bootmem.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. /*
  2. * linux/mm/bootmem.c
  3. *
  4. * Copyright (C) 1999 Ingo Molnar
  5. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  6. *
  7. * simple boot-time physical memory area allocator and
  8. * free memory collector. It's used to deal with reserved
  9. * system memory and memory holes as well.
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/kernel_stat.h>
  13. #include <linux/swap.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/init.h>
  16. #include <linux/bootmem.h>
  17. #include <linux/mmzone.h>
  18. #include <linux/module.h>
  19. #include <asm/dma.h>
  20. #include <asm/io.h>
  21. #include "internal.h"
  22. /*
  23. * Access to this subsystem has to be serialized externally. (this is
  24. * true for the boot process anyway)
  25. */
  26. unsigned long max_low_pfn;
  27. unsigned long min_low_pfn;
  28. unsigned long max_pfn;
  29. EXPORT_SYMBOL(max_pfn); /* This is exported so
  30. * dma_get_required_mask(), which uses
  31. * it, can be an inline function */
  32. #ifdef CONFIG_CRASH_DUMP
  33. /*
  34. * If we have booted due to a crash, max_pfn will be a very low value. We need
  35. * to know the amount of memory that the previous kernel used.
  36. */
  37. unsigned long saved_max_pfn;
  38. #endif
  39. /* return the number of _pages_ that will be allocated for the boot bitmap */
  40. unsigned long __init bootmem_bootmap_pages (unsigned long pages)
  41. {
  42. unsigned long mapsize;
  43. mapsize = (pages+7)/8;
  44. mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
  45. mapsize >>= PAGE_SHIFT;
  46. return mapsize;
  47. }
  48. /*
  49. * Called once to set up the allocator itself.
  50. */
  51. static unsigned long __init init_bootmem_core (pg_data_t *pgdat,
  52. unsigned long mapstart, unsigned long start, unsigned long end)
  53. {
  54. bootmem_data_t *bdata = pgdat->bdata;
  55. unsigned long mapsize = ((end - start)+7)/8;
  56. static struct pglist_data *pgdat_last;
  57. pgdat->pgdat_next = NULL;
  58. /* Add new nodes last so that bootmem always starts
  59. searching in the first nodes, not the last ones */
  60. if (pgdat_last)
  61. pgdat_last->pgdat_next = pgdat;
  62. else {
  63. pgdat_list = pgdat;
  64. pgdat_last = pgdat;
  65. }
  66. mapsize = ALIGN(mapsize, sizeof(long));
  67. bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT);
  68. bdata->node_boot_start = (start << PAGE_SHIFT);
  69. bdata->node_low_pfn = end;
  70. /*
  71. * Initially all pages are reserved - setup_arch() has to
  72. * register free RAM areas explicitly.
  73. */
  74. memset(bdata->node_bootmem_map, 0xff, mapsize);
  75. return mapsize;
  76. }
  77. /*
  78. * Marks a particular physical memory range as unallocatable. Usable RAM
  79. * might be used for boot-time allocations - or it might get added
  80. * to the free page pool later on.
  81. */
  82. static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
  83. {
  84. unsigned long i;
  85. /*
  86. * round up, partially reserved pages are considered
  87. * fully reserved.
  88. */
  89. unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE;
  90. unsigned long eidx = (addr + size - bdata->node_boot_start +
  91. PAGE_SIZE-1)/PAGE_SIZE;
  92. unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE;
  93. BUG_ON(!size);
  94. BUG_ON(sidx >= eidx);
  95. BUG_ON((addr >> PAGE_SHIFT) >= bdata->node_low_pfn);
  96. BUG_ON(end > bdata->node_low_pfn);
  97. for (i = sidx; i < eidx; i++)
  98. if (test_and_set_bit(i, bdata->node_bootmem_map)) {
  99. #ifdef CONFIG_DEBUG_BOOTMEM
  100. printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
  101. #endif
  102. }
  103. }
  104. static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
  105. {
  106. unsigned long i;
  107. unsigned long start;
  108. /*
  109. * round down end of usable mem, partially free pages are
  110. * considered reserved.
  111. */
  112. unsigned long sidx;
  113. unsigned long eidx = (addr + size - bdata->node_boot_start)/PAGE_SIZE;
  114. unsigned long end = (addr + size)/PAGE_SIZE;
  115. BUG_ON(!size);
  116. BUG_ON(end > bdata->node_low_pfn);
  117. if (addr < bdata->last_success)
  118. bdata->last_success = addr;
  119. /*
  120. * Round up the beginning of the address.
