfo(int nid, char *buf)
  197. {
  198. return sprintf(buf,
  199. "Node %d HugePages_Total: %5u\n"
  200. "Node %d HugePages_Free: %5u\n",
  201. nid, nr_huge_pages_node[nid],
  202. nid, free_huge_pages_node[nid]);
  203. }
  204. int is_hugepage_mem_enough(size_t size)
  205. {
  206. return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
  207. }
  208. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  209. unsigned long hugetlb_total_pages(void)
  210. {
  211. return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
  212. }
  213. EXPORT_SYMBOL(hugetlb_total_pages);
  214. /*
  215. * We cannot handle pagefaults against hugetlb pages at all. They cause
  216. * handle_mm_fault() to try to instantiate regular-sized pages in the
  217. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  218. * this far.
  219. */
  220. static struct page *hugetlb_nopage(struct vm_area_struct *vma,
  221. unsigned long address, int *unused)
  222. {
  223. BUG();
  224. return NULL;
  225. }
  226. struct vm_operations_struct hugetlb_vm_ops = {
  227. .nopage = hugetlb_nopage,
  228. };
  229. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page)
  230. {
  231. pte_t entry;
  232. if (vma->vm_flags & VM_WRITE) {
  233. entry =
  234. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  235. } else {
  236. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  237. }
  238. entry = pte_mkyoung(entry);
  239. entry = pte_mkhuge(entry);
  240. return entry;
  241. }
  242. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  243. struct vm_area_struct *vma)
  244. {
  245. pte_t *src_pte, *dst_pte, entry;
  246. struct page *ptepage;
  247. unsigned long addr = vma->vm_start;
  248. unsigned long end = vma->vm_end;
  249. while (addr < end) {
  250. dst_pte = huge_pte_alloc(dst, addr);
  251. if (!dst_pte)
  252. goto nomem;
  253. src_pte = huge_pte_offset(src, addr);
  254. BUG_ON(!src_pte || pte_none(*src_pte)); /* prefaulted */
  255. entry = *src_pte;
  256. ptepage = pte_page(entry);
  257. get_page(ptepage);
  258. add_mm_counter(dst, rss, HPAGE_SIZE / PAGE_SIZE);
  259. set_huge_pte_at(dst, addr, dst_pte, entry);
  260. addr += HPAGE_SIZE;
  261. }
  262. return 0;
  263. nomem:
  264. return -ENOMEM;
  265. }
  266. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  267. unsigned long end)
  268. {
  269. struct mm_struct *mm = vma->vm_mm;
  270. unsigned long address;
  271. pte_t *ptep;
  272. pte_t pte;
  273. struct page *page;
  274. WARN_ON(!is_vm_hugetlb_page(vma));
  275. BUG_ON(start & ~HPAGE_MASK);
  276. BUG_ON(end & ~HPAGE_MASK);
  277. for (address = start; address < end; address += HPAGE_SIZE) {
  278. ptep = huge_pte_offset(mm, address);
  279. if (! ptep)
  280. /* This can happen on truncate, or if an
  281. * mmap() is aborted due to an error before
  282. * the prefault */
  283. continue;
  284. pte = huge_ptep_get_and_clear(mm, address, ptep);
  285. if (pte_none(pte))
  286. continue;
  287. page = pte_page(pte);
  288. put_page(page);
  289. }
  290. add_mm_counter(mm, rss, -((end - start) >> PAGE_SHIFT));
  291. flush_tlb_range(vma, start, end);
  292. }
  293. void zap_hugepage_range(struct vm_area_struct *vma,
  294. unsigned long start, unsigned long length)
  295. {
  296. struct mm_struct *mm = vma->vm_mm;
  297. spin_lock(&mm->page_table_lock);
  298. unmap_hugepage_range(vma, start, start + length);
  299. spin_unlock(&mm->page_table_lock);
  300. }
  301. int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
  302. {
  303. struct mm_struct *mm = current->mm;
  304. unsigned long addr;
  305. int ret = 0;
  306. WARN_ON(!is_vm_hugetlb_page(vma));
  307. BUG_ON(vma->vm_start & ~HPAGE_MASK);
  308. BUG_ON(vma->vm_end & ~HPAGE_MASK);
  309. hugetlb_prefault_arch_hook(mm);
  310. spin_lock(&mm->page_table_lock);
  311. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  312. unsigned long idx;
  313. pte_t *pte = huge_pte_alloc(mm, addr);
  314. struct page *page;
  315. if (!pte) {
  316. ret = -ENOMEM;
  317. goto out;
  318. }
  319. idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
  320. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  321. page = find_get_page(mapping, idx);
  322. if (!page) {
  323. /* charge the fs quota first */
  324. if (hugetlb_get_quota(mapping)) {
  325. ret = -ENOMEM;
  326. goto out;
  327. }
  328. page = alloc_huge_page();
  329. if (!page) {
  330. hugetlb_put_quota(mapping);
  331. ret = -ENOMEM;
  332. goto out;
  333. }
  334. ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC);
  335. if (! ret) {
  336. unlock_page(page);
  337. } else {
  338. hugetlb_put_quota(mapping);
  339. free_huge_page(page);
  340. goto out;
  341. }
  342. }
  343. add_mm_counter(mm, rss, HPAGE_SIZE / PAGE_SIZE);
  344. set_huge_pte_at(mm, addr, pte, make_huge_pte(vma, page));
  345. }
  346. out:
  347. spin_unlock(&mm->page_table_lock);
  348. return ret;
  349. }
  350. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  351. struct page **pages, struct vm_area_struct **vmas,
  352. unsigned long *position, int *length, int i)
  353. {
  354. unsigned long vpfn, vaddr = *position;
  355. int remainder = *length;
  356. BUG_ON(!is_vm_hugetlb_page(vma));
  357. vpfn = vaddr/PAGE_SIZE;
  358. while (vaddr < vma->vm_end && remainder) {
  359. if (pages) {
  360. pte_t *pte;
  361. struct page *page;
  362. /* Some archs (sparc64, sh*) have multiple
  363. * pte_ts to each hugepage. We have to make
  364. * sure we get the first, for the page
  365. * indexing below to work. */
  366. pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
  367. /* hugetlb should be locked, and hence, prefaulted */
  368. WARN_ON(!pte || pte_none(*pte));
  369. page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
  370. WARN_ON(!PageCompound(page));
  371. get_page(page);
  372. pages[i] = page;
  373. }
  374. if (vmas)
  375. vmas[i] = vma;
  376. vaddr += PAGE_SIZE;
  377. ++vpfn;
  378. --remainder;
  379. ++i;
  380. }
  381. *length = remainder;
  382. *position = vaddr;
  383. return i;
  384. }