  121. */
  122. start = (addr + PAGE_SIZE-1) / PAGE_SIZE;
  123. sidx = start - (bdata->node_boot_start/PAGE_SIZE);
  124. for (i = sidx; i < eidx; i++) {
  125. if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
  126. BUG();
  127. }
  128. }
  129. /*
  130. * We 'merge' subsequent allocations to save space. We might 'lose'
  131. * some fraction of a page if allocations cannot be satisfied due to
  132. * size constraints on boxes where there is physical RAM space
  133. * fragmentation - in these cases (mostly large memory boxes) this
  134. * is not a problem.
  135. *
  136. * On low memory boxes we get it right in 100% of the cases.
  137. *
  138. * alignment has to be a power of 2 value.
  139. *
  140. * NOTE: This function is _not_ reentrant.
  141. */
  142. static void * __init
  143. __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
  144. unsigned long align, unsigned long goal)
  145. {
  146. unsigned long offset, remaining_size, areasize, preferred;
  147. unsigned long i, start = 0, incr, eidx;
  148. void *ret;
  149. if(!size) {
  150. printk("__alloc_bootmem_core(): zero-sized request\n");
  151. BUG();
  152. }
  153. BUG_ON(align & (align-1));
  154. eidx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
  155. offset = 0;
  156. if (align &&
  157. (bdata->node_boot_start & (align - 1UL)) != 0)
  158. offset = (align - (bdata->node_boot_start & (align - 1UL)));
  159. offset >>= PAGE_SHIFT;
  160. /*
  161. * We try to allocate bootmem pages above 'goal'
  162. * first, then we try to allocate lower pages.
  163. */
  164. if (goal && (goal >= bdata->node_boot_start) &&
  165. ((goal >> PAGE_SHIFT) < bdata->node_low_pfn)) {
  166. preferred = goal - bdata->node_boot_start;
  167. if (bdata->last_success >= preferred)
  168. preferred = bdata->last_success;
  169. } else
  170. preferred = 0;
  171. preferred = ALIGN(preferred, align) >> PAGE_SHIFT;
  172. preferred += offset;
  173. areasize = (size+PAGE_SIZE-1)/PAGE_SIZE;
  174. incr = align >> PAGE_SHIFT ? : 1;
  175. restart_scan:
  176. for (i = preferred; i < eidx; i += incr) {
  177. unsigned long j;
  178. i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i);
  179. i = ALIGN(i, incr);
  180. if (test_bit(i, bdata->node_bootmem_map))
  181. continue;
  182. for (j = i + 1; j < i + areasize; ++j) {
  183. if (j >= eidx)
  184. goto fail_block;
  185. if (test_bit (j, bdata->node_bootmem_map))
  186. goto fail_block;
  187. }
  188. start = i;
  189. goto found;
  190. fail_block:
  191. i = ALIGN(j, incr);
  192. }
  193. if (preferred > offset) {
  194. preferred = offset;
  195. goto restart_scan;
  196. }
  197. return NULL;
  198. found:
  199. bdata->last_success = start << PAGE_SHIFT;
  200. BUG_ON(start >= eidx);
  201. /*
  202. * Is the next page of the previous allocation-end the start
  203. * of this allocation's buffer? If yes then we can 'merge'
  204. * the previous partial page with this allocation.
  205. */
  206. if (align < PAGE_SIZE &&
  207. bdata->last_offset && bdata->last_pos+1 == start) {
  208. offset = ALIGN(bdata->last_offset, align);
  209. BUG_ON(offset > PAGE_SIZE);
  210. remaining_size = PAGE_SIZE-offset;
  211. if (size < remaining_size) {
  212. areasize = 0;
  213. /* last_pos unchanged */
  214. bdata->last_offset = offset+size;
  215. ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
  216. bdata->node_boot_start);
  217. } else {
  218. remaining_size = size - remaining_size;
  219. areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE;
  220. ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
  221. bdata->node_boot_start);
  222. bdata->last_pos = start+areasize-1;
  223. bdata->last_offset = remaining_size;
  224. }
  225. bdata->last_offset &= ~PAGE_MASK;
  226. } else {
  227. bdata->last_pos = start + areasize - 1;
  228. bdata->last_offset = size & ~PAGE_MASK;
  229. ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start);
  230. }
  231. /*
  232. * Reserve the area now:
  233. */
  234. for (i = start; i < start+areasize; i++)
  235. if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map)))
  236. BUG();
  237. memset(ret, 0, size);
  238. return ret;
  239. }
  240. static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
  241. {
  242. struct page *page;
  243. unsigned long pfn;
  244. bootmem_data_t *bdata = pgdat->bdata;
  245. unsigned long i, count, total = 0;
  246. unsigned long idx;
  247. unsigned long *map;
  248. int gofast = 0;
  249. BUG_ON(!bdata->node_bootmem_map);
  250. count = 0;
  251. /* first extant page of the node */
  252. pfn = bdata->node_boot_start >> PAGE_SHIFT;
  253. idx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
  254. map = bdata->node_bootmem_map;
  255. /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */
  256. if (bdata->node_boot_start == 0 ||
  257. ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG))
  258. gofast = 1;
  259. for (i = 0; i < idx; ) {
  260. unsigned long v = ~map[i / BITS_PER_LONG];
  261. if (gofast && v == ~0UL) {
  262. int j, order;
  263. page = pfn_to_page(pfn);
  264. count += BITS_PER_LONG;
  265. __ClearPageReserved(page);
  266. order = ffs(BITS_PER_LONG) - 1;
  267. set_page_refs(page, order);
  268. for (j = 1; j < BITS_PER_LONG; j++) {
  269. if (j + 16 < BITS_PER_LONG)
  270. prefetchw(page + j + 16);
  271. __ClearPageReserved(page + j);
  272. }
  273. __free_pages(page, order);
  274. i += BITS_PER_LONG;
  275. page += BITS_PER_LONG;
  276. } else if (v) {
  277. unsigned long m;
  278. page = pfn_to_page(pfn);
  279. for (m = 1; m && i < idx; m<<=1, page++, i++) {
  280. if (v & m) {
  281. count++;
  282. __ClearPageReserved(page);
  283. set_page_refs(page, 0);
  284. __free_page(page);
  285. }
  286. }
  287. } else {
  288. i+=BITS_PER_LONG;
  289. }
  290. pfn += BITS_PER_LONG;
  291. }
  292. total += count;
  293. /*
  294. * Now free the allocator bitmap itself, it's not
  295. * needed anymore:
  296. */
  297. page = virt_to_page(bdata->node_bootmem_map);
  298. count = 0;
  299. for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start >> PAGE_SHIFT))/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,page++) {
  300. count++;
  301. __ClearPageReserved(page);
  302. set_page_count(page, 1);
  303. __free_page(page);
  304. }
  305. total += count;
  306. bdata->node_bootmem_map = NULL;
  307. return total;
  308. }
  309. unsigned long __init init_bootmem_node (pg_data_t *pgdat, unsigned long freepfn, unsigned long startpfn, unsigned long endpfn)
  310. {
  311. return(init_bootmem_core(pgdat, freepfn, startpfn, endpfn));
  312. }
  313. void __init reserve_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
  314. {
  315. reserve_bootmem_core(pgdat->bdata, physaddr, size);
  316. }
  317. void __init free_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
  318. {
  319. free_bootmem_core(pgdat->bdata, physaddr, size);
  320. }
  321. unsigned long __init free_all_bootmem_node (pg_data_t *pgdat)
  322. {
  323. return(free_all_bootmem_core(pgdat));
  324. }
  325. unsigned long __init init_bootmem (unsigned long start, unsigned long pages)
  326. {
  327. max_low_pfn = pages;
  328. min_low_pfn = start;
  329. return(init_bootmem_core(NODE_DATA(0), start, 0, pages));
  330. }
  331. #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
  332. void __init reserve_bootmem (unsigned long addr, unsigned long size)
  333. {
  334. reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size);
  335. }
  336. #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
  337. void __init free_bootmem (unsigned long addr, unsigned long size)
  338. {
  339. free_bootmem_core(NODE_DATA(0)->bdata, addr, size);
  340. }
  341. unsigned long __init free_all_bootmem (void)
  342. {
  343. return(free_all_bootmem_core(NODE_DATA(0)));
  344. }
  345. void * __init __alloc_bootmem (unsigned long size, unsigned long align, unsigned long goal)
  346. {
  347. pg_data_t *pgdat = pgdat_list;
  348. void *ptr;
  349. for_each_pgdat(pgdat)
  350. if ((ptr = __alloc_bootmem_core(pgdat->bdata, size,
  351. align, goal)))
  352. return(ptr);
  353. /*
  354. * Whoops, we cannot satisfy the allocation request.
  355. */
  356. printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
  357. panic("Out of memory");
  358. return NULL;
  359. }
  360. void * __init __alloc_bootmem_node (pg_data_t *pgdat, unsigned long size, unsigned long align, unsigned long goal)
  361. {
  362. void *ptr;
  363. ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal);
  364. if (ptr)
  365. return (ptr);
  366. return __alloc_bootmem(size, align, goal);
  367. }